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A mirror theorem for the mirror quintic

YUAN-PIN LEE

MARK SHOEMAKER

The celebrated Mirror theorem states that the genus zero part of the A model
(quantum cohomology, rational curves counting) of the Fermat quintic threefold
is equivalent to the B model (complex deformation, variation of Hodge structure) of
its mirror dual orbifold. In this article, we establish a mirror-dual statement. Namely,
the B model of the Fermat quintic threefold is shown to be equivalent to the A model
of its mirror, and hence establishes the mirror symmetry as a true duality.

14N35; 53D45

0 Introduction

0.1 Mirror theorem for the Fermat quintic threefold

Let M be the Fermat quintic threefold defined by

M WD fx5
0 Cx5

1 Cx5
2 Cx5

3 Cx5
4 D 0g � P4:

The Greene–Plesser [18] mirror construction gives the mirror orbifold as the quotient
stack

W WD ŒM= xG�;

where xG Š .Z=5Z/3 is a (finite abelian) subgroup of the big torus of P4 acting via
generators e1; e2; e3 :

e1Œx0;x1;x2;x3;x4�D Œ�5x0;x1;x2;x3; �
�1
5 x4�

e2Œx0;x1;x2;x3;x4�D Œx0; �5x1;x2;x3; �
�1
5 x4�

e3Œx0;x1;x2;x3;x4�D Œx0;x1; �5x2;x3; �
�1
5 x4�

Assuming the validity of mirror symmetry for the mirror pair .M;W/, Candelas,
de la Ossa, Green and Parks (CDGP) made the celebrated calculation which in particular
predicted the number of rational curves in the Fermat quintic of any degree. This
calculation was verified in full generality only after many years of works, involving
many distinguished mathematicians and culminating in the proof by Givental [15] (as
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well as Liu, Lian and Yau [22] and Bertram [3]). The mathematical proof of the CDGP
Conjecture was termed the Mirror theorem for the Fermat quintic threefold.

In a way, what the Mirror theorem says is that the invariants from the complex defor-
mations of W match those from the Kähler deformations of M , up to a change of
variables termed the mirror map. In terms of Witten’s terminology [25], the above
mirror theorem states that the (genus 0) A model of M is equivalent to the B model
of W . This can be formulated in mathematical terms as saying that the genus zero
Gromov–Witten theory (GWT), or quantum cohomology, on M is equal to the variation
of Hodge structures (VHS) associated to the complex deformations of W .

The complex deformation of Calabi and Yau is unobstructed by Bogomolov, Tian
and Todorov. The dimension of the Kodaira–Spencer space can be identified as the
Hodge number h2;1 due to the Calabi–Yau property K ŠO . In this case h2;1.W/D

1. CDGP chose the one-dimensional deformation family of hypersurfaces fW g D

fQ .x/D 0g � ŒP4= xG�, where

(0.1.1) Q .x/D x5
0 Cx5

1 Cx5
2 Cx5

3 Cx5
4 � x0x1x2x3x4:

Hence  D 1 is the maximally degenerate moduli point. We note that it is often
convenient to use t D�5 log as the variable. By local Torelli for Calabi–Yau, the
deformation is embedded into VHS, which then gives all information about the complex
deformation. The Kähler deformation is given by genus zero GWT along the “small”
variable t , which is the dual coordinate for the hyperplane class H .

We can rephrase the above in much more precise terms. Both genus zero GWT and
VHS can be described by differential systems associated to flat connections. For GWT,
it is the Dubrovin connection; for VHS the Gauss–Manin connection. The definitions
can be found in Sections 1 and 4 respectively. Therefore, we can phrase the Mirror
theorem for the Fermat quintic in the following form.

Theorem 6.6 The fundamental solutions of the Gauss–Manin connection for Wt are
equivalent, up to a mirror map, to the fundamental solutions of the Dubrovin connection
for M , when restricted to H 2.M /.

0.2 Mirror theorem for the mirror quintic

Theorem 6.6 can be stated suggestively as

A model of M � B model of W .

In order for the mirror symmetry to be a true duality, one will also have to show that

B model of M � A model of W .
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This is the task (at the tree level) we set for ourselves in this paper.

The first thing we note is that W is an orbifold. Thus we must replace the singular
cohomology by the Chen–Ruan cohomology and the usual GWT by the orbifold GWT.
These are defined in Section 1.

Upon a closer look, however, there is a serious technical issue. In the B model of M ,
the Kodaira–Spencer space is of dimension 101 and the VHS of H 3.M / is a system of
rank 204, thus a calculation of the full Gauss–Manin connection for M is unfeasible.
As a first step however, we choose a one-dimensional deformation family fMtg defined
by the vanishing of (0.1.1), reinterpreted as a family in P4 . Similarly, in the A model
of W , we have h

1;1
CR .W/D 101, where the subscript denotes Chen–Ruan cohomology.

We choose the one-dimensional subspace of the complexified Kähler moduli spanned
by the hyperplane class and call the coordinate t as before. These one-dimensional
families are arguably the most natural and the most important dimension.

With these choices, the Gauss–Manin system for M still has rank 204, but over a
one-dimensional base. The fundamental solution is a matrix of size 204 by 204 in
one variable. The Dubrovin connection on H even

CR .W/ likewise has the fundamental
solution matrix of size 204 by 204. Here 204D dim H even

CR .W/.

The main result of this paper is the following theorem.

Theorem 6.8 The fundamental solutions of the Gauss–Manin connection for fMtg are
equivalent, up to a mirror map, to the fundamental solutions of the Dubrovin connection
for W restricted to t 2H 2.W/.

0.3 Outline of the paper

We have in mind the readership with diverse background. For convenience, we have
included short introductions in Sections 1 and 4 to orbifold Gromov–Witten theory
and the theory of variation of Hodge structures, recalling only facts pertinent to our
presentation. Sections 2 and 3 present the A model calculation for W . We first
calculate the genus zero Gromov–Witten theory for ŒP4= xG� in Section 2; we then
calculate the genus zero Gromov–Witten theory for W in Section 3. In Section 5
we present a reformulation of the results from Doran, Greene and Judes [14], and
summarize our B model calculation for Mt . In the last section, we prove our main
result, showing the validity of the mirror-dual statement of the Mirror theorem. For the
benefit of our dual readership, we include a derivation of Theorem 6.6 from the usual
statement of the Mirror theorem.

A related result in a more general context is obtained by Iritani [21].
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1 Quantum orbifold cohomology

In this section we give a brief review of Chen–Ruan cohomology and quantum orbifold
cohomology, with the parallel goal of setting notation. A more detailed general review
can be found by Coates, the first author, Corti and Tseng in [10].

Convention 1.1 We work in the algebraic category. The term orbifold means “smooth
separated Deligne–Mumford stack of finite type over C”.

The various dimensions are complex dimensions. On the other hand, the degrees of
cohomology are all in real/topological degrees.

Unless otherwise stated all cohomology groups have coefficients in C .

1.1 Chen–Ruan cohomology groups

Let X be a stack. Its inertia stack IX is the fiber product

IX //

��

X

�
��

X � // X �X ;

where � is the diagonal map. The fiber product is taken in the 2–category of stacks. One
can think of a point of IX as a pair .x;g/ where x is a point of X and g 2AutX .x/.
There is an involution I W IX ! IX which sends the point .x;g/ to .x;g�1/. It is
often convenient to call the components of IX for which g ¤ e the twisted sectors.

If X D ŒV =G� is a global quotient of a nonsingular variety V by a finite group G , IX
takes a particularly simple form. Let SG denote the set of conjugacy classes .g/ in G ,
then

I ŒV =G�D
a

.g/2SG

ŒV g=C.g/�:

Geometry & Topology, Volume 18 (2014)
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The Chen–Ruan orbifold cohomology groups H�CR.X / [8] of a Deligne–Mumford
stack X are the cohomology groups of its inertia stack

H�CR.X / WDH�.IX /:

Let .x;g/ be a geometric point in a component Xi of IX . By definition g 2AutX .x/.
Let r be the order of g . Then the g–action on TxX decomposes into eigenspaces

TxX D
M

0�j<r

Ej ;

where Ej is the subspace of TxX where g acts by multiplication by exp.2�
p
�1j=r/.

Define the age of Xi to be

age.Xi/ WD

r�1X
jD0

j

r
dim.Ej /:

This is independent of the choice of geometric point .x;g/ 2 Xi .

Let ˛ be an element in H p.Xi/�H�.IX /. Define the age-shifted degree of ˛ to be

degCR.˛/ WD pC 2 age.Xi/:

This defines a grading on H�CR.X /.

When X is compact the orbifold Poincaré pairing is defined by

.˛1; ˛2/
X
CR WD

Z
IX

˛1[ I�.˛2/;

where ˛1 and ˛2 are elements of H�CR.X /. It is easy to see that when ˛1 and ˛2 are
homogeneous elements, .˛1; ˛2/CR ¤ 0 only if degCR.˛1/C degCR.˛2/D 2 dim.X /.

1.2 Orbifold Gromov–Witten theory

1.2.1 Orbifold Gromov–Witten invariants We follow the standard references by
Chen and Ruan [7] and Abramovich, Graber and Vistoli [1] of orbifold Gromov–Witten
theory.

Given an orbifold X , there exists a moduli space SMg;n.X ; d/ of stable maps from
n–marked genus g prestable orbifold curves to X of degree d 2 H2.X IQ/. Each
source curve .C;p1; : : : ;pn/ has nontrivial orbifold structure only at the nodes and
marked points: at each (orbifold) marked point it is a cyclic quotient stack and at each
node a balanced cyclic quotient, that is, étale locally isomorphic to�

Spec
�

CŒx;y�

.xy/

�.
�r

�
;
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where � 2 �r acts as .x;y/ 7! .�x; ��1y/. The maps are required to be representable
at each node.

Each marked point pi is étale locally isomorphic to ŒC=�ri
�. There is an induced

homomorphism
�ri
! AutX .f .pi//:

Maps in SMg;n.X ; d/ are required be representable, which amounts to saying that these
homomorphisms be injective. For each marked point pi , one can associate a point
.xi ;gi/ in IX where xiDf .pi/, and gi 2AutX .xi/ is the image of exp.2�

p
�1=ri/

under the induced homomorphism.

Given a family C ! S of marked orbifold curves, there may be nontrivial gerbe
structure above the locus defined by the i th marked point. For this reason there is
generally not a well-defined map

evi W
SMg;n.X ; d/! IX :

However, as explained in [1] and [10, Section 2.2.2], it is still possible to define maps

ev�i W H
�
CR.X /!H�. SMg;n.X ; d//

which behave as if the evaluation maps evi were well defined.

Let X denote the coarse underlying space of the stack X . There is a reification map

r W SMg;n.X ; d/! SMg;n.X; d/;

which forgets the orbifold structure of each map. For each marked point there is an
associated line bundle, the i th universal cotangent line bundle,

Li

��
SMg;n.X; d/;

with fiber T �pi
C over ff W .C;p1; : : : ;pn/ ! X g. We define the i th  –class by

 i WD r�.c1.Li//.

