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Refined curve counting on complex surfaces

LOTHAR GÖTTSCHE

VIVEK SHENDE

We define refined invariants which “count” nodal curves in sufficiently ample linear
systems on surfaces, conjecture that their generating function is multiplicative, and
conjecture explicit formulas in the case of K3 and abelian surfaces. We also give
a refinement of the Caporaso–Harris recursion, and conjecture that it produces the
same invariants in the sufficiently ample setting. The refined recursion specializes
at y D�1 to the Itenberg–Kharlamov–Shustin recursion for Welschinger invariants.
We find similar interactions between refined invariants of individual curves and real
invariants of their versal families.

14C05, 14H20; 14N10, 14N35

In memory of Friedrich Hirzebruch

1 Introduction

Given a general elliptic fibration K3! P1 , we learn by computing �.K3/D 24 that
it must have 24 nodal fibers. For more general irreducible curve classes on a K3, Yau
and Zaslow [73] argued that taking the Euler characteristic of the relative compactified
Jacobian would again yield the number of maximally degenerate fibers; their arguments
were clarified by Beauville [5] and by Fantechi, van Straten and Göttsche [22].

For more general families of curves, similar arguments may be made in terms of the
relative Hilbert schemes of points. Recall that for a smooth projective curve C of
genus g , the “Macdonald formula” asserts1

1X
nD0

qn�gC1�.C Œn�/D

�
q

.1� q/2

�1�g

:

1We recall the derivation of this formula from Macdonald [48]. For any reasonable topological space
we have H�.X .n// D H�.X n=Sn/ D H�.X n/Sn D .H�.X /˝n/Sn . From this it follows that taking
the generating function of Euler characteristics gives

P1
nD0 qn�.X .n//D .

P1
nD0 qn/�.X / . Taking X

to be a smooth curve C and recalling that for these C .n/ D C Œn� gives the formula stated.
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Let C!B be a family of reduced planar curves of arithmetic genus g , and let CŒn�!B

be the relative Hilbert schemes. Certain string-theoretic ideas of Gopakumar, Katz,
Klemm and Vafa [25; 26; 37] motivate the consideration of the following series, and
the following change of variables:2

1X
nD0

qnC1�g�.CŒn�/D
1X

iD0

ni
C=B �

�
q

.1� q/2

�iC1�g

:

If in fact B were a union of points and C a disjoint union of smooth curves, the numbers
ni would just count the number of curves of cogenus i . In general we view the ni as
the “virtual” number of curves of cogenus i in the family C! B .

This makes sense even when C ! B is a single curve C ! B D pt; in this case
we write simply ni

C
. The Macdonald formula is equivalent to the assertion that

when C is smooth, n0
C
D 1 and ni

C
D 0 for all i > 0. More generally, Pandharipande

and Thomas [62] prove that ni
C
D 0 when C has cogenus ı.C / < i . Whenever

the singularities of C are unions of smooth branches, the last nonvanishing term is
calculated either from [5] or [22] to be ni

C
D 1.

In the relative situation, it is helpful to view ni as a constructible function ni W B! Z
given by b 7! ni

Cb
; evidently ni

CB=B
D
R

B ni.b/d�.b/.

In addition to the naive or virtual interpretation above, in good cases the ni carry actual
enumerative meaning. Suppose that i is the maximum cogenus of any curve in the
family, that there are finitely many curves of cogenus i , and that all these curves are
immersed. Then ni

C=B is just the number of these curves. One exploits this observation
by finding another way to express the Euler characteristics of the relative Hilbert
schemes. In particular, the following two results have recently been established:

Theorem 1 (Shende [67]) Fix a reduced plane curve C , a versal deformation ƒ of
its singularities, and the locus ƒı �ƒ of cogenus ı curves. Then nı

C
is the multiplicity

of ƒı .

Theorem 2 (Kool, Shende and Thomas [43]) Let S be a surface, and L a ı–very-
ample line bundle. Then the number of ı–nodal curves in a general P ı � jLj is nıC=Pı ,
which moreover is given by a certain explicit combination of integrals of Chern classes
of LŒn� and TS Œn� .

2 If B has many connected components, one should perform the change of variables component
by component; on each g should be interpreted as the arithmetic genus of the fiber on the component
in question. One can avoid this unpleasantness by indexing as in Pandharipande and Thomas [62] and
elsewhere by the Euler characteristic of the ideal sheaf on the left-hand side and by the genus rather than
cogenus on the right; however, for our purposes indexing by the cogenus is far more convenient.
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The significance of the second result is that, due to a theorem of Ellingsrud, Lehn
and Göttsche [20], such integrals depend in a universal way on the Chern classes of
L and S . Such universality of the counts of nodal curves had been conjectured by
Göttsche [27], and proven by Tzeng [70]. Note that in particular, this universality
implies that the numbers nıC=Pı will not vary under a deformation of the pair .S;L/
which preserves the ampleness condition, since the integrals of Chern classes of S;L

will not change. Likewise, Theorem 1 plus the fact that Euler numbers of the Hilbert
schemes of singular curves may be recovered from the HOMFLY polynomials of their
links (see Maulik [50]) implies that the numbers nı

C
do not vary under an equisingular

deformation.

The present article poses the following question: Does replacing the topological
Euler characteristic on the left-hand side by more sophisticated invariants have an
enumerative counterpart on the right?

We begin in Section 2 by studying the case of a single curve. At the outset, we work
in the Grothendieck ring of varieties and consider

P1
nD0 qnC1�gŒC Œn��. However,

this incorporates global information we would rather not consider, and in particular
depends on the motive of the normalization zC . We can remove the global contributions
by dividing out by the analogous series for zC . The quotient only depends on the
singularities. We write zgD g� ı for the genus of zC , and show there exist classes zN i

C

in the Grothendieck ring of varieties such thatP1
nD0 qnC1�gŒC Œn��P1
nD0 qnC1�zgŒ zC Œn��

D

ıX
iD0

zN i
C �

�
q

.1� q/.1� qŒA1�/

�i�ı

:

The right-hand side moreover splits into a product over the singularities of C . See (1)
and Corollary 20 below for proofs and further discussion.

According to Theorem 1, the Euler number �. zN i
C
/ gives the multiplicity of a certain

locus, and is in particular positive. In examples we see a stronger positivity:

Conjecture 3 We have zN i
C
2 Z�0ŒA

1�.

This conjecture is verified computationally for singularities of the form xp D yq ,
where .p; q/D 1 and p < 12; q < 20 using the formulas of Oblomkov, Rasmussen
and Shende [58] for the classes of the Hilbert schemes.

