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Nonnegatively curved 5–manifolds
with almost maximal symmetry rank

FERNANDO GALAZ-GARCIA

CATHERINE SEARLE

We show that a closed, simply connected, nonnegatively curved 5–manifold admitting
an effective, isometric T 2 action is diffeomorphic to one of S5;S3 �S2 , S3 z�S2

or the Wu manifold SU.3/=SO.3/ .

53C20; 57S25, 51M25

1 Introduction

The classification of Riemannian manifolds with positive and, more generally, non-
negative sectional curvature is a long-standing open problem in Riemannian geometry.
As a step towards general classification results one may consider manifolds whose
isometry group is large. This has been a fruitful avenue of research (see, for example,
the surveys by Grove [20; 21], Wilking [46] and Ziller [48]). It is well known that
the isometry group of a compact Riemannian manifold is a compact Lie group. In the
context of this paper, the measure for the “size” of an isometry group is its rank. In
particular, we are interested in manifolds with nonnegative curvature that have almost
maximal symmetry rank, where the symmetry rank of a Riemannian manifold M is
defined to be the rank of the isometry group of M .

Grove and Searle [22] showed that the symmetry rank of a closed, positively curved,
Riemannian n–manifold is bounded above by b.n C 1/=2c and classified closed,
positively curved Riemannian manifolds with maximal symmetry rank up to diffeo-
morphism. For a closed, positively curved Riemannian n–manifold of almost maximal
symmetry rank, that is, one whose isometry group has rank b.n� 1/=2c, Rong [39]
found topological restrictions for all dimensions (distinguishing cases for even and
odd ones) and showed that a closed, simply connected, positively curved Riemannian
5–manifold with almost maximal symmetry rank, that is, with an effective isometric T 2

action, must be homeomorphic to the 5–sphere (in fact, it will be diffeomorphic to it as
a consequence of the Generalized Poincaré conjecture). Later, Wilking [45] improved
these results significantly for closed, positively curved, simply connected n–manifolds
of dimension n� 10, considering actions of rank approximately n=4.
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The maximal symmetry rank for closed, simply connected n–manifolds with nonneg-
ative curvature and dimension n � 9 is b2n=3c (see Galaz-Garcia and Searle [15]).
Kleiner [25] and Searle and Yang [41] independently classified up to homeomorphism
closed, simply connected 4–manifolds of nonnegative curvature with an effective
isometric circle action, corresponding to the almost maximal symmetry rank case in
dimension 4. In [15], the authors classified up to diffeomorphism closed, simply con-
nected, nonnegatively curved Riemannian manifolds of dimensions 3, 4, 5 and 6 with
maximal symmetry rank. In this paper we address the case of almost maximal symmetry
rank for closed, simply connected, nonnegatively curved Riemannian manifolds in
dimensions 3, 4 and 5. Our main result is the following.

Theorem A Let M 5 be a closed, simply connected, nonnegatively curved 5–manifold.
If T 2 acts isometrically and (almost) effectively on M 5 , then M 5 is diffeomorphic to
one of S5 , S3�S2 , S3 z�S2 (the nontrivial S3 –bundle over S2 ) or the Wu manifold
SU.3/=SO.3/.

We remark that the 5–manifolds listed in Theorem A are all the known examples of
closed, simply connected 5–manifolds with nonnegative curvature and these manifolds
are all the closed, simply connected 5–dimensional homogeneous spaces or biquotients
of Lie groups (see DeVito [7] and Pavlov [33]). We also point out that the 5–manifolds
listed in Theorem A coincide with the closed, simply connected 5–manifolds that are
elliptic (see Paternain and Petean [32]). Further, each one of these 5–manifolds M is
rationally elliptic, that is, dim��.M /˝Q<1, thus satisfying the Ellipticity conjec-
ture, which states that all closed, simply connected manifolds of (almost) nonnegative
curvature are rationally elliptic [20]. It is also worth noting that these are exactly the
5–dimensional topological manifolds M for which catS2.M / D 2, that is, M can
be covered by two open subsets W1 , W2 such that the inclusions Wi ,!M factor
homotopically through maps Wi! S2 (see Gómez-Larrañaga, González-Acuña and
Heil [18]).

This paper is divided into seven sections. The first two sections comprise the introduction
and basic tools we will use throughout. In Section 3, using classification results
for smooth circle actions on 3– and 4–manifolds, in combination with restrictions
imposed by nonnegative curvature, we classify closed, orientable manifolds with
nonnegative curvature and almost maximal symmetry rank in dimension 3 and recall
the classification of closed, simply connected manifolds with nonnegative curvature
and almost maximal symmetry rank in dimension 4. In Section 4 we consider the
problem of almost maximal symmetry rank in dimension 5 from a purely topological
perspective and in Section 5 we find restrictions imposed by nonnegative curvature. In
Section 6 we classify closed, simply connected, nonnegatively curved 5–manifolds of
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almost maximal symmetry rank by applying the results of the previous three sections.
Finally, in Section 7 we give examples of actions of almost maximal symmetry rank
on some of the manifolds listed in Theorem A.
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2 Definitions and tools

In this section we gather several definitions and results that we will use in subsequent
sections.

2.1 Transformation groups

Let G be a Lie group acting (on the left) on a smooth manifold M . We denote by
Gx D fg 2 G j gx D xg the isotropy group at x 2M and by Gx D fgx j g 2 Gg '

G=Gx the orbit of x . The ineffective kernel of the action is the subgroup K DT
x2M Gx . We say that G acts effectively on M if K is trivial. The action is

called almost effective if K is finite. The action is free if every isotropy group is
trivial and almost free if every isotropy group is finite. We will denote the fixed point
set M G D fx 2 M j gx D x;g 2 Gg of this action by Fix.M IG/ and define its
dimension as dim.Fix.M IG// D maxfdim.N / j N is a component of Fix.M IG/g.
When convenient, we will denote the orbit space M=G by X . We will denote by xp
the image of a point p 2M under the orbit projection map � W M !M=G . Given a
subset A�M , we will denote its image in X under the orbit projection map by A�

and when convenient, we shall also denote the orbit space M=G by M � .

One measurement for the size of a transformation group G�M !M is the dimension
of its orbit space M=G , also called the cohomogeneity of the action. This dimension
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is clearly constrained by the dimension of the fixed point set M G of G in M . In fact,
dim.M=G/� dim.M G/C 1 for any nontrivial action. In light of this, the fixed-point
cohomogeneity of an action, denoted by cohomfix.M IG/, is defined by

cohomfix.M IG/D dim.M=G/� dim.M G/� 1� 0:

A manifold with fixed-point cohomogeneity 0 is also called a fixed point homogeneous
manifold. We will use the latter term throughout this article. We observe that the fixed
point set of a fixed point homogeneous action has codimension 1 in the orbit space.

Remark 2.1 Throughout the rest of the paper we will assume all manifolds to be
smooth. We will only consider smooth (almost) effective actions and all homology and
cohomology groups will have coefficients in Z, unless otherwise stated.

2.2 Alexandrov geometry

Recall that a finite-dimensional length space .X; dist/ is an Alexandrov space if it has
curvature bounded from below (see Burago, Burago and Ivanov [3]). When M is a
complete, connected Riemannian manifold and G is a compact Lie group acting on M

by isometries, the orbit space X DM=G is equipped with the orbital distance metric
induced from M , that is, the distance between xp and xq in X is the distance between
the orbits Gp and Gq as subsets of M . If, in addition, M has sectional curvature
bounded below, that is, sec M � k , then the orbit space X is an Alexandrov space
with curv X � k .

The space of directions of a general Alexandrov space at a point x is by definition
the completion of the space of geodesic directions at x . In the case of orbit spaces
X D M=G , the space of directions † xpX at a point xp 2 X consists of geodesic
directions and is isometric to

S?p =Gp;

where S?p is the unit normal sphere to the orbit Gp at p 2M .

We now state Kleiner’s Isotropy lemma [25], which we will use to obtain information
on the distribution of the isotropy groups along minimal geodesics joining two orbits
and, in consequence, along minimal geodesics joining two points in the orbit space
X DM=G .

Isotropy lemma 2.2 Let cW Œ0; d � ! M be a minimal geodesic between the or-
bits Gc.0/ and Gc.d/. Then, for any t 2 .0; d/, Gc.t/ D Gc is a subgroup of Gc.0/

and of Gc.d/ .
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Recall that the q–extent xtq.X /, q � 2, of a compact metric space .X; d/ is the
maximum average distance between q points in X :

xtq.X /D
�

q

2

��1

max
� X

1�i<j�q

d.xi ;xj /

ˇ̌̌̌
fxig

n
iD1 �X

�
The Extent lemma (see Grove and Searle [23]) stated below provides an upper bound
on the total number of isolated singular points in X DM=G .

Extent lemma 2.3 Let xp0; : : : ; xpq be qC1 distinct points in X DM=G . If curv X �

0, then
1

qC1

qX
iD0

xtq.† xpi
X /� �=3:

We remark that in the case of strictly positive curvature, the inequality is also strict.

We will also use the following analogue for orbit spaces of the Cheeger–Gromoll Soul
theorem to obtain information on the geometry of the orbit space X DM=G (see
Cheeger–Gromoll [23] and Perelman [37]).

Soul theorem 2.4 Let X DM=G . If curv X � 0 and @X ¤ ∅, then there exists a
totally convex compact subset S � X with @S D ∅, which is a strong deformation
retract of X . If curv M=G > 0, then S D xs is a point, and @X is homeomorphic to
†xsX ' S?s =Gs .

When M is a nonnegatively curved, fixed point homogeneous Riemannian G –manifold,
the orbit space X is a nonnegatively curved Alexandrov space and @X contains a
component N of Fix.M IG/. Let C � X denote the set at maximal distance from
N � @X and let B D ��1.C /. Soul theorem 2.4 implies that M can be written as the
union of neighborhoods D.N / and D.B/ along their common boundary E , that is,

M DD.N /[E D.B/:

In particular, when G D T 1 and C is another fixed point set component with maximal
dimension, one has the following result from [41].

Double soul theorem 2.5 Let M be a complete, nonnegatively curved Riemannian
manifold admitting an isometric T 1 action. If Fix.M IT 1/ contains two codimension-
2 components N1 and N2 , with one of them being compact, then N1 is isometric to
N2 , Fix.M IT 1/DN1[N2 and M is diffeomorphic to an S2 –bundle over N1 with
T 1 as its structure group. In other words, there is a principal T 1 –bundle, P , over N1

such that M is diffeomorphic to P �T 1 S2 .
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2.3 Closed 3–manifolds with a smooth T 2 action

We recall the list of closed 3–manifolds with a smooth cohomogeneity one T 2 action
(see Mostert [27] and Neumann [28]), as they will appear throughout the paper. They
are S3 , Lp;q , S2�S1 , RP 2

�S1 , T 3 , S2 z�S1 , Kl�S1 and A. Here Lp;q denotes
a lens space, Kl the 2–dimensional Klein bottle and S2 z�S1 the nontrivial S2 –bundle
over S1 . The manifold A is obtained by gluing Mb�S1 and S1 �Mb along their
boundary torus, where Mb denotes the Möbius band.

3 Nonnegatively curved 3– and 4–manifolds with almost
maximal symmetry rank

In this section we classify closed, orientable 3–manifolds and closed, simply connected
4–manifolds, assuming they have nonnegative curvature and admit an isometric action
of a circle T 1 .

3.1 Dimension 3

In the case of a T 1 action, we have the following result, which follows from the
Orlik–Raymond–Seifert classification of 3–manifolds with a smooth T 1 action; see
Orlik [29] and Orlik and Raymond [30].

Theorem 3.1 Let T 1 act isometrically on M 3 , a closed, orientable 3–manifold
of nonnegative curvature. Then M 3 is equivariantly diffeomorphic to a spherical
3–manifold, S2 �S1 , RP 3 # RP 3 , T 3 or one of four T 2 –bundles over S1 .

Proof We break the proof into three cases: where the action is free, where the action
is almost free and where the action has nontrivial fixed point set.

