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Realisation and dismantlability

SEBASTIAN HENSEL

DAMIAN OSAJDA

PIOTR PRZYTYCKI

We prove that a finite group acting on an infinite graph with dismantling properties
fixes a clique. We prove that in the flag complex spanned on such a graph the fixed
point set is contractible. We study dismantling properties of the arc, disc and sphere
graphs. We apply our theory to prove that any finite subgroup H of the mapping class
group of a surface with punctures, the handlebody group, or Out.Fn/ fixes a filling
(respectively simple) clique in the appropriate graph. We deduce some realisation
theorems, in particular the Nielsen realisation problem in the case of a nonempty set
of punctures. We also prove that infinite H have either empty or contractible fixed
point sets in the corresponding complexes. Furthermore, we show that their spines
are classifying spaces for proper actions for mapping class groups and Out.Fn/ .
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1 Introduction

We study dismantlability for infinite graphs. For a vertex � of a graph, its neighbourhood
N.�/ is the set of vertices consisting of � and all its neighbours. We say that a vertex
� of a graph is dominated by a vertex � ¤ � if N.�/ � N.�/. A finite graph is
dismantlable if its vertices can be ordered into a sequence �1; : : : ; �m so that for
each i < m the vertex �i is dominated in the subgraph induced on f�i ; : : : ; �mg.
Polat [28] proved that a finite dismantlable graph contains a clique fixed by all of
its automorphisms. We extend this result to infinite graphs admitting a dismantling
projection (see Definition 2.6).

Theorem 1.1 Let H be a group of automorphisms of a graph � with vertex set V .
Suppose that there is a � –projection …� and a finite …� –convex subset R � V .
Furthermore suppose that

(i) R is H–invariant, or

(ii) the set HR is finite and for all � 0 2 S DH� � V there are � 0–projections …� 0
for which R is …� 0 –convex. Moreover, the family f…� 0g� 02S is H–equivariant.

Published: 2 October 2014 DOI: 10.2140/gt.2014.18.2079

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=20F65
http://dx.doi.org/10.2140/gt.2014.18.2079


2080 Sebastian Hensel, Damian Osajda and Piotr Przytycki

Then the subgraph induced on HR� V is dismantlable and � contains an H–invariant
clique.

In the second part of the article, we generalise Polat’s theorem to the following, which
can be used to study fixed point sets in flag complexes spanned on finite dismantlable
graphs, and on infinite graphs with dismantling projections as well.

Theorem 1.2 Let � be a finite dismantlable graph and let Y D�N , the flag simplicial
complex spanned on � . Let H be a subgroup of Aut.Y /. Then the set YH of points
of Y fixed by H is contractible.

Dismantlability, which should be regarded as a combinatorial nonpositive curvature
feature, is shared by many graphs associated to mapping class groups and related
groups. In this article, we show dismantlability for the arc graph of a punctured surface,
the disc graph of a handlebody and the sphere graph of a doubled handlebody. We note
that the proofs of dismantlability follow easily from the known proofs of contractibility
for the arc and disc graph, but not for the sphere graph. We also prove dismantlability
for the Rips graph of a hyperbolic group.

Additionally, dismantlability is known for Kakimizu graphs of link complement groups
and 1–skeleta of weakly systolic complexes. In [29] we used the Kakimizu graph to
prove a fixed point theorem for finite subgroups of link complements. We proved a
weakly systolic fixed point theorem in [5].

Consequently, Theorems 1.1 and 1.2 give new, simplified proofs of various realisation
results discussed below.

One of the classical problems in mapping class groups is the Nielsen realisation problem,
which asks if a finite group of isotopy classes of homeomorphisms of a surface can be
realised as an actual group of homeomorphisms. The case of a cyclic group was proved
by Nielsen [26] in 1943, but the general question was only answered affirmatively in
1980 by Steven Kerckhoff, by in fact realising the isotopy classes as isometries of a
suitable hyperbolic metric.

Theorem 1.3 (Kerckhoff [17; 18]) Let X be a connected oriented surface of finite
type and negative Euler characteristic. Let H be a finite subgroup of the mapping class
group Map.X/. Then X admits a complete hyperbolic metric such that H acts on X
as a group of isometries.

Kerckhoff’s proof is analytic, based on proving convexity of length functions along
“earthquake paths”. Alternate but also involved proofs were later given by Wolpert [33]
and Gabai [8].
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In our article we will revisit the particular case where X has nonempty set of punctures.
In that case, Theorem 1.3 was proved by Zieschang [34] by extending Nielsen’s method
for cyclic groups (see also Tukia [31] for another approach). That simple example of a
realisation problem will allow us to demonstrate our general approach to realisation.

Realisation theorems similar to Theorem 1.3 are true in other contexts as well. As
one example, we can consider a handlebody U instead of a surface. Its mapping class
group Map.U / is called the handlebody group.

Theorem 1.4 (Zimmermann [35]) Let U be a connected handlebody of genus at
least 2. Let H be a finite subgroup of the handlebody group Map.U /. Then there is a
hyperbolic 3–manifold M that is homeomorphic to the interior of U such that H acts
on M as a group of isometries.

Theorem 1.4 may be deduced from Theorem 1.3 using the Marden isomorphism theorem
(see [35]).

As a last example of realisation theorems we consider graphs. The group Out.Fn/ acts
by homotopy equivalences on a graph with fundamental group Fn .

Theorem 1.5 (Zimmermann [36], Culler [6], Khramtsov [19]) Let H be a finite
subgroup of Out.Fn/. Then there is a graph with fundamental group Fn on which H
acts as a group of isometries.

The proofs require the description of virtually free groups as graphs of finite groups.

Theorem 1.5 is known to imply Theorem 1.3 for punctured surfaces. Namely, a finite
subgroup H of Map.X/ with �1.X/ D Fn embeds in Out.Fn/. By Theorem 1.5
the group H acts by isometries on a graph � with �1.�/D Fn . One can then show
that � has an H–invariant ribbon graph structure determining the action of H on X .
However, to better illustrate our approach, we will treat Theorem 1.3 separately.

The purpose of this article is to develop a unified and elementary combinatorial approach
to such realisation problems. We give proofs of Theorem 1.4 and Theorem 1.5 in full
generality, and we also prove Theorem 1.3 under any of the following hypotheses:

(A) The set of punctures of X is nonempty.

(B) There is a nonempty set of disjoint essential simple closed curves on X that is
H–invariant up to homotopy.

Our method is elementary and consists in finding the fixed point of the action of H on
the arc graph (resp. the disc graph, the sphere graph).

Geometry & Topology, Volume 18 (2014)
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Metatheorem A Let � be the arc graph (resp. the disc graph, the sphere graph). Then
any finite subgroup of the mapping class group (resp. the handlebody group, Out.Fn/)
fixes

(1) a clique in � ,

(2) a filling (resp. simple) clique in � .

Assertion (2) of Metatheorem A is stronger than (1), but in order to prove (2), we first
prove (1) and then apply induction. To prove (1), the first step is to use an easy surgery
procedure to show that the graph � admits dismantling projections. We then show that,
even though � is locally infinite, an orbit of a finite subgroup of the ambient group
extends to a finite invariant convex subset. By Theorem 1.1 it contains a fixed clique.

Theorem 1.2 leads to the following metatheorems.

Metatheorem B Let H be any subgroup of the mapping class group (resp. the han-
dlebody group, Out.Fn/). The fixed point set of the action of H on the arc complex
(resp. the disc complex, the sphere complex) is empty or contractible.

In the case where H is the trivial group, Metatheorem B implies that the arc, disc and
sphere complexes are contractible. These facts were known before; see Harer [11],
Hatcher [13; 14] and McCullough [23]. For general H the results in Metatheorem B
are new. In particular for H finite, in view of Metatheorem A(1), the fixed point set of
H is contractible.

The following builds on and generalises Metatheorem A(2).

Metatheorem C Let H be a finite subgroup of the mapping class group (resp. the
handlebody group, Out.Fn/). The fixed point set of the action of H on the filling
arc system complex (resp. the simple disc system complex, the simple sphere system
complex) is contractible.

Consequently the filling arc system complex, as well as the simple sphere system
complex, are finite models for EG ; the classifying space for proper actions for the
ambient group G . This was known for Out.Fn/ (White [32], Krstić and Vogtmann
[20]) for which the corresponding complex is the spine of the Outer space [14]. For
the handlebody group, Metatheorem C is new. When G is the mapping class group,
Metatheorem C can be obtained alternatively from the following argument pointed
out to us by Mladen Bestvina and Martin Bridson. In the case of a surface with one
puncture, the filling arc system complex coincides with Harer’s spine of the Teichmüller
space (Harer [12]). In the case of more punctures, one needs to discuss the decorated
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Teichmüller space obtained by multiplying by a simplex. By a theorem of Penner [27],
and Bowditch and Epstein [2], the decorated Teichmüller space is homeomorphic
equivariantly to the arc complex minus the simplices spanned on non-filling cliques.
This space naturally (hence equivariantly) retracts onto the filling arc system complex.
Hence the fixed point set in the latter is contractible as the retract of the contractible
fixed point set in the decorated Teichmüller space. Other finite models for EG were
constructed in Ji and Wolpert [15] and Mislin [25]. Our method also reproves that
Harer’s spine is in general a model for EG , where G is the pure mapping class group.

Theorem 1.2 can be applied in many other situations. In particular it can be used to
show contractibility of sets of fixed points for weakly systolic complexes (cf [5]) or for
Kakimizu complexes (cf [29]). In our article we show how to deduce from Theorem 1.2
a new proof of the following classical result.

Theorem 1.6 (Meintrup and Schick [24, Theorem 1]) Let G be a ı–hyperbolic
group and let D � 8ıC 1. Then the Rips complex PD.G/ is a finite model for EG .

We believe that many simplicial complexes appearing elsewhere in the literature can
be studied using dismantlability and we intend to continue developing this approach.

Organisation

The article is divided into two parts. In Sections 2–8 we prove Metatheorem A and
deduce realisation results. In Sections 9–12 we prove Metatheorems B and C. Each
part is preluded by a graph-theoretic section (Sections 2 and 9).

In Section 2 we discuss the notion of dismantlability. We include the proof of Polat’s the-
orem (Theorem 2.4 in the text) and deduce Theorem 1.1, the fixed clique criterion, which
will be used for Metatheorem A(1). In Section 3 we prove Metatheorem A(1) for the
mapping class group (Theorem 3.1). In Section 4 we deduce from this Metatheorem A(2)
for the mapping class group (Theorem 4.1) and Theorem 1.3 under hypothesis (A) or (B).

In Section 5 we prove Metatheorem A(1) for the handlebody group (Theorem 5.1).
In Section 6 we derive Metatheorem A(2) for the handlebody group (Theorem 6.1)
and Theorem 1.4. Similarly, we prove Metatheorem A(1) for Out.Fn/ (Theorem 7.1)
in Section 7 and promote it to Metatheorem A(2) for Out.Fn/ (Theorem 8.1) and to
Theorem 1.5 in Section 8.

The second part of the article begins with Section 9, where we prove Theorem 1.2. This
section can be read, alternatively, directly as a continuation of Section 2. In Section 10
we deduce from Theorem 1.2 the results of Metatheorems B and C for the mapping
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class group (Theorems 10.1 and 10.3). We do the same for the handlebody group
and Out.Fn/ in Section 11 (Theorems 11.1, 11.2, 11.3, and 11.4). Consequently, we
obtain finite models for classifying spaces for proper actions in Corollaries 10.4, 10.5,
and 11.5. We close the article with the proof of Theorem 1.6 in Section 12.
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2 Dismantlability

Our goal in this section is to prove Theorem 1.1. In this theorem we require the
existence of “projections” and finite sets that are “convex” under sufficiently many of
these projections. Theorem 1.1 will be used to obtain Metatheorem A(1), where the
role of projections will be played by surgeries.

Our proof of Theorem 1.1 relies on Polat’s fixed point theorem for dismantlable
graphs [28]. We include the proof of a special case of Polat’s theorem for the article
to be self-contained. The notion of dismantlability was brought into geometric group
theory by Chepoi and the second named author, and it was used in particular to prove
a fixed point theorem for weakly systolic complexes [5]. Later Schultens and the
third named author used it to obtain contractibility and a fixed point theorem for the
Kakimizu complex [29].

The results of this section have a natural continuation and generalisation in Section 9.

Unless stated otherwise, all graphs in this article are simple in the sense that they do
not have double edges or loops, ie, edges connecting a vertex to itself. Let � be a
graph with vertex set V . A subgraph of � induced on a subset V 0 � V has vertex set
V 0 and all of the edges of � that connect vertices in V 0 .

Definition 2.1 For a vertex � of a graph, its neighbourhood N.�/ is the set of vertices
consisting of � and all its neighbours. We say that a vertex � of a graph is dominated
by a (dominating) vertex � ¤ � if N.�/�N.�/. The symbol � here allows equality.
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A finite graph is dismantlable if its vertices can be ordered into a sequence �1; : : : ; �m so
that for each i <m the vertex �i is dominated in the subgraph induced on f�i ; : : : ; �mg.
We call such an order a dismantling order.

