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The Cayley plane and string bordism

CARL MCTAGUE

This paper shows that, away from 6 , the kernel of the Witten genus is precisely
the ideal consisting of (bordism classes of) Cayley plane bundles with connected
structure group, but only after restricting the Witten genus to string bordism. It does
so by showing that the divisibility properties of Cayley plane bundle characteristic
numbers arising in Borel–Hirzebruch Lie group-theoretic calculations correspond
precisely to the divisibility properties arising in the Hovey–Ravenel–Wilson BP Hopf
ring-theoretic calculation of string bordism at primes greater than 3 .

57R90, 58J26

Introduction

This paper shows that an affinity between bordism rings and projective spaces extends
further than previously known.

The first manifestation of the affinity is the fact that every positive-dimensional element
of the unoriented bordism ring ��MO is represented by a real projective bundle. In
more detail, Thom [30] showed that ��MO is a polynomial ring over Z=2 with one
generator in each dimension not of the form 2k �1. Milnor [21] showed that a smooth
degree–.1; 1/ hypersurface H ,! RPi

�RPj can serve as generator if 1< i < j and
if
�
iCj

i

�
is not divisible by 2 (equivalently, if there are no “carries” when adding i to

j in base 2; see Milnor and Stasheff [22, Problem 16-F]. If i � j , then the projection
H ! RPi is a fiber bundle with fiber RPj�1 . In fact, Stong [29, Proposition 8.1]
showed that every positive-dimensional element of ��MO is represented by an RP2

bundle.

The second manifestation of the affinity is the fact that every positive-dimensional
element of the oriented bordism ring ��MSO is represented by a complex projective
bundle. In more detail, ��MSO=Torsion is a polynomial ring over Z with one generator
in each dimension 4k . In each such dimension, a Z–linear combination of smooth
degree-.1; 1/ hypersurfaces H ,!CPi

�CPj can serve as generator. If i � j , then the
projection H ! CPi is a fiber bundle with fiber CPj�1 . Wall [31] showed that these
generators, together with certain of Dold’s [10] generators for ��MO (all of which
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are complex projective bundles), generate ��MSO. In fact, Führing [11] showed that
every positive-dimensional element of ��MSO is represented by a CP2 bundle. We
shall return to this manifestation in more detail in the next section.

The third manifestation of the affinity is the fact that almost every element of the spin
bordism ring ��MSpin is represented by a quaternionic projective bundle; specifically,
the set of quaternionic projective bundles with connected structure group is an ideal
of ��MSpin (indeed, for any space M , if F !E! B is a fiber bundle, then so is
F !E �M ! B �M ), and this ideal is precisely the kernel of the Atiyah invariant:

˛W ��MSpin! ��koŠ ZŒ�; !; ��=.2�; �3; �!; !2
� 4�/

Here �; !; � have degree 1, 4, 8 respectively. In more detail, Anderson, Brown and
Peterson [1] computed ��MSpin.2/ and the forgetful homomorphism ��MSpin!
��MSO becomes an isomorphism after inverting 2. Stolz [26], together with Kreck [18],
used this to show that every element of the kernel of the Atiyah invariant is represented
by an HP2 bundle. (HP2 is 8–dimensional, so HP2 bundles cannot possibly represent
every element of the spin bordism ring.) The Atiyah invariant is thus a complete
obstruction for the representability of a spin bordism class by an HP2 bundle.

The fourth manifestation of the affinity is the subject of this paper: almost every element
of the string bordism ring ��MOh8i is represented, at least up to powers of 2 and 3, by
a Cayley plane, ie an octonionic projective plane (CaP2)—bundle. (The Cayley plane
is 16–dimensional so Cayley plane bundles cannot possibly represent every element of
the string bordism ring.) Specifically, we prove that:

Theorem 1 Away from 6, the ideal of ��MOh8i consisting of (bordism classes of)
Cayley plane bundles with connected structure group is precisely the kernel of the
Witten genus. In other words, the extension of this ideal in ��MOh8i

�
1
6

�
is precisely

the kernel of

�W˝Z
�

1
6

�
W ��MOh8i

�
1
6

�
! ��tmf

�
1
6

�
Š Z

�
1
6

�
ŒG4;G6�;

where G4;G6 have degree 8; 12, respectively.

The Witten genus is thus a complete obstruction for the representability of a string
bordism class by a CaP2 bundle, at least up to a powers of 2 and 3.

An interesting complication here is that Theorem 1 only appears to be true after restrict-
ing the Witten genus to string bordism. In other words, not every element of the kernel of
the quasi-modular-form-valued Witten genus ��MSO

�
1
6

�
!Z

�
1
6

�
ŒG2;G4;G6� appears

to be represented by a CaP2 bundle. Far from it, in fact: the subring of ��MSO
�

1
6

�
generated by total spaces of oriented CaP2 bundles (and string manifolds of dimension
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less than 16) appears to coincide with the image of the forgetful homomorphism
��MOh8i

�
1
6

�
! ��MSO

�
1
6

�
. As we shall see, this homomorphism is the inclusion of

an intricate, non-polynomial subring.

That Cayley plane bundles lie in the kernel of the Witten genus is already known:

Theorem If CaP2
! E ! W is a Cayley plane bundle with connected structure

group, then the Witten genus of E vanishes.

This result was often proved in the 1990s — by Jung, Kreck–Singhof–Stolz, Dessai,
Höhn — but rarely published. Rainer Jung’s proof, which has yet to appear in print,
used the work of Borel and Hirzebruch summarized below to show that the vanishing
of the Witten genus on Cayley plane bundles is equivalent to the Jacobi triple identity
for the Weierstrass sigma function. A little later Anand Dessai proved, using results
of Kefeng Liu [19], that if S3 acts nontrivially on a string manifold E , then the
Witten genus of E vanishes. (This generalizes the theorem above since S3 acts
nontrivially on the total space of any Cayley plane bundle.) Dessai’s work appeared in
the preprint [7], in his PhD thesis [8], and in the conference proceedings [9]. Around the
same time Gerald Höhn proved, again using results of Liu, that the Witten genus of any
string homogeneous manifold vanishes. These results helped inspire Stephan Stolz’s
conjecture (see [27, Theorem 3.1]) that the Witten genus of a closed 4k –dimensional
string manifold vanishes if and only if it admits a Riemannian metric of positive Ricci
curvature. (The author thanks Dessai for informing him of the history of these results.)

In fact, Jung and Dessai both proved the rational version of Theorem 1:

Theorem Rationally, the ideal of ��MOh8i consisting of (bordism classes of) Cayley
plane bundles with connected structure group is precisely the kernel of the Witten genus.
In other words, the extension of this ideal in ��MOh8i˝Q is precisely the kernel of

�W˝QW ��MOh8i˝Q! ��tmf˝QŠQŒG4;G6�:

Since stable rational homotopy theory is trivial, rational results are unsatisfying to
homotopy theorists. This paper does not tackle the primes 2 or 3, the primes at which
tmf is most interesting. But the author has no reason to be pessimistic about those
primes and hopes that homotopy theorists will be pleased to see geometry in alignment
at the primes greater than 3. As far as the author knows, this paper gives the first
geometrically explicit list of generators for ��MOh8i

�
1
6

�
.

Geometry & Topology, Volume 18 (2014)



2048 Carl McTague

Note that tmf
�

1
6

�
is not a ring spectrum quotient of MOh8i

�
1
6

�
. In fact, for any prime

p > 3 and any sequence X in ��MOh8i, the ��MOh8i–module

��
�
MOh8i.p/=X

�
is not (even abstractly) isomorphic to ��tmf.p/ (McTague [20]).

Throughout this paper, the italic letter p will denote a prime number. The roman
letter p will denote the Pontrjagin class.

1 Pontrjagin numbers and oriented bordism

This section briefly reviews background material on Pontrjagin classes and the oriented
bordism ring. This serves both to fix notation as well as to illustrate how the results of
this paper extend well-known calculations.

The i th Pontrjagin class of a real vector bundle V is by definition

pi.V /D .�1/ic2i.V ˝C/:

It pulls back from the universal i th Pontrjagin class pi in H�.BO.4n/;Z/ for n� i ,
which in turn may be identified with the i th elementary symmetric polynomial. This is
because the i th Pontrjagin class of a sum of complex line bundles is the i th elementary
symmetric polynomial in the first Pontrjagin classes of the individual line bundles,
p.L1˚ � � �˚Ln/D

Q
.1C p1.Li//. (The driving force behind this is the fact that, in

ordinary cohomology, the total Chern class is exponential, c.V1˚V2/D c.V1/ �c.V2/.)

It is a basic fact that the ring of symmetric polynomials is a polynomial ring on
the elementary symmetric polynomials. There are other symmetric polynomials of
geometric interest, though. Given a partition ID i1; : : : ; ir let sI denote the polynomialP

p1.L1/
i1 � � � p1.Lr /

ir , where the sum runs over all distinct monomials obtained
by permuting L1; : : : ;Ln . Each sI is a symmetric polynomial, so may be written
as a polynomial in the elementary symmetric polynomials. Thus we may associate
to each sI a polynomial in the Pontrjagin classes, which we also denote sI . Note in
particular that s1; s1;1; s1;1;1; : : : are the Pontrjagin classes p1; p2; p3; : : : themselves.
The geometric significance of the classes sI comes from the following lemma [22,
Lemma 16.2].