Case 1: T 1 acts freely In this case X 2DM 3=T 1 is a closed, orientable 2–manifold
of nonnegative curvature and thus X 2DS2 or X 2DT 2 by the Gauss–Bonnet Theorem.
Since the action is free, M 3 is a principal circle bundle over X 2 and therefore M 3 is
diffeomorphic to one of S3 , Lp;q , S2 �S1 or T 3 .

Case 2: T 1 acts almost freely Here M 3 is a Seifert manifold supporting a smooth
circle action. Since we have assumed that M 3 has nonnegative curvature, M 3 admits
a geometric structure modeled on S3 , S2�R or Euclidean space E3 (see Scott [40]).
Closed, orientable Seifert manifolds with S3 , E3 or S2 �R geometry supporting a
smooth T 1 action have been classified [40; 29]. When M 3 has S3 geometry, M 3

must be diffeomorphic to a spherical 3–manifold, that is, a quotient of S3 by a finite
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subgroup of SO.4/ acting freely on S3 . We denote these manifolds in the usual fashion
by their 2–dimensional orbit spaces. The 3–sphere S3 is denoted by S2 and Lp;q

by S2.p/ or S2.p; q/. The remaining manifolds with S3 geometry are denoted by
S2.2; 2; n/, S2.2; 3; 3/, S2.2; 3; 4/ and S2.2; 3; 5/, where n� 2 is an integer.

When M 3 has S2 � R geometry, M 3 must be S2 � S1 and, when M 3 has E3

geometry, it must be diffeomorphic to T 3 or to one of four of the remaining five
possible orientable, closed flat manifolds covered by T 3 . The fifth possibility is
excluded immediately since it does not admit a circle action. These four flat manifolds
covered by T 3 are T 2 bundles over S1 , described in [29]. Their orbit spaces are
S2.2; 2; 2; 2/, S2.2; 4; 4/, S2.2; 3; 6/ and S2.3; 3; 3/. Further, all of these closed,
orientable 3–manifolds with E3 , S3 or S2 �R geometry, with a Seifert fibration
induced by an almost free circle action, do admit isometric circle actions inducing the
given Seifert fibration [40; 29].

Case 3: T 1 has nontrivial fixed point set By definition, the action is fixed point
homogeneous. Closed fixed point homogeneous manifolds 3–manifold with nonnega-
tive curvature were classified by Galaz-Garcia in [13] and we recall their classification
in the orientable case. Observe first that the fixed point set is 1–dimensional, with
at most two components, and these components are circles. If Fix.M 3IS1/ contains
two components, then by Double soul theorem 2.5 we see that M 3 is one of the
two S2 bundles over S1 and since M 3 is assumed to be orientable, it must be
S2 �S1 . If Fix.M 3IS1/ consists of a single component F1 , then X 2 DM 3=S1 is
a 2–dimensional Alexandrov space of nonnegative curvature with boundary F1 Š S1 .
Thus X 2 is an orientable, nonnegatively curved topological manifold with boundary
and the only possibilities are D2 and S1 � I . We may exclude S1 � I since M 3 is
assumed to be orientable. Thus D2 is the only possible orbit space. The nonnegative
curvature hypothesis implies that the interior of D2 has either no points with nontrivial
finite isotropy, one point with finite isotropy Zp or two points with finite isotropy Z2 .
These correspond, respectively, to S3 , a lens space Lp;q and RP 3 # RP 3 .

It follows from the three cases analyzed above that M 3 can only be S3=� , where �
is a finite subgroup of SO.4/, S2 �S1 , T 3 , one of the four flat T 2 –bundles over S1

covered by T 3 or, finally, RP 3 # RP 3 . Each of these manifolds supports only one
isometric T 1 action with nonnegative curvature yielding the possible orbit space
structures (see Raymond [38]).

3.2 Dimension 4

Given Perelman’s work on the Poincaré conjecture [34; 35; 36], the classification of
closed, simply connected, nonnegatively curved 4–manifolds admitting an isomet-
ric T 1 action follows from earlier classification results in a curvature-free setting and a
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restriction on the Euler characteristic, which is a simple consequence of the nonnegative
curvature assumption. The first theorem is due to Fintushel [11; 12] in combination
with work of Pao [31] and Perelman’s proof of the Poincaré conjecture [34; 36; 35].

Theorem 3.2 A closed, simply connected smooth 4–manifold with a T 1 action is
equivariantly diffeomorphic to a connected sum of S4 , ˙CP 2 and S2 �S2 .

Let M 4 be a closed, simply connected, nonnegatively curved 4–manifold and let �.M 4/

be its Euler characteristic. It follows from work done independently by Kleiner [25]
and Searle and Yang [41] that 2 � �.M 4/ � 4. Combining this with Theorem 3.2
yields the following result in the case of nonnegative curvature (see [13]).

Theorem 3.3 A closed, simply connected, nonnegatively curved 4–manifold with an
isometric T 1 action is diffeomorphic to S4; CP 2;S2 �S2 or CP 2 #˙CP 2 .

4 Cohomogeneity three torus actions on simply connected 5–
manifolds

In this section we gather general facts about smooth cohomogeneity three torus actions
T n �M nC3!M nC3 on simply connected, smooth manifolds and then consider the
specific case when M is 5–dimensional. The main goal of this section is to understand
the structure of the singular sets, that is, the set of points in the orbit space M �

corresponding to orbits with nonprincipal isotropy groups.

4.1 General considerations

We begin with the following theorem from Bredon [2], which characterizes the orbit
space of a cohomogeneity three action.

Theorem 4.1 Let G be a compact Lie group acting by cohomogeneity three on M , a
compact, simply connected smooth manifold. If all orbits are connected, then M � is a
simply connected topological 3–manifold with or without boundary.

It follows from the resolution of the Poincaré conjecture [34; 35; 36] that M � is
homeomorphic to one of S3 , D3 , S2�I or, more generally, to S3 with a finite number
of disjoint open 3–balls removed. We will see in the next section that nonnegative
curvature implies that M � can only be one of the first three manifolds from this list.

We also recall the following general result of Bredon [2] about the fundamental group
of the orbit space.
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Theorem 4.2 Let G be a compact Lie group acting on a topological space X . If
either G is connected or G has a nonempty fixed point set, then the orbit projection
map � W X !X=G induces an onto map on fundamental groups.

The next theorem, again from Bredon [2], implies the absence of special exceptional
orbits and, in particular, allows us to conclude that no fixed point set of finite Z2 –
isotropy has codimension one in M . This result will be used in the proof of Lemma 4.4.

Theorem 4.3 Let M be a smooth, simply connected manifold admitting an action by a
compact Lie group. If a principal orbit is connected (and hence all orbits are connected)
then there are no special exceptional orbits, that is, the set of points belonging to
exceptional orbits is of codimension greater than or equal to 2.

Lemma 4.4 Let T n act on M nC3 , a closed, simply connected smooth manifold.
Then some circle subgroup has nontrivial fixed point set.

Proof If all circle subgroups were to act freely, this would imply a free circle action
on a closed, simply connected 4–manifold M 4 DM nC3=T n�1 , which is impossible.
Likewise, if the action is almost free, then there are finitely many finite isotropy groups.
Let � be the finite group generated by all these finite groups and consider the action
of T n=� on M nC3=� . Note first that we may consider the successive quotients

M !M=�1! � � � !M=�k DM=�;

where � D �k � � � � � �1 is a filtration with prime-order quotients �i=�i�1 . Such
a filtration exists because � � T n is abelian. Then each quotient is a closed, simply
connected topological space by Theorem 4.2 and hence M nC3=� is as well. We claim
that M nC3=� must be a topological manifold. Note that the fixed point set of any
subgroup of finite isotropy must be at least n–dimensional since it is invariant under
the T n action and it will be at most .nC 1/–dimensional because there are no special
exceptional orbits by Theorem 4.3. The space of directions normal to the projection of
a codimension 2 fixed point set in M nC3=� is a circle. In the codimension-3 case,
the isotropy subgroup will be a finite subgroup of SO.3/\T n , n� 2; hence it must
be a cyclic group of rotations or Z2 �Z2 . In both cases the quotient of the isotropy
action on the normal 2–sphere will be again a topological 2–sphere. Hence M nC3=�

must be a closed, simply connected topological manifold. Now, T n=� must act freely
on M nC3=� and we have just seen that this is impossible. Therefore T n cannot act
almost freely on M nC3 either.

Let M nC3 be a closed, simply connected .nC 3/–manifold with a cohomogeneity
three T n action. By the previous lemma, there is a circle subgroup T 1 � T n with
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nontrivial fixed point set. In the case where M �DD3 , there is a unique codimension-2
fixed point set component. In general, when M � is homeomorphic to S3 with k

disjoint open 3–balls removed, k � 1, the k boundary components correspond to the
quotients of unions of fixed point sets of possibly different circles.

In the case where M � is homeomorphic to S3 , the components of Fix.M nC3IT 1/

are of codimension greater than or equal to 4. In this case, the following proposition,
generalizing a result of Rong in dimension 5 [39], shows there must be a minimum
number of codimension-4 fixed point set components, corresponding to isolated singular
orbits T n�1 .

Proposition 4.5 Let T n act on M nC3 , a closed, simply connected, smooth manifold.
Suppose that M � is homeomorphic to S3 and that there are exactly two orbit types:
principal orbits T n and isolated singular orbits T n�1 , that is, the isotropy subgroups
are either trivial or isomorphic to T 1 . Then there are at least nC 1 isolated singular
orbits T n�1 .

Proof Let M0 denote the manifold with boundary obtained by removing a small
tubular neighborhood around each isolated singular orbit T n�1 . Let M �

0
denote the

quotient space M0=T 2 . By a standard transversality argument we know that

�1.M0/Š �1.M /D f1g;

�2.M0/Š �2.M /:

Since there is no isotropy group of finite order we obtain a fibration

T n
!M0!M �

0 ;

and therefore a long exact sequence in homotopy

0! �2.M0/! �2.M
�
0 /! �1.T

n/! �1.M0/! �1.M
�
0 /! 0:

Since �1.M /Š �1.M0/D 0, it follows that �1.M
�
0
/D 0. Since M � is a 3–sphere,

by applying the Mayer–Vietoris sequence to the pair .M �
0
; cl.M �nM �

0
//, noting that

cl.M �nM �
0
/ is a disjoint union of closed 3–discs, we obtain that H2.M

�
0
/ Š Zr ,

where .r C 1/ is the number of isolated singular orbits. It follows from the Hurewicz
isomorphism that �2.M

�
0
/ŠH2.M

�
0
/ŠZr and the above exact sequence in homotopy

becomes
0! �2.M0/! Zr

! Zn
! 0:

We conclude that n� r and thus there are at least nC 1 isolated singular orbits.

Corollary 4.6 Proposition 4.5 remains valid in the presence of finite isotropy.

Proof Let � be the finite group generated by the finite isotropy groups of the action.
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As we saw earlier in the proof of Lemma 4.4, M nC3=� is a closed, topological
manifold. Moreover, M nC3=� is simply connected. Finally, observe that T n=�

acts without finite isotropy on M nC3=� and the isolated T n�1=.T n�1\�/ orbits in
M nC3=� correspond to isolated T n�1 orbits in M nC3 .

Remark 4.7 We observe that in the case where we have a T 2 action on M 5 ,
Proposition 4.5 implies that when M �DS3 , there are at least three isolated circle orbits.

4.2 Possible isotropy groups

In this subsection, we use the isotropy representation of the possible isotropy groups
to better understand fixed point components of finite isotropy and their corresponding
images in the orbit space M � .

By a theorem of Chang and Skjelbred [5], components of Fix.M IZk/ are smooth
submanifolds. When k ¤ 2 these components are orientable and of even codimension.
If k D 2, components of Fix.M IZ2/ may also be nonorientable and by Theorem 4.3,
of codimension at least 2. In the case of a smooth T 2 action on a closed, simply
connected smooth 5–manifold M 5 , components of Fix.M 5IZk/ must be at least
2–dimensional, as we saw in the proof of Lemma 4.4. An analysis of the isotropy
representations will show that for all cases the components of Fix.M 5IZk/ must be
3–dimensional.

Proposition 4.8 Let T 2 act smoothly on M 5 , a closed, simply connected smooth
5–manifold. If M � D S3 , then the following hold.