As in the nonorbifold setting, there exists a virtual fundamental class Œ SMg;n.X ; d/�vir .
Orbifold Gromov–Witten invariants for X are defined as integrals

h˛1 
k1 ; : : : ; ˛n 

kni
X
g;n;d D

Z
Œ SMg;n.X ;d/�vir

nY
iD1

ev�i .˛i/ 
ki

i ;

where ˛i 2H�CR.X /.
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Let SMg;.g1;:::;gn/.X ; d/ denote the open and closed substack of SMg;n.X ; d/ such
that evi maps to a component Xgi

of IX . The space SMg;.g1;:::;gn/.X ; d/ has (com-
plex) virtual dimension

(1.2.1) nC .g� 1/.dimX � 3/Chc1.TX /; di �
nX

iD0

age.Xgi
/:

In other words, for homogeneous classes ˛i 2H�.Xgi
/ the Gromov–Witten invariants

h˛1; : : : ; ˛ni
X
g;n;d

will vanish unless

nX
iD1

degCR.˛i/D 2
�
nC .g� 1/.dimX � 3/Chc1.TX /; di

�
:

1.2.2 Quantum cohomology and the Dubrovin connection Let fTigi2I be a basis
for H�CR.X / and fT igi2I its dual basis. We can represent a general point in coordinates
by

tD
X

i

t iTi 2H�CR.X /:

Gromov–Witten invariants allow us to define a family of product structures parameter-
ized by t in a formal neighborhood of 0 in H�CR.X /. The (big) quantum product �t is
defined as

(1.2.2) ˛1 �t ˛2 WD

X
d

X
n�0

X
i

qd

n!
h˛1; ˛2;Ti ; t; : : : ; tiX0;3Cn;dT i ;

where the first sum is over the effective curve classes of the Mori cone and the vari-
ables qd are in an appropriate Novikov ring ƒ used to guarantee formal convergence
of the sum. The WDVV equations (see Cox and Katz [11, Section 8.2.3] and [7]) imply
the associativity of the product. The small quantum product is defined by restricting the
parameter of the quantum product to divisors t 2H 2.X / supported on the nontwisted
sector.

One can interpret �t as defining a product structure on the tangent bundle TH�CR.X Iƒ/,
such that for a fixed t the quantum product defines a (Frobenius) algebra structure on
TtH

�
CR.X Iƒ/. This can be rephrased in terms of the Dubrovin connection, defined by

r
z
@=@t i

�X
j

aj Tj

�
D

X
j

@aj

@t i
Tj �

1

z

X
j

aj Ti �t Tj :

This defines a z–family of connections on TH�CR.X Iƒ/.
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Remark 1.2 Note that when t, Ti and Tj are in H even
CR .X /, a simple dimension count

using (1.2.1) shows that Ti �t Tj will be also be supported in even degree. Thus rz

restricts to a connection on THeven
CR .X Iƒ/. When restricted to THeven

CR .X Iƒ/, the
quantum product is commutative.

Remark 1.3 For the purpose of this paper, we clarify here what we mean by “A

model of X ”. Let H WD H even
CR .X Iƒ/. The (genus zero part of the) A model of X

is the tangent bundle TH with its natural (flat) fiberwise pairing and the Dubrovin
connection restricted to H

1;1
CR .X /.

The commutativity and associativity of the quantum product implies that the Dubrovin
connection is flat. The topological recursion relations allow us to explicitly describe
solutions to rz . Define

(1.2.3) si.t; z/D Ti C

X
d

X
n�0

X
j

qd

n!

�
Ti

z� 1

;T j ; t; : : : ; t
�X

0;2Cn;d

Tj ;

where 1=.z� 1/ should be viewed as a power series in 1=z . The sections si form
a basis for the rz –flat sections (see eg [11, Proposition 10.2.1] for the proof in the
nonorbifold setting, the proof relies on the topological recursion relations, which also
hold for orbifold targets by Tseng [24]). Thus we obtain a fundamental solution matrix
S D S.t; z/D .sij / given by

(1.2.4) sij .t; z/D .Ti ; sj /
X
CR:

If one restricts the base to divisors t 2H 2.X /, the divisor equation [1, Theorem 8.3.1]
allows a substantial simplification of the formula for si :

si.t; z/jt2H 2.X / D et=z
�

Ti C

X
d>0

X
j

qded t
�

Ti

z� 1

;T j

�X
0;2;d

Tj

�
1.3 Generating functions

Given an orbifold X , Givental’s (big) J –function is the first row vector of the fun-
damental solution matrix, obtained by pairing the solution vectors of the Dubrovin
connection with 1:

JX
big.t; z/ WD

X
i

.si.t/; 1/XCRT i

D 1C
X

d

X
n�0

X
i

qd

n!

�
Ti

z� 1

; 1; t; : : : ; t
�X

0;2Cn;d

T i

D 1C
t
z
C

X
d

X
n�0

X
i

qd

n!

�
Ti

z.z� 1/
; t; : : : ; t

�X
0;1Cn;d

T i
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The last equality follows from the string equation. It is also easy to see that the
fundamental solution matrix S.t; z/ D .sij / of (1.2.4) is equal to .Tj ; zr

z
@=@t i Jbig/.

As such, Jbig encodes all information about quantum cohomology.

However, the big J –function is often impossible to calculate directly. In the nonorbifold
Gromov–Witten theory, when the cohomology is generated by divisors, the small
J –function proves much more computable, while powerful enough to solve many
problems; see eg Givental [15; 16]. The small J –function for a nonsingular variety X

is a function on t 2H 2.X /:

J X
small.t; z/ WD J X

big.t; z/jt2H 2.X /

D et=z
�

1C
X
d>0

X
i

qded t
�

Ti

z� 1

; 1

�X

0;2;d

T i

�
In orbifold theory, however, the Chen–Ruan cohomology is never generated by divisors
except for trivial cases, due to the presence of the twisted sectors. Therefore, the
knowledge of the small J –function alone is often not enough to reconstruct significant
information about the orbifold quantum cohomology. (Note however that in [10, Sec-
tion 5] one way was found to circumvent this obstacle for weighted projective spaces.)

We propose the following definition of small J –matrix for orbifolds.

Definition 1.4 For t 2H 2.X /, define JX
g as the cohomology-valued function

(1.3.1) JX
g .t; z/jt2H 2.X / WD

X
i

.si.t/jt2H 2.X /; 1g/
X
CRT i

D et=z
�

1gC

X
d>0

X
i

qded t
�

Ti

z� 1

; 1g

�X
0;2;d

T i

�
;

where 1g is the fundamental class on the component Xg of IX .

The small J –matrix is the matrix-valued function

JX
small.t; z/D ŒJ

X
g;i.t; z/�g2G;i2I D Œ.J

X
g .t; z/;Ti/

X
CR�g2G;i2I ;

where G is the index set of the components of IX , I the index for the basis fTigi2I

of H�CR.X / and JX
g;i.t; z/ the coefficient of T i in JX

g .t; z/.

Remark 1.5 We believe that the small J –matrix is the right replacement of the small
J –function in the orbifold theory, for its computability and structural relevance.

Structurally (1.2.4) shows that one needs to specify “two-points” (ie a matrix) in
the generating function in order to form the fundamental solutions of the Dubrovin
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connection. Ideally, one would like to get the full jI j� jI j fundamental solution matrix
S D zrJbig restricted to t 2H 2.X /. This would give all information about the small
quantum cohomology. Unfortunately, a direct computation of S.t/jt2H 2.X / is mostly
out of reach in the orbifold theory.

In the (nonorbifold) case when H�.X / is generated by divisors, as shown by Givental,
the small J –function is often enough to determine the essential information for small
quantum cohomology. One can think of the small J –function as a a submatrix of size
1� jI j, indeed the first row vector, of S .

However, in the orbifold theory, the above matrix is not enough to determine useful
information about small quantum cohomology except in the trivial cases. We believe
that the smallest useful submatrix of S is the small J –matrix (of size jGj�jI j) defined
above. We will show that it is both computable and relevant to the structure of orbifold
quantum cohomology. In this paper we are able to calculate the small J –matrix of the
toric orbifold Y D ŒP4= xG�, and we use a submatrix of the small J –matrix JW

small to
fully describe the solution matrix S.t/jt2H 2.X / of the mirror quintic W .

2 The J –function of ŒP 4= xG �

2.1 Inertia orbifold of ŒP 4= xG �

Let Œx0;x1;x2;x3;x4� be the homogeneous coordinates of P4 . We denote

� WD �5 D e2�
p
�1=5:

Let the group xG Š .Z=5Z/3 be a (finite abelian) subgroup of the big torus of P4

acting via generators e1; e2; e3 :

e1Œx0;x1;x2;x3;x4�D Œ�x0;x1;x2;x3; �
�1x4�

e2Œx0;x1;x2;x3;x4�D Œx0; �x1;x2;x3; �
�1x4�

e3Œx0;x1;x2;x3;x4�D Œx0;x1; �x2;x3; �
�1x4�

(2.1.1)

Let Y D ŒP4= xG�. As explained in Section 0 this orbifold plays an instrumental role
in what follows so we give here a detailed presentation of its corresponding inertia
orbifold.

Geometry & Topology, Volume 18 (2014)
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The group xG can be described alternatively as follows. Let

G WD

�
.�r0 ; : : : ; �r4/

ˇ̌̌̌ 4X
iD0

ri � 0 .mod 5/

�
;

xG ŠG=h.�; : : : ; �/i:

The xG –action on P4 comes from coordinatewise multiplication. By a slight abuse of
notation, we will represent a group element g 2G by the power of � in each coordinate:

G D

�
.r0; : : : ; r4/

ˇ̌̌̌ 4X
iD0

ri � 0 .mod 5/; 0� ri � 4 for all i

�
For an element g 2G , denote Œg� the corresponding element in xG .

Fix an element xg 2 xG . Let g D .r0; : : : ; r4/ 2G be such that Œg�D xg . Define

I.g/ WD fj 2 f0; 1; 2; 3; 4g j rj D 0gI

then
P4

g WD fxj D 0gj…I.g/ � P4

is a component of .P4/xg . From this we see that each element g 2G such that Œg�D xg
corresponds to a connected component Yg WD ŒP4

g=
xG� of IY . Note that if g has no

coordinates equal to zero then P4
g is empty, and so is Yg . This gives us a convenient

way of indexing components of IY .

We summarize the above discussions in the following lemma.

Lemma 2.1 We have
IY D

a
g2S

Yg;

where
Yg D f.x; Œg�/ 2 IY j x 2 ŒP4

g=
xG�g

is a connected component and S denotes the set of all g D .r0; : : : ; r4/ such that at
least one coordinate ri is equal to 0.

Consequently, a convenient basis fTig for H�CR.Y/ is[
g2S

f1g; 1gH; : : : ; 1gH dim.Yg/g:

Geometry & Topology, Volume 18 (2014)
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2.2 J –functions

Recalling a basic fact about global quotient orbifolds, a map of orbifolds f W C! ŒP4= xG�

can be identified with a principal xG –bundle C and a xG –equivariant map zf W C ! P4

such that the following diagram commutes:1

(2.2.1)

C

�C

��

zf // P4

�P4

��
C

f

// ŒP4= xG�

Lemma 2.2 (i) The map f is representable if and only if C is a nodal curve with
each irreducible component a smooth variety.

(ii) There do not exist representable orbifold morphisms f W C! Y from a genus 0

orbifold curve C with only one orbifold marked point.

Proof Part (i) follows immediately from the definition of representability.

Part (ii) follows from (i): In the case C is irreducible, this is because there do not exist
smooth covers of genus 0 orbifold curves with only one point with nontrivial isotropy.
An induction argument then shows that the same is true of reducible curves with only
one orbifold marked point (we assume always that our nodes be balanced).

Let H be the hyperplane class on P4 . Let L be any fixed choice of line bundle on Y
such that ��

P4.L/DH . Even though there are as many as j xGj choices of L, they are
topologically equivalent and will serve the same purpose in our discussion. By (2.2.1),
we have the following equality:Z

C
f �.L/D

1

125

Z
C

zf �.H /

We define the degree of a map f W C! Y by

d WD
1

125

Z
C

zf �.H /:

Given hD .r0.h/; : : : ; r4.h// and g D .r0.g/; : : : ; r4.g// in G , this also allows us to
determine necessary conditions on the triple .d; h;g/ such that

SM0;h;g.Y; d/ WD SM0;2.Y; d/\ ev�1
1 .1h/\ ev�1

2 .1g/

is nonempty.