Lemma 2 (Thom) If 0!V1!W !V2! 0 is an exact sequence of vector bundles,
then

sI .W /D
X

JKDI

sJ .V1/ sK .V2/;

where the sum ranges over all partitions J and K with juxtaposition JK equal to I .
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This implies that sn of the tangent bundle of a nontrivial product of closed oriented
manifolds vanishes. In fact, a closed oriented manifold M 4n is decomposable in
��MSO

�
1
2

�
if and only if the number snŒM

4n� D
R

M sn.TM / equals zero. (The
integral

R
M here denotes the pushforward to a point H4n.M / ! H0.pt/ Š Z, or

equivalently, the Kronecker pairing hsn.TM /; ŒM �i with the fundamental class ŒM � 2

H4n.M;Z/.) Since ��MSO˝Q is a polynomial ring over Q with one generator in
each dimension 4n � 4, a sequence fM 4ngn�1 therefore generates ��MSO˝Q if
and only if snŒM

4n�¤ 0 for each n� 1. As mentioned in the introduction, however,
inverting just the prime 2 is enough to make ��MSO a polynomial ring. It follows
that the numbers sn suffice to recognize a sequence of generators for ��MSO

�
1
2

�
but

it turns out that these numbers have unexpected divisibility properties.

For any integer n and any prime p , let ordp.n/ denote the p–adic order of n, that is,
the largest integer � such that p� divides n.

Theorem 3 (cf Stong [28, page 180]) A sequence fM 4ngn�1 generates ��MSO
�

1
2

�
if and only if for any integer n> 0 and any odd prime p ,

ordp

�
snŒM

4n�
�
D

�
1 if 2nD pi � 1 for some integer i > 0,
0 otherwise.

Equivalently, if p is odd then the Hurewicz homomorphism ��MSO.p/!H�MSO.p/ ,
after passing to indecomposable quotients, is multiplication by ˙p in degrees of the
form 2.pi � 1/ and is an isomorphism otherwise. (See [24, Theorem 3.1.5] where
the special behavior in degrees 2.pi � 1/ ultimately comes from the degrees of the
generators vi of ��BP.)

Now we return to the second manifestation of the affinity discussed in the introduction.

Proposition If H ,! CPi
�CP2n�iC1 is a smooth complex hypersurface of degree

.1; 1/ and 1< i < 2n, then

snŒH �D�
� 2nC1

i

�
:

Proof Since the tangent bundle of the ambient manifold CPi
� CP2n�iC1 splits

nontrivially, Lemma 2 implies that sn.TH / D � sn.NH /, where the normal bundle
NH is isomorphic to the complex line bundle

O.1; 1/jH D
�
��1 O.1/˝��2 O.1/

�ˇ̌
H

and �1; �2 are the projections of the ambient manifold. Since, for a complex line
bundle p1 D c2

1
, and since in ordinary cohomology c1.L1˝L2/D c1.L1/C c1.L2/,
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it follows that

sn.O.1; 1//D p1.O.1; 1//n D c1.O.1; 1//2n
D .x1Cx2/

2n;

where xj D �
�
j c1.O.1//. Thus

snŒH �D�

Z
H

sn.O.1; 1/jH /D�
Z

H

.x1Cx2/
2n
ˇ̌̌
H
:

By Poincaré duality, then (see [22, Problem 16-D])

snŒH �D�

Z
CPi�CP2n�iC1

.x1Cx2/
2nC1

D�

� 2nC1

i

�
:

Kummer’s theorem, which states that ordp

��
n
i

��
equals the number of “carries” when

adding i to n� i in base p (see Granville [13, Section 1]), can be used to show that:

Lemma For any integer n> 0 and any odd prime p ,

ordp

�
GCD

1<i<2n

� 2nC1

i

��
D

�
1 if 2nC 1D pi for some integer i > 0,
0 otherwise.

It follows that Z–linear combinations of the hypersurfaces appearing in the proposition
generate ��MSO

�
1
2

�
, as asserted in the introduction.

In short, then, the divisibility properties of sn for oriented manifolds, deduced from
homotopy theory, align perfectly with the divisibility properties of sn for CPn bundles,
deduced from divisibility properties of binomial coefficients.

This paper will follow the same outline. First we will deduce the divisibility properties
of sn (and sn;n0 ) for string manifolds from known results in homotopy theory. Then we
will show that these divisibility properties align perfectly with the divisibility properties
of sn (and sn;n0 ) for Cayley plane bundles, which we will in turn deduce from divisibility
properties of binomial coefficients. The arguments and calculations will at each stage
be more complicated than for oriented bordism and complex projective bundles, but
the outline and spirit will be the same.

2 How to recognize generators for string bordism

In Section 1 we stated a criterion (Theorem 3), involving the number sn , which ensures
that a sequence fM 4ngn�1 generates ��MSO

�
1
2

�
. The purpose of this section is to

establish an analogous criterion (Theorem 4) for the string bordism ring ��MOh8i
�

1
6

�
.

It turns out that Pontrjagin numbers still suffice to distinguish elements of ��MOh8i
�

1
6

�
,
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but, since this ring is not a polynomial ring, the numbers sn do not suffice to recognize
generators; certain numbers of the form sn;n0 are also needed. As we shall see, the
criterion is a consequence of Hovey’s calculation [15] of ��MOh8i.p/ for p > 3.

First recall what string bordism is. Any real vector bundle V ! X of rank k pulls
back from the universal rank-k bundle over the classifying space BO.k/ by a map
f W X ! BO.k/.

� An orientation of V is a (homotopy class of) lift f2 of f to the 1–connected
cover BSO ! BO. Such a lift exists if and only if the generator w1 of
H1.BO;Z=2/ pulls back to 0 in H1.X;Z=2/.

� A spin structure on V is a (homotopy class of) lift f4 of f2 to the 3–connected
cover BSpin ! BSO. Such a lift exists if and only if the generator w2 of
H2.BSO;Z=2/ pulls back to 0 in H2.X;Z=2/.

� A string structure on V is a (homotopy class of) lift f8 of f4 to the 7–connected
cover BOh8i ! BSpin. Such a lift exists if and only if the generator 1

2
p1 of

H4.BSpin;Z/ pulls back to 0 in H4.X;Z/.

BOh8i

��
BSpin

��
BSO
��

X
f //

f2 00

f4 22f8

55

BO

The bordism spectrum of string manifolds MOh8i is the Thom spectrum of the map
BOh8i!BO. Its coefficient ring ��MOh8i is the bordism ring of manifolds equipped
with a string structure on their stable normal bundle.

Theorem 4 A set S generates ��MOh8i
�

1
6

�
if:

(1) For each integer n> 1, there is an element M 4n of S such that for any prime
p > 3,

ordp

�
snŒM

4n�
�
D

�
1 if 2nD pi � 1 or 2nD pi Cpj for some integers 0� i � j ,
0 otherwise.

(2) For each prime p > 3 and each pair of integers 0 < i < j , there is an element
N 2.piCpj / of S such that

s.piCpj /=2ŒN
2.piCpj /�D 0;

s.piC1/=2;.pj�1/=2ŒN
2.piCpj /� 6� 0 mod p2:
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We prove this in stages.

Proposition The forgetful homomorphism ��MOh8i
�

1
6

�
! ��MSpin

�
1
6

�
is injective.

Proof It is injective tensor Q, so its kernel is torsion (since Q is a flat Z–module).
Giambalvo, however, showed that ��MOh8i has no p–torsion for p > 3 [12, Theo-
rem 4.3].

Since ��MSpin
�

1
2

�
Š ��MSO

�
1
2

�
and since Pontrjagin numbers detect equality in

��MSO
�

1
2

�
we get the next two corollaries.

Corollary Any two string structures for an oriented manifold determine the same
element of ��MOh8i

�
1
6

�
.

Corollary Pontrjagin numbers detect equality in ��MOh8i
�

1
6

�
.

To prove Theorem 4 it therefore suffices to determine the image of ��MOh8i
�

1
6

�
!

��MSpin
�

1
6

�
or, equivalently, to determine the image of ��MOh8i.p/! ��MSpin.p/

for each prime p > 3. The Hovey–Ravenel–Wilson approach [16; 25] to BOh4ki

reduces ��MOh8i.p/ ! ��MSpin.p/ to the homomorphism BP�BPh1i2.pC1/ !

BP�BPh1i4 , and Hovey’s description [15] of these rings reveals enough information
about the image to prove Theorem 4. What follows is a brief summary of the results of
[15; 16; 25] needed to prove Theorem 4.

First some standard notation. Let BP denote the Brown–Peterson spectrum [6]; its coef-
ficient ring is ��BPŠZ.p/Œv1; v2; : : : �, where deg.vi/D 2.pi�1/. Let BPh1i denote
the Johnson–Wilson spectrum obtained from BP by killing the ideal .v2; v3; : : : / of
��BP; its coefficient ring is ��BPh1iŠZ.p/Œv1� and its homotopy type is independent
of the polynomial generators v2; v3; : : : chosen [17]. The infinite loop space obtained
by applying the k th space functor to a spectrum X will be denoted Xk .

