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Asymptoticity of grafting and Teichmüller rays

SUBHOJOY GUPTA

We show that any grafting ray in Teichmüller space determined by an arational
lamination or a multicurve is (strongly) asymptotic to a Teichmüller geodesic ray. As
a consequence the projection of a generic grafting ray to the moduli space is dense.
We also show that the set of points in Teichmüller space obtained by integer (2� –)
graftings on any hyperbolic surface projects to a dense set in the moduli space. This
implies that the conformal surfaces underlying complex projective structures with
any fixed Fuchsian holonomy are dense in the moduli space.

30F60; 32G15, 57M50

1 Introduction

A complex projective structure on a surface Sg of genus g � 2 is an atlas of charts
of Sg mapping into CP1 such that the transition maps are in PSL2.C/, and as this
also determines a marked conformal structure, the space P.Sg/ of such structures
forms a bundle over the Teichmüller space Tg . In particular, a hyperbolic structure
on a surface can be thought of as a complex projective structure with Fuchsian (or
real) holonomy, and the operation of projective grafting on a simple closed curve
deforms such a complex projective structure by inserting a projective annulus along
a geodesic representative of that curve. By taking limits, this procedure extends to
geodesic laminations and gives a geometric parametrization of P.Sg/ (see for example
Kamishima and Tan [22], Tanigawa [33] and McMullen [29]). In this paper we shall
consider conformal grafting rays, which are the image in Tg of such deformations of
complex projective structures, and establish a (strong) asymptoticity with Teichmüller
geodesics (Theorem 1.1) that is used to show a density result concerning the set of
complex projective structures with Fuchsian holonomy (Theorem 1.5).

The conformal grafting ray determined by a pair .X; �/ of a hyperbolic surface X and
a measured geodesic lamination � shall be denoted by grt�X , and is a real-analytic
one-parameter family of conformal structures obtained, roughly speaking, by cutting
along � on X and inserting a Euclidean metric whose width increases along the ray (a
more precise description is given later in Section 2). Associated to a pair .X; �/ is also
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a Teichmüller geodesic ray starting from X and in the “direction” � (see Definition 2.2).
This paper establishes a strong asymptoticity between the two.

Two rays ‚ and ‰ in Tg are said to be asymptotic if the Teichmüller distance (defined
in Section 2) between them goes to zero, after reparametrizing if necessary. More
concisely, lim

t!1
inf

Z2‚
dT .Z; ‰.t//D 0.

Theorem 1.1 Let X 2 Tg and let � 2ML be arational, or a multicurve. Then there
exists a Y 2 Tg such that the grafting ray determined by .X; �/ is asymptotic to the
Teichmüller ray determined by .Y; �/.

Here a measured lamination � is said to be arational when it is both maximal (comple-
mentary regions are all triangular) and irrational (has a single minimal component that
is not a closed geodesic). Such laminations are in fact of full measure in ML; we refer
to Section 2 for a fuller discussion of the structure theory of geodesic laminations. In a
sequel to this paper [16] we generalize Theorem 1.1 to the case of a general lamination.

The following are immediate corollaries of Theorem 1.1 and the work of Masur [26; 28].

Corollary 1.2 Let X;Y be any two hyperbolic surfaces and let � be a maximal
uniquely ergodic lamination. Then the grafting rays determined by .X; �/ and .Y; �/
are asymptotic.

Corollary 1.3 For every X 2 Tg and almost every � 2ML in the Thurston mea-
sure, the projection of the grafting ray determined by .X; �/ is dense in the moduli
space Mg .

Let S be the set of integer-weighted multicurves on Sg . As a further application of
the techniques in the proof of Theorem 1.1 we show:

Theorem 1.4 For any X 2 Tg , the set of integer graftings f�.gr2�
 X / j 
 2 Sg is
dense in Mg .

The fact that such integer-grafts preserve holonomy (see Goldman [15, Section 2.14])
then implies:

Theorem 1.5 Let P� be the set of complex projective structures on a surface Sg with
a fixed holonomy � 2Rep.�1.Sg/;PSL2.C//. Then for any Fuchsian representation � ,
the projection of P� to Mg has a dense image.
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In [13] Faltings had first conjectured that this projection of the set P� is infinite, and
this result can be thought of as the strongest possible affirmation of that.

The asymptotic behavior (as in Theorem 1.1) of two Teichmüller rays with respect
to the Teichmüller metric is better known (see [26], Ivanov [21] and Lenzhen and
Masur [25]). In [26] Masur proved that if � is uniquely ergodic, then for any two
initial surfaces X;Y 2 Tg the Teichmüller rays determined by .X; �/ and .Y; �/

are asymptotic. The comparison of grafting rays and Teichmüller rays has been less
explored, however a recent result along these lines (see also Díaz and Kim [8]) is the
following “fellow-traveling” result in Choi, Dumas and Rafi [7]:

Theorem (Choi–Dumas–Rafi) For any X 2 Tg and any unit-length lamination �,
the grafting ray determined by .X; �/ and the Teichmüller ray determined by .X; �/
are a bounded distance apart, where the bound depends only on the injectivity radius
of X .

Theorem 1.1 makes a finer but less uniform comparison involving the stronger notion
of asymptoticity defined above.

A crucial difference between grafting and Teichmüller rays is that the latter are lines
of a flow whereas the former are not, that is, if one reuniformizes the surface along a
grafting ray to graft again, we have

grt� ı grs� ¤ gr.tCs/� :

Our results show that if one waits until t is sufficiently large, however, it approximates
the Teichmüller geodesic flow. We aim to discuss this and a more quantitative version
of Theorem 1.1 in forthcoming work. In [17] we study a similar asymptoticity for
complex earthquakes and Teichmüller disks.

The proof of Theorem 1.1 is achieved by constructing quasiconformal maps of small
dilatation from sufficiently large grafted surfaces along the grafting ray, to singular
flat surfaces that lie along a common Teichmüller ray. It involves a comparison of the
Thurston metric, a hybrid of a hyperbolic and Euclidean metric underlying a complex
projective surface on one hand, and a singular flat metric induced by a holomorphic
quadratic differential on the other. The case when the lamination � is arational is
handled in Section 4, and the case when the lamination is a multicurve is dealt with in
Section 5. The proof of Theorem 1.4 in Section 6 is obtained by careful approximation
of an arational lamination with multicurves. An outline of the strategy of the proofs of
both theorems is provided in Section 3.
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2 Preliminaries

Teichmüller space Tg For a closed oriented genus-g surface Sg , the Teichmüller
space Tg is the space of marked conformal (or equivalently, complex) structures
on Sg with the equivalence relation of isotopy (see Imayoshi and Taniguchi [20] and
Hubbard [18] for a treatment of the subject). Note that although for this article, we
assume the surfaces have no punctures, the results still hold for the punctured case with
a slight modification of the arguments.

The distance between two points X and Y in Tg in the Teichmüller metric is defined
to be

dT .X;Y /D
1
2

inf
f

ln Kf ;

where f W X ! Y is a quasiconformal homeomorphism, and Kf is its quasiconformal
dilatation. The infimum is realized by the Teichmüller map between the surfaces.

A thorough discussion of the definitions of a quasiconformal map and its dilatation
(also referred to as its quasiconformal distortion) is provided in the appendix. It suffices
to point out here that, roughly speaking, a quasiconformal map takes infinitesimal
circles on the domain to infinitesimal ellipses, and the dilatation is a measure of the
maximum eccentricity of the image ellipses. The “difference” or distance between two
conformal structures is then measured in terms of the dilatation of the least distorted
quasiconformal map between them.

A consequence of the above definition is that if there exists a map f W X ! Y which
is .1CO.�//–quasiconformal (ie Kf D 1CO.�/), then

dT .X;Y /DO.�/:

Notation Here, and throughout this article, O.˛/ refers to a quantity bounded above
by C˛ , where C > 0 is some constant depending only on genus g (which remains
fixed), the exact value of which can be determined a posteriori.

Definition 2.1 For the ease of notation, an almost conformal map shall refer to a map
that is .1CO.�//–quasiconformal.
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Hyperbolic surfaces and geodesic laminations Any conformal structure on a surface
of genus g � 2 has a unique hyperbolic structure (a Riemannian metric of constant
negative curvature �1) in its conformal class via uniformization. Thus Teichmüller
space is, equivalently, the space of marked hyperbolic structures and this gives rise to a
rich interaction between two-dimensional hyperbolic geometry and complex analysis.

A geodesic lamination on a hyperbolic surface is a closed subset of the surface which
is a union of disjoint simple geodesics. A maximal lamination is a geodesic lamination
such that any component of its complement is an ideal hyperbolic triangle. There is a
rich structure theory of geodesic laminations (see Casson and Bleiler [4] for example):
in particular, any geodesic lamination � is a disjoint union of sublaminations

(2-1) �D �1[�2[ � � � [�m[ 
1[ 
2 � � � [ 
k ;

where the �i are minimal components (with each half-leaf dense in the component)
which consist of uncountably many geodesics (a Cantor set cross-section) and the 
j
are isolated geodesics.

A measured geodesic lamination is equipped with a transverse measure �, that is, a
measure on arcs transverse to the lamination which is invariant under sliding along
the leaves of the lamination. It can be shown that for the support of a measured
lamination the isolated leaves in (2-1) above are weighted simple closed curves (ruling
out the possibility of isolated geodesics spiralling onto a closed component). We call a
lamination arational if every simple closed curve intersects it, and it can be shown that
for a measured lamination this condition is equivalent to being maximal and irrational,
which is that it consists of a single minimal component and no isolated leaves. A
measured lamination is uniquely ergodic if such a measure is unique. A maximal,
uniquely ergodic lamination is necessarily arational. The set of weighted simple closed
curves is dense in ML, the space of measured geodesic laminations equipped with
the weak-� topology. The space ML also has a piecewise-linear structure and a
corresponding Thurston measure.

Train tracks A train track on a surface is a graph with a labeling of incoming and
outgoing half-edges at every vertex, and an assignment of (nonnegative) weights to
the edges (or branches) that are compatible, such that at every vertex the sum of the
weights of the incoming edges is equal to the sum of the edges of the outgoing edges.
This provides a convenient combinatorial encoding of a lamination (see, for example,
Fathi, Laudenbach and Poénaru [14] or Thurston [35]); in particular, for an assignment
of integer weights, one can place a number of strands along each branch equal to the
weight, and the compatibility condition ensures that these can be “hooked” together to
form a multicurve.
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Quadratic differentials and Teichmüller rays Any measured geodesic lamination
corresponds to a unique measured foliation of the surface, obtained by “collapsing” the
complementary components. Conversely, any measured foliation can be “tightened”
to a geodesic lamination. The space of measured foliations MF is homeomorphic
to ML via this correspondence (see, for example, Kapovich [23]).

A holomorphic quadratic differential � (see Strebel [32] for a treatment of the subject)
is locally of the form �.z/dz2 , where �.z/ is a holomorphic function, and has a
vertical foliation given by the level sets of Im.

R z
0

p
�.z/dz/, which has singularities

at the zeroes of �.z/. These singularities are also the cone-points in the singular flat
metric given by j�.z/jjdzj2 .

For a hyperbolic surface X , the map that assigns the vertical measured foliation Fv.�/
to a quadratic differential �.X / defines a homeomorphism between the space of
quadratic differentials Q.X / and MF ; see Hubbard and Masur [19]. Composed with
the previous correspondence between measured laminations and foliations, we get a
homeomorphism

qLW Q.X /!ML:

Definition 2.2 A Teichmüller ray from a point X in Tg and in a direction determined
by a holomorphic quadratic differential � is a subset fXtgt�0 of Tg , where Xt is
obtained by starting with the surface X with the horizontal and vertical foliations Fh.�/

and Fv.�/ and the corresponding singular flat metric, and scaling the metric along the
horizontal foliation by a factor of et and the vertical foliation by a factor of e�t .

Remark By a conformal rescaling, this is equivalent to stretching along the horizontal
direction by a factor e2t , and keeping the vertical direction fixed.

This ray is geodesic in the Teichmüller metric (see, for example, [20]).

By the above correspondence, we define a Teichmüller ray determined by a pair
.X; �/2Tg�ML to be the Teichmüller ray starting from X in the direction determined
by q�1

L
.�/.

Complex projective structures and grafting An excellent exposition of this material
can be found in Dumas [10], the following is a brief summary.

A complex projective structure on a surface Sg is a pair .dev; �/, where devW zSg!CP1

is a local homeomorphism which is the developing map of its universal cover and
�W �1.Sg/! PSL2.C/ is the holonomy representation that satisfies

dev ı
 D �.
 / ı dev

for each 
 2 �1.Sg/.
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Equivalently, a complex projective structure is a collection of charts of the surface that
map to CP1 such that overlapping charts differ by a projective (or Möbius) transforma-
tion. Since Möbius transformations are holomorphic, any complex projective structure
has an underlying conformal structure. This gives rise to a forgetful map from the
space of complex projective structures pW P.Sg/! Tg .

A hyperbolic surface arises from a Fuchsian representation �W �1.Sg/! PSL2.R/ and
thus has a canonical complex projective structure. Grafting, introduced by Thurston
(see [22; 33], Scannell and Wolf [31] and Dumas and Wolf [11] for subsequent de-
velopment) can be thought of as a way to deform the Fuchsian complex projective
structure.

In the case of grafting along a simple closed geodesic 
 with transverse measure
(weight) s , the process can be described as follows. Embed the universal cover zX
of the hyperbolic surface X as the equatorial plane in the ball-model of H3 . The
hyperbolic Gauss map to @H3 D CP1 (the inverse of the nearest point retraction)
provides the developing map of the Fuchsian structure. The curve 
 lifts to a collection
of geodesic lines on the equatorial plane. Now we bend along these lifts equivariantly
by an angle s such that one gets a convex pleated plane. Via the Gauss map, this
corresponds to inserting crescent-shaped regions of angle s along the images of the
lifts of 
 (in Figure 11 this is shown in the upper half-plane model where the imaginary
axis is a lift of 
 ). This defines the image of the developing map of the new projective
structure. Of course, for an angle s � 2� , the image wraps around CP1 , and the
developing map is not injective. The new holonomy is the PSL2.C/–representation
compatible with this new developing map in the sense described above.

Grafting for a general measured lamination � is defined by taking the limit of a sequence
of approximations of � by weighted simple closed curves, that is, a sequence si
i! �

in ML. For each si
i , one can form a pleated plane by equivariant bending, and a
corresponding complex projective structure as above. It follows from the foundational
work of Epstein and Marden [12] and Bonahon [5] that

the convex pleated planes converge in the Gromov–Hausdorff sense

which implies that

the developing maps converge uniformly on compact sets, and
the corresponding holonomy representations converge algebraically;

and so, in particular, there is a limiting complex projective structure on the surface Sg .