1Technically f is identified with an equivalence class of such objects.
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Proposition 2.3 The space SM0;h;g.Y; d/ is nonempty only if

(i) Œh�D Œg��1 in xG ,

(ii) ri.h/ C ri.g/ � 5d .mod 5/ or equivalently hdi D h.ri.h/ C ri.g//=5i for
0� i � 4.

Proof We will first consider the case where the source curve is irreducible. Assume
that there exists a map ff W C!Yg in SM0;h;g.Y; d/ such that C is nonnodal. Consider
the principal xG –bundle �C W C ! C . After choosing a generic base point x 2 C and a
point zx in ��1

C
.x/, we obtain a homomorphism �W �1.C;x/! xG . We can specify

generators �1 and �2 of �1.C;x/ such that �i is the class of loops wrapping once
around pi in the counterclockwise direction. Then �.�1/ D Œh� and �.�2/ D Œg�.
Because �1 ��2D 1 in �1.C;x/, it must be the case that Œh� � Œg�D 1 in xG . This proves
(i) for C nonnodal.

Next we will show (ii) in the case where C is nonnodal. To see this, note that the
only smooth connected cover of C is isomorphic to P1 . This cover is of degree
r WD j Œh�j, so C must consist of j xGj=r components, each isomorphic to P1 . In the
case hD .0; 0; 0; 0; 0/, this implies that C has 125 components and so d is an integer.
Thus condition (ii) holds trivially.

If h¤ .0; 0; 0; 0; 0/, then r D 5. First note that (i) implies that ri.h/Cri.g/ .mod 5/ is
the same for any i . Thus, we only need to prove the statement for one i . Let C 0 Š P1

be one component of C and let

f 0 WD zf jC 0 W C
0
! P4

be the hŒh�i–equivariant morphism which is induced from the xG –equivariant morphism
zf W C ! P4 . .f 0/�.O.1// is a degree 5d line bundle on C 0 D P1 . Therefore, any

lifting of the torus action on P1 will have weights .w;wC 5d/ at the fibers of the
two fixed points. Call these two fixed points p0

1
and p0

2
. Since hŒh�i is a subgroup of

the torus, the characters of the Œh�–action at the fibers of the two fixed points must be
.�w; �wC5d /, for some w in f0; : : : ; 4g.

Let q1 WD f
0.p0

1
/ and q2 WD f

0.p0
2
/. By assumption, q1 2 P4

h
, q2 2 P4

g . Choose
an i 2 I.h/ and j 2 I.g/ such that i ¤ j , xi.q1/¤ 0 and xj .q2/¤ 0. The action
of Œh� on the fiber over q1 and q2 can be chosen to be .�ri .h/; ��rj .h//. By the above
weight/character arguments,

ri.h/� .�rj .h//� 5d .mod 5/:

Since j 2 I.g/ and i 2 I.h/,

rj .h/D rj .h/� ri.h/D ri.g/� rj .g/D ri.g/;
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so we can rewrite the above as ri.h/C ri.g/� 5d .mod 5/.

The nodal case follows similarly. Consider a nodal curve f W C! Y . Let C1; : : : ; Cn

be the irreducible components connecting p1 to p2 . It follows from Lemma 2.2, each
of these components will have two orbifold points (at either nodes or marked points)
and these will be the only points in C with nontrivial orbifold structure. The above
calculation for irreducible components plus the condition that all nodes be balanced in
this situation then implies the claim.

Once condition (i) is satisfied, the degree of maps allowed is thus determined by the
quantity

d.h;g/ WD h.ri.h/C ri.g//=5i:

Note that this number remains constant as i varies.

We will define generating functions related to the J –functions JY
g which isolate the

2–point invariants of SM0;h;g.Y; d/. Let

S.d; h/ WD f.b; k/ j 0< b � d; 0� k � 4; hbi D rk.h/=5g;

c.d; h/ WD jS.d; h/j:

Given h;g 2G such that Œh�D Œg��1 , define

Zh;g WD

X
d

Qc.d;h/
X

i

�
T h

i

z� 1

; 1g

�Y
0;2;d

T i
h;

where fT h
i g is a basis for H�.Yh/ and fT i

h
g is the dual basis under the Chen–Ruan

orbifold pairing. (The motivation behind this choice of exponent for Q will become
clear in what follows: it is chosen to simplify the recursion satisfied by our generating
function.) Notice that by the above lemma, the only degrees which contribute to Zh;g

are d such that hdi D d.h;g/. Finally, let

Zg WD 1gC

X
fhjŒh�DŒg��1g

Zh;g:

Let T D .C�/5 (or C� ) act on C5 with (generic) weights ��0; : : : ;��4 . This
induces an action on P4 and Y . Furthermore there is an induced T –action on the
inertia orbifold IY and on SM0;2.Y; d/. We will consider an equivariant analogue ZT

g

of Zg defined by replacing the coefficients of Zg with their equivariant counterparts:

ZT
h;g WD

X
d;i

Qc.d;h/

�
T h

i

z� 1

; 1g

�Y;T
0;2;d

T i
h; ZT

g WD 1gC

X
fhjŒh�DŒg��1g

ZT
h;g;
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where fT h
i g is now a basis of the equivariant cohomology H�

T
.Yh/.

Consider the cohomology valued functions

(2.2.2) Y T
h;g WD

X
fd jhdiDd.h;g/g

Qc.d;h/ 1h�1Q
.b;k/2S.d;h/.bzCH ��k/

;

where

h�1
WD .�r0.h/; : : : ;�r4.h// .mod 5/:

As with Z , let

(2.2.3) Y T
g WD 1gC

X
fhjŒh�DŒg��1g

Y T
h;g:

Theorem 2.4 We have the equality in equivariant cohomology

ZT
g D Y T

g :

In particular, taking the nonequivariant limit, we conclude that Zg D Yg (where Yg is
the nonequivariant limit �i 7! 0 of Y T

g ).

Remark 2.5 For those who are familiar with the computation of the small J –function
for toric manifolds [16], the generating functions Z , as indicated above, play the role
of the J –function. The hypergeometric-type functions Y then take the place of the
I –function. Recall that one way of formulating the computation of genus zero GW
invariants is to say that the J –function is equal to the I –function after a change of
variables, called the mirror map. In the present case, the mirror map is trivial.

2.3 Proof of Theorem 2.4

The proof follows from a localization argument similar in spirit to that in [16]. The
strategy is to apply the Localization Theorem (after inverting the equivariant characters
�0; : : : ; �4 in the ring H�CR;T .Y/) on the equivariant generating functions to determine
a recursion which is satisfied by ZT

g . This recursion relation in fact determines ZT
g

up to the constant term in the Novikov variables. We then show that Y T
g satisfies the

same recursion. Since ZT
g and Y T

g have the same initial term and the same recursion
relation, ZT

g D Y T
g . A good exposition for localization in orbifold Gromov–Witten

theory appropriate for this article is Liu [23].
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2.3.1 A lemma on c.d; h/ We will first give an interpretation of the seemingly
strange exponents c.d; h/ in the definition of Zh;g . This choice of exponents is used
to simplify the recursion for ZT

g .

Lemma 2.6 Let

md D dim. SM0;h;g.Y; d//:

Then if Œh�D Œg��1 and hdi D d.h;g/, we have

c.d; h/Dmd � dim.Yh/C 1:

Proof The standard formula for virtual dimension gives

md D 5d C 3� age.h/� age.g/:

Note that for any presentation gD .r0.g/; : : : ; r4.g//, age.g/D
4P

iD0

ri.g/=5. Because
Œh�D Œg��1 , we have that

ri.g/� rj .g/� rj .h/� ri.h/ .mod 5/:

This allows us to write

rk.g/

5
D

�
�rk.h/=5C d.h;g/ d.h;g/� rk.h/=5;

1� rk.h/=5C d.h;g/ d.h;g/ < rk.h/=5;

which gives

md D 5d C 3� 5d.h;g/�
ˇ̌
fk j d.h;g/ < rk.h/=5g

ˇ̌
D 5bdcC

ˇ̌
fk j d.h;g/� rk.h/=5g

ˇ̌
� 2:

Now, for a fixed k ,ˇ̌
fb j 0� b � d; hbi D rk.h/=5g

ˇ̌
D

�
bdc d.h;g/ < rk.h/=5;

1Cbdc d.h;g/� rk.h/=5:

Summing over all k , we get that

md D
ˇ̌
f.b; k/ j 0� b � d; 0� k � 4; hbi D rk.h/=5g

ˇ̌
� 2:

Finally,

dim.Yg/D
ˇ̌
fk j 0D rk.h/=5g

ˇ̌
� 1;

which gives the desired equality.
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2.3.2 Setting up the localization The action of T on SM0;h;g.Y; d// allows us to
reduce integrals on the moduli space to sums of integrals on the fixed point loci with
respect to the torus action. As usual, this reduces us to considering integrals of certain
graph sums (see Graber and Pandharipande [17]). The generating function ZT

g consists
of integrals where the first insertion is the pullback of a class ona

fhjŒh�DŒg��1g

Yh:

We will now express Zg in terms of a new basis for this space which interacts nicely
with the localization procedure. For each coordinate 0� i � 4, i is in I.h/ for exactly
one h in fh j Œh�D Œg��1g. (Recall that the presentations h2 fh j Œh�D Œg��1g index the
fixed point sets of P4 with respect to Œh�). Then for i 2 I.h/, let qi be the T –fixed
point of Yh obtained by setting all coordinates fj j j ¤ ig equal to zero. Then, for
i 2 I.h/, let

�i D 1h �

Y
j2I.h/�i

.H ��j /:

If we pair ZT
g with �i , we obtain the function

ZT
i;g D

ıi;I.g/

125
C

X
d

Qc.d;h/

�
�i

z� 1

; 1g

�Y;T
0;2;d

where ıi;I.g/ equals 1 if i 2 I.g/ and 0 otherwise. The fixed point set of Yh consists
of fqj j j 2 I.h/g. Note that under the inclusion ij W fqj g ! Yh , H pulls back to �j .
Therefore i�j .�i/ D 0 unless i D j . From this we see that the coefficients of ZT

i;g

consist of integrals over graphs such that the first marked point is mapped to qi .

We divide the remaining graphs into two types: those in which the first marked point is on
a contracted component, and those in which the first marked point is on a noncontracted
component.

Claim 2.7 There is no contribution from graphs of the first type.

Proof The proof is a dimension count. We will show that the contributions from
graphs of the first type must contain as a multiplicative factor integrals of the formR

M ‰ such that degC.‰/ > dim.M /, and hence the vanishing claim.
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The complex degree of �i is dim.Yh/, and so the invariant h�i 
k
1
; 1gi

Y;T
0;2;d

vanishes
unless k �md � dim.Yh/. Therefore we can simplify our expression for ZT

i;g :

ZT
i;g D

ıi;I.g/

125
C

X
d

Qc.d;h/

�
�i

z� 1

; 1g

�Y;T
0;2;d

D
ıi;I.g/

125
C

X
d

Qc.d;h/ 1

z

1X
kD0

h�i. 1=z/
k ; 1gi

Y;T
0;2;d

D
ıi;I.g/

125
C

X
d

Qc.d;h/ 1

z

1X
kDc.d;h/�1

h�i. 1=z/
k ; 1gi

Y;T
0;2;d

D
ıi;I.g/

125
C

X
d

�
Q

z

�c.d;h/
�
�i 

c.d;h/�1
1

1� . 1=z/
; 1g

�Y;T
0;2;d

Here the third equality follows from Lemma 2.6.

