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Skeleta of affine hypersurfaces
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A smooth affine hypersurface Z of complex dimension n is homotopy equivalent
to an n–dimensional cell complex. Given a defining polynomial f for Z as well
as a regular triangulation T4 of its Newton polytope 4 , we provide a purely com-
binatorial construction of a compact topological space S as a union of components
of real dimension n , and prove that S embeds into Z as a deformation retract. In
particular, Z is homotopy equivalent to S .

14J70; 14R99

1 Introduction

The Lefschetz hyperplane theorem is equivalent to the assertion that a smooth affine
variety Z of complex dimension n has vanishing homology in degrees greater than n.
A stronger version of this assertion is attributed to Thom in the work of Andreotti and
Frankel [4]: Z actually deformation retracts onto a cell complex of real dimension at
most n. We will borrow terminology from symplectic geometry and call a deformation
retract with this property a skeleton for Z . The purpose of this paper is to investigate
the combinatorics of such skeleta for affine hypersurfaces Z � CnC1 , and a more
general class of affine hypersurfaces in affine toric varieties. For any such hypersurface,
we give a combinatorial recipe for a large number of skeleta.

By “combinatorial” we mean that our skeleton makes contact with standard discrete
structures from algebraic combinatorics, such as polytopes and partially ordered sets.
Before explaining what we mean in more detail, let us recall for contrast Thom’s
beautiful Morse-theoretic proof of Lefschetz’s Theorem, which provides a recipe of a
different nature. Fix an embedding Z �CN , and let �W Z!R be the function that
measures the distance to a fixed point P 2CN . For a generic choice of P , this is a
Morse function, and since it is plurisubharmonic, its critical points cannot have index
larger than n. Thom’s skeleton is the union of stable manifolds for gradient flow of � .
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This recipe reveals many important things about the skeleton (most important among
them that the skeleton is Lagrangian, a point that has motivated us but plays no
role in this paper). The proof also works in the more general context of Stein and
Weinstein manifolds; see eg Cieliebak and Eliashberg [8]. However, finding an explicit
description of these stable manifolds requires one to solve some fairly formidable
differential equations. In this paper, we avoid this difficulty by defining a skeleton
through a simple, combinatorial construction.

One might expect a rich combinatorial structure to emerge from the theory of Newton
polytopes for hypersurfaces. The situation is simplest for hypersurfaces in .C�/nC1

rather than in CnC1 ; we will explain this special case here, and the general situation
in Section 1.1. If Z is a hypersurface in .C�/nC1 we can write its defining equation
as f D 0, where f is a Laurent polynomial of the formX

m2ZnC1

amzm:

Here, writing m as .m1; : : : ;mnC1/ and the coordinates on .C�/nC1 as z1; : : : ; znC1 ,
then zm denotes the monomial z

m1

1
� � � z

mnC1

nC1
. The convex hull of the set of m for

which the coefficient am is nonzero is called the Newton polytope of f . By multi-
plying f by a monomial, we may assume without loss of generality that the Newton
polytope contains 0. The significance of this definition is that for a generic choice
of coefficients am , the topological type of the hypersurface depends only on this
polytope. From this point of view, one goal might be to construct a combinatorial
skeleton which also depends only on this polytope. Actually, we need a triangulation
too. This should not be surprising: a skeleton is not unique, as different Morse functions
will produce different skeleta. Purely heuristically, the choice of a triangulation is a
combinatorial analogue of the choice of Morse function: different triangulations will
produce different skeleta. In fact, we require a “star-regular” triangulation. Section 2
contains the definition of this notion. For now, note that the maximal simplices of
such a triangulation are all cone-shaped, and thus the triangulation is determined by a
triangulation of the faces which do not meet the origin.

Definition 1.1 Let 4 � RnC1 be a lattice polytope with 0 2 4. Let T4 be a
star-regular triangulation of 4 and define T to be the set of simplices of T4 not
meeting 0. Write @40 for the support of T . (Note that @40 equals the boundary @4
if 0 is an interior point. Note also that T determines T4 , even if 0 2 @4.) Define
S4;T � @4

0 �Hom.ZnC1;S1/ to be the set of pairs .x; �/ satisfying

�.v/D 1 whenever v is a vertex of the smallest simplex � 2 T containing x .

Geometry & Topology, Volume 18 (2014)



Skeleta of affine hypersurfaces 1345

Put S WD S4;T . Then we have the following.

Theorem 1.2 (Main Theorem for Z � .C�/n ) Let 4 and T be as in Definition 1.1.
Let Z be a generic smooth hypersurface whose Newton polytope is 4. If T is a
star-regular triangulation, then S embeds into Z as a deformation retract.

We do not know if the hypothesis of a star-regular triangulation can be removed, but note
that every lattice polytope admits a star-regular triangulation. The role the triangulation
plays in the proof is in the construction of a degeneration of Z . Star-regularity of the
triangulation allows the projection .x; �/ 7! x of S to @4 (or to the support of T if 0

is on the boundary of 4) to be identified with the specialization map, under which the
skeleton of Z projects to a kind of nonnegative locus of toric components. For more
see Section 1.2 below.

Figure 1: The tetrahedron 4 � R3 with vertices at .1; 0; 0/ , .0; 1; 0/ ,
.0; 0; 1/ and .�1;�1;�1/ has a unique star triangulation T4 . The figure
shows part of S4;T , which by Theorem 1.2 is a skeleton of a surface in
C� �C� �C� cut out by the quartic equation axC byC czC d

xyz
C e D 0 .

The tori come from vertices, the tubes come from edges, and the triangles
come from faces of the tetrahedron. Each “tube” meeting one of the tori
S1 �S1 is attached along a different circle, and the resulting figure does not
embed in R3 . There is a sixth tube and two additional triangles “behind” the
diagram, they are to be glued together in the shape of the tetrahedron 4 .

1.1 Main Theorem, general case of Z in an affine toric variety

In Section 5, we prove an extension of Theorem 1.2 to the case where Z is a smooth
affine hypersurface in a more general affine toric variety, such as CnC1 , .C�/k �Cl ,

Geometry & Topology, Volume 18 (2014)



1346 Helge Ruddat, Nicolò Sibilla, David Treumann and Eric Zaslow

or even singular spaces such as C2=.Z=2/. In these cases, we define the skeleton as a
quotient of the construction of Definition 1.1.

Definition 1.3 Let 4, T and S4;T be as in Definition 1.1, so in particular 0 2 4.
Let K DR�04 be the rational polyhedral cone generated by 4. Define S4;T ;K to
be the quotient of S4;T by the equivalence relation

.x; �/� .x0; �0/ if x D x0 and �jKx\M D �
0
jKx\M ;

where Kx denotes the smallest face of K containing x .

The cone K determines an affine toric variety Spec.CŒK\M �/. If this is smooth or has
at most one isolated singularity, and if Z is a smooth hypersurface in Spec.CŒK\M �/

with Newton polytope 4 and generic coefficients, then Z deformation retracts onto
a subspace homeomorphic to S4;T ;K . (The hypothesis that K D R�04 can be
weakened; see Assumption 5.3(3).)

To illustrate, let us describe two skeleta of the subvariety of C3 cut out by a generic
quadric; in fact, x2Cy2C z2 D 1 is sufficiently generic and we should expect Z and
its skeleton to be homotopy equivalent to a 2–sphere. In this case 4 is the convex hull
of f.0; 0; 0/; .2; 0; 0/; .0; 2; 0/; .0; 0; 2/g and K D R3

�0
. The part @40 of @4 to be

triangulated is the face f.2; 0; 0/; .0; 2; 0/; .0; 0; 2/g, and we can describe S4;T ;K in
terms of the projection map to @40 . We shall consider two triangulations of @40 , lead-
ing to two nonhomeomorphic but homotopy-equivalent skeleta that we call octahedron
and Klein bottle sandwich.

Octahedron If we give @40 its canonical triangulation, ie @40 itself is the only
top-dimensional simplex, then the skeleton S4;T ;K is homeomorphic to S2 . In fact it
is combinatorially an octahedron:

f.x1;x2;x3/ 2R3
j jx1jC jx2jC jx3j D 2g

The map S4;T ;K! @40 is finite and homeomorphic to the eight-to-one map, branched
over the boundary of @40 , carrying a point .x;y; z/ to .jxj; jyj; jzj/. The factor of 8

in the branched cover arises from the nonunimodularity of the (single) maximal simplex
of the triangulation. More precisely, the size of the preimage of a point x 2 @�0 is given
by the index of the sublattice in M \R�x generated by the vertices of �x with �x being
the smallest simplex in @�0 containing x . One finds that this is 2 for the vertices, 4

for edges and 8 on the maximal simplex and the gluing of these preimages precisely
gives the octahedron.

Klein bottle sandwich When we triangulate @40 as in the following diagram, the
skeleton S4;T ;K is homotopy equivalent to S2 , but through a different construction.
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We first note that just as @40 retracts to the central triangle, so does S4;T ;K retract to
the preimage of the central triangle, so we focus our attention there. Call T the central
triangle and S its preimage, with � W S ! T the projection. The fibers of � over the
boundary of T are circles, so the preimage of the boundary of T is topologically an S1

fibration over S1 . In fact, it is a Klein bottle. The map � is two to one on the interior
of T , and the two triangles of the preimage have the same effect, up to homotopy, as
contracting two sections of the Klein bottle fibration over S1 . At this point, recall that
the Klein bottle can be constructed from S2 by blowing up the north and south poles,
and that it fibers over the S1 worth of meridians. The two exceptional S1 are sections,
and they get contracted by the blowdown to S2 . As the two triangles above perform
the contracting blowdown, we conclude that S4;T ;K is homotopy equivalent to S2 .

1.2 Log geometry and the proof

The technique of the proof is to use the triangulation to construct a degeneration of the
ambient .C�/nC1 , and with it the hypersurface. Each component of the degeneration
is an affine space CnC1 , or the quotient of an affine space by a finite commutative
group, along which the hypersurface has a simple description: it is an affine Fermat
hypersurface, and thus a finite branched cover over affine space Cn ; see also the
discussion of Mikhalkin’s work in Section 1.3. So the degenerated hypersurface is well
understood.

Example 1.4 Consider the space Z D f�1CxCyCx�1y�1D 0g inside C��C� ,
which is topologically a two-torus with three points removed. The Newton polytope
4 D conv.f.1; 0/; .0; 1/; .�1;�1/g/ � R2 has a unique star-regular triangulation
corresponding to the unique lattice triangulation of its boundary. To understand the
associated degeneration, first identify C� �C� with the locus fabc D 1g � C3 and
describe Z by the equation �1C aC bC c D 0. Next we can identify this geometry
with the locus t D 1 inside the family fabc D t3g � C4 . At t D 0, we have for
the ambient space C2

faD0g
[C2

fbD0g
[C2

fcD0g
, with the hypersurface described by

fbC c D 1g[ fcC aD 1g[ faC b D 1g, ie a union of affine lines.
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The degenerated hypersurface deformation retracts onto a simple locus which can be
triangulated explicitly (this triangulation occurs for the first time in Deligne [10]). In
each component, the top-dimensional simplices of this triangulation are the nonnegative
loci of the components, together with their translates by a finite subgroup of .C�/nC1 .
For instance in Example 1.4, the complex line faC b D 1g � C2

cD0
retracts to the

real interval faC b D 1; a� 0; b � 0g. What remains is to account for the topological
difference between the degenerated hypersurface and the general one. To the reader
familiar with the theory of vanishing cycles (which measure the cohomological differ-
ence between the degenerate hypersurface and the general one), this will suggest that
we take for a skeleton of Z the preimage under a “specialization” map of the skeleton
for Z0 . Log geometry gives a way of making this precise.

The toric setting of log geometry is particularly simple. A toric variety comes with a
standard log structure which can be pulled back to a toric stratum, enabling the stratum
to “remember” how it is embedded in the ambient space. In short, the compact torus
fixing the defining equations of a stratum of the degeneration serves as the exceptional
torus in a real, oriented blowup from which one can extract the nearby fiber of the
degenerate hypersurface.

Example 1.5 To illustrate this point, consider first the local geometry of the degen-
eration near a singular point of Example 1.4, ie fuv D �3g � C2 . The two–torus
S1 � S1 � C� � C� acts on C2 and the “antidiagonal” circle fixes the defining
equation for all � . As � goes to zero, this antidiagonal circle becomes homotopically
trivial since it retracts to the fixed point .0; 0/ in U D fuv D 0g. We want to “keep”
this circle by remembering the way we took the limit. Let �W V ! U be a retraction
map from some fiber � ¤ 0 to U . To find the skeleton, we take the nonnegative real
locus xS D f.u; v/ 2R2

�0
j uv D 0g in U and find the skeleton S as the inverse image

of xS under � which has the effect of attaching a circle at the point .0; 0/ in xS . Doing
this globally in Example 1.4 yields a skeleton S that is the boundary of a triangle (by
gluing the three xS ’s) with a circle attached at each of the three vertices.

1.3 Related work

A skeleton for Fermat hypersurfaces was described by Deligne in [10, pages 88–90], and
this skeleton is visible in our own in a manner described in Remark 3.21. Abouzaid [2]
presents some examples of skeleta which are homeomorphic to the ones we define,
though via different means. Our “skeleta” are different than the “skeleta” that appear
in nonarchimedean geometry (see Berkovich [6] and Kontsevich and Soibelman [22]),
but @40 plays a similar role in both constructions. It would be interesting to study this
resemblance further.
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Hypersurfaces in algebraic tori have been studied by Danilov and Khovanskiı̌ [9] and
Batyrev [5]. Danilov and Khovankskiı̌ computed mixed Hodge numbers, while Batyev
studied the variation of mixed Hodge structures. Log geometry has been extensively
employed by Gross and Siebert [17] in their seminal work studying the degenerations
appearing in mirror symmetry. Their strategy is crucial to our work, even though we
take a somewhat different track by working in a noncompact setting for hypersurfaces
that are not necessarily Calabi–Yau. The noncompactness allows us to deal with log-
smooth log structures. Mirror symmetry for general hypersurfaces was recently studied
by Gross, Katzarkov and the first author in [16] (projective case) and Abouzaid, Auroux
and Katzarkov in [3] (affine case) using polyhedral decompositions of the Newton
polytope. This relates to the Gross–Siebert program by embedding the hypersurface
in codimension two in the special fiber of a degenerating Calabi–Yau family. In this
family, the hypersurface coincides with the log singular locus; see the first author [27]
for the simplicial case.