The meanings of the zN i
C

remain mysterious, but there is some evidence that they may
be related to geometry over R. We define real analogues ni;R of the ni by using the
compactly supported Euler number of the real locus, and show these again vanish for
i > ı.C /. These have an interpretation analogous to Theorem 1. Recall that nodes
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2248 Lothar Göttsche and Vivek Shende

of real curves come in three types: elliptic (x2Cy2 D 0), hyperbolic (x2�y2 D 0),
and pairs of complex conjugate nodes. Thus in the real deformation, the loci Bk

C of
k –nodal curves split into components according to the types of the nodes.

Theorem 4 Let C be a real reduced plane curve, and let C! B be a locally versal
deformation of its singularities. Let Bı;ı�C be the locus of nodal curves with ı nodes of
which ı� are hyperbolic. Let Dj be a general real disc of dimension j passing near
ŒC � 2 B . Then

n
j ;R
C
D

X
i

.�1/iDj
\Bj ;i :

Note in particular that while the individual terms on the right-hand side of the formula
may depend on the location of the disc, the theorem asserts that their sum does not.

For the simple singularities, we give a combinatorial formula for the zN i
C

in terms of the
Dynkin diagram. The formula refines the analogous prescription for the multiplicities
given in [67]. Geometrically, this may be interpreted as the choice of a particular real
form (in the unibranch case, there is no choice) and a particular disc D in the above
statement so that the coefficient of Li in N j is Dj \Bj ;i . For j D ı , Duco van
Straten has conjectured that such a disc may be found for any singularity.

In Section 3, we turn to the case of linear systems of curves on surfaces. From the
point of view of the argument in [43], it is natural to refine the Euler characteristic to
Hirzebruch’s ��y genus, since the latter both factors through the Grothendieck ring of
varieties and may be calculated in terms of Chern classes. Recall that the ��y genus
is given by ��y.X / D

P
p;q.�1/pCqhp;q.X /, where the hp;q.X / are the Hodge

numbers. We define invariants N i
C=Pı 2 ZŒy� which refine the ni

C=Pı of Theorem 2
above. As before, we are motivated by the MacDonald formula, which in this case
reads

1X
nD0

qn�gC1��y.C
Œn�/D

�
q

.1� q/.1� qy/

�1�g

:

We define the N i
C=B by equating terms in Laurent series expansions (see Definition 44)

1X
nD0

qnC1�g��y.CŒn�/D
1X

iD0

N i
C=B �

�
q

.1� q/.1� qy/

�iC1�g

:

As before, if B were just isolated points and C were a collection of smooth curves,
then N i

C=B would be just the number of curves of cogenus i . In particular, for a single
smooth curve, we have N 0

C
D 1 and N i

C
D 0 for i > 0. More generally, the N i

C
vanish
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for i > ı.C /; this is particular to the ��y genus: the analogous statement does not
hold for the virtual Poincaré polynomials.3

Let S be a surface, L a line bundle on it, P ı � jLj a linear system. Let S Œn� be the
Hilbert scheme of n points on S , and let Zn.S/� S �S Œn� be the universal family,
with the projections qW Zn.S/! S , pW Zn.S/! S Œn� . Let LŒn� WD p�q

�L. This
is a vector bundle of rank n on S Œn� with fiber H0.Z;LjZ / over Z 2 S Œn� . Let C
be the universal curve over P ı and CŒn� the relative Hilbert scheme of points. It is
the scheme-theoretic zero locus of a tautological section of LŒn� � H ; when CŒn� is
nonsingular this section is transverse. This allows us to compute ��y.CŒn�/ as an
intersection number on S Œn� (see Proposition 52).

Experimental evidence suggests:

Conjecture 5 Let L be a line bundle on a surface S , and P ı � jLj a linear subsystem
with tautological curve C! P ı . Assume that P ı contains no nonreduced curves, and
that the total space of the relative Hilbert scheme CŒn� is smooth for all n. Then N i

C=Pı

vanishes for i > ı .

Unlike in the Euler characteristic setting, one cannot prove this by “integrating over the
base”. Indeed, already in the smooth case (ıD0) Pandharipande and Fantechi [60] have
found families of smooth curves over a smooth base curve with nonzero invariants N i

for some i > 0. The base curves are always of genus greater than 0, and indeed no such
examples can exist over a simply connected base. We are not sure what further aspects
of the geometry of families of curves on surfaces are implicated. A calculation of
Migliorini has shown that the vanishing cannot be expected for the analogous expression
involving Hodge polynomials, already over a one-dimensional base. Nevertheless, we
have been able to show:

Theorem 6 The conjecture holds when KS is numerically trivial.

We also give some evidence for the general statement. By [20], one can reduce the
validity of the conjecture to the case of P2 and P1 �P1 . Here we may calculate in
low degrees by equivariant localization.

In Section 4, we focus on the invariants N ı
C=Pı . Assuming Conjecture 5, this is the

last nonvanishing N i . Under this assumption we show that there are universal power

3This does not contradict the statement above that the zN i
C

vanish even in the Grothendieck ring of
varieties; the point being that the N i

C
and zN i

C
have different virtual Poincaré polynomials but the same

��y genus. Ultimately this is because the ��y genus of an abelian variety vanishes.
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series A1; : : : ;A4 in QŒy� ŒŒs��, such that whenever L is a k –very ample line bundle
on a surface S we have

1X
ıD0

N ı
C=Pıs

ı
�AL2

1 A
LKS

2
A

K 2
S

3
A

c2.S/
4

CO.skC1/:

We define polynomials N ı
ı;ŒS;L�

by

1X
ıD0

N ı
ı;ŒS;L�s

ı
DAL2

1 A
LKS

2
A

K 2
S

3
A

c2.S/
4

:

In particular N ı
ı;ŒS;L�

D N ı
C=Pı , if L is ı–very ample. The brackets in the notation

serve to remind us that it depends only on the cobordism class of .S;L/.

As in [27], it is easiest to express the Ai after a change of variable. Consider the
following series in QŒy;y�1� ŒŒq��:

z�.y; q/ WD q

1Y
nD1

.1� qn/20.1�yqn/2.1�y�1qn/2;

eDG2 WD

1X
mD1

mqm
X
d jm

Œd �2y

d
;

and let D D q d
dq

. Above, Œn�y WD .yn=2�y�n=2/=.y1=2�y�1=2/.

It is also convenient to introduce the notation xN ı
ı;ŒS;L�

WD y�ıN ı
ı;ŒS;L�

; these invariants
are symmetric under y! 1=y .