Definition 2.2 A clique in a graph is a nonempty subgraph all of whose vertices are
pairwise connected by edges. The vertex set of a clique is called a clique as well.

For a graph � let �N denote the simplicial complex with 1–skeleton � and simplices
spanned on all cliques in � . A simplicial complex Y is flag if Y D �N , where �
is the 1–skeleton of Y . If S is a subset of the vertex set of � , then SN denotes the
subcomplex of �N spanned on S .

Remark 2.3 If a finite graph � is dismantlable, then �N is contractible. This will be
generalised in Section 9, where we prove contractibility of fixed point sets of group
actions.

We build on the following special case of a result of Polat (who proves an analogue for
some infinite graphs).

Theorem 2.4 [28, Theorem A] A finite dismantlable graph contains a clique invariant
under all of its automorphisms.

Note that there are finite group actions on finite contractible or even collapsible
simplicial complexes with no fixed points. Dismantlability seems to be the correct
strengthening of those notions.

For completeness, we include a concise proof of Theorem 2.4. Roughly speaking, the
invariant clique is obtained by successively removing simultaneously all dominated
vertices.

Lemma 2.5 If a finite graph with vertex set V is dismantlable and � 2V is dominated,
then the subgraph induced on V n f�g is dismantlable as well.

Proof By dismantlability, we can order the vertices of V into a sequence �1; : : : ; �m
so that for each i < m the vertex �i is dominated in the subgraph induced on V i D
f�i ; : : : ; �mg by some �f .i/ with f .i/ > i . Assume that � D �j is dominated in V
by �k . Note that we might have k < j .

Let k1 D k . For i D 2; : : : ; j , define ki D ki�1 if ki�1 ¤ i � 1 and ki D f .ki�1/
otherwise. Observe that ki � i and N.�ki /\V

i �N.�j /\V
i .

Geometry & Topology, Volume 18 (2014)
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First assume that there is no i with ki D j . In that case we induce an order on V nf�g
from V and put f 0.i/D f .i/ if f .i/¤ j and f 0.i/D ki otherwise. Let i < m be
distinct from j . Then �i is dominated in the subgraph induced on V i n f�g by �f 0.i/ .
Hence this is a dismantling order.

If l is minimal with klC1 D j , then kl D l and we have N.�l/\V l DN.�j /\V l .
Hence the subgraph induced on V l n f�g is isomorphic to the subgraph induced on
V lC1 , which was dismantlable. Then in the order on V n f�g induced from V , we
carry �l to the position j , which was occupied in V by � . For every i < l , the vertex
�i is dominated in the subgraph induced on V i n f�g by �f 0.i/ , as before.

Proof of Theorem 2.4 The proof is by induction on the number of vertices. If the
graph consists of one vertex, the theorem is trivial. Now assume we have a dismantlable
graph � with vertex set V and the theorem is true for all graphs with fewer vertices.
We treat two cases separately.

Case 1 There are no two vertices �; � 2 V with N.�/ D N.�/. In this case, let
V 0 � V be the set of all dominated vertices. Note that each vertex of V 0 is dominated
by a vertex in V n V 0 . Let � 0 be the subgraph of � induced on V n V 0 . Note that
every automorphism of � restricts to an automorphism of � 0 . Since � 0 is obtained
from � by repeatedly removing dominated vertices, by Lemma 2.5 the graph � 0 is
dismantlable. By induction hypothesis, there is a clique �0 in � 0 invariant under every
automorphism of � 0 . The clique �0 is then also invariant under every automorphism
of � .

Case 2 There are vertices �; �2V with N.�/DN.�/. In this case, let � 0 be the graph
obtained from � by identifying all vertices � with common N.�/ (and identifying
the double edges and removing loops). More precisely, we consider the equivalence
relation � on V for which � � � if and only if N.�/DN.�/. Equivalence classes
of � are cliques. The vertex set of � 0 is the set of equivalence classes of �. Two
vertices of � 0 are connected by an edge if some (hence any) of its representatives in �
are connected by an edge.

Note that every automorphism of � projects to an automorphism of � 0 . Moreover, � 0

can be embedded as an induced subgraph in � and obtained from � by repeatedly
removing dominated vertices. Again, by Lemma 2.5 the graph � 0 is dismantlable and
by induction hypothesis there is a clique �0 in � 0 invariant under every automorphism
of � 0 . Hence its preimage � under the projection from � is a clique invariant under
every automorphism of � .

Dismantlability can be verified if we have particular “projection” maps.
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Definition 2.6 Consider a graph with vertex set V . Let � 2 V and let … assign to
each vertex � 2 V n f�g a nonempty finite set ….�/ consisting of pairs of elements of
V . We allow the two elements of a pair to coincide. Let …�.�/� V denote the set of
all vertices appearing in pairs from ….�/.

We call … a � –projection (or a dismantling projection if � is not specified) if the
following axioms are satisfied:

(i) For each finite set of vertices R� V with nonempty Rnf�g, there is an exposed
vertex � 2 R n f�g, that is, a vertex with N.�/\R � N.�/ for both � from
some pair of ….�/.

(ii) There is no cycle of vertices �0; : : : ; �m�1 2 V with �iC1 2…�.�i /, where i
is considered modulo m.

Note that axiom (ii) implies in particular that � ……�.�/.

Lemma 2.7 A finite graph with a dismantling projection is dismantlable.

Before we provide the proof of Lemma 2.7, we deduce a corollary.

Definition 2.8 Consider a graph with vertex set V and a � –projection …. We say
that a nonempty subset R � V is …–convex if for every vertex � 2R n f�g each pair
in ….�/ intersects R .

We will see in a moment that if R is …–convex for a � –projection …, then � 2R .

Corollary 2.9 Let � be a graph with a dismantling projection … and a finite …–
convex subset R of its vertices. Then the subgraph of � induced on R is dismantlable.

Proof Suppose … is a � –projection. For any pair P intersecting R consider P \R
as a pair (of possibly two coinciding elements). Let …R assign to any � 2 R n f�g
the set of pairs P \R over P 2….�/. The assignment …R satisfies axioms (i) and
(ii) of a � –projection for the induced subgraph. The only non-immediate part is to
verify � 2R , which can be deduced from axiom (ii): we consider the longest sequence
�0; : : : ; �m 2R with �iC1 2…�.�i /. Since the only vertex on which …R might not
be defined is � , we have �m D � .

Proof of Lemma 2.7 Let m denote the cardinality of the vertex set V of the graph.
Suppose the dismantling projection … is a � –projection. Define inductively �i for
i D 1; : : : ; m� 1 so that �i is exposed (see axiom (i) of a � –projection) in the set
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V i DV nf�1; : : : ; �i�1g and put �mD� . We will verify that this is a dismantling order.
Since the �i are exposed, there are vertices �11 ; : : : ; �

1
m�1 in …�.�1/; : : : ;…�.�m�1/

satisfying N.�i /\V i �N.�1i /.

By construction, the vertex �1 is dominated in V 1 D V by �11 . However, the vertices
�i for i > 1 might not be dominated in V i by �1i if the latter lie outside V i . This
might happen if, for some j < i , �j is chosen to be �1i . However, in that case we can
replace �1i with �1j , if the latter is in V i , or else with yet another vertex. Here is the
systematic way to determine this choice.

By axiom (ii) of a � –projection, the directed graph with vertices V D V 1 and edges
f.�j ; �

1
j /g

m�1
jD1 has no directed cycles. For i D 2; : : : ; m� 1, inductively define � ij ,

where j D i; i C 1; : : : ; m� 1 so that � ij D �
i�1
j if � i�1j ¤ �i�1 , and � ij D �

i�1
i�1

otherwise. We inductively see that in both cases � ij 2 V
i and the directed graph

with vertices V i and edges f.�j ; � ij /g
m�1
jDi has no directed cycles. We also claim the

following, which we will prove by induction on i D 1; : : : ; m� 1:

(a) N.�1i /\V
i �N.� ii /.

(b) N.�i /\V
i �N.� ii /.

(c) N.� ij /\V
iC1 �N.� iC1j / for j D i C 1; : : : ; m� 1.

Note that part (b) means that �i is dominated in V i , which implies dismantlability.

First observe that part (a) implies part (b) by the choice of �1i . Also note that part
(b) directly implies part (c) since, in the case where � iC1j D � ij , there is nothing to
prove, and otherwise, � ij D �i and � iC1j D � ii . Finally, part (a) for i D k follows
from applying k� 1 times part (c) with j D k and i D 1; : : : ; k� 1.

We are now in position to prove our main criterion for the existence of an invariant
clique.

Definition 2.10 Let H be a finite group of automorphisms of a graph with vertex
set V . A family of � –projections f…�g�2S with S � V is H–equivariant if S is
H–invariant and

h…� .�/D…h� .h�/

for all � 2 S; � 2 V and h 2H .

Proof of Theorem 1.1 Under hypothesis (i) the theorem follows directly from Corol-
lary 2.9 and Theorem 2.4.
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Under hypothesis (ii), let T D HR � V . Then the subgraph induced on the finite
vertex set T is H–invariant and we want to reduce to hypothesis (i) with T in place
of R . Let � 2 T n f�g. Then � D h� for some � 2 R; h 2 H . Let P be a pair in
…� .�/ D …hh�1� .h�/. Then h�1.P / is a pair in …h�1� .�/. Since h�1� 2 S the
set R is …h�1� –convex. Then h�1.P /\R is nonempty and hence h�1.P /\ T is
nonempty. Since T D h�1T we have P \T ¤∅, as desired.

We conclude this section by posing a question concerning infinite graphs. An affirmative
answer to it would significantly simplify the proofs of our realisation results and of
similar results in future. Define an infinite graph � to be dismantlable if the following
holds: every finite set of vertices of � is contained in another finite set of vertices S
such that the finite subgraph induced on S is dismantlable.

Question 2.11 Let H be a finite group of automorphisms of a dismantlable graph �
with a uniform bound on the size of cliques. Does � contain an H–invariant clique?

The assumption on the size of cliques is necessary, as pointed out to us by Dawid
Kielak and Michał Kukieła. Note that there are many ways of defining dismantlability
for infinite graphs and the definition above is just the weakest version we have in mind
at the moment.

3 Fixed clique in the arc graph

In this section, we prove Metatheorem A(1) in the case of the arc graph. Let X be a
(possibly disconnected) closed oriented surface with a nonempty finite set � of marked
points on X . We require that homeomorphisms and homotopies of X fix �. The Euler
characteristic of X is defined to be the Euler characteristic of X ��.

A simple arc on X is an embedding of an open interval in X �� that can be extended
to map the endpoints into �. We require that homotopies of arcs fix the endpoints
and do not pass over marked points. An arc is essential if it is not homotopic into �.
Unless stated otherwise, all arcs are assumed to be simple and essential.

The arc graph A.X/ is the graph whose vertex set A0.X/ is the set of homotopy
classes of arcs. Two vertices are connected by an edge in A.X/ if the corresponding
arcs can be realised disjointly.

By Map.X/ we denote the mapping class group of X , which is the group of orientation-
preserving homeomorphisms of X up to isotopy. The action of Map.X/ on homotopy
classes of arcs induces an action of Map.X/ on A.X/ as a group of automorphisms.
We can now state the main theorem of this section.

Geometry & Topology, Volume 18 (2014)
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Theorem 3.1 Let X be a closed oriented surface with a nonempty set of marked
points, each component of which has negative Euler characteristic. Let H be a finite
subgroup of Map.X/. Then H fixes a clique in the arc graph A.X/.

We will obtain Theorem 3.1 using Theorem 1.1 under hypothesis (ii). For that we need
two elements: on the one hand, we will use a surgery procedure for arcs to define
dismantling projections …� (see Section 3.1). On the other hand, we will define a finite
set in the arc graph that is …� –convex for all � in some H–orbit (see Section 3.2).

3.1 Arc surgery

We begin by describing the surgery procedure that will be used to define the dismantling
projections. This surgery procedure was used by Hatcher [13] to show contractibility
of the arc complex.

Let a and a0 be two arcs on X . We say that a and a0 are in minimal position if the
number of intersections between a and a0 is minimal in the homotopy classes of a
and a0 .

Now assume that a and a0 are in minimal position and suppose that a and a0 intersect.
We say that a subarc b � a is outermost in a for a0 if b is a component of a � a0

sharing an endpoint with a . There are two outermost subarcs in a for a0 .

Consider an outermost subarc b in a for a0 . Let p be the endpoint of b in the interior
of a . Then p 2 a0 . Let b0

C
, b0� be the two components of a0 � p . We say that the

arcs a0
C
D b [ b0

C
and a0� D b [ b

0
� are obtained by outermost surgery of a0 in the

direction of a determined by b (see Figure 1). Both a0
C

and a0� are essential, since a
and a0 are in minimal position. Furthermore, both a0

C
and a0� are disjoint from a0 up

to homotopy.

Note that the homotopy classes ˛0
C

of a0
C

and ˛0� of a0� depend only on the homotopy
classes ˛ of a and ˛0 of a0 . We call the pair f˛0

C
; ˛0�g an outermost surgery pair of

˛0 in the direction of ˛ .