In the symplectic-topological setting, Mikhalkin [25] constructed a degeneration of
a projective algebraic hypersurface using a triangulation of its Newton polytope to
provide a higher-dimensional “pair of pants” decomposition. He further identified a
stratified torus fibration over the spine of the corresponding amoeba. This viewpoint
was first applied to homological mirror symmetry (HMS) by Abouzaid [1]. Mikhalkin’s
construction and perspective inform the current work greatly, even though our route
from HMS is a bit “top down”. We describe it here.

When 4 is reflexive, Z can be seen as the “large volume limit” of a family of
Calabi–Yau hypersurfaces in the toric variety P4 defined by 4. The dual polytope 4_

corresponds to the toric variety P4_ containing the mirror family. The mirror “large
complex structure limit” Z_ is the union of reduced toric divisors of P4_ . In [12], Fang,
Liu and the third and fourth authors found a relation between coherent sheaves on a toric
variety, such as P4_ , and a subcategory of constructible sheaves on a real torus. The
subcategory is defined by a conical Lagrangian ƒ in the cotangent bundle of the torus.
As discussed by the third and fourth authors in [29], specializing to Z_ , the complement
of the open orbit of P4 , can be achieved by excising the zero section from ƒ. The
resulting conical Lagrangian is homotopy equivalent to the Legendrian ƒ1 at contact
infinity of the cotangent bundle. We can now explain how this relates to skeleta. First,
when 4 is reflexive and simplicial and we choose T to be the canonical triangulation
of its boundary, then S is homeomorphic to ƒ1 . In [29] it is shown that ƒ1 supports
a Kashiwara–Schapira sheaf of dg categories, and this is equivalent to the “constructible
plumbing model” of the second, third and fourth authors [28]. Following [28], this
sheaf should be equivalent to perfect complexes on Z_ and it is conjectured in [29]
that under homological mirror symmetry it is also equivalent to the sheaf of Fukaya
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categories, conjectured to exist by Kontsevich, supported on the skeleton of Z . In
particular, S should be the skeleton of Z itself, and in the simplicial reflexive case
this was conjectured in [29].

1.4 Notation and conventions

1.4.1 Hypersurfaces in an algebraic torus Each .m0; : : : ;mn/2ZnC1 determines
a monomial function .C�/nC1 ! C which we denote by zm D

QnC1
iD0 z

mi

i . If
f W .C�/nC1 ! C is a Laurent polynomial we let V .f / D fz j f .z/ D 0g denote
its zero locus. The Newton polytope of f is the convex hull of the set of m 2 ZnC1

whose coefficient in f is nonzero. If the coefficients are chosen generically, then the
diffeomorphism type of V .f / depends only on the Newton polytope of f . In fact it
suffices that the extreme coefficients (ie the coefficients corresponding to the vertices of
the Newton polytope) are chosen generically. More precisely, we have the following.

Proposition 1.6 (Gelfand, Kapranov and Zelevinsky [15, Chapter 10, Corollary 1.7])
Let A�ZnC1 be a finite set whose affine span is all of ZnC1 , and let fA be a Laurent
polynomial of the form

f .z/D
X
m2A

amzm:

There is a Zariski dense open subset UA � CjAj such that, when the .am/m2A are
chosen from UA , the variety V .fA/ is smooth and its diffeomorphism type depends
only on the convex hull of A.

Remark 1.7 The precise condition that we mean by “generic” in Theorem 1.2 is as
follows. If xZ denotes the closure of Z in the projective toric variety P4 associated
to 4 then we require xZ \O to be either empty or smooth and reduced for each torus
orbit O � P4 . If this holds, xZ is called 4–regular, a notion coined by Batyrev and
Dwork; see [5, Definition 3.3]. Note that for each cell � 2 T , we may consider the
weighted projective space P� associated to � and have a hypersurface xZ� �P� given by
the polynomial f� D

P
m2� amzm . Now, we may state the precise definition of generic

used in Theorem 1.2: we call Z generic if xZ is 4–regular and for each � 2 T , xZ�

is � –regular. The set of generic hypersurfaces forms a Zariski open subset of all
hypersurfaces justifying the notion generic.

1.4.2 Polytopes and triangulations An intersection of finitely many affine half-
spaces in a finite-dimensional vector space is called polyhedron. If it is compact, it
is called polytope. A polytope is the convex hull of its vertices. Given a subset A

of a vector space, we denote its convex hull by conv.A/. Throughout, we let M
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denote a free abelian group isomorphic to ZnC1 and set MR DM ˝Z R Š RnC1 .
A polytope 4�MR is called a lattice polytope if its vertices are in M . We use the
symbol � for the face relation, eg, � �4 means that � is a face of 4. The relative
interior of a polytope � will be denoted �ı . Let @4 denote the boundary of 4. A
lattice triangulation T4 of a polytope � is a triangulation by lattice simplices. Such
a triangulation is called star-regular if there is a convex, piecewise linear function
hW �!R such that the nonextendable closed domains where h is affine linear coincide
with the maximal simplices in T4 . Note that star-regularity is different from usual
regularity where one would relax the linearity condition to affine-linearity. In a star-
regular triangulation, all maximal simplices contain the origin, which wouldn’t be true
for a general regular triangulation. We write T Œ0�

4
for the set of vertices of T4 , and

if � is a simplex of T4 we write � Œ0� for the vertices of � .

1.4.3 Monoids and affine toric varieties We denote by Spec R the spectrum of a
commutative ring R, where R is a Noetherian commutative algebra over C . We will
often abuse notation by using the same symbol Spec R for the associated complex
analytic space and O for Oan . Given f1; : : : ; fr 2R, we write V .f1; : : : ; fr / for the
subvariety of Spec R defined by the equations f1 D � � � D fr D 0.

A monoid is a set with an associative binary operation that has a unit and a two-sided
identity. For us, all monoids will be commutative. Given a monoid M with an action
on a set V , we write MT for the orbit of a subset T � V . We often use this when V

is an R–vector space, T some subset and MD R�0 the nonnegative reals. Further
notation for monoids is discussed in Section 4.1.

By a cone � �MR we shall always mean a rational polyhedral cone, ie a set of the
form �X

i2I

�ivi

ˇ̌̌
�i 2R�0

�
;

where fvigi2I is a finite subset of lattice vectors in MR . A cone is called strictly
convex if it contains no nonzero linear subspace of MR . Gordon’s Lemma (see
Fulton [14, page 12]) states that the monoid M \ � is finitely generated. The monoid
ring CŒM \ �� is then Noetherian. For m 2M \ � we write zm for the correspond-
ing basis element of CŒM \ ��; it can be regarded as a regular monomial function
Spec CŒM \ ��!C .

We have the following standard device for describing points on an affine toric variety.
If x is a point of Spec CŒM \ ��, write evx W M \ � !C for the map

evx.m/D zm
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evaluated at x . Each evx is a homomorphism of monoids from M \� to .C;�/. The
universal property of the monoid ring gives the following.

Proposition 1.8 Let � be a rational polyhedral cone in MR . Then x 7! evx is a
one-to-one correspondence between the complex points of Spec CŒM \ �� and the
monoid homomorphisms M \ � !C .

Acknowledgements We thank Gabriel Kerr for his help with the case of nonreflexive
polytopes. We thank Nir Avni, Johan de Jong, Grigory Mikhalkin, Sam Payne and
Bernd Siebert for helpful discussions. The work of the first author is supported by
DFG-SFB-TR-45 and the Carl Zeiss Foundation. The work of the third author is
supported by NSF-DMS-1206520. The work of the fourth author is supported by
NSF-DMS-1104779 and by a Simons Foundation Fellowship.

2 Degenerations of hypersurfaces

We fix a lattice polytope 4�MR with 0 24. Let K �MR be a convex subset. A
continuous function hW K!R is called convex if for each m;m0 2K and we have

h.m/Ch.m0/

2
� h

�
mCm0

2

�
:

We fix a lattice triangulation T4 of 4 with the following property: 0 2 T Œ0�
4

and there
exists a convex piecewise linear function hW R�04!R taking nonnegative integral
values on M such that the maximal dimensional simplices in T4 coincide with the
nonextendable closed domains of linearity of hj4 . We also choose such a function, h.
Triangulations with this property are often called regular or coherent. Every lattice
polytope containing the origin supports a regular lattice triangulation. Since h is linear
on the .nC1/–simplices of T4 , this triangulation is “star-shaped with center 0” in the
sense that each simplex in T4 is contained in @4 or contains the origin 0. We define
the triangulation T by

T D f� 2 T4 j � � @4; 0 62 �g;

ie, the set of simplices of 4 not containing the origin. We denote the union of all
� 2 T by jT j, and sometimes by @40 . Since T induces T4 , we call T regular if the
induced T4 is regular.

We fix a Laurent polynomial f 2CŒM � of the form

(2-1) f D a0C

X
m2T Œ0�

amzm:
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We suppose that all coefficients are real, that a0 < 0, that am > 0 for m 2 T Œ0� , and
that they are chosen generically with this property. We write V .f /� Spec CŒM � for
the hypersurface in the algebraic torus defined by f D 0.

Remark 2.1 Since the positivity conditions on the am are Zariski dense, it follows by
Proposition 1.6 that V .f / is smooth and diffeomorphic to any generic hypersurface
whose Newton polytope is 4.

Using the piecewise linear function h, we can give a toric degeneration of .C�/nC1

and an induced degeneration of V .f / in the style of Mumford. We construct this
degeneration in Sections 2.1 and 2.2.

Remark 2.2 In case the origin is on the boundary of 4, it is natural to embed V .f /

into the following partial compactification of .C�/nC1 . The polytope 4 generates
a cone R�04 � MR . The cone is not usually strictly convex, eg if 0 2 4ı then
this cone is all of MR . In any case, f is always a linear combination of monomials
in R�04\M and defines a hypersurface in Spec CŒM \R�04� which we denote
by xV .f /. If 0 24ı; xV .f /D V .f /.

2.1 Degeneration of the ambient space

The total space of the degeneration will be an affine toric variety Y closely related to
the affine cone over the projective toric variety whose moment polytope is 4. More
precisely, it is an affine subset of the affine cone over a blowup of this toric variety.
The construction makes use of the overgraph cone in MR ˚ R, coming from the
piecewise-linear function h.

2.1.1 The overgraph cone Let †T be the fan in MR whose nonzero cones are the
cones over the simplices in T , ie

†T D fR�0� j � 2 T g:

When 0 is an interior lattice point, †T is a complete fan. In general its support is the
cone R�04.

Since T is regular, †T is projected from part of the boundary of a rational polyhedral
cone in MR˚R. We fix such a cone and call it the overgraph cone. Let us define it
more precisely. Set �M DM ˚Z and �MR D

�M ˝Z R. The overgraph cone of h is
defined to be

��h D f.m; r/ 2 �MR jm 2R�04; r � h.m/g:

Geometry & Topology, Volume 18 (2014)



1354 Helge Ruddat, Nicolò Sibilla, David Treumann and Eric Zaslow

Each cone in †T is isomorphic to a proper face of ��h under the projection �MR!MR .
The inverse isomorphism is given by m 7! .m; h.m//. Since h takes integral values
on M , the faces of ��h that appear in this way form a rational polyhedral fan in �M .
We record this observation in the following lemma.

Lemma 2.3 Let R�0� be a cone in †T and let ��h;� � ��h be the face

��h;� D f.m; h.m// 2 ��h jm 2R�0�g:

Then the projection ��h;� !R�0� is an isomorphism of cones inducing and isomor-
phism of monoids ��h;� \

�M !R�0� \M .

2.1.2 Degeneration The overgraph cone determines an affine toric variety that we
denote by Y , ie

Y D Spec CŒ��h\
�M �:

Define � W Y !A1 to be the map given by the regular monomial function t D z.0;1/

on Y . Let Y0�Y denote the fiber ��1.0/. Since t is a monomial, Y0 is torus invariant
in Y , but in general has many irreducible components. Let us call the components
of ��1.0/ the vertical divisors of the map � and then call the remaining toric prime
divisors horizontal divisors.

Remark 2.4 Since Y is an affine toric variety, we can identify the points of Y (by
Proposition 1.8) with the space of monoid homomorphisms . �M \��h;C/! .C;�/.
In this description, Y0 is the subset of monoid homomorphisms �W �M \ ��h! C
carrying .0; 1/ to 0.

Proposition 2.5 The map � W Y !A1 has the following properties.

(1) We have ��1.C�/ D Spec CŒ.R�04/\M ��C� and the restriction of � to
��1.C�/ is the projection onto the second factor.

(2) The subscheme structure on Y0 D �
�1.0/ is reduced.

(3) We have � is a toric degeneration of Spec CŒ.R�04/\M �. The restriction
of � to the complement of the union of horizontal divisors is a degeneration of
Spec CŒM �Š .C�/nC1 .

Proof Localizing to ��1.C�/ means adjoining t�1 to the ring CŒ��h\
�M �, which

yields CŒ..R�04/CR.0; 1//\ �M �DCŒ.R�04/\M �˝C CŒZ�. This gives the first
statement in (3) as well as (1).
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To prove (2), note that since h takes integral values on M , any element m 2 ��h\
�M

can uniquely be written as
m0C k.0; 1/;

with k 2 Z�0 and m0 in ��h;� \
�M for some � 2 T . We need to show that the

ideal J D .z.0;1// of A WD CŒ��h \
�M � is radical. Let f 2 A be given such that

f l 2 J . We need to show that f 2 J . We have Newton.f l/D l �Newton.f /, where
Newton.g/ denotes the Newton polytope of g . Since by assumption all lattice points
in Newton.f l/ have k > 0 under the above decomposition, this also follows for those
in Newton.f / and thus f 2 J .