Conjecture 7 There exist power series B1.y; q/, B2.y; q/ in QŒy;y�1� ŒŒq��, such
that X

ı�0

xN ı
ı;ŒS;L�.y/

eDG
ı

2 D
.eDG2=q/

�.L/B1.y; q/
K 2

S B2.y; q/
LKS

.z�.y; q/DeDG2=q2/�.OS /=2
:

The first 11 terms of the series B1;B2 are given explicitly in Section 4.

Assuming Conjecture 5, the content of the above assertion is exhausted by the case
where S is a K3 surface. Moreover as in [27] it may be reformulated without the
expansion in powers of eDG2 :
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Conjecture 8 Let .Sg;Lg/ be K3 surfaces of genus g with irreducible polarizations.
Then for any k ,

1X
gDk

qg�1 xN
g�k

g�k;ŒSg;Lg�
.y/D

eDG2.y; q/
k

z�.y; q/
:

Similarly, if .Ag;Lg/ are abelian surfaces of genus g with irreducible polarizations,

1X
gDkC2

xN
g�k�2

g�k�2;ŒAg;Lg�
qg�1

DeDG2.y; q/
kDeDG2.y; q/:

Remark 9 Since the original version of this paper, we have proven Conjectures 8
and 10, and given more general formulas in [28]. In the current paper we show that
Conjecture 8 follows from its validity for both K3 and abelian surfaces at k D 0, and
show the k D 0 case for K3 surfaces. The proof uses the existence of K3 and abelian
surfaces of all genera, and the multiplicative nature of the formulas. The proof of the
conjecture in [28] relies on these results, and consists in establishing the validity of the
conjecture at k D 0 for abelian surfaces by studying moduli spaces of pairs on abelian
surfaces and a crucial use of Theorem 6.

Conjecture 8 would also follow from its validity for all k for the K3 surface alone.
Here we note a remarkable coincidence: the series on the right-hand side of the above
formula appears in the work of Maulik, Pandharipande and Thomas [51] on computing
descendant invariants in the (reduced) Gromov–Witten or stable pairs theory of a K3

surface. This leads to a further reformulation:

Conjecture 10 Let .S;L/ be a irreducibly polarized K3 surface of genus g , and
let H be the hyperplane class on jLj. Then for all k ,

.y � 2Cy�1/k�1 xN
g�k

g�k;ŒS;L�
D

1X
nD0

ynC1�g

Z
CŒn�
jLj

cnCg�k

�
T CŒn�
jLj

�
� ��.H k/:

Thus far we have been discussing curves with a small number of nodes compared
to the ampleness of the line bundle L; this is the regime to which the conjectures
of [27] and the arguments of [43] apply. However, when the surface is P2 , the
recursion of Caporaso and Harris [12] determines the degrees of all such loci of nodal
curves, without any such restriction on the ampleness. Indeed, it determines more:
fix a line H � P2 , and sequences ˛; ˇ of integers specifying respectively fixed and
moving tangency conditions to H . Then the Caporaso–Harris recursion determines
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2252 Lothar Göttsche and Vivek Shende

the degrees nd;ı.˛; ˇ/ of the loci of curves with ı nodes and satisfying the tangency
conditions ˛; ˇ .4

In Section 5 we study the following formal refinement of the Caporaso–Harris recursion.
We take from [12] the notation I˛ D

P
i˛i and j˛j D

P
˛i ; note that the curves

counted by nd;ı.˛; ˇ/ have degree I˛C Iˇ .

Definition 11 The polynomials xN d;ı.˛; ˇ/ 2 ZŒy1=2;y�1=2� are defined by the re-
cursion

xN d;ı.˛; ˇ/D
X

kWˇk>0

Œk�y � xN
d;ı.˛C ek ; ˇ� ek/

C

X
˛0;ˇ0;ı0

�Y
i

Œi �
ˇ0

i
�ˇi

y

��
˛

˛0

��
ˇ0

ˇ

�
xN d�1;ı0.˛0; ˇ0/:

The limits on the sum and the initial conditions are the same as for the Caporaso–
Harris recursion and are given explicitly in Section 5. The refined recursion immedi-
ately specializes to the Caporaso–Harris recursion upon setting y D 1, so certainly
nd;ı.˛; ˇ/D xN d;ı.˛; ˇ/jyD1 . On the other hand, we know that for d � ı the Severi
degrees nd;ı..0; 0; : : :/; .d; 0; : : :// are given by the universal formulas, ie they are
equal to the numbers nı

ı;ŒP2;O.d/� . We conjecture a refined analogue:

Conjecture 12 For ı � 2d � 2, xN d;ı..0; 0; : : :/; .d; 0; : : ://D y�ıN ı
ı;ŒP2;O.d/� .

The equality at y D 1 was established by Kleiman and Shende [40]. At y D 0, the
recursion simplifies, allowing the right-hand side to be calculated explicitly; on the
other hand, a result of Scala allows the left-hand side to be calculated as well (see
Scala [65]); the answers match. We have verified the equality empirically for some
small d; ı .

In Section 6, we note a connection to real enumerative geometry and to some ideas
from tropical geometry. On a real toric surface S , there are real enumerative invariants
counting real ı–nodal curves with suitable signs, the real analogues of the Severi degrees.
If S is an unnodal del Pezzo surface, they coincide with the Welschinger invariants, real
analogues of the Gromov–Witten invariants. Mikhalkin [55] has shown that the Severi
degrees and the real enumerative invariants can be computed via tropical geometry:
he introduces tropical Severi degrees and tropical Welschinger invariants by assigning
Gromov–Witten and Welschinger multiplicities to tropical curves, and shows that they

4Vakil has generalized the Caporaso–Harris recursion to the case of rational ruled surfaces. In Section 5
we treat these as well; we have restricted in the introduction to P2 just for ease of notation.
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coincide with the Severi degrees and the real enumerative invariants respectively. The
Caporaso–Harris formula has been derived tropically by Gathmann and Markwig [23],
and an analogue for the tropical Welschinger invariants by Itenberg, Kharlamov and
Shustin [34]. These are specializations of the above recursion, specialized at 1 and �1

respectively. In particular the refined Severi degrees specialize to the Severi degrees
and the tropical Welschinger invariants. In [9], Block and Göttsche define and study
tropical refined Severi degrees by assigning polynomial multiplicities to the tropical
curves which specialize to the Gromov–Witten and Welschinger multiplicities.

On the right-hand side of Conjecture 12, the specialization y 7! �1 has an entirely
different meaning: we are taking the signatures of the relative Hilbert schemes and
rearranging them in a certain way. On the other hand, a signed count of real nodal
curves in a general P ı is obtained from the nı;R

Pı
defined earlier. In order that nı;R

Pı

match xN ı
Pı
.�1/, the following property would suffice:

Conjecture 13 Let P ı � jOP2.d/j be a linear system determined by a subtropical
collection of real points. If CŒn�=P ı is smooth, then its signature is equal to the Euler
characteristic of its real locus.