(1) The singular orbits of the action are T 1 and T 1=Zk , k 2 ZC .
(2) The exceptional orbits are T 2=Zk , k � 2 and T 2=.Z2 �Z2/.
(3) In all cases where there is finite cyclic isotropy, the corresponding fixed point set

of finite isotropy is of dimension 3.

Proof Since we have assumed that M � is homeomorphic to S3 , there are no points
with T 2 isotropy. Observe that the normal sphere at any point of an exceptional orbit
will be of dimension two. Thus the finite isotropy group of an exceptional orbit must
be a subgroup of SO.3/ and of T 2 . Hence the only possible finite isotropy groups
are Zk , k � 2, and Z2 �Z2 . This proves parts (1) and (2).

Now we prove part (3). We first consider the singular orbits, observing that if we have
a singular orbit of the form T 1=Zk , then we have a T 1 �Zk action on the normal
3–sphere to any point of the orbit. In particular, there will be a finite cyclic subgroup
of order k in T 1�Zk fixing circles in this normal 3–sphere and therefore this orbit is
contained in a fixed point set of finite isotropy of dimension 3. If the singular orbit
is T 1 , then the action of the circle on the normal S3 is either free or almost free. In the
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latter case, a finite cyclic subgroup fixes a 3–dimensional submanifold which contains
the singular orbit.

We now consider the exceptional orbits. For a T 2=Zk orbit, k ¤ 2, the Zk action
on S2 is never free and thus this exceptional orbit will be contained in a 3–dimensional
submanifold fixed by Zk , k ¤ 2. It remains to show that for the exceptional orbit
T 2=Z2 , the Z2 isotropy group also does not act freely on its normal S2 . This follows
from the fact that the antipodal map, which reverses orientation, generates the only
free Z2 action on S2 and it is not a subgroup of SO.3/.

Finally, we consider the exceptional orbit T 2=.Z2 �Z2/. The action of the isotropy
subgroup, Z2 �Z2 , on the normal S2 produces a quotient space equal to the double
right-angled spherical triangle with three vertices, each of which is fixed by a dif-
ferent Z2 subgroup of Z2 �Z2 . Each fixed vertex corresponds to a 3–dimensional
submanifold fixed by the corresponding Z2 subgroup. For each T 2=.Z2 �Z2/ orbit
we will have exactly three such fixed point sets intersecting in this orbit. Thus, we
conclude that the fixed point set of a finite cyclic group is always of dimension 3.

4.3 The singular sets in M � D S 3

We now determine the structure of the singular sets in the orbit space in the particular
case when M is 5–dimensional and M � D S3 .

Proposition 4.9 Let T 2 act smoothly on M 5 , a closed, simply connected smooth
5–manifold. If M � D S3 , then the set of points in M � with nontrivial isotropy
corresponds to a graph and the following hold.

(1) The vertices of the graph correspond to isolated singular orbits or to isolated
exceptional orbits with isotropy Z2 �Z2 .

(2) The graph must contain at least three vertices corresponding to isolated singu-
lar orbits.

(3) The vertices corresponding to isolated singular orbits have degree 0, 1 or 2.

(4) The vertices corresponding to isolated exceptional orbits with isotropy Z2 �Z2

have degree 3.

(5) The edges of the graph correspond to points with nontrivial, finite, cyclic isotropy.

(6) Every edge must meet two different vertices.

(7) The points in the edges meeting an isolated exceptional orbit with isotropy
Z2 �Z2 have isotropy Z2 .

(8) The preimage of the closure of an edge corresponds to a 3–dimensional manifold
fixed by a nontrivial finite cyclic group admitting a T 2 action of cohomogene-
ity one.

Geometry & Topology, Volume 18 (2014)



Nonnegatively curved 5–manifolds with almost maximal symmetry rank 1409

Proof Parts (1), (3), (4), (5) and (7) follow from the proof of Proposition 4.8 by
looking at the isotropy representation at the corresponding orbits. Part (2) follows from
Proposition 4.5 and Corollary 4.6. To prove (6), observe first that the existence of simple
closed curves in M � whose points correspond to exceptional orbits with nontrivial finite
cyclic isotropy Zk is ruled out by work of Montgomery and Yang [26, Lemma 2.3].
By Kleiner’s isotropy lemma [25], the isotropy type on a cycle with one vertex and one
edge must be constant, ruling out this configuration. Therefore, there cannot be cycles
of (graph-theoretic) length 1 and, in particular, any edge must connect two different
vertices.

We will denote by arc the closure of an edge with finite cyclic isotropy in the set of
orbits with nontrivial isotropy in M � . Since the graphs corresponding to the singular
set in M � carry isotropy information, we will refer to them as weighted graphs. We
further note that in the figures we will use the following scheme to distinguish the
possible weighted graphs:

� Black vertices will correspond to singular orbits and have degree 0, 1 or 2.

� White vertices will correspond to exceptional orbits with Z2 �Z2 isotropy and
have degree 3.

� Edges will correspond to nonisolated exceptional orbits with nontrivial, finite,
cyclic isotropy.

We now begin the process of determining what 3–manifolds may actually occur as
fixed point set components of a finite cyclic isotropy group. Since these components
admit an (almost) effective T 2 action, they must be one of the manifolds listed in
Section 2.3. We will eventually show, in Section 6, that the only such 3–manifolds
that can occur are S3 , Lp;q , S2 �S1 and S2 z�S1 .

We first observe that we may immediately rule out T 3 , since its orbit space would
correspond to a simple closed curve in M � with finite cyclic isotropy and, as mentioned
above, simple closed curves with finite cyclic isotropy will not occur.

Of the possible 3–manifolds on the list, the nonorientable ones are RP2�S1 , S2 z�S1 ,
Kl�S1 and A, and as such, they may only be fixed point set components of Z2 isotropy.
All have at least one exceptional orbit and correspond to the possible preimages of arcs
containing a vertex of degree three.

If the singular set in M � contains a vertex of degree three, then it may contain different
types of trees as subgraphs. Two types of trees may occur. The first type occurs if
either RP 2

�S1 or S2 z�S1 is the preimage of an arc of Z2 isotropy, in which case,
the singular set contains a tree with one vertex of degree three joined to three vertices
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of degree one or two only. The second type occurs if Kl�S1 or A is the preimage
of an arc of Z2 isotropy, in which case the singular set contains a tree with an edge
terminating in two vertices of degree three, each of which is joined to two more vertices
of degree one or two. We will see that when we take into consideration the lower
curvature bound this second type of tree cannot occur, allowing us to exclude Kl�S1

and A as possible fixed point set components of Z2 isotropy.

The first type of tree is the bipartite graph K1;3 , commonly known as a claw (see Dies-
tel [8] and Gross and Yellen [19]). Since vertices and edges carry isotropy information,
we shall refer to this configuration as a weighted claw (see Figure 1). An example of
the second possible tree appears in Figure 2. We will refer to such graphs as weighted
trees. These graphs will appear in our analysis of the finite isotropy case in Section 6.2.

Finally, we point out that the weighted graph could also contain a cycle. Moreover,
this cycle could potentially be knotted in M � D S3 . We will see in Section 5.4 that
when the orbit space is nonnegatively curved the cycle cannot be knotted.

Figure 1: Weighted claw: the central vertex has isotropy Z2�Z2 , the external
vertices have isotropy conjugate to S1 and the edges have isotropy Z2 .

Figure 2: Weighted tree: the two central vertices have isotropy Z2 �Z2 , the
external vertices have isotropy conjugate to S1 and the edges have
isotropy Z2 .
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5 Restrictions on the orbit space imposed by nonnegative cur-
vature

In this section we will see how nonnegative curvature restricts the structure of the
orbit space of an isometric T 2 action on a closed, simply connected 5–manifold.
Throughout this section we will let M 5 be a closed, simply connected 5–manifold of
nonnegative curvature with an isometric T 2 action.

5.1 Topology of orbit spaces with nonnegative curvature

As we noted earlier, the quotient space of a smooth T 2 action on a closed, simply
connected smooth 5–manifold is homeomorphic to one of S3 or S3 with a finite
number of disjoint open 3–balls removed. For every open 3–ball we remove we obtain
an S2 boundary component. In the presence of nonnegative curvature we have the
following proposition.

Proposition 5.1 Let M 5 be a closed, simply connected, nonnegatively curved 5–
manifold. If T 2 acts isometrically on M 5 , then M � is homeomorphic to one of the
following:

(1) S3 , if for any T 1 � T 2 for which Fix.M 5IT 1/¤∅, dim.Fix.M 5IT 1//D 1

(2) D3 or S2 � I , if dim.Fix.M 5IT 1//D 3 for some T 1 � T 2

Proof Part (1) follows easily since only points belonging to a codimension-two fixed
point set of a circle will correspond to boundary points in the orbit space M � . Note that
part (1) is independent of the curvature assumption. Part (2) follows from Double soul
theorem 2.5.

5.2 Upper bound on the number of isolated circle orbits in M 5

In the previous section, in Proposition 4.5, we found a lower bound of three for the
number of isolated circle orbits in M 5 for the case where M �D S3 . We now propose
to determine an upper bound on the number of isolated circle orbits when M 5 is
nonnegatively curved. Theorem 5.2 below will show that there can be at most four
such orbits.

A simple application of the Extent lemma tells us that in M � D M=G , where G

acts isometrically on M , a closed manifold of positive curvature, there are at most 3

singular points with space of directions isometric to S2.1
2
/ or a “thin” S2.1

2
/, that is,

the quotient of S3.1/ by an almost free S1 action. If M is nonnegatively curved, the
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Extent lemma tells us that there will be at most 5 such singular points. A closer analysis
of the geometry will allow us to show that in the case where M is 5–dimensional,
nonnegatively curved and admits an isometric T 2 action, there will be at most 4

isolated circle orbits.

This upper bound follows from a triangle comparison argument in the orbit space,
generalizing an argument used in Kleiner’s thesis [25] showing that an isometric circle
action on a closed, simply connected, nonnegatively curved 4–manifold has at most
four isolated fixed points. These bounds, in turn, are a particular instance of the more
general fact that a three-dimensional nonnegatively curved Alexandrov space can have
at most four points whose space of directions is not larger than S2.1

2
/ (see Grove

and Wilking [24]). We remark that the same result as in Kleiner’s thesis was obtained
in [41], but the argument used to prove the result was specific to dimension 4 and does
not generalize to higher dimensions. The key observation that allows us to apply the
techniques in [25] to our situation is that the normal sphere at a point to each one of the
circles fixed by some S1 � T 2 is 3–dimensional. We include the proof of the theorem
here for the sake of completeness since Kleiner’s result was never published.

Theorem 5.2 Let M 5 be a closed nonnegatively curved 5–manifold with an isomet-
ric T 2 action. Then there are at most 4 isolated circle orbits of the T 2 action.

The proof of Theorem 5.2 will occupy the remainder of this subsection. We begin by
fixing some notation and recasting several lemmas from [25] to meet our needs.

Let fpig
4
iD1

be four distinct points in M 5 and let f xpig
4
iD1

be their correspond-
ing projections in the orbit space X 3 DM 5=T 2 , which is a nonnegatively curved
Alexandrov space and a topological manifold. Given two distinct points xpi , xpj ,
1� i; j � 4, let xij be a minimizing geodesic from xpi to xpj . For each triple of distinct
points xpi , xpj , xpk , 1� i; j ; k � 4, and a pair of minimizing geodesics xij , xik , let

˛ijk D†.xij ; xik/:

This angle is the distance in † xpi
D S3=Gpi

between the directions of the minimizing
geodesics xij ; xik . Finally, let Tijkl denote the (possibly degenerate) tetrahedron
determined by the four points xpi ; xpj ; xpk ; xpl and minimal geodesics between these.

Before proceeding with the proof of Theorem 5.2, we recall the following fact (cf [41]).

Lemma 5.3 Suppose S1 acts isometrically and fixed point freely on S3.1/. Then
S3=S1 is smaller than S2.1

2
/D S3=S1

Hopf . That is, there is a surjective 1–Lipschitz
map S2.1

2
/! S3=S1 .