The second statement in (3) is best seen in the fan picture. If † is the normal fan
of ��h , removing the horizontal divisors amounts to restricting to the subfan †0 �†
of cones that have no rays contained in .0; 1/? . The map � is given by mapping †0

to the fan ff0g;R�0g and f0g 2†0 is the only cone that maps to f0g, so the general
fiber is indeed an algebraic torus.

Let us describe the vertical and the horizontal divisors in more detail.

Proposition 2.6 Let Y and � be as above and for each � 2 T let ��h;� be as in
Lemma 2.3.

(1) The assignment � 7! Spec CŒ��h;� \
�M � is a bijection between the vertical

divisors of � and the n–dimensional simplices of T .

(2) The assignment

� 7! Spec CŒ.R�0f.m; h.m// jm 2 �gCR�0.0; 1//\ �M �

is a bijection between the horizontal divisors of � and the n–dimensional sim-
plices � of T4 with 0 2 � and � � @4.

Proof The toric prime divisors in Y correspond to the codimension one faces of ��h .
Such a face corresponds to a vertical divisor if and only if it contains .0; 1/. This
implies (1) and (2).

Example 2.7 For a simple illustrative example, take 4D conv.f.0; 0/; .2; 0/; .0; 2/g/,
with lattice points named as follows:

� � � � �

� e � � �

� c d � �

� 0 a b �

� � � � �
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Then @40 is the line segment between b and e , and let us take T to be the fine
triangulation with maximal simplices bd and de. Then †T is supported in the first
quadrant, and its maximal cones are generated by fb; dg and fd; eg. Let h be the
piecewise linear function supported on †T with

h.a/D 1; h.c/D 1; h.d/D 1:

Then, we have that the ring CŒ��h\
�M � of regular functions on Y can be identified

with CŒa; c; d; t �=.ac � dt/. (We identify a with zath.a/ and so on.) For �¤ 0, the
fiber ��1.�/ can be identified with C2 via .a; c/$ .a; c; ac=�; �/, as it must from
Proposition 2.5(1) since Spec CŒ.R�04/\M �ŠC2 .

Setting t D 0 gives Y0 as CŒa; c; d �=ac which reveals the vertical divisors as V .c; t/Š

C2 D f.a; d/g and V .a; t/ŠC2 D f.c; d/g. The horizontal divisors are V .a; d/ and
V .c; d/, which can also be identified with C2 . In Example 2.14 we shall return to this
example to consider hypersurface degenerations when we have a polynomial f with
Newton.f /D4.

Remark 2.8 In these examples we have used coordinates on Y indexed by lattice
points in 4. This is always possible for n � 1, but for larger n the coordinate ring
of Y can require many more generators.

2.1.3 Orbit closures in Y0 For each � 2T let Y0;� be the .dim.�/C1/–dimensional
affine toric variety

Y0;� D Spec.CŒ �M \��h;� �/;

where ��h;� is defined in Lemma 2.3. Since ��h;� is a face of ��h , Y0;� is a torus
orbit closure in Y . Each vertical divisor of t is of the form Y0;� , where � is an
n–dimensional simplex of T by Proposition 2.6.

Restricting regular functions from Y to Y0;� induces the ring quotient map

CŒ��h\
�M �!CŒ��h;� \

�M �

whose kernel is the ideal generated by monomials z.m;r/ with .m; r/ 62 ��h;� . By
Lemma 2.3, we may identify CŒ��h;� \

�M � with CŒR�0� \M �.

2.1.4 Projection onto P dim.�/ The action of Hom.M;C�/ on Y0;� factors through
an action of the quotient torus Hom.R� \M;C�/. We now define a finite subgroup
D� � Hom.R� \M;C�/ which will play an important role for us.
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Definition 2.9 Let D� be the finite commutative group

D� D Hom..M \R�/=Z� Œ0�;C�/:

We regard D� as a subgroup of Hom.M \R�;C�/, and let it act on the coordinate
ring of Y0;� D Spec CŒM \R�0�� by

d:zm
D d.m/ zm:

Proposition 2.10 The invariant subring

CŒM \R�0��
D� �CŒM \R�0��

is the monoid ring CŒZ�0�
Œ0��. In other words, it is a polynomial ring whose dim.�/C1

variables are parameterized by the vertices � Œ0� of � .

Proof The monomials zm for M \R�0� form a basis of eigenvectors for the D� –
action on CŒM\R�0��. The invariants are therefore generated by those monomials zm

for which d.m/D 1 for all d 2D� . Each vertex of � has this property, and thus

Z�0�
Œ0�
� fm 2R�0� \M j d.m/D 1 for all d 2D� g:

Let us show the containment is an equality, ie that for each m 2M \R�0� , if the
monomial zm is D� –invariant then m is a Z�0 –linear combination of the vertices of � .
This follows from the fact that � Œ0� is a basis for the vector space R� , and that each
element of M \R�0� can be written in this basis with coefficients in Q�0 . Indeed,
let v0; v1; : : : ; vdim.�/ be the vertices of � and for i D 0; : : : ; dim.�/ define di by
di.vj /D ıi;j . Suppose that zm is a D� –invariant monomial. Then since mD

P
aivi

where each ai is in Q�0 , we have dj .m/D e2� iaj D 1 for all j , ie aj 2 Z�0 .

Proposition 2.11 The fiber of the D� –quotient map

Y0;� !Cdim.�/C1

above 0 2Cdim.�/C1 is a single point.

Note there is a mild abuse of notation here: the coordinates of Cdim.�/C1 are not
indexed by the integers 1; : : : ; nC 1 but the vertices of � .

Proof We use the description of Proposition 1.8. The origin in Cdim.�/C1 corresponds
to the monoid homomorphism Z�0�

Œ0�!C that carries each vertex of � (and in fact
each nonzero element of Z�0�

Œ0� ) to 0 2 C . To prove the proposition, it suffices to
show that this extends to a monoid map M\R�0� ! C in a unique way. Indeed,
we can define such an extension by sending 0 to 1, and each nonzero element of
M\R�0� to 0. This extension is unique as M\R�0� is contained in Q� Œ0� .

Geometry & Topology, Volume 18 (2014)



1358 Helge Ruddat, Nicolò Sibilla, David Treumann and Eric Zaslow

Since the D� –invariant ring CŒZ�0�
Œ0�� is a polynomial ring, we may endow it with a

grading by declaring that deg.zm/D 1 whenever m is a vertex of � .

Definition 2.12 Let 0 2 Y0;� and let 0 2 Spec.CŒZ�0�
Œ0��/ denote the points of

Proposition 2.11. We define a space P dim.�/ and a map �� W Y0;� n f0g ! P dim.�/ as
follows.

(1) We let P dim.�/DProj.CŒZ�0�
Œ0�/, where the grading on the coordinate ring is in-

dicated above. In other words, P dim.�/ is a projective space whose homogeneous
coordinates are naturally indexed by the vertices of � .

(2) We let q� W Y0;� n f0g ! P dim.�/ denote the composite map

Y0;� n f0g !Cdim.�/C1
n f0g ! P dim.�/;

where the first map is the D� –quotient map of Proposition 2.10 and the second
map is the tautological map.

Note the abuse of notation in (1): if dim.�/D dim.� 0/ we will usually regard P dim.�/

as different from P dim.� 0/ .

2.2 Degeneration of the hypersurface

In Proposition 2.5, we have seen that the general fiber of � W Y !A1 is isomorphic to
Spec CŒM\R�04�. We now describe a degeneration of xV .f /�Spec CŒ.R�04/\M �

contained in the family � W Y !A1 . The total space of the degeneration is the hyper-
surface in Y cut out by a regular function zf on Y . On the open orbit of Y , zf looks
like

zf D a0C

X
m2T Œ0�

amz.m;h.m// D a0C

X
m2T Œ0�

amzmth.m/;

where the am are the same coefficients as in f ; see Equation (2-1). Denote the
vanishing locus of zf by X D V . zf /.

Remark 2.13 When 0 is in the interior of 4, X is a degeneration of V .f /. When 0

is on the boundary, X is a degeneration of xV .f /� V .f / defined in Remark 2.2.

Example 2.14 We return to the setting of Example 2.7 to study the associated degen-
eration of the smooth hypersurface defined by the polynomial f D�1Cx2CxyCy2 .
Note that Spec CŒ.R�04/\M �ŠC2 , so we will degenerate both xV .f / and inside
it Z D V .f / � C� �C� . In Example 3.5 we shall study the skeleton of Z , and in
Example 5.7 we will turn to investigate the skeleton of xV .f / in C2 .
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The function zf W Y !C is written zf D�1C bCd C e . Recalling from Example 2.7
that b D z.2;0/th.2;0/ D x2t2 , d D z.1;1/th.1;1/ D xyt , and e D z.0;2/th.0;2/ D y2t2 ,
we see that zf specializes to f on ��1.1/.

The restriction of zf to Y0;� is the image of zf under the ring quotient map

CŒ��h\
�M �!CŒ��h;� \

�M �

that carries z.m;r/ to itself if .m; r/2��h;� and to 0 otherwise. In other words, zf jY0;�

is given by
zf jY0;�

D a0C

X
m2� Œ0�

amz.m;h.m//:

Let us denote the image of zf jY0;�
under the identification Y0;� D Spec CŒR� \M �

by f� . We record this in the following definition.

Definition 2.15 Let am be the coefficients of f ; see Equation (2-1).

(1) Let f� 2CŒR�0� \M � denote the expression

f� D a0C

X
m2� Œ0�

amzm

regarded as a regular function on Y0;� . Let X0;� be the hypersurface in Y0;� cut
out by f� .

(2) Let `� 2CŒZ�0�
Œ0� � denote the expression

`� D
X

m2� Œ0�

amzm

regarded as a homogeneous linear function on P dim.�/ . Let V .`� / � P dim.�/

denote the hyperplane cut out by `� .

Proposition 2.16 Fix � 2 T and denote by p� W X0;� ! P dim.�/ the composition

X0;� ,! Y0;� n f0g
q�
�! P dim.�/;

where the second map is the projection of Definition 2.12. Then

(1) p� is a finite proper surjection onto the affine space P dim.�/ nV .`� /ŠCdim.�/ ,

(2) p� induces an isomorphism

X0;�=D� Š P dim.�/
nV .`� /;

where D� is as in Definition 2.9,

(3) the ramification locus of p� is contained in the coordinate hyperplanes of P dim.�/ .
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Proof The following implicit assertions of the proposition are trivial to verify.

� Since a0 ¤ 0, the point 0 2 Y0;� of Proposition 2.11 does not lie on X0;� .
� Since the monomials that appear in f� belong to Z�0�

Œ0� , they are invariant
under the action of D� . In particular X0;� is invariant under D� .

Note that (1) is a consequence of (2). Since a0 ¤ 0 the function f� D a0 C `�
cannot vanish anywhere that `� vanishes. Therefore the image of p� is contained in
P dim.�/ nV .`� /. To complete the proof of (2), let us show that the affine coordinate
ring R1 of P dim.�/nV .`� / is the D� –invariant subring of the affine coordinate ring R2

of X0;� . We have

R1 DCŒZ�0�
Œ0� �=.a0C `� /;

R2 DCŒM \R�0��=.f� /;

and the short exact sequences

0 // CŒZ�0�
Œ0� �

a0C`� // CŒZ�0�
Œ0� � // R1

// 0;

0 // CŒM \R�0��
f� // CŒM \R�0�� // R2

// 0:

Note that since D� is finite, and we are working in characteristic zero, taking D� –
invariants preserves short exact sequences. Part (2) of the proposition is a consequence
of this observation and the fact that CŒZ�0��DCŒM \R�0��

D� by Proposition 2.10.

Now let us prove (3). Let H � P dim.�/ be the union of coordinate hyperplanes. By (2),
to show that p� is unramified away from H it suffices to show that D� acts freely
on X0;� away from p�1

� .H /. In fact D� acts freely on Y0;� nq
�1
� .H /. This completes

the proof.

2.3 Degeneration of the compact hypersurface

The families � W Y !A1 and � W X !A1 of Sections 2.1 and 2.2 have fairly natural
algebraic relative compactifications (ie “properifications” of the maps � ) that we review
here.

We define the polyhedron

x� D f.m; r/ 2 �MR jm 24; r � h.m/g;

which is contained in ��h . We set zN D Hom. �M ;Z/, zNR D
zN ˝Z R. The normal

fan of x� is the fan †x� D f�� j � � x�g where

�� D fn 2 zNR j hm�m0; ni � 0 for all m 2 x�;m0 2 �g

Geometry & Topology, Volume 18 (2014)



Skeleta of affine hypersurfaces 1361

and h � ; � iW �M˝ zN !Z is the natural pairing. Let xY denote the toric variety associated
to †x� . It is covered by the set of affine open charts of the shape Spec CŒ�_� \ �M �,
where � 2 x� Œ0� and

�_� DR�0fm�m0 jm 2 x�;m0 2 �g � �MR

is the dual cone of �� . Note that �_
0
D ��h , so we have an open embedding Y � xY .

Since .0; 1/ 2 �_� for all � � x� , � extends to a regular function

� W xY !A1:

The support of †x� is f.n; r/2 zNR j r � 0g and pairing with the monomial .0; 1/ sends
this to R�0 . Thus by the proposition in Section 2.4 of [14], we have the following.

Lemma 2.17 We have that � W xY !A1 is proper.

Corollary 2.18 Let xX denote the closure of X in xY . Then � W xX!A1 , the restriction
of � to xX , is proper.