Here roughly speaking a collection of points in .R�/2 is called subtropical, if it can be
degenerated to a tropical collection of points without crossing walls, for the precise
definition see Itenberg and Mikhalkin [35, Lemma 2.7.(3)].

We remark briefly on related work. In the physics literature there is a notion of a
refined topological string, which gives in some cases a one-parameter deformation
of the various curve counting invariants; see Iqbal, Kozçaz and Vafa [33]. Notably it
does not have a “worldsheet” definition, even in the sense of physics. Mathematically,
the refined theory is supposed to correspond (see Dimofte and Gukov [18]) to the
motivic DT theory (see Kontsevich and Soibelman [41]); the lack of a worldsheet
definition corresponds to the fact that we do not know how to correspondingly refine
the Gromov–Witten invariants. (For further discussions of motivic DT theory, see
Kontsevich and Soibelman [42], Behrend, Bryan and Szendrői [6], Choi, Katz and
Klemm [15], and Bussi, Joyce and Meinhardt [11].) There have also been intimations
that a specialization of the refined theory is related to real invariants; see Krefl and
Walcher [45, Section 5]. Our approach falls roughly into this paradigm insofar as
xN i
C=Pı are assembled from ��y genera of relative Hilbert schemes, which under the

relevant assumptions on P ı are just the same as stable pairs spaces. It might plausibly
be hoped that the refined Severi degrees also admit an interpretation in the stable pairs
theory (see Pandharipande and Thomas [61; 62]) or its surface variant; see Kool and
Thomas [44].
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Notation We denote quantum numbers as

Œn�y WD
yn=2�y�n=2

y1=2�y�1=2
:

By the Hirzebruch genus X�y we mean the characteristic class which on a bundle E

with Chern roots xi takes the value

X�y.E/D
Y xi.1�ye�xi .1�y//

.1� e�xi .1�y//
2 1C .xi/QŒy� ŒŒxi ��:

Also let
ch�y.E/D

X
exi .1�y/:

Setting by definition

��y.X;E/ WD
X

.�y/p�.X; �p
˝E/;

we have according to Hirzebruch

��y.X;E/D

Z
X

ch�y.E/X�y.TX /:

When E DOX we suppress it from the notation. Note that

��y.X /D
X
p;q

.�1/pCqyqhp;q.X /;

where hp;q.X / are the Hodge numbers of X . Note the specializations to topological
Euler characteristic ��1.X / D �.X /, holomorphic Euler characteristic �0.X / D

�.X;OX /, and signature �1.X /D �.X /.

Glossary of notation

X .n/ nth symmetric power

X Œn� Hilbert scheme of n points

CŒn� relative Hilbert scheme of points of a family of curves
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P ı � jLj ı–dimensional sublinear system of a complete linear system

M Grothendieck ring of varieties

ŒX � class in M

ŒS;L� cobordism class of a surface with a line bundle

DS;L.y;x; q/ generating function for integrals on S Œn� which determines
the N i

ı;ŒS;L�
(6)

Q q=..1� q/.1�yq//

m.C / tropical multiplicity of a tropical curve

r.C / Œm.C /��1 Welschinger multiplicity of a tropical curve

M.C / Œm.C /�y refined multiplicity of a tropical curve

Curve counting invariants defined via generating functions of invariants
of (relative) Hilbert schemes of points

ni
C

invariants from Euler numbers for a single curve

ni
C the same for a family of curves

n
i;R
C

real invariant, from Euler number of real locus for a single
curve

n
i;R
C the same for a family of real curves
zN i

C
invariants in the Grothendieck group of varieties for a single
curve (see (1))

N i
C=B invariants for a family of curves in mixed Hodge modules

(4)

ni
C=B invariants for a family of curves in Chern–Schwarz–

Macpherson classes

N i
C=B Brasselet, Schürmann, Yokura refinement of the above

N i
C , N i

C=B invariants for a family of curves from ��y–genus (see
Definition 44)

NC=Pı the above for a linear system P ı � jLj

N i
ı;ŒS;L�

polynomial in L2, LKS , K2
S

, c2.S/ that equals NC=Pı for
L sufficiently ample (see Definition 63)

N i
ı;ŒS;L�

the same for NC=Pı (see Definition 63)
xN i
ı;ŒS;L�

N i
ı;ŒS;L�

=yı
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Generalized Severi degrees

nd;ı Severi degree on P2: number of ı–nodal curves in P2 of
degree d

nd;ı.˛; ˇ/ relative Severi degree: curves with contact conditions

nL;ı.˛; ˇ/ relative Severi degree (14)

N d;ı, N d;ı.˛; ˇ/ (relative) refined Severi degree on P2

N L;ı , N L;ı.˛; ˇ/ (relative) refined Severi degree on toric surface 76
xN d;ı, xN d;ı.˛; ˇ/ normalized refined Severi degrees (see Definition 11)
xN L;ı , xN L;ı.˛; ˇ/ (see Definition 77)

N
L;ı
0

refined Severi degree on P2 counting irreducible curves

W L;ı real curve counting invariants of toric surface

W
L;ı

0
real curve counting invariant for irreducible curves

W
d;ı

trop tropical Welschinger invariants of degree d on P2

W
L;ı

trop tropical Welschinger invariants on toric surface

xN
L;ı
trop refined tropical Severi degrees on toric surface

2 Invariants of a single curve

2.1 Refined invariants

Let M denote the Grothendieck ring of varieties; let LD ŒA1� denote the class of the
affine line. Kapranov [36] introduced the motivic zeta function of a variety:

�X .q/D

1X
nD0

Symn X � qn
2MŒŒq��:

When X is a smooth proper curve of genus g , he showed that .1� q/.1� qL/�X .q/
is a polynomial of degree 2g , and that one has a functional equation

�X .1=qL/D L1�gq2�2g�X .q/:

Motivated by a circle of ideas relating curve counting, Hilbert schemes on singular
curves, and knot invariants (see [25; 26; 43; 50; 58; 61; 62; 67], Katz, Klemm
and Vafa [37], Oblomkov and Shende [59], Maulik and Yun [52], Migliorini and
Shende [54]), we consider a “zeta function” defined using the Hilbert schemes rather
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than the symmetric products. The analogous rationality and functional equation continue
to hold.5

Lemma 14 (Hartshorne [30]) Let C be a Gorenstein curve, and let F be a tor-
sion free sheaf on C . Write F� for Hom.F;OC /. Then Ext�1.F;OC / D 0 and
F D .F�/� . Serre duality holds in the form Hi.C;F /D H1�i.C;F�˝!C /

� . For F

of rank one and torsion free, define its degree d.F / WD �.F /��.OC /. This satisfies
d.F /D�d.F�/, and, for L any line bundle, d.F ˝L/D d.F /C d.L/.