If ˛0 is disjoint from ˛ (but distinct), then we say that the only outermost surgery
pair of ˛0 in the direction of ˛ is f˛; ˛g, interpreted as a pair whose elements are both
equal to ˛ . Let …˛.˛0/ be the set of all (two or one) outermost surgery pairs of ˛0 in
the direction of ˛ . If ˛0 D ˛ , then …˛.˛0/ is undefined.

The following lemma states that the assignment …� satisfies the axioms of a � –
projection for each � 2A0.X/. This lemma was essentially proved as Claim 3.18 of
Schleimer [30].
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a0C

a0
a

Figure 1: Surgery for arcs

Lemma 3.2 Let � 2A0.X/ be an arc on X .

(i) Let R � A0.X/ be a finite set of arcs with R n f�g ¤ ∅. Then there is an
arc � 2R n f�g with the following property: there is an outermost surgery pair
f�C; ��g of � in the direction of � , such that each arc �0 2 R that is disjoint
from � is also disjoint from �C and �� .

(ii) Every sequence .�i / of arcs in A0.X/ such that �iC1 is contained in an outer-
most surgery pair of �i in the direction of � terminates, after finitely many steps,
with the arc � .

The proof requires us to consistently choose preferred representatives for each homotopy
class of arcs. This is made possible through the use of hyperbolic geometry. To this
end, it is convenient to adopt a slightly different description of the arc graph of X .
Namely, let LX be the compact surface obtained from X by replacing each marked
point with a boundary component. Let A. LX/ be the graph whose vertex set is the set
of homotopy classes of (essential simple) arcs on LX that are embedded properly, ie
they intersect the boundary exactly at the endpoints. Homotopies of arcs on LX are
required to be homotopies of properly embedded arcs. Two vertices are connected by
an edge if the corresponding arcs may be realised disjointly. Since homotopy classes
of (properly embedded) arcs on LX are in one-to-one correspondence with homotopy
classes of arcs on X respecting disjointness, the graph A. LX/ is isomorphic to A.X/.
We will implicitly use this identification, and simply speak about representatives of
arcs � 2A0.X/ on LX .

We now fix a hyperbolic metric on LX that makes the boundary geodesic. Then each
homotopy class of an arc contains a unique shortest geodesic representative, and any two
such representatives are in minimal position (see the discussion in Farb and Margalit [7,
Section 1.2.7]).

Proof of Lemma 3.2 (i) We can assume that not all the arcs in R are disjoint
from � , since otherwise the assertion follows trivially. Denote the shortest geodesic
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representatives on LX of the elements of R by r1; : : : ; rk , and the shortest geodesic
representative of � by s . Let b � s be a component of s� .r1[ � � � [ rk/ sharing an
endpoint with s . Denote by p the endpoint of b in the interior of s . Let r be an arc
in R containing p . Suppose r� is obtained by outermost surgery of r in the direction
of s determined by b . Now let ri be disjoint from r . Since ri is disjoint from b , it is
also disjoint from r� � r [ b , as desired.

(ii) By construction, each outermost surgery strictly decreases the geometric intersec-
tion number with � . Hence every sequence of surgeries eventually yields an arc that is
disjoint from � .

For future reference, we also note the following easy fact.

Lemma 3.3 For every h 2Map.X/, we have h…� .�/D…h� .h�/ for all arcs � ¤
� 2A0.X/.

Proof Let s; r be representatives of � and � that are in minimal position. Let
„W X ! X be a representative of the mapping class h. Then „.s/ and „.r/ are in
minimal position, and „ maps an outermost subarc in s for r to an outermost subarc
in „.s/ for „.r/.

3.2 Finite hull for arcs

We now describe how a finite vertex set ˛1; : : : ; ˛k 2 A0.X/ can be extended to a
finite set that is …� –convex for all � D ˛i .

Let ˛1; : : : ; ˛k 2A0.X/ be an arbitrary finite set of arcs, and let a1; : : : ; ak be their
shortest geodesic representatives on LX . Let L be the maximum of the lengths of
the ai .

We define HDH.˛1; : : : ; ˛k/ to be the set of homotopy classes of arcs that have a
representative of length at most 2L on LX . The set H is finite, and contains ˛1; : : : ; ˛k
by construction. However, note that the set H depends on the choice of the hyperbolic
metric.

Lemma 3.4 Let ˛1; : : : ; ˛k 2 A0.X/ be a finite set of arcs. Put ˛ D ˛i for some
i D 1; : : : ; k , and let ˛0 2 H D H.˛1; : : : ; ˛k/ be arbitrary. Then each outermost
surgery pair of ˛0 in the direction of ˛ contains at least one element of H .

Proof Let a0 be the shortest geodesic representative of ˛0 and let a be the shortest
geodesic representative of ˛ D ˛i . We can assume that a and a0 intersect.
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Then an outermost subarc b in a for a0 has length at most L by the definition of L.
Let b0

C
, b0� be the two subarcs of a0 bounded by the endpoint of b . Then at least one

of b0
C

, b0� has length at most L, say b0
C

. As a consequence, the arc a0
C
D b[b0

C
has

length at most 2L, and thus its homotopy class is contained in H .

We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1 By Lemma 3.2 the assignment of outermost surgery pairs
satisfies the axioms of a dismantling projection. Let ˛1 be an arbitrary arc in A0.X/,
and let ˛1; : : : ; ˛k be the orbit of ˛1 under H . Lemma 3.4 shows that H.˛1; : : : ; ˛k/
is …˛i –convex for each i D 1; : : : ; k . Finally, by Lemma 3.3 the family …˛i is
H–equivariant. Thus H fixes a clique by Theorem 1.1 under hypothesis (ii).

Remark 3.5 We could also derive Theorem 3.1 directly from Theorem 1.1 under
hypothesis (i) by considering a different finite invariant set.

Namely, define a one-corner arc (or a unicorn arc) obtained from geodesic arcs
a1; : : : ; ak to be an embedded arc a on LX of the following form: there are subarcs
aC; a� of ai ; aj for some i; j such that aD aC[ a� .

We then define �H to be the union of fa1; : : : ; akg and the finite set of all unicorn
arcs obtained from a1; : : : ; ak . If the set of homotopy classes of the arcs a1; : : : ; ak
is H–invariant, then the set �H is H–invariant as well. Furthermore, one can show
that �H is …˛i –convex for the homotopy classes ˛i of ai . However, the proof is a bit
more involved than the simple length argument used for Lemma 3.4, and we decided
to omit it.

4 Nielsen realisation for surfaces

In this section, we prove Metatheorem A(2) for mapping class groups (Theorem 4.1)
and Theorem 1.3 under either of the hypotheses (A) or (B).

4.1 Fixed filling arc set

A set A of disjoint (simple essential) arcs on a surface X with marked points � is
filling if the components of X � .�[A/ are discs. A clique ��A0.X/ is filling if
some (hence any) set of disjoint representatives of elements in � is filling.

Theorem 4.1 Let X be a closed connected oriented surface with nonempty set of
marked points and negative Euler characteristic. Let H be a finite subgroup of Map.X/.
Then H fixes a filling clique in A0.X/.
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Proof By Theorem 3.1, there is a clique ��A0.X/ fixed by H . Assume that � is
a maximal clique fixed by H . We will prove that � is filling. We can realise � as
a subset A� S of disjoint arcs. Equip X with a path-metric in which each arc of A
has length 1. By Buser [4, Theorem A.5] we can also choose representatives of the
elements of H fixing A and restricting to a genuine isometric action on A. Note that
these representatives satisfy the composition rule up to isotopy fixing A. We will prove
that A is filling.

Otherwise, let X0 be the nonempty union of open components of X �A that are not
discs, ie have nonpositive Euler characteristic. Let X0 be the path-metric completion
of X0 . Let X 0 be the surface obtained from X0 by collapsing each component of
@X0 to a marked point. The group H maps into Map.X 0/. Every component of X 0

with zero Euler characteristic is a sphere with two marked points and contains a unique
(homotopy class of) an arc. In the case where X 0 has such components, we consider the
H–invariant clique �0 �A0.X 0/ of unique arcs in all of these components. Otherwise
an H–invariant clique �0�A0.X 0/ exists by Theorem 3.1. Denote �0Df˛01; : : : ; ˛

0
k
g.

Let A�.X;A/ denote the set of homotopy classes of (possibly non-simple) essential
arcs on X0 with endpoints in @X0 . We require homotopies to fix the endpoints. Let
P�@X0 be a family of points, one in each of the components of @X0 . For iD1; : : : ; k
choose arcs ˛�i .0/ 2A

�.X;A/ with endpoints pi ; qi 2P that project to ˛0i on X 0 and
have representatives that are simple and disjoint outside P . For a point p 2 @X0 , t 2R,
let 
�.p; t/ be the homotopy class of the (non-essential) arc starting at p , moving
clockwise along the boundary component c � @X0 containing p and terminating after
distance t jcj, where jcj denotes the length of c . In particular for t 2Z, the endpoint of

�.p; t/ is p . To each point z D .x1; y1; : : : ; xk; yk/ 2R2k , we assign the following
sequence ��.z/D .˛�1 ; : : : ; ˛

�
k
/ of arcs in A�.X;A/. Each ˛�i is the homotopy class

of the concatenation 
�.pi ; xi /�1˛�i .0/

�.qi ; yi /.

Consider first the case where all of the components of X 0 have negative Euler charac-
teristic. In that case �� is injective, since Dehn twists along a pair of components of
@X0 are independent. Note that the set Z �R2k of points z for which ��.z/ can be
represented as a collection of disjoint simple arcs is nonempty, since it contains 0. We
claim that Z is convex.

The arc ˛�i might self-intersect only when its endpoints lie on the same component
of @X0 , hence only when pi D qi . Self-intersection of ˛�i arises when, starting
from ˛�i .0/, the two endpoints pass through one another. This is governed, up to
interchanging xi with yi , by the inequality xi � yi � xi C 1, which is a linear
constraint. The description is the same for intersections of distinct ˛�i ; ˛

�
j , where
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we will get a constraint for each pair of coinciding endpoints of ˛�i .0/; ˛
�
j .0/. This

justifies the claim.

Under the identification of Z with ��.Z/, the finite group H acts on Z by isometries
(each of which is a composition of a translation and an interchange of the coordinate
axes). Hence H fixes a point z 2Z (for example the centre of mass of some orbit).
Let " 2R2k be the vector with smallest nonnegative entries such that ��.zC "/ has
endpoints in marked points of X under the map X0 ! X . Note that zC " is also
H–invariant. The arc set ��.zC "/ can be interpreted as a subset of A0.X/. Then
�[��.z C "/ forms an H–invariant clique larger than � and we have reached a
contradiction.

In the case where ˛0i lie in the components of X 0 of zero Euler characteristic we have
��.zCe2i�1�e2i /D�

�.z/, where ei denotes the i th basis vector of R2k . Arcs ˛�i
for each of the lines zC te2i�1� te2i where t 2R form families of parallel arcs. Each
such family can be thought of as having the same “slope” in the annulus component of
X0 . After quotienting Z �R2k by all k such R–actions we obtain an action of H
on a convex subset of Rk DR2k=Rk of “slopes”. In the conclusion of the fixed-point
theorem we obtain H–invariant “slope sets”: families of parallel arcs in the components
of zero Euler characteristic. We can improve them to families of parallel arcs with
endpoints in marked points as before.

4.2 Fixed hyperbolic metric

Proof of Theorem 1.3 under hypothesis (A) By Theorem 4.1, the group H fixes a
filling clique � � A0.X/. We can realise � as a set A of disjoint arcs on X . For
each component Y of X �A with k arcs in its boundary, we consider a regular ideal
hyperbolic k–gon yY . For any arc a 2 A adjacent to components Y1; Y2 of X �A,
we glue yY1 with yY2 along the sides yA1 � yY1; yA2 � yY2 corresponding to a in such a
way that the projections of the centres of yY1 and yY2 onto yA1 and yA2 coincide under
that gluing. The hyperbolic metric on X �� that we obtain as a result is complete and
H–invariant.

Proof of Theorem 1.3 under hypothesis (B) A closed curve is simple if it is em-
bedded, and essential if it is not homotopic to a trivial curve. We can assume that
the set of marked points on X is empty. Realise the curves of the fixed set as a set
A of disjoint simple curves on X . We can choose representatives of elements of H
fixing A (see [4, Theorem A.3]). Let X 0 be obtained from X �A by collapsing its
boundary components to marked points. Denote by �0 the set of marked points on
X 0 . By Theorem 1.3 under hypothesis (A), there is a complete hyperbolic metric
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on X 0 � �0 invariant under the image of H in Map.X 0/. Let l be small enough
so that the horocycles of length l around the punctures embed on X 0 . We remove
the puncture neighbourhoods bounded by these horocycles. This results in an H–
invariant complete hyperbolic metric dH on X �A whose boundary components are
horocycles of length l . If there are k curves in A, the ways of identifying the boundary
components of .X �A; dH/ in order to obtain a (marked) conformal structure on X are
parametrised by points in an affine space Rk : changing the kth coordinate corresponds
to a twist along the kth boundary component. The group H admits an action on this
parameter space Rk by isometries (which are again compositions of translations and
axes interchanges). The fixed point of this action gives an H–invariant conformal
structure on X . By uniformisation this gives an H–invariant complete hyperbolic
metric on X .

