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Unlinking and unknottedness of
monotone Lagrangian submanifolds

GEORGIOS DIMITROGLOU RIZELL

JONATHAN DAVID EVANS

Under certain topological assumptions, we show that two monotone Lagrangian
submanifolds embedded in the standard symplectic vector space with the same
monotonicity constant cannot link one another and that, individually, their smooth
knot type is determined entirely by the homotopy theoretic data which classifies the
underlying Lagrangian immersion. The topological assumptions are satisfied by a
large class of manifolds which are realised as monotone Lagrangians, including tori.
After some additional homotopy theoretic calculations, we deduce that all monotone
Lagrangian tori in the symplectic vector space of odd complex dimension at least five
are smoothly isotopic.
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Part I Introduction

Consider two n–dimensional embedded submanifolds, L1 and L2 , of 2n–dimensional
Euclidean space R2n . We say that L1 links L2 if L1 is homologically essential in the
complement of L2 . We say that L1 and L2 are not linked if each one is nullhomologous
in the complement of the other.

When L1 and L2 are diffeomorphic then we can ask if they are isotopic through
embedded submanifolds. If they are not, then we say they are relatively knotted. In
high dimensions, n� 4, the issue of knottedness is related to the question of linking via
a theorem of Haefliger and Hirsch [26]. We discuss this in more depth in Section 6.2
below.

Now suppose that R2n is equipped with its standard symplectic form !0 and that
L1 and L2 are required to be Lagrangian submanifolds (that is, !0 vanishes on the
tangent spaces of L1 and L2 ). The question of whether L1 and L2 can be linked or
relatively knotted is subtle and has been much studied (Borrelli [8], Eliashberg and
Polterovich [18; 19; 20; 21], Evans [22], Hind [27], Hind and Ivrii [29], Luttinger [35]).
We review some known results in Section 3 below.
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1 Statement of results

The theorems we prove concern knotting and linking of Lagrangian submanifolds in the
standard symplectic vector space Cn , or more generally in a subcritical Stein manifold.
We need to restrict attention to a certain class of Lagrangian embeddings: the monotone
ones; see Definition 2.4. Note that by torus we always mean a product of circles.

Theorem A Let X be a subcritical Stein manifold and let 0 < K1 � K2 be real
numbers. A K1 –monotone Lagrangian torus embedded in the complement C of an
embedded K2 –monotone Lagrangian torus must be homologically trivial in C. In
particular, two embedded K–monotone Lagrangian tori are each nullhomologous in
the complement of the other.

Using our definition of linking, the above theorem states that a K1 –monotone La-
grangian torus cannot link a K2 –monotone torus if K1 � K2 and that monotone
Lagrangian tori with the same monotonicity constant are not linked. This theorem
fails if we let K2 <K1 : consider a pair of concentric circles with different radii in C.
The theorem is clear for circles in C by an area argument. It is less intuitively clear
why it should be true in higher dimensions. Our proof fills the smaller Lagrangian
by holomorphic discs of Maslov index two and uses a neck-stretching argument to
ensure that these discs are disjoint from the bigger Lagrangian. The discs provide the
necessary nullhomology of L1 in the complement of L2 .

Theorem B Suppose L1 and L2 are embedded monotone Lagrangian n–tori in Cn ,
n� 4, and suppose that they are homotopic through Lagrangian immersions. Then they
are smoothly isotopic through embeddings (not necessarily Lagrangian embeddings).

This is a consequence of Theorem A, using Haefliger–Hirsch theory; this theory reduces
questions about knottedness of middle-dimensional submanifolds of Euclidean space to
computations of self-linking numbers. Roughly speaking, it associates to an embedding
a certain homotopy class of normal vector fields and two embeddings are isotopic
if and only if their Haefliger–Hirsch fields are homotopic (this is explained fully in
Section 6.2).

The key point in our proof is Lemma 6.10 which identifies the Haefliger–Hirsch field
for a monotone Lagrangian torus purely in terms of the Maslov class. This is achieved
by showing that a deformation of a monotone Lagrangian L off itself in the normal
direction Jr� , where � is a submersion L!S1 representing the Maslov class and J

is a compatible almost complex structure, is again monotone with smaller monotonicity
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Unlinking and unknottedness of monotone Lagrangian submanifolds 999

constant. Applying Theorem A, we deduce that the pushoff is nullhomologous in the
complement of L. From this we deduce that Jr� is the Haefliger–Hirsch field.

By performing some homotopy computations inspired by Borrelli [8] we also derive:

Corollary C If n� 5 is odd then all monotone Lagrangian n–tori in Cn are smoothly
isotopic.

First note that this is true at the level of maps: we do not need to reparametrise the tori to
make them isotopic. Also note that this is really a rigidity theorem for Lagrangians and
the proof uses hard tools (pseudoholomorphic curves) in an essential way: if we were
to relax the Lagrangian condition to totally real then there are totally real embeddings
of tori representing all isotopy classes of smooth embeddings (by the h-principle for
totally real embeddings) and the isotopy classes of smooth embeddings are in bijection
with H1.LIY .n//, where

Y .n/D

�
Z if n� 1 mod 2;

Z=2 if n� 0 mod 2;

(see Section 6.2). There are many examples, due to Chekanov and Schlenk [13], of
Hamiltonian nonisotopic monotone Lagrangian tori in high-dimensional symplectic
vector spaces which are, reassuringly, known to be smoothly (in fact Lagrangian)
isotopic. In Section 8 we will construct some examples of relatively knotted monotone
tori with nonhomotopic Gauss maps when n is even. These are similar to the smoothly
knotted Lagrangian S1 �S3 examples found in [8].

Both of these theorems will be proved in greater generality below; see Theorem 5.1
and Theorem 6.1 respectively. In particular, we will not require L1 and L2 to be
tori, but the torus is the simplest manifold satisfying the topological conditions we
require. Indeed for Theorem A we do not even require that the two Lagrangians are
diffeomorphic. We prove Corollary C in Section 6.5.

In Section 7 we will prove a harder result (Theorem 7.1):

Theorem D Suppose L1 and L2 are embedded Lagrangian copies of S1 � Sn�1

in Cn and suppose that they are homotopic through Lagrangian immersions. If

� nD 2kC 2> 4 and L1 , L2 have minimal Maslov number 2kC 2 or

� nD 2kC 1> 4 and L1 , L2 are monotone

then they are smoothly isotopic through embeddings (not necessarily Lagrangian em-
beddings).
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This result was proved for nD 4; 8 by Borrelli [8], even without the assumption on the
minimal Maslov number, using completely different methods. It is mysterious to us that
our technique cannot deal with the case nD 4, but this restriction is needed to rule out
certain bad limiting behaviour of punctured holomorphic curves under neck-stretching.
We will also prove:

Corollary E Let n be an integer, n � 5. If n is odd then all monotone Lagrangian
embeddings of S1 �Sn�1 in Cn are smoothly isotopic after reparametrisation. If n

is even then all Lagrangian embeddings of S1 � Sn�1 in Cn with minimal Maslov
number n are smoothly isotopic.

Remark 1.1 When n is odd it may be necessary to reparametrise S1 �Sn�1 by a
reflection of S1 . This is not necessary for the case n even: as Borrelli argues in [8,
Lemma G], when n is even the action of diffeomorphisms on the space of embeddings is
identified with the usual action of diffeomorphisms on H n�1.S1�Sn�1IZ=2/DZ=2
and hence trivial.

2 Basic definitions

Let L be an oriented n–manifold. Equip L with a Riemannian metric and let FrC.L/
denote the bundle of positive orthonormal frames on L. Let .X; !/ be a symplectic
manifold equipped with a compatible almost complex structure J and corresponding
almost Kähler metric g . Let FrU .X / denote the bundle of unitary frames on X.

Definition 2.1 An immersion f W L # X is called Lagrangian if f �! D 0.

Given a Lagrangian immersion f , equip L with the metric f �g . One defines a
Lagrangian frame map

Fr.f /W FrC.L/! FrU .X /

which sends an orthonormal frame of TpL to the pushed-forward frame considered
as a unitary basis of Tf .p/X. Note that the R–span of a unitary basis of TxX is a
Lagrangian n–plane and that all Lagrangian n–planes arise this way. In particular, U.n/

acts transitively on the oriented Lagrangian Grassmannian ƒC.n/ of Lagrangian
n–planes and the stabiliser is SO.n/, acting in the usual way on orthonormal frames in
a fixed Lagrangian n–plane; so ƒC.n/Š U.n/=SO.n/. If we define ƒ.X / to be the
Lagrangian Grassmann bundle of all Lagrangian n–planes in tangent spaces of X then
we see FrU .X / is an SO.n/–bundle over ƒ.X / and the map Fr.f / defined above is
an SO.n/–equivariant bundle map living over the Lagrangian Gauss map

ƒ.f /W L!ƒ.X /
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which sends p 2L to f�.TpL/ 2ƒ.X /f .p/ .

Theorem 2.2 (Gromov [25], Lees [33, Theorem 1 and Corollary 2.2]) Two La-
grangian immersions

f1; f2WL # X

are homotopic through Lagrangian immersions if and only if the maps

Fr.f /1;Fr.f /2WFrC.L/! FrU .X /

are homotopic as SO.n/–equivariant bundle maps. Moreover, given an SO.n/–equi-
variant bundle map ˆWFrC.L/! FrU .X / such that the underlying map �WL! X

satisfies
Œ��!�D 0 2H 2.LIR/;

there exists a Lagrangian immersion F WL # X homotopic to � with Fr.F / homotopic
to ˆ.