We have the following lemma.
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Lemma 5.4 If there are 4 isolated circle orbits fNig
4
iD1

, then, for distinct points
pi 2 Ni , 1 � i � 4, and every quadruple of distinct integers 1 � i; j ; k; l � 4, a
tetrahedron Tijkl in the orbit space with vertices xpi , 1� i�4, and edges corresponding
to minimal geodesic between the vertices, is rigid in the sense that

˛ijk C˛ijl C˛ikl D �;(1)

˛ijk C j̨ki C˛kij D �;(2)

that is, the sum of angles at each vertex and the sum of angles of each face of Tijkl are
both � .

Proof In the orbit space X 3DM 5=T 2 , the 4 circles fNig
4
iD1

correspond to 4 points
f xpig

4
iD1

. By Toponogov’s Theorem for Alexandrov spaces (see Burago, Gromov and
Perelman [4]), we know that the sum of the angles of a geodesic triangle in X 3 will
be greater than or equal to � . Connecting each pair of distinct points in f xpig

4
iD1

by a
minimal geodesic we obtain a configuration of four triangles and the total sum of the
angles in this configuration will be greater than or equal to 4� .

For each one of the four points fpig
4
iD1

the corresponding isotropy group acts freely or
almost freely on the normal space Tpi

N?i and the quotient of the unit normal sphere
S3�Tpi

N?i is S2.1
2
/, the round sphere of radius 1

2
in the first case or a “thin” S2.1

2
/

in the second case. Hence

xtq.† xpi
X 3/� xtq.S2.1

2
//

for any q � 2.

Using the fact that xt3.S2.1
2
//D �=3, it is easily seen that for any triple of distinct

points xj ;xk ;xl 2 S2.1
2
/, we have

dist.xj ;xk/C dist.xj ;xl/C dist.xk ;xl/� �:

Thus summing over all the triangles formed by the points f xpig
4
iD1

we find that the sum
of their angles should be less than or equal to 4� . Therefore this sum of angles must
be exactly 4� .

Lemma 5.5 If there are 5 isolated circle orbits fNig
5
iD1

then, for fixed 1� i � 5 and
points pj 2Nj , 1� j � 5, j ¤ i , the following hold.

(1) For each i and each pi 2Ni , we have Gpi
D S1 and its slice representation is

the Hopf action.
(2) The directions in † xpi

D S3=Gpi
corresponding to minimal geodesics from xpi

to xpj , j ¤ i , come in mutually orthogonal pairs, that is, given i , for each set of
distinct j ; k; l;m, up to reordering, we can assume that

˛ijk D ˛ilm D �=2:
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Proof For convenience, let i D 5. For s D j ; k; l;m, let vs 2 † xp5
be the initial

direction of the minimizing geodesic x5s from xp5 to xps . By Lemma 5.4, we have

˛5jk C˛5kl C˛5lj D �;

for the 4 points xpj ; xpk ; xpl ; xp5 , with j ; k; l ¤ 5.

We have already seen in the proof of Lemma 5.4 that the sum of the distances between
any set of three distinct points in † xpi

is equal to � for any i 2 f1; 2; 3; 4; 5g. Consider
now the three points vj , vk , vl in † xp5

. In the case where † xp5
D S2.1

2
/ then either

two of them are antipodal or all three of them lie on a great circle. Note that in this
last case the three points cannot lie in half of the great circle. In the second case,
where † xp5

is a “thin” S2.1
2
/, two of the points must be at distance �=2. Since this

is true for any choice of three of the four possible directions vs , one may conclude
that † xp5

cannot be smaller than S2.1
2
/. In particular, this implies that the isotropy

group of each isolated circle orbit is S1 and that the action is the Hopf action. This
proves part (1) of the lemma. Finally, one can conclude that the four directions vs ,
s D j ; k; l;m in the space of directions must lie on a great circle and consist of two
pairs of antipodal points, thus proving part (2) of the lemma.

Proof of Theorem 5.2 Suppose that there are 5 singular points xpi , 1 � i � 5,
in the orbit space X 3 corresponding to isolated circle orbits. Lemmas 5.4 and 5.5
imply that every triangle determined by any three such points has exactly one angle
�=2. It follows from the discussion of the equality case in the proof of Toponogov’s
Theorem (see Cheeger and Ebin [6]) that these triangles must be flat. Assume, after
relabeling if necessary, that dist. xp1; xp2/ is the minimum of the distances dist. xpi ; xpj /

between distinct points xpi ; xpj , 1 � i; j � 5. That is, assume that the geodesic edge
from xp1 to xp2 is the shortest in the configuration with vertices xpi , 1 � i � 5,
and edges corresponding to minimal geodesics xij between distinct points xpi , xpj .
Now choose xpi in f xp3; xp4; xp5g such that neither one of the angles ˛12i , ˛21i is
equal to �=2. This choice implies that the minimal geodesic x12 is the hypotenuse
of the triangle determined by xp1 , xp2 and xpi . On the other hand, dist. xp1; xp2/

2 D

dist. xp1; xpi/
2Cdist. xp2; xpi/

2 , which contradicts the choice of xp1 and xp2 as determining
the shortest geodesic edge of the configuration determined in the orbit space by the
five isolated circle orbits.

Corollary 5.6 Let M nC3 be a closed, nonnegatively curved manifold with an isomet-
ric T n action. Suppose that M � D S3 and that there are isolated T n�1 orbits. Then
there are at most four such isolated T n�1 orbits. In particular, if n� 7 then there are
none.
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Proof The first result follows directly from the proof of Theorem 5.2. The second
result follows by Proposition 4.5.

5.3 Possible components with finite isotropy

The following lemma, easily generalized from Rong [39], allows us to calculate the
Betti numbers with Zp coefficients of M 5 .

Lemma 5.7 Suppose T 2 acts isometrically on M 5 , a closed, simply connected 5–
manifold. If there are exactly 3 isolated circle orbits, then H2.M

5/ has trivial free
rank. If there are exactly 4 isolated circle orbits, then H2.M

5/ has free rank equal
to 1.

We will now show that a weighted graph containing a tree with a vertex of degree three,
that is, a weighted graph containing a weighted claw or a weighted tree, may occur only
when there are exactly 3 isolated circle orbits. With this result, we may then conclude
that neither Kl�S1 nor A can never occur as the fixed point set of a finite group.

Proposition 5.8 Let T 2 act isometrically on M 5 , a closed, simply connected, non-
negatively curved 5–manifold. If M � D S3 and there exists a nonorientable 3–
manifold F3 fixed by a Z2 subgroup, then the projection of F3 in M � must belong
to a weighted claw and there can be no other singular points in M � corresponding to
an isolated circle orbit, besides the three external vertices of the claw.

Proof Let W be the weighted graph corresponding to the set of orbits with nontrivial
isotropy in M � . There are two cases we must exclude. The first case is where W

contains a weighted claw as a subgraph and a vertex of degree 0, 1 or 2 (see, for
example, Figure 3). The second case is when W contains a weighted tree as a subgraph
(see, for example, Figure 4).

We begin with the first case. Let xp1 denote the center point in M � of the weighted
claw, that is, whose space of directions † xp1

is the double right-angled spherical triangle
S2=.Z2 �Z2/, and let xpi , i D 2; 3; 4, denote the points in M � corresponding to
the vertices of the weighted claw, each of which corresponds to an orbit with T 1 or
T 1�Z2 isotropy. We note that the space of directions for each of these external vertices
is either an S2.1

2
/=Z2 , that is a “thin” 2–sphere of diameter �=2 or a possibly thinner

2–sphere of diameter �=2. If there is a fourth singular point xp5 corresponding to an
isolated circle orbit in M 5 , then † xp5

is either an S2.1
2
/ or a “thin” S2.1

2
/. Since

S2.1
2
/ is the “largest” of these spaces of directions (cf Lemma 5.3), we will assume

that † xp5
D S2.1

2
/.
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Figure 3: Weighted graph containing a claw: the solid vertices correspond to
isolated circle orbits; the vertex of degree 3 corresponds to an exceptional
orbit with isotropy Z2 �Z2 .

Figure 4: Weighted graph containing a tree: the solid vertices correspond to
isolated circle orbits; the two vertices of degree 3 correspond to exceptional
orbits with isotropy Z2 �Z2

It is clear that in † xp1
the vertices of the spherical triangle correspond to the geodesic

directions to the points xp2; xp3 and xp4 , and consequently ˛123 D ˛124 D ˛134 D �=2.
Without loss of generality, we will assume that ˛135C˛145 D ˛Cˇ D �=2, in which
case it follows that ˛125 D �=2.

Now, by Lemma 5.4, the tetrahedron T2345 is rigid, in the sense that the angles of
every face sum to � and the angles at every vertex sum to � . In particular, because of
this rigidity and because each of the points xp2; xp3 and xp4 has space of directions a
thin S2.1

2
/, it follows that at every one of the vertices xp2; xp3 and xp4 of T2345 there

will be an angle of �=2. Further, the maximal configuration for the spaces of directions
of the points xp2; xp3 and xp4 will be where the remaining angles at each vertex in T2345

are all �=4, that is, j̨1k D�=4 for all j 2 f2; 3; 4g and k 2 f2; 3; 4; 5g, where j ¤ k ,
whereas, ˛51j will be equal to �=2 for one value of j 2 f2; 3; 4g and for the remaining
values it will be equal to �=4. Without loss of generality we may choose specific values
for all angles of the form ˛2jk ; j ; k 2 f1; 3; 4; 5g. Once these choices are determined,
the rigidity of T2345 will determine the remaining angles.
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It now follows by Toponogov’s Theorem that the angle sum of any triangle in any
tetrahedron formed by these five singular points must be greater than or equal to � .
When we consider the tetrahedron T1345 , we see that when we substitute all the known
values for the angles the lower bound on the sum of the angles for any triangle forces
the inequalities

˛513C˛315C˛ � �; ˛514C˛415Cˇ � �:

As we saw previously, ˛415 D ˛315 D �=4 and one of ˛513 or ˛514 is equal to �=2
and the other is equal to �=4. In particular this tell us that one of the angles ˛ or ˇ
is greater than or equal to �=2 and the other is greater than or equal to �=4. Since
˛CˇD �=2 this immediately gives us a contradiction and thus this case cannot occur.

For the second case, where the weighted graph contains a weighted tree, we observe
that the addition of the singular point xp6 , corresponding to a T 2=.Z2�Z2/ orbit will
produce an analogous contradiction and thus this case cannot occur either.

We summarize the results of this subsection in the following theorem.

Theorem 5.9 Let T 2 act isometrically on M 5 , a closed, simply connected, nonnega-
tively curved 5–manifold. If M � D S3 , then the fixed point set components of finite
cyclic isotropy (if they exist) are:

(1) S3, Lp;q , S2�S1, RP 2
�S1 or S2z�S1 when there are three isolated circle orbits

(2) S3, Lp;q or S2�S1 when there are four isolated circle orbits

We recall the following theorem of Bredon [2].

Theorem 5.10 Suppose that p is a prime and that G D Zp acts on the finite-
dimensional space X with B �X closed and invariant. Suppose that G acts trivially
on H�.X;BIZ/ and let F D Fix.X IZp/. Then, for any k � 0, we haveX

i�0

rk H kC2i.F;F \BIZp/�
X
i�0

rk H kC2i.X;BIZp/:

We observe that any diffeomorphism in T 2 is homotopic to the identity, since it is
contained in a torus. Thus we may apply this theorem to the situation at hand to obtain
the following corollary.

Corollary 5.11 Let T 2 act isometrically on M 5 , a closed, simply connected, non-
negatively curved 5–manifold. If M � D S3 and the orbit space contains a weighted
claw, then M 5 is not S5 .

Proof This follows directly by applying the inequality in Theorem 5.10, observing that
if either S2 z�S1 or RP 2

�S1 is contained in Fix.M 5IZ2/, then H2.M
5/¤ 0.
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5.4 Unknottedness of cycles

We will now analyze the special case where the singular set in the orbit space contains
a cycle. Following work of Grove and Wilking [24; 47], we will show that this cycle is
unknotted in M � D S3 . Recall that the arcs in a cycle correspond to the projection of
fixed point sets of finite isotropy. We have the following result.

Theorem 5.12 Let M 5 be a closed, simply connected, nonnegatively curved 5–
manifold with an isometric T 2 action and orbit space M � ' S3 . If the singular set in
the orbit space M � contains a cycle K1 , then the following hold.