Now consider a fixed point graph M� such that p1 is on a contracted component. At
the level of virtual classes, we can write

(2.3.1) ŒM� �D F.�/ �
Y
k

ŒMvk
�;

where each Mvk
represents a contracted component of the graph isomorphic to a

component of SM0;n.BZr ; 0/ and F.�/ is a factor determined by � . Let Mv0
be the

component containing p1 . Mv0
contains at most 2 orbifold marked points, and the

number of nonorbifold marked points is restricted by d . In particular, each nonorbifold
marked point corresponds to a (nonorbifold) edge of the dual graph. Each of these
edges must have degree at least 1, so if the total degree of the map is d , then there
can be at most bdc nontwisted marked points. Thus the dimension of Mv0

is at most
bdc� 1. Now, the proof of Lemma 2.6 shows that

c.d; h/� 1D 5bdcC
ˇ̌
fk j rk.h/=5� d.h;g/g

ˇ̌
� 2� dim.Yh/:

But dim.Yh/ is exactly jfk j rk.h/D 0gj � 1, which implies that

c.d; h/� 1� 5bdc� 1:

If d � 1, the above quantity is strictly greater than bdc�1. Because there do not exist
graphs such that p1 is on a noncontracted component for d < 1, we have that for M� ,
c.d; h/�1 � dim.Mv0

/. But  c.d;I /�1
1

must therefore vanish on these graphs, proving
the claim.
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2.3.3 Contributions from a graph of the second type Now we consider the con-
tribution to h�i=.z � 1/; 1gi

Y;T
0;2;d

from a particular graph � of the second type. In
particular, we know that p1 is on a contracted component. Call this component C0 and
denote the rest of the graph � 0 . � 0 and C0 connect at a node p0 , which maps to some
qk 2 Y . Let d 0 be the degree of one connected component of the principal xG –bundle
above C0 . We know from Proposition 2.3 that hd 0i D rk.h/=5. By identifying p0 2 � 0

as a marked point (replacing p1 on C0 ), we can view M� 0 as a fixed point locus in
SM0;h0;g.Y; d � d 0/, where Œh� D Œh0�, but rk.h

0/ D 0. Our plan will be to express
integrals on M� in terms of integrals on M� 0 , thus reducing the calculation to one
involving maps of strictly smaller degree. This will give us a recursion.

The factor F.�/ in (2.3.1) is composed of three contributions: the automorphisms of
the graph � itself, a contribution from each edge of � (the noncontracted components
of curves in M� ) and a contribution from certain flags of � (the nodes of curves
in M� ). The edge corresponding to C0 maps to the line qik Š P1= xG connecting qi

and qk . (Note that the xG–action is a subgroup of the big torus .C�/4 of P4 , xG
naturally acts on .C�/4 orbits.) The degree of the map upstairs is 5d 0 . Thus there
is a contribution of 1=.5d 0/ to F.�/ from the automorphism of M� coming from
rotating the underlying curve. The edge also contributes a factor of 1=25 due to the
fact that qik is a .Z=5Z/2 –gerbe. So the total contribution to F.�/ from the edge
containing p1 is 1=.125d 0/. The contribution from the node p0 is 125=r . (Recall
r D j Œh�j, which is equal to the order of the isotropy at p0 .) There will be an additional
factor of r appearing when we examine deformations of M� , thus canceling the r in
the denominator. We finally arrive at the relation

ŒM� �D F.�/ �
Y

vertices v2�

ŒMv �D
F.� 0/

d 0
�

Y
vertices v2� 0

ŒMv �D
1

d 0
ŒM� 0 �:

By examining the localization exact sequence (see [17]), we have the identity

(2.3.2) e.N�/

D
e.H 0.C0; f

�TY/m/.node smoothing at p0/

e.H 0.p0; f �TY/m/e.H 1.C0; f �TY/m/e..H 0.C0;T C0/m/
e.N� 0/;

where e denotes the equivariant Euler class and as is standard we identify certain vector
bundles with their fibers. Here the superscript m denotes the moving part of the vector
bundle with respect to the torus action. Let us calculate the factors in (2.3.2).

Node smoothing at p0 The node smoothing contributes a factor of�
�k ��i

rd 0
�
 0

1

r

�
D

1

r

�
�k ��i

d 0
� 01

�
;
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where  0
1

is the  –class corresponding to p0
1

on M 0
�

. This factor of r is what cancels
with the previous factor mentioned above.

The equivariant Euler class e.H 0.C0;T C0/
m/ Let C be the principal xG –bundle

over C0 induced from f jC0
W C0 ! ŒP4= xG�. As was argued in Proposition 2.3, C

consists of .j xGj=r/ copies of P1 . Let C0 be one of these copies. Then C0 is a
principal hŒh�i–bundle over C0 and

H 0.C0;T C0/DH 0.C0;T C0/
hŒh�i:

The hŒh�i–invariant part of H 0.C0;T C0/ is one-dimensional. It is fixed by the torus
action, thus the moving part of H 0.C0;T C0/ is trivial and e.H 0.C0;T C0/

m/D 1.

The equivariant Euler class e.H 1.C0;f
�T Y/m/ Let C0 be as in the previous

paragraph. Then

H 1.C0; f
�TY/DH 1.C0; zf

�T P4/hŒh�i D 0:

Therefore e.H 1.C0; f
�TY/m/D 1.

The equivariant Euler class e.H 0.C0;f
�T Y/m/ To calculate this term, note that

H 0.C0; f
�TY/m Š .H 0.C0; zf

�T P4/hŒh�i/m:

We will look at the hŒh�i invariant part of the short exact sequence

0!C!H 0.OC0
.rd 0//˝V !H 0. zf �T P4/! 0;

where P4 D P .V / and V Š C5 . The exact sequence comes from the pullback of
the Euler sequence for P4 to C0 . (Note that the degree of zf W C0! P4 is rd 0 .) The
action of Œh� on the first term in the sequence is trivial.

Recall that P .V / has coordinates Œx0; : : : ;x4�. Let Œs; t � be homogeneous coordinates
on C0ŠP1 , such that the preimage of p1 in C0 is Œ0; 1� and the preimage of p0 in C0

is Œ1; 0�. Then the middle term of the sequence is spanned by elements of the form
satb @=@xl where 0� l � 4 and aC b D rd 0 . The action is given by

Œh�:
�
satb @

@xl

�
D e2�

p
�1.�aCrl .h//=r satb @

@xl
;

and so this summand is invariant under the hŒh�i–action if and only if rl.h/=r D ha=ri.
The C�–action on this term has weight

.a=rd 0/�k C .b=rd 0/�i ��l ;
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so we finally arrive at

e.H 0.C0; f
�TY/m/D

Y
f.a;l/j0�a�rd 0;0�l�4;rl .h/=rDha=rig

nf.0;i/;.rd 0;k/g

�
a

rd 0
�k C

rd 0�a

rd 0
�i ��l

�

D

Y
f.a;l/j0�a�rd 0;0�l�4;rl .h/=rDha=rig

nf.0;i/;.rd 0;k/g

�
a

�
�k ��i

rd 0

�
C�i ��l

�
:

The equivariant Euler class e.H 0.p0;f �T Y/m/ Similarly, the node p0 is isomor-
phic to BZr and each of the j xGj=r points lying in the principal xG –bundle over p0 is
a principal hŒh�i–bundle over p0 . Thus H 0.p0; f �TY/m Š ..Tqk

Pn/hŒh�i/m and

e.H 0.p0; f �TY/m/D
Y

l2I.h0/nfkg

.�k ��l/:

Finally note that ev�
1
.�i/D

Q
l2I.h/�i.�i ��l/. We can do one further simplification.

On the graphs which we consider, namely those where p1 is on a noncontracted
component,  1 restricts to .�k � �i/=d

0 . (In fact e.T �p1
C/ Š .�k � �i/=rd 0 , but

because we are following the convention that  –classes are pulled back from the
reification, we must multiply this by a factor of r .)

These calculations plus (2.3.2) then give us the contribution to�
�i 

c.d;h/�1
1

1� 1=z
; 1g

�Y;T
0;2;d

from the graph M� :Z
ŒM� �

ev�
1
.�i/ 

c.d;I /�1
1

e.N�/.1� 1=z/

D
..�k ��i/=d

0/c.d;I /�1
Q

l2I.h/nfig.�i ��l/e.H
1.C0; f

�TY/m/
e.H 0.C0; f �TY/m/.1� .�k ��i/=d 0z/

�
1

d 0

Z
ŒM 0

�
�

e.H 0.p0; f �TY/m/
.node smoothing at p0/e.N� 0/

D
..�k ��i/=d

0/c.d;h/�1
Q

l2I.h/nfig.�i ��l/

.d 0� .�k ��i/=z/
Q
˛.a..�k ��i/=rd 0/C�i ��l/

�

Z
ŒM�0 �

Q
l2I.h0/nfkg.�k ��l/

..�k ��i/=d 0� 1/e.N� 0/
;

where ˛ D f.a; l/ j 0� a� rd 0; 0� l � 4; rl.h/=r D ha=rig n f.0; i/; .rd 0; k/g.
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2.3.4 Recursion relations We will formulate the above computations into a recursion
relation. The above computation simplifies to��
�i 

c.d;h/�1
1

1� 1=z
; 1g

�Y;T
0;2;d

�
M�

D C
i;k
d 0
�

�
�k ��i

d 0

�c.d;h/�1�.c.d 0;h/�1/

�

��
�k

z� 1

; 1g

�Y;T
0;2;d�d 0

�
M�0

ˇ̌̌̌
z 7!.�k��i /=d 0

where
C

i;k
d 0
D

1�
d 0� �k��i

z

�Q
f.a;l/2S.d 0;h/nf.d 0;k/gg

�
aCd 0

�
�i��l

�k��i

��
and .�/M�

means the contribution of the fixed component M� to the expression in
parentheses.

Due to the fact that rk.h/=5D hd
0i, one can check that

c.d; h/� c.d 0; h/D c.d � d 0; h0/I

see (2.3.4). We arrive at the expression:

C
i;k
d 0
� .Qc.d�d 0;k/

�
�k

z� 1

; 1g

�Y;T
0;2;d�d 0

/M�0

ˇ̌̌̌
z 7!.�k��i /=d 0;Q 7!.�k��i /=d 0

After summing over all possible graphs, we obtain the recursion:

(2.3.3) ZT
i;g D

ıi;I.g/

125
C

X
f.d 0;k/jrk.h/=5Dhd 0i;k¤i;d 0¤0g

�
Q

z

�c.d 0;h/
C

i;k
d 0

�ZT
k;g

ˇ̌̌̌
z 7!.�k��i /=d 0;Q7!.Q/=z

�k��i
d 0

Although we have suppressed this in the notation, recall that in the above summand, h

is the presentation such that �i is supported on Yh (i 2 I.h/).

We will now turn our attention to Y T
g . Let us define the function Y T

i;g analogously to
that of ZT

i;g ,
Y T

i;g WD .�i ;Y
T
g /

Y
CR:

For i 2 I.h/,

Y T
i;g D

1

125

�
ıi;I.g/

C

X
hdiDd.h;g/

Qc.d;h/ 1Q
.b;k/2S.d;h/.bzC�i ��k/

�
:

Claim 2.8 We have that Y T
i;g satisfies the same recursion as ZT

i;g in (2.3.3).
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Proof Consider the summand of Y T
i;g of degree c.d; h/ in Q, which we will denote

.Y T
i;g/

c.d;h/ . Then

.Y T
i;g/

c.d;h/
D

1

125

�
Q

z

�c.d;h/ 1Q
.b;k/2S.d;h/.bC .�i ��k/=z/

D
1

125

�Q

z

�c.d;h/ X
f.b;k/jrk.h/=5Dhbi;k¤i;b¤0g

1

.bC .�i ��k/=z/

�
1Q

.m;l/2S.d;h/nf.b;k/g.b.�i ��l/=.�k ��i/Cm/

D
1

125

�Q

z

�c.d;h/ X
f.b;k/jrk.h/=5Dhbi;k¤i;b¤0g�

1=.bC .�i ��k/=z/Q
f.m;l/2S.d;h/nf.b;k/gjm�bg.b.�i ��l/=.�k ��i/Cm/

�
1Q

f.m;l/2S.d;h/nf.b;k/gjm>bg.b.�i ��l/=.�k ��i/Cm/

�
:

The last product from above can be rewritten asY
.n;l/2S.d�b;h0/

�
nC b

�k ��l

�k ��i

�
;

where h0 is chosen such that Œh�D Œh0� and k 2 I.h0/. To see this note that if .b; k/
and .m; l/ are both in S.d; h/, then by definition rk.h/=5D hbi and rl.h/=5D hmi.
If k 2 I.h0/, then

rl.h
0/

5
D

rl.h
0/

5
�

rk.h
0/

5
�

rl.h/

5
�

rk.h/

5
� hmi � hbi � hm� bi .mod 1/:

In other words rl.h
0/=5 D hm � bi. This proves that if .b; k/ 2 S.d; h/ and h0 is

chosen as above, then for pairs .m; l/ with b <m� d ,

(2.3.4) .m; l/ 2 S.d; h/ if and only if .m� b; l/ 2 S.d � b; h0/:

We arrive at the relation:

.Y T
i;g/

c.d;h/
D

X
f.b;k/jrk.h/=5Dhbi;k¤i;b¤0g

�
Q

z

�c.b;h/

�C
i;k
b
.Y T

k;g/
c.d�b;h0/

ˇ̌̌̌
z 7!.�k��i /=b;Q 7!