Mostly we consider Lagrangian submanifolds in the standard symplectic vector space
Cn . The tangent bundle of Cn is canonically trivialised by translation of vectors to the
origin. We write

.2:3/ Px W TxCn
! T0Cn

for this translation map. In particular we may identify (SO.n/–equivariantly) the
Lagrangian Grassmann bundle ƒ.Cn/ with the product

ƒ.Cn/ŠƒC.n/�Cn:

In this trivialisation we consider the Lagrangian frame and Gauss maps as maps

Fr.f /W FrC.L/! U.n/; ƒ.f /W L!ƒC.n/:

Note that an SO.n/–equivariant bundle map FrC.L/ ! U.n/ is a section of the
associated U.n/–bundle, which is the complexified frame bundle FrC.L/, a principal
U.n/–bundle. This means that L admits a Lagrangian immersion in Cn if and only
if its complexified tangent bundle is trivial and that two Lagrangian frame maps are
SO.n/–equivariantly homotopic if and only if the corresponding trivialisations of the
complexified tangent bundle are homotopic. The difference between two trivialisations
of the complexified tangent bundle comprises a map L! U.n/ and hence SO.n/–
equivariant homotopy classes of Lagrangian frame maps correspond (noncanonically)
one-to-one with homotopy classes of maps L! U.n/.

It is well-known that H 1.ƒC.n/IZ/Š Z and that this cohomology group is generated
by the Maslov class � (Arnol’d [3]).
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1002 G Dimitroglou Rizell and J D Evans

Definition 2.4 Let �0 be the standard Liouville form

�0 D

nX
kD1

xkdyk

on Cn and !0Dd�0 the standard symplectic 2–form. Let f W L#Cn be a Lagrangian
immersion. The symplectic area class of f is the cohomology class

a.f / WD Œf ��0� 2H 1.LIR/:

The Maslov class of f is the cohomology class

�.f / WD f �� 2H 1.LIR/:

We say that f is K–monotone if

a.f /DK�.f /

for some K > 0.

More generally if .X; !/ is a symplectic manifold and f W L ! X a Lagrangian
submanifold, there is an area homomorphism

a.f /W H2.X;LIZ/! R

obtained by integrating ! over relative chains.

Monotone Lagrangians provide a particularly convenient setting for doing Lagrangian
Floer theory (Oh [37], Biran and Cornea [6]). This is because the area of a disc controls
its Maslov index, which controls the expected dimension of the moduli space, and
hence bubbling phenomena which reduce area also reduce expected dimension, so the
boundary of a moduli space will have smaller expected dimension than the moduli
space itself. There are good reasons to study monotone Lagrangians in their own right.

Theorem 2.5 (Evans and Kędra [23, Theorem D]) In the Gromov–Lees h-principle
one can require that all Lagrangian immersions are monotone.

Restrictions on embeddings of monotone Lagrangians (as opposed to immersions) are
therefore truly rigidity theorems.

Monotone Lagrangians in Cn arise naturally in the Lagrangian mean curvature flow as
self-similarly contracting solutions (Groh, Schwarz, Smoczyk and Zehmisch [24]). They
also exhibit special properties that are not shared by a general Lagrangian submanifold.
For instance, orientable monotone Lagrangians in C3 are all products S1�†g (Evans
and Kędra [23, Theorem B]); counterexamples to the nonmonotone version of this
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Unlinking and unknottedness of monotone Lagrangian submanifolds 1003

statement can be constructed by applying Polterovich’s connected sum to remove
double points of Lagrangian immersions obtained by an h-principle.

3 Context

The current techniques for understanding knottedness or linking of Lagrangian sub-
manifolds fall into several categories:

3.1 Luttinger surgery

The papers [8; 19; 35] use Luttinger surgery on a hypothetical Lagrangian submanifold
with specified self-linking or knotting properties to produce an impossible symplectic
manifold. These have the drawback that one must study Lagrangians diffeomorphic to
S1 �Sk , k D 1; 3; 7, for which one can define Luttinger surgery.

Theorem 3.1 (Luttinger [35]) There exist isotopy classes of embedded tori in C2

which do not contain Lagrangian embeddings.

Theorem 3.2 (Luttinger [35], Eliashberg and Polterovich [19], Borrelli [8]) Suppose
k2f1; 3; 7g. If S1�SkŠL�C1Ck is a Lagrangian submanifold, W W D��;gL! C1Ck

is a Weinstein neighbourhood, � W L! S1 is the projection to the first factor and L0 is
the image under W of the graph of the 1–form �0d� for some �0 < � ; then L0 does
not link L.

In the language of Section 6.2 below, this theorem identifies the Haefliger–Hirsch field
of the Lagrangian embedding and this is enough to determine the smooth knot type
when the dimension is sufficiently large. This argument, due to Borrelli, is reproduced
in Section 6.4 below. Using it, Borrelli observes:

Corollary 3.3 (Borrelli [8]) Suppose k 2 f3; 7g. The smooth isotopy class of a
Lagrangian submanifold S1 �Sk � C1Ck is determined by the homotopy class of the
Lagrangian frame map. In other words, two Lagrangian submanifolds S1�Sk �C1Ck

with homotopic Lagrangian frame maps are not relatively knotted.

3.2 Perturbing the symplectic form

Eliashberg and Polterovich [18] and Hind and Ivrii [29] perturb the symplectic structure
to make a two-dimensional Lagrangian into a symplectic submanifold, choose an almost
complex structure making this submanifold into a holomorphic curve and then perturb
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the almost complex structure to perform isotopies of the holomorphic curve. These
techniques have the disadvantage that one must work in very special four-dimensional
situations.

Theorem 3.4 ([18] genus 0, 1; [29] genus > 1) If † is an orientable closed surface
and L� T �† is a Lagrangian submanifold homologous to the zero section then L is
smoothly isotopic to the zero section.

3.3 Filling with discs

The paper [20] by Eliashberg and Polterovich proves a ‘local unknottedness theorem’ in
four dimensions, showing that all Lagrangian planes asymptotic to a linear Lagrangian
plane are unknotted.

Theorem 3.5 A Lagrangian embedding R2! C2 which agrees with the embedding
of a linear Lagrangian plane … outside a compact set is isotopic (via an ambient
compactly supported Hamiltonian isotopy) to ….

The technique of proof is to construct an ambient submanifold of codimension one
containing the Lagrangian via the method of filling by holomorphic discs. The subman-
ifold thus constructed is also required to satisfy certain conditions on its characteristic
foliation. An isotopy of the Lagrangian with a plane is then constructed explicitly.

3.4 Holomorphic foliations

Hind’s papers [27; 28] use symplectic field theory (SFT) and neck-stretching arguments
to put Lagrangian spheres into a special position with respect to a pseudoholomorphic
foliation. Neck-stretching arguments were also used in Borman, Li and Wu [7], Evans
[22] and Li and Wu [34] to disjoin a Lagrangian sphere from a fixed collection of
symplectic submanifolds and reduce various knotting problems to those studied by
Hind or to problems on connectivity of spaces of symplectic ball packings. When
these methods work they produce very strong results, but the drawback is that they
require foliations by holomorphic curves, and such foliations are only well-behaved in
dimension four. They also work best for Lagrangian spheres and it has proved difficult
to approach Lagrangian tori this way.

3.5 This paper

Our methods are completely different in character and rely on the existence of many
holomorphic discs with boundary on one of the Lagrangians to produce a nullhomology
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of that Lagrangian. A neck-stretching argument is used to ensure that this nullhomology
can be made disjoint from the other Lagrangian.

Related work on a Floer-theoretic approach to homological inclusion maps for La-
grangian submanifolds is discussed in Albers [1; 2].

Part II Proofs

4 Holomorphic discs which avoid a Lagrangian

If .X;L/ is a pair consisting of a symplectic ambient manifold and a Lagrangian
submanifold, we denote by Hur�.X;LIZ/ the image of the Hurewicz homomorphism
in relative homology. Let D��;gL denote the radius � closed disc subbundle of the
cotangent bundle T �L for a metric g , and S��;gL its boundary.

Definition 4.1 Define the infimal disc area of a Lagrangian embedding f W L! X

to be

.4:2/ A.f /D inf
˚

a.f /.ˇ/
ˇ̌
ˇ 2H2.X;LIZ/; a.f /.ˇ/ > 0

	
;

where a.f /W H2.X;LIZ/! R is the area homomorphism.

Theorem 4.3 Let L1 and L2 be manifolds and suppose that L2 admits a metric g

with no contractible geodesics. Suppose that

f1W L1!X;

f2W L2!X

are Lagrangian embeddings into a symplectic manifold .X; !/ (either closed or convex
at infinity). Suppose there exists a class ˇ 2 Hur2.X;L1IZ/ with a.f1/.ˇ/�A.f2/.
Then there exists an almost complex structure J on X with the following property:
All genus-zero J –holomorphic curves representing the class ˇ , that is to say spheres
passing through L1 or discs with boundary on L1 , are disjoint from L2 . Moreover,
if a.f1/.ˇ/ D A.f1/ then J can be chosen to be regular for the moduli problem of
finding discs in the class ˇ .