(1) The cycle K1 is the only cycle in the singular set in M � .

(2) If there are four isolated circle orbits, then K1 comprises all of the singular set,
that is, M � nK1 is smooth.

(3) Suppose there are exactly three isolated circle orbits, the cycle K1 contains only
two of them, and there are no exceptional orbits of isotropy Z2 �Z2 . Then the
finite isotropy fixing one of the 3–manifolds corresponding to one of the arcs of
the cycle must be Z2 .

(4) The cycle K1 is unknotted in M � .

Proof We will first prove parts (1) and (2) of the theorem. Note first that the weighted
graph W �M � corresponding to the set of singular orbits can contain two cycles only if
W has four vertices, since a cycle must contain at least two isolated singular orbits [25;
26]. In particular, this shows part (1) when there are only three isolated singular orbits.
To then obtain parts (1) and (2) when there are 4 isolated singular orbits we will
employ the following strategy. For any given weighted graph containing a cycle K1

in M � we will construct a branched double cover �W B!M � with branching set K1

and show that B is a simply connected Alexandrov space of nonnegative curvature;
see Lemmas 5.13, 5.14 and 5.15 below. By Lemma 5.14 below and the proof of
Theorem 5.2, the cover B can contain at most four points projecting down to isolated
circle orbits in M � . This then shows us that if we have a cycle containing fewer than 4

isolated singular orbits in M � , then in B we will have more than 4 isolated singular
orbits, a contradiction.

To construct the branched cover, first observe that a generator of H1.M
�nK1IZ/DZ is

given by a normal circle to K1 . Recall that index two subgroups of H1.M
�nK1IZ/DZ

are in one-to-one correspondence with two-fold covers of M � nK1 . Hence there is a
unique two-fold cover B0 of M �nK1 . Let Br .K

1/ be a tubular neighborhood of K1 in
M �'S3 . Observe that Br .K

1/ is a solid torus and thus H1.Br .K
1/nK1IZ/DZ2 .

It follows that Br .K
1/ nK1 also has a two-fold cover. Now let B D B0 [K1 so
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that �W B !M � is a two-fold branched cover, with branching set K1 . Further, B

admits a Z2 action, which is isometric with respect to the metric induced by the orbital
distance metric from M � , with fixed point set K1 .

Lemma 5.13 The space B is a nonnegatively curved Alexandrov space.

Proof of Lemma 5.13 Observe that B is locally isometric to M � outside of the
branching set K1 . Let C2 be the union of arcs in K1 with isotropy Zk , k ¤ 2.
We have two cases: case one, where the cycle K1 contains all the singular points
corresponding to isolated circle orbits, and case two, when there are exactly three
isolated circle orbits and of the corresponding singular points only two belong to a
cycle.

For case one, proceeding as in the proof of Lemma 2.3 in [24], one verifies that the
set B nC2 is convex in B . The conclusion follows after observing that any geodesic
triangle in B is the limit of geodesic triangles in B nC2 .

For case two, there are only two graphs that correspond to this case: graph (4) of
Figure 5 and graph (2) of Figure 6. For graph (4) of Figure 5, we may proceed as in
case one. Here we verify that the set B n fC2[fp1;p2gg is convex in B , where p1

and p2 are the lifts of the point p corresponding to the isolated circle orbit in M �

that does not belong to the cycle K1 . For graph (2) of Figure 6, let A1 be the arc
in K1 with isotropy Zk , k ¤ 2, and let A2 be the lift in B of the arc in the claw with
isotropy Z2 not contained in K1 . Observe that A2 is a minimal geodesic between the
lifts of the isolated circle orbit not contained in the cycle K1 . As above, one verifies
that the set B n .A1[A2/ is convex in B and the conclusion follows after observing
that geodesics triangles in B are limits of geodesic triangles in B n .A1[A2/.

Lemma 5.14 Let xp 2K1 �M � be a point corresponding to an isolated circle orbit
in M 5 and consider xp as a point in B . Then † xpB is smaller than or equal to S2.1

2
/.

Proof of Lemma 5.14 There is a two-fold branched cover † xpB ! † xpM � . We
know that the space of directions † xpM � is a “thin” S2.1

2
/. We will denote this space

by Xk;l . Observe that † xpM � DXk;l can be written as the join of a circle, S1=Zkl ,
of diameter �=kl and S0 , of diameter �=2, where the former is the normal space
of directions to K1 at the point xp and the latter corresponds to the tangent space of
directions at xp of K1 in M � . Since B is a two-fold branched cover of M � with
branching locus K1 , the corresponding space of normal directions in B will be of
twice the diameter as the space of normal directions in M � . In particular, this means
that † xpB corresponds to the orbifold X2k;l or Xk;2l . Since at least one of k; l is
greater than 2, it follows that this orbifold is smaller than or equal to S2.1

2
/, as we

saw earlier (see Lemma 5.3).
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Lemma 5.15 The space B is simply connected.

Proof of Lemma 5.15 We will prove this by contradiction, so assume that �1.B/

contains at least two elements. Observe that zB , the universal cover of B , is a compact
Alexandrov space of nonnegative curvature. There are at least three singular points pi

in B , corresponding to isolated circle orbits in M � . Therefore, in zB there will be
at least six points zpk covering these points M � . By Lemma 5.14, the spaces of
directions † zpk

zB are smaller than or equal to S2.1
2
/. On the other hand, the Extent

lemma implies there can be at most five such points in zB , yielding a contradiction.

Now we prove part (3). Let Zk and Zl be the finite isotropy groups fixing the two
3–manifolds corresponding to the two arcs of the cycle K1 . Without loss of generality,
we may assume that 2 � k < l . In this case we may take a k –fold branched cover
of M � with branching locus K1 . It follows from the proof of Theorem 5.2 that k D 2,
since otherwise the branched cover would have more than four singular points.

Finally, we prove part (4). Observe that B is a topological 3–manifold and, by
Lemma 5.15, B is simply connected. Hence, by the resolution of the Poincaré conjec-
ture, B must be homeomorphic to S3 . Recall that we have an isometric Z2 action on B

fixing K1 . By the equivariant version of the Poincaré conjecture (see Dinkelbach and
Leeb [9]), it follows that this action is equivalent to a linear action on a standard S3.1/.
Therefore Z2 � SO.4/. Note that Z2 is not equivalent to the action of � Id, since
the branching locus is a unique circle fixed by the Z2 action. Thus, without loss of
generality,

Z2 D

8̂̂<̂
:̂
0BB@
�1

�1

1

1

1CCA[ Id

9>>=>>; :
Thus, K1�M �DB=Z2 is not knotted. This concludes the proof of Theorem 5.12.

6 Nonnegatively curved 5–manifolds with almost maximal
symmetry rank

We can now classify closed, simply connected, nonnegatively curved 5–manifolds with
an isometric T 2 action, corresponding to the almost maximal symmetry rank case in
dimension 5. We summarize our results in the following theorem.

Theorem 6.1 Let M 5 be a closed, simply connected 5–manifold with nonnegative
curvature admitting an isometric T 2 action. Then M 5 is diffeomorphic to S5 , S3�S2 ,
S3 z�S2 or SU.3/=SO.3/.
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By Lemma 4.4, the T 2 action is neither free nor almost free. In particular, this tells
us that there is always some circle subgroup with nonempty fixed point set. We then
have two cases to consider: case A, where some circle subgroup acts fixed point
homogeneously and therefore M � is D3 or S2 � I , and case B, where no circle
subgroup acts fixed point homogeneously and hence M �D S3 . Throughout, our main
goal will be to compute H2.M

5/. The conclusions of Theorem 6.1 will then follow
by the Barden–Smale classification of simply connected 5–manifolds [1; 42]. We
remark that it is only in case B, where M � D S3 and we have finite isotropy, that the
Wu manifold, SU.3/=SO.3/, may occur. Observe also that if one circle subgroup acts
freely, then M 5 fibers over one of the four manifolds CP 2;S2�S2 or CP 2 #˙CP 2

(see Theorem 3.3). The corresponding total space is diffeomorphic to S5 , S3 �S2 or
S3 z�S2 (see Duan and Liang [10]). It follows that in the case where we obtain the
Wu manifold, no circle subgroup may act freely.

6.1 Case A: @M � is nonempty

Let M be a nonnegatively curved manifold with a fixed point homogeneous T 1 action.
By definition, this means that there is a component F of Fix.M IT 1/ of codimension 2.
We begin with the following proposition.

Proposition 6.2 Let M n be a closed, simply connected, nonnegatively curved mani-
fold of dimension n� 4 with an isometric T 1 action and suppose that Fix.M nIT 1/

contains an .n� 2/–dimensional component Fn�2 . Let C k be the set at maximal
distance from Fn�2 in the orbit space X n�1 DM n=T 1 .

(1) If dim.F / D dim.C / D n� 2 and we further suppose that ��1.C / D B is a
topological manifold without boundary, then B is fixed by the T 1 action, is
isometric to Fn�2 and Fn�2 Š C n�2 is simply connected.

(2) If C k has dimension k � n� 4, then Fn�2 is simply connected.

Proof First we prove (1). If we suppose that C is not fixed by the S1 action, then
BD��1.C / has dimension n�1. We may decompose M as a union of neighborhoods
of N n�2 and B , which we will denote V and U , respectively. Their common boundary
is a circle bundle over N n�2 which we denote by @V . Observe that both N and @V are
orientable, but that C is not (this follows from the Mayer–Vietoris sequence of the triple
.M;V;U /). Since M n is simply connected it follows by duality that Hn�1.M /D 0

and that the torsion subgroup of Hn�2.M / is trivial. Further, since @V is a compact,
orientable manifold of dimension n� 1, the torsion subgroup of Hn�2.@V / is also
trivial. Likewise, since V deformation retracts onto N n�2 , Hn�2.V /D Z. Since B
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is nonorientable, the torsion subgroup of Hn�2.U / is equal to Z2 . If we write down
the first few elements of the Mayer–Vietoris sequence of the triple .M;V;U / we have

0!Hn.M /!Hn�1.@V /!Hn�1.U /˚Hn�1.V /!Hn�1.M /

!Hn�2.@V /!Hn�2.U /˚Hn�2.V /!Hn�2.M /:

Substituting known values we obtain

0! Z! Z! 0˚ 0! 0

! Fr.Hn�2.@V //! .Fr.Hn�2.U //˚Z2/˚Z! Fr.Hn�2.M //:

The sequence is not exact and thus this case cannot occur. This in turn implies that the
inverse image of C n�2 in M must be exactly C n�2 and thus C n�2 is a component of
Fix.M IT 1/. It then follows from Double soul theorem 2.5 that M is an S2 bundle
over Fn�2 and hence N n�2 must be simply connected.

To prove (2), let  be a loop in Fn�2�M n . Since M n is simply connected,  bounds
a 2–disc D2 . Let Bk0

D ��1.C k/ and observe that k 0 � n� 3. By transversality, we
can perturb D2 so as to lie in the complement of D.Bk0

/, a tubular neighborhood
of Bk0

, while keeping  D @D2 in Fn�2 . The conclusion follows after observing
that D2 is now contained in D.Fn�2/, which deformation retracts onto Fn�2 .

Remark 6.3 Proposition 6.2 holds trivially in dimension 2, since in this case the fixed
point set components of codimension 2 are isolated points. In dimension 3, however,
the conditions of Parts 1 and 2 of Proposition 6.2 cannot occur, since a 1–dimensional
fixed point set component, being a closed submanifold of M , must be a circle and thus
has infinite fundamental group.

Simply connected 5–manifolds with nonnegative curvature and a fixed point homoge-
neous isometric circle action were classified by Galaz-Garcia and Spindeler [16; 17].
To obtain the classification, it suffices to show that there is some convex subset of the
set C at maximal distance from a fixed point set component F � @M 5=S1 whose
inverse image in M 5 is a smooth manifold H without boundary. In particular, one
shows that the dimension of H is always either 1 or 3 and M can be decomposed as
a union of disc bundles. One may then conclude that H2.M

5IZ/ is either trivial or Z
and using the Barden–Smale classification [1; 42], the result is obtained.