Proposition 15 Let C be a complete, reduced, irreducible Gorenstein, complex curve
of arithmetic genus g . Then fC .q/D .1�q/.1�qL/

P
d qd ŒC Œd �� is a polynomial of

degree 2g , satisfying q2gLgfC .1=qL/D fC .q/.

Proof Fix a degree-one line bundle O.1/ on C . Let xJ 0.C / denote the moduli space
of rank-one, degree-zero, torsion free sheaves; see Altman and Kleiman [2]. We map
C Œd �! xJ 0.C / by sending the ideal I �OC to the sheaf I�DHom.I;OC /˝O.�d/;
the fiber is P .H0.C; I�//. For F 2 xJ 0.C /, we write the Hilbert function as hF .d/ WD

dim H0.C;F ˝O.d//.

Fix hD hF for some F . Evidently h is supported in Œ0;1/, and by Riemann–Roch
and Serre duality is equal to d C 1� g in .2g � 2;1/. Inside Œ0; 2g � 2�, it either
increases by 0 or 1 at each step. Let �˙.h/D fd j 2h.d �1/�h.d �2/�h.d/D˙1g;
evidently �� � Œ0; 2g� and �C � Œ1; 2g� 1�. Consider

jh.q/ WD .1� q/.1� qL/
1X

dD0

qd ŒPh.d/�1�

D

1X
dD0

qd .ŒPh.d/�1�� .1CL/ŒPh.d�1/�1�CLŒPh.d�2/�1�/

D

X
d2��.h/

qdLh.d/�1
�

X
d2�C.h/

qdLh.d�1/:

This is a polynomial in q of degree at most 2g .

5This was observed for the Euler characteristics in [62, Proposition 3.13]; the argument however
is identical to that for the smooth case as in [36] which in turn is essentially the same argument as in
Schmidt’s original proof of the rationality and functional equation for the zeta function of a curve [66].
We nevertheless include (again the same) proof for completeness.
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Now let GDF�˝!C˝O.2�2g/, and h_DhG . By Serre duality and Riemann–Roch,
h_.d/Dh.2g�2�d/CdC1�g , so in particular, d 2�˙.h

_/ if and only if 2g�d 2

�˙.h/. It follows that q2gLgjh_.1=qL/D jh.q/.

Finally, stratify xJ 0.C / into strata over which hF is constant. The restriction of C Œd �

to each stratum is the projectivization of a vector bundle of rank hF .d/. Thus we have

fC .q/D .1� q/.1� qL/
1X

dD0

qd ŒC Œd ��

D .1� q/.1� qL/
X

h

ŒfF j hF D hg�

1X
dD0

qd ŒPh.d/�1�

D

X
h

ŒfF j hF D hg� � jh.q/:

Collecting together the terms for h and h_ completes the proof.

For us it is more convenient to have the symmetry without the shifting.

Definition 16 Let C be a complete, reduced, irreducible Gorenstein, complex curve
of arithmetic genus g . Then we write

ZC .q/ WD

1X
nD0

C Œn�qnC1�g:

Since .P1/Œn� D Pn , we have

ZP1.q/D
q

.1� q/.1� qL/

and define classes N i
C
2M by the formula

1X
nD0

C Œn�qnC1�g
D

1X
iD0

N i
C �Z

iC1�g

P1 :

To be explicit, note that Z WD q=..1�q/.1�qL// is a power series in q.1CqZŒL� ŒŒq��/.
It therefore has a compositional inverse q.Z/2ZŒL� ŒŒZ�� (given explicitly in Footnote 6).
Thus the N i

C
are just defined by the change of variables

1X
iD0

N i
C ZiC1�g

D

1X
nD0

C Œn�q.Z/nC1�g:

Corollary 17 Let C be a complete, reduced, irreducible Gorenstein, complex curve
of arithmetic genus g . Then ZC .q/DZC .1=qL/, and N i

C
D 0 for i > g .
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Proof In terms of the fC of Proposition 15, we have ZC .q/D q�gZP1.q/fC .q/,
so we may conclude the rationality and functional equation of ZC from that for fC .

Moreover fC .q/ is a polynomial of degree 2g . On the other hand we can expand it as
fC .q/D qg

P1
iD0 N i

C
�Z

i�g

P1 and then further into� gX
iD0

N i
C � q

i.1� q/g�i.1� qL/g�i

�
C

�
qg
1X

iD1

N
gCi
C

�
q

.1� q/.1� qL/

�i�
:

The first term is visibly a polynomial of degree at most 2g; for the second to be the same
it must vanish. But the coefficient of N

gCi
C

in the second term is qgCi CO.qgCiC1/,
so it follows that N

gCi
C
D 0 for i > 1.

Remark 18 We always have N 0
C
D 1 and N 1

C
D ŒC �C .g � 1/.1CL/. Given the

vanishing, only N
g
C

contributes large powers of q to ZC .q/; on the other hand when
we have n� 0 the map C Œn�! xJ 0.C / is a projective bundle. Comparison of these
terms reveals N

g
C
D xJ 0.C /.

Example 19 Let P1 , A1 , A2 be rational curves that are smooth, have one node and
have one cusp respectively. Then:

� N 0
P1 D 1.

� N 0
A1
D 1 and N 1

A1
D L.

� N 0
A2
D 1 and N 1

A2
D 1CL.

In each case Corollary 17 ensures the higher N i vanish.

As the Euler characteristic factors through M, it makes sense to write �.N i
C
/. When C

is smooth of genus g , it follows from Macdonald’s calculation of the cohomology of
symmetric products that �.N i

C
/D 0 for i > 0. However, N 1

C
D ŒC �C .g� 1/.1CL/

is never zero. To avoid this incursion of the global geometry of C , we remove the
contribution of the normalization zC of C . We define zZC WD ZC =Z zC , and zN i

C
by

the formula

zZC D

1X
iD0

zN i
C Zi�ı

P1 :

For p 2 C , let C
Œn�

p be the subvariety of C Œn� parameterizing subschemes supported
at p . Let ı.p/ denote the ı invariant of the singularity at p , and b.p/ the number of
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analytic local branches at p . Note C
Œn�

p only depends on the analytic local structure
of C at p . A stratification argument gives the product expansion

(1) zZC D

P1
nD0 qnC1�gŒC Œn��P1
nD0 qnC1�zgŒ zC Œn��

D

Y
p2C

P1
nD0 qn�ı.p/ŒC

Œn�
p �

.1� q/�b.p/
:

The product is written over all points in C , but may as well be written over only
singular points as the smooth points contribute 1.