5 Fixed clique in the disc graph

In this section, we prove Metatheorem A(1) in the case of the disc graph. We denote
by Ug a handlebody of genus g . A (disconnected) handlebody U is a disjoint union
of various Ug . The boundary @U is a closed surface that may be disconnected. An
essential disc D in U is a disc properly embedded in U , such that @D is an essential
simple closed curve on @U . We say that an essential simple closed curve d on @U
is discbounding if there is an essential disc D with @D D d . Two essential discs
D;D0 are properly homotopic if and only if their boundary curves @D and @D0 are
homotopic.

By D.U / we denote the disc graph of U . The vertex set D0.U / is the set of homotopy
classes of discbounding curves on @U . Two such vertices are connected by an edge if
the corresponding curves are disjoint (up to homotopy).

The handlebody group Map.U / is the mapping class group of U , ie the group of
orientation-preserving homeomorphisms of U up to isotopy. It is well known that
Map.U / can be identified with a subgroup of Map.@U / by restricting homeomorphisms
of U to the boundary.

The main theorem of this section is the following.

Theorem 5.1 Let U be a (possibly disconnected) handlebody, each component of
which has genus at least 2. Let H be a finite subgroup of Map.U /. Then H fixes a
clique in the disc graph D.U /.

As an immediate consequence, we obtain the following.
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Corollary 5.2 Every finite order element of the handlebody group is reducible.

Corollary 5.2 also follows from the Lefschetz fixed point theorem, since the disc
complex is contractible [23, Theorem 5.3].

5.1 Disc surgery

In this section we describe the surgery procedure that will be used to define dismantling
projections on the disc graph. This surgery procedure was used in [23] to prove
contractibility of the disc complex.

Let D and D0 be two transverse essential discs in U . We say that D and D0 are in
minimal position if the boundary curves d D @D and d 0D @D0 are in minimal position,
and D and D0 intersect only along arcs.

For any pair of discbounding curves d and d 0 in minimal position, it is always possible
to find discs D and D0 in minimal position with @D D d , @D0 D d 0 . However, at
this point we want to warn the reader that the minimal position of discs is not unique:
in particular, the homotopy classes of d and d 0 do not determine which intersection
points of d and d 0 are connected by an intersection arc of D\D0 .

Now let D and D0 be two essential discs in minimal position, and let d and d 0 denote
their boundary curves. Assume that d and d 0 intersect. We then say that a subarc a
of d is outermost in D for D0 , if a bounds a disc in D together with a component
of D\D0 , and the interior of a is disjoint from D0 . The endpoints of a decompose
d 0 into two subarcs a0

C
and a0� . The unions d 0

C
D a [ a0

C
and d 0� D a [ a

0
� are

simple closed curves on @U , both of which are discbounding by construction. See
Hamenstädt and Hensel![9, Section 5] or Masur [22] for a detailed description of this
surgery procedure. Since d and d 0 are in minimal position, both d 0

C
and d 0� are

essential. We say that the discbounding curves d 0
C

and d 0� are obtained by outermost
surgery of d 0 in the direction of d determined by a .

Note that the homotopy classes ı0
C

of d 0
C

and ı0� of d 0� depend only on the homotopy
classes ı of d and ı0 of d 0 , and the choice of an outermost subarc. We call the pair
fı0
C
; ı0�g an outermost surgery pair of ı0 in the direction of ı . Note that there are only

finitely many outermost surgery pairs for any choice of discbounding homotopy classes
ı and ı0 .

If ı ¤ ı0 have disjoint representatives, then we say that the only outermost surgery
pair of ı0 in the direction of ı is fı; ıg, interpreted as a pair both of whose elements
are equal to ı . For homotopy classes ı; ı0 2D0.U / of discbounding curves, we define
…ı.ı

0/ to be the set of all outermost surgery pairs of ı0 in the direction of ı .
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The next lemma shows that …� satisfies the axioms of a � –projection for each � 2
D0.U /. This lemma essentially follows from the proof of [23, Theorem 5.3].

Lemma 5.3 Let � 2D0.U / be a discbounding curve on @U .

(i) Let R �D0.U / be a finite set of discbounding curves with R n f�g ¤∅. Then
there is a discbounding curve � 2R n f�g with the following property: there is
an outermost surgery pair f�C; ��g of � in the direction of � such that each
discbounding curve �0 2 R that is disjoint from � is also disjoint from �C
and �� .

(ii) Every sequence .�i / of discbounding curves in D0.U / such that �iC1 is con-
tained in an outermost surgery pair of �i in the direction of � terminates, after
finitely many steps, with the discbounding curve � .

Again, we will use hyperbolic geometry to choose preferred representatives in the
homotopy class of discbounding curves. To this end we fix a hyperbolic metric on @U .

Proof (i) Note that if each element of R can be realised disjointly from � , then the
assertion follows trivially.

Otherwise, let s be the geodesic representative of � and let r1 be the geodesic
representative of an arbitrary element in R intersecting s . Choose an embedded disc
D1 in U bounded by r1 and an embedded disc D bounded by s that are in minimal
position. Let a � @D be an outermost subarc in D for D1 . Let N be the set of
geodesic representatives of all the elements in R that are disjoint from r1 . For each
r 0 2 N we may choose a disc D.r 0/ bounded by r 0 that is disjoint from D1 and in
minimal position with respect to D . Note that this means that outermost subarcs in D
for the discs D.r 0/ are either disjoint from a , contain a , or are contained in a . We
distinguish two cases.

If all outermost subarcs in D for the discs D.r 0/, r 0 2N are disjoint from a or contain
a , then both discbounding curves obtained by the outermost surgery pair determined
by a are disjoint from the curves in N , and therefore the homotopy class �1 of r1

satisfies the condition in assertion (i).

On the other hand, assume that there is a disc D2 DD.r2/ bounded by r2 2N that
has an outermost subarc that is contained in a . In this case, we replace r1 by r2 , and
inductively apply the same argument again. Since the geodesic representatives of all
elements in R intersect in finitely many points, this process stops after finitely many
steps with the first case with �k satisfying the condition in assertion (i).

(ii) The proof of this is identical to the proof of Lemma 3.2(ii). Namely, each outermost
surgery strictly decreases the geometric intersection number with � .
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The fact that homeomorphisms of U map outermost subarcs to outermost subarcs
immediately implies the following.

Lemma 5.4 For every h2Map.U /, we have h…� .�/D…h� .h�/ for all discbounding
curves � ¤ � 2D0.U /.

5.2 Finite hull for discs

Let ı1; : : : ; ık 2D0.U / be a finite set of discbounding curves. For a homotopy class
˛ of an essential simple closed curve on @U , we denote by l@U .˛/ the length of the
geodesic representative of ˛ on @U . Put

LDmax
i
l@U .ıi /:

Let HDH.ı1; : : : ; ık/ be the set of discbounding curves ı that satisfy l@U .ı/� 2L.
Note that H.ı1; : : : ; ık/ is a finite set of curves that contains ı1; : : : ; ık .

The following lemma shows that H is …� –convex for each � D ıi ; i D 1; : : : ; k .

Lemma 5.5 Let ı1; : : : ; ık 2 D0.U / be a finite set of discbounding curves. Put
ı D ıi for some i D 1; : : : ; k , and let ı0 2HDH.ı1; : : : ; ık/ be arbitrary. Then each
outermost surgery pair of ı0 in the direction of ı contains at least one element of H .

Proof Denote by d the geodesic representative of ı , and by d 0 the geodesic repre-
sentative of ı0 . We can assume that d and d 0 intersect. Let a � d be an outermost
subarc. By definition of L, the subarc a has length at most L.

The endpoints of a decompose d 0 into two subarcs a0
C

and a0� . Since d 0 has length
at most 2L, at least one of these subarcs has length less or equal to L, say a0

C
. Then

d 0
C
D a [ a0

C
has length at most 2L. In particular, the homotopy class of d 0

C
is

contained in H , as required.

As a consequence of Lemmas 5.3, 5.5 and 5.4, we obtain Theorem 5.1 from Theorem 1.1
under hypothesis (ii) in the same way that we obtained Theorem 3.1.

6 Nielsen realisation for handlebodies

6.1 Fixed simple disc system

Let fd1; : : : ; dkg be a finite set of discbounding curves that are pairwise disjoint.
We say that fd1; : : : ; dkg is a simple disc system if each complementary component
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of d1 [ � � � [ dk on @U is a bordered 2–sphere, ie a 2–sphere minus open discs.
Equivalently, the complementary components of disjoint discs bounded by d1; : : : ; dk
in U are simply connected. A clique ��D0.U / is called simple if some (hence any)
set of disjoint representatives of elements in � is a simple disc system.

In this section we use the results obtained in Section 5 to show the following.

Theorem 6.1 Let U be a connected handlebody of genus g � 2. Let H be a finite
subgroup of Map.U /. Then H fixes a simple clique in the disc graph D0.U /.

Before we give a proof, we note the following corollary.

Corollary 6.2 Let U be a connected handlebody of genus g � 2. A finite order
mapping class h 2Map.@U / is conjugate into the handlebody group Map.U / if and
only if h fixes a set of homotopy classes of disjoint essential simple closed curves on
@U , all of whose complementary components are bordered 2–spheres.

Proof If h is contained in a conjugate of the handlebody group, then Theorem 6.1
yields the desired set of curves. Now let h be a mapping class fixing a set of curves
f˛1; : : : ; ˛kg as required. We may then choose a mapping class g 2Map.@U / such
that the g.˛i / are discbounding in U . This element g then conjugates h into the
handlebody group of U .

Proof of Theorem 6.1 By Theorem 5.1 there is a clique �D fı1; : : : ; ıng in the disc
graph D.U /, invariant under H . We will argue that if � is a maximal H–invariant
clique, then it is simple.

As a first step, using Theorem 1.3 with hypothesis (B), we find that there is a hyperbolic
metric on X D @U such that H acts as a group of isometries on X . Denote by di the
geodesic representative of ıi . Then H acts on X , preserving the set d1 [ � � � [ dn .
Let X0 be the union of all the components of X � .d1[� � �[dn/ that are not bordered
2–spheres. Denote by X0 the completion (with respect to the path metric) of X0 . We
will prove that X0 is empty, which implies that � is simple.

Suppose on the contrary that X0 is nonempty. In this case, let X 0 be the surface
obtained from X0 by gluing a disc to each boundary component. Since X0 embeds
naturally into X 0 , we can identify X0 with a subsurface of X 0 . Since H acts as a
group of isometries on X0 , it maps into the mapping class group of X 0 . Furthermore,
X 0 is, in a natural way, the boundary of a (possibly disconnected) handlebody U 0 (cut
U along discs bounded by di ), and so H maps into the handlebody group of U 0 .
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If U 0 has genus 1 components, then we consider the H–invariant clique �0 �D0.U 0/
of unique discbounding curves in all of these components. Otherwise the group H
fixes a clique �0 �D0.U 0/ by Theorem 5.1. Denote �0 D fı01; : : : ; ı

0
k
g.

For a homotopy class of an essential simple closed curve ˛0 on X 0 , let F.˛0/ be
the set of all homotopy classes of simple closed curves ˛ on X0 that are homotopic
to ˛0 as a curve on X 0 . Note that each such ˛ is essential. Furthermore, if ˛0 is
discbounding in U 0 , then each element of F.˛0/ is discbounding in U . We put
F.�0/D F.ı01/[ � � � [F.ı0

k
/.

Set

LDminflX0.˛/ j ˛ 2 F.�
0/g and �� D f˛ 2 F.�0/ j lX0.˛/D Lg:

The group H , seen as a subgroup of the mapping class group of X0 , preserves �� . We
claim that any two elements of �� correspond to disjoint curves. This claim implies
the theorem, since �� can be then interpreted as a clique in D.U /. Thus we can
extend the initial clique � by the clique �� , contradicting maximality.

To prove the claim, let ˛1; ˛2 be two elements of �� , and let a1 and a2 be their
geodesic representatives on X0 . Suppose that a1 and a2 intersect. Since a1 and a2
are homotopic to disjoint curves after gluing discs to the boundary components of X0 ,
there are subarcs ci � ai such that c1[ c2 bounds a bordered 2–sphere together with
boundary components of X0 (see Figure 2).

Figure 2: Intersecting preimages are not shortest

Suppose that the length of the geodesic arc c1 is smaller (or equal to) the length of c2 .
In this case, the curve ya obtained from a2 by replacing c2 with c1 is a broken geodesic
that is homotopic to a2 on X 0 . Hence its homotopy class lies in F.�0/. However, the
length of the broken geodesic ya is, by construction, at most L, and hence its geodesic
representative has length strictly less than L. This contradicts the choice of L, and
therefore proves the claim.

6.2 Fixed Schottky group

In this section we obtain a Nielsen realisation theorem for the handlebody group.
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Proof of Theorem 1.4 Let X D @U . By Theorem 6.1 there is a simple clique
�D fı1; : : : ; ıng that is fixed by the group H . Let fd1; : : : ; dng be a set of disjoint
representatives of the ıi and denote by X1; : : : ; Xk the complementary components
of the di on X . For each such bordered 2–sphere Xi , denote by X 0i the punctured
sphere obtained by replacing each boundary component of Xi by a puncture. Let X 0

be the disjoint union of these punctured spheres. Note that H acts on X 0 as a group of
mapping classes. By Theorem 1.3 with hypothesis (A), there is a complete hyperbolic
metric on X 0 such that H acts as a group of isometries.