Recall that the ring homomorphism ��BPh1i ! ��ku.p/ taking v1 to vp�1 lets one
identify ��ku.p/ Š Z.p/Œv� with ��BPh1iŒv�=.v1� v

p�1/. This identification extends
to a multiplicative splitting of spectra

ku.p/ Š
p�2Y
iD1

†2iBPh1i:

Multiplication by v on the left corresponds to the (upward) shift of factors on the right,
the shift from top to bottom factor being accompanied by multiplication by v1 .
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Since, for k even, BUhki can be taken as the k th space of ku, this implies that there
is a p–local decomposition of H–spaces

BUhki.p/ Š
p�2Y
iD1

BPh1ikC2i :

There is an analogous splitting of BOhki.p/ for p > 2:

Theorem [16, Corollary 1.5] If k is divisible by 4 and p> 2, then there is a p–local
decomposition of H–spaces

BOhki.p/ Š
.p�3/=2Y

iD0

BPh1ikC4i :

Under this decomposition the map BOhkC4i!BOhki corresponds to the identity map
on the factors BPh1ikC4i for 0< i < 1

2
.p� 3/ and to Œv1�W BPh1ikC2p�2! BPh1ik

on the remaining factor.

If k D 4, then the situation looks like this:

BOh8i.p/

��

Š BPh1i8

$$

� BPh1i12

%%

� � � � � � �

$$

� BPh1i2pC2

xx
BOh4i.p/ Š BPh1i4 � BPh1i8 � BPh1i12 � � � � � BPh1i2p�2

Hovey shows that ��MOh8i.p/ is (abstractly) isomorphic as a ring to a quotient of
the BP–homology of this decomposition, the ring structure of the latter coming from
the infinite loop space structures of the factors. To state his result precisely, we need
to introduce some notation. If p > 2 then there is a natural map of ring spectra
MOh8i ! MSO! BP. If p > 3 then the induced homomorphism BP�MOh8i !
BP�BP is surjective [15, Lemma 2.1]. For each positive integer i , choose a generator
ui in BP2.pi�1/MOh8i mapping to the generator ti of BP�BP Š BP�Œt1; t2; : : : �.
For dimensional reasons, each ui must lie in the tensor factor BP�BPh1i2p�2 of
BP�MOh8i.

Theorem [15, Theorem 2.4] If p > 3 then there are (abstract) isomorphisms of rings

��MOh8i.p/ Š BP�BPh1i8˝BP� BP�BPh1i12˝BP� � � �

˝BP� BP�BPh1i2p�2=.u1;u2; : : : /˝BP� BP�BPh1i2pC2;

��MSpin.p/ Š BP�BPh1i4˝BP� � � � ˝BP� BP�BPh1i2p�2=.u1;u2; : : : /:

Geometry & Topology, Volume 18 (2014)
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So to understand the forgetful homomorphism ��MOh8i.p/! ��MSpin.p/ it suffices
to understand the ring homomorphism induced by the dotted arrow above, ie

Œv1��W BP�BPh1i2pC2! BP�BPh1i4 :

As we shall see, it is the inclusion of a non-polynomial subring into a polynomial ring.
A toy model worth bearing in mind is the inclusion ZŒ5x;y;xy� ,! ZŒx;y�.

Instead of studying each ring BP�BPh1in individually, Hovey exploits the fact that
they fit together to form a Hopf ring BP�BPh1i� . In particular there is a circle product

ıW BP�BPh1im˝BP�BPh1in! BP�BPh1imCn

corresponding to the ring spectrum structure of BPh1i. It gives an inductive way to
construct elements in the increasingly complicated rings BP�BPh1imCn . In fact, all the
elements we will need can be constructed that way from just two kinds of elements, b.i/
and Œvi

1
�, defined as follows. The complex orientation gives a map CP1! BPh1i2 .

Let bi 2 BP2iBPh1i2 be the image under this map of the BP–homology generator
of degree 2i . Let b.i/ denote the generator bpi (generators not of this form are
decomposable). The homotopy class vi

1
is represented by a map S0!BPh1i�2i.p�1/ .

Let Œvi
1
� 2 BP0BPh1i�2i.p�1/ denote the image under this map of the BP–homology

generator.

Wilson [32, Corollary 5.1] showed that, for n < 2pC 2, the p–local homology of
BPh1in is an evenly graded torsion-free polynomial algebra with one generator in each
dimension corresponding to snvk

1
for k � 0. The Atiyah–Hirzebruch spectral sequence

therefore collapses and the BP homology of BPh1in has the same properties. In fact:

Theorem [15, Theorem 1.2] If n < 2p , then BP�BPh1in is a polynomial algebra
over BP� with one generator in each positive even degree congruent to n mod 2p� 2.
In a degree 2m of that form, one can take

x2m D Œv
i
1� ı b

ıj0

.0/
ı b
ıj1

.1/
ı � � � ı b

ıjk

.k/

as a generator, where mD
P

jlp
l is the p–adic expansion and i D 1

p�1
.˛.m/� 1

2
n/

with ˛.m/D
P

l jl .

If nD 2pC 2, then BP�BPh1in is not a polynomial ring over BP� . It has a generator
in each degree congruent to 4 mod 2p�2 (and greater than 4) but it has two generators
in some of these dimensions, and these generators satisfy a relation. Specifically:

� In each degree 4pi for i > 0 there is one generator

w4pi D b.i/ ı b
ıp

.i�1/
:
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� In each degree 2.pi Cpj / for 0� i < j there is a generator

y2.piCpj / D b.i/ ı b
ıp

.j�1/
:

� In each degree 2.pi Cpj / for 0< i < j there is a second generator

z2.piCpj / D b
ıp

.i�1/
ı b.j/:

To simplify formulas later on, let z2.1Cpj / D 0 for j > 0.

� In each of the other degrees — that is, in each degree 2m congruent to 4

mod 2p � 2, but not of the form 2.pi C pj / for any 0 � i � j — there is
a single generator of the form x2m , defined as in the preceding theorem.

Hovey constructs, for each 0< i < j , a relation rij involving y2.piCpj / , z2.piCpj /

and p . To express it, let I be the ideal of BP� generated by .p; v1; v2; : : : /, and let
I.n/ be the kernel of BP�BPh1in! BP� .

Proposition [15, Corollary 1.6] For any pair of integers 0< i < j there is a relation
in BP�BPh1i2pC2 of the form

p.z2.piCpj /�y2.piCpj //�vj y2.1Cpi /�vi �y2.1Cpj /Cy
p

2.pi�1Cpj�1/
�z

p

2.pi�1Cpj�1/

mod I2
� I.2pC 2/C I � I.2pC 2/�2C I.2pC 2/�pC1:

Considering each of these relations as an element rij of the BP�–polynomial ring R
on all the generators w4pi , y2.1Cpi / , y2.piCpj / , z2.piCpj / , x2m for 0< i < j and
2m of the form described above, Hovey shows that:

Theorem [15, Theorem 1.7] R=.rij j 0 < i < j /! BP�BPh1i2pC2 is an isomor-
phism of BP�–algebras.

Remember that we want to understand the homomorphism:

Œv1��W BP�BPh1i2pC2! BP�BPh1i4

If 0< i < j then by definition:

Œv1��w4pi D Œv1� ı b.i/ ı b
ıp

.i�1/

Œv1��y2.1Cpi / D Œv1� ı b.0/ ı b
ıp

.i�1/

Œv1��y2.piCpj / D Œv1� ı b.i/ ı b
ıp

.j�1/
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Œv1��z2.piCpj / D Œv1� ı b
ıp

.i�1/
ı b.j/

Œv1��x2m D Œv1� ı Œv
i
1�„ ƒ‚ …

DŒv
iC1
1

�

ıb
ıj0

.0/
ı b
ıj1

.1/
ı � � � ı b

ıjk

.k/

Recall that the exponent i of v1 appearing in the generator x2m depends on both m and
n, specifically i D i.m; n/D 1

.p�1/
.˛.m/� 1

2
n/. So i.m; 4/D i.m; 2pC 2/C 1 and

the homomorphism carries each generator of BP�BPh1i2pC2 of the form x2m to
the corresponding generator x2m of BP�BPh1i4 . To relate the images of the other
generators to the generators x2m of BP�BPh1i4 , we rely on the following proposition.

Proposition [15, Corollary 1.5] For each integer i > 0, there is a relation in
BP�BPh1i2 of the form

Œv1� ı b
ıp

.i�1/
� vi � b.0/�p � b.i/� b

�p

.i�1/
mod I2

� I.2/C I � I.2/�2C I.2/�pC1:

If we ı–multiply this relation by b.j/ then we obtain a relation in BP�BPh1i4 :

Œv1� ı b
ıp

.i�1/
ı b.j/ � vi � b.0/ ı b.j/�p � b.i/ ı b.j/� b

�p

.i�1/
ı b.j/„ ƒ‚ …
D.b.i�1/ıb.j�1//�p

mod I2
� I.4/C I � I.4/�2C I.4/�pC1

The bracketed equality is a consequence of the Hopf ring distributive law (see the
discussion just before Lemma 1.7 of [16]). If j D 0, then (as that discussion points
out) the bracketed quantity equals 0. The fact that BP�BPh1im ı I.n/�k � I.nCm/�k

is also a consequence of the Hopf ring distributive law.