The case where dim.C /Ddim.F / is simplified somewhat by the use of Proposition 6.2;
indeed, when C has no boundary, it is the soul of M=S1 and the orbit type on C must
be constant, so that ��1.C /DH is a smooth manifold. The cases where @C ¤∅ are
then considered individually and in those cases where H has boundary, one can easily
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produce a convex subset C 0 � C , where dim.C 0/ < dim.C / and whose inverse image
in M is a smooth manifold (see [16] or Spindeler [43, Chapter 5] for details).

The following theorem summarizes the result.

Theorem 6.4 Let S1 act isometrically and fixed point homogeneously on M 5 , a
closed, nonnegatively curved, simply connected 5–manifold. Then M 5 is diffeomor-
phic to S5 , S3 �S2 or S3 z�S2 .

6.2 Case B: M � D S 3

We consider the case where no circle acts fixed point homogeneously, that is, M �DS3 ,
and there are either three or four isolated circle orbits. We prove the following theorem.

Theorem 6.5 Let M 5 be a closed, simply connected, nonnegatively curved 5–mani-
fold admitting an isometric T 2 action. If M � D S3 , then M 5 is diffeomorphic to S5 ,
SU.3/=SO.3/, S3 �S2 or S3 z�S2 .

We first consider the case where there is no nontrivial finite isotropy.

Proposition 6.6 Let M 5 be a closed, simply connected, nonnegatively curved 5–
manifold admitting an isometric T 2 action. Suppose M � D S3 and that there is no
nontrivial finite isotropy.

(1) If there are exactly three isolated circle orbits, then M 5 is diffeomorphic to S5 .

(2) If there are four isolated circle orbits, then M 5 is diffeomorphic to S3 � S2

or S3 z�S2 .

Proof This follows directly from the proof of Proposition 4.5 and the Barden–Smale
classification of closed, simply connected smooth 5–manifolds [1; 42].

We now consider the case where the T 2 action admits nontrivial finite isotropy groups.
We will devote the rest of this section to the proof of the following proposition.

Proposition 6.7 Let M 5 be a closed, simply connected, nonnegatively curved 5–
manifold with an isometric T 2 action. Suppose that M � D S3 and there is nontrivial
finite isotropy.

(1) If there are exactly three isolated circle orbits, then M 5 is diffeomorphic to S5

or the Wu manifold, SU.3/=SO.3/.

(2) If there are four isolated circle orbits, then M 5 is diffeomorphic to S3 � S2

or S3 z�S2 .
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Before we proceed with the proof of Proposition 6.7 we summarize in the proposition
below the properties of the weighted graphs we need to consider. Recall from Section 4.3
that black vertices correspond to isolated singular orbits, white vertices correspond
to exceptional orbits with Z2 � Z2 isotropy, and edges correspond to nonisolated
exceptional orbits with nontrivial, finite, cyclic isotropy.

Proposition 6.8 Let T 2 act isometrically on M 5 , a closed, simply connected, non-
negatively curved 5–manifold. If M � D S3 and there is nontrivial finite isotropy, then
the graphs corresponding to the possible singular sets are characterized by the following
properties.

(1) The number of black vertices is either three or four.

(2) Black vertices have degree 0, 1 or 2 and white vertices have degree 3.

(3) The graph contains at least one edge.

(4) Every edge must connect two different vertices.

(5) The isotropy associated with each edge meeting a white vertex is Z2 .

(6) Every edge connecting a white vertex and a black vertex belongs to a weighted
claw.

(7) If a weighted graph contains a claw, then the graph has exactly 3 black vertices.

(8) The graph contains at most one cycle. Moreover, if a cycle exists in a graph
with 4 black vertices, then the cycle contains every vertex and edge in the graph.

Proof Part (1) follows from Proposition 4.9 and Theorem 5.2. Parts (2), (4) and (5)
follow from Proposition 4.9. Part (3) follows from Proposition 4.9 and the fact that
we are assuming the action has nontrivial finite isotropy. Parts (6) and (7) follow from
Proposition 5.8. Finally, part (8) follows by Theorem 5.12.

We may now make a complete list of all the graphs that can occur in the case where
we have three isolated circle orbits and in the case where we have four isolated circle
orbits. The graphs are listed in Figures 5, 6 and 7.

Recall that, by Theorem 5.12, if the weighted graph contains a cycle, then this cycle
must be unknotted in M �D S3 . We will now show in all cases where we have a cycle
that we may decompose the manifold as a union of disc bundles, where at least one of
the disc bundles is over one arc of the cycle. We have the following proposition.
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Proposition 6.9 Let M 5 be a closed, simply connected, nonnegatively curved 5–
manifold with an isometric T 2 action. Suppose that M � D S3 and there is nontrivial
finite isotropy.

Suppose, in addition, that the weighted graph, W , corresponding to the singular set
of the action contains a cycle K1 , corresponding to graphs (3) and (4) in Figure 5,
graph (2) in Figure 6, and graph (5) in Figure 7. Then the following are true.

(1) If W is graph (3) in Figure 5, then M 5 decomposes as the union of a disc bundle
over a 3–dimensional submanifold N 3 �M 5 fixed by nontrivial finite cyclic
isotropy, corresponding to the preimage of an arc in K1 , and a disc bundle over
the remaining circle orbit not contained in N 3 .

(2) If W is graph (4) in Figure 5, then M 5 decomposes as a union of disc bundles
over two 3–dimensional submanifolds. One of these 3–manifolds corresponds
to the fixed point set of Zk isotropy, k > 2, and the other corresponds to the
preimage of the arc between the remaining isolated circle orbit and an exceptional
orbit T 2=Z2 , which projects to an interior point of the arc of Z2 isotropy.

(3) If W is graph (2) in Figure 6, then M 5 decomposes as the union of disc bundles
over two 3–dimensional submanifolds. One of these 3–manifolds corresponds
to the preimage of the arc with Zk isotropy, k > 2, and the other to the preimage
of the arc with Z2 isotropy containing the remaining isolated circle orbit.

(4) If W is graph (5) in Figure 7, then M 5 decomposes as the union of two disc
bundles over two disjoint 3–dimensional submanifolds fixed by nontrivial finite
isotropy (although not necessarily the same group).

Proof We will first prove parts (1) and (4) corresponding, respectively, to graph (3) in
Figure 5 and graph (5) in Figure 7. In both cases the weighted graph is a cycle K1 .

Fix an arc A�
1

in K1 corresponding to a fixed point set component of nontrivial finite
cyclic isotropy Zk . Note that whether we have three or four isolated circle orbits, the
corresponding edges of the weighted cycle K1 in M � form the angle �=2. Thus,
at isolated circle orbits corresponding to the endpoints of the arc A�

1
, the normal

space to the 3–dimensional submanifold N 3
Zk
D ��1.A�

1
/, fixed by Zk , will be

the tangent space to the 3–dimensional submanifold fixed by nontrivial finite cyclic
isotropy, corresponding to the lift of arcs adjacent to A�

1
. In graph (3) in Figure 5 the

cycle K1 contains three edges, and there are three 3–dimensional submanifolds fixed
by nontrivial finite isotropy, each one corresponding to the lift of an arc in K1 .

Consider N 3
Zk
D ��1.A�

1
/ and let C1 be the remaining isolated circle orbit which is

not contained in N 3
Zk

, so that C1 projects to the vertex of K1 not contained in A�
1

.
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.1/ .2/

.3/ .4/

Figure 5: Possible weighted graphs when there are exactly three isolated
circle orbits and only nontrivial finite cyclic isotropy

.1/ .2/

Figure 6: Possible weighted graphs when there are exactly three isolated
circle orbits and an isolated exceptional orbit

The decomposition of M as a union of disc bundles over C1 and over N 3
Zk

follows
from an argument analogous to the one given by Grove and Wilking in [24, Section 3],
where it is applied to obtain a double disc bundle decomposition of closed, simply
connected 4–manifolds of nonnegative curvature with an isometric circle action. Our
situation is analogous to the one in [24] and their argument, which we now recall,
carries over to our case. Let U be a small "–neighborhood of the preimage of K1 .
In U one may construct a smooth T 2 invariant horizontal vector field V that is
normally radial near N 3

Zk
and C1 and which is tangential to the inverse image of the

remaining two edges of the cycle K1 in M � . This vector field can be taken to be
the horizontal lift of a smooth (in the orbifold sense) vector field V � on U � which is
normal near the image of the boundaries of sufficiently small tubular neighborhoods
of N 3

Zk
and C1 and for which the remaining two edges of K1 are integral curves.
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.1/ .2/ .3/

.4/ .5/

Figure 7: Possible weighted graphs when there are exactly four isolated circle
orbits and nontrivial finite cyclic isotropy

Since the "–neighborhoods of the images of N 3
Zk

and C1 are 3–balls, as well as their
complements, and K1 is unknotted, V � can be extended to a smooth nonvanishing
vector field on the complement of U � respecting the ball decomposition of M � This
extension uniquely lifts to an invariant extension of V , thus yielding the desired
decomposition of M .

The same argument in the preceding paragraph works for graph (5) in Figure 7, corre-
sponding to the case of four isolated circle orbits. Here we will isotope the boundary of
a tubular neighborhood around N 3

1
, corresponding to the preimage of an arc A�

1
�M �

in the cycle K1 , to the boundary of a tubular neighborhood around N 3
2

, corresponding
to the preimage of the arc opposite to A�

1
.

We now prove part (2), corresponding to graph (4) in Figure 5. Recall that in this
case one of the edges in K1 corresponds to orbits with isotropy Z2 , while the other
one corresponds to orbits with isotropy Zk , k > 2. We will denote the arc in K1

corresponding to a fixed point set component of isotropy Z2 by A�
0

, and we will let A�
1

be the arc in K1 corresponding to the fixed point set component with finite isotropy Zk .
We now form an arc A�

2
in M � by joining the vertex not contained in K1 to A�

1
via a

shortest geodesic in M � . The interior of this arc consists of principal orbits and the
preimage of this arc is a cohomogeneity one 3–manifold, N 3

2
. Proceeding as in cases

(1) and (4), we may decompose M 5 as a union of disc bundles over N 3
1
D ��1.A�

1
/

and N 3
2

.
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To prove part (3), we let A�
1

be the arc not contained in the weighted claw, that is,
the arc containing two isolated circle orbits and corresponding to a fixed point set
component of isotropy Zk , k > 2. We let A�

2
be the arc in the claw containing the

isolated circle orbit not contained in A�
1

. Proceeding as above, we may decompose M 5

as a union of disc bundles over N 3
1
D ��1.A�

1
/ and N 3

2
D ��1.A�

2
/.

We are now ready to prove Proposition 6.7. Our strategy will be to analyze the weighted
graphs grouped into three separate cases, where the first two cases correspond to part
(1) of Proposition 6.7 and the third case corresponds to part (2) of Proposition 6.7. The
first case will be all the graphs in Figure 5, with the exception of graph (4). The second
case will consist of graph (4) of Figure 5 and graphs (1) and (2) of Figure 6. The third
case will be the graphs of Figure 7.

Proof of Proposition 6.7(1) The weighted graph corresponding to the singular set of
the action is one of those listed in Figure 5 or Figure 6. It follows from the discussion
in Section 5.3 that if the weighted graph is one of those in Figure 5, then a fixed point
set component of nontrivial finite isotropy can only be one of S3 , Lp;q or S2 �S1 ;
if the weighted graph is one of those in Figure 6, then the fixed point set components
of nontrivial finite isotropy corresponding to arcs in the claw can only be S2 z�S1 or
RP 2

�S1 and the corresponding isotropy subgroup is a Z2 subgroup of T 2 in each
case.

As mentioned above, we have divided the proof of Proposition 6.7(1) into two cases:
the case where the graphs are all those from Figure 5 with the exception of graph (4),
and the case corresponding to graphs (4) from Figure 5 and graphs (1) and (2) from
Figure 6.

For the first case, we have the following lemma.

Lemma 6.10 Let T 2 act isometrically on M 5 , a closed, simply connected 5–manifold
of nonnegative curvature and suppose that M � D S3 . If there are exactly 3 isolated
circle orbits and the weighted graph of the action is one of graphs (1), (2) or (3) from
Figure 5, then neither Lp;q or S2 � S1 may be a component of a fixed point set of
nontrivial finite isotropy.