Thurston observed [22; 33] that the map

.X; �/ 7! Gr�X

Geometry & Topology, Volume 18 (2014)
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is a homeomorphism of Tg �ML to Pg , where Gr. � /. � / refers to the projective
surface obtained by the above operation.

In this paper we are concerned with conformal grafting grW Tg �ML! Tg , where
we consider only the conformal structure underlying the complex projective structure
(so that gr D p ı Gr where pW Pg ! Tg is the usual projection). It is known that
for any fixed lamination �, the grafting map (X 7! gr�X ) is a self-homeomorphism
of Tg [31].

Thurston metric A complex projective structure on a surface Sg determines a pair con-
sisting of the developing map dev from the universal cover zSg to CP1 and the holonomy
representation � . There is a canonical stratification of the image of dev on CP1 (see
Kulkarni and Pinkall [24]), and in particular, one can speak of maximally embedded
round disks there. One can in fact recover the locally convex pleated plane (that one had
in the bending description above) by taking an envelope of the convex hulls (domes)
over these disks.

Definition 2.3 The projective metric on the universal cover zSg is defined by pulling
back the Poincaré metric on the maximal disks, via the developing map dev. The
projective metric descends to the Thurston metric on the surface, under the quotient by
the action of �.�1.Sg//.


 S

Figure 1: The grafting map along the weighted curve s


When 
 is a simple closed curve, the equivariant collection of s–crescents obtained by
bending the lifts of 
 on the equatorial plane in H3 (see the previous section) descend
to an annulus inserted at the closed geodesic 
 (Figure 1). So in the Thurston metric
on grs
 X , the inserted annulus is flat (Euclidean), of width s , and the rest of the
surface remains hyperbolic.

For a general lamination, the Thurston metric on gr�X is the limit of the Thurston
metrics on grsi
i

X , where si
i! � is an approximating sequence of weighted simple
closed curves (see [31]). The length in the Thurston metric on gr�X of an arc �
intersecting �, is its hyperbolic length on X plus its transverse measure.

Definition 2.4 A grafting ray from a point X in Tg in the “direction” determined by
a lamination � is the 1–parameter family fXtgt�0 , where Xt D grt�.X /.

Geometry & Topology, Volume 18 (2014)
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3 An overview of the proofs

The proofs of Theorems 1.1 and 1.5 involve understanding the geometry of the grafted
surfaces Xt D grt�X along the grafting ray determined by a pair .X; �/ for large t .
By the definition of grafting, as described in Section 2, these surfaces carry a conformal
metric which is Euclidean on the grafted region and hyperbolic elsewhere. A convenient
way to picture this is to consider a thin “train track” neighborhood T �X that contains
the lamination �. The intuition is that as one grafts, the subsurface T widens in the
transverse direction (along the “ties” of the train track), and conformally approaches a
union of wide Euclidean rectangles.

The complement X n � is unaffected by grafting: in the case when � is arational,
it comprises finitely many hyperbolic ideal triangles (the number depends only on
genus) and for � nonarational this complement might consist of ideal polygons or
subsurfaces with moduli. The former case therefore is simpler and allows for more
explicit constructions, and we focus on that first. For the latter case, this paper shall
deal with the case when these subsurfaces have boundary components consisting of
closed curves, and the general case is deferred to a subsequent paper. In either case,
the underlying intuition is that this complementary hyperbolic part becomes negligible
compared to the Euclidean part of the Thurston metric, for a sufficiently large grafted
surface. (This has been exploited before in [9].)

3.1 The arational case

The surface yXt

For � arational, one can consider the associated (singular) transverse horocyclic foliation
which we denote by F . This is obtained as follows. Since the lamination � is maximal,
it lifts to the universal cover of the surface to give a tessellation of the hyperbolic
plane H2 by ideal hyperbolic triangles. Each ideal hyperbolic triangle has a partial
foliation by horocyclic arcs belonging to horocycles tangent to each of the three ideal
vertices (Figure 2). It can be shown (see Thurston [34]) that by some slight modification
this can be extended across the ideal triangles and to the central region (missed by the
horocyclic arcs) to form a foliation F of the surface which is transverse to �, with
“3–prong” singularities in the center of each ideal triangle, and the foliation being C 1

away from the singularities (the leaves are flowlines of a Lipschitz vector field).

The foliation F can be equipped with a transverse measure that is the hyperbolic
distance along the leaves of �. This measured foliation F persists under grafting
along �, with the leaves getting longer along a grafting ray, and the transverse measure
remaining fixed.

Geometry & Topology, Volume 18 (2014)
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Figure 2: The partial horocyclic foliation of an ideal hyperbolic triangle; this
can be modified to extend it to a singular foliation.

Then there is an associated Riemann surface yXt with a singular flat metric obtained by
collapsing the ideal triangle components of X n� along the leaves of F , but preserving
the transverse measure of F . The singularities of the flat metric on yXt are 3–pronged
conical singularities that arise by collapsing the central (unfoliated) region of each ideal
triangle in the complement of the lamination.

There are a couple of ways one can think of the collapsed surface: one is to think of
an explicit collapsing map (see [4]) that collapses the complement of the lamination
(that is locally a Cantor set cross interval) by a function that is the Cantor function
on each transverse cross section. The other is to think of yXt as a singular flat surface
obtained by gluing up Euclidean rectangles with the same combinatorics of the gluing
as dictated by the structure of the lamination (or equivalently the corresponding train
track T ) on Xt .

The singular flat surfaces yXt have a horizontal foliation F , and a vertical foliation that
is measure-equivalent to t�, since one keeps the vertical leaves (of �) unchanged and
scales the distance along the transverse (horizontal) direction by a factor of t . Hence
as t varies the yXt lie on a common Teichmüller ray (see Definition 2.2 and the remark
following it). The “collapsing map” itself is far from being quasiconformal (it is not
even a homeomorphism), and main idea behind the proof of Theorem 1.1 is to use the
additional grafted region to “diffuse out” the collapsing to get a quasiconformal map
from Xt to yXt , which is moreover almost conformal (see Definition 2.1).

Outline of the proof (arational case)

Step 1: The decomposition of Xt One first decomposes the grafted surface into
rectangles and pentagonal pieces (Section 4.1) that essentially make up the train
track neighborhood T , and a slight thickening of the truncated ideal triangles in its
complement, respectively. Lemmas 4.2 and 4.3 are concerned with the dimensions of
the resulting pieces.

Geometry & Topology, Volume 18 (2014)
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Figure 3: A partial picture of a maximal lamination, with two truncated ideal
triangles in the complement shown shaded

Step 2: Mapping the pieces Next, one constructs quasiconformal maps that map the
pieces in the decomposition to (singular) flat regions, by mapping the leaves of F in a
suitable manner (Figures 3 and 4). The rectangular pieces of the grafted surface that
“carries” the lamination need a finite approximation argument, which is carried out
in Section 4.3, and culminates in Lemma 4.18. The maps for the pentagonal pieces
(section Section 4.4) are constructed by first constructing maps of “truncated sectors.”
Much of these constructions depend on explicit constructions of C 1 maps of controlled
dilatation that one can build between various hyperbolic or Euclidean regions, which
are compiled in Section 4.2. The assumption of C 1 –regularity is justified by the
corresponding regularity of the Thurston metric (see Section 4.3) and the horocyclic
foliation F .

�

�
�

�

Figure 4: In Step 2, the maps of the pieces assemble to give a quasiconformal
map of the portion of Xt shown on the left to the singular flat region on yXt

shown on the right. The (shaded) hyperbolic region is taken to a neighborhood
of the central “tripod.”

Step 3: Gluing the maps of the pieces To assemble the maps of the pieces to a map
of the grafted surface Xt to the singular flat surface yXt , they need to be adjusted on the
boundary. This is possible by an additional property of the maps called almost isometry

Geometry & Topology, Volume 18 (2014)
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(Definition 4.9) which allows this adjustment to be made maintaining the almost
conformality (see Lemma 4.13 in Section 4.2). At this stage one has a quasiconformal
map that is almost conformal for most of the surface (Lemma 4.22).

Step 4: Adjusting to an almost conformal map The quasiconformal map from
Lemma 4.22 is then adjusted to be almost conformal everywhere. This relies on the fact
that the regions of no control of quasiconformal distortion are contained in portions of
the surface surrounded by annuli of large modulus (Lemma 4.23), and a technical lemma
on quasiconformal extensions (Lemma 4.24) whose proof we defer to the appendix.

3.2 The multicurve case

In contrast to the case of an arational (and therefore maximal) lamination, for a general
lamination the complementary subsurface X n T might contain an ideal polygon
or nonsimply connected subsurface with a nontrivial parameter space (moduli) of
conformal structures. Here T is a train track neighborhood of the lamination, as before.
This subsurface remains is unaffected by the procedure of grafting.

In this article we shall consider the case when � is a multicurve, and the general
case shall be handled in a subsequent article [16]. The following is the outline of
the argument for the special case when � is a single nonseparating simple closed
geodesic 
 .

The surface Xt appearing along the grafting ray has a Euclidean cylinder of length t

inserted at 
 . As t!1, the surface has a conformal limit X1 , which is an “infinitely
grafted” surface X1 obtained by gluing semi-infinite cylinders on the two boundary
components of Xt n 
 (see Figure 5). By abuse of notation we shall also think of X1

as the compact Riemann surface with two marked points obtained by filling in the
punctures.

To find the singular flat surface yXt to map the grafted surface Xt to, one starts by
defining the singular flat surface Y1 that appears as the limit of the Teichmüller ray,
that by the purported asymptoticity will be conformally equivalent to X1 . This is
obtained by prescribing a meromorphic quadratic differential on X1 .

Namely, by a theorem of Strebel (Proposition 5.2), there is a meromorphic quadratic
differential on X1 with two double poles and closed horizontal trajectories, that
induces a singular flat metric which makes the surface isometric to two semi-infinite
Euclidean cylinders glued along the boundary (we call this Y1 to distinguish this
from X1 , though they are conformally equivalent).

The singular flat surface yXt is then obtained by truncating these infinite cylinders
of Y1 at some “height” and gluing them along the truncating circles, and this lies
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X




Xt

t

X1

Figure 5: The surface X1 appears as a conformal limit as one grafts along a
simple closed nonseparating curve 
 .

along the Teichmüller ray determined by �. It only remains to adjust the conformal
map between X1 to Y1 to an almost conformal map between Xt and yXt ; this is
possible because a conformal map “looks” affine at small scales, or (in this case) like
an isometry far out a cylindrical end (see Lemma 5.3).

3.3 Idea of the proof of Theorem 1.5

When the lamination � is arational at least one of the weights on its train track
representation is irrational. As described at the beginning of Section 3, the train track
neighborhood T of � widens along the grafting ray, and a typical rectangular piece
(corresponding to a branch of the train track) looks more and more Euclidean, with its
Euclidean width at time t equal to the initial weight times t .

A key observation is that since the switch conditions for the train track reduce to a
system of linear equations with integer coefficients, there is always an assignment
of integer weights that approximate those of the arational lamination, such that for
each branch the integer weight is within a bound that depends only on the genus
(Lemma 6.15). For sufficiently large t , this difference is small in proportion to the
entire width, and this allows the construction of an almost conformal map from a
surface along the grafting ray to a surface obtained by grafting along the multicurve
corresponding to the integer solution (Lemma 6.19).

This construction together with a choice of � that provides a dense grafting ray
(Corollary 1.3 of Theorem 1.1) shows that integer graftings are dense in moduli space
(Theorem 1.4), and Theorem 1.5 follows as they also preserve the Fuchsian holonomy.

4 The arational case

In this section we prove the following proposition, a special (and generic) case of
Theorem 1.1.

Proposition 4.1 Let X 2 Tg and let � be an arational (ie maximal and irrational)
geodesic lamination. Then there exists a Y 2 Tg such that the grafting ray determined
by .X; �/ is asymptotic to the Teichmüller ray determined by .Y; �/.
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An outline of the proof was provided in Section 3.1, and we refer to that section for
the notation used here.

4.1 A train track decomposition of the grafted surface

We begin by constructing a subsurface T� �X containing the arational lamination �,
that is further decomposed into rectangles. This can be thought of as a physical
realization of a train track carrying �, and the rectangles correspond to the branches of
the train track.

4.1.1 The return map From Section 3.1 recall that there is a horocyclic foliation F
with C 1 leaves transverse to �, obtained by integrating the Lipschitz line field along the
horocyclic arcs of the ideal triangles in its complement. Choose an oriented segment �
from a leaf of F away from its singularities, such that the endpoints of � are on leaves
of the lamination � which are isolated on the side away from � . We shall choose � so
that its hyperbolic length is small enough, depending on � ; this shall be spelled out in
Lemma 4.2.

In what follows we use the first return map of � to itself (following leaves of �) to
form a collection of rectangles with vertical geodesic sides, and horizontal sides lying
on � . This is similar to the standard method constructing the suspension of interval
exchange transformations, and in particular to the decomposition in [26] where it is
done for a quadratic differential metric and the associated foliations.

The outcome of this decomposition shall be a collection of rectangles R1;R2; : : : ;Rn

on the surface X whose union contains the lamination �, and truncated ideal triangles
T1;T2; : : : ;Tm in their complement.

For convenience, we lift the lamination to z� on the universal cover zX of the surface
(Figure 6), and pick z� , a choice of lift of the arc � . Pick any x 2 z�\z� . The fact that �
is minimal implies that any half-leaf of z� emanating from x intersects another lift
of � . Consider such a segment lx of a leaf of z� between the two lifts of � . Each point
of lx is contained in a “flowbox”; a rectangle where the lamination z� is embedded as
K �J for a Cantor set K and an interval J . Using the compactness of lx , one can
take a finite subcover by these flowboxes, and find a single rectangular flowbox zRx

between the two lifts of � that contains the entire segment lx . This intersects z� in
an interval zIx , and by using the compactness of z� , one can find a finite subcover
zI1; : : : ; zIn , and hence finitely many rectangles zR1; : : : ; zRn that contain all the leaf
segments lx where x 2 z�\ z� . Here we assume that we merge two adjacent rectangles
to a bigger rectangle whenever possible, so that the horizontal sides of these rectangles
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lx

zRx

z�

x

Figure 6: The lift of � to the universal cover is decomposed into rectangular
“flowboxes” by the lifts of the transversal arc � .

are z� and distinct lifts of � , and we also assume that the vertical sides are geodesic
segments of leaves of z�.