Substituting .i; j / 7! .i; i/; .1; i/; .j ; i/; .i; j / (and subtracting) produces, for 0< i<j ,
the following congruences mod I2 � I.4/C I � I.4/�2C I.4/�pC1 :

Œv1��w4pi � vi �x2.1Cpi /�p �x4pi �x
p

4pi�1

Œv1��y2.1Cpi / � vi �x4�p �x2.1Cpi /

Œv1��y2.piCpj / � vj �x2.1Cpi /�p �x2.piCpj /�x
p

2.pi�1Cpj�1/

Œv1��.z2.piCpj /�y2.piCpj //� vi �x2.1Cpj /� vj �x2.1Cpi /

These congruences suffice for computing characteristic numbers of the form sn and sn;n0

since, by Lemma 2, such numbers vanish on the ideal I2 � I.4/C I � I.4/�2C I.4/�pC1 .

To compute sn and sn;n0 of the right-hand sides of these congruences, note that, by the
construction of ui , the image of vi in

��MSpin.p/ Š BP�BPh1i4˝BP� � � � ˝BP� BP�BPh1i2p�2=.u1;u2; : : : /
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can serve as the Z.p/–polynomial algebra generator of degree 2.pi � 1/. So by
Theorem 3, p divides s.pi�1/=2Œvi � to order 1. Similarly, if 2m is not of the form
2.pi�1/, then the image of x2m may serve as the Z.p/–polynomial algebra generator
of degree 2m. So by Theorem 3, p does not divide sm=2Œx2m�.

Thus, by Lemma 2,

spi .Œv1��w4pi /D spi .vi �x2.1Cpi /�p �x4pi �x
p

4pi�1/

D spi .vi �x2.1Cpi //„ ƒ‚ …
D0

�p � spi .x4pi /� spi .x
p

4pi�1/„ ƒ‚ …
D0

and since ordp.a � b/D ordp.a/C ordp.b/, it follows that

ordp

�
spi .Œv1��w4pi /

�
D ordp Œp�„ ƒ‚ …

D1

C ordp

�
spi .x4pi /

�„ ƒ‚ …
D0

D 1:

Similarly, by Lemma 2,

s.piC1/=2;.pj�1/=2

�
z2.piCpj /�y2.piCpj /

�
D s.piC1/=2;.pj�1/=2

�
vi �x2.1Cpj /� vj �x2.1Cpi /

�
D� s.pj�1/=2

�
vj
�
� s.piC1/=2

�
x2.1Cpi /

�
and it follows that

ordp

�
s.piC1/=2;.pj�1/=2

�
z2.piCpj /�y2.piCpj /

��
D ordp

�
s.pj�1/=2

�
vj
��„ ƒ‚ …

D1

C ordp

�
s.piC1/=2

�
x2.1Cpi /

��„ ƒ‚ …
D0

D 1:

These, and similar calculations, show that p divides

spi

�
Œv1��w4pi

�
to order 1,

s.1Cpi /=2

�
Œv1��y2.1Cpi /

�
to order 1,

s.piCpj /=2

�
Œv1��y2.piCpj /

�
to order 1,

s.piCpj /=2

�
Œv1��.z2.piCpj /�y2.piCpj //

�
to order1,

s.piC1/=2;.pj�1/=2

�
z2.piCpj /�y2.piCpj /

�
to order 1,

s.piC1/=2;.pj�1/=2

�
Œv1��.vj �y2.1Cpi //

�
to order 2.

(Recall that by definition ordp.0/D1.)

Theorem 4 follows from these six facts: (1) from the first three and (2) from the last three.
In more detail, the last three facts imply that the image of z2.piCpj /�y2.piCpj / can be
distinguished from the image of y2.piCpj / and from the images of degree–2.piCpj /
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products of lower degree generators by the vanishing of the number s.piCpj /=2 together
with the nonvanishing mod p2 of the number s.piC1/=2;.pj�1/=2 .

3 Cayley plane bundles

In this section we summarize work of Borel and Hirzebruch [3; 4] on characteris-
tic classes of homogeneous spaces, which we will use in the next section to prove
Theorem 1.

The Cayley plane is the homogeneous space CaP2
D F4=Spin.9/. Much of what

follows applies to any bundle with fiber a homogeneous space G=H , so we begin in
that generality and later specialize to the case G=H D F4=Spin.9/.

Throughout this section, let G be a compact connected Lie group, let iH ;G W H ,!G

be a maximal rank subgroup, and let iT;H W T !H and iT;G W T !G be a common
maximal torus:

H

iH;G��
T

iT;H
;;

iT;G

// G

Every G=H bundle (with structure group G ) pulls back from the universal G=H

bundle BH ! BG . That is, every G=H bundle (with structure group G ) fits into a
pullback square

E
zg //

�
��

BH

BiH;G

��
Z

g // BG

where g is unique up to homotopy.

Let � denote the bundle of tangents along the fibers of BH ! BG . Then the bundle of
tangents along the fibers of E!Z is the pullback zg�.�/ and there is an exact sequence

0! zg�.�/! TE! ��TZ! 0:

This enables us to compute the characteristic classes of TE from those of � and TZ , eg

p1.TE/D zg�p1.�/C�
�p1.TZ/:
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The characteristic classes of �, or rather their pullbacks to H�.BT;Z/, may in turn be
computed using the beautiful methods of Borel and Hirzebruch. To state their results
precisely, we need to introduce some notation (see [3, Chapter 1] for more detail).

Let V be the universal cover of the maximal torus T . Let � be the unit lattice of V ,
ie, the inverse image of the identity element of T . A real-valued linear form on V is
called integral if it takes integral values on � ; the group of all such forms Hom.�;Z/
is naturally isomorphic to H1.T;Z/Š Hom.�1.T /;Z/. The adjoint representation of
T on the Lie algebra g of G is fully reducible, and there is a direct sum decomposition
of g into invariant subspaces,

gD a1C � � �C amC t;

where dim.ai/D 2. The action on ai of an element t of T may be written as�
cos 2�ai.t/ � sin 2�ai.t/

sin 2�ai.t/ cos 2�ai.t/

�
:

The function ai W T ! R lifts to a nonzero integral linear form on V , also denoted ai .
The linear forms ˙a1; : : : ;˙am on V are called the roots of G . The decompositions
of g and h may be chosen compatibly so that we may speak of the roots ˙xa1; : : : ;˙xak

of G complementary to those of H .

Transgression in a principal T –bundle P ! P=T associates to each element of
H1.T;Z/ an element of H2.P=T;Z/. Since H1.T;Z/ Š Hom.�;Z/ (as discussed
above), this associates to each root of G , and more generally to each integral form,
an element of H2.P=T;Z/. For the universal T –bundle ET ! BT , we obtain an
isomorphism H2.BT;Z/Š Hom.�;Z/.

Theorem [3, Theorem 10.7] Let P ! P=G be a principal G –bundle, � the projec-
tion P=T ! P=H , and � the bundle of tangents along the fibers of the G=H bundle
P=H ! P=G . Then

��.p.�//D
Y
.1Cxa2

j /;

where f˙xaj g1�j�k are the roots of G complementary to those of H , regarded as
elements of H2.P=T;Z/.

Applied to the principal G –bundle e G! BG , for which �D BiT;G W BT ! BG , this
gives a formula for (the pullback to H�.BT;Z/ of) the characteristic class sI .�/ of
the bundle � of tangents along the fibers of the universal G=H bundle BH ! BG ,
namely

Bi�T;G
�
sI .�/

�
D sI

�
xa2

1; : : : ; xa
2
k

�
2 H�.BT;Z/:

Geometry & Topology, Volume 18 (2014)



2060 Carl McTague

This formula together with the following Lie-theoretic description of the pushforward

BiH ;G�W H�.BH;Z/! H�.BG;Z/

will enable us to prove Theorem 1. To describe the latter, we need to introduce further
notation (again, see [3, Chapter 1] for more detail).

Fix a positive-definite metric on g, invariant under the adjoint representation of G .
It determines a metric on V and hence a canonical isomorphism between V and its
dual space V � as well as a metric on V � . A symmetry Sa of V with respect to a
hyperplane aD 0 induces a symmetry of V � , also denoted Sa , defined by

Sa.b/D b� 2.a; b/.a; a/�1
� a:

The Weyl group W.G/ of G is the group of automorphisms of T induced by inner
automorphisms of G that leave T invariant. It may also be viewed as the group of
isometries of V that leave � and the root diagram invariant. It is generated by the
symmetries Sai

to the hyperplanes ai D 0 (i D 1; : : : ;m). The sign of an element w of
W.G/, denoted sgn.w/, is the determinant of w viewed as a linear transformation of V ;
it always equals ˙1. Choose a basis e1; : : : ; el for V � . Call a root aDa1e1C� � �Calel

positive if the first nonvanishing coefficient ai is positive. Call a positive root simple if
it is not the sum of two positive nonzero roots. The simple roots form a basis for V � ,
and every root is a linear combination, with integral coefficients of the same sign, of
simple roots.