We define ZC;p WD .1� q/b.p/q�ı.p/
P1

nD0ŒC
Œn�

p � so that the above can be written
zZC D

Q
ZC;p . Similarly, define N i

C;p
by the expansion ZC;pWD

P1
iD0N i

C;p
Z

i�ı.p/

P1 .

Corollary 20 Let C be a curve, let p 2C . Then N i
C;p
D 0 for i >ı.p/, and zN i

C
D 0

for i > ı.C /.

Proof Let C 0;p0 be a rational curve with a unique singularity at p0 analytically
isomorphic to the singularity of C at p ; such a curve exists by Laumon [46, Proposi-
tion 2.1.1]. Then

N i
C;p DN i

C 0;p0 D
zN i

C 0 DN i
C 0 :

Since ı.p/Dı.p0/Dg.C 0/, the vanishing N i
C;p

for i>ı.p/ follows from Corollary 17
applied to C 0 .

Then we have
1X

iD0

zN i
C Z

i�ı.C /

P1 D zZC D

Y
p2C

ı.p/X
iD0

N i
C;pZ

i�ı.p/

P1 ;

giving the desired vanishing of zN i
C

for i > ı.C /.

Conjecture 21 For all h, we have zN h
C
2 Z�0ŒL�.

Remark Theorem 1 realizes �. zN i
C
/ as the multiplicity of the stratum of curves of

cogenus i inside the versal deformation of C , whence it follows that �. zN i
C
/ > 0 for

i � ı.C /. It may be hoped that this conjecture indicates a refinement of this geometric
structure, ie that the coefficients of the zN i

C
count something.

For rational C , we have zN ı
C
D Œ xJ .C /�; by [46] these Jacobians are known to receive

a bijective morphism from an affine Springer fiber for gl. It is known that such
affine Springer fibers in other types are not necessarily in ZŒL� (see Kazhdan and
Lusztig [39, Appendix]), however according to Lusztig the status of the gl affine
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Springer fibers is unknown. From the work of Piontkowski [63] it follows that for
unibranch singularities with a single Puiseux pair, and for unibranch singularities
whose links are two-cablings of links of simple unibranch singularities, one has at least
zN ı

C
2 ZŒL�. The stated positivity has been checked for unibranch singularities with a

single Puiseux pair (eg xm D yn ) for m< 14 and n< 20 using the explicit formula
for Z.C / given in [58, Theorem 5].

From the fact that �.Z zC / D �.ZP1/1�g , we see that ni
C
WD �.N i

C
/ D �. zN i

C
/, and

in particular that the ni
C

vanish for i > ı.C /. This fact was used in [62] as evidence
that the ni

C
were in fact the Gopakumar–Vafa invariants, and was exploited in [43]

to count curves on surfaces. Here we note the Hirzebruch ��y genus has the same
property, which suggests that it is a more sensible refinement than working in the ring
of varieties.

Lemma 22 For a smooth curve C of genus g , ��y.ZC /D ��y.ZP1/1�g .

Proof The Hodge structures of symmetric products are known explicitly [48].

Corollary 23 We have ��y.N
i
C
/ D ��y. zN

i
C
/. In particular, ��y.N

i
C
/ D 0 for

i > ı.C /.

Remark 24 According to Conjecture 21, the zN i
C

may be recovered from ��y.N
i
C
/

by y 7! L. Conversely, one may separate Conjecture 21 into two pieces, one asking
that zN i

C
2 ZŒL� and the second asking that ��y.N

i
C
/ have positive coefficients.

2.2 Curves with simple singularities

Here we express the refined BPS invariants of curves with simple singularities in terms
the associated Dynkin diagram. In Figure 1, we recall the ADE classification of simple
singularities.

Lemma 25 We define A1 to be the germ at the origin of the curve cut out by y2D 0.
Similarly we define D1 for xy2 D 0 and E1 for y3 D 0. Then we have an equality
X
Œi�
� D X

Œi�
1 as subsets of .C2/Œi� for X D A;D;E and for any i up to the delta

invariant of X� .

Proof Any subscheme of length at most ı supported at the origin is annihilated by
.x;y/ı . In each case, the right-hand side of the equation of X� already belongs to this
ideal.
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y2 D xnC1 An

xy2 D xn�1 Dn

y3 D x4 E6

y3 D yx3 E7

y3 D x5 E8

� � �

� � �

Figure 1: The ADE singularities and associated colored diagrams: the sub-
script gives the total number of vertices of the diagram and the Milnor number
of the singularity. The coloring is characterized by requiring the colors to
alternate, and requiring that the total number of black vertices is the delta
invariant. Except for A1 , the number of filled vertices of valence one is the
number of analytic local branches.

Proposition 26 We haveX
ŒA
Œn�
1 �q

n
D

1

.1� q/.1� q2L/
;

X
ŒD
Œn�
1 �q

n
D

1� qC q3L2

.1� q/2.1� q2L/
;X

ŒE
Œn�
1 �q

n
D

1

.1� q/.1� q2L/.1� q3L2/
:

Proof We fix the monomial order 1< x < x2 < � � �< xy < x2y < x3y < � � � . Recall
that in the setting of power series rings, the theory of Gröbner bases (or ‘standard bases’)
is developed with respect to the lowest rather than highest order terms of series. Thus let
lt.f / of f 2CŒŒx;y�� be the lowest degree monomial appearing. A generating set I D

.i1; i2; : : : ; ik/ is a Gröbner basis when lt.I/D .lt.i1/; : : : ; lt.ik//. It is reduced when
the lt.it / are a minimal generating set for lt.I/, ie when k D dimC lt.I/=.x;y/lt.I/,
and moreover

it D lt.it /Cmonomials not in lt.I/:
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As is well known, every ideal admits a unique reduced Gröbner basis.

Let us first consider the case A1 . Ideals of CŒŒx;y��=y2 are the same as ideals of
CŒŒx;y�� containing y2 . The lt ideal of a finite colength such ideal must be of the form
.y2;xa/ or .y2;yxb;xa/ for some b < a. In the first case, a reduced Gröbner basis
of the original ideal takes the form�

y2;xa
Cy

a�1X
iD0

cix
i

�
;

whereas in the second it takes the form�
y2;yxb;xa

Cy

b�1X
iD0

cix
i

�
:

These sum asX
ŒA
Œn�
1 �q

n
D

1X
aD0

aX
bD0

qaCbLb
D

1X
aD0

qa 1� .qL/aC1

1� qL
D

1

1� qL

�
1

1� q
�

qL

1� q2L

�
;

which simplifies to the stated expression. The E1 case can be treated similarly, and
in any event the statements for A1;E1 are special cases of [58, Proposition 6].