Q
z
.�k��i /=b

We conclude that Y T
i;g satisfies the same recursion as ZT

i;g .
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The recursion relation and initial conditions imply Y T
i;g D ZT

i;g . This completes the
proof of Theorem 2.4.

Remark 2.9 As a corollary one may easily obtain an explicit formula for the small
J –matrix JY

small.t; z/ by isolating coefficients of the various ZY
g . We give an explicit

expression for certain specified rows of JY
small.t; z/ in Corollary 3.8.

3 The A model of the mirror quintic W

3.1 Fermat quintic and its mirror

Let M � P4 be the Fermat quintic defined by the equation Q0.x/D x5
0
Cx5

1
Cx5

2
C

x5
3
Cx5

4
,

M WD fQ0.x/D 0g � P4:

The Greene–Plesser mirror construction [18] gives the mirror orbifold as the quotient
stack

W WD ŒM= xG�:

Note that the xG–action on P4 (2.1.1) preserves the quintic equation Q0.x/ and
therefore induces an action on M . Equivalently,

(3.1.1) W D fQ0 D 0g � Y D ŒP4= xG�:

Remark 3.1 Since in this section we will only be interested in the Gromov–Witten
theory (A model), which is deformation invariant, we will only speak of the mirror
orbifold instead of the mirror family.

Recall in Lemma 2.1 the inertia orbifold of Y D ŒP4= xG� is indexed by g 2G . For a
particular g , the dimension of Yg is equal to jfj j rj D 0gj � 1 and can be identified
with a linear subspace of Y . The age shift of Yg is age.g/D

P4
iD0 ri=5.

The inertia orbifold of the mirror quintic W can be described by that of Y . The mirror
quintic W intersects nontrivially with Yg exactly when jfj j rj D 0gj � 2 (that is,
dimYg � 1). Let

xS WD fg D .r0; : : : ; r4/ 2G j 2� jfj j rj D 0gjg:

(Note that xS contains e D .0; : : : ; 0/.) Then

IW D
a
g2xS

Wg; Wg WDW \Yg:
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All nontrivial intersections are transverse, so

dim.Wg/D dim.Yg/� 1D
ˇ̌
fj j rj D 0g

ˇ̌
� 2:

It follows that the age shift of Wg is equal to the age shift of Yg . The cohomology
of W is given by

H�CR.W/D
M
g2xS

H��2 age.g/.Wg/:

In the sequel, we will only be interested in the subring of H�CR.W/ consisting of classes
of even (real) degree. We will denote this ring as H even

CR .W/. It can be checked via a
direct calculation that if i W W ,! Y is the inclusion,

H even
CR .W/D i�H�CR.Y/:

Convention 3.2 By a further abuse of notation, we will also denote by H the induced
class on W pulled back from Y .

A convenient basis fTig for H even
CR .W/ is

(3.1.2)
[
g2xS

f1g; 1gH; : : : ; 1gH dim.Wg/g:

We also note that H even
CR .W/ � H�CR.W/ is a self-dual subring with respect to the

Poincaré pairing of H�CR.W/. Furthermore, this basis is self-dual (up to a constant
factor). Given g D .r0; : : : ; r4/ 2 S , let

g�1
WD .�r0; : : : ;�r4/ .mod 5/:

Then the Poincaré dual elements can be easily calculated:

.1gH k/_ D 25.1g�1H dim.Wg/�k/

3.2 The J –functions of W

Convention 3.3 By the matrix J –function of W , we will mean the matrix consisting
of the collection of H even

CR .W/–valued functions with variable tD tH ,

(3.2.1) JW
g .t; z/ WD etH=z

�
1gC

X
d;i

qdedt

�
Ti

z� 1

; 1g

�W
0;2;d

T i

�
;
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where the basis fTig is for H even
CR .W/, as in (3.1.2). Here as in Section 2, by the

degree d of a map f W C!W we mean

d WD

Z
C
f �.H /:

Note that if we extend the basis fTig to full basis of H�CR.W/, the classes of odd (real)
degree will not contribute to JW

g .t; z/ and thus (3.2.1) is equal to the Jg –function
of (1.3.1).

As has been shown in Proposition 2.3, for an orbicurve C with two marked points, the
degree must be a multiple of 1=5. Recall also from Proposition 2.3 that the only nonzero
contribution to the terms in JW

g comes from elements Ti supported on some Wh such
that Œh�D Œg�1�. From the definition of xS , it is required that

(3.2.2)
ˇ̌
fj j rj D 0g

ˇ̌
� 2;

X
j

rj � 0 .mod 5/:

We will enumerate all possible cases.

It follows from the conditions (3.2.2) that jfj j rj D 0gj must be equal to 2, 3 or 5.
That is, dim.Wg/ is equal to 0, 1 or 3.

If dim.Wg/D 3, g D e D .0; 0; 0; 0; 0/ and 1e D 1. The only basis elements which
contribute to JW

e come from the nontwisted sector. We have

(3.2.3) JW
e .t; z/D etH=z

�
1C

X
d>0

qdedt

�
H i

z� 1
; 1

�W
0;2;d

.25H 3�i/

�
:

If dim.Wg/ D 1, then up to a permutation of the entries, g D .0; 0; 0; r1; r2/ with
r1¤ r2 . By definition of xS , other than g there is no h2 xS such that Œh�D Œg�. Therefore,
the two basis elements which contribute nontrivially to JW

g are 1g�1 and 1g�1H . We
arrive at

(3.2.4) JW
g .t; z/D etH=z

�
1gC

X
d>0

qdedt

��
1g�1

z� 1

; 1g

�W
0;2;d

.251gH /

C

�
1g�1H

z� 1

; 1g

�W
0;2;d

.251g/

��
:

If dim.Wg/ D 0, then up to a permutation of the entries, g D .0; 0; r1; r1; r2/,
with r1 ¤ r2 . There is only one other g1 2

xS such that Œg1� D Œg�, namely, that
g1 D .�r1;�r1; 0; 0; r2� r1/ .mod 5/. The two basis elements which contribute non-
trivially to the invariants of JW

g are 1g�1 and 1.g1/�1 . Thus we can express JW
g .t; z/
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as

(3.2.5) JW
g .t; z/D etH=z

�
1gC

X
d>0

qdedt

��
1g�1

z� 1

; 1g

�W
0;2;d

.251g/

C

�
1.g1/�1

z� 1

; 1g

�W
0;2;d

.251g1
/

��
:

Thus for each twisted component Wg , the J –function JW
g has two components.

We will relate the functions JW
g to certain hypergeometric functions, called I –functions.

To start with, let us introduce “bundled-twisted” Gromov–Witten invariants. Let E!X
be a line bundle over the orbifold X . Let C� act with weight � on the total space
of E via multiplication in the fiber direction. We have the following diagram:

E

��
C

f
//

�

��

X

SM0;n.X ; d/

The E–twisted Gromov–Witten invariants are defined to be

h˛1 
k1 ; : : : ; ˛n 

kni
X ;tw
0;n;d

D

Z
Œ SM0;n.X ;d/�vir

nY
iD1

ev�i .˛i/ 
ki

i [ eC�.E0;n;d /;

where Eo;n;d WD ��f
�.E/ and eC�.E0;n;d / is the equivariant Euler class of the

K–class. We can define a twisted pairing on H�CR.X Iƒ/ by

.˛1; ˛2/
X ;tw
CR D

Z
X
˛1[ I�.˛2/[ eC�.E/:

With this, we can define a twisted J –function

JX ;tw.t; z/D 1C t=zC
X

d

X
n�0

X
i

qd

n!

�
Ti

z� 1

; 1; t; : : : ; t
�X ;tw

0;2Ck;d

T i :

Here Ti is a basis for H�CR.X Iƒ/ and T i is the dual basis with respect to the twisted
pairing.

The twisted invariants are related to invariants on the hypersurface. In our case,
X DY D ŒP4= xG� and EDO.5/!Y . It is easy to see that E0;n;d DR0��f

�.O.5//
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is a vector bundle. The embedding i W W ,!Y induces a morphism �W SM0;n.W; d/ ,!
SM0;n.Y; d/. As is shown by Cox, Katz and the first author in [12],2

(3.2.6) ��Œ SM0;n.W; d/�vir
D e.E0;n;d /\ Œ SM0;n.Y; d/�vir:

This relates the twisted invariants on Y to the invariants on W . Assume that t is
restricted to H even

CR .Y/, then by the projection formula,

JW.t; z/D .i�JY;tw.t; z//� 7!0;

where � 7! 0 denotes the nonequivariant limit. In what follows we further restrict t
to H 2

CR.Y/. In our setting we may write an element of H 2
CR.Y/ as

(3.2.7) tD tH C
X

fgjage.g/D1g

tg1g:

Write the J –function of Y as

JY.t/D
X

d

qdJY
d
.t/:

For each d , define the modification factor

M
E=Y
d
WD

5dY
mD1

.5H Cmz/:

(Note that we have taken the �D 0 limit in Coates, Corti, Iritani and Tseng [9].)

Definition 3.4 Define the twisted I –function by

IE.t/ WD
X

d

qdM
E=Y
d

JY
d
.t/:

Write

(3.2.8) IE.t; z/D IE
e .t; z/C

1

z

� X
fgjage.g/D1g

tgIE
g .t; z/

�

C
1

z

� X
fg1;g2jage.gi /D1g

tg1 tg2IE
g1;g2

.t; z/C � � �

�
:

For g such that age.g/ � 1 (including g D e ), define the A model hypergeometric
functions

(3.2.9) IA
g .t; z/D i�.IE

g .t; z//:

2That proof, given in the nonorbifold setting, can be readily modified to the orbifold setting when the
bundle E is a pullback from the coarse moduli space of Y .
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Theorem 3.5 Given g D .r0; : : : ; r4/ such that the age shift of Wg is at most 1,
there exist functions F0.t/, G0.t/ and Hg.t/, determined explicitly by IE

g .t; z/ such
that F0 and Hg (g ¤ 0) are invertible, and

(3.2.10) JW
g .�.t/; z/D

IA
g .t; z/

Hg.t/
; where �.t/D

G0.t/

F0.t/
:

Remark 3.6 In the statement of the theorem, F0.t/ and G0.t/ do not depend on g ,
so the mirror map t 7! �.t/DG0.t/=F0.t/ is well defined.

3.3 Proof of Theorem 3.5

There are two key ingredients in the proof. The first one is the version of quantum
Lefschetz hyperplane theorem (QLHT) for orbifolds proved in [9]. By (3.1.1), W is a
hyperplane section of Y and hence JW.t; z/ can be calculated by QLHT. Corollary 5.1
in [9] in particular implies the following.