Let ze.G=T / 2 H�.BT;Z/ be the Euler class of the bundle of tangents along the fibers
of BT ! BG . Up to sign, it is the product of a set of positive roots of G , regarded as
elements of H�.BT;Z/. More precisely, it is the product of the roots of an invariant
almost complex structure on G=T . Note that G=T always admits a complex structure
and that although the individual roots associated to an almost complex structure depend
on the almost complex structure, their product does not. (See [3, Sections 12.3, 13.4].)

The key to describing BiH ;G� is the following:

Theorem 5 (Borel and Hirzebruch [4, Theorem 20.3]) If t 2 H�.BT;Z/, thenX
w2W.G/

sgn.w/ �w.t/D Bi�T;G
�
BiT;G�.t/

�
� ze.G=T /:

Corollary 6 If h 2 H�.BH;Z/, then

Bi�T;G BiH ;G�.h/D
X

Œw�2W.G/=W.H /

w

�
ze.H=T /

ze.G=T /
Bi�T;H .h/

�
where the sum runs over the cosets of W.H / in W.G/.
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(Note that this is a formula in the polynomial ring H�.BT;Z/.)

Proof Since BiT;H�
�
ze.H=T /

�
D �.H=T /D jW.H /j 2 H0.BH;Z/, write

Bi�T;G BiH ;G�.h/D Bi�T;G BiH ;G�

�
BiT;H�

�
ze.H=T /

�
jW.H /j

� h

�
:

Apply the projection formula [3, Proposition 8.2] to obtain

Bi�T;G BiH ;G�.h/D
1

jW.H /j
Bi�T;G BiH ;G� BiT;H�

�
ze.H=T / �Bi�T;H .h/

�
D

1

jW.H /j
Bi�T;G BiT;G�

�
ze.H=T / �Bi�T;H .h/

�
:

Apply Theorem 5 to obtain

Bi�T;G BiH ;G�.h/D
1

jW.H /j
�

1

ze.G=T /

X
w2W.G/

sgn.w/ �w
�
ze.H=T / �Bi�T;H .h/

�
:

Since w
�
ze.G=T /

�
D sgn.w/ze.G=T /,

Bi�T;G BiH ;G�.h/D
1

jW.H /j

X
w2W.G/

w

�
ze.H=T /

ze.G=T /
Bi�T;H .h/

�
:

Since W.G/ acts on H�.BT;Z/ by ring homomorphisms, since if w 2W.H / then
w.ze.H=T //D sgn.w/ze.H=T / and w.ze.G=T //D sgn.w/ze.G=T /, and since Bi�T;H
maps to the W.H /–invariant subring of H�.BT;Z/, this sum may be written over the
cosets of W.H / in W.G/

Bi�T;G BiH ;G�.h/D
X

Œw�2W.G/=W.H /

w

�
ze.H=T /

ze.G=T /
Bi�T;H .h/

�
:

Now we specialize to the Cayley plane G=H D F4=Spin.9/ (see [3, Section 19] and
[5, Plate VIII] for more detail).

The extended Dynkin diagram of the root system F4 is:

� ı ı > ı ı

�za a1 a2 a3 a4

A choice of simple roots is

a1 D e2� e3; a2 D e3� e4; a3 D e4; a4 D
1
2
.e1� e2� e3� e4/:
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Since the coefficient of a4 in the maximal root

zaD 2a1C 3a2C 4a3C 2a4 D e1C e2

is prime, a theorem of Borel and de Siebenthal [2] implies that erasing a4 from the
extended Dynkin diagram gives the Dynkin diagram

ı ı ı > ı

�za a1 a2 a3

of a subgroup of the compact Lie group F4 . This type–B4 subgroup is globally
isomorphic to Spin.9/, the 1–connected double cover of SO.9/.

The roots of this type–B4 root subsystem are�
˙ei 1� i � 4;

˙ei ˙ ej 1� i < j � 4:

The roots of F4 are these roots together with the complementary roots

1
2
.˙e1˙ e2˙ e3˙ e4/:

Let T be the standard maximal torus of SO.9/ (see [3, Section 19.2]). Its preimage T0

under the double covering Spin.9/! SO.9/ is a maximal torus of Spin.9/ and hence
also of F4 . The double covering T0! T determines an index-2 sublattice

H1.T;Z/ ,! H1.T0;Z/

corresponding, under the identification H1.T;Z/Š Hom.�;Z/, to the index-2 sublat-
tice

Zhe1; e2; e3; e4i ,! Z
� 1

2
.e1C e2C e3C e4/;

1
2
.e1C e2C e3� e4/

1
2
.e1C e2� e3C e4/;

1
2
.e1� e2C e3C e4/

�
:

The following positive roots determine an almost complex structure on Spin.9/=T0 :�
ei 1� i � 4;

ei ˙ ej 1� i < j � 4:

These, together with the following complementary positive roots, determine an almost
complex structure on F4=T0 :˚

xa1; : : : ; xa8

	
D
˚

1
2
.e1˙ e2˙ e3˙ e4/

	
(The ordering of these roots will not matter.)

The 3 cosets of W.Spin.9// in W.F4/ are represented by the reflections˚
1;Sa4

;Sa4
Sa3

Sa4
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which act, with respect to the basis .e1; : : : ; e4/, by the matrices:8̂̂<̂
:̂
0BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCA ; 1

2

0BB@
1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

1CCA ; 1

2

0BB@
1 1 1 �1

1 1 �1 1

1 �1 1 1

�1 1 1 1

1CCA
9>>=>>;

In particular, they act on the set of positive complementary roots fxa1; : : : ; xa8g by:

fxa1; : : : ; xa8g D
˚

1
2
.e1˙ e2˙ e3˙ e4/

	
Sa4

.fxa1 : : : ; xa8g/D
n
e1; e2; e3; e4;

1
2
.e1C e2C e3� e4/;

1
2
. e1C e2� e3C e4/

1
2
.e1� e2C e3C e4/;

1
2
.�e1C e2C e3C e4/

o
Sa4

Sa3
Sa4

.fxa1; : : : ; xa8g/D
n
e1; e2; e3; e4;

1
2
.e1C e2C e3C e4/;

1
2
. e1C e2� e3� e4/

1
2
.e1� e2C e3� e4/;

1
2
.�e1C e2C e3� e4/

o
Thus we conclude:

Proposition 7

Bi�T0;F4
BiSpin.9/;F4�

sI .�/

D
sI

�
xa2

1
; : : : ; xa2

8

�Q
i xai

CSa4

 
sI

�
xa2

1
; : : : ; xa2

8

�Q
i xai

!
CSa4

Sa3
Sa4

 
sI

�
xa2

1
; : : : ; xa2

8

�Q
i xai

!
where the complementary roots f˙xa1; : : : ;˙xa8g D

˚
1
2
.˙e1 ˙ e2 ˙ e3 ˙ e4/

	
are

regarded as elements of H2.BT0;Z/ and Sa4
;Sa4

Sa3
Sa4

act on them as described
above.

4 Proof of Theorem 1

Theorem 1 Away from 6, the ideal of ��MOh8i consisting of (bordism classes of)
Cayley plane bundles with connected structure group is precisely the kernel of the
Witten genus. In other words, the extension of this ideal in ��MOh8i

�
1
6

�
is precisely

the kernel of

�W˝Z
�

1
6

�
W ��MOh8i

�
1
6

�
! ��tmf

�
1
6

�
Š Z

�
1
6

�
ŒG4;G6� ;

where G4;G6 have degrees 8; 12 respectively.
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Since the Witten genus carries the subring of ��MOh8i
�

1
6

�
generated by elements

of degree at most 12 isomorphically to the polynomial ring Z
�

1
6

�
ŒG4;G6�, and since

(as discussed in the introduction) the Witten genus of any CaP2 bundle with connected
structure group vanishes, Theorem 1 can be proved by showing that CaP2 bundles
with connected structure group can serve as generators for ��MOh8i

�
1
6

�
in dimensions

greater than 12. And this can be done by constructing a set S of such CaP2 bundles
that satisfy the conditions of Theorem 4 in all dimensions except 8 and 12.

Construction of M 4n

The first step is to construct, for each n � 4, a CaP2 bundle M 4n that satisfies
condition (1) of Theorem 4. It will be a Z–linear combination (topologically, a disjoint
union with some string structures possibly reversed) of total spaces of CaP2 bundles
whose base spaces are products of two carefully chosen complete intersections.

Let i W V m.d1; : : : ; dr / ,! CPmCr denote a smooth complete intersection of degree
.d1; : : : ; dr / and complex dimension m. Consider the CaP2 bundle pulling back from
the universal bundle CaP2

! BSpin.9/! BF4 by a classifying map g of the form

E
zg //

�

��

BSpin.9/

BiSpin.9/;F4

��W DV m.d1; : : : ; dr /

�V m0.d 0
1
; : : : ; d 0

r 0
/

i�i0 //

g

55CPmCr
�CPm0Cr 0 // CP1 �CP1 //

f

%%
BT0 // BF4

where mCm0 D 2n� 8.