3 The skeleton

3.1 Definition of the skeleton

We adopt the notation from Section 2, in particular that M Š ZnC1 is a lattice
and 4 � MR D M ˝Z R a lattice polytope containing 0 and with regular lattice
triangulation T of @40 . For x 2 @40 , let us denote by �x the lowest-dimensional
simplex of T containing x .

Definition 3.1 With 4, T , and x 7! �x given as above, define the topological
subspace

S4;T � @4
0
�Hom.M;S1/

to be the set of pairs .x; �/ satisfying

�.v/D 1 2 S1 whenever v 2M is a vertex of �x :

The fibers of the projection S4;T ! @4 are constant above the interior of each
simplex of T . In fact these fibers are naturally identified with a subgroup of the torus
Hom.M;S1/. Let us introduce some notation for these fibers.
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Definition 3.2 For each simplex � 2 T , let G� denote the commutative group con-
tained in the torus Hom.M;S1/ given by

G� WD f� 2 Hom.M;S1/ j �.v/D 1 whenever v 2M is a vertex of � g:

We denote the identity component of G� by A� and denote the discrete quotient
G�=A� D �0.G� / by D� . That is, we have the short exact sequence of abelian groups

(3-1) 1!A� !G� !D� ! 1:

We can also obtain this sequence by applying the exact contravariant functor Hom. � ;S1/

to the sequence

0 M=..R�/\M / M=.Z� Œ0�/ ..R�/\M /=.Z� Œ0�/ 0:

On finite groups, Hom. � ;S1/ D Hom. � ;C�/, so the definition of D� given here
agrees with Definition 2.9. Here are two additional properties of the groups G� :

(1) A� is a compact torus of dimension n� dim.�/.

(2) When � 0 � � , there is a reverse containment G� �G� 0 .

Remark 3.3 The fiber of S4;T ! @40 above x is connected if any only if D�x
is

trivial, so if and only if the simplex conv.f0g[�x/ is unimodular. A triangulation whose
simplices are unimodular uses every lattice point of 4 as a vertex, but the converse is not
true. For instance, � might contain a triangle of the form f.1; 0; 0/; .0; 1; 0/; .1; 1;N /g

for N > 1.

Remark 3.4 Define an equivalence relation on S4;T by setting x � y if both of the
following hold.

� x and y project to the same element of @40 .

� x and y are in the same connected component of the fiber of this projection.

If T is unimodular, then the quotient S4;T =� is just @40 . In general @40 is some
branched cover of @40 , with stratum �ı having covering group D� . We may write it
as a regular cell complex which we denote by b@40 , ie

b@40 WD S4;T =� Š
[
�2T

�ı �D� :

We investigate this in more detail in the Section 3.2.
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Example 3.5 Picking up from Example 2.14, we consider Z D V .f / in C� �C�

and compute its skeleton. We write � 2 Hom.Z2;R=Z/ as � D .˛; ˇ/, where
�.u; v/D˛uCˇv mod Z. The vertex fbgDf.2; 0/g2T has GfbgDf.˛; ˇ/ j2˛�0g

which is isomorphic to Z=2�R=Z — namely ˛ is 0 or 1=2 and ˇ is free — which
is homeomorphic to two disjoint circles. Similarly, Gfeg is two disjoint circles: ˛ is
free and ˇ is 0 or 1

2
. Gbd DGde Š Z=2 is two points: .˛; ˇ/D .0; 0/ or .1

2
; 1

2
/. We

have that Gfdg is a single circle, ˇ D�˛ , since d is primitive. Up to homotopy, the
fibers over the edges serve to attach the circles over b and e to Gfdg , meaning S4;T
is homotopic to a bouquet of five circles. A schematic representation of S4;T is given
below.

e

d

b

We shall see that Z is homotopy equivalent to S4;T after investigating the skeleton
of xV .f / in Example 5.7 in Section 5.

Remark 3.6 The vertices of the triangulation T generate the rays of a (stacky) fan
†_ � MR . It is shown by Fang, Liu and the third and fourth authors in [11; 12]
that coherent sheaves on the toric Deligne–Mumford stack associated with †_ can
be regarded as constructible sheaves on a compact torus with singular support in a
conic Lagrangian ƒ†_ �NR=N �MR Š T �.NR=N /. This “coherent-constructible
correspondence” is a full embedding of triangulated categories, conjecturally an equiv-
alence. The conic Lagrangian ƒ†_ is noncompact. Its Legendrian “boundary” ƒ1

†_

at contact infinity of T �.NR=N / is homeomorphic to S4;T ; see also Section 1.3.

3.2 The cell complex b@40 as a regular cell complex

Let us describe the combinatorics of b@40 in some more detail.

Definition 3.7 For each � 2 T let D� be the finite commutative group given in
Definition 2.9. We define the partially ordered set �T as follows.
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(1) If �; � 0 2 T have � � � 0 , define a homomorphism res� 0;� W D� 0 ! D� by
the following formula. If d W R� 0 \M ! S1 is an element of D� 0 , then
res� 0;� .d/W R� \M ! S1 is given by

res� 0;� .d/.m/D d.m/:

(2) Let �T denote the set of pairs .�; d/ where � 2 T and d 2D� . We regard �T as
a partially ordered set with partial order given by

.�; d/� .� 0; d 0/ whenever � � � 0 and res� 0;� .d 0/D d :

Each .�; d/ 2 �T determines a map

i�;d W � ! b@40
by the formula

i�;d .m/D fmg � d:

Proposition 3.8 For each � 2 T and d 2D� , and let i�;d be the map defined above.
The following hold.

(1) For each � 2 T and d 2 D� , the map i�;d is a homeomorphism of � onto its
image i�;d .�/�b@40 .

(2) For any face � 0 � � , the restriction of i�;d to � 0 coincides with i� 0;d 0 for some
d 0 2D� 0 .

In other words, b@40 is a regular cell complex whose partially ordered set of cells is
naturally isomorphic to �T .

Proof Note that the composite �!b@40 ! @40 is the usual inclusion of � into @40 ;
in particular � ! i�;d .�/ is a continuous bijection. Since � is compact and b@40 is
Hausdorff, this proves (1). For (2), simply put d 0 D res�;� 0.d/.

Remark 3.9 In fact the proposition shows b@40 is a “�–complex” in the sense of
Hatcher [18, 2.1], or a “generalized simplicial complex” in the sense of Kozlov [23, Def-
inition 2.41].

Remark 3.10 We will use the following device for constructing continuous maps out
of b@40 or X0 .

(1) Let K be a regular cell complex, let f�g be the poset of cells, and let L be a
topological space. If fj� W � ! Lg is a system of continuous maps such that
j� j�0 D j�0 whenever �0 � � , then there is a unique continuous map j W K!L

with j j� D j� for all � .
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(2) Let L be a topological space. If fj� W X0;� !Lg�2T is a system of continuous
maps such that j� j� 0 D j� 0 whenever � 0 � � , then there is a unique continuous
map j W X0!L with j j� D j� for all � .

In other words, K is a colimit of its cells and X0 is a colimit of the components X0;� .

Remark 3.11 For each � 2 T , i�;1 be the embedding � ,! b@40 , where the “1” in
the subscript indicates the identity element of D� . These assemble to an inclusion
@40 ,!b@40 by Remark 3.10.

3.2.1 The homotopy type of b@40 It is easy to identify the homotopy type of b@40 ,
using the technique of “shelling.”

Theorem 3.12 The regular cell complex b@40 has the homotopy type of a wedge of
n–dimensional spheres.

Proof We will show that b@40 is shellable in the sense of [23, Definition 12.1]; then
by [23, Theorem 12.3] b@40 is homotopy equivalent to a wedge of n–dimensional
spheres. By Bruggesser and Mani [7, Proposition 1], the triangulation T of @40 has a
shellable subdivision, denote it by S . Let yS denote the lift of S to b@40 . For each top-
dimensional face � of S , fix a total order F.�; 1/; : : : ;F.�; k/ of the top-dimensional
faces of yS that lie above � . Since b@40 ! @40 is a branched covering along the
simplices of S , whenever �1; �2; : : : ; �N is a shelling of S then

F.�1; 1/; : : : ;F.�1; k1/;F.�2; 1/;F.�2; 2/; : : : ;F.�2; k2/; : : : ;

F.�N ; 1/; : : : ;F.�N ; kN /

is a shelling of yS .

3.3 Embedding b@40 into X0

In this section, using the positivity conditions on the coefficients am of f described
below (2-1), we will construct an embedding of b@40 into the special fiber X0 .

3.3.1 General remarks on positive loci in toric varieties Let T Š .C�/n be an
algebraic torus and fix a splitting T Š U.1/n �Rn

>0
. If W is a toric variety acted on

by T , and 1 2W is a base point in the open orbit, then the positive locus of W is
the Rn

>0
–orbit of 1 on W . The nonnegative locus is the closure of the positive locus

in W . We write W>0 for the positive locus and W�0 for the nonnegative locus.
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Example 3.13 Let W be an affine toric variety of the form Spec.CŒM \ ��/. Then
under the identification W Š Hom.M \ �;C/ of Proposition 1.8, the nonnegative
locus is

(3-2) W�0 Š Hom.M \ �;R�0/:

When W D Proj.CŒZnC1
�0

�/, the nonnegative locus is the set of points whose homoge-
neous coordinates can be chosen to be nonnegative real numbers. It can be identified
with a simplex. The following proposition investigates this example in more detail.

Proposition 3.14 Let � �MR be a lattice simplex, and let P dim.�/ be the projective
space of Definition 2.12. Let Œxm�m2� Œ0� be homogeneous coordinates for a point
of P dim.�/ . Define the moment map �� W P dim.�/!MR by

�� .Œxm�m2� Œ0�/D

P
m2� Œ0� jxmj

2mP
m2� Œ0� jxmj

2
:

Then �� is a homeomorphism of P dim.�/
�0

onto � .

Proof See [14, Section 4.2].

Remark 3.15 The map of Proposition 3.14 is the usual moment map for a Hamiltonian
torus action and symplectic form on P dim.�/ , but the conclusion of the proposition
holds for any map of the form P

m2� Œ0� jxmj
emP

m2� Œ0� jxmj
e

so long as e is real and e > 0. When e > 1, these maps are smooth. The case e D 1

may lead to a simpler formula for the map considered in Definition 4.19

Remark 3.16 The moment maps of Proposition 3.14 have the following compatibility
feature: if � 0 � � is a face of � , then the restriction of �� to P dim.� 0/ � P dim.�/ is �� 0 .
In particular by Remark 3.10, there is a well-defined map

�W X0! @40 �MR;

such that, for all � , its restriction to X0;� is given by �� WD �� ıp� .

3.3.2 Embedding Recall the D� –equivariant maps

p� W X0;� ! P dim.�/
nV .`� /

of Proposition 2.16. We use it to define a nonnegative locus in X0;� .
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Definition 3.17 Fix � 2 T . Let P dim.�/ be the projective space of Definition 2.12 and
let X0;� be the affine variety of Definition 2.15. We define subsets

P dim.�/
>0 � P dim.�/

�0 � P dim.�/;

.X0;� />0 � .X0;� /�0 �X0;�

as follows.

(1) Let P dim.�/
>0

� P dim.�/ be the set of points whose homogeneous coordinates
can be chosen to be positive real numbers. We call P dim.�/

>0
the positive locus

of P dim.�/ .

(2) Let P dim.�/
�0

� P dim.�/ be the closure of P dim.�/
>0

, ie the set of points whose
homogeneous coordinates can be chosen to be nonnegative real numbers. We
call P dim.�/

�0
the nonnegative locus of P dim.�/ .

(3) If .Y0;� /�0 is as defined in Example 3.13, let .X0;� /�0 DX0;� \ .Y0;� /�0 .

Proposition 3.18 Let P dim.�/
�0

and V .`� / be as in Definition 3.17 and Definition 2.15,
respectively. The following hold.

(1) The hyperplane V .`� / does not meet P dim.�/
�0

, ie

V .`� /\P dim.�/
�0 D¿:

(2) The projection of X0;� onto P dim.�/ n V .`� / induces a homeomorphism of
nonnegative loci

.X0;� /�0
�

�! P dim.�/
�0 :

Proof Suppose Œxm�m2� Œ0� are homogeneous coordinates for a point P 2 P dim.�/ .
If P belongs to the nonnegative locus, then by definition we may choose the xm to
be real and nonnegative. Moreover, at least one of the xm must be nonzero, say xm0

.
Then evaluating `� on P gives

`� .P /D
X

m2� Œ0�

amxm � am0
xm0

> 0

since all the am are positive real numbers. In particular `� .P /¤ 0. This proves (1).

Let us prove (2). Let v0; : : : ; vdim.�/ be the vertices of � . A point of .Y0;� /�0 is given
by a monoid homomorphism xW M \R�0� !R�0 . Since R�0 is divisible and � Œ0�

is a basis for R� , x is determined by its values on � Œ0� , and the map

x 7! .x.v0/; : : : ;x.vdim.�///
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is a homeomorphism of .Y0;� /�0 onto Rdim.�/C1
�0

. In these coordinates, the equation
f� D 0 defining .X0;� /�0 is

dim.�/X
iD0

avi
x.vi/D�a0;

which (since a0 < 0 and avi
> 0) is a simplex with a vertex on each coordinate ray

of Rdim.�/C1
�0

. It follows that the projection onto .Rdim.�/C1
�0

n f0g/=R>0 Š P dim.�/
�0

is
a homeomorphism.

To define an embedding b@40 !X0 , we may appeal to Remark 3.10 and define map it
simplex by simplex.

Definition 3.19 Let �T be the poset of Definition 3.7. For each .�; d/ 2 �T define the
map j�;d to be the composite

�
��1

//P dim.�/
�0

p�1
� //.X0;� /�0

d //X0;�;

where

� ��1 is the inverse homeomorphism to the map of Proposition 3.14,
� p�1

� is the inverse homeomorphism to the map of Proposition 3.18(2),
� d denotes the action of d 2D� on X0;� of Definition 2.9.