The construction of J proceeds by stretching the neck along a contact-type hypersurface
and analysing the limits of holomorphic curves as the neck becomes infinitely long.
This is a standard trick but it is important enough that we recall it now. For further
details of neck-stretching and SFT compactness we refer to Bourgeois, Eliashberg,
Hofer, Wysocki and Zehnder [11] and Cieliebak and Mohnke [15].
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Let
W W D��;gL2!X

be a symplectic embedding, extending f2 , given by Weinstein’s neighbourhood theorem.
Let 0 < �0 < � and let ˛ be the contact form on M D S��0;gL2 (given by minus
the pullback of the Liouville form). The Reeb flow of ˛ is precisely the cogeodesic
flow of g and we are assuming there are no contractible closed geodesics. There is an
� > 0 and a symplectic embedding of�

.��; �/�M; d.er˛/
�

into X as a collar neighbourhood of W .M /. Here r denotes the coordinate on
the interval .��; �/. Let J0 be an almost complex structure on W .D��;gL2/ which
preserves the contact structure, is compatible with d.er˛/, sends @r to the Reeb
direction and is r –invariant on the collar neighbourhood. We write �W .��; �/�M !X

for the embedding of the collar neighbourhood and U� for its image.

Now we construct a neck-stretching sequence Jt as in [15, Section 2.7]. Let
X0 DX nU�=2 and let Xk be the union of X0 with Nk D .���k; �/�M, identifying
.���k; s/2Nk with �.��; s/2X0 and .�; s/2Nk with �.�; s/2X0 for �=2<�<� .
The almost complex structure ��J0 extends uniquely to an r –invariant almost complex
structure Ik on Nk and we define Jk to be equal to J0 on X0 and equal to Ik on Nk .
We equip Xk with a symplectic form !k as follows. Decompose X0 DW [V into
its connected components, W containing L2 and V containing L1 . We define !k

to be equal to ! on V , equal to d.er˛/ on Nk and equal to e�k! on W . The
manifolds Xk are all diffeomorphic to one another and the cohomology class of !k is
independent of k , so by Moser’s Theorem .Xk ; !k/ is symplectomorphic to .X; !/.
Pulling back Jk along this symplectomorphism gives us our neck-stretching sequence.
For notational convenience we will still denote this almost complex structure by Jk .

As k!1 the manifolds .�k � �; kC �/�M, Wk DW [ ..��; kC �/�M / and
Vk D V [Nk have as direct limits noncompact almost complex manifolds S , W

and V . If we use the symplectic form d.er˛/ on each end of the form .a; b/�M

then the limits S and V are naturally symplectic; if we rescale the symplectic form on
Wk by e�k then the limit is also naturally symplectic. We can identify these limits: S

is the symplectisation of M D S��0;gL2 , W is the cotangent bundle of L2 and V is
the complement X nL2 .

The SFT compactness theorem [11; 15] states that for a sequence ki ! 1 and a
sequence of Jki

–holomorphic curves ui W †!Xki
representing some fixed homology

class, there is a subsequence kij and reparametrisations �ij of † such that uij ı�
�1
ij
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converge (in the Gromov–Hofer sense) to a holomorphic building which is a union

uD uW [uS1
[ � � � [uS`

[uV

of punctured finite-energy holomorphic curves, where uW is a curve in W , uV is a
curve in V and each uS i

is a curve in S . These curves are asymptotic to cylinders on
Reeb orbits and, if we were to glue all components together along their common asymp-
totics we would end up with a two-dimensional topological surface homeomorphic
to †.

Though this theorem is proved only for closed surfaces, the proof extends to the case
of holomorphic curves with boundary on a Lagrangian submanifold [11, Section 11.3];
indeed, in our particularly simple case the Lagrangian is itself compact.

The key property of Gromov–Hofer convergence which we require for our theorem is
the behaviour of area in the limit. We state the relevant result from [15] in our notation:

Lemma 4.4 [15, Corollary 2.11] In the above setting, suppose that uk W †!Xk is a
Gromov–Hofer convergent sequence of Jk –holomorphic maps whose limit building is

uD uW [uS1
[ � � � [uS`

[uV :

Let †0 denote the domain of uV and let !V denote the symplectic form on V . Then

lim
k!1

Z
†

u�k!k D

Z
†0

u�
V
!V :

Note that .V ; !V / is symplectomorphic to .X nL2; !/.

Now we will prove Theorem 4.3.

Proof of Theorem 4.3 Let us deal with the case of discs: the argument for spheres
is entirely analogous. If the theorem is false then for all t 2 Œ0;1/ there exists a
Jt –holomorphic disc ut W .D

2; @D2/! .X;L1/ with boundary on L1 representing
the class ˇ such that ut .D

2/\L2¤∅. By the SFT compactness theorem we can find
a sequence ti!1 such that ui Gromov–Hofer converges (after reparametrisations)
to a holomorphic building u D uW [ uS1

[ � � � [ uS`
[ uV . Note that a punctured

finite-energy curve in V Š X nL2 is asymptotic to a collection of geodesics in L2

and we can compactify it to get a compact topological surface with boundary on L2 .

Since the domain of ut is a disc there must exist a component v of the building whose
domain is a plane. The components of the building are asymptotic to closed Reeb
orbits. Since there are no contractible Reeb orbits, v has image in V ŠX nL2 . The
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uV

uSi

uW

L1

L2

Figure 1: The Gromov–Hofer limit must contain a finite-energy plane as
a component of uV . This plane (shaded in the figure) has large area since
it can be considered as a disc with boundary on L2 . This contradicts the
conservation of area in the limit.

asymptotic Reeb orbit of v is a loop in L2 and hence we can think of v as a topological
disc with boundary on L2 . Its symplectic area is therefore at least A.f2/. Moreover
there is another component of uV with boundary on L1 . However, by Lemma 4.4, the
areas of the components of uV sum to give a.f1/.ˇ/. Since these summands all have
strictly positive area we see that a.f1/.ˇ/ >A.f2/, which contradicts our assumption
that a.f1/.ˇ/�A.f2/.

We now show that we can choose J regular for the moduli problem if a.f1/.ˇ/DA.f1/.
With this extra hypothesis, ˇ is a minimal homology class of discs so we know that
pseudoholomorphic discs representing ˇ are somewhere injective (by [32, Theorem A])
and hence we can achieve transversality for a Baire set of almost complex structures.
Let Jk be a sequence of almost complex structures from this Baire set such that Jk!J

as k !1, where J is the almost complex structure we have already constructed.
Suppose that for all k there is a Jk –disc uk representing ˇ with uk.D

2/\L2 ¤∅.
There is a Gromov convergent subsequence ukj

. Since ˇ is minimal there is no
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bubbling and the limit is a J –disc or sphere representing ˇ and intersecting L2 , which
is a contradiction.

5 Unlinking of Lagrangians

Theorem 5.1 Suppose that L1 and L2 are n–manifolds such that
� L2 admits a metric with no contractible geodesics,
� H n�1.L2IZ/ is torsion-free,
� the cohomology of the universal cover of L1 vanishes in odd degrees,
� L1 is orientable and spin.

Let fk W Lk ! Cn , k D 1; 2, be Lagrangian embeddings and suppose that
� L1 is monotone,
� L1 links L2 .

Then
A.f2/ <A.f1/;

where A.fk/ are defined by Equation (4.2).

Proof By a theorem of Damian [16] and its sharpening [23, Proposition 7] we know
that for a regular J there is a free homotopy class ˇ of loops on L1 with Maslov
index 2 such that, when J is regular, the moduli space

M0;1.ˇ;J /

(of J –holomorphic discs with boundary on L1 representing ˇ and having one boundary
marked point) contains a component M such that the evaluation map

evW M !L1

has nonzero degree, say d . Note that the homology class of ˇ is minimal by monotonic-
ity. For contradiction, assume that A.f2/�A.f1/. By Theorem 4.3 we may chose J

so that no discs in M intersect L2 . Let N denote the moduli space of J –holomorphic
discs from M with a marked point on the interior. Note that @N DM. Then N gives
a nullhomology of ŒM �D d ŒL1� in Cn nL2 . Since Hn.Cn nL2;Z/ŠH n�1.L2IZ/
is torsion-free by assumption, this implies that L1 is nullhomologous in Cn nL2 .

For monotone Lagrangian tori one does not require the full lifted Floer homology used
by Damian or the proposition from [23] to get the existence of these holomorphic
discs; one can get away with an argument, due to Buhovsky, using the quantum product
structure on Floer cohomology and the Oh spectral sequence: see [12, Theorem 2].
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6 Unknottedness of Lagrangians

6.1 Statement of results

Theorem 6.1 Let n� 4 and let L be an n–manifold satisfying the following condi-
tions:

(1) L admits a metric g with no nonconstant contractible geodesics.

(2) The cohomology group H n�1.LIZ/ is torsion-free.

Suppose that f1W L!Cn is a monotone Lagrangian embedding and suppose that there
exists a submersion � W L! S1 with connected fibre satisfying

�.f1/D �
�

�
d�

2�

�
:

Suppose that f2W L! Cn is another monotone Lagrangian embedding such that the
Lagrangian frame maps are SO.n/–equivariantly homotopic when restricted to the
complement Lx of a point x 2L:

Fr.f1/jLx
'SO.n/ Fr.f2/jLx

Then f2 is smoothly isotopic to f1 through embeddings (not necessarily through
Lagrangian embeddings).

Note that the frame maps being equivariantly homotopic when restricted to the com-
plement of a point is a weaker condition than being equivariantly homotopic over the
whole of L. We used the latter condition in the statements of Theorems B and D to
make them more readable, but only the weaker assumption is needed.