Let H�.CP1 � CP1/ Š ZŒx1;x2�. Choose the map f W CP1 � CP1 ! BF4 so
that .e1; e2; e3; e4/ pull back to nf � .x1;x1;x2;�x2/, respectively, for some integer
nf � 1. The generators .e2; e3; e4;

1
2
.e1�e2�e3�e4// of the lattice H2.BT0;Z/ then

pull back to nf � .x1;x2;�x2; 0/, respectively.

The degrees .d1; : : : ; dr / and .d 0
1
; : : : ; d 0r 0/ need to be chosen so that p1.TE/ D 0,

since this implies that E admits a string structure. The exact sequences of vector
bundles

(4-1)
0! zg�.�/! TE! ��T

�
V m.d1; : : : ; dr /�V m0.d 01; : : : ; d

0
r 0/
�
! 0

0! i�
M

j

O.dj /! i�TCPmCr
! TV m.d1; : : : ; dr /! 0
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imply that:

p1.TE/

D zg�p1.�/C�
�p1T

�
V m.d1; : : : ; dr /�V m0.d 01; : : : ; d

0
r 0/
�

D zg�p1.�/C�
�i�

h
p1TCPmCr

�
P
j

p1O.dj /
i
C��i 0�

h
p1TCPm0Cr 0

�
P
j 0

p1O.d 0j 0/
i

D zg�p1.�/C�
�.i � i 0/�

h�
mC r C 1�

P
j

d2
j

�
x2

1 C
�
m0C r 0C 1�

P
j 0
.d 0j 0/

2
�
x2

2

i
The image of p1.�/ in H4.BT0/ is

P 1
4
.e1˙ e2˙ e3˙ e4/

2 D 2.e2
1
C e2

2
C e2

3
C e2

4
/,

which pulls back to 4nf .x
2
1
Cx2

2
/. So:

p1.TE/

D ��.i � i 0/�
h�

4nf CmC 1C r �
P
j

d2
j

�
x2

1C

�
4nf Cm0C 1C r 0�

P
j 0
.d 0j 0/

2
�
x2

2

i
The following lemma shows that, for any given m and m0 , it is simple to choose
degrees .d1; : : : ; dr / and .d 0

1
; : : : ; d 0r 0/ so that this quantity vanishes, provided nf is

sufficiently large. (The fact that the degrees can all be taken to be 2 and 3 is relevant
since these are the primes inverted in this paper.)

Lemma 8 For any integer n� 14, there exist integers a; b � 0 so that

nC .aC b/D a � 22
C b � 32:

Proof This follows by induction since

14C 3D 22
C 22

C 32; 15C 5D 22
C 22

C 22
C 22

C 22; 16C 2D 32
C 32

and since

nC .aC b/D a � 22
C b � 32

D) .nC 3/C .aC 1C b/D .aC 1/ � 22
C b � 32:

As an aside, the values for a and b constructed in the proof are

a.n/D 3n� 8dn=3e; b.n/D 3dn=3e� n:

Although the preceding lemma suffices to prove the results of this paper, the reader may
find the reliance on complete intersections of arbitrarily high codimension unsatisfying.
It is therefore worth noting that the following replacement for Lemma 8 would make it
possible to prove the results of this paper using complete intersections of codimension
at most 4.
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Conjecture 9 If n� 25, then the GCD

GCD
� 4Y

iD1

di

ˇ̌̌̌
4nC 4C 1D

4X
iD1

d2
i ; di > 0

�
has the form 2a3b with aC b > 0. In fact, as n increases from 25, this GCD takes the
values 24 � 3, 23 , 24 � 32 , 23 � 3, 24 , 23 � 32 , and then repeats from the beginning.

We have to carefully choose the degrees .d1; : : : ; dr / and .d 0
1
; : : : ; d 0r 0/ to ensure that

the total space E admits a string structure. However, these degrees have little effect on
the Pontrjagin number snŒE�, which we compute next. Indeed, for dimension reasons,

snŒE�D .i � i 0/�f � BiSpin.9/;F4�
sn.�/:

Since the base space W is a product of complete intersections, the pullback

.i � i 0/�xm
1 xm0

2

equals
�Q

j dj

��Q
j 0 d
0
j 0

�
times the fundamental class ŒW �. So the key is to compute

the coefficients of the polynomial f � BiSpin.9/;F4�
sn.�/ or, rather, their GCD as a

function of n. This calculation lies at the heart of this paper. (It was the smoking gun
that led to Theorem 1.)

Proposition 10

f � BiSpin.9/;F4�
sn.�/D 2n2n�8

f

n�2X
kD2

h� 2n

2

�
�

� 2n

2k

�i
x2k�4

1 x2n�2k�4
2

Proof Since the polynomial in question is homogeneous in nf x1 and nf x2 , we can,
without loss of generality, simplify notation by setting nf D 1 and .x1;x2/D .x; 1/.

Proposition 7 gives the polynomial in the form of a power series:

�
1

x4

�
1Cx2

Cx4
C � � �

�
�

�
�2C .xC 1/2n

C .x� 1/2n„ ƒ‚ …�x2
h‚ …„ ƒ
�2C .xC 1/2n

C .x� 1/2n
C 2

�2n

2

�i
Cx2n

h
2
�2n

2

�
� 2

i
C 2x2nC2

�
The bracketed quantities differ by 2

�
2n
2

�
, so the power series simplifies to the polynomial

�
1

x4
�

h
�2C .xC 1/2n

C .x� 1/2n
� 2

� 2n

2

�
.x2
Cx4

C � � �Cx2n�2/� 2x2n
i
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which simplifies further to

2

n�1X
kD2

h� 2n

2

�
�

� 2n

2k

�i
x2k�4:

Proposition 11 For any integer n� 4 and any odd prime p ,

ordp

h
GCD

1<k<n�1

n�2n

2

�
�

�2n

2k

�oi
D

�
1 if 2nD pi � 1 or 2nD pi Cpj for some 0� i � j ,
0 otherwise.

The key behind this is the following lemma.

Lemma 12 For any integer n> 1 and any odd prime p ,

ordp

h
GCD

0<k<n

� 2n

2k

�i
D

�
1 if 2nD pi Cpj for some 0� i � j ,
0 otherwise.

It is worth comparing this result to the better-known result that for any integer n> 1

and any prime p ,

ordp

h
GCD

0<k<n

� n

k

�i
D

�
1 if nD pi for some integer i � 0,
0 otherwise.

Notice that, for any given integer n > 1, at most one prime divides the latter GCD
whereas several primes may divide the former. For example, if n D 7 then 2n D

71C 71 D 130C 131 , and indeed GCD0<k<7

�
14
2k

�
D 7 � 13.

Proof of Lemma 12 By Kummer’s theorem,
�

2n
2k

�
is divisible by p if and only if

there is at least 1 carry when adding 2k to 2n� 2k . Consider the base-p expansionP
nip

i of an even integer 2n. If there is a digit ni � 2, then there is no carry when
adding 2pi to 2n� 2pi . If there are 2 distinct nonzero digits ni ; nj , then there is
no carry when adding pi Cpj to 2n�pi �pj . If 2nD pi Cpj and 0 < 2k < 2n

then there is always a carry when adding 2k to 2n� 2k , even if i D j . These 3 facts
together imply the first part of the lemma. The second part of the lemma follows from
the fact that if j > 0, then there is precisely 1 carry when adding .p � 1/pj�1 to
piCpj � .p� 1/pj�1 . (If j D 0, then the second part of the lemma is vacuous.)
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Proof of Proposition 11 If an odd prime p divides the GCD, then all the binomial
coefficients

�
2n
2k

�
for 0< 2k < 2n must be congruent mod p . If they are all congruent

to 0 mod p , then Lemma 12 applies and 2n D pi C pj for some 0 � i � j . So
suppose that the binomial coefficients are all nonzero mod p . By Kummer’s theorem,
this happens precisely when for each 0< 2k < 2n there are no carries when adding 2k

to 2n� 2k . This in turn happens precisely when 2nD l �pi � 1 for some i > 0 and
some (odd) 0 < l < p . According to Lucas’s theorem (see [13, Section 1]), if l > 1

then �
l �pi � 1

pi C 1

�
�

�
p� 1

1

��
p� 1

0

�
� � �

�
p� 1

0

��
l � 1

1

�
� 1� l mod p:

However, �
l �pi � 1

2

�
� 1 mod p:

So all the binomial coefficients can be congruent mod p only if l D 1, and indeed the
congruence .1Cx/p

i

� 1Cxpi

mod p implies that

.1Cx/p
i�1
� .1Cxpi

/.1Cx/�1
D 1�xCx2

�x3
C � � �Cxpi�1 mod p

and hence that �
pi � 1

2k

�
� 1 mod p

for all 0< 2k < pi � 1.

It remains to show that the GCD is never divisible by p2 for p odd. By the preceding
argument it remains only to show this when 2nDpiCpj or 2nDpi�1 for 0� i � j .
Remember that, by assumption, 2n� 16.