Proposition 3.20 Let b@40 be as in Remark 3.4, let �T be as in Definition 3.7, and for
each .�; d/ 2 �T let i�;d W � ,!b@40 be the inclusion defined in Section 3.2 and let j�;d
be the inclusion of Definition 3.19. There is a unique map j W b@40 ,!X0 such that for
all .�; d/ 2 �T , the square

� � _

i�;d
��

j�;d // X0;�

��b@40
j
// X0

commutes.

Proof By Remark 3.10(1), it suffices to show that the maps � ! X0 given by j�;d
are compatible in the sense that j�;d j� 0 D j� 0;res�;�0 .d/ whenever � 0 � � . To see this,
note that if t 0 2 � 0 � � , then ��1 carries t 0 to P dim � 0

�0
� P dim �
�0

; see Remark 3.16. The
proof of Proposition 3.18 shows that p�1

� 0 and p�1
� agree on this locus. Finally, the

actions of d and res�;� 0.d/ are defined to agree on the result.
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Remark 3.21 The inverse image above � � @40 of the map b@40 ! @40 is a mild
generalization (to Fermat hypersurfaces in weighted projective spaces) of the space
considered in [10, pages 88–90].

3.4 The cell complex b@40 embeds in X0 as a deformation retract

In this section we prove that the inclusion b@40 ,!X0 is a deformation retract. This is
a “degenerate” case of our Main Theorem, and plays an important role in the proof.

3.4.1 Lifting deformation retractions along branched covers Let us first discuss
a path-lifting property of branched coverings.

Definition 3.22 Let W be a locally contractible, locally compact Hausdorff space
and let F1 � F2 � � � � � Fk �W be a filtration by closed subsets.

(1) A map pW W 0 ! W is branched along the filtration F if it is proper and if
p�1.Fi nFi�1/! Fi nFi�1 is a covering space for every i .

(2) A path  W Œ0; 1�!W is called an enter path for the filtration F if whenever
 .t/ 2 Fi , then  .s/ 2 Fi for all s > t . (In other words once  enters the
subset Fi , it does not leave.) Write MapsF .Œ0; 1�;W / for the space of enter
paths for F , with the compact open topology.

(3) An F –deformation retraction is a deformation retraction W !Maps.Œ0; 1�;W /

that factors through MapsF .Œ0; 1�;W /.

Proposition 3.23 Let pW W 0 ! W be branched along a filtration F of W . Let
 W Œ0; 1�!W be an enter path for F . Then for each w0 2p�1. .0//, there is a unique
path z W Œ0; 1�!W 0 with p ı z D  and z .0/D w0 . The path z is an enter path for
p�1.F /, and the map

W 0 �p;W ;ev0
MapsF .Œ0; 1�;W /!Mapsp�1.F /.Œ0; 1�;W

0/

that sends .w0;  / to the unique lift z is continuous.

Proof This follows by a modification of the standard argument for covering spaces;
see Woolf [30, Proposition 4.2] and also Fox [13].

Corollary 3.24 Suppose pW W 0!W is branched along a filtration F of W . Sup-
pose that r W W !MapsF .Œ0; 1�;W / is an F –deformation retraction (in the sense of
Definition 3.22) onto a subset K�W . Then p�1.K/ is a p�1.F /–deformation retract
of W 0 .
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Proof The composite map

W 0!W 0 �p;W ;ev0
MapsF .Œ0; 1�;W /!MapsF .Œ0; 1�;W

0/;

where the first map is w0 7! .w0; r.p.w0/// and the second map is the map of
Proposition 3.23 is a deformation retraction of W 0 onto p�1.K/.

In proving Theorem 4.28, we will have to consider maps which have similar features
to the branched covers of Section 3.4.1, except on each stratum they restrict to more
general principal bundles. Lemma 3.25 is a slight variant of Corollary 3.24, which
works for this larger class of maps as well.

Lemma 3.25 (A slight variant of Corollary 3.24) Let pW W1!W2 be a continuous
map, and let K2 � W2 be a closed deformation retract. Suppose that the restric-
tion p�1.W2 nK2/! W2 nK2 is homeomorphic to the projection from a product
F � .W2 nK2/!W2 nK2 .

Then p�1.K2/ is a deformation retract of W1 .

Proof Set K1 D p�1.K2/. Let us call a path  W Œ0; 1�!W2 a K2 –constant path if
it has the following property: if  .t/ 2K2 then  .s/D  .t/ for all s > t . In other
words, once  enters K2 , it is constant. Similarly let us define a K1 –constant path
in W1 if once it enters K1 , it is constant.

Using the product decomposition of p�1.W2nK2/, a K2 –constant path  W Œ0; 1�!W2

can be lifted in a canonical way to z W Œ0; 1�!W1 once the initial point z .0/ is specified,
and the assignment

W1 � fK2–constant paths in W2g ! fK1–constant paths in W1g

is continuous.

A strong deformation retraction of W2 onto K2 is given by r W W2!Maps.Œ0; 1�;W2/

such that

� r.w/.0/D w for all w ,

� r.w/.1/ 2K2 for all w ,

� r.w/.t/D w for all w 2K2 and all t .

For each w , the path r.w/W Œ0; 1�!W2 is a K2 –constant path. Now we may define a
map r1W W1!Maps.Œ0; 1�;W1/ by the formula

r1.w1/D lift of p ı r1.w1/ to W2 with initial point w1 :
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3.4.2 Retraction onto b@40

Definition 3.26 The standard toric filtration of a toric variety W is the filtration

F0 � F1 � F2 � � � � �W;

where each Fi is the union of the torus orbits of dimension i or less.

Proposition 3.27 Let � �M be a lattice simplex, let P dim.�/ be the projective space
of Definition 2.12, and let P dim.�/

�0
be the nonnegative locus of P dim.�/ in the sense

of Definition 3.17. Let ` be a homogeneous linear form on P dim.�/ that does not
vanish on P dim.�/

�0
. Let F be the restriction of the standard toric filtration on P dim.�/ to

P dim.�/ nV .`/. Then we have the following.

(1) There is an F –deformation retraction

r W P dim.�/
nV .`/!MapsF .Œ0; 1�;P

dim.�/
nV .`//

onto P dim.�/
�0

.

(2) We may choose r so that for any face � 0 � � , the restriction of r to P dim.� 0/ is
an F 0–deformation retraction of P dim.� 0/ nV .`0/ onto P dim.� 0/

�0
. Here `0 is the

restriction of ` to P dim.� 0/ and F 0 is the restriction of F to P dim.� 0/ nV .`0/.

Proof For any two points P;Q in P dim.�/ nV .`/ŠAdim.�/ , let PQ be the real line
segment between them. Since each Fi is an affine subspace, if P and Q are in Fi

then so is PQ. To produce an F –deformation retraction, it is enough to find a map
sW P dim.�/ nV .`/! P dim.�/

�0
so that

� s.P /D P for all P 2 P dim.�/
�0

,

� s.Fi/� Fi for all i .

In that case the map r given by r.Q/DQs.Q/ is an F –deformation retraction. A
suitable s is given by the moment map of Proposition 3.14, and by Remark 3.16, the
deformation retractions we build in this way will have property (2) of the proposition.

Theorem 3.28 The inclusion b@40 ,!X0 admits a deformation retraction.

Proof Since X0;� ! P dim.�/ nV .`� / is branched along the standard toric filtration
of P dim.�/ , Proposition 3.27 and Corollary 3.24 together imply that p�1

� .P dim.�/
�0

/

is a deformation retract of X0;� . Moreover by part (2) of Proposition 3.27, these
deformation retractions are compatible with inclusions X0;� 0 �X0;� . By Remark 3.10,
they therefore assemble to a deformation retraction of X0 to b@40 .
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4 Log geometry and the Kato–Nakayama space

We recall the definition of a log space X | from Kato [20] and the associated Kato–
Nakayama space Xlog from Kato and Nakayama[21] and Nakayama and Ogus [26].
We work with log structures in the analytic topology, which are treated in [21].

4.1 Log structures and log smoothness

For us, a monoid is a set with binary operation that is commutative, associative and
has a unit. For each monoid M, there is a unique group Mgp called the Grothendieck
group of M together with a map M!Mgp satisfying the universal property that every
homomorphism from M to a group factors uniquely through M!Mgp . A monoid
is called integral if M!Mgp is injective. Equivalently, the cancellation law holds
in M: ab D ac) b D c . A finitely generated and integral monoid is called fine. An
integral monoid M is called saturated if x 2Mgp , xn 2M implies x 2M. A finitely
generated, saturated monoid is called toric.

Example 4.1 If � �Rk is a rational polyhedral cone, then Zk \ � is a toric monoid.

Let X be an analytic space. A pre-log structure for X is a sheaf of monoids MX

together with a map of monoids ˛X WMX ! OX where we use the multiplicative
structure for the structure sheaf. We call .MX ; ˛X / a log structure if ˛X induces an iso-
morphism on invertible elements M�

X

�

�!O�
X

. Given a (pre-)log structure .MX ; ˛X /,
the triple X |D .X;MX ; ˛X / is called a (pre-)log space. Pre-log spaces naturally form
a category on which we have a forgetful functor to the category of analytic spaces via
X | 7!X . This functor factors through the category of log spaces by the functor which
associates a log structure to a pre-log structure. This is done by replacing .MX ; ˛X /

by the associated log structure .Ma
X
; ˛a

X
/ given as

Ma
X D .MX ˚O�X /=f.m; ˛X .m/

�1/ jm 2M�
X D ˛

�1
X O�X g;

with ˛a
X
.m; f /D f �˛X .m/. Most of the time we will omit ˛X , assume it as known

and refer to a log structure just by its sheaf of monoids.

Example 4.2 If .X;OX / is an analytic space, the trivial log structure on X is given
by MX D .OX /

� , with ˛X the inclusion map.

Example 4.3 If .X;OX / is an analytic space and D �X a divisor, the divisorial log
structure M.X ;D/ on X is given by M.X ;D/DOX \j�O�X nD , with j W X nD!X

the open embedding and ˛X the inclusion map.
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4.1.1 The standard toric log structure on a toric variety Each toric variety W has
a natural divisor D which is the complement of the open torus. Thus by Example 4.3, W

carries the divisorial log structure M.W ;D/ which we call the standard log structure
on W . We give another description for it here.

Definition 4.4 A log space .W;MW / is called coherent if each x 2W has a neigh-
borhood U and a monoid P with a map from the constant sheaf of monoids P!MU

such that the pre-log structure associated to the composition P!MU!OU coincides
with the log structure MU . The data P !MU is called a chart of the log structure
on U .

For a coherent log structure, we carry over properties of monoids. For example, we
call a coherent log structure fine if there exists an open cover fUig by charts Pi! Ui

with Pi fine monoids.

If � �MR is a rational polyhedral cone then the single chart

M \ � !CŒM \ ��

determines a coherent log structure on the affine toric variety Spec.CŒM \ ��/. If W

is any toric variety, these assemble to natural log structure on W with charts induced
by the canonical maps � !CŒM \ �� for each toric open set Spec CŒM \ �� of W .
These log structures are fine and saturated. For more see Kato [19, Example 2.6].

Example 4.5 The affine line A1 D Spec.CŒt �/ has a toric log structure whose chart
Z�0!CŒt � is given by k 7! tk . If MA1 denotes the sheaf of monoids and U �A1

is an analytic open subset, then

�.U;MA1/D

�
�.U;O�/ if U does not contain 0;

Z�0˚�.U;O�/ if U does contain 0:

4.1.2 The log structure on a hypersurface

Definition 4.6 If uW X ! Y is a map of analytic spaces and MY is a log structure
on Y , the pullback log structure is defined as the associated log structure to the pre-log
structure given by the composition u�1MY ! f �1OY !OX .

If W is a toric variety and Z�W is a hypersurface, we may pull back the log structure
of Section 4.1.1 along the inclusion map Z ,!W . The charts of the log structure are
of the form

M \ � !CŒM \ ��!CŒM \ ��=f

if f D 0 is the local equation of Z in the chart Spec.CŒM \ ��/�W .
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Example 4.7 If .A1;MA1/ is the log affine line of Example 4.5 and 0W Spec C!A1

is the origin, then the induced log structure on Spec C is given by the chart Z�0!C
that carries each k > 0 to 0. This is the standard log point of [19, Definition 4.3]. We
denote it by Spec C| . The monoid is Z�0˚C� .

4.1.3 Log smoothness A map of log spaces is called smooth if it satisfies a lifting
criterion for log first order thickenings. A log space is smooth if the projection to a
point with trivial log structure is smooth. We do not recall the precise definitions here;
see [19, Section 3]. A standard argument shows that many of the varieties and maps of
Section 2 are log smooth. We record the facts here.

Let ��h and Y D Spec.CŒ �M \ ��h�/ be as in Sections 2.1.1 and 2.1.2, and let
� W Y !A1 be the degeneration of Proposition 2.5. Let X � Y be the hypersurface
of Section 2.2. We endow Y with the log structure of Section 4.1.1 which we denote
by MY , A1 with the log structure of Example 4.5 which we denote by MA1 , and X

with the log structure of Section 4.1.2 which we denote by MX .

The map � W Y ! A1 upgrades to a map of log spaces �|W .Y;MY /! .A1;MA1/

in a unique way. We abuse notation and we will also use �| for the restriction
.X;MX /! .A1;MA1/.

Lemma 4.8 The map �|W .X;MX /! .A1;MA1/ is log smooth.

Let xY and xX be as in Section 2.3 and furnish them with the log structures of
Sections 4.1.1 and 4.1.2. We denote the log structure on xY by M xY and the log
structure on xX by M xX . The maps x� of Section 2.3 upgrade to maps of log spaces
. xY ;M xY /! .A1;MA1/ and . xX ;M xX /! .A1;MA1/. We again abuse notation and
denote both of these maps by x�| .