The hyperbolic metric on X 0i can be interpreted as a conformal structure on a punctured
sphere. By the uniformisation theorem, it is biholomorphic to the complement of a
finite number of points p1i ; : : : ; p

ki
i on a copy yCi of the Riemann sphere, with ki � 3.

The group H acts on the union X 0 of X 0i � yCi by Möbius transformations, since every
conformal automorphism of yC is a Möbius transformation.

Consider now a round disc Bi j centred at one of the points pi j that is disjoint from
all other such points. Suppose that h 2H fixes the point pi j . Since h is a Möbius
transformation of finite order that fixes pi j and permutes ki �1� 2 other points pi j

0

,
it is in fact a rotation about pi j and thus preserves Bi j . Therefore we may choose a
collection of disjoint discs Bi j , such that Bi j is centred at pi j , that is invariant under
the action of H .

We interpret each yCi as the boundary of a copy H3
i of the hyperbolic 3–space. Let

H.Bi j / be the halfspace in H3
i that is the convex hull of Bi j , and let Mi be the

complement of the interiors of all H.Bi j / in H3
i . Note that the boundary components

of the manifolds Mi correspond to punctures of X 0 . The punctures of X 0 have a natural
pairing, since each marked point of X 0 corresponds to a side of a disc in the simple disc
system fd1; : : : ; dng. We now glue the manifolds Mi along their boundaries according
to this pairing, such that the closest projections of the points pi j to the boundary
planes @H.Bi j / agree. By arguing as in the proof of Theorem 1.3 under hypothesis
(B), we can choose the twist parameters consistently such that H acts on the resulting
hyperbolic manifold M as a group of isometries.

7 Fixed clique in the sphere graph

Let U be a (possibly disconnected) handlebody and let W DW.U / be the 3–manifold
obtained by doubling U along its boundary. The manifold W is homeomorphic to the
disjoint union of iterated connected sums of S1 �S2 . A connected component of W
has rank n if its fundamental group has rank n. By Map.W / we denote the mapping
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class group of W , ie the group of orientation-preserving homeomorphisms of W up to
isotopy.

A 2–sphere embedded in W is called essential if it does not bound a ball. Unless
stated otherwise, we assume that spheres are embedded and essential 2–spheres.

We define the sphere graph S.W / of W . Its vertex set S0.W / is the set of isotopy
classes of spheres in W . Two vertices of S.W / are connected by an edge if the
corresponding spheres can be realised disjointly.

The fundamental group of a doubled connected handlebody Wn DW.Un/ of rank n
is the free group on n generators. Hence, the mapping class group Map.Wn/ of Wn
admits a homomorphism to Out.Fn/. By a theorem of Laudenbach [21, Theorem 4.3,
Remark 1], this map is surjective and has finite kernel generated by Dehn twists along
spheres. Therefore the elements of the kernel act trivially on isotopy classes of spheres.
As a consequence, Out.Fn/ acts as a group of automorphisms on S.Wn/ (see [14] for
a thorough treatment of this graph).

We can now state the main theorem of this section.

Theorem 7.1 Let W be a (possibly disconnected) doubled handlebody, each compo-
nent of which has rank at least 2. Let H be a finite subgroup of Map.W /. Then H
fixes a clique in the sphere graph S.W /.

By the discussion in the previous paragraph, Theorem 7.1 immediately implies that if
H is a finite subgroup of Out.Fn/, then it fixes a clique in S.Wn/.

The strategy to prove Theorem 7.1 will be analogous to the strategy employed in
Sections 3 and 5. In the cases of the arc and disc graph, we used hyperbolic metrics
on surfaces to select preferred representatives of arcs and discbounding curves. In
the manifold W we do not have such geometric tools. In the following section we
recall and extend the notion of normal position from [14], which is a topological tool
allowing us to put pairs of spheres in a preferred position with good properties.

7.1 Normal position

A sphere system S0 in W is a collection of disjoint spheres in W , no two of which are
isotopic. Note that two sphere systems are isotopic if and only if they are homotopic,
by a theorem of Laudenbach (see [21]). A sphere system is maximal if it is not properly
contained in another sphere system.

For a sphere system S0 in W , we call the (path-metric) closures of the connected
components of W �S0 the complementary components of S0 (in W ). A sphere system
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is maximal if and only if each of its complementary components in W is homeomorphic
to the 3–sphere minus three open balls. A dual graph � is associated to a sphere
system S0 in the following way. The vertex set of � is the set of complementary
components of S0 . Each sphere s0 2 S0 defines an edge in � , connecting the vertices
corresponding to the two (possibly coinciding) complementary components of S0
adjacent to s0 . Note that the graph � might not be simple. In particular, it might
happen that a complementary component of S0 is adjacent along two distinct boundary
components to the same sphere in S0 , and then � contains a loop.

Let s be a sphere which is transverse to S0 . The intersection of s with a complementary
component of S0 is a disjoint union of bordered 2–spheres. We call these components
sphere pieces of s with respect to S0 .

A sphere s is in normal position with respect to a maximal sphere system S0 (see
[14]) if s is transverse to S0 and each sphere piece P of s satisfies the following two
conditions:

(1) The piece P meets each boundary component of a complementary component
of S0 in at most one circle.

(2) The piece P is not a disc which is homotopic into S0 relative to its boundary.

We say that a sphere piece P is problematic of type .1/ or .2/, if it violates conditions
(1) or (2) above. In that case we say that it is problematic with respect to s0 2 S0 if
the boundary component of the complementary component on which P shows the
excluded behaviour corresponds to s0 . We say that a sphere system S is in normal
position with respect to S0 if each sphere s 2 S is in normal position with respect
to S0 .

Normal position of spheres is unique in the following sense: suppose that s; s0 are
isotopic spheres that are in normal position with respect to some maximal sphere
system S0 . Then by [14, Proposition 1.2] there is a homotopy between s and s0 that
restricts to an isotopy on S0 (Hatcher considers only the case of connected W , but
the disconnected case follows immediately by considering the connected components
individually). We say that sphere pieces of s and s0 are corresponding, if they are
mapped to each other by such a homotopy. Correspondence identifies the sphere pieces
of s bijectively with the sphere pieces of s0 .

Next, we characterise normal position using lifts to the universal cover �W of W .
Since W is allowed to be disconnected, we define �W to be the disjoint union of the
universal covers of the components of W . Note that since spheres are simply connected,
every sphere in W lifts homeomorphically to �W . The definitions of sphere systems,
complementary components, sphere pieces and normal position extend verbatim to
spheres in �W .
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Lemma 7.2 Let S0 be a maximal sphere system in W and let s be a sphere in W .
Denote by zS0 the full preimage of S0 in �W . Then the following are equivalent:

(i) The sphere s is in normal position with respect to S0 .

(ii) One (and hence any) lift zs of s is in normal position with respect to zS0 .

(iii) (1) One (and hence any) lift zs of s intersects each component of zS0 in at most
one circle, and

(2) there is no disc in zs homotopic relative to its boundary into zS0 .

Proof Assertion (i) is equivalent to (ii) since a piece zP of zs that is a lift of piece P
of s is problematic if and only if P is problematic. It is clear that (iii) implies (ii). It
remains to prove that assertion (ii) implies (iii).

For part (1), let zs0 be a sphere of zS0 . Suppose that zs0 and zs intersect in at least two
circles zc and zc 0 . Let a � zs be a path joining zc and zc 0 , and crossing the least number
of complementary components of zS0 . Since the graph dual to zS0 in �W is a forest,
there is a complementary component zK of zS0 such that a intersects only one boundary
component of zK . Then a sphere piece of zs in zK is problematic of type (1).

For part (2), suppose there is a disc in zs homotopic relative to its boundary into zS0 .
Then it contains a subdisc that is a piece of zs , problematic of type (2).

Motivated by Lemma 7.2, we say that two transverse spheres zs and zs 0 in �W are in
normal position if

(1) zs and zs 0 intersect in at most one circle, and

(2) none of the discs in zs�zs 0 is homotopic into zs 0 relative to its boundary.

Note that this relation is symmetric with respect to zs and zs 0 .

We say that two spheres s; s0 in W are in normal position if all of their lifts to �W are
in normal position. Note that given two spheres s; s0 , we can change s by a homotopy
to be in normal position with s0 . Namely, extend s0 to a maximal sphere system S 0 .
Then [14, Proposition 1.1] implies that we can homotope s to be in normal position
with respect to S 0 . By Lemma 7.2, the spheres s; s0 are then in normal position as well.
Similarly, given a sphere s0 in W , we can homotope any sphere system S in W so
that s and s0 are in normal position for any s 2 S .

We need the following uniqueness property of normal position for a pair of spheres.

Lemma 7.3 Let s0 be a sphere in W , and let s; s0 be two isotopic spheres in W that
are in normal position with respect to s0 . Then there is a homotopy between s and s0

that restricts to an isotopy on s0 .
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Proof Extend s0 to a maximal sphere system S0 . We first claim that we can change
s and s0 to be in normal position with respect to S0 by a homotopy that restricts to the
identity on s0 . We give the proof of the claim for s ; the proof for s0 is identical.

Suppose that s is not in normal position with respect to S0 . Then there is a sphere
piece P of s with respect to S0 that is problematic. Following the proof of [14,
Proposition 1.1], we may modify s by a homotopy to remove this problematic piece.
This homotopy moves s through s0 if and only if the sphere piece P is problematic
with respect to s0 . If P were problematic of type (1), then a lift of s would intersect
a lift of s0 in two circles. If P were problematic of type (2), then a lift of s would
contain a disc that is homotopic into a lift of s0 relative to its boundary. Both of these
cases are excluded by s and s0 being in normal position. Hence every problematic
piece P of s with respect to S0 can be removed by a homotopy of s that does not
move s through s0 . Furthermore, such homotopies keep s in normal position with
respect to s0 . This shows the claim.

Now the assertion of the lemma follows from [14, Proposition 1.2], which states that
there is a homotopy between s and s0 that restricts to an isotopy on S0 .

7.2 Sphere surgery

In this section we describe a surgery procedure for spheres. This surgery procedure
was defined and used in [14] to show contractibility of the sphere complex.

Suppose that spheres s and s0 in W intersect and are in normal position. We say that
a disc D � s is outermost in s for s0 if D\ s0 D @D .

Let D be an outermost disc in s for s0 . Denote by D0
C

and D0� the two components
of s0� @D . Then we say that the spheres s0

C
DD0

C
[D; s0� DD

0
�[D are obtained

by outermost surgery of s0 in the direction of s determined by D . The normal position
of s and s0 implies that both s0

C
and s0� are essential spheres.

By Lemma 7.3, the notion of outermost discs is well-defined for isotopy classes of
spheres. Hence the isotopy classes � 0

C
; � 0� of s0

C
; s0� depend only on the isotopy classes

� of s and � 0 of s0 . We call the pair f� 0
C
; � 0�g an outermost surgery pair of � 0 in the

direction of � .

If � 0 ¤ � are disjoint, then the only outermost surgery pair of � 0 in the direction of �
is f�; �g, interpreted as a pair both of whose elements are equal to � . Let …� .� 0/ be
the set of all outermost surgery pairs of � 0 in the direction of � .

We next show that …� satisfies the axioms of a � –projection for all � 2 S0.W /. The
main technical result needed for this is given by the following lemma.
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Lemma 7.4 Let S0 be a maximal sphere system in W . Suppose that r1; : : : ; rk is
a sequence of spheres in normal position with respect to S0 . Assume that for each
1 � i � k � 1, the sphere riC1 is disjoint from ri , and that r1 is isotopic to rk . Let
ci � ri \S0 be a sequence of intersection circles bounding discs Di � S0 . Suppose
that DiC1 �Di for each 1� i � k� 1. If c1 and ck are boundaries of corresponding
sphere pieces of r1 and rk , then all ri are in fact isotopic.

Proof Suppose that the ri are spheres satisfying the hypothesis of the lemma. Denote
by K the complementary component of S0 that contains the corresponding sphere
pieces P1 of r1 and Pk of rk . For each 1 < i < k , let Pi be the sphere piece of ri
contained in K and bounded by ci . The complementary component K lifts into �W
homeomorphically to a complementary component zK of the full preimage zS0 of S0 .
Let zPi and zDi be the lifts of Pi and Di into zK . Let zri be the lift of ri containing
zPi .

Each sphere zri separates the universal cover �W into two connected components. We
call the component that contains zDi the outside of zri . Since ri and riC1 are disjoint,
the lift zriC1 is completely contained on the outside of zri for each 1� i � k � 1. In
particular, zr1 and zrk are disjoint.

By the definition of correspondence, there is a homotopy of r1 to rk that restricts
to an isotopy on S0 and maps P1 to Pk . Lifting this homotopy, we see that zr1 is
homotopic to zrk . Therefore, zr1 and zrk bound a product region that contains all the zri .
In particular, all the zri are homotopic, as desired.