Suppose first that 2nD piCpj . If i > 1, then there are at least 2 carries when adding
2 to pi C pj � 2; so by Kummer’s theorem

�
2n
2

�
is congruent to 0 mod p2 , while

by Lemma 12
�

2n
2k

�
is nonzero mod p2 for some 0 < 2k < 2n. If i � 1, then since

1C 1 < 16 we may assume that j � 1 and split into 2 cases: pj C 1 and pj C p .
When j � 2 the 1st case can be handled as when i > 1. The remaining cases are
handled by the following straightforward congruences mod p2 :�

pC 1

2

�
�

�
pC 1

4

�
�

5

12
p;

�
pj Cp

2

�
�

�
pj Cp

4

�
��

1

4
.pj
Cp/

The coefficient 5
12

is not a problem since 2nD pC 1� 16 only if p � 17.
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Suppose now that 2nD pi � 1. Consider the following congruences mod p2 :�
pi � 1

2

�
� 1�

3

2
pi ;

�
p� 1

4

�
� 1�

25

12
p;

�
pi � 1

pi�1Cpi�2

�
� 1�p

The 1st and 2nd are immediate, and subtracting them gives the desired result for i D 1.
(The resulting coefficient �3

2
C

25
12
D

7
12

of p is not a problem since 2nD p�1� 16

only if p � 17.) Subtracting the 3rd congruence from the 1st gives the desired result
when i � 2 but proving the 3rd congruence is more subtle. Here, and quite often in
what follows, we rely on the following powerful theorem.

Granville’s theorem [13, Theorem 1] Suppose that a prime power pq and positive
integers nDmCr are given. Write nDn0Cn1pC� � �Cndpd in base p , and let Nj be
the least positive residue of Œn=pj � mod pq for each j � 0 (so that Nj DnjCnjC1pC

� � �C njCq�1pq�1 ); also make the corresponding definitions for mj ;Mj ; rj ;Rj . Let
ej be the number of indices i � j for which ni <mi (that is, the number of “carries”,
when adding m and r in base p , on or beyond the j th digit). Then

1

pe0
� .˙1/eq�1

�
.N0!/p

.M0!/p.R0!/p

��
.N1!/p

.M1!/p.R1!/p

�
� � �

�
.Nd !/p

.Md !/p.Rd !/p

�
mod pq;

where .˙1/ is .�1/ except if p D 2 and q � 3. Here .n!/p denotes the product of
those integers less than or equal to n that are not divisible by p .

We need to show that the 3rd congruence holds for i � 2, but assume first that i � 3.
Then according to Granville’s theorem, the binomial coefficient�

pi � 1

pi�1Cpi�2

�
is congruent to

..p2� 1/!/p

.p!/p � ..p2�p� 1/!/p
�

..p2� 1/!/p

..pC 1/!/p � ..p2�p� 2/!/p
�

..p� 1/!/p

.1!/p � ..p� 2/!/p
mod p2:

Gathering common factors gives:�
pi � 1

pi�1Cpi�2

�
�

�
.1�p/.2�p/ � � � ..p�1/�p//

.p!/p

�2

�
p2�p�1

pC1
� .p� 1/ mod p2

�
�
1�p.1C 1

2
C

1
3
C � � �C

1
p�1

/„ ƒ‚ …
�0

�2
� .1�p/ mod p2
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The bracketed quantity is congruent to 0 mod p2 since by Wolstenholme’s theorem [14,
Theorem 116],1 the .p� 1/st harmonic number is congruent to 0 mod p2 for p > 3

and to 2p for p D 3. Thus we obtain�
pi � 1

pi�1Cpi�2

�
� 12

� .1�p/D 1�p mod p2:

If i D 2 then the first factor in the congruence provided by Granville’s theorem
disappears, and the square in the following congruences therefore does too but, since
12 D 1, this does not affect the final result.

Construction of N 2.pi Cpj /

The second step is to construct, for each prime p > 3 and 0< i < j , a CaP2 bundle
N 2.piCpj / that satisfies condition (2) of Theorem 4. Throughout this section, let p> 3

and 0< i < j be arbitrary but fixed and, to simplify notation, let

nD 1
2
.pj
� 1/; n0 D 1

2
.pi
C 1/:

The goal then is to construct a CaP2 bundle N 4.nCn0/ with

snCn0 ŒN
4.nCn0/�D 0; sn;n0 ŒN

4.nCn0/� 6� 0 mod p2:

To do this, we will construct two CaP2 bundles E1 and E2 and define

N 4.nCn0/
D LCM

�
snCn0 ŒE1�; snCn0 ŒE2�

�
�

�
E1

snCn0 ŒE1�
�

E2

snCn0 ŒE2�

�
:

Then snCn0 ŒN
4.nCn0/�D0, so all that will remain will be to show that sn;n0 ŒN

4.nCn0/� 6�

0 mod p2 . To do so, it will suffice to show that

sn;n0 ŒE1�� 0 mod p2; sn;n0 ŒE2� 6� 0 mod p2; ordp snCn0 ŒE1�� ordp snCn0 ŒE2�:

Above, we saw that the characteristic number snŒE� depends only on the image of sn.�/

in H�.E/ and not on the Pontrjagin classes of the base W . The characteristic number
sn;n0 ŒE� is more subtle, however. Indeed, for a bundle CaP2

!E
�
�!W classified as

before by a map gW W ! BF4 , we have

sn;n0.TE/

D zg� sn;n0.�/C�
� sn.TW / � zg� sn0.�/C�

� sn0.TW / � zg� sn.�/C�
� sn;n0.TW /:

1“Wolstenholme. . . he was despondent and dissatisfied and consoled himself with mathematics and
opium” — Sir Leslie Stephen, Virginia Woolf’s father.
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Applying the H�.W /–module homomorphism B�� (which decreases degrees by 16)
gives

B�� sn;n0.TE/D g� Bi� sn;n0.�/C sn.TW / �g� Bi� sn0.�/C sn0.TW / �g� Bi� sn.�/:

To compute the last two terms, note that the 2nd exact sequence of vector bundles in
(4-1) implies that:

sn.TW /D sn

�
TV m.d1; : : : ; dr /�TV m0.d 01; : : : ; d

0
r 0/
�

D i�
�

sn.CPmCr /�
X

j

sn O.dj /
�
C i 0�

�
sn.CPm0Cr 0/�

X
j 0

sn O.d 0j 0/
�

D .i � i 0/�
h�

mC r C 1�
X

j

d2n
j

�
x2n

1 C

�
m0C r 0C 1�

X
j 0

.d 0j 0/
2n
�
x2n

2

i
Let E1 be the CaP2 bundle obtained by taking .m;m0/D .2n� 2; 2n0� 6/D .pj �

3;pi � 5/ in the construction of E above. Then for dimension reasons, sn.TV m/D

sn.TV m0/D sn0.TV m0/D 0, and by Proposition 10:

B�� sn;n0.TE1/

Dg� Bi� sn;n0.�/C
�
mCrC1�

X
j

d2n0

j

�
�

��
pj � 1

2

�
�

�
pj � 1

pj �pi

��
�.i�i 0/�xm

1 xm0

2

Corollary 15(1) below shows that g� Bi� sn;n0.�/� 0 mod p2 and Granville’s theorem
can be used to show that both binomial coefficients are congruent to 1 mod p2 , so

B�� sn;n0 ŒE1�� 0 mod p2:

Let E2 be the CaP2 bundle obtained by taking .m;m0/D .pj�1 � 3;pj �pj�1C

pi � 5/ in the construction of E above. Then for dimension reasons, sn.TV m/ D

sn.TV m0/D 0. If i D j � 1 then sn0.TV m/D 0 as well. So by Proposition 10,

B�� sn;n0.TE2/

D g� Bi� sn;n0.�/

C

�
mC r C 1�

X
j

d
piC1
j

�
�

��
pj � 1

2

�
�

�
pj � 1

pj�1�pi

��
� .1� ıiDj�1/

C

�
m0C r 0C 1�

X
j 0

.d 0j 0/
piC1

�
�

��
pj � 1

2

�
�

�
pj � 1

pj�1C 1

��
� .i � i 0/�xm

1 xm0

2 :

(Here ıP equals 1 if P is true and equals 0 otherwise.) Granville’s theorem can be
used to show that the first three binomial coefficients are congruent to 1 mod p2 while
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the last is congruent to 1�p mod p2 , so

B�� sn;n0.TE2/

� g� Bi� sn;n0.�/C
�
m0C r 0C 1�

X
j 0

.d 0j 0/
piC1

�
�p � .i � i 0/�xm

1 xm0

2 mod p2:

By Fermat’s little theorem,�
m0C r 0C 1�

X
j 0

.d 0j 0/
piC1

�
�

�
m0C r 0C 1�

X
j 0

.d 0j 0/
2
�

mod p:

Recall that the degrees .d 0
1
; : : : ; d 0r 0/ are chosen (say using Lemma 8) to make the

latter quantity equal �4nf (since this makes p1.TE2/D 0). So the particular degrees
chosen are irrelevant here, and

B�� sn;n0.TE2/� g� Bi� sn;n0.�/� 4nf �p � .i � i 0/�xm
1 xm0

2 mod p2:

By Corollary 15(2) below, g� Bi� sn;n0.�/� 8p � nmCm0

f
� .i � i 0/�xm

1
xm0

2
mod p2 , so

B�� sn;n0.TE2/� .8n
piCpj�8

f
� 4nf / �p � .i � i 0/�xm

1 xm0

2 mod p2:

By Fermat’s little theorem,

B�� sn;n0.TE2/� 4nf .2n�7
f � 1/ �p � .i � i 0/�xm

1 xm0

2 mod p2:

Since W is a product of complete intersections, .i�i 0/�xm
1

xm0

2
equals

�Q
j dj

��Q
j 0d
0
j 0

�
times the fundamental class ŒW �, and the degrees are all chosen to be nonzero mod p .
Determining the roots of the polynomial n7

f
� 2 mod p is a delicate task, but certainly

if nf � 1 mod p , then

B�� sn;n0 ŒE2� 6� 0 mod p2:

Lemma 13 ordp snCn0 ŒE1�� ordp snCn0 ŒE2�

Proof Assuming, as we did above, that nf � 1 mod p , it suffices by Proposition 10
to show that

ordp

��
pi Cpj

2

�
�

�
pi Cpj

pj�1C 1

��
� ordp

��
pi Cpj

2

�
�

�
pi Cpj

pj C 3

��
:

By Kummer’s theorem,

ordp

�
pi Cpj

2

�
D i; ordp

�
pi Cpj

pj�1C 1

�
D i C 1; ordp

�
pi Cpj

pj C 3

�
D i:
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So the difference of the 1st and 2nd binomial coefficients has order i while the difference
of the 1st and 3rd binomial coefficients has order at least i (in fact it has order i C 2,
as can be shown using Granville’s theorem).