Lemma 4.9 The map x�|W . xX ;M xX /! .A1;MA1/ is log smooth.

Let MX0
denote the log structure on X0 induced by MX under the inclusion map

X0 ,! X . Let M xX0
denote the log structure on xX0 induced by M xX under the

inclusion map xX0 ,! xX . Then we have Cartesian diagrams of log spaces

. xX0;M xX0
/ //

��

. xX ;M xX /

��

.Spec C|;MSpec C|/ // .A1;MA1/;

.X0;MX0
/ //

��

.X;MX /

��

.Spec C|;MSpec C|/ // .A1;MA1/:

We denote the maps xX0! Spec C| and X0! Spec C| by x�|
0

and �|
0

respectively.
We have a similar map Y0! Spec C| , and sometimes we abuse notation and denote it
by �|

0
as well.
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Lemma 4.10 The maps �|
0

and x�|
0

are log smooth.

Remark 4.11 We do not include the proofs of Lemmas 4.8, 4.9 and 4.10 but note
that they follow directly from K Kato’s toroidal characterization of log smoothness;
see [19, Theorem 4.1].

4.2 The Kato–Nakayama space

Definition 4.12 Let W | D .W;MX ; ˛X / be a log space. Suppose W | is coherent
in the sense of Definition 4.4. The Kato–Nakayama space is the space Wlog whose
underlying point set is

Wlog D

�
.x; h/

ˇ̌̌̌
x2W; h2Hom.Mgp

W ;x
;S1/ and h.f /D

f .x/

jf .x/j
for any f 2O�W ;x

�
;

topologized such that whenever U �W is an open set and P !OU is a chart, the
embedding

Ulog ,! U �Hom.P gp;S1/; .x; h/ 7! .x; hjP /

is a homeomorphism onto its image. Let �D �W | denote the map Wlog!W given
by �.x; h/D x .

Remark 4.13 The above definition also makes sense when the log structure is not
coherent; see [26]. The point set definition is the same and the topology is the weak
topology with respect to the functions � and .x; h/! h.m/ for m a local section
of MW . We will need this more general definition in Section 5.

The map � is continuous and surjective, and the construction W | 7!Wlog is functorial
such that for a morphism W

|
1
!W

|
2

, the induced map W1;log!W2;log is continuous.

Remark 4.14 Define the K–N log point Spec C|
KN to be the analytic space Spec C

with the log structure given by MSpec C DR�0 �S1 and ˛Spec CW .r; h/ 7! rh. Then
there is a natural identification of sets

Wlog DMor.Spec C|
KN ;W

|/:

Example 4.15 If X carries the trivial log structure, then Xlog DX .

Example 4.16 Consider the affine line .A1;MA1/ of Example 4.5 and the standard
log point Spec C| of Example 4.7. Then .A1/log is homeomorphic to R�0 � S1 ,
.Spec C|/log is homeomorphic to S1 , and the map �W R�0 � S1 ! C is given by
.r; ei� / 7! rei� . In other words the map .A1/log!A1 is the real oriented blowup of
the origin and .Spec C|/log is the “exceptional circle” of this blowup.

Geometry & Topology, Volume 18 (2014)



1376 Helge Ruddat, Nicolò Sibilla, David Treumann and Eric Zaslow

In general when W is a toric variety and is furnished with the log structure of
Section 4.1.1, the space Wlog can be described in the manner of Proposition 1.8.

Lemma 4.17 Let P be a fine, saturated monoid and furnish W D Spec CŒP � with the
log structure given by the natural chart P ! OW . Then Wlog is naturally identified
with Hom.P;R�0 � S1/. Moreover, under the identification W Š Hom.P;C/ of
Proposition 1.8, the map �W Wlog ! W is given by composing with the monoid
epimorphism R�0 �S1!C .

Proof This is [21, Example (1.2.11)].

From the description of Definition 4.12 we obtain the following.

Lemma 4.18 Let .W1;MW1
/ be a log space, let W2!W1 be a morphism of complex

analytic spaces and let MW2
be the pullback log structure on W2 of Definition 4.6.

The diagram
W2;log //

��

W2

��
W1;log // W1

of topological spaces is Cartesian.

4.2.1 The Kato–Nakayama spaces Ylog and Y0;log Here and in Section 4.2.2, we
return to the degeneration of our hypersurface. Here we describe Y0;log , the map
�W Y0;log! Y0 and its fibers.

Let ��h �
�MR be the overgraph cone of Section 2.1.1. From Remark 2.4, we can

describe Y and Y0 as spaces of monoid homomorphisms

Y D Hom. �M \��h;C/;

Y0 D f� 2 Hom. �M \��h;C/ j �.0; 1/D 0g:

Then by Lemmas 4.17 and 4.18,

Ylog D Hom. �M \��h;R�0 �S1/;

Y0;log D f� 2 Hom. �M \��h;R�0 �S1/ j �.0; 1/ 2 f0g �S1
g:

4.2.2 The Kato–Nakayama spaces Xlog and X0;log Lemmas 4.17 and 4.18 provide
the following description of Xlog and X0;log . Let ��h �

�MR be the overgraph cone
of Section 2.1.1. Consider the map

Ylog D Hom. �M \��h;R�0 �S1/! Hom. �M \��h;C/D Y
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induced by R�0 �S1!C . Then Xlog and X0;log are the inverse images under this
map of X � Y and X0 � Y respectively. The map �|W .Y;MY / ! .A1;MA1/

induces commutative diagrams

Ylog //

�
|
log ��

Y

��

X0;log //

.�
|
0
/log
��

X0

��

Xlog //

�
|
log
��

X

��
A1

log
// A1; A1

log
// A1; 0log // 0;

where the left vertical maps in the middle and right diagram coincide with the ones
induced from the maps in Lemmas 4.8 and 4.10 respectively. We obtain another three
such diagrams by replacing Y by xY , X by xX , X0 by xX0 and � by x� respectively.
Note that A1

log DR�0 �S1 and 0log D f0g �S1 . Also the diagrams are nested, since
each one contains its right neighbor. For a point c in either A1

log or 0log , we denote its
fiber in Xlog by .Xlog/c and similarly the fiber in xXlog by . xXlog/c etc. We will be most
interested in the fibers .X0;log/1 and . xX0;log/1 , where 1 refers to the point .0; 1/2 0log .
We have, by definition,

.Ylog/c D f� 2 Hom. �M \��h;R�0 �S1/ j �.0; 1/D cg;

.Xlog/c D f� 2 Hom. �M \��h;R�0 �S1/ j �.0; 1/D cg �Y X:

4.3 Embedding the skeleton into the Kato–Nakayama space

In this section we construct an embedding of the skeleton S4;T � @4
0�Hom.M;S1/

(Definition 3.1) into the fiber over 1 of the Kato–Nakayama space of the degeneration
.X0;log/1 ; see Section 4.2.2. We will first define a map

�W @40 �Hom.M;S1/! Ylog;

and then show that � restricts to an embedding S4;T ,! .X0;log/1 . We use the
description of Ylog given in Section 4.2.1, ie

Ylog D Hom. �M \��h;R�0 �S1/

D Hom. �M \��h;R�0/�Hom. �M \��h;S
1/:

Definition 4.19 Let j W b@40 ,!X0 be the embedding of Proposition 3.20, and let us
regard @40 as a subset of b@40 by the embedding of Remark 3.11. Define the map
�W @40 �Hom.M;S1/! Ylog by the formula

�.x; �/.m; r/D .j .x/.m; r/; �.m// 2R�0 �S1:
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Remark 4.20 In the definition, we regard j .x/ as a homomorphism �M\��h!C in
the manner of Proposition 1.8. Proposition 3.18 shows that j�;1 maps � homeomorphic-
ally onto .X0;� /�0 so in fact j .x/ is a homomorphism �M \��h!R�0 . The monoid
homomorphism j .x/ has a messy explicit formula. It is given implicitly by the
following rules.

� We have j .x/.m; r/D 0 unless r D h.m/ and m 2R�0�x .

� For m 2 �
Œ0�
x , the values j .x/.m; h.m// are the unique positive real solutions

to the following system of equations:X
m2� Œ0�

.j .x/.m; h.m///2mD x
X

m2� Œ0�

.j .x/.m; h.m///2(4-1)

X
m2� Œ0�

amj .x/.m; h.m//D�a0(4-2)

The first equation comes from Proposition 3.14 and the second ensures that
j .x/ 2X0;�x

.

4.3.1 Properties of the embedding �

Proposition 4.21 The image of @40�Hom.M;S1/ under � is contained in .Y0;log/1 .
The image of S4;T under � is contained in X0;log .

Proof By Definition 4.19 and Remark 4.20, for any x 2 @40 the homomorphism j .x/

carries .0; 1/ 2 ��h to 0 2 R�0 . From Definition 4.19, the homomorphism �.x/

carries .0; 1/ to .0; 1/ 2R�0�S1 . It follows that �.@40�Hom.M;S1//� .Y0;log/1 .

The map �.x; �/W �M \��h!R�0�S1 belongs to .X0;log/1� .Y0;log/1 if and only if

(4-3)
X

m2T Œ0�
amj .x/.m; h.m// ��.m/D�a0:

Since (Remark 4.20) j .x/.m; h.m//D 0 unless m belongs to �x , the left hand side
of (4-3) is X

m2�
Œ0�
x

amj .x/.m; h.m//�.m/:

If .x; �/ belongs to S4;T , then �.m/ D 1 for every m 2 �
Œ0�
x , so that this is equal

to �a0 by Remark 4.20.
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Proposition 4.22 For each d 2 D� , let dA� � G� denote the corresponding coset
of A� ; see (3-1). Let r W Hom. �M ;S1/! Hom.M;S1/ denote the restriction map
induced by the inclusion m 7! .m; 0/. Then r induces an isomorphism on the set of
homomorphisms  W �M ! S1 obeying the conditions

(1)  .m; h.m//D d.m/ for m 2 � ,

(2)  .0; 1/D 1,

up to a coset of A� .

Proof Because of the second condition, we have that  is determined by its values
on M ŠM � f0g � �M . If  and  0 obey both conditions, then  = 0 D 1 on � ,
which characterizes A� .

Theorem 4.23 Let j be the map of Proposition 3.20, and � the map of Definition 4.19,
and let �1 be the map of Definition 4.12. Then the square

S4;T
�
//

��

.X0;log/1

�1

��
b@40

j

// X0

is Cartesian. In particular, �jS4;T W S4;T ! .X0;log/1 is a closed embedding.

Remark 4.24 The above diagram can be used to define S4;T . Replacing .X0;log/1 by
.X0;log/ei� , we obtain a skeleton S4;T ;� for any � . In fact, one may replace .X0;log/1
by X0;log in order to obtain the entire family of skeleta over S1 by varying � . This
gives the geometric realization of the monodromy operation of the family X ! A1

along a loop around 0 2A1 .

Proof of Theorem 4.23 Fix .x; d/2b@40 . Thus, x 2 @40 and d is a homomorphism
M \R�0�x ! S1 carrying the vertices of �x to 1. If we regard j .x/ as a monoid
homomorphism as in Remark 4.20, then j .x; d/ is the monoid homomorphism

j .x; d/.m; k/D

�
d.m/j .x/.m; k/ if k D h.m/ and m 2R�0�x;

0 otherwise:
The fiber of the left vertical map above .x; d/ is a coset of A� in G� . We will show
that � carries this homeomorphically onto the fiber of �1 above j .x; d/.

Let r W �M \ ��h ! R�0 and  W �M \ ��h ! S1 be the components of a point
.r;  / 2 .X0;log/1 � Ylog .
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Claim The point .r;  / belongs to ��1
1
.j .x; d// if and only if

� r.m; k/D 0 unless k D h.m/ and m 2R�0�x ,

� r.m; h.m//D j .x/.m; h.m// when m 2R�0�x ,

�  .m; h.m// D d.m/ when m 2 �x and (because we have restricted � to
.X0;log/1 )  .0; 1/D 1.

Because of the claim, the fiber ��1
1
.j .x; d// is naturally parameterized by the set of

homomorphisms  W �M !S1 that obey the third condition on this list, which is a coset
of A� in G� by Proposition 4.22. This agrees with the preimage in S4;T of .x; d/
under �.

To prove the claim, note that by the definition of j , we have �1.r;  /D j .x; d/ if and
only if the following holds: for all .m; k/ 2 �M \��h ,

r.m; k/ .m; k/D

�
d.m/j .x/.m; k/ if k D h.m/ and m 2R�0�;

0 otherwise:

In particular we must have r.m; k/D 0 unless k D h.m/ and m2R�0�x . In this case

r.m; h.m//D  .m; h.m//�1d.m/j .x/.m; h.m//:

Since r.m; h.m// and j .x/.m; k/ are positive real numbers,  .m; h.m//D d.m/.

If dim �x D n, then ��1
1
.j .x; d//D A�x

D 1 by the above proof, so we see that we
have the following corollary.

Corollary 4.25 Let .x; d/2b@40 and suppose dim.�x/D n. Then, in a neighborhood
of j .x; d/, X0 is smooth and �1 is an isomorphism.

4.4 The subspace S4;T is a strong deformation retract

In this section we prove that S4;T embeds in .X0;log/1 as a strong deformation retract.
Recall that Proposition 3.20 and Theorem 3.28, together with Remark 3.16, give the
diagram

S4;T
�
//

��

.X0;log/1

�1

��

�ı�1

##
b@40

j
// X0

�
// @40:
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Lemma 4.26 For each simplex � � @40 of T , let X0;� be as in Definition 2.15, let
p� W X0;� ! P dim.�/ be as in Proposition 2.16, let �W P dim.�/! � be the moment map,
set � D � ıp� and let P dim.�/

�0
be the simplex of Section 3.3.1. Each of the following

inclusions admits a deformation retraction:

(1) For each � 2 T , the inclusion

p�1
�

�
P dim.�/
�0

�
[ ��1

� .@�/ ,!X0;�

(2) For each k � n, the inclusion[
� jdim.�/Dk

p�1
�

�
P dim.�/
�0

�
[ ��1

� .@�/ ,!
[

� jdim.�/Dk

X0;�

(3) For each k � n, the inclusion

b@40 [
[

� jdim.�/Dk

��1
� .@�/ ,! b@40 [

[
� jdim.�/Dk

X0;�

Before proving the lemma, let us indicate what these spaces are in case 4 is the
tetrahedron indicated in Figure 1.