Lemma 7.5 Let � 2 S0.W / be a sphere in W .

(i) Let R � S0.W / be a finite set of spheres with R n f�g ¤ ∅. Then there is a
sphere � 2 R n f�g with the following property: there is an outermost surgery
pair f�C; ��g of � in the direction of � such that each sphere �0 2 R that is
disjoint from � is also disjoint from �C and �� .

(ii) Every sequence .�i / of spheres such that �iC1 is obtained from �i by an
outermost surgery in the direction of � terminates, after finitely many steps,
with � .

Proof (i) We can assume that not all the spheres in R are disjoint from � , since
otherwise the assertion follows trivially. Let s be a representative of � and let S be an
extension of s to a maximal sphere system. Let r1 be a representative of an arbitrary
element �1 2R intersecting s in normal position with respect to S . Let D � s be an
outermost disc for r1 and let N be the set of representatives of the spheres in R nf�1g
that are disjoint from r1 .
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We may assume that each r 0 2N is in normal position with respect to S . Note that this
means that outermost discs in s for the spheres r 0 are either disjoint from D , contain
D , or are contained in D . We distinguish two cases.

If all outermost discs in s for all r 0 2N are disjoint from D or contain D , then both
spheres obtained by outermost surgery determined by D are disjoint from the spheres
in N , and therefore r1 satisfies the condition required in (i).

On the other hand, assume that there is a sphere r2 2N for which an outermost disc
is contained in D . In this case, we replace r1 by r2 , and inductively apply the same
argument again. By Lemma 7.4, this process terminates, after finitely many steps, with
the first case.

(ii) The proof of this part is similar to the proof of Lemma 3.2(ii). Namely, suppose
that s and s0 are two spheres in normal position that intersect in k circles. Then both
spheres obtained by an outermost surgery of s0 in the direction of s intersect s in
at most k � 1 circles. Putting spheres in normal position decreases the number of
intersection circles (see the proof of [14, Proposition 1.1]). Thus an induction on this
value proves the assertion.

The fact that homeomorphisms of W map outermost discs to outermost discs immedi-
ately implies the following.

Lemma 7.6 For every h 2 Map.W /, we have h…� .�/ D …h� .h�/ for all spheres
� ¤ � in S0.W /.

Remark 7.7 Let � be the isotopy class of a sphere in W . In Hamenstädt and Hensel
[10] it is shown that the stabiliser of � in Map.W / is an undistorted subgroup of
Map.W /. Using the techniques developed in this section, the proof in [10] can be
improved to show that the stabiliser of � in Map.W / is in fact a coarse Lipschitz
retract of Map.W /.

7.3 Finite hull for spheres

For this section, we fix a maximal sphere system S0 in W . Let zS0 be the full preimage
of S0 in �W . We say that a surface in �W has width w with respect to zS0 if it crosses
w complementary components of zS0 in �W . We say that a sphere s in W has width w
with respect to S0 if one (hence any) lift of s to �W has width w . A sphere � 2 S0.W /
has width w if its representative s in normal position with respect to S0 has width
w . In other words, s has w sphere pieces. This does not depend on the choice of s .
Analogously, we define the width for the isotopy classes of spheres in �W . In fact, the
width of the class does not exceed the width of a representative.
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Lemma 7.8 If zs is a sphere in �W of width w , and zs 0 is an isotopic sphere in normal
position with respect to zS0 , then zs 0 has width at most w .

Proof Following the proof of [14, Proposition 1.1] we can homotope zs to a sphere zs 0

in normal position by successively removing problematic sphere pieces. In each such
step, one slides the problematic piece through a sphere zs0 2 zS0 . Such a homotopy does
not increase the width, since the side of zs0 that we push zs towards already contains a
piece of zs .

We are now able to describe the finite hull construction for the sphere graph. Let
�1; : : : ; �k 2 S0.W / be a collection of spheres with representatives s1; : : : ; sk . Let
w be the maximal width of any �i with respect to S0 . Let H D H.�1; : : : ; �k/ be
the set of isotopy classes of spheres with width at most 2w with respect to S0 . By
construction, the set H is finite and contains all the �i . The following lemma shows
that H is …� –convex for all � D �i .

Lemma 7.9 Let �1; : : : ; �k 2 S0.W / be a finite set of spheres. Put � D �i , and let
� 2 H D H.�1; : : : ; �k/ be arbitrary. Then each outermost surgery pair of � in the
direction of � contains at least one element of H .

Proof Let s; r be representatives of �; � that are in normal position with respect to
S0 . We can assume that s and r intersect. Let sr be a representative of � that is in
normal position with respect to r . Let rC; r� be obtained by outermost surgery of r
in the direction of sr determined by an outermost disc D � sr .

Let zr be a lift of r to �W , and let zsr be the lift of sr that intersects zr in the lift of @D .
Denote by zs the lift of s that is isotopic to zsr .

We may homotope zs to be in normal position with respect to zr without increasing
its width. Namely, let �W .zs/ be the union of all the complementary components of
zS0 crossed by zs . The manifold �W .zs/ is homeomorphic to a bordered 3–sphere (ie, a
3–sphere minus a finite disjoint union of open balls). Extend zs to a maximal sphere
system zS in �W .zs/. Since r is in normal position with respect to S0 , the lift zr of r
is in normal position with respect to @�W .zs/. Therefore, we may homotope zS within�W .zs/ as in the proof of [14, Proposition 1.1] so that zs and zr intersect in a single circle
zc . The circle zc cuts zr into two discs zDC; zD� . The normal position of zr and zs is
determined by their isotopy classes, by Lemma 7.3. Therefore, there is a disc zD � zs
bounded by zc such that the spheres zrC D zDC[ zD , zr� D zD�[ zD are isotopic to lifts
of rC and r� .

Since zr is in normal position with respect to zS0 , each component of zr� �W .zs/ belongs
to exactly one of the discs zDC; zD� . Since zr has width at most 2w , without loss
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of generality we may assume that the union zD�
C

of all the components of zr � �W .zs/
contained in zDC crosses at most w complementary components of zS0 . The surface
zrC� zD

�
C

is contained in �W .zs/. Hence it also has width at most w .

Consequently, the sphere zrC has width at most 2w . By Lemma 7.8, the width of its
isotopy class with respect to zS0 is at most 2w . Since zrC is isotopic to a lift of rC , the
isotopy class of rC has width at most 2w , and the lemma is proved.

As a consequence of Lemmas 7.5, 7.9 and 7.6, we obtain Theorem 7.1 from Theorem 1.1
under hypothesis (ii) in the same way that we obtained Theorem 3.1.

8 Nielsen realisation for graphs

Let fs1; : : : ; skg be a finite set of disjoint spheres in W . We say that fs1; : : : ; skg is a
simple sphere system if the complementary components of s1[ � � � [ sk are bordered
3–spheres or, equivalently, simply connected. A clique �� S0.W / is called simple if
some (hence any) set of disjoint representatives of elements in � is a simple sphere
system. In this section, we use the results of Section 7 to show the following.

Theorem 8.1 Let W be a (possibly disconnected) doubled handlebody, each compo-
nent of which has rank at least 2. Let H be a finite subgroup of Map.W /. Then H
fixes a simple clique in the sphere graph S.W /.

As an immediate consequence of Theorem 8.1, we obtain Theorem 1.5. Namely, let
H be a finite subgroup of Out.Fn/. By Theorem 8.1, the group H fixes a simple
clique � in S.Wn/ (see the discussion at the beginning of Section 7). Then H acts as
isometries on the dual graph of a simple sphere system representing �.

The proof of Theorem 8.1 is similar to the one employed for the handlebody group in
Theorem 6.1, with one additional complication:

In the handlebody group case, if a finite group fixes a clique � in the disc graph, then,
using Theorem 1.3 with hypothesis (B), there is an H–invariant hyperbolic metric on
the boundary of the handlebody. We used curves of a certain type that minimise length
with respect to this metric to extend � to a simple clique.

The manifold W does not have a preferred geometry. We will instead imitate the length
argument using a combinatorial and topological argument. The role of length will be
played by the geometric intersection number of sphere systems with arc systems, which
we define next.
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8.1 Arc systems

We need a slight generalisation of the doubled handlebodies considered in Section 7.
Namely, let W l

n be the 3–manifold obtained from Wn by removing l open balls. Let
W0 be the disjoint union of a finite number of such manifolds.

An embedded sphere in W0 is called essential if it does not bound a ball in W0 and
if it is not homotopic into a boundary component of W0 . The definitions of sphere
systems and normal position then extend to the manifold W0 in a straightforward way.
Furthermore, normal position has the same properties as described for W in Section 7.

An arc is a proper embedding of an interval into W0 , where the endpoints are allowed
to coincide. Let S be a simple sphere system in W0 and let a be an arc. We call
the intersections of a with complementary components of S the arc pieces of a with
respect to S . An arc piece a0 � a is called returning if its endpoints lie on the same
boundary component of the complementary component of S containing a0 . We say
that an arc a is in minimal position with respect to S if no arc piece of a is returning.

Lemma 8.2 Let S; S 0 be two simple sphere systems in W0 that are in normal position,
and let a be an arc. Then a can be homotoped to be in minimal position with respect
to both S and S 0 .

Proof We replace a with a homotopic arc in minimal position with respect to S 0 and
intersecting S in the minimal possible number of points. We will prove that a is in
minimal position with respect to S .

Otherwise, there is a returning arc piece a0 � a with respect to S , contained in a
complementary component K of S . Let n be the number of sphere pieces of S 0 in K
intersected by a0 . We will argue by induction that n can be decreased to 0.

If nD 0, then a0 is disjoint from S 0 . We can then homotope the arc piece a0 out of
K , keeping a in minimal position with respect to S 0 . Such a homotopy decreases
the number of intersection points between a and S . This contradicts the minimality
assumption on a .

If n>0, orient a0 , and let P 0 be the first sphere piece of S 0 intersected by a0 . Note that
a0 intersects P 0 in a single point since P 0 separates K into two connected components,
and a has no returning arc piece with respect to S 0 . In particular, the sphere piece P 0

intersects the boundary component of K containing the endpoints of a0 . Therefore we
can slide a0 along P 0 , keeping a in minimal position with respect to S 0 to decrease
the number n of sphere pieces of S 0 in K intersected by a0 (see Figure 3), as desired.
Note that such a homotopy does not increase the number of intersection points between
a and S .
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a0

Figure 3: Sliding a returning arc piece to intersect fewer sphere pieces

If an arc a is in minimal position with respect to a simple sphere system S , then the
number of intersection points between a and S depends only on the homotopy classes
˛ of a and † of S . It will be called the intersection number i.˛;†/.

An arc system in W0 is a finite collection of arcs in W0 . We say that an arc system A

is generating if the following holds for each connected component �W of W0 .

(i) The graph whose vertices are boundary components of �W and edges correspond
to arcs of A in �W is connected.

(ii) There is a system of loops of A in �W based at a point on @�W that generates
the fundamental group of �W .

If A and A0 are arc systems in the same homotopy class ƒ, then A is generating if
and only if A0 is generating. In that case we also call ƒ a generating arc system. The
intersection number i.ƒ;†/ is the sum of i.˛;†/ over all ˛ 2ƒ.

Lemma 8.3 Let ƒ be a generating arc system, and let k > 0. Then there are only
finitely many isotopy classes † of simple sphere systems in W0 with intersection
number i.ƒ;†/� k .

Proof The mapping class group of W0 acts with finite quotient on the set of isotopy
classes of simple sphere systems. Thus there is a finite collection f†�j gj of isotopy
classes of simple sphere systems representing all the orbits. Let † be an isotopy class
of a simple sphere system with i.ƒ;†/ < k . There is a mapping class ' of W0 with
'.†/D†�j for some j . For every †�j there are only finitely many homotopy classes
˛ of arcs with intersection number i.˛;†�j / � k . Therefore, there are only finitely
many possible '.ƒ/. The lemma now follows from the following bound on the number
of possible mapping classes ' .
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Claim Suppose that ƒ is a generating arc system. The subgroup of the mapping class
group of W0 preserving each oriented arc ˛ 2ƒ is finite.

To show the claim, let f be a homeomorphism of W0 such that the arc f .a/ is
homotopic to a for each oriented arc a 2 A, where A represents ƒ. Let �W be a
connected component of W0 with l boundary components. If l > 1, let s1; s2 be two
boundary components of �W that are connected by an arc a2A. These exist by property
(i) of a generating arc system. Let s be the boundary of a regular neighbourhood of
s1[a[s2 . Since f preserves the homotopy class of a , it also preserves the homotopy
classes of s1 and s2 . Thus the sphere s is homotopic, hence isotopic, to f .s/. The
complement of s in �W is the disjoint union of W l�1

n (for a suitable n � 1) and a
3–sphere minus three open balls. The intersection A\W l�1

n becomes a generating arc
system in W l�1

n after a homotopy. Arguing inductively using property (i) of a generating
arc system, we find a sphere ys such that the following holds. The complement of ys is
the disjoint union of W 1

n and a 3–sphere minus l C 1 open balls. Up to isotopy, the
homeomorphism f preserves ys . The restriction of f to W 1

n preserves the homotopy
class of a generating arc system. Now property (ii) of a generating arc system implies
that f acts as the identity on the fundamental group of W 1

n . By Laudenbach [21,
Theorem 4.3], f represents an element of a finite subgroup of the mapping class group
of �W .