Theorem 3.7 [9] Let the setting be as above, with E DO.5/! Y . Then

(3.3.1) IE.t; z/D F.t/C G.t/
z
CO.z�2/

for some F and G with F scalar valued and invertible, and

(3.3.2) JY;tw.�.t/; z/D IE.t; z/
F.t/ ; where �.t/D G.t/

F.t/ :

The second ingredient is the explicit formula of JY
g from Section 2. Note that we are

only concerned with those g such that i�1g ¤ 0 and age.1g/ � 1. Therefore only
those JY

g are listed. The following is a straightforward corollary of Theorem 2.4, (2.2.2)
and (2.2.3) by equating the terms Qc.d;h/1h�1H k of Zg with the terms qdedt1h�1H k

of JY
g .

Corollary 3.8 The functions JY
g .t; z/ are given by the following formulas.

(i) If g D e D .0; 0; 0; 0; 0/,

(3.3.3) JY
e D etH=z

�
1C

X
hdiD0

qdedt 1Q
0<b�d; hbiD0.H C bz/5

�
:
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(ii) If g D .0; 0; 0; r1; r2/, let g1 D .�r1;�r1;�r1; 0; r2 � r1/ .mod 5/ and let
g2 D .�r2;�r2;�r2; r1� r2; 0/ .mod 5/. Then

(3.3.4) J Y
g D etH=z1g

�
1C

X
hdiD0

�
qdedt

.Q
0<b�d
hbiD0

.H C bz/3

�
Q

0<b�d
hbiDhr2=5i

.H C bz/
Q

0<b�d
hbiDhr1=5i

.H C bz/
�

C etH=z1g1

� X
hdiDhr1=5i

�
qdedt

.Q
0<b�d
hbiDhr1=5i

.H C bz/3

�
Q

0<b�d
hbiD0

.H C bz/
Q

0<b�d
hbiDh2r1=5i

.H C bz/
��

C etH=z1g2

� X
hdiDhr2=5i

�
qdedt

.Q
0<b�d
hbiDhr2=5i

.H C bz/3

�
Q

0<b�d
hbiDh2r2=5i

.H C bz/
Q

0<b�d
hbiD0

.H C bz/
���

:

(iii) If g D .0; 0; r1; r1; r2/, then let g1 D .�r1;�r1; 0; 0; r2 � r1/ .mod 5/ and let
g2 D .�r2;�r2; r1� r2; r1� r2; 0/ .mod 5/. Then

(3.3.5) J Y
g D etH=z1g

�
1C

X
hdiD0

�
qdedt

.Q
0<b�d
hbiD0

.H C bz/2

�
Q

0<b�d
hbiDh3r2=5i

.H C bz/2
Q

0<b�d
hbiDh2r1=5i

.H C bz/
�

C etH=z1g1

� X
hdiDhr1=5i

�
qdedt

.Q
0<b�d
hbiDhr1=5i

.H C bz/2

�
Q

0<b�d
hbiD0

.H C bz/2
Q

0<b�d
hbiDhr2=5i

.H C bz/

�

C etH=z1g2

� X
hdiDhr2=5i

�
qdedt

.Q
0<b�d
hbiDhr2=5i

.H C bz/2

�
Q

0<b�d
hbiDh2r1=5i

.H C bz/2
Q

0<b�d
hbiD0

.H C bz/
���

:

In case (ii), up to permutation we have that .r1; r2/D .2; 3/ or .1; 4/. Due to the age
requirement, in case (iii) we have that only .r1; r2/D .1; 3/ or .2; 1/ are possible.
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Lemma 3.9 There are scalar valued functions F0.t/;G0.t/ and Gg.t/ for each g

with age.g/D 1, such that

i�.IE.t; z//D F0.t/C
G0.t/H

z
C

X
age.g/D1

tgGg.t/1g

z
CR;

where R denotes the remainder, consisting of terms with either the degrees in tg

greater than or equal to 2 or the degree in z�1 greater or equal to 2. In other words, if
we write G.t/ from (3.3.1) as

G.t/D xG0.t/H C
X

g

xGg.t/1g

and denote by O.2/ the terms with the degrees in tg greater or equal to 2, then

F.t/D F0.t/CO.2/; xG0.t/DG0.t/CO.2/; xGg.t/D tgGg.t/CO.2/:

Proof The proof of this lemma follows from Corollary 3.8 together with the following
observations. First, in case (ii), i�.1g1

/ D i�.1g2
/ D 0 due to dimensional reasons.

Similarly with i�.1g2
/ D 0 in case (iii). Secondly, in case (iii) the 1g1

term has
higher z�1 power: The modification factor contributes terms of z5d plus lower-order
(in z ) terms. i�JY

g contributes z�.5dC1/ plus higher order (in z�1 ) terms. The
combined contribution goes to the remainder R.

With all this preparation, it is easy to prove Theorem 3.5.

Proof of Theorem 3.5 Start by pulling back the (3.3.2) to W . Setting all tg D 0 we
get (3.2.10) for the case g D e if we let He D F0 :

IA
e .t/D i�IE

e .t/D i�IE.t/jtDtH

Here by tD tH we mean that setting all tg D 0 in (3.2.7). In the case g ¤ e , take the
partial derivative of (3.3.2) with respect to tg and then set all tg D 0. Note that from
(3.2.8), we have

IA
g .t/D i�IE

g .t/D z
@

@tg
i�IE.t/jtDtH :

By Lemma 3.9 all the “extra terms” vanish and (3.2.10) follows for g ¤ e after letting
Hg.t/DGg.t/. The proof is now complete.

4 Periods and Picard–Fuchs equations

The theory of variation of Hodge structures (VHS) is closely related to the B model
of a Calabi–Yau variety X , which encodes information about the deformations of
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complex structures on X . By the local Torelli theorem for Calabi–Yau manifolds, the
Kodaira–Spencer spaces inject to the tangent spaces of period domains and one can
investigate the deformations of X via VHS, which can be described by a system of
flat connections on cohomology vector bundles.

For the benefit of the readers who come from the GWT side of mirror symmetry, we
give a brief and self-contained summary of the parts of VHS theory which are related
to our work: the Gauss–Manin connection and the associated notions of the period
matrix and Picard–Fuchs equations. For a more detailed introduction the reader may
consult Griffiths [19; 20].

4.1 Gauss–Manin connections, periods and Picard–Fuchs equations

Over a smooth family of projective varieties � W X! S of relative dimension n, we
can consider the higher direct image sheaf (tensored with OS ) on S ,

Rn��C˝OS :

The fiber over a point t 2 S of this sheaf is H n.Xt /. This sheaf is locally free and is
naturally endowed with a flat connection rGM , the Gauss–Manin connection. It can
be defined in terms of the flat sections given by the lattice Rn��Z in Rn��C! S , a
local system. The Hodge filtration can be described fiberwise by

.Fp/t Š
M
a�p

H a;n�a.Xt /:

We will be particularly interested in the case when the base S is one-dimensional.
Suppose now S is an open curve and the family � extends to a flat family over a
proper curve xS . The vector bundle Rn��C˝OS extends to a vector bundle H! xS
whose fiber over t in S consists of the middle cohomology group H n.Xt /. While it
is not true that rGM extends to a connection on all of H , the singularities which arise
are at worst a regular singularities; see Deligne [13]. This means that after choosing
local coordinates, the connection matrix acquires at worst logarithmic poles at points
of xS n S . Nevertheless we may still speak of flat (multivalued) sections of rGM ,
controlled by the monodromy.

Let f
ig be a basis of Hn.Xt0
/. Since � W X! S is smooth, it is a locally trivial

fibration and n–cycles 
i can be extended to locally constant cycles 
i.t/. Let !t be
a (local) section of H . The functions

R

i .t/

!t are called the periods and by the local
constancy of 
i.t/,

d

dt

�Z

i .t/

!t

�
D

Z

i .t/

r
GM
t !.t/:
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The periods satisfy the Picard–Fuchs equations, defined as follows. Taking successive
derivatives of !t with respect to the connection gives a sequence of sections

!t ;r
GM
t !t ; : : : ; .r

GM
t /k!t ; : : : :

Because the rank of H is finite, for some k there will exist a relation between these
sections of the form

.rGM
t /k!t C

k�1X
iD0

fi.t/.r
GW
t /i!t D 0:

The corresponding differential equation

(4.1.1)
��

d

dt

�k
C

k�1X
iD0

fi.t/
�

d

dt

�i
��Z


i .t/

!t

�
D 0

is the Picard–Fuchs equation for !t . The situation when the dimension of S is greater
than one is essentially the same, but (4.1.1) is replaced by a PDE.

Let f�igi2I be a basis of sections of H . Then if f
igi2I is a basis of locally constant
n–cycles, we can write the fundamental solution matrix of the Gauss–Manin connection
in coordinates as

S D .sij /; with sij D

Z

j

�i :

With this choice of basis, we see that the i th row of S gives the periods for the
section �i .

Remark 4.1 In the literature, often (but not always) the term periods are reserved for
the case when �.t/ is a holomorphic n–form, ie a section of Fn , and Picard–Fuchs
equations are defined only for periods in this restricted sense. Here, we choose to use
these terms in the more general sense described above. Note, however, by the results
of Bryant and Griffiths in [4], for Calabi–Yau threefolds the general Picard–Fuchs
equations can be determined from the restricted ones.

Remark 4.2 Let U denote the Kuranishi space of the Calabi–Yau n–fold X . For the
purpose of this paper, we use the term (genus zero part of the) B model of X to denote
the vector bundle H!U with the natural (flat) fiberwise pairing and the Gauss–Manin
connection.
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4.2 Griffiths–Dwork method

Let us assume now that the family Xt is a family of hypersurfaces defined by homoge-
neous polynomials Qt of degree d in PnC1 . In this case the Griffiths–Dwork method
can be employed to explicitly calculate the Picard–Fuchs equations. We summarize the
relevant results of [19] here.

The method relies on Griffiths’ work in [19] showing that one can calculate the period
integrals on Xt in terms of rational forms on PnC1 . For the time being, let us fix
t and suppress it in the notation. Griffiths first shows that in fact any class � in
H nC1.PnC1 nX / can be represented in cohomology by a rational .nC 1/–form. In
particular, let �0 be the canonical .nC 1/–form on PnC1 :

�0 D

nC1X
iD0

.�1/ixidx0 � � �
cdx i � � � dxnC1

We can represent any class � by a rational form with poles along X ,

�D
P .x/

Q.x/k
�0;

where P .x/ is a homogeneous polynomial of degree kd � .nC 2/.

The rational nC1 forms are then related to regular n forms on X via the residue map.
More precisely, let An

k
.X / denote the space of rational .nC 1/–forms on PnC1 with

poles of order at most k on X , and let

Hk.X / WDAnC1
k

.X /=dAn
k�1.X /:

This gives an obvious filtration

H1.X /�H2.X /� � � � �HnC1.X /DWH.X /:

This description of rational forms interacts nicely with the Hodge filtration Fp of the
primitive classes. Griffiths proves that the diagram

(4.2.1)

H1.X /

Res
��

� H2.X /

Res
��

� � � � � HnC1.X /

Res
��

Fn � Fn�1 � � � � � F0

is commutative and that each vertical arrow is surjective. In particular, we have that
HkC1.X /=Hk.X /Š Fn�k=Fn�kC1 .

Now, for each n–cycle 
 in Hn.X /, let

T W Hn.X /!HnC1.P
nC1
nX /
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be the tube map, where T .
 / is a sufficiently small S1 –bundle around 
 in PnC1 nX .
Griffiths then shows that the tube map is surjective in general and also injective when n

is odd.