These rectangles descend to the collection of rectangles R1;R2; : : : ;Rn on the sur-
face X whose union contains the lamination �. Their horizontal sides determine
intervals I1; : : : ; In on the arc � . Since � is arational, it has complementary regions
T1;T2; : : : ;Tm which are ideal hyperbolic triangles truncated by subarcs of � . Here n

and m depend only on the genus: each rectangle is adjacent to two complementary
regions, and there are exactly 4g� 4 ideal-triangular regions in the complement of �.

We define

(4-1) T� DR1[R2[ � � � [Rn:

Recall here that � determines the choice of length of � above, as shall be specified in
Lemma 4.2.

Along the grafting ray the rectangles get wider, and one gets a decomposition of each
grafted surface Xt with the same combinatorics of the gluing.

4.1.2 Labelling subarcs For later use, we denote the subarcs of the arc � that
are the horocyclic edges of T1; : : : ;Tm by J1; : : : ;J3m (these in fact belong to the
collection fJ˙i g) and the remaining subarcs in � n fJ1[ � � � [J3mg by I 0

1
; : : : ; I 0

3mC1

(see Figure 7). Note that for each 1 � i � n by choosing one of the two horizontal
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T1 Tm

R1

Rn

I1 J1 I2

�

I 0
3m

J3m

In D I 0
3mC1

Rj

Figure 7: The train track decomposition and the labelling of the subarcs of �

sides of Ri we can write

(4-2) Ii D

[
k2Si

I 0k ;

where Si is a finite subset of f1; 2; : : : ; 3mC 1g, and Si \Sj D ∅ for i ¤ j . (For
example, in Figure 7 we have Ij D I 0

3m
[ I 0

3mC1
and In D I 0

3mC1
.)

4.1.3 Dimensions The total width of a rectangle Ri shall be the supremum of the
lengths in the Thurston metric (see Definition 2.3) of the segments l \Ri , where l is
a leaf of the transverse foliation F .

The hyperbolic width of a rectangle Ri is defined to be the supremum of the hyperbolic
lengths of the leaves of F that intersect Ri . The Euclidean width of a rectangle Ri

is defined to be its total width minus its hyperbolic width. (This is also the transverse
measure of the lamination � across Ri .)

The height of the rectangle is the hyperbolic length of one of the vertical geodesic sides.
(Since this hyperbolic length is the transverse measure of F that is preserved along its
leaves, this induces a compatible notion of height on the other vertical side.)

Lemma 4.2 (Long, thin train track) If the hyperbolic length of � is sufficiently small,
the height of each of the rectangles R1;R2; : : : ;Rn is greater than 1=�4 , and the
hyperbolic width is less than � .
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Proof Let the hyperbolic length of the arc � be L. Then the two horizontal sides of a
rectangle being intervals on the segment � have length less than L. It follows from
elementary hyperbolic geometry that on the (ungrafted) surface X the two vertical
geodesic sides remain within L of each other, and each piecewise-horocyclic leaf of F
between them has length at most O.L/. It is a fact that if the horocyclic edges of a
truncated ideal triangle have length O.L/, then the length of each geodesic edge is at
least ln.1=L/. This is the height of the rectangle (see the preceding definition). Clearly
ln.1=L/!1 as L! 0, so we can choose L< � small enough so that the statement
of the lemma holds.

Henceforth, we shall assume that � was chosen short enough such that the conclusions
of the above lemma hold. Our choice of lower bound of height shall be justified in
Lemma 4.23.

Each rectangle has a Euclidean width equal to the transverse measure �.t�\R/ which
goes to infinity as the grafting time t !1. Hence we also have:

Lemma 4.3 (Total width) There is a T > 0 such that for all t > T , the total width
of each rectangle in the above decomposition is greater than 1=�4 .

The decomposition D It will be useful to organize the above collection of rectangles
and truncated ideal triangles into the following decomposition of a sufficiently grafted
surface into rectangles and pentagons.

First decompose each ideal triangle Tj into three pentagons by including geodesic
edges from its centroid pj to the midpoints of the horocyclic sides (Figure 8). Each
pentagon is thus a “2�=3–sector” of each truncated ideal hyperbolic triangle.

Each Tj is adjacent to rectangles from the collection fRig on its three geodesic sides.
By Lemma 4.3, for a surface sufficiently far along the grafting ray there is a grafted
portion of Euclidean width much greater than 4 adjacent to each geodesic side. We
thicken the pentagons by trimming subrectangles of Euclidean width 2 from the adjacent
rectangles and appended to the truncated sectors of Tj (obtained above).

This trimming-and-appending results in the Euclidean (and total) widths of the rect-
angles fRig decreasing by 4. By abuse of notation, we continue to denote these
trimmed rectangles as fRig1�i�n , and we denote the pentagons (thickened sectors) as
fPj g1�j�3m . These form the pieces of this new decomposition, which we shall refer
to as the decomposition D .
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2

Ri

Tj p

Figure 8: In the decomposition D , each truncated ideal triangle Tj is divided
into three sectors which are thickened to form pentagons, by appending a
portion of the rectangle adjacent to the geodesic sides of Tj (shown dotted).

4.2 A compendium of quasiconformal maps

There are two types of pieces in the decomposition D of the grafted surface described
in the previous section, rectangles Ri , and pentagons Pj , which can be further de-
composed into truncated 2�=3–sectors and width-2 rectangles. We shall eventually
construct some quasiconformal maps of these pieces to the Euclidean plane which
we shall glue to form a quasiconformal map of the grafted surface to the singular flat
surface.

We first isolate as lemmas a few quasiconformal maps that will be useful at several steps
of the actual construction. Since we would need some control on the quasiconformal
dilatation of the final map, we take care to ascertain the distortion at all points of the
domain.

We use repeatedly the following facts about quasiconformal maps (see, for example,
Ahlfors [1]).

(A) If the partial derivatives of a C 1 map f between planar domains satisfyˇ̌̌̌
kfxk

kfyk
� 1

ˇ̌̌̌
< � and jhfx; fyij< �

at a point (where recall � , as throughout this paper, is sufficiently small), its
quasiconformal dilatation there is 1CC� for some universal C > 0.

(B) If a map f is a homeomorphism onto its image, and it is quasiconformal on the
domain except for a measure zero set (typically a collection of C 1 arcs), then f
is quasiconformal everywhere on the domain.

(C) If a homeomorphism f is K–quasiconformal, so is its inverse f �1 .
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Straightening map

Definition 4.4 An arc on the Euclidean plane is said to be �–almost vertical if it is a
portion of a graph x D g.y/, where g is a C 1 –function and jg0.y/j< � .

We fix an � > 0 for the following discussion. The following lemma will be used in
various contexts to map a rectangle with “almost vertical” sides to an actual rectangle
by an almost conformal map that is also height-preserving. (Recall that an almost
conformal map is .1CO.�//–quasiconformal.)

Lemma 4.5 Let R be a planar region that is bounded by two sides that are parallel
horizontal line segments and two arcs which are the graphs x D g1.y/ and x D g2.y/

over the interval 0 � y � a on the y–axis, where g1 , g2 are C 1 –functions such
that g2.y/ > g1.y/ > 0 for all 0 � y � a. Then there is a height-preserving quasi-
conformal map f from R to a Euclidean rectangle of height a and width b , where
b D sup

0�y�a

.g2.y/�g1.y//. Moreover, if at any point p 2R at height y we have

(i) jg0
1
.y/j< �

(ii) jg0
2
.y/j< �

(iii) the width ratio A.y/D b=.g2.y/�g1.y// satisfies jA.y/� 1j< �

then the quasiconformal distortion of f at p is .1CC�/ for some universal constant
C > 0.

Proof The map f one constructs is one that “stretches” horizontally the right amount
at each height:

.x;y/ 7! .A.y/ � .x�g1.y//;y/:

Computing the partial derivatives of f we get

fx D hA.y/; 0i;

fy D

D
�A.y/g01.y/�A.y/2.g02.y/�g01.y//

�x�g1.y/

b

�
; 1
E
;

where A.y/D b=.g2.y/�g1.y//.

At a height y where the estimates (i)–(iii) hold, using them and the observation that
.x�g1.y//=b � 1, we getˇ̌̌̌

kfxk

kfyk
� 1

ˇ̌̌̌
< C� and jhfx; fyij< C�

for some universal constant C > 0, and the statement on quasiconformal distortion
follows from property A above.
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H2 ! �R2

Figure 9: The map to R2 that straightens the horocyclic foliation of an �–
thin hyperbolic region (shown on the left in the upper half plane) is almost
conformal (Lemma 4.6).

Maps straightening a horizontal foliation

Lemma 4.6 Let R be a (Euclidean) rectangular region in H2 in the upper half-plane
model bounded by two (vertical) geodesic sides and two (horizontal) horocyclic sides
such that the hyperbolic width is � (sufficiently small). Note that R is foliated by
horocyclic segments.

Then the map f W R!R2 that

(i) takes the left edge to a vertical segment preserving distance along it

(ii) maps each horocyclic leaf to a horizontal line

(iii) is distance-preserving along each horocyclic leaf

is .1CC�/–quasiconformal for some universal constant C > 0.

Moreover, the right edge of R is mapped to an almost vertical segment.

Proof Let R to be a rectangle in the upper-half plane model of H2 as described, lying
above the line y D 1 and the left side lying on the y –axis (Figure 9). The map f is

(4-3) .x;y/ 7!
�

x

y
; ln y

�
:

Note that the hyperbolic width of R being at most � implies that

(4-4)
ˇ̌̌x
y

ˇ̌̌
DO.�/

for all points in R.
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One can compute the derivatives of the above map to get the dilatation

kfxk

kfyk
D

1
yq

x2

y4 C
1

y2

D
1q

x2

y2 C 1
D 1CO.�/;(4-5)

jhfx; fyij D
x

y3
DO.�/;(4-6)

by (4-4) and the fact that y � 1.

This computation also verifies that the image of the right edge is a graph over the
y –axis of small derivative.

A similar proof yields the following:

Lemma 4.7 (Inside-out version) Let R be the region as in the previous lemma.
Assume that the height of R is greater than 1. Then the map f W R! R2 that takes
the right edge to a vertical segment, and satisfies (ii) and (iii), is almost conformal.

The following observation involves Euclidean regions one gets by grafting (see Figure 9
in Section 4.3).

Lemma 4.8 Let R be the region on the upper-half plane consisting of all z 2 C
satisfying a � jzj � b , and ˛ � arg.z/ � �=2, for some 0 < ˛ < �=2. We equip R

with the metric dz=jzj. This region R is foliated by arcs Fl D fle
i� j˛ � � � �=2g for

a� l � b . Then there is an isometry g from R to a rectangle in R2 of height ln .b=a/
and width �=2�˛ , such that it maps each horizontal leaf of F to a horizontal line in a
length-preserving way.

Proof It can be checked that the conformal map z 7! �=2C i ln z is the required
isometry.

Almost-isometries and quasiconformal extensions

Definition 4.9 Let L and L0 be two intervals with a metric (eg, two line segments on
the plane). Then a homeomorphism f W L!L0 is said to be an �–almost isometry if:

(1) f is C 1 with dilatation d (the derivative of f when L is parametrized by
arclength) that satisfies jd � 1j< � .

(2) The lengths of any subinterval of L and its image in L0 differ by an additive
error less than � .
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Remark For brevity, we shall often use “�–almost isometric” or just “almost isometric”
to mean “M�–almost isometry” for some (universal) constant M > 0.

Here are some immediate observations, whose proofs we omit:

Lemma 4.10 If f W L!L0 and gW L0!L00 are �–almost isometries, then f �1 and
g ıf are 2�–almost isometries.

Lemma 4.11 If the difference of the lengths of the segments jl.L/� l.L0/j< � then
the (orientation-preserving) affine map f W L!L0 is an �–almost isometry.

Lemma 4.12 If L is subdivided into subintervals A1;A2; : : : ;AN and L0 into subin-
tervals A0

1
;A0

2
; : : : ;A0

N
and the restrictions fjAi

W Ai !A0i are �–almost isometries.
Then f W L!L0 is an N�–almost isometry.

The following lemma shall be useful in our constructions.

Lemma 4.13 Let R and R0 be two planar rectangles of the same height h > 1

and moduli m;m0 greater than 1. Suppose f W @R ! @R0 is a vertex-preserving
homeomorphism that maps the left and right edges by an isometry and is an �–almost
isometry on the top and bottom edges. If � is sufficiently small, then f can be extended
to a .1C C�/–quasiconformal map from R to R0 , where C > 0 is some universal
constant.

Proof Let S be a Euclidean rectangle of modulus m (recall that this equals the ratio of
width by height). Then by mapping the rectangle to a unit disk and applying the Ahlfors–
Beurling extension [2], any vertex-preserving piecewise-affine C 1 homeomorphism
f W @S! @S of dilatation of the order of 1CC� can be extended to a homeomorphism
f W S ! S which is .1CK�/–quasiconformal, where K depends only on C and the
modulus m of S . K gets worse (larger) for the modulus m very large or very small,
but if m lies in a compact set, say Œ1; 2�, we get a uniform upper bound for K .

The strategy is to subdivide R into smaller rectangles of moduli between 1 and 2, and
use the above fact.

Let p and q be the top and bottom corners on the left side. Choose a collection of
points p1;p2; : : : ;pn on the top side, and q1; q2; : : : ; qn on the bottom such that:

(i) l.ppi/D l.qqi/ for each 1� i � n.

(ii) On each side the points subdivide it into subintervals having lengths between h

and 2h; this is possible because the modulus m> 1.
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pi

qi

f
f .pi/

f .qi/

Figure 10: A boundary map that is “almost isometric” can be extended to an
almost conformal map, by subdividing into smaller rectangles (Lemma 4.13).

Consider the rectangles R1;R2; : : : ;Rn obtained by connecting each pair pi ; qi by a
straight line (Figure 10). By (ii) above, the modulus of each Ri is between 1 and 2.

Consider the images f .pi/ and f .qi/ on the top and bottom sides of @R0 . By (i)
above, property (2) of the definition of almost isometry, and the height h> 1, we have
that the straight line joining f .pi/ and f .qi/ is �–almost vertical for each i . We call
the resulting collection of almost rectangles R0

1
;R0

2
; : : : ;R0n . We extend the boundary

map f to map each line from pi to qi to the line from f .pi/ and f .qi/ by an affine
stretch (of dilatation 1CO.�/).

By Lemma 4.5 and a horizontal affine scaling we have an almost conformal map h

from each Ri to R0i . To correct for this map differing from the map f on @Ri , we
consider the map f ı h�1j@R0

i
W @R0i! @R0i . This has dilatation 1CO.�/ and can be

extended to an almost conformal map g by the Ahlfors–Beurling extension (the moduli
of R0i also lie in a compact subset slightly larger than Œ1; 2�). The map g ıhW Ri!R0i
agrees with f on @Ri .