The method used to prove Proposition 10 can be used to establish the following formula
(which holds for any integers n> n0 , not just the integers we are concerned with here).

Proposition 14

f � Bi� sn;n0.�/

D�4nnCn0�8
f

nCn0�1X
kD2

"�
2n

2k

�
C

�
2n0

2k

�
C

�
2n0

2k � 2n

�
C

�
2n

2k � 2n0

�

C
1

2

kX
lD0

.�1/l
�

2n0

l

��
2n� 2n0

2k � 2l

�

�

�
2n

2

� n�1X
lD1

�
2n0

2k � 2l

�
�

�
2n0

2

� n0�1X
lD1

�
2n

2k � 2l

�

�

�
2n0

2

�
.1� ın0�k�n/�

�
2n

2

�
.1C ın0C1�k�n�1/

C
1

2

�
2nC 2n0

2

�
� 3ık2fn;n0g

#
x2k�4

1 x2nC2n0�2k�4
2

where ıP equals 1 if P is true and equals 0 otherwise.

Corollary 15 (1) If .m;m0/ D .2n � 2; 2n0 � 6/ D .pj � 3;pi � 5/ then the
coefficient of xm

1
xm0

2
in f � Bi� sn;n0.�/ is congruent to 0 mod p2 .

(2) If .m;m0/D .pj�1� 3;pj �pj�1Cpi � 5/ then the coefficient of xm
1

xm0

2
in

f � Bi� sn;n0.�/ is congruent to 8p � nmCm0

f
mod p2 .

Proof Corollary 15(1) If .m;m0/D .2n�2; 2n0�6/, then the coefficient of xm
1

xm0

2

is the k D nC 1 summand in Proposition 14. It is not difficult to show that this
summand is congruent mod p2 to

4n
.pjCpi /=2�8

f

�
0C 0C 1

2
pi
C 1CA� .2pi

� 1� 1
2
pi/C 1

4
pi
�

1
2
pi
� 1� 1

4
pi
� 0
�
;

where

AD
1

2

.pjC1/=2X
lD0

.�1/l
�

pi C 1

l

��
pj �pi � 2

pj � 2l C 1

�
:
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Due to tidy pairwise cancellations, all that remains is to show that A� 2p � 1� 1
2
pi

mod p2 . (Note that np2�p � 1 mod p2 for any integer n 6� 0 mod p since the
multiplicative group .Z=p2/� has order p2�p ; it follows by induction that npi

� np

mod p2 for any i > 0.)

(a) If i > 1 then Granville’s theorem can be used to show that

A�

.p�1/=2X
rD0

.�1/r
�

p

r

�
mod p2:

(The key is that

�
pi C 1

l

�
�

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�
pC 1

l

�
if i D 1,�

p

r

�
if i > 1 and l D rpi�1 or
l D rpi�1C 1 with 0� r � p,

0 otherwise,

mod p2 .) By the identity
Pk

jD0.�1/j
�

n
j

�
D .�1/k

�
n�1

k

�
(proved inductively using

Pascal’s rule),

A� .�1/.p�1/=2

�
p� 1

.p� 1/=2

�
mod p2:

By the eponymous congruence of Morley’s ingenious 1895 paper [23], A� 22.p�1/

mod p2 . The final step is to show that 22.p�1/ � 2p � 1 mod p2 . Write

22.p�1/
D .2p�1

C 1/.2p�1
� 1/C 1:

By Fermat’s little theorem, the two factors are congruent to 2 and 0 mod p respectively,
so

A� 2.2p�1
� 1/C 1 mod p2

D 2p
� 1:

(b) If i D 1, then Granville’s theorem can be used to show that

A� pC
1

2

.p�1/=2X
lD0

.�1/l
�

pC 1

l

��
p� 2

2l � 1

�
mod p2:

Since the 1st binomial coefficient is congruent to 0 mod p for 1 < l < p , we can
simplify the 2nd binomial coefficient mod p via the congruence

.1Cx/p�2
� .1Cxp/.1Cx/�2

D .1Cxp/

1X
kD0

.�1/k.kC 1/xk mod p

Geometry & Topology, Volume 18 (2014)



The Cayley plane and string bordism 2075

and, subtracting a correction factor, obtain

A�
1

2
p�

.p�1/=2X
lD0

.�1/l
�

pC 1

l

�
� l mod p2:

By the identity
Pk

jD0.�1/j
�

n
j

�
j D .�1/k

�
n�2
k�1

�
n (proved by writing

�
n
j

�
D
�

n�1
j�1

�
n
j

and
then applying the earlier-cited identity

Pk
jD0.�1/j

�
n
j

�
D .�1/k

�
n�1

k

�
), and by the iden-

tity
�

n�2
k�1

�
D
�
n�2

k

�
k

n�k�1
,

A� 1
2
p� .�1/.p�1/=2

�
p� 1

.p� 1/=2

�
�
p2� 1

pC 1
mod p2:

By Morley’s congruence, we get A� 1
2
pC 22.p�1/.1�p/ mod p2 . And again since

22.p�1/ � 2p � 1 mod p2 , A� 2p � 1� 1
2
p mod p2 .

Proof Corollary 15(2) If .m;m0/ D .pj�1 � 3;pj � pj�1 C pi � 5/, then the
coefficient of xm

1
xm0

2
is the k D 1

2
.pj�1C 1/ summand in Proposition 14. It is not

difficult to show that this summand is congruent mod p2 to

4n
.pjCpi /=2�8

f

�
.1�p/C ıiDj�1C 0C 1CB � .2p

� ıiDj�1/� .�
1
4
pi/

� 0� .2� ıiDj�1/�
1
4
pi
� 3ıiDj�1

�
;

where

B D
1

2

.pj�1C1/=2X
lD0

.�1/l
�

pi C 1

l

��
pj �pi � 2

pj�1� 2l C 1

�
:

Due to tidy cancellations, all that remains is to show that B � 2p �p mod p2 .

(a) If i > 1, then the above stated fact about
�piC1

l

�
can be used to show that

B �
1

2

pX
rD0

.�1/r
�

p

r

��
pj �pi � 2

pj�1� 2rpi�1C 1

�
mod p2:

The 1st binomial coefficient is congruent to 0 mod p for 0< r < p . The 2nd binomial
coefficient is congruent to 0 mod p if 0< r < 1

2
.pC 1/ and congruent to �2 mod p

if 1
2
.pC 1/� r < p . So

B �
1

2

�
pj �pi � 2

pj�1C 1

�
�

p�1X
rD.pC1/=2

.�1/r
�

p

r

�
�

1

2

�
pj �pi � 2

pj�1� 2pi C 1

�
mod p2:
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Granville’s and Wolstenholme’s theorems can be used to simplify the first and last terms
mod p2 while the identity

Pk
jD0.�1/j

�
n
j

�
D .�1/k

�
n�1

k

�
can be used to simplify the

summation, yielding

B � .1C ıiDj�1�pıi¤j�2/� 1

C .�1/.p�1/=2

�
p� 1

.p� 1/=2

�
� .ıiDj�1CpıiDj�2� 1/ mod p2:

By Morley’s congruence, B � 22.p�1/C 1�p mod p2 . And again since 22.p�1/ �

2p � 1 mod p2 , B � 2p �p mod p2 .

(b) If i D 1, then

B D
1

2

pC1X
lD0

.�1/l
�

pC 1

l

��
pj �p� 2

pj�1� 2l C 1

�
:

Granville’s theorem can be used to show that

B �
1

2
.pC 2/C

1

2

.p�1/=2X
lD0

.�1/l
�

pC 1

l

��
p� 2

2l � 1

�
mod p2:

This summation appeared above in the proof of Corollary 15(1), part (b). In fact,
B � AC 1� 1

2
p mod p2 . Since we concluded that A� 2p � 1� 1

2
pi mod p2 , it

follows that

B � 2p
�p mod p2:
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