Theorem 4.3 All primitive classes on X can be represented as residues of rational
forms on PnC1 with poles on X . This representation is unique when n is odd.

This follows from the surjectivity/injectivity of Res and T , as well as the residue
formula

1

2� i

Z
T .
 /

�D

Z



Res.�/:

Next Griffiths relates the rational forms to the Jacobian ring. Let

J.Q/D h@Q=@x0; : : : ; @Q=@xnC1i

be the Jacobian ideal of Q. The key relationship between rational forms is given by
the formula [19, (4.5)]

(4.2.2)
�0

Q.x/k

nC1X
jD0

Bj .x/
@Q.x/

@xj
D

1

k�1

�0

Q.x/k�1

nC1X
jD0

@Bi.x/

@xj
C d�;

where � 2An
k�1

. Thus, the order of the pole of a form .P .x/=Q.x/k/�0 can be low-
ered if and only if P .x/ is contained in J.Q/. By identifying Res..P .x/=Q.x/k/�0/

with the homogeneous polynomial P , one obtains the following theorem.

Theorem 4.4 We have

(4.2.3) CŒx0; : : : ;xnC1�dk�n�1=J.Q/Š Fn�k=FnC1�k
� PH n�k;k.X /:

The above allows us to explicitly calculate the Picard–Fuchs equations for certain
families of forms !t on Xt . As before, let Xt be a family of hypersurfaces defined by
degree d homogeneous polynomials Qt . Then we can represent a family of forms as
!t D Res..Pt .x/=Qt .x/

k/�0/. Let 
t be a locally constant n cycle as before, then

@

@t

Z

t

!t D
@

@t

Z

t

Res
� Pt .x/

Qt .x/k
�0

�
D
@

@t

Z
T .
t /

Pt .x/

Qt .x/k
�0

D

Z
T .
t /

@

@t

� Pt .x/

Qt .x/k
�0

�
D

Z

t

Res
�
@

@t

� Pt .x/

Qt .x/k
�0

��
:
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The third equality follows because a small change in T .
 .t// will not change its
homology class. In other words, letting rGM denote the Gauss–Manin connection,

r
GM
t Res

� Pt .x/

Qt .x/k
�0

�
D Res

� @
@t

� Pt .x/

Qt .x/k
�0

��
;

allows one to obtain the Picard–Fuchs equations of !t via explicit calculations of the
polynomials (in the Jacobian rings). An explicit example is given in the next section.

5 The B model of the Fermat quintic M

We now turn to the specific case of the Fermat quintic threefold M in P4 . It has
been shown (see eg Batyrev [2]) that the Hodge diamonds of M and W are mirror
symmetric,

hp;q.M /D h3�p;q.W/:

In particular, the deformation family of W is one-dimensional while for M the
deformation is 101–dimensional.

Recall in our study of the A model of W , we restrict the Dubrovin connection (ie Frobe-
nius structure) to the “small” parameter t corresponding to the hyperplane class H .
In the following discussions of the complex moduli of M , we will also study the full
period matrix for the Gauss–Manin connection, but restricted to a particular deformation
parameter.

Let

(5.0.4) Q .x/D x5
0 Cx5

1 Cx5
2 Cx5

3 Cx5
4 � x0x1x2x3x4;

and define the family M D fQ .x/D 0g � P4 .

5.1 Picard–Fuchs equations for M 

In the specific case of the family M , there is a “diagrammatic technique”, pioneered
by Candelas, de la Ossa and Rodriguez-Villegas in [6] and refined in [14], which
utilizes the symmetry of Q and P to simplify the bookkeeping.

The starting point is the (4.2.2). Consider the rational form

! D
P .x/

Q .x/
k
�0; P .x/D x

r0

0
� � �x

r4

4
; with

4X
iD0

ri D 5.k � 1/.

Fix i between 0 and 4 and set Bj D ıij xiP .x/ for 0� j � 4. Noting that

@

@xj
Q .x/D 5x4

j � x0 � � � yxj � � �x4;
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and applying (4.2.2) with these choices of Bj (and k replaced by kC1), we arrive at

(5.1.1) 5

Z
T .
 /

.x5
i /P

QkC1
 

�0� 

Z
T .
 /

.x0 � � �x4/P

QkC1
 

�0 D
1C ri

k

Z
T .
 /

P

Qk
 

�0

for any choice of cycle 
 2 Hn.X /. Note, however, that there is a degenerate case
in the above setting: In the case when P .x/ is independent of xi , let Bj D ıij P .x/.
Then in (4.2.2) we get

(5.1.2) 5

Z
T .
 /

.x4
i /P

QkC1
 

�0� 

Z
T .
 /

.x0 � � � yxi � � �x4/P

QkC1
 

�0 D 0:

We can interpret this equation as allowing ri D�1 in (5.1.1).

Furthermore, @=@ .Q /D�x0 � � �x4 and so we have the relationship

(5.1.3)
@

@ 

Z
T .
 /

P

Qk
 

�0 D k

Z
T .
 /

.x0 � � �x4/P

QkC1
 

�0:

The authors in [6; 14] apply (5.1.1), (5.1.2) and (5.1.3) recursively to get relations of
the periods, hence the Picard–Fuchs equations. For convenience of bookkeeping, one
can keep track of the polynomial P .x/ by its exponents .r0; : : : ; r4/. (5.1.1) can be
understood symbolically as a relation between .r0; : : : ; r4/, .r0; : : : ; ri C 5; : : : ; r4/

and .r0C 1; : : : ; r4C 1/.

Consider for example the case PD1 corresponding to .0; : : : ; 0/. Applying (5.1.3) four
times, one may write the fourth derivative of .0; : : : ; 0/ as a multiple of .4; : : : ; 4/. This
may then be related to .5; 5; 5; 5; 0/ by (5.1.2). Applying (5.1.1) to relate .r0; : : : ; r4/

to a linear combination of .r0; : : : ; ri � 5; : : : ; r4/ and .r0C 1; : : : ; ri � 4; : : : ; r4C 1/

repeatedly, one can reduce to terms with ri � 4 for all i . In fact, eventually all terms
will be of the form f.r; r; : : : ; r/g for r D 0; : : : ; 4. This can be seen by noting that
none of (5.1.1), (5.1.1) or (5.1.3) changes ri � rj .mod 5/. Hence, we have found a
relation between the fourth derivative of .0; : : : ; 0/ and f.r; : : : ; r/g for r D 0; : : : ; 4.
By (5.1.3), the various .r; : : : ; r/ are r th derivatives of .0; : : : ; 0/, and we obtain a
fourth-order ODE in  for the period corresponding to P D 1; see Table 1 below
for the equation. Other cases can be computed similarly. These arguments can be
illuminated by diagrams in [6; 14], hence the name diagrammatic technique.

Now we apply this method to calculate the Picard–Fuchs equations for the period
integrals we are interested in. For every g D .r0; : : : ; r4/ 2G (defined in Section 2.1),
define

P.x/D x
r0

0
� � �x

r4

4
and k D

� 4X
iD0

ri

5

�
C 1D age.g/C 1:
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We will consider specific families of the form

(5.1.4) !g. / WD Res
�
 Pg.x/

Q .x/
k
�0

�
:

For our purposes, it will be sufficient to consider families !g such that Pg satisfies
age.g/�1 (ie

P4
iD0 ri�5) and at least two of the ri equal 0. We observe that other !g

can be obtained from differentiations (5.1.3) or relations (5.1.1) and (5.1.2) from the
listed !g . For example, .1; 1; 1; 1; 1/ is the derivative of .0; 0; 0; 0; 0/; .1; 1; 1; 2; 0/
is related to .0; 0; 0; 1; 4/ via

0� x3@x4
Q D x3.x4/

4
� x0x1x2.x3/

2:

We remark that these conditions on g match the conditions on A model computation
in Section 3 perfectly. In Claim 6.7 it is shown that the derivatives of these families
generate all of H .

Table 1 below gives the Picard–Fuchs equation satisfied by each of the above-mentioned
forms. We label the forms by the corresponding 5–tuple g D .r0; : : : ; r4/. Note that
permuting the ri does not effect the differential equation, so we do not distinguish
between permutations. Here

t D�5 log. /:

type Picard–Fuchs equation

(0,0,0,0,0)
�

d
dt

�4
� 55et

�
d
dt
C

1
5

��
d
dt
C

2
5

��
d
dt
C

3
5

��
d
dt
C

4
5

�
(0,0,0,1,4)

�
d
dt

�2
� 55et

�
d
dt
C 2=5

��
d
dt
C

3
5

�
(0,0,0,2,3)

�
d
dt

�2
� 55et

�
d
dt
C

1
5
/. d

dt
C

4
5

�
(0,0,1,1,3)

�
d
dt

��
d
dt
�

1
5

�
� 55et

�
d
dt
C

1
5

��
d
dt
C

3
5

�
(0,0,2,2,1)

�
d
dt

��
d
dt
�

2
5

�
� 55et

�
d
dt
C

1
5

��
d
dt
C

2
5

�
Table 1: The Picard–Fuchs equations for forms !g

The same computation was done in [6; 14]. We note however that there are several
differences between the period integrals we consider, and those of [14]. First, our
family M differs from that in [14] by a factor of 5 in the first term. Second, the forms
we consider (5.1.4) differ slightly from those considered in [14] by an extra factor of  
in the numerator (see Remark 5.1). Finally, our final equations use different coordinates
than in [14]. However the same methods used in their paper can easily be modified to
obtain the formulas we present here.
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Remark 5.1 The factor of  in the numerator of (5.1.4) might appear unnatural at the
first glance, but it can be considered as a way to change the form of the Picard–Fuchs
equation, as

d
dt

e�t=5f .t/D e�t=5.�1
5
C

d
dt
/f .t/:

In the comparison of the A model and B model this modification will simplify the I

functions from both sides. It is also used in the Mirror theorem for the Fermat quintic.

5.2 The B model I –functions

We can solve the above Picard–Fuchs equations with hypergeometric series. As in
Section 2, we will organize these solutions in the form of an I –function. For each
of the above forms !g , IB

g will be a function taking values in H�CR.W/ŠH�.IW/,
whose components give solutions to the corresponding Picard–Fuchs equation.

Proposition 5.2 For the g listed in Table 1, the components of IB
g .t; 1/ give a basis

of solutions to the Picard–Fuchs equations for !g , where IB
g .t; z/ is given below.

(i) If g D e D .0; 0; 0; 0; 0/,

(5.2.1) IB
e .t; z/D etH=z

�
1C

X
hdiD0

edt

Q
1�m�5d .5H Cmz/Q

0<b�d
hbiD0

.H C bz/5

�
:

(ii) If g D .0; 0; 0; r1; r2/,

(5.2.2) IB
g .t; z/D etH=z1g

�
1C

X
hdiD0

edt

�

Q
1�m�5d .5H Cmz/Q

0<b�d
hbiD0

.H C bz/3
Q

0<b�d
hbiDhr2=5i

.H C bz/
Q

0<b�d
hbiDhr1=5i

.H C bz/

�
:

(iii) If g D .0; 0; r1; r1; r2/, let g1 D .�r1;�r1; 0; 0; r2� r1/ .mod 5/. Then

(5.2.3) IB
g .t; z/

D etH=z1g

�
1C

X
hdiD0

edt
�Q

1�m�5d .5H Cmz/
.Q

0<b�d
hbiD0

.H C bz/2

�
Q

0<b�d
hbiDh3r2=5i

.H C bz/2
Q

0<b�d
hbiDh2r1=5i

.H C bz/

�
CetH=z1g1

� X
hdiDhr1=5i

edt
�Q

1�m�5d .5HCmz/
.Q

0<b�d
hbiDhr1=5i

.HCbz/2

�
Q

0<b�d
hbiD0

.H C bz/2
Q

0<b�d
hbiDhr2=5i

.H C bz/
��
:
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Remark 5.3 Note that the functions IB
g .t; z/ in equations (5.2.1), (5.2.2) and (5.2.3),

are supported on spaces of dimension 3, 1 and 0 respectively (in particular, H � 0 in
(5.2.3)). So for each g , the number of components of IB

g .t; z/ equals the order of the
corresponding Picard–Fuchs equation as desired.