Remark 6.2 Note that the condition that L admits a metric g with no nonconstant
contractible geodesics implies that L is aspherical. This is a theorem of Lyusternik and
Fet [36]: If there is no nonconstant contractible geodesic then the space of contractible
based loops retracts to the constant loop via the downward gradient flow of the energy
functional; since this component of the based loopspace is contractible, all higher
homotopy groups vanish.
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Corollary 6.3 For n� 4, the smooth isotopy class of a monotone Lagrangian embed-
ding of the n–torus in Cn is determined by the SO.n/–equivariant homotopy type of
the Lagrangian frame map.

Proof The flat n–torus, n � 4, satisfies Conditions (1) and (2) of Theorem 6.1. If
f1W T

n ! Cn is a monotone Lagrangian embedding then by [12] or [16] we know
there is a relative homology class ˇ 2H2.Cn;T nIZ/ŠH1.LIZ/ with �.ˇ/D 2. In
particular, half the Maslov class 1

2
�.f1/ 2H 1.LIZ/ is a primitive cohomology class:

if �.f1/D k� for some class � 2H 1.LIZ/ then 1D 1
2
�.ˇ/D k�.ˇ/ so k D˙1.

Since L is a torus, any primitive homology class c 2H1.LIZ/ can be represented as
�� Œd�=.2�/� for a circle-valued function � satisfying the conditions of Theorem 6.1.
The corollary is now immediate.

Remark 6.4 By Theorem 2.2, knowing the SO.n/–equivariant homotopy type of
the Lagrangian frame map is the same as knowing the homotopy class of Lagrangian
immersions. Therefore Theorem B is a direct consequence of Corollary 6.3.

6.2 Haefliger–Hirsch theory

In their paper [26] Haefliger and Hirsch classified smooth embeddings of compact
n–manifolds into Cn up to isotopy. We explain their results in this section.

Definition 6.5 Let L be a closed, oriented, connected n–manifold and suppose that
f W L! Cn is an embedding. Let x 2 L be a point, let x 2D0 �D � L be nested
disc neighbourhoods of x ; let � be a cut-off function supported on L nD0 and equal
to one outside D . Define Lx D L n fxg and fx D f jLx

. If v 2 �.f �x .T Cn// is a
vector field on Lx , normal to Lx , then �v extends to a vector field on L, vanishing
on D0 . Fix a tubular neighbourhood of L, identified via the exponential map with
the normal bundle �L. Then for sufficiently small � we can consider the section ��v
of �L as a submanifold of Cn and we call this the pushoff L0 of L along v . Note that
L0 � Cn n .L nD/.

Definition 6.6 In the context of the previous definition, a Haefliger–Hirsch field,
v 2 �.f �x .T Cn//, is a normal vector field along Lx with the property that the pushoff
of L along v is nullhomologous in Cn n .L nD/.

Lemma 6.7 (See [26]) Given an embedding f there is a Haefliger–Hirsch field v
which is unique up to homotopy.
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Define a fibre bundle
V2n;nC1!L

whose fibre is the Stiefel manifold V2n;nC1 Š SO.2n/=SO.n� 1/ of .nC 1/–frames
in R2n . This bundle is associated to the SO.n/–frame bundle of L by the action
of SO.n/ on the first n vectors of the .nC 1/–frame. Given an embedding f with
Haefliger–Hirsch field v we can define a section s.f / of V2n;nC1jLx

. Giving a section
of this associated bundle is equivalent to giving an SO.n/–equivariant map from the
oriented frame bundle FrC.Lx/ to the Stiefel manifold. We just send an oriented
orthonormal frame F in TyL to

s.f /.y/D
�
Pf .y/f�.F /;Pf .y/v

�
2 V2n;nC1;

where P denotes the trivialisation defined by Equation (2.3). We are writing the
.nC 1/–frame as .G; w/, where G consists of the first n vectors and w is the last.
We call the SO.n/–equivariant map

s.f /W FrC.Lx/! V2n;nC1 D SO.2n/=SO.n� 1/

the Haefliger–Hirsch map.

Theorem 6.8 (See [26]) Suppose n� 4. If f 0W L!Cn is another embedding then it
is smoothly isotopic to f if and only if the Haefliger–Hirsch maps s.f / and s.f 0/ are
homotopic as SO.n/–equivariant maps FrC.Lx/! V2n;nC1 D SO.2n/=SO.n� 1/.

If �.V2n;nC1jLx
/ denotes the space of sections of the Stiefel manifold bundle over Lx

(ie the space of Haefliger–Hirsch maps) Haefliger and Hirsch identify

�0

�
�.V2n;nC1jLx

/
�
DH n�1

�
LI�n�1.V2n;nC1/

�
D

�
H1.LIZ/ if n� 1 mod 2;

H1.LIZ=2/ if n� 0 mod 2:

This is an application of obstruction theory and of the fact that V2n;nC1 is .n� 2/–
connected and �n�1.V2n;nC1/ D Z (respectively Z=2) when n is odd (respectively
even); see [39, Theorem 3.16] for this latter computation.

6.3 Identifying the Haefliger–Hirsch field

Take a metric on L and let � W L! S1 be a submersion representing the Maslov class
in the sense that �.f1/ D �

� Œd�=.2�/�. The gradient of � is a nowhere-vanishing
vector field r� and under the musical isomorphism with the cotangent bundle it is
identified with the 1–form d� . Let J be a compatible almost complex structure
on T �L and consider r� as a vector field defined along the zero-section.
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Let fLt W L! T �Lgt2.�1;1/ be a 1–parameter family of embedded submanifolds
such that

� L0 is just the inclusion of the zero-section,

�
d
dt

ˇ̌
tD0

Lt .y/D J.L0/�r�.y/ for all y 2L,

� im.Lt /\ im.L0/D∅ for 0¤ jt j< � .

Then for � > 0, L� is smoothly isotopic in T �L nL to the inclusion of the graph of
the 1–form d� .

In the setting of Theorem 6.1, let f1W L! Cn be a monotone Lagrangian embedding.
Let W W D��L! Cn be a Weinstein neighbourhood of f1.L/ in Cn and L0 be the
image of the graph of �0d� under W for some 0< �0 < � .

Lemma 6.9 If L is K–monotone with �.f1/D �
� Œd�=.2�/� the Lagrangian L0 is

K0–monotone, where
K0 DK� 2��0 <K:

Proof Since L and L0 are Lagrangian isotopic their Lagrangian Gauss maps are
homotopic so the Maslov class is unchanged. We need to compute the symplectic area
class

Œ�0� 2H 1.L0IR/Š Hom
�
H1.L

0
IR/;R

�
:

Let ˛ denote minus the (canonical) Liouville 1–form on D��;gL so that d˛ is the
canonical symplectic form. Note that W ��0 � ˛ is closed because the Weinstein
embedding is symplectic, and its cohomology class is Œ�0� 2H 1.LIR/. Note that

H 1
�
D��;gLIR

� i�

ŠH 1.LIR/;

where i W L!D��;gL is the inclusion, therefore W ��0 D ˛CGC dF where G is
a form representing .i�/�1Œ�0� and F is a function. Let i�0d� W L

0 ! D��;g be the
inclusion of L0 into the Weinstein neighbourhood and f 0

1
DW ı i�0d� the embedding

of L0 into Cn . Then�
.f 01/

��0

�
D
�
i��0d�W ��0

�
D
�
i��0d� .˛CGC dF /

�
D��0Œd��CK�.f1/

by definition of the canonical 1–form �˛ and by K–monotonicity. Since Œd�� D
2��.f1/ by assumption we get monotonicity with constant

K0 DK� 2��0:
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Lemma 6.10 The vector field v D J.f1/�r� restricted to the complement of a point
x 2L is a Haefliger–Hirsch field for f1 .

Proof As we observed above, the pushoff of L along v is smoothly isotopic to
a K0–monotone Lagrangian L0 where K0 < K . Since L admits a metric without
contractible geodesics, we know that L is aspherical by Remark 6.2. Therefore L2DL

and L1 DL0 satisfy the assumptions of Theorem 5.1, so L0 is nullhomologous in the
complement of L. Fix a point x 2L and a disc neighbourhood x 2D �L and let v0

denote the restriction of v to Lx . Since v is nowhere-vanishing, the pushoff of L

along v0 (as constructed in Definition 6.5) is isotopic in Cn n .L nD/ to L0 which we
have seen is nullhomologous in Cn nL and therefore in Cn n .L nD/. Therefore v0 is
a Haefliger–Hirsch field for L.

6.4 Unknottedness

Theorem 6.1 follows immediately from Lemma 6.10 and the following:

Lemma 6.11 Suppose that f1; f2W L!Cn are Lagrangian embeddings such that the
Maslov class � is represented by �� Œd�=.2�/� for a circle-valued function � with
no critical points and such that J.fi/�r� are the Haefliger–Hirsch fields for some
compatible almost complex structure J . If the Lagrangian frame maps associated to fi

are homotopic when restricted to Lx , then the respective Haefliger–Hirsch maps are
homotopic.