These almost conformal maps of each Ri to R0i piece together to give an almost
conformal map of R to R0 . (The property of almost conformality extends across the
intermediate arcs.)

Remark Such an almost conformal extension may fail to exist for a boundary map that
is merely C 1 with small dilatation, without the additional condition (2) of Definition 4.9.

4.3 Map for a rectangular piece

Consider a typical rectangle RDRi in our decomposition of the grafted surface Xt .
Such an R is bounded by geodesics on each vertical side and by leaves of the transverse
horocyclic foliation on each horizontal side. This horocyclic foliation F \R gives
a C 1 foliation of the rectangle. Geodesic arcs belonging to the lamination � cut across
the rectangle transverse to the foliation, and R n � has countably many hyperbolic
components, bounded by horizontal horocyclic arcs and vertical geodesic arcs. The
goal of the section is to construct a quasiconformally equivalent “Euclidean” model
for R.
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Working in the universal cover We shall work in the universal cover zXt of Xt ,
where we consider a (fixed) lift zR of R. Moreover we shall assume that the developing
map devW zXt ! CP1 of the complex projective structure on Xt is injective (and a
homeomorphism) on zR. It is injective whenever the transverse measure across R is
sufficiently small, so this condition can be ensured by subdividing R vertically. The
map for R having arbitrary transverse width can then be obtained by piecing these
divisions together: properties of quasiconformal extension tell us that if the map for
each piece is almost conformal, so is the concatenated map.

By abuse of notation, we shall identify zR with its homeomorphic image on CP1 , and
consider it a planar domain (since it is a proper subset of CP1 it lies in an affine chart).

The horizontal foliation FjR lifts to the universal cover and to zR via the developing
map. We denote it by zF . The Thurston metric on R�Xt is locally isometric to the
projective metric on zR via dev ıu�1 where uW zXt!Xt is the universal covering (see
Definition 2.3).

A finite approximation The developing image of the universal cover zXt (identified as
a domain of C� yC ) is thought of as obtained by grafting the upper half plane identified
as the universal cover of X , along the lifted measured lamination z�. The grafting
locus consists of a collection of infinitely many geodesics that can be approximated
by a sequence of finite weighted subsets that produce approximations zXi . (This can
be thought of as approximating the Borel measure induced by � on S1 � S1 n�

by a sequence of sums of Dirac measures). We can further assume that these finite
approximations

(i) always include the geodesics 
l ; 
r that form the left and right edge of zR on zX ,

(ii) are maximal in the sense that the complement consists of ideal triangles.

By (ii), there is a piecewise-horocyclic foliation zFi on each finite approximation zXi .

Notation In what follows, given a subarc s of a leaf of F , we shall denote its
hyperbolic length as lh.s/, its total length in the Thurston metric as l.s/, and its
Euclidean length as le.s/, which is defined as the difference l.s/� lh.s/.

Let s � 
l denote the left edge of zR. Then by (i) we can define a rectangle zRi on zXi

as having s as the left edge, leaves of the foliation zFi as the two horizontal edges,
and a segment on 
r as the right edge. Note that for all i , we can define the leaf
l
y
i 2
zFi \

zRi at “height y” to be the leaf intersecting s at a distance of y from the
lower endpoint of s . We also define ly to be the leaf of zF \ zR at height y .

Geometry & Topology, Volume 18 (2014)



Asymptoticity of grafting and Teichmüller rays 2151

Remark Since the holonomy along zFi (and zF ) preserves the hyperbolic length along
leaves of zXi , this definition of “height” is well defined, that is, the leaf l

y
i (and ly )

are at height y all along zRi (and zR).

Definition 4.14 A conformal metric on a Riemann surface † is a metric given by
�.z/jdzj2 in each local coordinate chart, for some function � (the conformal factor)
on †. It is said to be of class C 1;1 if � is differentiable with Lipschitz derivatives, in
which case its C 1;1 –norm is defined to be k�k1;1 . A family of conformal metrics are
said to converge pointwise if the corresponding conformal factors converge pointwise.

The following lemma states the known convergence results that have also been men-
tioned in Section 2 while describing grafting for general laminations.

Lemma 4.15 For the above sequence of finite approximations zXi the following are
true.

(i) The Thurston (or projective) metric on zXi is a conformal metric of class C 1;1 .
They converge pointwise to the Thurston metric on zXt . Moreover, the C 1;1

norms remain bounded as i !1.

(ii) The horocyclic foliations zFi !
zF in the sense that for all 0� y � l.s/ we have

l
y
i ! ly in the Hausdorff metric on compact subsets of C .

(iii) The rectangles zRi!
zR in the Hausdorff metric on compact subsets of C .

Proof Part (i) involving the regularity of the Thurston metrics is a standard result
(see [24] or [31, Lemma 2.3.1]). Part (ii) follows from part (i) and the “bending”
description of grafting (see Section 2): in our choice of approximates the corresponding
locally convex pleated planes corresponding to zFi converge in the Gromov–Hausdorff
sense to the pleated plane corresponding to zF by work of Epstein and Marden [12]
and Bonahon [5], and the developing maps (which are the hyperbolic Gauss maps from
these pleated planes) converge uniformly on compact sets. This implies that as i !1

the leaf segments l
y
i on zRi converge to some horizontal leaf segment of zR in the

Hausdorff metric, and part (i) implies that the height of the latter is also y .

Part (iii) is now an immediate consequence, since the rectangles zRi are defined in
terms of the vertical left edge 
l and the segments l

y
i for 0� y � l.s/, which converge

to those of zR.
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Map for the finite approximation

Lemma 4.16 If the hyperbolic width of zRi is � (sufficiently small) then there exists a
.1CC�/–quasiconformal map zfi from zRi to the Euclidean plane, for some universal
constant C > 0, that satisfies the following.

(i) It takes the lower endpoint of the left vertical geodesic side s to the origin.

(ii) It is an isometry of s onto a segment on the y –axis.

(iii) Each leaf of zF \ zRi is mapped to a horizontal line in a length-preserving way.

dz
Im.z/

dz
jzj

zf
�C

Figure 11: The map for the finite approximation case; the figure on the left
shows a rectangle zRi : the hyperbolic part (unshaded) is mapped by the
straightening map of Lemma 4.6, and the Euclidean part (shown shaded) is
then spliced in by the map from Lemma 4.8.

Proof The map zfi is uniquely determined and injective by conditions (i)–(iii), and
is also C 1 since the grafted metrics are C 1 and the foliation is C 1 , the horizontal
leaves being integral curves of a nowhere-zero Lipschitz vector field. In particular it is
a quasiconformal map, and it remains to show that the dilatation is 1CO.�/, and it is
enough to check that almost everywhere.

Recall that the projective metric (Definition 2.3) is the Poincaré metric on the maximal
disk at every point. If one starts with a maximal disk in the upper half plane model
with metric dz= Im.z/, and the xD 0 axis is the lift of the grafting curve, then grafting
introduces a sector with the (Euclidean) metric dz=jzj (Figure 11).

The rectangle zRi consists of regions that alternately lie in the hyperbolic part (of
width O.�/) and the Euclidean part (see the figure) with finitely many separating
geodesic arcs.
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Collapse the Euclidean regions of zRi to get a rectangle zR0 of hyperbolic width O.�/.
By Lemma 4.6 there is a map f0 of zR0 to R2 satisfying (i)–(iii) above. Note that the
proof of Lemma 4.6 shows that separating geodesic arcs are mapped to almost vertical
arcs on the plane.

Starting with f0 we now inductively splice in each Euclidean region to zR0 and extend
the map already constructed, to the larger domain, such that (iii) is satisfied ((i) and (ii)
are automatically satisfied for all these extensions). By the above observation on
the interface arcs being almost vertical, and Lemma 4.8, these extensions are almost
conformal on each region.

Since the interface arcs are of measure zero, the final map fn D
zfi thus constructed is

.1CO.�//–quasiconformal almost everywhere, as required.

Taking a limit By the above lemma we now have a sequence

zfi W
zRi!R2

of almost conformal maps.

Lemma 4.17 The maps zfi converge uniformly to an almost conformal map zf W zR!R2

that satisfies the conditions (i)–(iii) in the above lemma.

Proof The uniform convergence follows from parts (i) and (ii) of Lemma 4.15: part
(ii) says the each leaf of zRi converges as a set to the corresponding leaf of zR, and
by part (i) the lengths also converge, and then the uniform convergence follows from
the definition of f (distance preserving along the leaves). To get the statement on
almost conformality we employ a trick of considering the sequence of inverse maps
zgi D

zf �1
i . For an arbitrary x 2 zR n @ zR there is, by part (iii) of Lemma 4.15, an

open neighborhood zU � R2 containing zf .x/, such that zU is contained in zfi. zRi/

for sufficiently large i . The sequence zgi j zU
are a uniformly converging sequence of

.1CO.�//–quasiconformal maps from a fixed domain zU to C . The limit zgD zf �1 is
hence .1CO.�//–quasiconformal on zU , and so is zf D zg�1 in a neighborhood of x .

Note that f is height-preserving: this follows from parts (ii) and (iii) of Lemma 4.16
(which are preserved in the limit).

The almost conformal model By the previous lemma we have obtained an almost
conformal map zf from zR to R2 . Together with the local isometry dev ıp�1 this gives
an almost conformal map of R�Xt to a planar domain. We conclude the construction
of a quasiconformal model for R by noting that this planar domain can be almost
conformally straightened to a rectangle.
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Notation Recall that the total width W of the rectangle R is the supremum of the
lengths of the leaves of F \R, and the Euclidean width We of R is the supremum of
the Euclidean lengths of the leaves of F \R.

By construction (see Lemma 4.2), the hyperbolic width of R is less than � , and its
height h is greater than 1. We also assume that its total width W is greater than 1,
that is, one has grafted enough for Lemma 4.3 to hold.

Lemma 4.18 (Map for a rectangle) With the above assumptions, there exists a
height-preserving .1CC�/–quasiconformal map xf from R to a Euclidean rectangle
of width We and height h. (Here C > 0 is some universal constant.)

Proof By the previous lemma we have a height-preserving almost conformal map
f D zf ı dev ıp�1 from R to a planar region D . The Euclidean width We.y/ (total
minus hyperbolic) of a leaf at height y is a constant independent of height (it only
depends on the total transverse measure of R). Since the hyperbolic width Wh.y/ at
height y is O.�/ (Lemma 4.2), W =W .y/D 1CO.�/ where W .y/DWh.y/CWe.y/

is the total width of D (and also of R) at height y . Since the two vertical sides
of R are geodesic segments of length h> 1 on the (ungrafted) hyperbolic surface at
distance O.�/, it follows from hyperbolic geometry that jdWh.y/=dyj DO.�/. Hence
by an application of Lemma 4.5 we obtain a height-preserving almost conformal map
from D to a Euclidean rectangle of width We , and the required map xf from R to We

is obtained by precomposing this with f .

Corollary 4.19 (Almost-isometric) Let L and xL be the top and bottom edges of R.
The map xf constructed above is an �–almost isometry on L and xL, and isometric on
the other two sides.

Proof Consider the top edge L. The map of Lemma 4.17 is an isometry of L and
the map (from Lemma 4.5) used in straightening step in the proof of the previous
lemma is affine on horizontal lines, hence the composition (the map xf ) is affine on L.
Since l.L/DW .h/ and l. xf .L//DWe differ by O.�/ we can apply Lemma 4.11 to
conclude that xf is an �–almost isometry on L. The proof for the bottom edge xL is
identical. The property of being “height-preserving” implies that xf is isometric on the
vertical (left and right) sides of R.

4.4 Map for a pentagonal piece

The purpose of this section is to define a quasiconformal map of each pentagonal
piece P of the decomposition D (Section 4.1.3) to a planar region that is almost
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conformal for “most” of P (Lemma 4.21). The map of is obtained by “straightening”
leaves of a foliation through P . These maps together with those from the previous
section, will be assembled in Section 4.5 to define the map of the grafted surface.

The foliation F An ideal hyperbolic triangle has a partial foliation by horocyclic arcs
which restricts to give a partial foliation of the “2�=3–sector” yS (Figure 12). When
realized in the upper half plane H2 with 
 a vertical geodesic and p the point i

p
3=2,

the leaves of nonnegative height are the horizontal segments starting at y D 1. In
general, the height of a leaf is the logarithm of its y–coordinate of the point where
it intersects 
 . We shall work with a horizontal foliation (that we continue to denote
by F ) that extends the horocyclic foliation to the whole of yS as follows.

Let a be the geodesic arc from p which is orthogonal to 
 . This divides yS into two
parts, and on one of them we define the modified C 1 foliation to be one that

(1) agrees with the horocyclic foliation for height greater than D D ln.1=�/ (when
the leaves have width less than � ),

(2) interpolates between the leaf at height D and the arc a in such a way that the
lengths of the leaves is a decreasing C 1 function of (nonnegative) height,

(3) has each leaf orthogonal to 
 .

The foliation on the other part of yS is obtained by reflecting across a. The above
length function is C 1 except at height 0.

H2

yS
D

p a
0




Figure 12: The map for the sector yS in Lemma 4.20 straightens the in-
terpolating foliation between a and the horocyclic leaf at height D , and
symmetrically for the other half.
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Constructing the map Let SH denote a “truncated 2�=3–sector” truncated at leaves
of yF at height H (we take H > D D ln.1=�/). Recall from Section 4.1.3 that a
pentagonal piece P is made by appending a strip S of the adjacent grafted rectangles
of (Euclidean) width 2 to the geodesic side of such an SH coming one of the ideal
hyperbolic triangles from the collection fTj g1�j�m . We have

P D SH [S and SH \S D 
:

Condition (3) above ensures that this foliation F on yS matches in a C 1 way with
the partial foliation F on the grafted rectangles on the other side of 
 , producing a
“horizontal” foliation of P . Each leaf of F in P has a height (in the interval Œ�H;H �)
obtained by following it to meet the geodesic 
 , and considering the height of that
point of intersection.

We define the map of the pentagonal piece P by defining it on the two pieces SH

and S : the next lemma deals with the former, and for the piece S we already have
Lemma 4.18, these are put together in Lemma 4.21.

Lemma 4.20 (Straightening SH ) There is a quasiconformal embedding f W SH!R2

such that:

(i) Each leaf of F is mapped isometrically to a horizontal line segment.

(ii) For all y , the left endpoint of the image of the leaf at height y is .0;y/.

(iii) The quasiconformal distortion of f is 1CO.�/ at all points of SH at height
jhj>D D ln.1=�/.

(iv) 
 is mapped to a graph of a function g over the y–axis that is C 1 except at 0,
and is almost vertical and jg.y/j D O.�/ at points with jyj > D ; moreover,
supy g.y/D g.0/ < 1.