Proof If the weighted graph is one of graphs (1) or (2), which do not contain a cycle,
then we may complete it to a cycle by adding edges corresponding to curves consisting
of regular points in the orbit space, so that each vertex in the graph has degree 2 (see
Figure 8). We choose these curves so that they are geodesics near the vertices and
any two edges meet at the maximal angle �=2. We may then decompose M 5 as the

Geometry & Topology, Volume 18 (2014)



Nonnegatively curved 5–manifolds with almost maximal symmetry rank 1429

Figure 8: Completing a weighted graph with three vertices to form a cycle:
the solid edge corresponds to orbits with nontrivial finite cyclic isotropy,
while the dotted edges correspond to principal orbits

union of a disc bundle over a fixed point set component of nontrivial finite isotropy and
the remaining isolated circle orbit. A tubular neighborhood around the isolated circle
orbit will be a D4 –bundle over S1 with boundary an S3 bundle over S1 . A tubular
neighborhood around the fixed point set component of nontrivial finite isotropy will
be a D2 –bundle over Lp;q or S2 � S1 and therefore the boundary of both tubular
neighborhoods must be S3 �S1 . When we consider the Mayer–Vietoris sequence of
this decomposition we immediately obtain a contradiction and therefore neither of these
two manifolds may occur as a fixed point set component of nontrivial finite isotropy.

For the second case, we have the following lemma.

Lemma 6.11 Let T 2 act isometrically on M 5 , a closed, simply connected 5–manifold
of nonnegative curvature and suppose that M � D S3 , there are exactly three isolated
circle orbits and the singular set corresponds to graph (4) of Figure 5 or graph (2) of
Figure 6. Then a fixed point set component of finite isotropy Zk , k > 2, can only be
one of S3 or RP 3 .

Proof We must rule out Lp;q , where .p; q/ ¤ .2; 1/, and S2 � S1 as fixed point
set components of isotropy Zk , k > 2. Recall that, for both graphs under considera-
tion, M 5 decomposes as a union of disc bundles over one of Lp;q or S2 �S1 , and
over one of S2 z� S1 or RP 2

� S1 . It follows from the Mayer–Vietoris sequence
of this decomposition that only two possibilities do not give rise to a contradiction:
namely M 5 may be the union of disc bundles over RP 3 and S2 z�S1 or over S3 and
S2 z�S1 .

With these two lemmas we may now complete the proof of part (1) of Proposition 6.7.
From Lemma 6.10 above we conclude that the only possible fixed point set components
for graphs (1), (2), and (3) of Figure 5 are S3 . In this case, it follows from the Mayer–
Vietoris sequence that H2.M

5/ D 0 and therefore M 5 is diffeomorphic to S5 by
work of Smale and Barden [42; 1].
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From Lemma 6.11 we note for graph (4) of Figure 5 or graph (2) of Figure 6 that
H2.M

5/D 0 when RP 3 is the fixed point set component of isotropy Zk ; k > 2, and
H2.M

5/D Z2 when S3 is. Both graphs (1) and (2) of Figure 6 contain a weighted
claw and in the case of graph (1), we may complete the graph, joining two disjoint
arcs via edges corresponding to shortest geodesics consisting of regular points in the
orbit space. We may then decompose the manifold as a union of disc bundles over the
preimage of the arc joining two edges of Z2 isotropy and the remaining edge of Z2

isotropy.

We further note that in these last two cases it follows from Corollary 5.11 that
H2.M

5/D Z2 and from Theorem 5.10 that the arcs corresponding to 3–manifolds
of Z2 isotropy must be S2 z� S1 . It now follows by [42; 1] that for graph (4) of
Figure 5 M 5 is diffeomorphic to S5 or the Wu manifold and for graphs (1) and (2) of
Figure 6 M 5 is diffeomorphic to the Wu manifold.

We have now completed the proof of part (1) of Proposition 6.7.

Figure 9: Completing a weighted graph with edges corresponding to principal
orbits to obtain a cycle: the solid edge corresponds to orbits with finite cyclic
isotropy, while the dotted edges correspond to principal orbits

It remains to prove part (2) of Proposition 6.7. To do this, it suffices to show that
H2.M

5/Š Z for every possible fixed point set of nontrivial finite isotropy and thus,
by [42; 1], M 5 is diffeomorphic to one of the two S3 bundles over S2 .

Proof of Proposition 6.7(2) In this case the possible weighted graphs are shown in
Figure 7. For graphs (1) through (4), we may complete the weighted graph by joining
disjoint isolated circle orbits or arcs via edges corresponding to curves consisting of
regular points in the orbit space. As before, we choose these curves so that they are
geodesics near the vertices and any two edges meet at the maximal angle �=2. In
this way we obtain a graph that is an unknotted cycle (see Figure 9) and now for all
the possible graphs we may decompose M 5 as the union of two disc bundles over
the 3–dimensional manifolds that correspond to opposite arcs of the cycle. In this
particular case, the 3–dimensional manifold may be one of S3 , Lp;q or S2 �S1 . In
all cases and for all possible combinations, we see that H2.M

5/D Z and the result
follows.
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7 Examples of isometric T 2 actions on simply connected,
nonnegatively curved 5–manifolds

7.1 Examples of actions with codimension-2 fixed point set

It is easy to find examples of such actions and we list a few here.

Example 7.1 Given .�1; �2/ 2 T 2 and .z1; z2; z3/ 2 S5 �C3 , let�
.�1; �2/; .z1; z2; z3/

�
7�! .e2�i�1z1; e

2� i�2z2; z3/:

Here both circles �1 and �2 fix a 3–sphere. The corresponding singular set in the orbit
space consists of 3 isolated singular points.

Example 7.2 Given .�1; �2/ 2 T 2 and .z1; z2;x1;x2;x3/ 2 S3�S2 �C2�R3 , let�
.�1; �2/; .z1; z2;x1;x2;x3/

�
7�! .e2� i�1z1; e

2�i�2z2;x1;x2;x3/:

Here both circles �1 and �2 fix an S2�S1 and the action is the product of the cohomo-
geneity one action on S3 combined with the trivial action on S2 . The corresponding
singular set in the orbit space consists of 4 isolated singular points.

7.2 Examples of actions with finite isotropy

We give examples of actions on S5 and on S3 �S2 with finite isotropy and with 3

and 4 isolated circle orbits, respectively. The action on S5 was given by Rong [39]
and we include it here for the sake of completeness.

Example 7.3 Given .�1; �2/ 2 T 2 and .z1; z2; z3/ 2 S5 �C3 , let�
.�1; �2/; .z1; z2; z3/

�
7�! .e2� i.�1Cp�2/z1; e

2�i.�1Cq�2/z2; e
2�i.�1Cr�2/z3/:

Here there are 3 isolated circle orbits. If p; q; r are pairwise relatively prime and the
differences .p� q/, .p� r/ and .q� r/ are also pairwise relatively prime, then the
singular set of the action is a cycle in the orbit space and the closure of each edge
corresponds to an S3 fixed by finite isotropy.

Example 7.4 Given .�1; �2/2T 2 and vD .z1; z2;x1;x2;x3/2S3�S2�C2�R3 ,
we let .�1; �2/ act on v by �

.�1; �2/; v
�
7!A.�1; �2/v;
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where A.�1; �2/ is the matrix0BBBB@
e2� i.�1Cp�2/ 0 0 0 0

0 e2�i.�1Cq�2/ 0 0 0

0 0 cos.�1C r�2/ sin.�1C r�2/ 0

0 0 � sin.�1C r�2/ cos.�1C r�2/ 0

0 0 0 0 1

1CCCCA ;
p , q , r are pairwise relatively prime integers, as are the differences .p� q/, .p� r/

and .q � r/, and, without loss of generality, p > q > r . Here there are 4 isolated
circle orbits and the finite groups Zp�r ;Zq�r each fix a distinct S2 � S1 that has
empty intersection with the other whereas the finite group Zp�q fixes two disjoint
copies of S3 , intersecting each of the fixed S2 �S1 in an isolated circle orbit. The
corresponding singular set in the orbit space is a quadrangle with vertices corresponding
to isolated circle orbits and edges corresponding to arcs with finite isotropy.

Example 7.5 Let T 2 � SU.3/ act canonically on SU.3/=SO.3/. There are three
involutions given by the diagonal matrices with entries .�1;�1; 1/; .�1; 1;�1/ and
.1;�1;�1/. Each of these involutions will fix an S.U.2/�U.1//=S.O.2/�O.1//D

S2z�S1 , each of which intersects in a S.U.1/�U.1/�U.1//=S.O.1/�O.1/�O.1//D

T 2=.Z2 �Z2/. The corresponding singular set in the orbit space is a weighted claw.

One can generate further examples by observing that S3 �S2 and S3 z�S2 can be
described as normal biquotients of S3 � S3 by the free action of a circle (see [7],
Galaz-Garcia and Kerin [14], [33] and Totaro [44]). The standard effective, isometric
action of T 4 on the Lie group S3 �S3 induces a maximal rank, effective, isometric
torus action on each of these biquotients. This in turn induces effective, isometric T 2

actions on these manifolds.

References
[1] D Barden, Simply connected 5–manifolds, Ann. of Math. 82 (1965) 365–385

MR0184241

[2] G E Bredon, Introduction to compact transformation groups, Pure and Applied Mathe-
matics 46, Academic Press, New York (1972) MR0413144

[3] D Burago, Y Burago, S Ivanov, A course in metric geometry, Graduate Studies in
Mathematics 33, Amer. Math. Soc. (2001) MR1835418

[4] Y Burago, M Gromov, G Perelman, AD Aleksandrov’s spaces with curvatures
bounded below, Uspekhi Mat. Nauk 47 (1992) 3–51, 222 MR1185284 In Russian;
translated in Russian Math. Surveys 47 (1992) 1–58

Geometry & Topology, Volume 18 (2014)

http://dx.doi.org/10.2307/1970702
http://www.ams.org/mathscinet-getitem?mr=0184241
http://www.ams.org/mathscinet-getitem?mr=0413144
http://www.ams.org/mathscinet-getitem?mr=1835418
http://dx.doi.org/10.1070/RM1992v047n02ABEH000877
http://dx.doi.org/10.1070/RM1992v047n02ABEH000877
http://www.ams.org/mathscinet-getitem?mr=1185284


Nonnegatively curved 5–manifolds with almost maximal symmetry rank 1433

[5] T Chang, T Skjelbred, Group actions on Poincaré duality spaces, Bull. Amer. Math.
Soc. 78 (1972) 1024–1026 MR0307226

[6] J Cheeger, D G Ebin, Comparison theorems in Riemannian geometry, AMS Chelsea
Publishing (2008) MR2394158

[7] J DeVito, The classification of simply connected biquotients of dimension at most 7

and 3 new examples of almost positively curved manifolds, PhD thesis, University
of Pennsylvania (2011) Available at http://search.proquest.com//docview/
878684574

[8] R Diestel, Graph theory, 3rd edition, Graduate Texts in Mathematics 173, Springer,
Berlin (2005) MR2159259

[9] J Dinkelbach, B Leeb, Equivariant Ricci flow with surgery and applications to fi-
nite group actions on geometric 3–manifolds, Geom. Topol. 13 (2009) 1129–1173
MR2491658

[10] H Duan, C Liang, Circle bundles over 4–manifolds, Arch. Math. (Basel) 85 (2005)
278–282 MR2172386

[11] R Fintushel, Circle actions on simply connected 4–manifolds, Trans. Amer. Math. Soc.
230 (1977) 147–171 MR0458456

[12] R Fintushel, Classification of circle actions on 4–manifolds, Trans. Amer. Math. Soc.
242 (1978) 377–390 MR496815

[13] F Galaz-Garcia, Nonnegatively curved fixed point homogeneous manifolds in low
dimensions, Geom. Dedicata 157 (2012) 367–396 MR2893494

[14] F Galaz-Garcia, M Kerin, Cohomogeneity–two torus actions on nonnegatively curved
manifolds of low dimension, Math. Z. 276 (2014) 133–152 MR3150196