Proof Suppose that Ft , t 2 Œ1; 2�, is a homotopy of SO.n/–equivariant Lagrangian
frame maps

Ft W FrC.Lx/! U.n/

with Fi D Fr.fi/ for i D 1; 2. For each frame e D .e1; : : : ; en/ 2 FrC.Lx/ define the
coefficients a.e/k by r� D

Pn
kD1 a.e/kek . Now

s.Ft /W FrC.Lx/! V2n;nC1 D SO.2n/=SO.n� 1/;

s.Ft /.e1; : : : ; en/D

�
Fte1; : : : ;Ften;J

nX
kD1

a.e/kFt .ek/

�
is a homotopy of SO.n/–equivariant maps connecting the Haefliger–Hirsch maps

s.fi/W FrC.Lx/! V2n;nC1 D SO.2n/=SO.n� 1/;

s.fi/.e1; : : : ; en/D
�
.fi/�e1; : : : ; .fi/�en;J.fi/�r�

�
for i D 1; 2.

Geometry & Topology, Volume 18 (2014)



Unlinking and unknottedness of monotone Lagrangian submanifolds 1015

We will now prove a more precise result which will allow us to prove Corollary C. Recall
from Section 6.2 that given two embeddings f1; f2W L! Cn , there is a difference
class �.f1; f2/2H n�1

�
LI�n�1.V2n;nC1/

�
which vanishes if and only if the respective

Haefliger–Hirsch maps are homotopic. We begin by showing the following more general
statement about this difference class.

Let U.n/! SO.2n/=SO.n� 1/ D V2n;nC1 be the map induced by the inclusion of
U.n/ in SO.2n/ and let

unW �n�1.U.n//! �n�1.V2n;nC1/

be the induced map on .n� 1/st homotopy groups.

Suppose that n is even. Let en=2 2 H n�1.U.n/IZ/ be the characteristic class in
U.n/ induced by the .n

2
/th Chern class in BU.n/ via suspension, that is by pulling

back this Chern class in H n.BU.n/; ?IZ/ to a relative class H n.EU.n/;U.n/IZ/ and
mapping it by the inverse of the connecting homomorphism in the long exact sequence
of the pair .EU.n/;U.n// to H n�1.U.n/IZ/. Fixing a trivialisation of C˝TL, the
Lagrangian frame map induced by the respective embeddings can be represented by a
map Fi W L! U.n/. The difference class

�.f1; f2/ WD F�1 .cn=2/�F�2 .cn=2/ 2H n�1.L;Z/

is well-defined independently of the choice of trivialisation and vanishes if the La-
grangian frame maps Fi are homotopic.

Proposition 6.12 Suppose that f1; f2W L!Cn are Lagrangian embeddings such that
the Maslov class �.fi/ is represented by ��i Œd�=.2�/� for a circle-valued function
�i with no critical points. Suppose that J.fi/�r�i are the Haefliger–Hirsch fields
.i D 1; 2/. Suppose moreover that r�1 and r�2 are both homotopic through non-
vanishing vector fields to some fixed unit vector field v , so that J.fi/�v are also
Haefliger–Hirsch fields .i D 1; 2/. Then �.f1; f2/ vanishes when n is odd and

�.f1; f2/D�.f1; f2/ mod 2

when n is even. Furthermore, if the Lagrangian frame maps are homotopic when
restricted to the .n� 2/–skeleton of L, then �.f1; f2/ vanishes for n� 5.

We begin by noting two lemmas.

Lemma 6.13 Let L be an oriented manifold with a nowhere-vanishing vector field
v . Denote by FrC.L/ the principal bundle of oriented frames and by Fr".L/ �
FrC.L/ the principal SO.n � 1/–bundle of frames whose first vector is v=jvj. An
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SO.n/–equivariant map FrC.L/! V2n;nC1 restricts to an SO.n�1/–equivariant map
Fr".L/! V2n;nC1 and an SO.n� 1/–equivariant map

˛WFr".L/! V2n;nC1

extends uniquely to an SO.n/–equivariant map

y̨WFrC.L/! V2n;nC1:

Proof The map y̨ is given by

y̨.e/D �˛
�
��1e

�
;

where e 2 SO.n/ D FrCp .L/ is a frame at p 2 L and � is an element of SO.n/ for
which ��1e has v=jvj as its first vector.

Lemma 6.14 Suppose that n� 5. Let pW U.n/! SO.2n/=SO.n� 1/D V2n;nC1 be
the map induced by the inclusion of U.n/ in SO.2n/. Then the induced map

unW �n�1.U.n//! �n�1.V2n;nC1/

vanishes.

Proof When n> 1 we have

�n�1.U.n//D

�
0 if n� 1 mod 2;

Z if n� 0 mod 2;

by Bott periodicity. So when n is odd, un vanishes automatically.

The map un factors as

�n�1.U.n//! �n�1.SO.2n//
‡n
�!�n�1.V2n;nC1/:

The map ‡nW �n�1.SO.2n//! �n�1.V2n;nC1/ lives in the long exact sequence

�n�1.SO.2n//
‡n
�!�n�1.V2n;nC1/! �n�2.SO.n� 1//! �n�2.SO.2n//:

Assume n is even. Since �n�1.V2n;nC1/DZ=2 we see that ‡n vanishes if its cokernel
is nontrivial. When n� 2 mod 8, using the tables on the first and second pages of [30],
we get

�n�1.SO.2n// �n�1.V2n;nC1/ �n�2.SO.n� 1// �n�2.SO.2n//

Z Z=2 Z=2�Z=2 Z=2

‡n

and it is clear that ‡n has nontrivial cokernel. Note that when n is not congruent to
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2 modulo 8, the rightmost term vanishes by Bott periodicity and hence the cokernel
of ‡n is precisely the group �n�2.SO.n� 1//. From the tables in [30], we see that
�n�2.SO.n� 1// is always nontrivial unless nD 2; 4; 8.

When n D 8, �7.SO.16// D Z by Bott periodicity and the map to �7.V16;9/ is
surjective. However the map ZD �7.U.8//! �7.SO.16//DZ is multiplication by 2,
so the composite �7.U.8//! �7.V16;9/ is trivial, which is what we wanted to show.

To see that the map ZD �7.U.8//! �7.SO.16//D Z is given by multiplication by 2
note that it arises in the exact sequence

� � � ! �7.U.8//! �7.SO.16//! �7.SO.16/=U.8//! �6.U.8//! � � �

and that �6.U.8//D 0 by Bott periodicity and �7.SO.16/=U.8//D Z=2.

Proof of Proposition 6.12 Consider the subfibre bundle Fr".Lx/� FrC.Lx/ of the
frame bundle which consists of frames whose first basis vector points in the direction
of v . Observe that this is naturally a principal SO.n� 1/–bundle.

The Haefliger–Hirsch maps

s.fi/W FrC.Lx/! V2n;nC1 D SO.2n/=SO.n� 1/;

s.fi/.e1; : : : ; en/D
�
e1; : : : ; en;J.fi/�v

�
which are SO.n/–equivariant maps, restrict to SO.n� 1/–equivariant maps

s.fi/
"
W Fr".Lx/! V2n;nC1:

Since the first vector is e1 D v , the restrictions s.fi/
" factorise as

s.fi/
"
D p ıFr.fi/

";

where
Fr.fi/

"
W Fr".Lx/! U.n/

is the restriction of the Lagrangian frame map, and where the projection

pW U.n/! SO.2n/=SO.n� 1/D V2n;nC1

is induced by the inclusion U.n/� SO.2n/.

Furthermore, for a fixed choice of complex trivialisation of C˝TL, the Lagrangian
frame maps are expressed as maps

Fi W L! U.n/:
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Using the SO.n� 1/–equivariant map F W Fr".L/! U.n/ which identifies a given
frame with a matrix representing the complexified frame relative the above trivialisation,
we can write

Fr.fi/
"
D Fi �F:

Here � denotes multiplication of U.n/–matrices.

Recall that the spaces V2n;nC1 are .n� 2/–connected and that

�n�1.V2n;nC1/D Y .n/D

�
Z=2 n even;
Z n odd:

The Hurewicz isomorphism implies that H n�1.V2n;nC1IZ/Š Y .n/. Fix a generator
gn 2H n�1.V2n;nC1IZ/.

We start by showing that

�.f1; f2/D .p ıF1/
�.gn/� .p ıF1/

�.gn/:

By Lemma 6.13, the two SO.n/–equivariant maps s.fi/ are SO.n/–equivariantly
homotopic if and only if the SO.n� 1/–equivariant maps

s.fi/
"
D p ı .Fi �F /D �F .p ıFi/

are SO.n� 1/–equivariantly homotopic, where �M denotes the action on V2n;nC1

induced by multiplication on the right by a matrix M. This happens if and only if the
maps p ıFi are homotopic. The obstruction to the problem of finding a homotopy
between the two maps

p ıFi W Lx! V2n;nC1

is given by .p ıF1/
�.gn/� .p ıF1/

�.gn/, which implies the statement.

When n is odd, H n�1.V2n;nC1IZ/Š Z and H n�1.U.n/IZ/ are both torsion-free, so
we can tensor them by Q and get

p�W H n�1.V2n;nC1IQ/!H n�1.U.n/IQ/;

which factors through H n�1.SO.2n/IQ/.