Proof We map the part SC
H

above a (of nonnegative height) and extend to the whole
of SH by reflection. We denote this map of SC

H
by fC .

Note that (i) and (ii) uniquely determines fC , and ensures it is injective. The fact that the
foliation is C 1 and the lengths of the leaves is C 1 in (positive) height ensures that fC
is C 1 , and is hence a homeomorphism to its image. (iii) follows from Lemma 4.7.

The fact that fC is isometric on the leaves implies that the function g that describes
the image of 
 as a graph is the length-function of the leaves. This is C 1 , except
at 0, by property (2) of the foliation F . Part (iv) again follows from Lemma 4.7 (a
calculation similar to Lemma 4.6). In fact, jg.y/j! 0 exponentially as jyj!1. The
last statement of the lemma follows from the fact that the length function was chosen to
be decreasing for increasing height (or decreasing height, by reflection) and the length
at height 0 is the length of the geodesic arc a, which is ln.

p
3/� 0:54.
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2 2

P 


SH

2�=3

S

�

Figure 13: The map for a pentagonal piece (shown on the left) to a Euclidean
rectangle; the region SH to the left of 
 is mapped by Lemma 4.20 and the
region S to its right by Lemma 4.18, adjusted by an application of Lemma 4.5.
The map on 
 is the same as they both preserve height.

Lemma 4.21 (Map of a pentagonal piece) There exists a quasiconformal map f
from P to a Euclidean rectangle of height 2H and width 2, such that:

(i) f is height-preserving.

(ii) On the top and bottom sides, f is �–almost isometric.

(iii) The quasiconformal distortion is 1C O.�/ on points of P outside of a D–
neighborhood of the 2�=3–angled vertex of P (recall D D ln.1=�/).

Proof The map f restricted to the truncated sector SH � P shall be the map from
the previous lemma (Lemma 4.20); see Figure 13. Note that f satisfies (i), (ii) and
(iii) on SH . In fact it is isometric on the top and bottom horocyclic edges, which is
stronger than (ii). Recall also that this map sends 
 to a graph of a function g that
satisfies:

(1) It is C 1 except at one point.

(2) It is almost vertical for height more than D .

(3) jg.y/j DO.�/ for jyj>D .

(4) supy g.y/D g.0/ < 1.

We can consider this image of 
 as the graph of the function w.y/D 2�g.y/ on a
segment on the vertical line y D 2 (by abuse of orientation the “positive” side of the
vertical segment is to its left). Now by Lemma 4.18 we map the grafted rectangle S to
a Euclidean rectangle S 0 of height 2H and width 2 by an almost conformal height-
preserving map f1 . By Lemma 4.5 there is a height-preserving quasiconformal map f2
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of this rectangle to the planar region bounded by a vertical segment on the line y D 2

and the graph of w.y/ over this segment (which lies to its left).

The map f restricted to S �P shall be the composition f2ıf1 . By properties (2) and
(3) of the image of 
 , the appropriate conditions of Lemma 4.5 are satisfied and f2 is
almost conformal for all points of height more than D . Since f1 is almost conformal
everywhere, the composition satisfies (iii). Since both f1 and f2 are height-preserving,
(i) is satisfied. Finally, it can be checked that (ii) holds because of Corollary 4.19 and
Lemmas 4.10 and 4.11.

Thus the map f is defined on SH and S , and hence on their union P (since it is
height-preserving on both they match along 
 ). Another application of Lemma 4.11
implies that it satisfies (ii). The usual property of quasiconformal maps (Property B at
the beginning of Section 4.2) implies that it is quasiconformal everywhere, and (iii) is
satisfied since it is satisfied on both SH and S .

4.5 Mapping the grafted surface

In this section we shall use the decomposition D of Xt into pentagons fPj g1�j�3m

and rectangles fRig1�i�n , as described at the end of Section 4.1. (We shall assume t

is large enough such that the decomposition exists.)

Recall from Section 3.1 that yXt is the singular flat surface obtained by collapsing the
ideal triangle components of Xt n� along the leaves of F and preserving the transverse
measure (one could use a Cantor function, as in [4]). Recall that the triangular regions
in the complement of the partial foliation F collapse to the singularities (cone points
of angle 3� ).

The pentagons in the decomposition of Xt are mapped by the collapsing map to
Euclidean rectangles fSj g (of Euclidean width 2), which together with the collapsed
images fR0ig of the trimmed-rectangles form a rectangular decomposition of yXt with
the same combinatorics as D .

Let K denote the 1–skeleton of the decomposition D of Xt , and let yK the correspond-
ing 1–skeleton on the singular flat surface yXt . An edge E �K is either horizontal (if
it is formed of segments of the horizontal foliation) or vertical, and we denote by KH

the collection of horizontal edges.

When the hyperbolic part is collapsed, a segment of a leaf of F of total width W

collapses to a segment of width We (which, recall, is the Euclidean width of the
segment). In particular, since the hyperbolic width is O.�/ for every horizontal edge E ,
the corresponding edge yE of yK differs in length by O.�/.
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For each pentagonal piece Pj consider the map f P
j W Pj ! Sj which is the map xf

obtained from Lemma 4.21. Let xf P
j denote the restriction of the map to the horizon-

tal edges of @Pj . These are �–almost isometric (part (ii) of Lemma 4.21). Choose a map
xgW KH !

yKH that is equal to xf P
j for each horizontal edge of a pentagonal piece, and

affine on each remaining horizontal edge. By the above observation on the difference
of lengths of the edges, and Lemma 4.11 and Lemma 4.12, xg satisfies an M�–almost
isometry condition on each horizontal edge of the 1–skeleton for some M that depends
on the genus (the number of subedges of each horizontal edge is determined by the
number of rectangles and pentagons in the decomposition that depends only on the
genus). We can henceforth absorb that constant in the O.�/ term in the definition of
almost isometry, and refer to the above map as being �–almost isometric.

For each rectangle Ri in the decomposition, consider the map f R
i W Ri!R0i obtained

from Lemma 4.18. Let xf R
i denote the restriction of the map to @Ri . Choose a map

xhi W @Ri ! @Ri that is isometric on the vertical edges and agrees with xg ı . xf R
i /
�1

on the horizontal edges. By Corollary 4.19, and Lemma 4.10, this map is �–almost
isometric on the horizontal edges. The modulus of R0i is greater than 1 by Lemma 4.3,
so we can apply Lemma 4.13 and extend xhi to an almost conformal self-map hi of
R0i . The map hi ıf

R
i now maps Ri to R0i such that the map agrees with xg on KH .

The maps fhi ıf
R

i g and ff P
i g agree on each vertical edge E since they are height-

preserving. Hence these maps agree on the 1–skeleton K and form a continuous
map from Xt to yXt that is quasiconformal on each piece Pi and Ri , and is hence
quasiconformal everywhere.

Each map from the collection fhi ı f
R

i g is almost conformal (since hi is almost
conformal from the above construction, and f R

i is almost conformal by Lemma 4.18).
Each map f P

i is almost conformal away from a set of diameter O.ln.1=�//, by part
(iii) of Lemma 4.21.

We summarize this discussion in the following lemma.

Lemma 4.22 (Map of grafted surface) There exists a T > 0 such that for all
t > T there is a quasiconformal homeomorphism f W Xt !

yXt such that the qua-
siconformal distortion is 1CO.�/ away from finitely many simply connected subsets
K1;K2; : : : ;Km�Xt of diameter O.ln.1=�// in the Thurston metric. Moreover, each
subset Kj is contained in a simply connected disk Dj of diameter at least 1=�4 .

Proof The construction of f was discussed above. Each 2�=3–angled vertex of a
pentagonal piece in the decomposition D is a centre of an ideal triangle complement
of the lamination � (in fact each such center is common to three pentagons). The
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subsets K1;K2; : : : ;Km � Xt in the lemma (see Figure 14) are the O.ln.1=�//–
neighborhoods of the finitely many centres of the ideal triangle complements of �, by
part (iii) of Lemma 4.21. The last statement follows from Lemmas 4.2 and 4.3: the
three rectangles adjacent to a truncated ideal triangle Tj are of height and width at
least 1=�4 when the grafting time t > T is sufficiently large, hence one can embed a
disk Dj of diameter 1=�4 centered at the center of Tj , containing Kj .

Dj

Kj

Figure 14: A typical pair .Dj ;Kj / on the grafted surface; the map in
Lemma 4.22 is almost conformal outside Kj (shaded darker). The annular
region Dj nKj (shaded lighter) has large modulus (Lemma 4.23).

Lemma 4.23 For large enough t (as in Lemma 4.22), each annular region Dj nKj for
1� j �m where Dj and Kj are the simply connected subsets as above, has modulus
greater than 2

3�
ln.1=�/.

Proof Consider the annular region that is the image of f .Dj nKj / on the singular
flat surface yXt . From the construction of f (in particular its property of being
height-preserving and almost isometric along F ) it follows that one can embed a
flat annulus Aj of large modulus in f .Dj nKj /. On a singular-flat plane comprising
three half-planes around the origin which has a cone-angle 3� around it, the modulus
of a round annulus with inner diameter Rinn and outer diameter Rout is

mod.Aj /D
1

3�
ln

Rout

Rinn
:

In our case, since the diameter of f .Dj / is greater than 1
�4 and the diameter of f .Kj /

is at most C 0 ln.1=�/ where C 0 > 0 is some constant, the modulus of Aj satisfies

mod.Aj /�
1

3�
ln

1=�4

C 0 ln.1=�/
>

1

3�
ln 1

�3
D

1

�
ln 1

�

for � sufficiently small.

Since f is .1CO.�//–quasiconformal on Dj nKj , we have an embedded annulus
f �1.Aj / of large modulus in Dj nKj (in the Thurston metric). In particular, the
modulus

mod.Dj nKj / >
1

.1CO.�//
�

1

�
ln 1

�
>

2

3�
ln 1

�
:

for sufficiently small � .
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Remark Our choice of the lower bound for the modulus in the above lemma is justified
by Corollary 4.26.

4.6 Modifying the map to almost conformality

In this section we modify the map f W Xt!
yXt from Lemma 4.22 such that it is almost

conformal. To do this we shall redefine the map in the subsets D1;D2; : : : ;Dm . The
crucial fact that allows this modification is that the lack of almost conformality for f
is contained in the subsets Kj , 1� j �m which have diameter much smaller than the
diameter of Dj .

4.6.1 A quasiconformal extension lemma Let D be the unit disk in C and let Br

be a closed ball of radius r about the origin.

The following result is probably well known to experts, however it does not seem to be
readily available in the literature on the subject. A proof is provided in the Appendix.

Lemma 4.24 For any � > 0 sufficiently small and any 0� r � � if f W D!D satisfies

(1) f is a quasiconformal map

(2) the quasiconformal distortion is .1CC�/ on D nBr

then the map f extends to a .1CC 0�/–quasisymmetric map of the boundary, where C 0

is a constant depending only on C .

An immediate consequence of the Ahlfors–Beurling extension is the following.

Corollary 4.25 Let � > 0 be sufficiently small, r � � and let f W D!D satisfy .1/
and .2/ as in the previous lemma. Then there exists an almost conformal map gW D!D
such that fj@D D gj@D .

We shall use the above for modifying a map between Riemann surfaces:

Corollary 4.26 Let †;†0 be homeomorphic Riemann surfaces. Let f W †!†0 be a
quasiconformal map and K �D �† be concentric embedded disks such that:

(i) The modulus of the annulus D nK is at least 2
3�

ln 1
�

.

(ii) f is .1C �/–quasiconformal on † nK .

Then there is a quasiconformal map gW †!†0 such that f j†nD D gj†nD and g is
almost conformal on D .
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Proof Let �W D ! D and  W f .D/! D be uniformizing maps to the unit disk,
normalized such that the centers are taken to 0 2D .

Claim The images �.K/ and  .f .K// have diameter O.�/.

Proof of claim Consider either image and let d be its diameter. By (i) and (ii) the
modulus M of the image annulus in (either) case satisfies

M �
1

.1C�/
�

2

3�
ln 1

�
>

1

2�
ln 1

�

for small � .

However by (A-18) in Lemma A.14) we also have

M <
1

2�
ln 16

d

which implies that in fact d < 16� .

Now the map g D  ı f ı ��1W D! D satisfy the requirements of Corollary 4.25
and hence can be replaced by an almost conformal map hW D ! D that has the
same map as g on @D . We replace f W D ! f .D/ by the almost conformal map
 �1ıhı�W D!f .D/. This restricts to the same map as f on @D . Together with the
map f on †nD it defines a continuous map of † to †0 . This map is quasiconformal
on D and † nD , and is hence quasiconformal, since @D is a measure-zero set.

4.7 Proof of Proposition 4.1

Proof of Proposition 4.1 We start with the map from Lemma 4.22 and modify it
by applying Corollary 4.26 (taking † D Xt , †0 D yXt , D D Dj , K D Kj ), for
each 1 � j � m in succession. This is possible since each annulus Dj nKj has
modulus at least 2

3�
ln 1
�

by Lemma 4.23 (so (i) of Corollary 4.26 holds). The final
map f W Xt !

yXt is almost conformal on D1 [D2 [ � � � [Dm and agrees with the
original f , and is hence almost conformal on the complement Xt nD1[D2[� � �[Dm .
The property of almost conformality extends across the measure zero set consisting of
the union of the @Dj .

This completes the construction of an almost conformal map f W Xt !
yXt , for all t

sufficiently large.

The singular flat surface yX1 has a horizontal foliation, and a vertical foliation which is
measure equivalent to �. Now yXt can be obtained from yX1 by scaling the lengths of
the leaves of the horizontal foliation on yX1 by a factor of t , and keeping the vertical
foliation � the same. (This can also be described as scaling the transverse measure
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of � to t�.) As in the remark following Definition 2.2, this conformally equivalent to
scaling the horizontal direction by a factor of

p
t and the vertical direction by a factor

of 1=
p

t . The surface yXt thus lies on the Teichmüller ray from yX1 determined by �,
at a distance of 1

2
ln t .

Since our choice of � > 0 throughout was arbitrary, this shows the grafting ray based
at X DX1 determined by the lamination � is asymptotic to the Teichmüller ray based
at Y D yX1 .

The proofs of Corollaries 1.2 and 1.3 only require Theorem 1.1 in the arational case,
hence we provide them here:

Proof of Corollary 1.3 Pick any Teichmüller ray determined by such an arational �.
By Proposition 4.1, the two grafting rays are both asymptotic to it, and hence to each
other.

When � is also uniquely ergodic, then for any other choice of basepoint Y , the
Teichmüller ray Yt determined by � is asymptotic to the above Teichmüller ray, by
the result of Masur [26], and hence by the triangle inequality, the grafting ray based
at X is asymptotic to the Teichmüller ray Yt .