[15] F Galaz-Garcia, C Searle, Low-dimensional manifolds with nonnegative curvature and
maximal symmetry rank, Proc. Amer. Math. Soc. 139 (2011) 2559–2564 MR2784821

[16] F Galaz-Garcia, W Spindeler, Nonnegatively curved fixed point homogeneous 5–
manifolds, Ann. Global Anal. Geom. 41 (2012) 253–263 MR2876698

[17] F Galaz-Garcia, W Spindeler, Erratum to: Nonnegatively curved fixed point homoge-
neous 5–manifolds, Ann. Global Anal. Geom. 45 (2014) 151–153 MR3165480

[18] J C Gómez-Larrañaga, F González-Acuña, W Heil, S2 – and P 2 –category of man-
ifolds, Topology Appl. 159 (2012) 1052–1058 MR2876711

[19] J L Gross, J Yellen (editors), Handbook of graph theory, CRC Press, Boca Raton, FL
(2004) MR2035186

[20] K Grove, Geometry of, and via, symmetries, from “Conformal, Riemannian and
Lagrangian geometry”, Univ. Lecture Ser. 27, Amer. Math. Soc. (2002) 31–53
MR1922721

Geometry & Topology, Volume 18 (2014)

http://dx.doi.org/10.1090/S0002-9904-1972-13092-1
http://www.ams.org/mathscinet-getitem?mr=0307226
http://www.ams.org/mathscinet-getitem?mr=2394158
http://search.proquest.com//docview/878684574
http://search.proquest.com//docview/878684574
http://www.ams.org/mathscinet-getitem?mr=2159259
http://dx.doi.org/10.2140/gt.2009.13.1129
http://dx.doi.org/10.2140/gt.2009.13.1129
http://www.ams.org/mathscinet-getitem?mr=2491658
http://dx.doi.org/10.1007/s00013-005-1214-4
http://www.ams.org/mathscinet-getitem?mr=2172386
http://dx.doi.org/10.2307/1997715
http://www.ams.org/mathscinet-getitem?mr=0458456
http://dx.doi.org/10.2307/1997745
http://www.ams.org/mathscinet-getitem?mr=496815
http://dx.doi.org/10.1007/s10711-011-9615-y
http://dx.doi.org/10.1007/s10711-011-9615-y
http://www.ams.org/mathscinet-getitem?mr=2893494
http://dx.doi.org/10.1007/s00209-013-1190-5
http://dx.doi.org/10.1007/s00209-013-1190-5
http://www.ams.org/mathscinet-getitem?mr=3150196
http://dx.doi.org/10.1090/S0002-9939-2010-10655-X
http://dx.doi.org/10.1090/S0002-9939-2010-10655-X
http://www.ams.org/mathscinet-getitem?mr=2784821
http://dx.doi.org/10.1007/s10455-011-9282-0
http://dx.doi.org/10.1007/s10455-011-9282-0
http://www.ams.org/mathscinet-getitem?mr=2876698
http://dx.doi.org/10.1007/s10455-013-9402-0
http://dx.doi.org/10.1007/s10455-013-9402-0
http://www.ams.org/mathscinet-getitem?mr=3165480
http://dx.doi.org/10.1016/j.topol.2011.11.011
http://dx.doi.org/10.1016/j.topol.2011.11.011
http://www.ams.org/mathscinet-getitem?mr=2876711
http://www.ams.org/mathscinet-getitem?mr=2035186
http://www.ams.org/mathscinet-getitem?mr=1922721


1434 F Galaz-Garcia and C Searle

[21] K Grove, Developments around positive sectional curvature, from “Geometry, analysis,
and algebraic geometry” (H-D Cao, S-T Yau, editors), Surv. Differ. Geom. 13, Int. Press
(2009) 117–133 MR2537084

[22] K Grove, C Searle, Positively curved manifolds with maximal symmetry rank, J. Pure
Appl. Algebra 91 (1994) 137–142 MR1255926

[23] K Grove, C Searle, Differential topological restrictions curvature and symmetry, J.
Differential Geom. 47 (1997) 530–559 MR1617636

[24] K Grove, B Wilking, A knot characterization and 1–connected nonnegatively curved
4–manifolds with circle symmetry arXiv:1304.4827

[25] B A Kleiner, Riemannian four-manifolds with nonnegative curvature and continuous
symmetry, PhD thesis, University of California, Berkeley (1990) Available at http://
search.proquest.com//docview/303876774

[26] D Montgomery, C T Yang, Groups on Sn with principal orbits of dimension n� 3 ,
Illinois J. Math. 4 (1960) 507–517 MR0125902

[27] P S Mostert, On a compact Lie group acting on a manifold, Ann. of Math. 65 (1957)
447–455 MR0085460

[28] W D Neumann, 3–dimensional G –manifolds with 2–dimensional orbits, from “Proc.
Conf. Transformation Groups”, Springer, New York (1968) 220–222 MR0245043

[29] P Orlik, Seifert manifolds, Lecture Notes in Math. 291, Springer, Berlin (1972)
MR0426001

[30] P Orlik, F Raymond, Actions of SO.2/ on 3–manifolds, from “Proc. Conf. Transfor-
mation Groups”, Springer, New York (1968) 297–318 MR0263112

[31] P S Pao, Nonlinear circle actions on the 4–sphere and twisting spun knots, Topology
17 (1978) 291–296 MR508892

[32] G P Paternain, J Petean, Minimal entropy and collapsing with curvature bounded
from below, Invent. Math. 151 (2003) 415–450 MR1953264

[33] A V Pavlov, Five-dimensional biquotients of Lie groups, Sibirsk. Mat. Zh. 45 (2004)
1323–1328 MR2123295

[34] G Perelman, The entropy formula for the Ricci flow and its geometric applications
arXiv:math.DG/0211159

[35] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-
manifolds arXiv:math.DG/0307245

[36] G Perelman, Ricci flow with surgery on three-manifolds arXiv:math.DG/0303109

[37] G Perelman, Alexandrov’s spaces with curvatures bounded from below, II, preprint
(1991)

[38] F Raymond, Classification of the actions of the circle on 3–manifolds, Trans. Amer.
Math. Soc. 131 (1968) 51–78 MR0219086

Geometry & Topology, Volume 18 (2014)

http://www.ams.org/mathscinet-getitem?mr=2537084
http://dx.doi.org/10.1016/0022-4049(94)90138-4
http://www.ams.org/mathscinet-getitem?mr=1255926
http://projecteuclid.org/euclid.jdg/1214460549
http://www.ams.org/mathscinet-getitem?mr=1617636
http://arxiv.org/abs/1304.4827
http://search.proquest.com//docview/303876774
http://search.proquest.com//docview/303876774
http://www.ams.org/mathscinet-getitem?mr=0125902
http://dx.doi.org/10.2307/1970056
http://www.ams.org/mathscinet-getitem?mr=0085460
http://www.ams.org/mathscinet-getitem?mr=0245043
http://www.ams.org/mathscinet-getitem?mr=0426001
http://www.ams.org/mathscinet-getitem?mr=0263112
http://dx.doi.org/10.1016/0040-9383(78)90033-2
http://www.ams.org/mathscinet-getitem?mr=508892
http://dx.doi.org/10.1007/s00222-002-0262-7
http://dx.doi.org/10.1007/s00222-002-0262-7
http://www.ams.org/mathscinet-getitem?mr=1953264
http://dx.doi.org/10.1023/B:SIMJ.0000048923.81718.a5
http://www.ams.org/mathscinet-getitem?mr=2123295
http://arxiv.org/abs/math.DG/0211159
http://arxiv.org/abs/math.DG/0307245
http://arxiv.org/abs/math.DG/0303109
http://dx.doi.org/10.2307/1994680
http://www.ams.org/mathscinet-getitem?mr=0219086


Nonnegatively curved 5–manifolds with almost maximal symmetry rank 1435

[39] X Rong, Positively curved manifolds with almost maximal symmetry rank, from “Pro-
ceedings of the Conference on Geometric and Combinatorial Group Theory, Part II”,
95 (2002) 157–182 MR1950889

[40] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401–487
MR705527

[41] C Searle, D Yang, On the topology of nonnegatively curved simply connected 4–
manifolds with continuous symmetry, Duke Math. J. 74 (1994) 547–556 MR1272983

[42] S Smale, On the structure of 5–manifolds, Ann. of Math. 75 (1962) 38–46
MR0141133

[43] W Spindeler, Fixpunkthomogene S1 –Wirkungen auf 5–Mannigfaltigkeiten nichtnega-
tiver Krümmung (2009)

[44] B Totaro, Cheeger manifolds and the classification of biquotients, J. Differential Geom.
61 (2002) 397–451 MR1979366

[45] B Wilking, Torus actions on manifolds of positive sectional curvature, Acta Math. 191
(2003) 259–297 MR2051400

[46] B Wilking, Nonnegatively and positively curved manifolds, from “Metric and compari-
son geometry” (J Cheeger, K Grove, editors), Surv. Differ. Geom. 11, Int. Press (2007)
25–62 MR2408263

[47] B Wilking, Group actions on nonnegatively and positively curved manifolds, Lecture
notes, Münster (2010)

[48] W Ziller, Examples of Riemannian manifolds with nonnegative sectional curvature,
from “Metric and comparison geometry” (J Cheeger, K Grove, editors), Surv. Differ.
Geom. 11, Int. Press (2007) 63–102 MR2408264

Mathematisches Institut, Westfälische Wilhelms-Universität Münster
Einsteinst. 62, D-48149 Münster, Germany

Department of Mathematics, Oregon State University
368 Kidder Hall, Corvallis, Oregon 97331, USA

f.galaz-garcia@uni-muenster.de, searleca@math.oregonstate.edu

http://wwwmath.uni-muenster.de/u/fernando.galaz-garcia/,
https://sites.google.com/site/catherinesearle1/home

Proposed: John Lott Received: 5 July 2012
Seconded: Tobias Colding, Gang Tian Revised: 8 November 2013

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1023/A:1021242512463
http://www.ams.org/mathscinet-getitem?mr=1950889
http://dx.doi.org/10.1112/blms/15.5.401
http://www.ams.org/mathscinet-getitem?mr=705527
http://dx.doi.org/10.1215/S0012-7094-94-07419-X
http://dx.doi.org/10.1215/S0012-7094-94-07419-X
http://www.ams.org/mathscinet-getitem?mr=1272983
http://dx.doi.org/10.2307/1970417
http://www.ams.org/mathscinet-getitem?mr=0141133
http://projecteuclid.org/euclid.jdg/1090351529
http://www.ams.org/mathscinet-getitem?mr=1979366
http://dx.doi.org/10.1007/BF02392966
http://www.ams.org/mathscinet-getitem?mr=2051400
http://www.ams.org/mathscinet-getitem?mr=2408263
http://www.ams.org/mathscinet-getitem?mr=2408264
mailto:f.galaz-garcia@uni-muenster.de
mailto:searleca@math.oregonstate.edu
http://wwwmath.uni-muenster.de/u/fernando.galaz-garcia/
https://sites.google.com/site/catherinesearle1/home
http://msp.org
http://msp.org



	1. Introduction
	2. Definitions and tools
	2.1. Transformation groups
	2.2. Alexandrov geometry
	2.3. Closed 3–manifolds with a smooth T2 action

	3. Nonnegatively curved 3– and 4–manifolds with almostmaximal symmetry rank
	3.1. Dimension 3
	3.2. Dimension 4

	4. Cohomogeneity three torus actions on simply connected 5–manifolds
	4.1. General considerations
	4.2. Possible isotropy groups
	4.3. The singular sets in M*=S3

	5. Restrictions on the orbit space imposed by nonnegative curvature
	5.1. Topology of orbit spaces with nonnegative curvature
	5.2. Upper bound on the number of isolated circle orbits in M5
	5.3. Possible components with finite isotropy
	5.4. Unknottedness of cycles

	6. Nonnegatively curved 5–manifolds with almost maximal symmetry rank
	6.1. Case A: M* is nonempty
	6.2. Case B: M*=S3

	7. Examples of isometric T2 actions on simply connected,nonnegatively curved 5–manifolds
	7.1. Examples of actions with codimension-2 fixed point set
	7.2. Examples of actions with finite isotropy

	References