By looking at the spectral sequence (see Figure 2) of the fibration

SO.n� 1/! SO.2n/! V2n;nC1

we see that the pullback of gn 2H n�1.V2n;nC1IQ/ to H n�1.SO.2n/IQ/ vanishes:
it lives in the E

0;n�1
n�1

space of the spectral sequence and is necessarily killed by the
differential coming from

E
n�2;0
n�1

DH n�2.SO.n� 1/IQ/
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because
rank H n�2.SO.2n/IQ/D rank H n�2.SO.n� 1/IQ/� 1

since H n�2.SO.n� 1/IQ/ additionally contains the suspension of the Euler class. As
a consequence, p�F�i .gn/D 0 when n is odd and hence

�.f1; f2/D 0:

H 0.V2n;nC1IH
n�1.SO.n�1/IF// 0 � � � 0 H n�1.V2n;nC1IH

n�1.SO.n�1/IF//

H 0.V2n;nC1IH
n�2.SO.n�1/IF// 0 � � � 0 H n�1.V2n;nC1IH

n�2.SO.n�1/IF//

:
:
: 0 0

:
:
:

H 0.V2n;nC1IH
0.SO.n�1/IF// 0 � � � 0 H n�1.V2n;nC1IH

0.SO.n�1/IF//

Figure 2: Part of the En�1 –page of the spectral sequence for the fibration
SO.n� 1/! SO.2n/! V2n;nC1 . The coefficient field F is either Q if n is
odd or Z=2 if n is even.

We will show that gn pulls back to the suspension of wn in H n�1.SO.2n/IZ=2/ when
n is even. To see this, consider the spectral sequence of the fibration SO.n� 1/!

SO.2n/! V2n;nC1 for cohomology with coefficients in Z=2. We get

H n�1.SO.2n/IZ=2/DEn�1;0
1 ˚E0;n�1

1

and since H n�1.SO.2n/IZ=2/ has the same rank as

E
n�1;0
n�1

˚E
0;n�1
n�1

DH n�1.SO.n� 1/IZ=2/˚H n�1.V2n;nC1IZ=2/

we know that the differential E
n�2;0
n�1

!E
0;n�1
n�1

vanishes and the pullback of gn to
H n�1.SO.2n/IZ=2/ survives. After pulling it back further to the fibre

H n�1.SO.n� 1/IZ=2/

it vanishes. This implies that the pullback of gn to SO.2n/ must be the unique nonzero
element in the kernel of the projection

H n�1.SO.2n/IZ=2/!H n�1.SO.n� 1/IZ=2/;

which is precisely the suspension of wn . Pulling back further to U.n/ gives the
suspension of the .n

2
/th Chern class reduced modulo 2; therefore

�.f1; f2/D�.f1; f2/ mod 2:
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Finally we prove the statement about frame maps which agree on the .n� 2/–skeleton.
If the Lagrangian frame maps are homotopic when restricted to the .n� 2/–skeleton
of L, it follows that the same is true for the SO.n� 1/–equivariant Lagrangian frame
maps Fr.fi/

" . It follows that the value of

.p ıF1/
�.gn/� .p ıF1/

�.gn/

on an .n� 1/–cell of L can be obtained by evaluating gn on a spherical class, which
moreover factorises as

Sn�1
! U.n/! V2n;nC1:

Lemma 6.14 shows that �.f1; f2/ vanishes when n� 5.

6.5 Proof of Corollary C

To prove Corollary C, recall that the minimal Maslov number of a monotone torus is
two (see the proof of Corollary 6.3), hence the Maslov class is primitive. If we take
a linear projection � to S1 representing the Maslov class then its gradient r� is a
constant nonzero vector field on the torus. By Lemma 6.10, the Haefliger–Hirsch field
of such a monotone Lagrangian torus is Jr� .

All constant nonzero vector fields on the torus are homotopic through constant nonzero
vector fields. Therefore if f1; f2 are monotone Lagrangian embeddings of the torus
where the Maslov classes are given by �i D �

�
i Œd�=.2�/�, i D 1; 2, for two linear

projections �1; �2 , we have that r�1 and r�2 are homotopic through nonvanishing
vector fields to a unit vector field v . Now by Proposition 6.12 we see that the Haefliger–
Hirsch obstruction to smooth isotopy vanishes when n is odd and at least five.

7 Generalisations

Recall that by Corollary 3.3 our unknottedness result Theorem 6.1 is already known for
S1�S3 and S1�S7 . It would be nice to recover this result using our techniques and
to extend it to other products S1 �Sn�1 . Unfortunately we do not know how to do
this in general. In this section we prove unknottedness in sufficiently high dimensions
(starting with S1 �S4 ) with either a restriction on the minimal Maslov number or the
condition of monotonicity.

Theorem 7.1 Let n � 5. Then the smooth knot type of a Lagrangian embedding
S1 � Sn�1 ! Cn is determined by the SO.n/–equivariant homotopy type of the
Lagrangian frame map restricted to the complement Lx of a point x 2 L in the two
cases:
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� n is even and the minimal Maslov number is n.
� n is odd and the Lagrangian embedding is monotone.

Remark 7.2 Note that no monotonicity assumption is needed when the minimal
Maslov number is n > 4 because such Lagrangian embeddings are automatically
monotone. This is because the first cohomology has rank one and because there exists a
relative homology class of discs with strictly positive area and Maslov number between
3�n and nC1 [5, Theorem 2.1 and subsequent Remark 5]. Since this disc is essential
in relative homology its Maslov number is a nonzero multiple of n by the assumption
on minimal Maslov number. When n > 4, the only nonzero multiple of n between
3�n and nC 1 is n. When n is even, examples of Lagrangian embeddings satisfying
the hypotheses of the theorem are well-known and can be constructed by a suitable
Polterovich surgery on the standard (Whitney) immersed exact Lagrangian sphere [38].

When n is odd the odd-dimensional cohomology of the universal cover of S1 �Sn�1

vanishes and hence (using monotonicity) Damian’s Theorem implies that the Lagrangian
has minimal Maslov number 2. Moreover his theorem gives, as usual, a moduli
space of holomorphic Maslov 2 discs with boundary on the Lagrangian such that the
evaluation map M0;1.L; ˇ/!L has degree one. Examples of monotone Lagrangians
satisfying the hypotheses of the theorem when n is odd can be constructed either by
Polterovich surgery on the Whitney sphere as above, or by applying the construction of
Audin–Lalonde–Polterovich [4] to exact Maslov zero Lagrangian immersions of even-
dimensional spheres (which exist by the h-principle for exact Lagrangian immersions).

The strategy of proof is the same as for Theorem 6.1:

n D 2k C 2 even

As in Lemma 6.9 we use the projection � W S1�Sn�1!S1 to find a nearby Lagrangian
embedding S1�Sn�1DL0!Cn (the graph of �d� ) with minimal Maslov number n

and smaller monotonicity constant. We will pick a suitable almost complex structure J

and consider a suitable moduli space (see Lemma 7.3) M.;J / of J –discs with
boundary on L0 representing the relative class ˇ 2H2.Cn;L0IZ/ŠH1.L

0IZ/ with
Maslov number 2kC 2. We will see that

� this moduli space admits a degree-one evaluation map to L0 ,
� by choosing J suitably we can assume that all the discs in this moduli space

avoid L.

This will imply that r� is the Haefliger–Hirsch field so that Proposition 6.12 will then
apply, proving Theorem 7.1. We begin by specifying the moduli space M.;J /.
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Lemma 7.3 Let  W S1 ! L0 be a generic embedded loop representing the class
ˇ 2 H1.L

0IZ/ and J a generic almost complex structure. Let M0;2.ˇ;J / denote
the moduli space of J –discs with boundary on L0 representing the class ˇ and two
boundary marked points. Write ev1; ev2WM0;2.ˇ;J /!L0 for the evaluation maps at
the two marked points. Let M.;J /D ev�1

2
. .S1//. Then the evaluation map

ev1jM.;J /W M.;J /!L0

has degree ˙1.

Proof This is just a geometric interpretation of one of the E1 –differentials in the
Biran–Cornea spectral sequence: the solid arrow in Figure 3.

0 0 Zt�1

0 0 Zt�1

0 0 0

0 Z Zt�1

0 Z Zt�1

0 0 0

Zt Z 0

Zt Z 0

Figure 3: The E1 –page of the Biran–Cornea spectral sequence for a mono-
tone Maslov 4 Lagrangian S1 � S3 in C2 with E1 (horizontal) and E2

(knight’s move) differentials indicated

Since the spectral sequence must collapse at the E2 stage this differential must be an
isomorphism over Z. The differential is multiplication by t times the degree of the
evaluation map we are interested in. Therefore this degree is ˙1.

The nD 2kC 2 case of Theorem 7.1 will now follow from the next result.

Proposition 7.4 There exists a loop  and a regular almost complex structure J

(obtained by neck-stretching) such that the discs in M.;J / avoid L.

To prepare for the proof of this result, we state a version of Lazzarini’s decomposition
theorem for punctured holomorphic discs with boundary on a Lagrangian.
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Lemma 7.5 (Compare with [32; 31]) Let X be a symplectic manifold with strong
convex or concave contact-type boundary, let X denote its completion and L�X be
a compact Lagrangian submanifold. Let J be a compatible almost complex structure
on X adapted to the contact structure on the ends. Suppose that uW †!X is a finite-
energy punctured holomorphic disc with boundary on L. There exists a somewhere-
injective finite-energy punctured disc vW †0 ! X with boundary on L such that
v.†0/� u.†/.

We defer the proof of this lemma to Appendix B.

Proof of Proposition 7.4 Assume that Proposition 7.4 is false and that for all  and
J some disc in M.;J / intersects L.

Fix the loop  in L0 and let Jt be a neck-stretching sequence of almost complex
structures for L. Choose a Weinstein neighbourhood of L and let V denote its
complement. We will later choose I D Jt jV appropriately to derive a contradiction. By
Lemma 7.3, for all t there is a Jt –holomorphic disc in M.;Jt /, that is a disc with
boundary on L0 representing the minimal area class ˇ and (by assumption) passing
through L.