6 Mirror theorem for the mirror quintic: A.W/�B.M /

In this section, we will show the “mirror dual” version of (the mathematical version of)
the mirror conjecture by Candelas, de la Ossa, Greene and Parkes [5]. More specifically,
we will show that the A model of W is equivalent to the B model of M , up to a
mirror map.

We start in Section 6.1 by stating a “classical” mirror theorem relating the GWT of W
with the periods of M on the level of generating functions. This is exactly analogous
to Givental’s original formulation in [15]. In Section 6.2 we give a brief explanation of
how Givental’s original statement of the mirror theorem implies a full correspondence
between the A model of M and the B model of W (at tree level). Finally in Section 6.3
we use similar methods as in Section 6.2 to prove a mirror theorem equating the A

model of W to the B model of M .

6.1 A correspondence of generating functions

We will first show that the I –functions IA
g of the A model of W (Definition 3.4) are

identical to the I –functions IB
g of the B model of M defined in Section 5.2.

Remark 6.1 Note that in the formula IA
g , the Novikov variable q always appears

next to et . There is therefore no harm in setting q D 1. We apply this specialization in
what follows.

Proposition 6.2 Suppose g D .r0; : : : ; r4/ 2 G satisfies the conditions age.g/ � 1

and that at least two of ri ’s are equal to zero. We have an A–interpretation of g as
parameterizing a component of Wg in IW . We have also a B–interpretation of g

in !g (5.1.4) where Pg denote the polynomial x
r0

0
� � �x

r4

4
. Then

IA
g .t; z/D IB

g .t; z/:

Proof This follows from a direct comparison of formulas (3.3.3), (3.3.4) and (3.3.5)
from Corollary 3.8 with formulas (5.2.1), (5.2.2) and (5.2.3) respectively.

Combining Proposition 6.2 with Theorem 3.5, we conclude that some periods from
VHS of M correspond to the Gromov–Witten invariants of W .
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Corollary 6.3 For each g D .r0; : : : ; r4/ 2 G such that age.g/ � 1 and Wg is
nonempty (ie at least two ri vanish), we have

JW
g .�.t/; z/D

IB
g .t; z/

Hg.t/
; where �.t/D

G0.t/

F0.t/
:

In other words, under the mirror map

t 7! � D
G0.t/

F0.t/
;

the periods of !g=Hg.t/ are equal to the coefficients of JW
g .�; 1/.

This theorem should be viewed as an analogue of Givental’s original mirror Theorem 6.4
stated below.

6.2 Mirror theorem for the Fermat quintic revisited

To obtain some insight into the full correspondence, we return to the “classical” mirror
theorem for the Fermat quintic threefold. While this is not strictly necessary for the
logical flow of the proof, we feel that it illuminates our approach in a simpler setting.
We also strive to clarify certain points which are not entirely clear in the literature.

Let J M .t; z/ denote the small J –function for M where t is the coordinate of H 2.M /

dual to the hyperplane class H . Let W denote the one-dimensional deformation
family defined by the vanishing of Q (see (5.0.4)) in Y :

(6.2.1) W WD fQ .x/D 0g � Y

Let

! D Res
�
 �0

Q .x/

�
:

As in Section 5 there exists an H�.M /–valued I –function, IB
W 

.t; z/, such that the
components of IB

W 
.t; 1/ give a basis of solutions for the Picard–Fuchs equations

for ! , where t D�5 log .

Theorem 6.4 (Mirror theorem [15; 22; 3]) There exist explicitly determined func-
tions F.t/ and G.t/, such that F is invertible, and

J M .�.t/; z/D
IB
W 

.t; z/

F.t/
; where �.t/D G.t/

F.t/
:
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We will show how Theorem 6.4 implies a correspondence between the fundamental
solution matrix of the Dubrovin connection for M and that of the Gauss–Manin
connection for W . In order to emphasize the symmetry between the A model and B

model, we will denote the respective pairings as .�;�/A and .�;�/B .

Let

s D  �5;

and consider the flat family Ws over S D Spec.CŒs�/. Then if we let t D log.s/,
IB
Ws
D IB

W 
. In the Calabi–Yau case, the H expansion of IB always occurs in the

form of a function of H=z , in particular IB
Ws

is homogeneous of degree zero if one
sets deg.z/D 2. The same is true of J M . Thus, one may set z D 1 without loss of
information. IB

Ws
.t; 1/ gives a basis of solutions for the Picard–Fuchs equations of ! .

In other words after an appropriate choice of basis fsB
0
.t/; : : : ; sB

3
.t/g of solutions

of rGM ,

.sB
i .t/; !/

B
D IB

i .t; 1/;

where IB
i .t; z/ is the H i coefficient of IB

Ws
.t; z/.

By the same argument, if we choose an appropriate basis fsA
0
.�/; : : : ; sA

3
.�/g of solu-

tions for rz , Section 1 shows that the coefficients J M
i .�; 1/ of the function J M .�; 1/

give us the functions

.sA
i .�/; 1/

A
D J M

i .�; 1/:

Thus we can interpret Theorem 6.4 as saying that after choosing correct bases of flat
sections and applying the mirror map

t 7! � D
G.t/

F.t/
;

we have the equality

.sB
i .t/; !=F.t//

B
D

Ii.t; 1/

F.t/
D Ji.�; 1/D .s

A
i .�/; 1/

A:

To show the full correspondence between the solution matrix for the Dubrovin connec-
tion for M and the solution matrix of the Gauss–Manin connection on S , we must find
a basis �0; : : : ; �3 of sections of H and a basis T0; : : : ;T3 of sections of H even.M /

such that for all i and j ,

(6.2.2) .sB
i ; �j /

B
D .sA

i ;Tj /
A:

As one might expect, we set �0 D !=F.t/ and T0 D 1.
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Claim 6.5 We have that

�j D .r
GM
t /j�0; 0� j � 3;

gives a basis of sections for H .

Proof This follows from standard Hodge theory for Calabi–Yau threefolds, but in this
case can be explicitly calculated as

(6.2.3) r
GM
t �0 D

d

dt

�
1

F.t/

�
!C

1

F.t/
r

GM
t !

D�
F 0.t/

F.t/
�0C

1

F.t/
Res

�
d

dt

 �0

Q 

�
D�

F 0.t/

F.t/
�0C

1

F.t/
Res

�
s

d

ds

 �0

Q 

�
D�

F 0.t/

F.t/
�0C

1

F.t/
Res

�
� 

5

d

d 

 �0

Q 

�
D�

F 0.t/

F.t/
�0C

� 

5F.t/
Res

�
�0

Q 

C
x0 � � �x4

Q2
 

�0

�
:

Because of the last term in the above sum, the image of .rGM
t /�0 in F2=F3 is nonzero

by (4.2.3). Similarly, the image of .rGM
t /j�0 in F3�j=F3C1�j for 1 � j � 3 is

nonzero, thus the sections �0; : : : ; �3 must be linearly independent.

Note that

(6.2.4) .sB
i ; �1/

B
D .sB

i ;r
GM
t �0/

B
D

@
@t
.sB

i ; �0/
B
D

@
@t
.sA

i ;T0/
A

D .@�
@t
/ @
@�
.sA

i ;T0/
A

D .sA
i ; .

@�
@t
/rz
�T0/

A:

Therefore, if we set
T1 D

@.G=F /
@t
r

z
�T0

we have the relationship
.sB

i ; �1/
B
D .sA

i ;T1/
A:

If we similarly set
Tk D

@.G=F /
@t
r

z
�Tk�1;

(6.2.2) follows.
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This shows that after identifying the section �i with Ti , the mirror map lifts to an
isomorphism of vector bundles and the connection is preserved. Indeed, the fundamental
solution of the Gauss–Manin connection is a 4 by 4 matrix, where 4 is the rank
of H 3.W/. On the other hand, the fundamental solution of the Dubrovin connection is
also a 4 by 4 matrix, where 4 is the rank of H even.M /. We recall that the J –function
can be thought of as the first row vectors of the fundamental solution matrix, as discussed
in Section 1. The above discussion shows that we can extend the correspondence
between the first row of the fundamental solution to the full fundamental solution.

We summarize the above in the following theorem.

Theorem 6.6 The fundamental solutions of the Gauss–Manin connection for Ws are
equivalent, up to a mirror map, to the fundamental solutions of the Dubrovin connection
for M , when restricted to H 2.M /.

6.3 Mirror theorem for the mirror quintic

In this subsection, we will extend the partial correspondence in Section 6.1 between
the periods of M and the A model of W to the full (tree level) correspondence,
generalizing the ideas in Section 6.2.

Similar to the above, consider the flat family Ms over S D Spec.CŒs�/ defined by
(5.0.4), where sD et D �5 . Corollary 6.3 states that some periods of Ms correspond
to Gromov–Witten invariants on W . We would like to extend this result to all periods.

First, we must choose a basis of sections of H! S . Let !e denote the holomorphic
family of (3,0)-forms corresponding to g D e D .0; : : : ; 0/ in (5.1.4). It is no longer
true that derivatives of !e=F0.t/ with respect to the Gauss–Manin connection generate
a basis of sections of H , thus it becomes necessary to consider the other forms !g

satisfying the conditions formulated in Corollary 6.3. Namely, let �e D !=F0.t/ and
let �g D !g=Hg.t/ where g satisfies age.g/D 1. Consider the set of sections

f�0;r
GM
t �0; .r

GM
t /2�0; .r

GM
t /3�0g[ f�g;r

GM
t �gg:

Claim 6.7 These forms comprise a basis of the Hodge bundle H .

Proof The proof is similar to that of Claim 6.5. We note that in the last four rows in
Table 1, corresponding to age one type, the dimensions are 20; 20; 30 and 30. Thus
jf�ggj D 100, and there are exactly 204 forms in the above set. One can check via
(4.2.3) and another argument like in (6.2.3) that these sections are in fact linearly
independent.
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Then, as in (6.2.4), we have that the periods of .rGM
t /k�0 correspond to the derivatives

.d=dt/kJW
e .�; 1/, and the periods of rGM

t �g correspond to .d=dt/JW
g .�; 1/.

Let T0 D 1 and Tk D .@.G0=F0/=@t/r
z
�Tk�1 for 0 � k � 3. Let Tg D 1g and

T 0g D .@.G0=F0/=@t/r
z
� 1g . Then if we choose the correct basis of flat sections fsB

i g

and fsA
i g, we have that

.sB
i ; .r

GM
t /k�0/

B
D .sA

i ;Tk/
A;

.sB
i ; �g/

B
D .sA

i ;Tg/
A;

.sB
i ;r

GM
t �g/

B
D .sA

i ;T
0
g/

A:

This implies that the set

fT0;T1;T2;T3g[ fTg;T
0
gg

is a basis of THeven
CR .W/, and that with these choices of bases the solution matrices for

the two respective connections are identical after the mirror transformation. Thus we
obtain the full correspondence.

In terms of the language of Theorem 6.6, we can formulate our final result in the
following form. On the side of the A model of W , let t be the dual coordinate of H ;
on the side of B model of Ms , let t D log.s/. Then we have the following.

Theorem 6.8 The fundamental solutions of the Gauss–Manin connection rGM
t for Ms

are equivalent, up to a mirror map, to the fundamental solutions of the Dubrovin
connection rz

t for W restricted to tH 2H 2.W/.

Remark 6.9 Even though the base direction is constrained to one dimension instead
of the full 101–dimension deformation space, our fundamental solutions are full 204

by 204 matrices, as both ranks of H 3.M / and H even.W/ are 204.
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