Example 4.27 Let 4 be the tetrahedron with vertices at .1; 0; 0/, .0; 1; 0/, .0; 0; 1/,
and .�1;�1;�1/ with its unique lattice triangulation T . For any of the 4 triangles
� 2 T (the situation is symmetric), the map p� W X0;�! P dim.�/ is an open embedding.
The spaces appearing in Lemma 4.26(1) can be described as follows:

� X0;� is, under p� , isomorphic to the complement of a line `� P2 that meets
each of the coordinate lines transversely.

� p�1
� .P dim.�/

�0
/ is a simplex in X0;� .

� ��1
� .@�/ is the union of the three coordinate lines, not including the three points

that lie on `.

In fact p�1
� .P dim.�/

�0
/[��1

� .@�/ is obtained from the cycle of three affine lines ��1
� .@�/

by gluing a 2–simplex along a loop that generates the fundamental group of ��1
� .@�/.

In particular this space, like X0;� that it is embedded in, is contractible.

Proof of Lemma 4.26 Let us first show P dim.�/
�0

[��1.@�/ embeds in P dim.�/nV .`� /

as a deformation retract. This can be seen as follows. We can write ��1.@�/ as the
union

��1.@�/D
[
� 0¨�

P dim.� 0/
nV .`� 0/:
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By Proposition 3.27, for any proper face � 0 of � , the space P dim.� 0/nV .`� 0/ deformation
retracts onto P dim.� 0/

�0
� P dim.�/

�0
in a way that is compatible with the inclusions of

smaller strata. This gives a deformation retraction

��1.@�/! @
�
P dim.�/
�0

�
that can be extended to a deformation retraction

P dim.�/
�0 [��1.@�/! P dim.�/

�0

by defining it to be the identity on P dim.�/
�0

. Since P dim.�/
�0

is contractible, this implies
that P dim.�/

�0
[��1.@�/ is contractible as well.

The existence of a deformation retraction P dim.�/ n V .`� /! P dim.�/
�0

[ ��1.@�/ is
then a consequence of standard facts about CW complexes: any contractible subcom-
plex of a contractible CW complex is a strong deformation retract; see eg McCam-
mond [24, Lemma 1.6]. Claim (1) can be proved by applying Lemma 3.25 to p� . In
fact, by Proposition 2.16(3), p� W X0;� ! P dim.�/ n V .`� / is unramified away from
P dim.�/
�0

[��1.@�/.

We turn now to claim (2). Note that for any pair of distinct k –dimensional simplices
�1; �2 , X0;�1

\X0;�2
D��1

�1
.@�1/\�

�1
�2
.@�2/. As a consequence, the retractions defined

in (1) agree on the intersections of the various components: in fact, they restrict to the
identity there. This guarantees that they assemble to give a retraction of

S
dim.�/DkX0;�

onto
S

dim.�/Dk.p
�1
� .P dim.�/

�0
/[ .�� ıp� /

�1.@�//, as desired. The last claim follows
from the observation that

b@40 \
[

dim.�/Dk

X0;� �

[
dim.�/Dk

p�1
�

�
P dim.�/
�0

�
[ ��1

� .@�/:

Thus, the retraction obtained in (2) can be extended to b@40 [Sdim.�/Dk X0;� , by
setting it equal to the identity on b@40 .

Theorem 4.28 The subspace S4;T embeds in .X0;log/1 as a strong deformation
retract.

Proof Let @40i be the .n � i/–skeleton of the stratification of @40 given by T ,
ie set @40i WD

F
�2T , dim ��n�i �

ı . Note that ��1.@40i/ D
S

dim.�/Dn�i X0;� . Set
.S4;T /i WDS4;T [.� ı�1/

�1.@40i/. Then if i � i 0 , we have the inclusion .S4;T /i0 �
.S4;T /i . Also, we have that .S4;T /0 D .X0;log/1 , and .S4;T /i D S4;T for i � n.
Thus, the theorem can be restated as saying that .S4;T /n embeds in .S4;T /0 as a
deformation retract.1 We prove this by induction on i : namely, we show that for each

1Note that for all i � n .S4;T /i D S4;T .
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i � 0, .S4;T /i retracts onto .S4;T /iC1 . The theorem follows by composing all these
retractions.

We start with the step i D 0. Applying Lemma 4.26(3), with k equal to n�1, we obtain
a retraction of X0 onto b@40 [��1.@40

1
/. By Corollary 4.25, �1 is a homeomorphism

over X0� �
�1.@40

1
/, and in particular over X0� .b@40 [ ��1.@40

1
//. Corollary 3.24

then implies that the space

��1
1 .b@40 [ ��1.@401//D S4;T [ .� ı �1/

�1.@401/D .S4;T /1

embeds in .X0;log/1 D .S4;T /0 as a deformation retract.

Next, we prove the inductive hypothesis. By Lemma 4.26(2), we have that ��1.@40i/DS
dim.�/Dn�i X0;� retracts onto

��1.@40iC1/[
[

dim.�/Dn�i

p�1
�

�
P dim.�/
�0

�
:

Also, for all � , �1 restricts to a projection from a product with fiber A� over ��1.�ı/;
see the proof of Theorem 4.23. Thus we can apply Lemma 3.25 in the following way:
using the notation of Lemma 3.25, set W1 D .� ı �1/

�1.@40i/, W2 D .�/
�1.@40i/,

p D �1jW1
and

K2 D �
�1.@40iC1/[

[
dim.�/Dn�i

p�1
�

�
P dim.�/
�0

�
:

This gives a retraction of .� ı �1/
�1.@40i/ onto

.� ı �1/
�1.@40iC1/[

[
dim.�/Dn�i

.p� ı �1/
�1
�
P dim.�/
�0

�
:

Note that S4;T \ .� ı �1/
�1.@40i/ is contained in the latter. This follows from the

proof of Lemma 4.26(3), observing that S4;T D �
�1
1
.b@40 /, while

.� ı �1/
�1.@40i/D �

�1
1

� [
dim.�/Dn�i

X0;�

�
:

Thus, in the usual manner, we can extend the retraction constructed in the previous
paragraph to a retraction of .S4;T /i D S4;T [ .� ı �1/

�1.@40i/ onto .S4;T /iC1 D

S4;T [.� ı�1/
�1.@40

iC1
/, by setting it equal to the identity on S4;T . This concludes

the proof.
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4.5 Proof of Theorem 1.2

We wish to relate the affine hypersurface Z Š X1 to the special fiber of the Kato–
Nakayama space .X0;log/1 . In fact these spaces are homeomorphic, as we now show by
proving that the Kato–Nakayama space is a fiber bundle. Together with Theorem 4.28,
this establishes the Theorem 1.2 of the introduction.

We wish to show that the map �logW Xlog! R�0 �S1 is a topological fiber bundle.
Since Xlog is not endowed with a smooth structure, and the fibers of �log are not
compact, this is not straightforward to check. However the relative compactification
x� W xX ! A1 considered in Section 2.3 admits a natural log structure, and the map
x�logW xXlog!R�0 �S1 is proper. We can check that x� is a fiber bundle whose fibers
are manifolds with boundary with the “relative rounding theory” of Nakayama and
Ogus. For this, we introduce further notions: recall that in [26], a morphism of monoids
� W P ! Q is called vertical if the image of P is not contained in any proper face
of Q. The morphism is exact if the diagram

P //

��

Q

��
P gp // Qgp

is Cartesian. A morphism .W1;M1/! .W2;M2/ of log spaces is called vertical at
x 2W1 (resp. exact at x 2W1 ) if the induced map of monoids M2;f .x/!M1;x is
vertical (resp. exact.) The relevant result for us is the following.

Theorem 4.29 (Nakayama–Ogus) Let W | be a fine log space, let .A1/| be the
affine line with the log structure of Example 4.5, and let f W W | ! .A1/| be a
morphism of fine log spaces. If f is proper, separated, and log smooth, then the
map flogW Wlog!R�0 �S1 is a topological fiber bundle.

Proof In order to deduce this from [26, Theorem 5.1], we need to show that f
is exact, ie the map f �1MA1;y !MW ;x is exact whenever f .x/ D y . This is
straightforward when y ¤ 0 since then MA1;y D O�

A1;y
, so assume y D 0. Since

MA1;0=M�

A1;0
Š Z�0 , the only thing to check is that a lift of a generator of Z�0

maps to a noninvertible element in MW ;x . This follows directly from properness as
such a generator is a coordinate on the base A1 .

Recall that an n–dimensional topological manifold with boundary is a topological space
locally homeomorphic to either Rn or Rn�1 �R�0 . If W is a topological manifold
with boundary write W ı for the interior, ie the set of points with a neighborhood
homeomorphic to Rn , and @W for the complement of W ı .
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Proposition 4.30 (1) The spaces xXlog as well as . xXlog/c for each c 2 A1
log are

topological manifolds with boundary.
(2) For each c 2R�0 �S1 , the interior of the fiber . xXlog/c is precisely .Xlog/c .

Proof We have log smoothness of the maps in consideration by Lemma 4.8 and
4.9. Moreover, it is not hard to see that the maps are exact. Under these conditions,
by [26, Theorem 3.5], the fibers are manifolds with boundary and boundary points
coincide with nonvertical points. Thus, the proposition is a consequence of the following
claim:

A point of xX is vertical for the map x�| if and only if it belongs to X � xX .

Indeed, recalling that Z�0 gives a chart on the base, we just need to check where the
generator of Z�0 gets mapped into a proper face of a stalk of the log structures upstairs
and this is precisely in xX nX .

Corollary 4.31 The map x�logW xXlog!A1
log is a topological fiber bundle.

Proof Both xX | , .A1/| are fine log spaces. The map x� is proper, separated and exact
by Theorem 4.29. Log smoothness is given by Lemma 4.10.

Corollary 4.32 The map �logW Xlog!A1
log is a topological fiber bundle.

In particular, we have that .X0;log/1 is homeomorphic to the hypersurface Z D V .f /.
By Theorem 4.28, .X0;log/1 deformation retracts to S4;T . Therefore, so does Z . We
have thus proven the Theorem 1.2 of the introduction.

5 Hypersurfaces in affine toric varieties

We now consider a generalization of our setting and our theorem to address the case
where Z D f �1.0/ is a smooth hypersurface in a general affine toric variety A. Such
an A contains a dense algebraic torus T and by Theorem 4.28 we already have a
skeleton S for Z\T upon fixing the origin and a triangulation of the Newton polytope
of f . It turns out that a skeleton for Z itself can be given as a topological quotient
space of S , so partial compactification translates into taking a quotient in terms of
skeleta. This is what we are going to prove in this section.

Example 5.1 As a simple example of this more general setting, we can consider the
polynomial f W C2!C , f .x;y/D x2CxyCy2�1, that we discussed in Examples
2.7, 2.14 and 3.5. We let A D C2 , and note that A D Spec.CŒK \M �/, where
K DR2

�0
�R2 is a convex, maximal-dimensional cone. In Example 5.7 we will work

out the geometry of the zero locus of f in A, and explicitly describe a skeleton for it.
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5.1 The general setup

Let M Š ZnC1 be a lattice. Let MR WDM ˝Z R Š RnC1 . Let K �MR be an
.nC 1/–dimensional, convex rational polyhedral cone. Then M \K is a finitely
generated monoid and A WD Spec.CŒM \K�/ is an affine toric variety. The smallest
torus orbit in A is Spec.CŒM \K��/, where K� denotes the maximal linear subspace
contained in K . We set a D dim K� and b D nC 1� a. Consider the projection
M !M=.M \K�/ and its real analog pK� W MR!MR=K

� . We set xKDpK�.K/

and have
AŠ Spec.CŒM \K��/�Spec CŒ xK\ .M=.M \K�//�

and the first factor is a–dimensional and the second b–dimensional.

Remark 5.2 Note that A is smooth if and only if .K;MR;M / is isomorphic to
.Ra �Rb

�0
;RaCb;ZaCb/.

Let f 2 CŒM \K� be a regular function on A, and let 4 be the Newton polytope
of f and Z WD f �1.0/�A. We make the following assumptions.

Assumption 5.3 (1) A is either smooth or has at most an isolated singularity. Note
that the latter implies that b D 0, if A is singular.

(2) We have dim4D dim K .

(3) We have xK D R�0pK�.4/, so 4 generates the cone K up to invertible ele-
ments.

(4) The hypersurface Z is smooth.

Remark 5.4 (1) We necessarily have 4�K . By assumption (4) above, we have
4CK� contains 0. We may thus assume without loss of generality that 0 24

by multiplying f with a suitable invertible element if necessary (leaving Z

unchanged).

(2) Note that if assumption (2) above is violated then Z splits as a product Z1�Z2

where dim Z1 D dim4, Z1 has the same Newton polytope as Z and Z2 is
isomorphic to .C�/a

0

�Cb0 for suitable a0; b0 . Since .S1/a
0

is a skeleton for
.C�/a

0

�Cb0 , imposing assumption (2) loses no generality.

(3) In the case where A is smooth, note that assumption (3) above can always be
achieved by a linear coordinate transformation of A.