We can extract a Gromov–Hofer convergent subsequence of these discs whose limit
is a holomorphic building uD uW [uS1

[ � � � [uS`
[uV , where uW denotes the

component in W D T �L (the symplectic completion of the Weinstein neighbourhood),
uV denotes the component in V D Cn nL and the uSk

denote components in the
intermediate symplectisation levels. Let v be the component of uV with boundary on
L0 . Note that the boundary of v passes through the loop  by construction.

Claim 1 There are no other components in uV .

Proof Another component would compactify to give a topological surface with bound-
ary on L, and would represent a relative homology class in H2.Cn;LIZ/ with nonzero
area since it is holomorphic. Since the monotonicity constant of L is strictly bigger
than that of L0 the area of this component is strictly bigger than the area of ˇ , which
contradicts Lemma 4.4.

Claim 2 The curve v has only contractible geodesics as asymptotes.

Proof Assume that v has a noncontractible geodesic as asymptote. Since the building
as a whole has genus zero this asymptote must be the positive asymptote of another
genus zero building in W [S1 [ � � � [S`0 [V which glues topologically to give a
plane in Cn . Since the geodesic is noncontractible this building cannot lie entirely in
W [S1[ � � � [S`0 or else it would glue topologically to give a nullhomotopy of the
geodesic. Therefore there must be another component of V , contradicting Claim 1.
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Claim 3 The curve v is somewhere injective.

Proof By Lemma 7.5 we can extract a somewhere-injective punctured disc w0 whose
image is a subset of w . Suppose that w0 is not just a reparametrisation of w . Since the
asymptotes are contractible geodesics in L we can cap them off with discs in L with
no symplectic area and obtain a topological disc in Cn with boundary on L whose
area is strictly smaller than that of ˇ , which contradicts minimality of ˇ .

Note that Claim 3 applies to all finite-energy punctured discs in the same moduli space
as v : we only use the fact that the asymptotes are contractible geodesics and that the
result of topologically capping these asymptotes is homologous to ˇ .

In the standard way [17], we can achieve transversality for moduli spaces of somewhere-
injective finite-energy punctured discs by perturbing I DJt jV . In particular the moduli
space S of punctured discs containing v is smooth and of the expected dimension.
Similarly, if we equip punctured discs with a boundary marked point, we can assume
that the resulting evaluation map evW S !L0 is transverse to  .

Claim 4 When n>4 the expected dimension of ev�1. /�S is negative. In particular,
when I is chosen generically this set is empty.

Proof Using Equation (A.3) from Appendix A, the expected dimension formula for
punctured discs in V with s� negative punctures asymptotic to Reeb orbits, the i th of
which covers a contractible geodesic in Sn�1 with multiplicity mi , is

.n� 3/.1� s�/C��

s�X
iD1

.2mi � 1/.n� 2/:

Since �D n, the expected dimension is

2n� 3�

s�X
iD1

�
n� 3C .2mi � 1/.n� 2/

�
:

If we add a marked point on the boundary and require this to pass through the
codimension-.n�1/ loop  then the expected dimension becomes

2n� 3�

s�X
iD1

.n� 3C .2mi � 1/.n� 2//C 1� .n� 1/� 4� n;

with equality if and only if s�D 1 and m1D 1. When n> 4 this implies the claim.

Since v is supposed to belong to this empty moduli space we get a contradiction. This
completes the proof of Proposition 7.4 and therefore the proof of Theorem 7.1 in the
case nD 2kC 2.
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n D 2k C 1 odd

In this case Damian’s Theorem [16] implies that, for a regular J , the evaluation map

evWM0;1.ˇ;J /!L

(from the moduli space of J –discs with boundary on L representing the class
ˇ D ŒS1�� f?g 2H1.LIZ/ and having one boundary marked point) has nonzero
degree (in fact degree ˙1). We argue in the usual way to prove that the vector field @�
(� being the coordinate on S1 ) is a Haefliger–Hirsch field: push L off along J@�
to obtain a Lagrangian L0 with smaller monotonicity constant and study the moduli
space of discs with boundary on L0 (for which the corresponding evaluation map still
has nonzero degree). Assuming that for every J there is a J –disc on L0 in the class ˇ
which intersects L we use a neck-stretching sequence Jt (stretching around L) and
extract a Gromov–Hausdorff convergent subsequence of Jt –discs which intersect L.
One component is a plane and it is possible that this plane lives in the Weinstein
neighbourhood of L. As in the case nD 2kC 2 we will argue that this cannot occur
for generic neck-stretching sequences provided that n> 4. Claims 1–3 still apply and
we just need to understand what replaces Claim 4.

By Claims 1–3, the part uV of the limit building living in the complement of L consists
of a single punctured disc with boundary on L0 and having contractible geodesics as
asymptotes. The expected dimension for moduli spaces of such discs is

.n� 3/.1� s�/C��

s�X
iD1

.2mi � 1/.n� 2/;

where now �D 2 and mi is the number of times the i th Reeb orbit wraps around the
underlying simple geodesic. The expected dimension is therefore

n� 1�

s�X
iD1

.n� 3C .2mi � 1/.n� 2//;

which is at most n� 1� .n� 3C n� 2/D 4� n in the worst case s� D 1, m1 D 1.
If n> 4 this is negative so this kind of breaking is generically prohibited.

This completes the proof of Theorem 7.1 in the case nD 2kC 1.

7.1 Proof of Corollary E

Let f1; f2W LD S1 �Sn�1! Cn be two Lagrangian embeddings which both satisfy
one of the assumptions in Theorem 7.1. Let � be the projection onto the S1 –factor.
Since n > 2, the standard cell decomposition of L has .n� 2/–skeleton S1 � fptg.

Geometry & Topology, Volume 18 (2014)



1026 G Dimitroglou Rizell and J D Evans

If n is even then the Maslov class is ˙nŒd�� by assumption. If n is odd then by
monotonicity and Damian’s Theorem [16] we know that the Maslov class is ˙2Œd��.
In either case, by reparametrising with a reflection of S1 if necessary, we can assume
that the Maslov class of f1 and the Maslov class of f2 agree, which ensures that the
Lagrangian frame maps are homotopic when restricted to the .n� 2/–skeleton of L.

By Theorem 7.1, Proposition 6.12 applies, in particular the last statement showing that
the difference class �.f1; f2/ vanishes. This finishes the proof of Corollary E.

8 Constructing knotted Lagrangian tori

When n is even we will construct smoothly nonisotopic monotone Lagrangian tori.

Consider the Clifford (product) torus. If we use the trivialisation of T T n coming
from its structure as a Lie group then we get a trivialisation of TCT n and with respect
to this trivialisation the Lagrangian frame map T n ! U.n/ of the Clifford torus is
just i times the inclusion of a maximal torus. For the inclusion of a maximal torus, the
suspension of the Chern class cn=2 is nontrivial and not divisible by two.

Using the h-principle for exact Lagrangian immersions, let g be an exact Lagrangian
immersion whose Lagrangian frame map is nullhomotopic. Apply the Audin–Lalonde–
Polterovich construction to g to obtain an embedded Lagrangian diffeomorphic to
S1 �T n�1 in Cn which is monotone by exactness of the immersion and by the way
we have chosen the Gauss map. With respect to the same trivialisation of T T n the
suspension of cn=2 vanishes.

By construction the difference class between these two monotone Lagrangian embed-
dings is nonzero so they are not smoothly isotopic. Analogous examples of smoothly
knotted S1 �S3 with nonhomotopic Gauss maps were constructed by Borrelli [8].

Appendix A: Index formula for pseudoholomorphic curves

Consider the symplectic manifold V D Cn nL with a negative cylindrical end. In this
section we will describe the Fredholm index of the linearised @–operator for pseudoholo-
morphic discs in V having boundary on a Lagrangian submanifold L0�V and internal
boundary punctures asymptotic to Reeb orbits of the negative cylindrical end. Since
we are interested in the case when the negative end corresponds to .�1; 0��S��;gL,
where the metric g is nondegenerate in the Bott sense, we also consider index formulas
for pseudoholomorphic curves having punctures asymptotic to Reeb orbits which are
nondegenerate in the Bott sense.
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A.1 The generalised Conley–Zehnder index

We start with a brief description of the Conley–Zehnder indices of the Reeb orbits in
this situation. The Conley–Zehnder index �CZ. / of a Reeb orbit  inside a contact
manifold .Y; � D ker�/ can be computed following [40, Remark 5.4]. First, we fix a
symplectic trivialisation of the contact distribution � along  , in which the linearised
Reeb flow is expressed as a path of symplectic matrices ‰t . One gets an induced path
of Lagrangian planes inside .Cn˚Cn; .�!0/˚!0/ parametrised by

.Id; ‰t /W Cn
! Cn

˚Cn

for which one can compute the Maslov index as defined in [40, Section 2] with respect to
the Lagrangian reference plane consisting of the diagonal. This is the Conley–Zehnder
index.

Observe that this index is defined even in the case when 1 is an eigenvalue of the
return-map of the linearisation, but that it may take half-integer values in this case.
When there is a Bott manifold S of Reeb orbits, we will use �CZ.S/ to denote the
Conley–Zehnder index of a Reeb orbit in this family.