Proof of Corollary 1.3 Arational laminations form a full measure set in ML (with
respect to the Thurston measure on ML). It is known that for a generic choice of such
an arational � and any choice of basepoint the corresponding Teichmüller ray is dense
in moduli space (this follows from the ergodicity of the Teichmüller geodesic flow,
proved in [28]; see Masur [27] for explicit examples of such rays). By Proposition 4.1,
a grafting ray determined by a generic � is then asymptotic to a dense Teichmüller ray,
and is hence itself dense.

Remark Jayadev Athreya pointed out to the author by that it is easy to show that
Theorem 1.1 implies that such a grafting ray is in fact equidistributed in moduli space.
A subsequent article shall investigate some further dynamical and measure-theoretic
features of the Teichmüller geodesic flow inherited by grafting flowlines.

5 The multicurve case

In this section we prove Theorem 1.1 in the case when � is a multicurve (Proposition 5.4)
following the outline in Section 3.2.
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5.1 A quasiconformal interpolation

We start with a lemma about quasiconformal maps that shall be useful later. Through-
out, D shall denote the unit closed disk on the complex plane, and Br shall denote the
closed disk of radius r centered at 0. We show that a conformal map defined on D
can be adjusted to be the identity near 0, without too much quasiconformal distortion.

Lemma 5.1 Let gW D! g.D/�C be a univalent conformal map such that g.0/D 0

and g0.0/D 1. Then for any � > 0 (sufficiently small) there exists an 0< s < 1 and a
map GW D! g.D/ such that:

(1) G is .1C �/–quasiconformal.

(2) G restricts to the identity map on Bs .

(3) Gj@D D gj@D .

Proof Since g.0/D 0 and g is conformal, there exists an expansion

g.z/D zC a2z2
C a3z3

C � � � D zC .z/;

where ai 2C for i � 2.

We shall have s D � . Let ��W Œ0; 1�! Œ0; 1� be a smooth bump function such that

(1) ��.t/D 0 for 0� t � �

(2) ��.t/D 1 for 2� � t � 1

(3) j�0�.t/jDO.1=�/ for all t 2 Œ�; 2��

and define
 �.z/D ��.jzj/ .z/

for all z 2D .

Define the map GW D!C as

G.z/D zC �.z/

for z 2D .

From the Koebe distortion theorem (see for example Pommerenke [30, Theorem 1.3])
we have

1

.1Cjzj/2
�

ˇ̌̌
g.z/

z

ˇ̌̌
�

1

.1�jzj/2

and that impliesˇ̌̌
g.z/

z
� 1

ˇ̌̌
�

4jzj

.1�jzj2/2
D) j .z/j �

4jzj2

.1�jzj2/2
:
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For � � jzj � 2� we therefore have

j .z/j � C�2

for some universal constant C (we know � is sufficiently small).

From this and (3) above it is easy to check that

j@xzGj D j@xz �j DO.�/;

j@zGj D j1C @z �j D 1CO.�/;

for each z 2D .

The map G is hence a diffeomorphism of quasiconformal dilatation of 1CO.�/ that
restricts to the identity map on B� and to g on @D as required.

Remark By conjugating by the dilation z 7! .1=r/z the above result holds (for some
0< s < r ) if the conformal map g is defined only on Br �D .

5.2 Proof of the multicurve case

Let � be a multicurve, namely a collection of (weighted) disjoint simple closed
geodesics f
1; 
2; : : : ; 
ng on the closed hyperbolic surface X , with weights ci > 0

and lengths li , where 1� i � n.

Let X1 denote the infinitely grafted surface, obtained by cutting X along � and gluing
a semi-infinite Euclidean cylinder at each of the resulting 2n boundary components.
This resulting Riemann surface can be thought of as the conformal limit of the grafting
ray Xt D grt�X . (Recall that a time–t grafting along a simple closed curve 
 inserts
a Euclidean cylinder of width t at 
 ).

We shall use the following result due to Strebel ([32]).

Proposition 5.2 Let † be a Riemann surface of genus g , and x1;x2; : : : ;xm be
marked points on † such that 2g�2Cm> 0. Then for any collection of real numbers
p1;p2; : : : ;pm there exists a quadratic differential � on † such that:

(i) � is holomorphic on † n fx1; : : : ;xmg.

(ii) � has a double pole at xi with residue . pi

2�
/2 for each 1� i �m.

(iii) All vertical trajectories of � are closed, and they foliate m annular domains
which are disks with punctures at x1; : : : ;xm .
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Applying the above proposition with †DX1 , we can obtain such a Jenkins–Strebel
differential � on a Riemann surface conformally equivalent (as marked conformal struc-
tures in Tg;2n ) to X1 , with n pairs of marked points, each pair having residue .li=2�/2 .
We denote this surface equipped with the quadratic differential metric as Y1 : this then
is a singular flat surface comprising n pairs of infinite Euclidean cylinders, each pair
having circumference li . Let g be the conformal map from X1 to Y1 that preserves
the marking (Figure 15).

X1

g

Y1

Figure 15: The surface X1 on the left is the “infinitely” grafted surface. The
conformally equivalent singular flat surface Y1 has a quadratic differential
metric with a pair of double poles, and metrically it is equivalent to two
semi-infinite Euclidean cylinders glued along the boundary.

Let Y denote the surface obtained from Y1 by truncating the infinite cylinders and
gluing up the pairs (of matching lengths) so that they give Euclidean cylinders of
circumference li and height ci , in the homotopy class of 
i , for each 1� i �m. This
will be the basepoint of the Teichmüller ray Yt that we shall show is asymptotic to the
grafting ray Xt . Recall that the surface Yt is obtained from Y (which is also Y0 in our
notation) by stretching along the horizontal foliation, and in particular the Euclidean
cylinders on Yt have height cie

2t .

Notation For a semi-infinite cylinder (homeomorphic to S1 � Œ0;1/) denoted by C ,
we denote by C�h (resp. C�h ) the infinite subcylinder of all points of C of height
greater (resp. lesser) than h.

Lemma 5.3 Let C be a semi-infinite Euclidean cylinder, and let f W C ! C be a
conformal map which is a homeomorphism onto its image. Then for any � > 0 and
H0 > 0 there exists an H1 >H0 and a map F W C! f .C/� C such that:

(1) F is .1C �/–quasiconformal.

(2) F is isometric on C�H1
.

(3) F restricts to f on C�H0
.

(Here H1 depends on � and H1!1 as �! 0.)

Geometry & Topology, Volume 18 (2014)



Asymptoticity of grafting and Teichmüller rays 2167

Proof The cylinder C is conformally equivalent to the punctured unit disk D� by
a conformal map � that takes 1 to 0, and maps the round circle at height h (for
each 0 � h < 1) to a circle of radius r.h/ D e�2�h centered at the origin. The
subcylinder C�H0

corresponds to a subdisk that we denote by B . The conformal
map f conjugates to a conformal map g D � ı f ı ��1 from the punctured disk to
itself, which can be extended to a conformal map of D into itself, such that g.0/D 0

and g0.0/D c where c 2C .

We can now apply Lemma 5.1 to the rescaled conformal map .1=c/g restricted to the
subdisk B to obtain an almost conformal map GW B!G.B/�D that restricts to a
dilatation z 7! cz on Bs � B for some sufficiently small s (that depends on � ) and
agrees with g on @B . Since a dilatation conjugates back to an isometric translation
of the semi-infinite cylinders, the map F0 D �

�1 ıG ı � defined on C�H0
satisfies

(1) and (2), where H1 D
1

2�
ln 1

s
and moreover, agrees with f on @C�H0

. Thus F0

extended by f on C�H0
defines a map on the entire C , which is our desired F .

X1 H

H

g

Y1

Figure 16: Lemma 5.3 allows one to adjust g such that it is isometric on the
circle at height H . Discarding the shaded regions and gluing up along the
truncating circles gives a grafted surface Xt on the left and the surface along
the Teichmüller ray on the right.

Proposition 5.4 For any (sufficiently small) � > 0 there exists a (sufficiently large)
T > 0 such that for every t > T there is a .1C �/–quasiconformal map from the
grafted surface Xt to a singular flat surface Ys for some s .

Proof We start with the conformal map gW X1 ! Y1 (Figure 16). Consider its
restriction to one of the semi-infinite Euclidean cylinders C , and let C0 be the corre-
sponding infinite cylinder on Y1 such that g.C/\ C0 ¤ � . By properness, for H0

sufficiently large, the image under g of the C�H0
will be strictly contained in C0 .

Applying Lemma 5.3 we have some H1.�/ > H0 and a map FC on the truncated
cylinder C�H1

that agrees with g on C�H0
and is isometric on the circle at height H1 .

Repeating this for each infinite cylinder on X1 , we obtain truncations of each and
almost conformal maps such that together we have an almost conformal map F to Y1 ,
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with each of its cylinders also truncated at a circle at some height. The map F is
isometric on the boundary circles, and in particular its restrictions to truncated paired
cylinders agree on the truncating round circles. On gluing these maps we obtain an
almost conformal map from the truncated X1 glued along the boundaries of the paired
cylinders, to the truncated Y1 glued along the boundaries of its paired cylinders. By
definitions of the surfaces, the latter is Ys for some s , and the former is XT for some T .
(For an additional discussion of adjusting for unwanted “twists” see [17, Section 4].) By
choosing to truncate at higher heights (greater than H1.�/ as above) one can obtain a
.1C�/–quasiconformal maps from Xt for any t >T , to a surface along the Teichmüller
ray starting at Y .

Recall that the surfaces Xt form the grafting ray determined by the multicurve �, and
the surfaces Ys lie along the Teichmüller ray determined by � and with basepoint
Y D Y0 . Thus together with Proposition 4.1 this concludes the proof of Theorem 1.1.

6 Proof of Theorem 1.4

In this section we prove the following theorem stated in Section 1.

Theorem 1.4 For any X 2 Tg , the set of integer graftings f�.gr2�
 X /j 
 2 Sg is
dense in Mg .

As discussed in Section 1, this then immediately implies Theorem 1.5.

Plan of the proof Fix any X 2 Tg and pick an arbitrary Y 2Mg and a sufficiently
small � > 0. To establish Theorem 1.4 it is enough to show that for this choice we
have:

Proposition 6.1 There exists a 
 2 S such that dT .�.gr2�
 X /;Y / < 2� .

By Corollary 1.3 we have a � 2ML such that:
(1) � is arational.
(2) The projection of the grafting ray determined by .X; �/ to moduli space is dense.

In particular, we have a sequence of times ti!1 such that

(6-1) dT .�.gr2� ti�
.X //;Y / < �:

The argument for the proof of Proposition 6.1 carried out in Sections 6.1–6.5 consists
of choosing an appropriate approximation of each 2� ti� by a multicurve and showing
that the corresponding grafted surface is close to the surface obtained by grafting along
this multicurve (Lemma 6.19). Proposition 6.1 then follows easily from the triangle
inequality (Section 6.6).
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6.1 Almost-conformal constructions

In Section 4.2 we developed the notion of “almost isometries” (see Definition 4.9)
and some related constructions of almost conformal maps. In this section, we weaken
the definition by introducing a further bounded additive error A (see Definitions 6.2
and 6.6). This additive error shall be small relative to the other dimensions, however,
and will still permit the construction of almost conformal maps (as in Lemma 6.7).

Definition 6.2 A homeomorphism f between two C 1 –arcs on a conformal surface
is an .�;A/–almost isometry if f is continuously differentiable with dilatation d (the
supremum of the derivative of f over the domain arc) that satisfies jd � 1j � � and
such that the lengths of any subinterval and its image differ by an additive error of at
most A.

Remark As before, we may say “.�;A/–almost isometric” to mean “.M�;A/–almost
isometric for some (universal) constant M > 0”.

The following are analogues of Lemmas 4.10, 4.11 and 4.12, and we omit their (easy)
proofs.

Lemma 6.3 Let I1; I2 be arcs of lengths l1 and l2 such that jl1 � l2j < A and
A= l1 < � . Then the orientation-preserving affine (stretch) map f W I1! I2 is .�;A/–
almost isometric.

Lemma 6.4 Let f;gW I ! I be maps of an arc I that are .�;A/–almost isometric
and .�;A0/–almost isometric respectively. Then f �1 is .�;A/–almost isometric, and
f ıg is .�;ACA0/–almost isometric.

Lemma 6.5 Let I D I1[ I2[ � � � [ IN be a partition of the arc I into subarcs with
disjoint interior. Then any continuously differentiable map f W I ! I with .�;A/–
almost isometric restrictions to I1; : : : ; IN is .�;NA/–almost isometric on I .

Conversely, the restriction of an .�;A/–almost isometry to a subarc is also an .�;C /–
almost isometry to its image.

Definition 6.6 A map f between two rectangles is .�;A/–good if it is isometric on
the vertical sides and .�;A/–almost isometric on the horizontal sides.

Remark In what follows “rectangle” in the above definition shall mean a quadrilateral
on the Euclidean plane, or the hyperbolic plane, or a complex-projective surface with
the Thurston metric, having four arcs intersecting at right angles (the spaces mentioned
have conformal metrics), and pairs of nonadjacent sides having equal length (we label
one as vertical and the other horizontal).
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6.1.1 Almost-conformal extension The following lemma is a slight generalization
of Lemma 4.13.

Lemma 6.7 Let R1 and R2 be two Euclidean rectangles with vertical sides of
length h and horizontal sides of lengths l1 and l2 respectively, such that l1; l2 > h

and jl1� l2j<A, where A=h� � . Then any .�;A/–good map f W @R1! @R2 has a
.1CC�/–quasiconformal extension F W R1!R2 for some (universal) constant C > 0.

Proof The proof follows by rescaling by a factor of 1=h and applying Lemma 4.13
to the resulting map between the resulting pair of rectangles.

6.1.2 Finitely grafted rectangle Let R be a region in the hyperbolic plane bounded
by two “vertical” geodesic sides of length l and two “horizontal” horocyclic sides of
length w . Assume henceforth that l > 1=� and w < � .

Let a1; a2; : : : ; ak be a finite collection of geodesic arcs with endpoints on the horizontal
sides, with corresponding weights w1; w2; : : : ; wk . Then one can obtain a finitely
grafted rectangle R0 by inserting Euclidean rectangles in the shape of truncated “cres-
cents” (see Figure 17) of widths w1; w2; : : : ; wk at the arcs a1; a2; : : : ; ak respectively.

dz
Im.z/

R
a1

l

w

R0

dz
jzj

w1

Figure 17: Grafting a rectangle R (shown on the upper half plane model)
across a single weighted geodesic arc a1 gives a finitely grafted rectangle R0

(Section 6.1.2).