8.2 Fibres

Let W 0 be the manifold obtained by gluing closed balls to each of the boundary spheres
of W0 . There is a natural embedding W0!W 0 . Let �0 be a clique in S0.W 0/, and
let fs01; : : : ; s

0
k
g be a sphere system in W 0 representing �0 . We define F.�0/ to be

the following graph. The vertex set of F.�0/ is the set of isotopy classes � of sphere
systems fs1; : : : ; skg in W0 such that si is isotopic to s0i , viewed as spheres in W 0 .
Two vertices are connected by an edge if the corresponding sphere systems can be
realised in W0 disjointly.

Let ƒ be a generating arc system in W0 and put

I D I.ƒ;�0/Dminfi.ƒ;�/ j� 2 F.�0/g:

Let Fƒ.�0/ be the subgraph of F.�0/ induced on the set of the vertices � of F.�0/
satisfying i.ƒ;�/D I . By Lemma 8.3, the graph Fƒ.�0/ is finite.

Lemma 8.4 The graph Fƒ.�0/ is dismantlable.
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Proof We will show that Fƒ.�0/ is dismantlable by defining a dismantling projection.

Let S1 and S2 be two sphere systems representing vertices of F.�0/ that intersect
and that are in normal position. Since S1 and S2 are homotopic in W 0 , there are discs
Di �Si with common boundary circle such that D1[D2 bounds a ball in W 0 disjoint
from S1[S2 . We say that such discs Di are admissible surgery discs.

By Lemma 8.2, we may choose a generating arc system A representing ƒ in minimal
position with respect to both S1 and S2 . The isotopy classes of the sphere systems
.S1�D1/[D2 and .S2�D2/[D1 define vertices of F.�0/. By minimality of I ,
the arc system A intersects D1 in the same number of points as D2 . In particular, the
sphere system .S1�D1/[D2 represents a vertex of Fƒ.�0/.

We call .S1 �D1/[D2 an admissible surgery of S1 in the direction of S2 . Since
normal position is unique, the isotopy classes of admissible surgeries only depend on
the isotopy classes †1; †2 of the sphere systems S1 and S2 . Let …†2.†1/ be the
set of all such admissible surgeries (each of which is interpreted as a pair whose two
elements coincide).

Lemma 7.4 holds for W0 with the same proof as for W . Hence, arguing exactly as
in the proof of Lemma 7.5, one shows that …†2 is a dismantling projection for each
†2 2 Fƒ.�0/.

Proof of Theorem 8.1 We prove the theorem by induction on the sum of the ranks
of the components of W minus the number of components of W . By Theorem 7.1,
the subgroup H fixes a clique � in S.W /. Let S D fs1; : : : ; sng be a sphere system
representing �. If every complementary component of S is a bordered 3–sphere,
then � is already simple. Otherwise, let W0 be the union of all the complementary
components of S which are not bordered 3–spheres. The finite group H acts as a
group of mapping classes on W0 .

Let W 0 be the manifold obtained by gluing closed balls to each boundary component of
W0 . There is an H–invariant simple clique �0 � S0.W 0/: in each rank-1 component
of W 0 , we consider the unique homotopy class of spheres; in the union of the remaining
components of W 0 there is a simple sphere system that is H–invariant up to isotopy
by the induction hypothesis.

Let ƒ be a generating arc system in W0 that is fixed by H . Such a system can be
obtained as the orbit of an arbitrary generating arc system. Since H preserves both ƒ
and �0 , it acts by automorphisms on Fƒ.�0/. By Lemma 8.4, the graph Fƒ.�0/ is
dismantlable. Therefore, by Theorem 1.1 under hypothesis (i), the group H fixes a
clique �� in Fƒ.�0/. Since �0 is a simple clique, the vertices of �� can be realised
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as a simple sphere system in W0 . We can interpret �� as a clique in S0.W /, which
together with � forms the desired simple clique fixed by H .

Remark 8.5 In fact, one can show that if W 0 does not have rank-1 components, then
the flag complex spanned on the graph F.�0/ is isomorphic to a triangulation of a
product of trees with orthoschemes. The number of factors is the number of boundary
components of W0 . In the case where W0 has one boundary component, this means
that F.�0/ is a tree. That case can be proved for example by extending the dismantling
projection from Fƒ.�0/ (see Lemma 8.4) to the whole F.�0/. This fact is analogous
to a result of Kent, Leininger and Schleimer [16, Theorem 7.1] for the curve graph of
a surface with one puncture. In the case where W0 has more boundary components,
recognising the product of trees structure requires local analysis of F.�0/.

9 Contractibility of the set of fixed points

This section is a continuation of Section 2. The main result is the combinatorial
Theorem 1.2 stating that, in a finite flag simplicial complex with dismantlable 1–
skeleton, the set of points fixed by an automorphism group is contractible. It is a
significant extension of Theorem 2.4, and according to our knowledge it is a new
result.1 Theorem 1.2 is of independent interest in graph theory, and as we will see it has
numerous applications in geometric group theory. We will use it to obtain Theorem 1.6
in Section 12. At the end of the current section, we will deduce from Theorem 1.2 a
criterion for contractibility of fixed point sets in the presence of dismantling projections
(Proposition 9.2). This will allow us to prove Metatheorems B and C.

We adopt a convention that in a flag simplicial complex, a neighbourhood of a vertex is
its neighbourhood in the 1–skeleton. Similarly, a vertex is dominated (resp. dominating)
if is dominated (resp. dominating) in the 1–skeleton, etc.

Proof of Theorem 1.2 First observe that YH is nonempty, by Theorem 2.4. The
proof of the theorem is by induction on the number jV j of vertices of Y . If jV j D 1,
then the assertion is clear. Now, for a given Y assume that the theorem has been proved
for all complexes with less than jV j vertices. We treat two cases separately (as in the
proof of Theorem 2.4).

Case 1 There exist no two vertices with common neighbourhood. In this case let
V 0 � V be the nonempty set of dominated vertices that are not dominating. Note that
the subcomplex Y 0 spanned on V nV 0 is H–invariant, dismantlable (by Lemma 2.5),
with less than jV j vertices. By induction hypothesis, Y 0H is contractible.

1After the acceptance of the paper we found out that this result was earlier proved in [1].
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For every vertex � 2 V 0 , let �dom denote the simplex of Y spanned on the set of all
vertices dominating � . Observe that �dom is contained in Y 0 . For � 2 V n V 0 , put
�dom D � . By b�dom we denote the barycentre of �dom . On the (geometric realisation
of the) simplicial complex Y , define a deformation retraction RW Y � Œ0; 1�! Y as
follows. First we define R on vertices of Y by setting R.�; t/D .1� t /� C tb�dom ,
where the linear combination is taken with respect to the standard affine structure on
Y . If the set S D f�1; : : : ; �kg � V of vertices spans a simplex of Y , then there exists
a simplex � of Y containing S and all the simplices �dom

i . Thus, for every t the set
fR.�1; t /; : : : ;R.�k; t /g is contained in �. It follows that we may extend R affinely
to a map on Y � Œ0; 1�. Observe that R.Y � f1g/D Y 0 .

Since for every vertex � 2 V we have H.�dom/ D .H�/dom , the map R is H–
equivariant (with the trivial H–action on Œ0; 1�). Thus, if the set f�1; : : : ; �kg of
vertices of Y spans an H–invariant simplex, then the set fR.�1; t /; : : : ;R.�k; t /g
is H–invariant for every t . It follows that the image R.b; t/ of the barycentre b of
an H–invariant simplex of Y is a point fixed by H . Moreover, every point x 2 Y
fixed by H is an affine combination of such barycentres, thus R.x; t/ is fixed by H .
Thus the image R.YH ; t / of the set of the points fixed by H consists itself of fixed
points. We obtain a deformation retraction RjYH�Œ0;1� of YH to R.YH �f1g/. Since
R.YH � f1g/ is isomorphic to Y 0H , which is contractible, we conclude that YH is
contractible.

Case 2 There exist different vertices of Y having common neighbourhood. In that case
consider the graph � 0 obtained by identifying all vertices with common neighbourhood
(as in the proof of Theorem 2.4). Let Y 0 denote the corresponding flag simplicial
complex, ie, Y 0 D � 0N . The H–action on Y induces an H–action on Y 0 , and � 0

is dismantlable by Lemma 2.5 (see the proof of Theorem 2.4). Thus, by induction
hypothesis, Y 0H is contractible.

Observe that for every vertex � of � , the set of vertices with the same neighbourhood
as � spans a simplex �� of Y . Moreover, two such simplices �� ¤�� are disjoint.
Define a deformation retraction RW Y � Œ0; 1�! Y as follows. First we define R on
vertices of Y by setting R.�; t/D .1� t /�C tb�� . Note that if vertices �1; : : : ; �k of
Y are pairwise connected by edges (ie, when they span a simplex), then for every t all
the images R.�1; t /; : : : ;R.�k; t / are contained in a common simplex of Y . Hence R
can be affinely extended to a map RW Y � Œ0; 1�! Y . Let T be the flag triangulation
of R.Y �f1g/ defined as follows. Vertices of T are the points b�� , for all vertices �
of Y . Edges are straight segments connecting b�� and b�� , whenever � and � are
connected by an edge of Y . Simplices are convex hulls of cliques. Observe that T is
isomorphic to Y 0 .

Geometry & Topology, Volume 18 (2014)



Realisation and dismantlability 2117

Similarly, as in the previous case we see that the map R is H–invariant. Thus,
again, if the set f�1; : : : ; �kg of vertices of Y spans an H–invariant simplex, then for
every t the set fR.�1; t /; : : : ;R.�k; t /g is H–invariant. Analogously to the previous
case, we conclude that we obtain a deformation retraction RjYH�Œ0;1� of YH to
R.YH � f1g/. Observe that the latter space is isomorphic (as a subcomplex of the
barycentric subdivision of the triangulation T ) to Y 0H , which is contractible.

Definition 9.1 Assume that for every vertex � of a graph � with vertex set V , we
have a � –projection …� . The family f…�g� is synchronised if for any clique �� V
and any sequence �1; �2; : : : with �iC1 2 …��i .�i / with any �i 2 �, the sequence
.�i /i enters (and then stays in) �.

Proposition 9.2 Let H be a group of automorphisms of a graph � with vertex set V
without infinite cliques. Assume that we have a � –projection …� for each � 2 V , and
the family f…�g� is H–equivariant. Suppose that

(i) H fixes a vertex of � , or

(ii) H fixes a clique in � and the family f…�g� is synchronised.

Then the fixed point set .�N/H is contractible.

Proof We first prove the proposition under hypothesis (ii). Recall that for S � V , the
subcomplex of �N spanned on S is denoted by SN . In particular, �N D V N .

Let S �V be the union of the vertices of all H–invariant cliques. We can exhaust S by
an increasing sequence S1; S2; : : : of finite H–invariant sets. Choose an H–invariant
clique �� S .

Let Rn � V be the minimal set containing Sn , and with the property that for any
� 2 Rn and � 2 �, all the elements of …�� .�/ lie in Rn as well. Since Sn is finite,
the set Rn is finite by the fact that f…�g� is synchronised, and by König’s lemma.
Since both � and Sn are H–invariant and f…�g� is H–equivariant, the set Rn is
H–invariant as well.

Hence the Rn are finite H–invariant sets that contain Sn and are …� –convex for each
� 2�. The subcomplexes RN

n exhaust SN , which contains .V N/H . By Corollary 2.9,
the subgraph induced on each Rn is dismantlable. By Theorem 1.2, each .RN

n /
H is

contractible and hence .V N/H is contractible, as desired.

Under hypothesis (i), we can take � to be a vertex and we can use axiom (ii) of a
dismantling projection to obtain that Rn is finite. The remaining part of the argument
is the same.
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10 Contractibility of fixed point sets in the arc complex

In this section we prove Metatheorems B and C for the mapping class group (Theo-
rems 10.1 and 10.3). The arc complex AN.X/ is the flag simplicial complex obtained
from the arc graph A.X/ by spanning simplices on all of its cliques. Then simplices
of AN.X/ correspond to sets of disjoint arcs.

Theorem 10.1 Let X be a closed connected oriented surface with a nonempty set of
marked points and negative Euler characteristic. Let H be any subgroup of Map.X/.
Then the set AN.X/H of points of the arc complex AN.X/ fixed by H is empty or
contractible.

Hence in view of Theorem 3.1 in the particular case where H is finite, the fixed point
set AN.X/H is contractible. Also, if we take for H the trivial group, it follows that
AN.X/ is contractible, which was proved in [11; 13].

Lemma 10.2 The family f…�g� of dismantling projections on A.X/ from Section 3
is synchronised.

Proof Choose a clique ��A0.X/ and any sequence �1; �2; : : : with �iC12…��i .�i /
with some �i 2�. Then, as in the proof of Lemma 3.2(ii), the geometric intersection
number between �i and the set � of disjoint arcs decreases until �i 2�, as desired.