A.2 The Fredholm index for a pseudoholomorphic curve with punctures
in the Bott case

In [10, Proposition 2.7] the formula for the Fredholm index of the linearised @–operator
for a closed pseudoholomorphic curve inside a symplectic 2n–dimensional manifold X

with cylindrical ends is generalised to the case where the Reeb orbits are nondegenerate
in the Bott sense. It is shown that for a closed pseudoholomorphic curve C of genus g

having internal punctures asymptotic to Reeb orbits in the families SC
1
; : : : ;SC

sC
and

S�
1
; : : : ;S�s� at positive and negative ends, respectively, the Fredholm index satisfies

index.C /D .n� 3/.2� 2g� sC� s�/C 2crel
1 .C /

C

sCX
iD1

�
�CZ.S

C
i /C

1
2

dim SCi

�
�

s�X
iD1

�
�CZ.S

�
i /�

1
2

dim S�i

�
:

Here crel
1
.C / denotes the first Chern number of the bundle T X pulled back to C and

extended over the punctures using the trivialisation of T X j D C˚ �j chosen above
along the Reeb orbits.

In the case when the curve C has boundary @C on a Lagrangian submanifold L0 �X,
given any trivialisation of T X along the boundary, there is an induced Maslov index
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of L0 along this boundary which we denote by �.@C /. One can deduce that

.A:1/ index.C /D .n� 3/.1� 2g� sC� s�/C�.@C /C 2crel
1 .C /

C

sCX
iD1

�
�CZ.S

C
i /C

1
2

dim SCi

�
�

s�X
iD1

�
�CZ.S

�
i /�

1
2

dim S�i

�
:

Here crel
1
.C / denotes the first Chern number of T X pulled back to C=@D using the

trivialisation of T X j@D chosen above and extended to the punctures as before.

In the case when the first Chern class c1 vanishes for X, the above Conley–Zehnder
index is canonically defined for nullhomologous Reeb orbits in any trivialisation
induced by a choice of bounding chain. Likewise, the Maslov index is canonically
defined for any path on L0 which is nullhomologous in X. This follows from the fact
that two different choices of bounding chains A and B will give rise to a difference
of 2c1.A � B/ in the respective index. Finally, in the case c1 D 0 and when the
trivialisations used are induced as above, it also follows that the term 2crel

1
.C / vanishes

for these choices of trivialisations.

A.3 The index formula for discs in V with internal punctures

Consider the symplectic manifold V DCn nL, where LŠS1�Sn�1 is a Lagrangian
submanifold. We view V as a symplectic manifold with a negative end corresponding
to .�1; 0� � S��;g.S

1 � Sn�1/, where g is the product metric on S1 � Sn�1 for
the round metric on Sn�1 . We are now ready to show the following result for discs
inside V having boundary on a Lagrangian submanifold L0 � V .

For the Maslov index of a closed curve on L0 � V we use the trivialisation of
T V � T Cn induced by the canonical trivialisation of T Cn . Observe that any loop
on L0 is contractible inside V whenever n> 2 and that the induced trivialisation by
any chain bounding a loop on L0 agrees with this trivialisation.

Lemma A.2 A pseudoholomorphic disc D with boundary on L0 � V having a
number s� of internal punctures asymptotic to the families S�

1
; : : : ;S�s� of Reeb orbits

at the negative end of V , where Si corresponds to a family of mi –multiple covers of
closed contractible geodesics on S1 �Sn�1 , has Fredholm index

.A:3/ index.D/D .n� 3/.1� s�/C�.@C /�

s�X
iD1

.2mi � 1/.n� 2/:
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Proof For the trivialisation of the contact distribution �j along a Reeb orbit 
of S��;gL we choose the trivialisation which is induced by a trivialisation of the vertical
subbundle of � , which is a Lagrangian subspace. Observe that this trivialisation
agrees with the canonical trivialisation of � along any Reeb orbit on S��;gL which
is nullhomologous. Moreover, since c1 vanishes for V , this means that the term crel

1

vanishes in the index formula.

Consider the energy functional

E.�/D

Z
S1

k�.�/k2d�

for closed curves � in L. Let H denote the Hessian of E at a critical point  , which
corresponds to a closed geodesic on L parametrised by a path of constant speed. We
let �. / and �. / denote the dimensions of the negative-definite eigenspace and the
nullity of H at  , respectively.

We let  be a geodesic on S1 �Sn�1 and e be the Reeb orbit in S��;g.S
1 �Sn�1/

corresponding to the cogeodesic lift. The lemma follows by combining Lemma A.4
below together with Equation (A.1) above, and the formula

�CZ.e /D �. /C 1
2
�. /

proved in [14, Equation 60], which holds in the canonical trivialisation.

Lemma A.4 Let S1�Sn�1 be endowed with the product metric, where the metric on
the factor Sn�1 is the round metric. A closed contractible geodesic  on S1 �Sn�1 ,
which moreover is the m–fold cover of a simply covered geodesic, has Morse-index
and nullity satisfying

�. /D .2m� 1/.n� 2/; �. /D n:

Proof Since geodesics on S1 �Sn�1 project to geodesics on either factor, it follows
that any geodesic which starts and ends on the hypersurface ftg�Sn�1 must either be a
geodesic contained entirely in this hypersurface, or must wrap around the S1 –direction
a nonzero number of times. Furthermore, a geodesic contained in this hypersurface is
a geodesic on the round Sn�1 .

From this it follows that a contractible geodesic on S1 �Sn�1 is contained in such a
hypersurface, and that broken Jacobi fields along such a geodesic correspond bijectively
to broken Jacobi fields on the corresponding geodesic on the round Sn . In addition, the
only nonbroken Jacobi field along a closed geodesic in ftg�Sn�1 which does not arise
as a Jacobi field on Sn�1 is the Jacobi field induced by a rotation of the S1 –factor.
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The formulae on [9, page 346] for the index and nullity of a geodesic on Sn�1 now
imply the result.

Appendix B: Lazzarini’s Theorem for punctured discs

We will prove Lemma 7.5:

Lemma B.1 Let X be a symplectic manifold with contact-type boundary, let X

denote its completion and let L � X be a compact Lagrangian submanifold. Let J

be a compatible almost complex structure on X adapted to the contact structure on
the ends. Suppose that uW †! X is a finite-energy punctured J –holomorphic disc
with boundary on L. There exists a somewhere-injective finite-energy punctured
J –holomorphic disc vW †0!X with boundary on L such that v.†0/� u.†/.

This was proved for nonpunctured discs in [31]; we will explain how to modify that
proof to incorporate punctures. Recall that the punctures of punctured finite-energy
J –holomorphic curves are asymptotic to cylinders on Reeb orbits. Since L is disjoint
from the cylindrical end of X we can analyse the boundary and the punctures of the
disc separately. There are a finite number of punctures and hence a finite number of
asymptotically cylindrical ends of u. It follows from work of Siefring that there is a
compact subset K �X, containing X, with the following properties.

(a) In the complement of K , each asymptotically cylindrical end of u is an un-
branched multiple cover of an embedded J –holomorphic half-cylinder. This is
[41, Corollary 2.6]: the absence of branch points for sufficiently large K follows
from the explicit asymptotic form of the covering map.

(b) In the complement of K , the half-cylinders corresponding to different punctures
are either disjoint or have the same image. This is [41, Corollary 2.5].

Let †0 D u�1.X nK/�† be the corresponding neighbourhood of the punctures.

Definition B.2 Given a punctured finite-energy J –holomorphic disc

uW †!X

with boundary on L, let C.u/D fx 2† W dxuD 0g denote the set of critical points
of u.

Lemma B.3 If u is nonconstant then C.u/ is finite and, for any x 2X the preimage
u�1.x/ is finite.
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Proof By [31, Theorem 3.5] we know that the set of critical points of † n†0 is
discrete, hence finite because † n†0 is compact. There are no critical points of u

in †0 by (a). Thus u has finitely many critical points.

Similarly each x 2X has only finitely many preimages under u: for x 2X nK this
is clear from (a) and (b); for x 2K it follows from [31, Theorem 3.5].

Now Lazzarini’s strategy to extract a somewhere-injective disc is to consider the frame
of u.

Definition B.4 Define a relation R on † nC.u/ by defining zRz0 if and only if, for
any neighbourhoods V;V 0 of z; z0 there are open neighbourhoods z 2W � V and
z0 �W 0 � V 0 such that u.W /D u.W 0/. Define R to be the closure of R�†�†.

Using (a) and (b) we can completely describe the relation R on †0 : each component Ui

of †0 is a punctured open disc and Ui=R is also a punctured open disc, the map
Ui ! Ui=R being an unbranched cover. It is also possible that some components
Ui and Uj are identified by the relation.

Lazzarini’s analysis of the relation applies unchanged to † n†0 . In particular [31,
Theorem 4.7] the set of points R.@†/ related to points on the boundary forms an
embedded graph whose vertices lie on points of u�1.u.C.u///. This is called the
frame W.u/ and is clearly disjoint from †0 .

Inside the frame there is the subset W1.u/ consisting of points contained on cycles
in the graph, that is continuous injections S1 ! W.u/. If we compactify † to a
disc †0 by filling in the punctures then Lazzarini’s argument [31, Section 5] guarantees
a simply connected component D of †0nW1.u/ which is topologically a disc such that
the restriction of u to D\† is a multiple cover of a somewhere-injective punctured
J –holomorphic disc. The only part of this argument which needs modification to
compensate for the punctures is [31, Proposition 5.9], putting the structure of a Riemann
surface on †=R. It is clear from our description of the relation R on †0 that †0=R
is a union of punctured open discs.
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