Lemma 6.8 There is an almost conformal map f from R0 to a Euclidean rectangle of
vertical height l and horizontal width w1Cw2C� � �Cwk . Moreover, f is .�; �/–good
on the boundary.

Proof We give a sketch of the argument, and refer to Sections 4.2 and 4.3 for details
and similar constructions. We always work in the upper half-plane model of the
hyperbolic plane.

First, we can map the (ungrafted) rectangle R to the Euclidean plane by a map that
“straightens” the horocyclic foliation across R. Since w < � , this straightening map
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is almost conformal (Lemma 4.6). It also follows from some elementary hyperbolic
geometry that the hyperbolic “width” between the geodesic arcs on R is a C 1 –function
of the “height” with �–small derivatives, and so their images under the straightening
map are �–almost vertical.

Next, the truncated “crescents” are spliced in: their straightening maps to the plane are
in fact conformal with rectangular images (Lemma 4.8) and hence can be adjusted by
almost conformal maps (Lemma 4.5) to fit with the almost vertical image arcs above.

This gives a composite map that is almost conformal with image a rectangle of height l

and width wCw1Cw2C � � �Cwk . Since w < � and w1Cw2C � � �Cwk > 1, one
can finally compose by an almost conformal horizontal affine stretch to a rectangle of
width w1Cw2C � � �Cwk as required.

The statement about the almost isometry of the sides follows from Lemma 6.3 since
prior to the final affine dilatation the map is isometric on the horizontal sides, and the
final affine stretch is to a rectangle of width differing by w < � .

6.1.3 Smoothing the horizontal sides In the finitely grafted rectangle R0 above, the
horizontal sides may not be differentiable arcs since the geodesic arcs a1; : : : ; ak may
not intersect the horizontal sides of R at right angles. However, since the rectangle R

prior to grafting is thin (w < � ) and long (l > 1=� ) some elementary hyperbolic
geometry implies that the geodesic arcs intersect the horizontal sides at an angle that
differs from �=2 by a quantity bounded by C� (for some universal constant C > 0).

In R0 , the horizontal sides can then be “smoothed” to be C 1 by “trimming” the
horizontal sides of each grafted Euclidean “truncated crescent:” each such horizontal
segment is replaced by a C 1 arc whose derivatives are �–small, and have specified
values at the endpoints that make the entire arc C 1 . Denote the resulting new “smoothed”
rectangle by R00 (Figure 18).

The following lemma can be thought of as a “vertical” version of the straightening
lemma from Section 4.1 (Lemma 4.5).

Lemma 6.9 Let S D Œ0; w�� Œ0; l � be a Euclidean rectangle and let S 0 be the region
enclosed by the two parallel vertical line segments of S and two arcs which are the
graphs yDg1.x/ and yDg2.x/ over the interval 0� x�w on the x–axis, where g1

and g2 are C 1 –functions such that
(1) g2.x/ > g1.x/ > 0

(2) jg0
1
.x/j< � and jg0

1
.x/j< �

(3) j.l=.g2.x/�g1.x///� 1j< �

for all 0 � x � w . Then there exists a .1CC�/–quasiconformal map from S to S 0

which is .�; �/–good on the boundary. (Here C > 0 is some universal constant.)
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R R0 R00

�
2
C � �

2
� �

�
2
C �

�
2
� �

Figure 18: Grafting along a geodesic arc intersecting almost, but not quite
at right angles gives a finitely grafted rectangle R0 with the top edge hav-
ing “corners” (the grafted Euclidean region is shown shaded.) This can be
smoothed to a C 1 –arc together with an almost conformal map from R0 to
the resulting rectangle R00 (Lemma 6.10).

We omit the proof, which is similar to Lemma 4.5, involving a map that stretches
vertically by the right factor along the width of S 0 .

By a repeated application of the above lemma on each of the grafted strips, where the
graphs g1 and g2 for each are determined by the C 1 –“trimming,” we have:

Lemma 6.10 There exists an almost conformal map from R0 to R00 which is .�; �/–
good on the boundary.

Moreover, by precomposing with the almost conformal map f of Lemma 6.8, we
have:

Corollary 6.11 There exists an almost conformal map from R00 to a Euclidean rectan-
gle of vertical height l and horizontal width w1Cw2C� � �Cwk which is .�; �/–good
on the boundary.

6.2 Thickening the train track

Recall from Section 4.1 that we have the subsurface T� �X containing the arational
lamination � which is its “�”–train track neighborhood. From that section, we have
a decomposition of the surface into a collection of rectangles R1;R2; : : : ;Rn , and
complementary regions which are truncated ideal hyperbolic triangles T1;T2; : : : ;Tm .

We now describe a “thickening” to ensure that � is contained properly in T� . For
each T1;T2; : : : ;Tm , choose thin strips adjacent to the geodesic sides and bounded
by another geodesic segment “parallel” to the sides and append them to the rectangles
adjacent to the sides. We continue to denote the collection of this slightly thickened
rectangles by R1;R2; : : : ;Rn , and their union by T� .
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6.3 Approximating � by multicurves

Let w1; w2; : : : ; wn be the weights of the train track T� , that is, wi denotes the total
transverse measure of the rectangle Ri . By our assumption of the maximality of �,
these weights are all positive reals.

By the above construction of the train track it follows that the subarcs I 0
1
; : : : ; I 0

3mC1

(see (4-2) in Section 4.1) also have a positive transverse measures w0
1
; : : : ; w0

3mC1
.

This follows from the minimality of �: the only way such a subarc will carry no
measure is if � intersected it only at the endpoints, but the leaf of � passing through
an endpoint of one of these subarcs is isolated on the complementary side (it is part of
the boundary of one of T1; : : : ;Tm ) and cannot be isolated inside the subarc also.

For each 1� i � n the weights are given by

(6-2) wi D

X
k2Si

w0k ;

where Si is a finite subset of f1; 2; : : : ; 3mC 1g as in (4-2).

Definition 6.12 A 3mC 1–tuple of (nonnegative) real numbers .c1; c2; : : : ; c3mC1/

is an admissible weighting of T� if the corresponding weights on the train track given
by Equation (6-2) satisfy the switch conditions for the train track.

We begin with the following observation in elementary linear algebra.

Lemma 6.13 Let S be a homogeneous system of linear equations in N variables,
with all coefficients in the set f0; 1;�1g. Then there exists a constant D > 0 depending
only on N (and not on S) such that for any N–tuple .x1;x2; : : : ;xN / of real numbers
that satisfies S there is an integer N–tuple .k1; k2; : : : ; kN / with jxi � ki j < D for
each 1� i �N , which is also a solution.

Proof Since the coefficients of the linear system S are integers, by Gauss–Jordan
elimination there is a basis f Ev1; Ev2; : : : ; EvM g of the vector space V of solutions such
that each Evi is a vector with rational entries. Let L be the integer that is the least
common multiple of all the denominators of the rational entries, such that Ewi DL Evi

is an integer vector for each 1 � i �M . Then this set of M linearly-independent
integer vectors W spans a lattice in V . Let D be the diameter of the torus TM that
is a quotient of V by the action of W , or equivalently, the radius of a fundamental
domain in V . Clearly then, any solution in V is less than D away from an integer
vector.
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The constant D at this point depends on the linear system S, but notice that since
there are N variables, and each coefficient is from the finite set f0; 1;�1g, there are
only finitely many possible choices of S (depending only on N ), and hence we can
choose D to be the maximum value as we vary over all of them.

Corollary 6.14 Let S be a homogeneous system as above, and let ExD.x1;x2; : : : ;xN /

be a solution where each entry is a positive real number. Then there exists a T0 > 0

such that for any t > T0 , there is an integer solution .k1; k2; : : : ; kN / with each entry
positive, such that jtxi � ki j<D for each 1� i �N .

Proof Note that since S is homogenous the vector t Ex is also a solution. Each
entry of this vector will be greater than D when t > T0 D D=min1�i�N xi . Let
.k1; k2; : : : ; kN / be the integer solution close to t Ex that the previous lemma guarantees.
Since for each i , we have

jtxi � ki j<D and txi >D D) ki > 0I

we see that each entry of this integer solution is positive.

We now apply this to our setting:

Lemma 6.15 There exists a D > 0 and T0 > 0 such that for any t > T0 there is a
tuple Ek D .k1; k2; : : : ; k3mC1/ of positive integers such that:

(1) Ek is an admissible weighting of T� .

(2) jtw0j � kj j<D for each 1� j � 3mC 1.

Moreover, D is a constant that is independent of � .

Proof The admissible weights on the train track T� satisfy a linear system S in
3mC 1 variables corresponding to the switch conditions and Equations (6-2), which
have coefficients in the set f0; 1;�1g. Hence one can apply Corollary 6.14 with Ex being
the positive solution .w1; w2; : : : ; w3mC1/ corresponding to the transverse measures
of the lamination �, and this yields (1) and (2); see Figure 19. Also by the lemma, D

depends only on m, which in turn depends only on the topology of the surface (see
Section 4.1), and hence is independent of � .

Definition 6.16 For t >T0 , let 
t denote the geodesic multicurve corresponding to the
admissible integer weighting Ek on the train track T� satisfying (2) of Lemma 6.15.
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ML

t�

Figure 19: The train track weights give a coordinate chart for measured
lamination space. A ray in this convex cone is never far from an integer lattice
point (Lemma 6.15).

Lemma 6.17 There exists a T1 > T0 such that for any t > T1 the multicurve 
t is
contained in T� �X .

Proof Notice that the induced weights xk1; : : : ; xkn on the branches R1; : : : ;Rn of the
train track T� (obtained from Equation (6-2)) satisfy

(6-3) jtwi �
xki j< .3mC 1/D

for each 1� i � n.

This implies that Œ
t � ! Œ�� in PML as t ! 1, and hence by the compactness
result of Canary, Epstein and Green [6, Proposition 4.1.7] the corresponding geodesic
representatives on the surface converge to � in the Hausdorff topology, after passing to
a subsequence. (The maximality of � is used here too, since in general it is only true
that the supports j
t j ! j�

0j � j�j.) Since � is a proper subset of the closed set T�
(this uses the “thickening” defined in Section 6.2), so is 
t for large enough t .

6.4 Model rectangles

Recall that the train track decomposition of X (described in Section 4.1) persists as we
graft along �, with the total width of the rectangles R1;R2; : : : ;Rn increasing along
the �–grafting ray. We denote the grafted rectangles on gr2� t�X by Rt

1
;Rt

2
; : : : ;Rt

n .

Here, the total width wi.t/ is the maximum width of the rectangle Rt
i in the Thurston

metric on gr2� t�X , and we have

(6-4) jwi.t/� 2� twi j< �
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since the initial hyperbolic widths of the rectangles on X is less than � by Lemma 4.2.

We shall use the construction of an almost conformal Euclidean model rectangle for a
rectangular piece Rt from the collection fRt

1
;Rt

2
; : : : ;Rt

ng proved in Section 4.3. We
restate the results of that section as follows:

Lemma 6.18 (Lemma 4.18 and Corollary 4.19) For any t > 1, there is a .1CC�/–
quasiconformal map from Rt to a Euclidean rectangle of width 2� twi which is
.�; �/–good on the boundary. (Here C > 0 is some universal constant.)

We recapitulate the proof briefly: one first approximates the uncountable collection of
geodesic arcs Rt \ � by a sequence of finite, weighted collections of arcs. For each
such finite approximation, one can show that if t is large in proportion to the hyperbolic
width the map to the complex plane that straightens the transverse foliation is an almost
conformal map, and then one takes a limit.

6.5 Grafted surfaces are close

Let T1 > 0 be as in Lemma 6.17. The goal of this section is to prove:

Lemma 6.19 There exists a (sufficiently large) T2 > T1 such that for any t > T2 , we
have that dT .gr2� t�X; gr2�
t

X / < � .

Here is a brief summary of the proof prior to the details.

On the initial (ungrafted) surface X one has a train track T� containing the lamination �
which is decomposed into rectangles (corresponding to the branches) by a choice of
transverse arc � . The multicurve approximation 
t is also contained in T� .

On the grafted surface gr2� t�X the rectangles in the train track decomposition widen
to have more (Euclidean) width. Similarly on gr2�
t

X the rectangles in the initial
decomposition are wider, though not with C 1 –boundary as the arcs of 
t might
intersect � at an angle slightly off �=2. The arc � is then replaced by its “smoothed”
arc which gives the correct rectangle decomposition on gr2�
t

X .

Each rectangle on gr2� t�X is then mapped almost conformally to the corresponding
one on gr2�
t

X via their Euclidean “models,” by first mapping the boundary and then
using the almost conformal extension lemma (Lemma 6.7). The complement of the
train tracks are isometric as grafting leaves them unaffected, and these put together
give the required almost conformal map between the two surfaces.
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Proof of Lemma 6.19 Since t > T1 we have that 
t � T� by Lemma 6.17. We let
R0

1
;R0

2
; : : : ;R0n be the rectangles obtained by grafting R1;R2; : : : ;Rn along 2�
t .

Note that 
t \Ri are a finite collection of geodesic arcs, and grafting along them gives
finitely grafted rectangles as in Section 6.1.2.

Recall that all horizontal sides of the rectangles R1;R2; : : : ;Rn (on the surface X )
lie on the arc � which is a segment of a leaf of the horocyclic foliation. We chose the
arc � to be sufficiently small (see the comment following Lemma 4.2) and we can
assume that its hyperbolic length w is less than � .

After grafting along 2� t�, this arc is converted to an arc on gr2� t�X of length
w C 2� tw1 C 2� tw2 C � � � C 2� twn which we denote by �� (recall that as one
grafts, the horocyclic foliation extends to a foliation on the grafted surface). After
grafting along 2�
t , the same arc � is converted to an arc � 0 on gr2�
t

X of length
wC2� xk1C2� xk2C� � �C2� xkn which we can smooth to a C 1 arc (see Section 6.1.3)
on the grafted surface that we denote by �
 . This simultaneously “smooths” the finitely
grafted rectangles R0

1
;R0

2
; : : : ;R0n to a new collection R00

1
;R00

2
; : : : ;R00n which we use

for the rest of the construction.

Recall also that there are the subarcs J1;J2; : : : ;J3m of � that are the horocyclic edges
of the complementary regions T1; : : : ;Tn . These remain isometrically embedded in
the arcs �� and � 0 , and also in �
 (smoothing of � 0 affects only the segments lying in
the grafted part).

Claim For sufficiently large t there is an .�; 50mD/–almost isometry h from �
 to ��
that restricts to an isometry between the subarcs corresponding to J1;J2; : : : ;J3m .