Proof of Theorem 10.1 Assume that AN.X/H is nonempty, ie H fixes a clique in
A.X/. Cliques in A.X/ are finite. The family f…�g� of dismantling projections on
A.X/ from Lemma 3.2 is H–equivariant (Lemma 3.3) and synchronised (Lemma 10.2).
Hence by Proposition 9.2 under hypothesis (ii), the fixed point set AN.X/H is con-
tractible.

Denote by A0fill.X/ the barycentres of simplices of AN.X/ spanned on filling cliques.
Let AN

fill.X/ be the subcomplex of the barycentric subdivision of AN.X/ spanned on
A0fill.X/. We call AN

fill.X/ the filling arc system complex. The stabiliser in Map.X/ of
a vertex (or a simplex) of AN

fill.X/ is finite. Conversely, we have proved in Theorem 4.1
that for each finite subgroup H �Map.X/, the fixed point set AN

fill.X/
H contains a

vertex. We extend this to the following.

Theorem 10.3 Let X be a closed connected oriented surface with nonempty set of
marked points and negative Euler characteristic. Let H be a finite subgroup of Map.X/.
Then the set AN

fill.X/
H of points in the filling arc system complex AN

fill.X/ fixed by H
is contractible.
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Before we give the proof of Theorem 10.3, we note that consequently we obtain the
following.

Corollary 10.4 Let X be a closed connected oriented surface with nonempty set
of marked points and negative Euler characteristic. The filling arc system complex
AN

fill.X/ is a finite model for EMap.X/; the classifying space for proper actions for
Map.X/.

Harer’s spine of the Teichmüller space of X (see [12]) is the subcomplex of AN
fill.X/

spanned on the vertices involving arcs starting and terminating on a distinguished
marked point. Hence in the case of one marked point, AN

fill.X/ coincides with Harer’s
spine. The proof of Theorem 10.3 carries over to the action of the pure mapping class
group of X on Harer’s spine.

Corollary 10.5 Let X be a closed connected oriented surface with nonempty set of
marked points and negative Euler characteristic. Then Harer’s spine of the Teichmüller
space of X is a finite model for the classifying space for proper actions for the pure
mapping class group of X .

The dimension of Harer’s spine coincides with the virtual cohomological dimension of
Map.X/, so it is efficient in this sense.

The proof of Theorem 10.3 relies on defining a surgery procedure for filling arc sets.
In order to preserve the property of being filling, we will now need to include in the
surgered set both arcs obtained by outermost surgery. This will give rise to a dismantling
projection on the 1–skeleton of the filling arc system complex.

Proof of Theorem 10.3 Let � 2A0fill.X/
H , which is nonempty by Theorem 4.1. We

construct a �–projection …� on the 1–skeleton Afill.X/ of AN
fill.X/. Let †2A0fill.X/

be any vertex distinct from �. Every pair f…1;…2g 2…�.†/ will satisfy …1 D…2 ,
so …�.†/ will be determined by …��.†/.

Note that �;† can be interpreted as filling sets of (homotopy classes of) disjoint
arcs. If all the arcs in �;† are disjoint, we put …��.†/ D f�g. Otherwise, realise
the homotopy classes of arcs �;† as families of genuine arcs A; S �X in minimal
position. Choose an arc a 2 A intersecting S . Let b � a be a component of a� S
sharing an endpoint with a . Let s 2 S be the arc containing the endpoint of b in the
interior of a . Consider sC; s� obtained by outermost surgery of s in the direction of a
determined by b . Let P D S [fsC; s�g n fsg. Note that P is filling, since any simple
closed curve that is disjoint from both sC; s� up to homotopy is also disjoint from s
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up to homotopy. Define …��.†/ to be the set of homotopy classes of all possible P ,
under all choices of a and b . This does not depend on the realisations A; S of �;†.

The assignment …�.†/ determined by …��.†/ satisfies the axioms of a �–projection
by the same argument as in the proof of Lemma 3.2:

For axiom (i), we consider the surface LX obtained from X by replacing each marked
point with a boundary component, and we put a hyperbolic metric with geodesic
boundary on LX . We realise all the arcs of � and the arbitrary set RDf†1; : : : ; †kg�
A0fill.X/ as families A; S1; : : : ; Sk of shortest geodesic arcs on LX . Choose any arc
a 2 A intersecting

Sk
iD0 Si . Let b be a component of a �

Sk
iD0 Si sharing an

endpoint with a . Choose Si so that it contains the endpoint of b in the interior of a .
Let … 2…��.†i / be obtained by surgery determined by b . Then N.…/�N.†i /\R ,
as desired.

For axiom (ii), we observe that the sum of the geometric intersection numbers between
all of the arcs of � and all of the arcs of any element of …��.†/ is less than the
corresponding sum for � and †.

The map …� is H–equivariant and cliques in Afill.X/ are finite. Hence by Proposition
9.2 under hypothesis (i), the fixed point set AN

fill.X/
H is contractible, as desired.

11 Contractibility of fixed point sets in the disc and sphere
complexes

In this section we prove Metatheorems B and C for the handlebody group and Out.Fn/.

11.1 Disc complex

The disc complex DN.U / is the flag simplicial complex obtained from the disc graph
D.U / by spanning simplices on all of its cliques. Then simplices of DN.U / correspond
to sets of disjoint discbounding curves.

Theorem 11.1 Let U be a connected handlebody of genus at least 2. Let H be any
subgroup of Map.U /. Then the set DN.U /H of points of the disc complex DN.U /

fixed by H is empty or contractible.

Proof Cliques in D.U / are finite. The family of dismantling projections for D.U /
from Lemma 5.3 is H–equivariant by Lemma 5.4. It is also synchronised, which is
proved exactly as Lemma 10.2. By Proposition 9.2 under hypothesis (ii), if the set
DN.U /H is nonempty, then it is contractible.
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Let D0simp.U / be the set of barycentres of simplices in DN.U / spanned on simple
cliques. The simple disc system complex DN

simp.U / is the subcomplex of the barycentric
subdivision of DN.U / spanned on D0simp.U /.

Theorem 11.2 Let U be a connected handlebody of genus at least 2. Let H be a
finite subgroup of Map.U /. Then the set DN

simp.U /
H of points of the simple disc

system complex DN
simp.U / fixed by H is contractible.

Note that the simple disc system complex DN
simp.U / is not a finite model for EMap.U /,

since stabilisers of simple disc systems are not all finite (they extend to braid groups).

Proof By Theorem 6.1, the fixed point set DN
simp.U /

H contains a vertex �2D0simp.U /.

We define a �–projection …� on the 1–skeleton of DN
simp.U /. Let †2D0simp.U /nf�g.

If all the discbounding curves of � and † are disjoint up to homotopy, we put
…��.†/ D f�g. Otherwise, we realise �;† as families of disjoint discbounding
curves D;S � @U pairwise in minimal position. Consider a subarc a � d for some
d 2D that is outermost in a disc bounded by d for a disc bounded by some s 2 S .
Assume that a does not contain any other such outermost subarc. For any such subarc
a , we consider P DS[fsC; s�gnfsg, where sC; s� are obtained by outermost surgery
of s in the direction of d determined by a . The set P is a simple disc system, and
we define …��.†/ to be the set of all homotopy classes of all P constructed using all
such subarcs a . This does not depend on the realisations D;S of �;†. Let …�.†/
be the family of pairs f…1;…2g, where …1 D…2 2…��.†/.

We leave it to the reader to verify that …� satisfies the axioms of a dismantling
projection and that it is H–equivariant. This can be carried out exactly as in the proof
of Theorem 10.3, building upon the proof of Lemma 5.3. Since cliques in DN

simp.U /

are finite, by Proposition 9.2 under hypothesis (i) the fixed point set DN
simp.U /

H is
contractible.

11.2 Sphere complex

The sphere complex SN.W / is the flag simplicial complex obtained from the sphere
graph S.W / by spanning simplices on all of its cliques. Then simplices of SN.W /

correspond to sets of disjoint spheres.

Theorem 11.3 Let W be a doubled connected handlebody of rank n� 2. Let H be
any subgroup of Map.W / or Out.Fn/. Then the set SN.W /H of points of the sphere
complex SN.W / fixed by H is empty or contractible.
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We omit the proof since it is carried out exactly as the proofs of Theorems 10.1 and 11.1.

Let S0simp.W / be the set of barycentres of simplices in SN.W / spanned on simple
cliques. The simple sphere system complex SN

simp.W / is the subcomplex of the barycen-
tric subdivision of SN.W / spanned on S0simp.W /. The simple sphere system complex
is the spine of the Culler–Vogtmann Outer space [14]. Our method gives a new proof
of the following.

Theorem 11.4 [32; 20] Let W be a doubled connected handlebody of genus n� 2.
Let H be a finite subgroup of Map.W / or Out.Fn/. Then the set SN

simp.W /
H of points

of the simple sphere system complex SN
simp.W / fixed by H is contractible.

Corollary 11.5 [32; 20] Let W be a doubled connected handlebody of genus n� 2.
The simple sphere system complex SN

simp.W / is a finite model for EMap.W / and
E Out.Fn/.

We leave the proof of Theorem 11.4 to the reader. It requires defining a dismantling
projection on the 1–skeleton of SN

simp.W / in the same way as it was done in The-
orems 10.3 and 11.2 for the filling arc system complex and the simple disc system
complex. To verify that it satisfies the axioms of a dismantling projection, one needs to
invoke the proof of Lemma 7.5.

12 Rips complex

In this section we prove Theorem 1.6, which says that if a group G is ı–hyperbolic
and D � 8ıC 1, then the Rips complex PD.G/ is a finite model for EG .

We say that a graph is ı–hyperbolic, with ı 2N , if for any vertices u; v;w , for any
geodesics uv; vw;wu, and for any vertex t on uv , there is a vertex on vw[wu at
distance at most ı from t . A finitely generated group G is ı–hyperbolic if its Cayley
graph with respect to some finite generating set is ı–hyperbolic. For D 2N , the Rips
complex PD.G/ is the flag simplicial complex with vertex set G , and edges connecting
two vertices at distance at most D in the Cayley graph.

Theorem 1.6 is an immediate consequence of Theorem 1.2 and Lemma 12.1 below.

Lemma 12.1 Let G be a ı–hyperbolic group and let D � 8ıC 1. Let H be a finite
subgroup of G . For every finite subset S of G , there exists an H–invariant finite
dismantlable subgraph of the 1–skeleton of PD.G/ containing S .
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Proof If ı D 0, then the Cayley graph of G is a tree (G is a free group) and the
lemma follows from the fact that for any finite tree, the graph obtained after connecting
by edges vertices at distance at most D is dismantlable. We can now assume ı � 1.

The ball BR.C / of radius R 2N around a subset C of the vertex set G of the Cayley
graph is the set all of vertices at distance at most R from some vertex in C . For a
subset O �G , let R be minimal such that O is contained in BR.v/ for some v 2G .
The quasi-centre of O is the set of all v 2 G with O � BR.v/. By Bridson and
Haefliger [3, Lemma III.� .3.3], the diameter of the quasi-centre of any finite subset of
G is at most 4ıC 1.

Let C � G be the quasi-centre of the orbit HS . For any r 2 N , the ball Br.C / is
H–invariant, and for r large enough, we have S � Br.C /. Thus to prove the lemma,
it suffices to show that for any r 2N , the graph induced on Br.C / in the 1–skeleton
of PD.G/ is dismantlable. If r < 2ı , then Br.C / spans a simplex in PD.G/ and the
assertion is clear. Thus it remains to prove the following claim. We denote the distance
in the Cayley graph by d. � ; � /.

Claim Consider a vertex v 2G at distance a� 2ı from C . Let w 2C be at distance
a from v . Let u 2G be a vertex lying on a geodesic vw with d.u; v/D 2ı . Then u
dominates v in the subgraph of the 1–skeleton of PD.G/ induced on Ba.C /.

Proof of Claim The proof is similar to the proof of [3, Proposition III.� .3.23]. Let
t 2 Ba.C / be such that d.t; v/�D , ie, t is a neighbour of v in PD.G/. We have to
show that d.t; u/�D . Consider geodesics wt and tv . By ı–hyperbolicity, we have
d.u; u0/� ı for some vertex u0 2 wt [ tv . There are two cases:

Case 1 u0 2 wt . In this case we have

d.t; u0/C d.u0; w/D d.t; w/� diam.C /C aD diam.C /C d.v; u/C d.u;w/

� diam.C /C d.v; u/C d.u; u0/C d.u0; w/

� diam.C /C d.v; u/C ıC d.u0; w/:

Hence d.t; u0/� d.u; v/C diam.C /C ı , and it follows that

d.t; u/� d.t; u0/C d.u0; u/� d.u; v/C diam.C /C 2ı � 8ıC 1�D:

Case 2 u0 2 tv . Since d.v; u0/� d.v; u/�d.u; u0/� 2ı�ıD ı , we have d.t; u0/D
d.t; v/�d.v; u0/�D�ı . It follows that d.t; u/�d.t; u0/Cd.u0; u/� .D�ı/CıDD .
In both cases we obtain the desired inequality.
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