Example 5.5 Let M D ZnC1 . If K DMR , then AD .C�/nC1 . If aC b D nC 1

and K D Ra �Rb
�0

, then A D .C�/a �Cb . For an example of a singular ambient
variety, take nD 1 and put K D fx � jyjg �R2 . Then ADC2=Z2 .
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As in Equation (2-1), we assume that 4 is equipped with a lattice triangulation T4
and that

(5-1) f D a0C

X
m2T Œ0�

amzm:

As for the previous sections, we assume 0 2 T Œ0�
4

, a0 2R<0 and am 2R>0 for m¤ 0

and that these coefficients are generic in the sense of Remark 1.7. We also assume to
have a convex piecewise linear function hW R�04! R taking nonnegative integral
values on M such that the maximal-dimensional simplices in T4 coincide with the
nonextendable closed domains of linearity of hj4 .

5.2 The general definition of the skeleton

As before, let T denote the subset of T4 of the cells not containing 0. Let @40 denote
the union of the cells in T and for x 2 @40 , let �x denote the smallest cell of T
containing x . Recall S4;T from Definition 3.1

S4;T D f.x; �/ 2 @4
0
�Hom.M;S1/ j �.v/D 1 whenever v is a vertex of �xg:

For x 2K , we denote by Kx the smallest face of K containing x .

Definition 5.6 Let S4;T ;K denote the quotient of S4;T by the equivalence relation �
given by

.x; �/� .x0; �0/ if and only if x D x0 and �jKx\M D �
0
jKx\M :

The goal is to show that S4;T ;K embeds in Z as a deformation retract.

Example 5.7 Let us go back to the setup of Example 5.1. Recall that we have
K DR2

�0
. Then S4;T ;K is a quotient of S4;T as in Definition 5.6. The quotient is

only nontrivial for x D b and x D e . For x D b , Kx is the x–axis, and therefore
ˇ�ˇ0 in Gfbg (see Example 3.5), meaning the two circles are contracted to two points.
The same happens when x D e . As a result, four of the five circles in the bouquet that
is S4;T are contracted, and S4;T ;K is homotopy equivalent to a single circle.

As a reality check, we give an explicit description of the geometry of this hypersurface,
and verify that it does have the expected homotopy type. Solving for y in the equation
x2C xyC y2 D 1, presents the solution space as a branched cover of the x–plane
with two branch points x D˙2=

p
3. That space retracts to a two to one cover of the

line segment between the points, branched at the ends: a circle. From this analysis
it becomes clear that the restriction of the hypersurface to the algebraic torus .C�/2
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removes the four points .0;˙1/ and .˙1; 0/, which up to homotopy adds four circles
to the hypersurface. This confirms that the calculation of the skeleton S4;T contained
in Example 3.5 is correct.

5.3 Construction of the ambient degeneration

The construction of the degeneration in the general case is not different from the previous.
For completeness, we repeat it here. Recall the notation �M DM ˚Z; �MRD

�M ˝Z R.
As in Section 2.3, we define the noncompact polyhedron

x� D f.m; r/ jm 24; r � h.m/g � �MR

and xY be the toric variety given by the normal fan of x� . We may set ��h DR�0
x�

and find the affine chart

Y D Spec CŒ��h\
�M �

on which we have the two regular functions tD z.0;1/ and zf D
P

m24 amz.m;h.m// . In
fact, t extends to a regular function on xY . Let X DV . zf / denote the affine hypersurface
cut out by zf in Y and let xX denote its closure in xY . We restrict t to a regular function
on xX .

The following lemma elucidates the relation between x� and K .

Lemma 5.8 We have an inclusion preserving bijection

ffaces of x� containing x� \ .K� �R/g  ! ffaces of Kg

by sending a face G on the left-hand side to .R�0GC .K� �R//\MR on the right.

Proof Faces of K are in inclusion-preserving bijection with faces of K �R and the
latter coincides with the localization x�C .K� �R/ of x� by Assumption 5.3(3).

5.4 The nonstandard log structure

Let D denote the complement of the open torus in xY . Then D is a toric divisor in xY .
In Section 4, we used the standard toric log structure M xY DM. xY ;D/ on the toric
variety xY (Section 4.1.1), which eventually led to an embedding of S4;T � . xY0;log/1
as a deformation retract. To indicate that xYlog is defined using the log structure M xY ,
we denote it from now on by xY .M xY /log .
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We now construct another log structure F xY on xY . For this we specify a reduced toric
divisor DF � xY , ie DF �D , and we then define F xY as the divisorial log structure
with respect to DF . Recall that the components of D correspond to the facets of x� .
To define DF , we need to pick a subset of these facets.

Definition 5.9 We let DF � xY be the reduced toric divisor whose components cor-
respond to the facets of x� that do not contain the face .K� � R/ \ x� and define
F xY DM. xY ;DF /

.

We want to describe the stalks of F xY explicitly. Let F1; : : : ;Fr be an enumeration of
the facets of x� containing .K� �R/\ x� . For a face G � x� , we denote by hG;Fii

the smallest face of x� containing G and Fi , ie

hG;Fii D

�
Fi if G � Fi ;

x� otherwise.

We define FG WD
Tr

iD1hG;Fii. For faces G1;G2 �
x� with G1 � G2 , we have

FG1
� FG2

.

Lemma 5.10 We have FG D
T

G�Fi

Fi D h
x� \ .K� �R/;Gi.

We can now identify the stalks of F xY .

Lemma 5.11 Let y 2 xY be a point and G � x� be the face that corresponds to the
torus orbit that contains y . We have

F xY ;y D . �M \R�0.FG �G//˝
. �M\R�0.FG�G//�

O�xY ;y
and this is a face of

M xY ;y D .
�M \R�0.x� �G//˝

. �M\R�0.x��G//�
O�xY ;y :

Proof On the chart �M\R�0.x��G/!CŒ �M\R�0.x��G/� of the log structure M xY ,
the subsheaf F xY up to invertible elements is generated by the those monomials that do
not vanish on the divisors corresponding to F1; : : : ;Fr , ie precisely the monomials
contained in R�0.FG �G/. Moreover, we have that R�0.FG �G/ is clearly a face
of R�0.x� �G/.

The log structure F xY will in general not be coherent. However we have the following
replacement.

Proposition 5.12 The log structure F xY is relatively coherent in M xY in the sense
of [26, Definition 3.6,1].

Proof This just states that F xY is a sheaf of faces in M xY which is Lemma 5.11.
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Let F xX (resp. M xX ) denote the pullback of the log structure F xY (resp. M xX ) to xX .

Corollary 5.13 The log structure F xX is relatively coherent in M xX .

5.5 Relative log smoothness

Note that t D z.0;1/ is a global section of F xY since all Fi contain .0; 1/. Thus, by map-
ping the generator of Z�0 to t , we obtain a map of log spaces x�|W .xY ;F xY /!.A

1;MA1/.
Moreover, we have that the inclusion F xY �M xY induces a map g

xY so that we have
the sequence of maps of log spaces

. xY ;M xY /
g
xY

��! . xY ;F xY /
x�|

��! .A1;MA1/

and we know that the composition x�|ıg
xY is log smooth by an analogue of Lemma 4.9

for xY . Recall from [26, Definition 3.6,2] the definition of a relatively log smooth map.

Lemma 5.14 If A is smooth, then the map x�| is relatively log smooth. If A is not
smooth, then x�| is relatively log smooth away from the closure of the torus orbit in xY
corresponding to .0�R/\ x� .

Proof It remains to show that the stalks of M xY =F xY are free monoids at points for
which we claim the map to be relatively log smooth. Let y 2 xY be a point in a torus
orbit corresponding to a face G � x� . By Lemma 5.11, we have M xY ;y=F xY ;y D
. �M \R�0.x��G//=. �M \R�0.FG�G// and we need to show that this is isomorphic
to Zs

�0
for some s . This is equivalent to saying that xY is smooth in a neighborhood

of the torus orbit corresponding to the smallest face of x� that contains FG and G . It
suffices to show that for any subset I � f1; : : : ; rg, Y is smooth in a neighborhood
of the torus orbit corresponding to FI WD ��h\

T
i2I Fi , except for the case where

FI D f0g �R�0 because we make no claim for this by the restrictions made in the
assertion in the lemma. Note that since FI contains .K� �R/\��h , the torus orbit
corresponding to FI is contained in the open subset A�C� of xY , so the statement
follows from the smoothness of A in codimension one.

Note that we also have a sequence of log spaces

. xX ;M xX /
g
xX

��! . xX ;F xX /
x�|

��! .A1;MA1/;

where we abuse notation by denoting the second map as x�| again. Again, we know
that the composition g

xX ı x�| is log smooth by Lemma 4.9. When A is singular, note
that xX is disjoint from the torus orbit in xY corresponding to .0�R/\ x� , so using
Assumption 5.3(4), we conclude the following.

Lemma 5.15 The map x�|W . xX ;F xX /! .A1;MA1/ is relatively log smooth.
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5.6 The Kato–Nakayama space is a fiber bundle

By Remark 4.13, we may construct the Kato–Nakayama space for . xY ;F xY / and
. xX ;F xX / and by functoriality, we have maps

xY .M xY /log
g
xY
log
��! xY .F xY /log

x�
|
log
��!A1

log;

xX .M xX /log
g
xX

log
��! xX .F xX /log

x�
|
log
��!A1

log:

The statement of Theorem 5.1 in [26] allows for the weaker assumption of relative
coherency of the source and relatively smoothness of the map, so we conclude from
Lemma 5.15 along the same lines as in Section 4.5 the following result.

Theorem 5.16 The maps of Kato–Nakayama spaces

xX .F xX /log
x�

|
log
��!A1

log and xX .M xX /log
x�

|
logıg

xX
log

�����!A1
log;

are topological fiber bundles.

The statement of Proposition 4.30 also holds word for word after replacing xXlog and
Xlog by xX .F xX /log and X.FX /log , where FX is the restriction of F xX to X .

5.7 Embedding S4;T ;K in the Kato–Nakayama space . xX.F xX /log/1

We use the notation

xY .M xY /log

g
xY
log
//

�.MxY / &&

xY .F xY /log

�.FxY /
��
xY

for the induced maps on Kato–Nakayama spaces (similarly for X; xX in place of Y; xY ).

Proposition 5.17 Given a point y 2 xY contained in the torus orbit associated to the
face G � x� , the map glogj�.MxY /�1.y/W �.M xY /

�1.y/! �.F xY /
�1.y/ is the restriction

map

Hom
� �M \R�0.x� �G/�M \R.G �G/

;S1

�
! Hom

� �M \R�0.FG �G/�M \R.G �G/
;S1

�
induced by the injection�M \R�0.FG �G/�M \R.G �G/

,!
�M \R�0.x� �G/�M \R.G �G/

:
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Proof This is a straightforward combination of Definition 4.12 and Lemma 5.11 with
the additional observation that .R�0.x� �G//� D .R�0.FG �G//� DR.G �G/.

As before, we denote by . xX .F xX /log/1 the fiber of g
xX

log over .0; 1/ 2R�0�S1DA1
log .

There is a surjection
g
xX

logW
xX .M xX /log;1! xX .F xX /log;1:

Theorem 5.18 We have a canonical embedding of S4;T in xX .M xX /log;1 whose
image under g

xX
log is canonically identified with S4;T ;K .

Proof We have the result of Theorem 4.23 already, so in particular an embedding
of b@40 in xX and of S4;T in . xX .M xX /log/1 . We need to show that the image of S4;T
under g

xX
log yields the quotient space S4;T ;K . We fix a point x 2 xX in a torus orbit

OG D Spec CŒR.G �G/\ �M � with G � x� . Let us regard the composition

xX .M xX /log;1

g
xX

log
��! xX .F xX /log;1

�.F xX /
����! xX :

By the Cartesian property of the Kato–Nakayama space in Lemma 4.18, we may use
Proposition 5.17 to identify the restriction of g

xX
log to the inverse images of x as the

map T1! T2 , where

T1 D

�
˛ 2 Hom

� �M \R�0.x� �G/�M \R.G �G/
;S1

� ˇ̌̌̌
˛.0; 1/D 1

�
;

T2 D

�
˛ 2 Hom

� �M \R�0.FG �G/�M \R.G �G/
;S1

� ˇ̌̌̌
˛.0; 1/D 1

�
:

Let pW �MR!MR denote the natural projection and KG denote the smallest face of K

containing p.G/. We have p.x�/D4. We use the fact that the condition ˛.0; 1/D 1

in T1;T2 can be replaced by changing the source of ˛ to a subquotient of M instead
of �M . Precisely,

T1 D Hom
�

M \R�0.4�p.G//

M \p.R.G �G//
;S1

�
;

T2 D Hom
�

M \R�0.p.FG/�p.G//

M \p.R.G �G//
;S1

�
:

Note that if x2b@40 then KG coincides with Kx . Moreover, FG contains .K��R/\x�
and thus corresponds to the face .R�0FG CK� �R/\MR of K by Lemma 5.8.
We claim that this face is KG . Indeed by Lemma 5.10, FG is the smallest face of x�
containing G and x�\K��R which maps to Kp.G/ under the bijection in Lemma 5.8.
Finally, we may assume that G contains x� \ .K� �R/ because otherwise FG D

x�
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and KG DK and this case is clear. Note that �x WD p.G/\ @40 is an element of T .
We can then identify

T1 DA�x
; T2 D Hom

�
M \KG

M \K�
G

;S1

�
;

which gives the desired quotient representation of g
xX

log.�.M xX /
�1.x// as given in

Definition 5.6.

5.8 Retraction

Theorem 5.19 (Main Theorem for general cones) The skeleton S4;T ;K embeds
in Z as a strong deformation retract.

Proof By Theorem 5.18, we have an embedding j W S4;T ;K ,! . xX .F xX /log/1 and
by Theorem 5.16 a homeomorphism Z Š . xXlog/1 . It remains to show that j is a
strong deformation retraction. This works in precisely the same way as the argument of
Theorem 4.28. From the proof of Theorem 5.18 above, we have an explicit description
of the fibers of the map �.F xX / over a point x 2 b@40 and these are “constant” on the
interiors of the simplices of T . This allows us to use Lemma 3.25 to lift retractions
and construct an inductive argument exactly as in Theorem 4.28.
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