We turn to D1 . Let I � CŒŒx;y�� be an ideal which contains xy2 and is of finite
colength. We have already counted all the ideals containing y2 ; these contribute
1=.1�q/.1�q2L/. We must account for the remaining ideals, and show they contribute
q3L2=.1� q/2.1� q2L/. So let I �CŒŒx;y�� be an ideal containing xy2 but not y2 .
Then lt.I/ contains xy2 ; it may be written in the form .ya;xy2;xby;xc/ for some
b � c . A corresponding Gröbner basis is�

ya;xy2;xbyC

a�1X
iD2

ciy
i ;xc
Cy

b�1X
jD1

dj xj
C

a�1X
kD1

ekyk

�
:

We start the sum over j from 1 since the monomial y is already accounted for in the
sum over k . Note that a�3 and b; c�1 because we assumed y2 62I . There are further
constraints on which such things may be Gröbner bases. For instance, multiplying
the third generator by y and subtracting a multiple of xy2 gives

P
ciy

iC1 ; by our
assumption on lt.I/ the lowest term of this must be ca�1ya , ie, the other ci must
vanish. So the basis takes the form�

ya;xy2;xbyC c0ya�1;xc
Cy

b�1X
jD1

dj xj
C

a�1X
kD1

ekyk

�
:
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Multiplying the fourth generator by y2 and arguing similarly, we see in fact ek vanishes
for k < a� 2, so the basis takes the form�

ya;xy2;xbyC c0ya�1;xc
Cy

b�1X
jD1

dj xj
C eya�2

C e0ya�1

�
:

Multiplying the fourth element by y and subtracting from the third element times xc�b

gives eya�1Ce0ya� c0xc�bya�1D ya�1.eCe0y� c0xc�b/. If e¤ 0, then the term
in parenthesis is invertible and hence ya�1 is in the ideal, a contradiction. Finally we
are reduced to the form�

ya;xy2;xbyC c0ya�1;xc
Cy

b�1X
jD1

dj xj
C e0ya�1

�
:

We leave it to the reader to check that there are no other constraints, and moreover that
every ideal admits a unique basis of this form (even though it is not literally a reduced
Gröbner basis, eg when b D c ). We count them:

1X
aD3

1X
cD1

cX
bD1

Lb�1C2qaCbCc�2
D q3L2

1X
a0D0

1X
c0D0

c0X
b0D0

Lb0qa0Cb0Cc0

D
q3L2

.1� q/2.1� q2L/
:

This completes the proof.

Let X be a simple singularity type. Let C be a curve and p a point at which C has
a!singularity analytically of type X . We will then write X Œn� WD C

Œn�
p , and similarly

ı.X / and b.X / for what we have before written as ı.p/ and b.p/; and similarly
ZX WDZC;p and N i

X
WDN i

C;p
. Recall these are related by

ı.X /X
iD0

N i
X �Z

i�ı
P1 DZX D .1� q/b.X /q�ı.X /

1X
nD0

qnX Œn�:

Theorem 27 Let X be a simple singularity. Color the dots of the associated Dynkin
diagram as in Figure 1. Let n

w;b
X

be the number of ways to choose w white dots and b

black ones such that no two dots of the same color are adjacent. Then

N h
X D

X
wCbDh

n
w;b
X

Lb:
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Proof We temporarily write

M h
X WD

X
wCbDh

n
w;b
X

Lb

and YX WD
Pı.X /

iD0
M i

X
�Zi�ı

P1 . We will show that YX D ZX . For small cases, say
X D A1;A2;A3 DD3;D4;E6;E7;E8 , we have explicit formulas on both sides so
this may be verified by hand or by computer.

It remains to treat in general An;Dn . The argument will reveal that in fact, Lemma 25
in a sense determined the values of the series in Proposition 26; in particular, we will
not use that Proposition again. (We used it above to check the base cases; of course
these could have been done without appealing to its full strength.)

We begin with the case of An . By considering what happens according as the right end
dot of the Dynkin diagram — the one not seen in the pictures above, which is white if
nD 2k and black if nD 2k � 1 — is chosen or not, we have

n
w;b
A2k
D n

w;b
A2k�1

C n
w�1;b
A2k�2

; n
w;b
A2k�1

D n
w;b
A2k�2

C n
w;b�1
A2k�3

:

Summing these, we have

M h
A2k
DM h

A2k�1
CM h�1

A2k�2
; M h

A2k�1
DM h

A2k�2
CLM h�1

A2k�3
:

Noting that ı.A2k/D ı.A2k�1/D k and summing,

YA2k
D YA2k�1

CYA2k�2
; YA2k�1

D Y �1
P1 YA2k�2

CLYA2k�3
:

It remains to show the same for the Z . Since both YX and ZX are symmetric
Laurent polynomials in q , it suffices to check the recurrence holds modulo q . Writing
�A D

P
qnA

Œn�
1 we had from Lemma 25 that ZAn

D .1� q/b.An/q�ı.An/�A .mod q/.
We are left to show that

q�k.1� q/�A D q�k.1� q/2�AC q�kC1.1� q/�A .mod q/;

q�k.1� q/2�A D q�k.1� q/2.1� qL/�ACLq�kC1.1� q/2�A .mod q/:

But these are both formal identities, independent of the value of �A .

An identical argument suffices to treat the Dn . We remark in passing that the recursion
above corresponds [50; 58; 59] to the skein relation on the HOMFLY invariants of the
links of the singularities.
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Example 28 For A9 , the nonvanishing invariants are:

zN 4
D 1CLCL2

CL3
CL4

zN 3
D 4C 6LC 6L2

C 4L3

zN 2
D 6C 9LC 6L2

zN 1
D 4C 4L

zN 0
D 1

The zN i are not generally symmetric.

Example 29 For E6 , the nonvanishing invariants are:

zN 3
D 1CLC 2L2

CL3

zN 2
D 3C 4LC 3L2

zN 1
D 3C 3L

zN 0
D 1

Example 30 For E8 , the nonvanishing invariants are:

zN 4
D 1CLC 2L2

C 2L3
CL4

zN 3
D 4C 6LC 7L2

C 4L3

zN 2
D 6C 9LC 6L2

zN 1
D 4C 4L

zN 0
D 1

For the simple singularities, we have the following remarkable statement, which may
be proven by comparing Theorem 27 to the description of the versal deformation of a
simple singularity as the quotient of the hyperplane arrangement of the same name by
the Weyl group; see Arnold, Gusein-Zade and Varchenko [4].