Proof of claim Recall that the subarcs in between the J1; : : : ;J3m are the subarcs
I 0

1
; : : : ; I 0

3mC1
that had weights w0

1
; : : : ; w0

3mC1
on the surface X . On �
 and �� , the

lengths of these become 2�ki and 2� tw0i respectively, which differ by at most 2�D

by (2) of Lemma 6.15. For large t , we have that by Lemma 6.3, the affine maps between
these subarcs are .�; 2�D/–almost isometries. By Lemma 6.5 the concatenated map of
these together with isometries between the subarcs corresponding to J1;J2; : : : ;J3m

give an .�; 7m � 2�D/–almost isometry from the entire arc �
 to �� .

By Lemma 4.2, for t sufficiently large the height of the finitely grafted rectangle R0i is
sufficiently large and the width is sufficiently small so that one can apply Corollary 6.11
and obtain, for each 1� i � n, an almost conformal map fi from R00i to a Euclidean
rectangle of width 2�ki which is .�; �/–good on the boundary.

Recall (Section 6.4) that Rt
i denotes the rectangle Ri on X after grafting along 2� t�.

By Lemma 6.18 for t sufficiently large there exists, for each 1 � i � n, an almost
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conformal map gi from Rt
i to a Euclidean rectangle of width 2� twi which is .�; �/–

good on the boundary.

From the above claim, the map hi from the rectangle @Si on gr2�
t
X to the rectan-

gle @Rt
i on gr2� t�X that is isometric on the vertical sides and restricts to the map h

on the horizontal sides (which lie on the arc �
 ) is .�; 50mD/–good.

Consider the composition gi j@ ı hi ı fi j
�1
@

, where fi j@ and gi j@ are the restrictions
of fi and gi to the boundary of the rectangles where they are defined. By Lemma 6.4
this is an .�; 50mDC 2�/–good map between two Euclidean rectangles and hence by
Lemma 6.7 (the height of these rectangles is sufficiently large when � is sufficiently
small) it extends to an almost conformal map Hi between them. The composition
g�1

i ıHi ı fi W Si !Rt
i is an almost conformal map that restricts to hW �
 ! �� on

the horizontal sides and is isometric on the vertical sides.

The collection fH1;H2; : : : ;Hng give an almost conformal map from S1[� � �[Sn �

gr2�
t
X to Rt

1
[ � � � [Rt

n � gr2� t�X that is isometric on the geodesic sides. Since
grafting does not affect the surface X in the complement of T� , there is an isometry
between gr2�
t

X nS1 [ � � � [Sn and gr2� t�X nRt
1
[ � � � [Rt

n . Together with the
above collection of maps this isometry defines the almost conformal map between
gr2�
t

X and gr2� t�X .

6.6 Completing the proof

Proof of Proposition 6.1 We choose a ti > T2 (where T2 is as in Lemma 6.19) that
satisfies Equation (6-1). By the triangle inequality,

dT .�.gr2�
ti
X /;Y /� dT .�.gr2� ti�

.X //;Y /C dT .gr2� ti�
X; gr2�
ti

X /:

The first term on the right is less than � by Equation (6-1) and the second term is O.�/

by Lemma 6.19.

From the discussion at the beginning of Section 6, this proves Theorem 1.4.

Appendix: Proof of Lemma 4.24

The purpose of this section is to provide a proof of the following:
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Lemma 4.24 For any � > 0 sufficiently small and any 0� r � � if f W D!D satisfies

(1) f is a quasiconformal map

(2) the quasiconformal distortion is .1CC�/ on D nBr

then the map f extends to a .1CC 0�/–quasisymmetric map of the boundary, where C 0

is a constant depending only on C .

For r D 0 the above result is an easy consequence of the work of Ahlfors and Beurling
that we recall as Lemma A.9 below.

We begin by recalling the definitions and relevant known results in Section A.1, and
prove a lemma about moduli of quadrilaterals in Section A.2, from which the proof of
the theorem follows.

A.1 Background

A starting point for the rich theory of quasiconformal mappings can be Ahlfors’ lec-
tures [1].

Let � be a family of (rectifiable) curves in D , and let � be a nonnegative measurable
function on the disk D satisfying

(A-1) l
 .�/D

Z



� � 1

for all 
 2 � and

(A-2) A.�/D

“
D
�2dzdz ¤ 0;1:

Note that � can be thought of as the conformal factor for a metric conformally equivalent
to the standard metric on the unit disk.

Definition A.1 The extremal length of � is denoted by �.�/ is defined as

(A-3) �.�/D sup
�

A.�/�1;

where � varies over all nonnegative measurable functions satisfying (A-1) and (A-2).
This is a conformal invariant.

Definition A.2 A quadrilateral Q is the unit disk D together with two disjoint arcs A

and B on its boundary. There is a conformal map from Q to a rectangle in R2 of
height 1 and length m that takes the two arcs to vertical sides. The positive real
number m is the modulus of the quadrilateral, denoted mod.Q/.
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One of the basic results asserts:

Lemma A.3 (Grötzsch) If � is the collection of all rectifiable curves in D joining
the boundary arcs A and B , then �.�/Dmod.Q/.

If S � D is a closed subset containing the boundary @D , then we can restrict � in
the lemma above to a collection � 0 of curves that are contained in S . We denote the
corresponding extremal length �S .Q/D �.�

0/. We shall also call this the extremal
length restricted to S. Note that by the above lemma �D.Q/Dmod.Q/.

From the definition of extremal length, it is easy to check:

Lemma A.4 If S �D then �S .Q/� �D.Q/.

Definition A.5 Let �;�0 be two domains in C . Then a homeomorphism f W �!�0

is said to be K–quasiconformal if:

(1) f has locally integrable distributional derivatives.

(2) We have the ratio

(A-4)
jfzj � jfxzj

jfzjC jfxzj
�K

almost everywhere in �.

The quasiconformal distortion at a point in � is defined to be the value of the left-hand
side of Equation (A-4).

Definition A.6 A homeomorphism gW R! R is M –quasisymmetric if for every
x; t 2R, we have

1

M
�
f .xC t/�f .x/

f .x/�f .x� t/
�M:

Definition A.7 A homeomorphism gW @D ! @D is M –quasisymmetric if h ı g ı

h�1W H2!H2 is M –quasisymmetric when restricted to R, where h is a conformal
map from the unit disk D to the upper half-plane H2 .

The following lemma can be culled from the discussion in [2, Section 4].

For A,B two intervals in R, let �.A;B/ denote the extremal length of the set of
rectifiable paths in H2 from A to B . (To use the above definition of extremal length
we first map H2 conformally to D .)
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Lemma A.8 If gW R!R be a homeomorphism such that

1

m
�
�.g.A/;g.B//

�.A;B/
�m

for all disjoint intervals A, B .

Then g is M –quasisymmetric, where M D eA.m�1/ where A� 0:228 is a universal
constant.

The following are the fundamental results of Ahlfors and Beurling [2] (for the version
stated here see Bishop [3]). Briefly, quasisymmetric maps of the boundary circle extend
to quasiconformal maps of the unit disk, and vice versa, with the distortion constants
(with K and M as above) being close to 1 if one of them is.

Lemma A.9 For any K > 1 there is an M > 1 such that if f W D ! D is a K–
quasiconformal map then it extends to an M –quasisymmetric homeomorphism of the
boundary. Moreover, there is a K0 > 1 and C0 <1 such that if K D 1C � <K0 then
we can take M � 1CC0� .

Lemma A.10 Any M –quasisymmetric homeomorphism of @D can be extended to a
K–quasiconformal map of D . Moreover, there is a M1 > 1 and C1 <1 such that if
M D 1C � <M1 then we can take K � 1CC1� .

Finally, we note the following standard consequence of quasiconformality (for example,
see [1, Chapter II]):

Lemma A.11 Let �;�0 � D be domains. If f W �! �0 is a K–quasiconformal
map, then for any collection � of rectifiable curves in �, we have

(A-5) 1

K
�
��0.f .�//

��.�/
�K:

A.2 An extremal length lemma

Let A;B �D be two disjoint boundary arcs, and � the collection of rectifiable paths
from A to B and let E D Br be the ball of radius r < 1.

In this section we show (Lemma A.13) that the extremal length of � changes by a
multiplicative factor of 1CO.r/ when E is excised, that is, when we restrict to the
family of curves joining A and B and avoiding E . The constant in the O.r/ term is
independent of the arcs A, B .

The following consequence of the Koëbe distortion theorem is used in its proof.
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Lemma A.12 Let E D Br �D and let �W D!C be a conformal embedding such
that �.0/D 0. Then

(A-6) diam.�.E// < C r dist.�.E/; @�.D//

for all r sufficiently small, for some universal constant C .

Proof Let ı D dist.0; @�.D//. By a consequence of the Koëbe distortion theorem
(see [30, Corollary 1.4]) we have

(A-7) j�0.0/j � 4ı

and by the other direction of the distortion theorem [30, Theorem 1.3] we have

(A-8) j�.z/j � j�0.0/j
jzj

.1� jzj/2
;

which using (A-7) gives

(A-9) j�.z/j< 4ır=.1� r/2 < 8rı

for any z 2E , since then jzj � r and r is sufficiently small.

Hence

(A-10) diam.�.E// < 16rı:

Now for ! 2E , let dw D dist.�.!/; @�.D//D j�.!/��.s/j for some �.s/2 @�.D/.

We have
ı � j�.s/j � dwCj�.!/j � dwC 8rı;

where the last inequality is by (A-9) and the second the triangle inequality.

Rearranging, and taking an infimum over ! 2E on the left-hand side, we obtain

(A-11) ı.1� 8r/� dist.�.E/; @�.D//

which implies, for r sufficiently small,

(A-12) ı � .1CC 0r/ dist.�.E/; @�.D//

for some constant C 0 . The proof is complete on combining (A-10) and (A-12).

Lemma A.13 Let E DBr �D and Q the quadrilateral defined by the two boundary
arcs A, B as above. Then

(A-13) 1�
�DnE.Q/

�D.Q/
� 1CC 0r;

where C 0 is a constant independent of Q.
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Proof The first inequality of (A-13) follows from Lemma A.4 so we need only to
prove the other inequality.

Let � be a conformal map from D to a rectangle R of vertical height 1 and horizontal
length mDmod.Q/ such that the arcs A and B are taken to the left and right vertical
sides respectively. We further require that �.0/D 0. Such a map can be defined using
elliptic integrals (see for example [1, Chapter III]).

It is well known (see Definition A.2 and Lemma A.3) that this conformal domain
realizes the extremal length of Q: the conformal metric �� 1 on the rectangle pulled
back via � realizes the supremum in Definition A.1.

Let � be the set of all rectifiable paths in R between the vertical sides, and let � 0 be
the subcollection of � of paths disjoint from �.E/.

We shall adapt the Grötzsch argument to show that � is close to being extremal for the
collection � 0 .

Let S be a strip SD Œ0;m��J of vertical (y –) height jJ jDdiam.�.E// and horizontal
(x–) range m that contains �.E/. By Lemma A.12, we know that

(A-14) diam.�.E// < C r

for r small, since �.E/�R implies dist.�.E/; @�.D//�minf1;mg � 1.

Let �0 be a conformal factor for R that satisfies

l
 .�
0/� 1

for all 
 2 � 0 .

In particular,

(A-15)
Z m

0

�0.x;y/ dx � 1

for any y in Œ0; 1� nJ .

By integrating (A-15) over y ranging over Œ0; 1� nJ , we get

1�C r �

Z
Œ0;1�nJ

1dy �

Z
Œ0;1�nJ

Z m

0

�0.x;y/ dxdy D

“
RnS

�0.x;y/ dxdy:

Squaring, and using the Cauchy–Schwarz inequality for the right-hand term, we get

.1�C r/2 �

“
RnS

.�0/2 dxdy

“
RnS

12 dxdy �

�“
R

.�0/2 dxdy

�
m:
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So

(A-16)
�“

R

.�0/2 dxdy

��1

�m=.1�C r/2 �m.1CO.r//

for r sufficiently small.

Taking a supremum over �0 as in Definition A.1 we get

�DnE.Q/D �Rn�.E/.Q/D �.�
0/�m.1CO.r//;

where the first equality holds since extremal length is a conformal invariant. Since
mD �D.Q/, this is the right hand equality of (A-13) and the proof is complete.

A.3 Proof of Lemma 4.24

Henceforth let f W D!D be the quasiconformal map with quasiconformal distortion
1CC� off a small ball Br , as in Lemma 4.24 (see Figure 20).

We need the following “quasiconformal” version of Lemma A.12 for maps of the unit
disk:

Lemma A.14 We have diam.f .Br //DO.r1��/.

Proof Let d D diam.f .Br //. For convenience we shall assume C D 1.

It is well known (eg see [1, III.A]) that for an annular domain on the plane that
contains 0; 1 in the bounded component of its complement, and the interval Œc;1/ in
the unbounded component where c > 1, we have

(A-17) �.P / <
1

2�
ln 16c;

where P is the set of rectifiable curves connecting the inner boundary component to
the outer boundary component. (This extremal length �.P / is the definition of the
modulus of this annular region.)

Since f is a homeomorphism, if A D D nBr and � the set of paths between the
boundary components of A then f .A/ is topologically an annulus, and by rotation
and scaling we see that we see that it satisfies the above condition with c D 1=d . So
we have

(A-18) �.f .�// <
1

2�
ln 16

d
:

By Lemma A.11 and the fact that f is .1C �/–quasiconformal on D nBr we know
that

(A-19) .1� �/�.�/�
1

1C�
�.�/� �.f .�//
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but since
�.�/D

1

2�
ln 1

r

we obtain from (A-18) and (A-19) that

d � 16r1��:

Corollary A.15 If r � � then diam.f .Br //DO.�/.

Proof The maximum of x�x is e1=e � 1:44. So r1�� � �1�� < 1:45� .

Br f

Figure 20: The image of Br is of small diameter. By Lemma A.13, the
extremal lengths change by a small factor when restricted to the complement
of the shaded regions.

Proof of Lemma 4.24 By Lemma A.8 is enough to show that for any pair of disjoint
arcs A and B on @D , we have

(A-20) 1�O.�/�
�D.f .Q//

�D.Q/
� 1CO.�/;

where Q is the corresponding quadrilateral, and the constant in O.�/ is independent
of Q.

This is because in the notation of Lemma A.8, if mD 1CO.�/ then M D eA.m�1/D

1CO.�/.

Let r � � . By Lemma A.13 we have

1�
�DnBr

.Q/

�D.Q/
� 1CO.�/

and by Corollary A.15 and Lemma A.13 we have

1�
�Dnf .Br /.f .Q//

�D.f .Q//
� 1CO.�/:

Now by Lemma A.11, since f is almost conformal on D nBr , we have

1�O.�/�
�Dnf .Br /.f .Q//

�DnBr
.Q/

� 1CO.�/:

The required (A-20) follows easily from the above three inequalities.
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