Theorem 31 Let X be a simple singularity. Then there exists some curve C contain-
ing as its unique singularity a real form of X , and a real disc Dj in the real locus of
the versal deformation of X such that

��y.N
j
C
/D

X
i

yi
� #.Dj

\B
j ;i
C /;

where B
j ;i
C is the locus of real nodal curves with j total nodes of which i are hyper-

bolic.
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This result was known to van Straten when j D ı.C /; he had conjectured in this case
that it holds for all singularities (see [68, Conjecture 4.7]) on the evidence of its validity
for the simple singularities and its validity at yD 1 for all singularities [22]. Theorem 1
asserts the validity of the above statement at y D 1 for all singularities, so one might
analogously conjecture that the statement of Theorem 31 holds always. Note that for
unibranch singularities, there is a unique topological type of real form.

2.3 Real invariants

We recall that the Betti numbers may depend on the choice of coefficients for cohomol-
ogy: for instance, we haveX

qn dim Hk.P2.R/;Q/D 1¤ 1C qC q2
D

X
qn dim Hk.P2.R/;Z=2Z/:

Note that nonetheless we have �.P2.R/;Q/ D 1 D �.P2.R/;Z=2Z/. In fact, as is
well known to follow from the universal coefficient theorem, the Euler characteristic
does not depend on the choice of coefficients. The same holds for compactly supported
cohomology, for instance because this can be described as the relative cohomology of
an appropriate pair. We therefore suppress the coefficients from the notation for Euler
characteristics.

In particular, since any (not necessarily oriented or closed) manifold M enjoys
Poincaré duality between H�.M;Z=2Z/ and H�c .M;Z=2Z/, we have �c.M / D

.�1/dim M�.M /.

As pointed out by Macdonald [48], for any reasonable space X , we have

H�.X n=Sn;Q/D H�.X n;Q/Sn D .H�.X;Q/˝n/Sn

and it follows formally that
1X

nD0

qn�.X n=Sn/D

�
1

1� q

��.X /
:

We note this is false in general for the compactly supported Euler characteristic, for
instance, one can show

P1
nD0 qn�c.Rn=Sn/D 1. Nonetheless, for real surfaces we

have:

Lemma 32 Let † be a manifold without boundary of (real) dimension 2; it may be
nonorientable and noncompact. Then

1X
nD0

qn�c.†
n=Sn/D

�
1

1� q

��c.†/

:
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Proof Both †n=Sn and † are real even-dimensional manifolds, and so we have
�D �c .

Now let C be an algebraic curve defined over R. We consider

ZR
C WD

1X
nD0

qnC1�g�c.C
Œn�.R//:

Note there are two different projective lines over R: one which has a real point (and
hence whose real locus is a circle), say X 2 � Y 2CZ2 D 0, and one which has no
real points X 2CY 2CZ2 D 0. We call them P1

� and P1
C . Their symmetric powers

likewise carry different complex conjugations:

.P1
�/
Œn�.R/DRPn; .P1

C/
Œ2kC1�.R/D∅; .P1

C/
Œ2k�.R/DRP2k :

Nonetheless, since �c.RP2kC1/D 0, we have

ZR
P1
C

D q=.1� q2/DZR
P1
�
:

In fact, for a smooth curve C , the series ZR
C

does not depend on the real structure
of C . We can determine it explicitly:

Lemma 33 Let C be a curve defined over R such that C ˝R C is a smooth curve of
genus g . Then ZR

C
D .ZR

P1/
1�g .

Proof As C is smooth, the Hilbert schemes agree with the symmetric products. Let �
denote the complex conjugation. We may stratify the locus .Symn.C //.R/ according
to the number of pairs of complex conjugate points. We parameterize the real points
by the symmetric powers of the real locus, and n pairs of complex conjugate points
in C by Symn..C.C/ nC.R//=�/. Thus compatibility of compactly supported Euler
characteristic with cut-and-paste gives

1X
nD0

qn�c.Symn.C /.R//

D

� 1X
nD0

qn�c.Symn.C.R///

�� 1X
nD0

q2n�c

�
Symn

�
C.C/ nC.R/

�

���
:

The loci Symn.C.R// are products of symmetric products of the connected components
of C.R/, ie of circles; it is easy to see (for instance by using a circle action) that these
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have Euler characteristic and compactly supported Euler characteristic zero. On the
other hand, the second term was computed above in Lemma 32. We conclude

1X
nD0

qn�c.Symn.C /.R//

D

1X
nD0

q2n�c

�
Symn

�
C.C/ nC.R/

�

��
D

�
1

1� q2

��c..C.C/nC.R//=�/

:

Finally, since a circle has vanishing Euler characteristic, and since the Euler character-
istic of a n W 1 étale cover is just n times the Euler characteristic of the base, we have
�c..C.C/ nC.R//=�/D �.C.C//=2D 1�g .

This motivates the definition of integers n
i;R
C

by the formula

(2)
1X

nD0

�R.C
Œn�/qn�gC1

D

1X
iD0

n
i;R
C

�
q

1� q2

�i�gC1

:

In this notation, Lemma 33 asserts that, for C a smooth curve defined over R, we have
n

0;R
C
D 1 and n

i;R
C
D 0 for i > 0.

For a point p on a curve C , write .C;p/ for the germ at p , and .C;p/Œn� for the
locus in the Hilbert scheme of points on C of subschemes set-theoretically supported
at p . For p 2 C.R/, we write rb.p/ and cb.p/ for respectively the number of real
and complex points above p in the normalization of C .

We have by stratificationP
qnC1�g�c.C

Œn�.R//P
qnC1�zg�c. zC Œn�.R//

D

Y
p2C sing.R/

q�ı.p/
P

qn�c..C;p/
Œn�.R//

.1� q2/�cb.p/=2.1� q/�rb.p/

�

Y
p2C sing.C/=�

q�2ı.p/

P
q2n�c..C;p/

Œn�/

.1� q2/cb.p/
:

We now compute n
ı;R
C

for a curve C with ı nodes and no other singularities. By the
product formula above, it suffices to do this in three special cases.

Lemma 34 The only nonvanishing invariants of a curve c˙ of arithmetic genus 1 with
a single node analytically of the form RŒŒx;y��=.x2˙y2/ are n0;RD 1 and n1;RD˙1.

(Caution: c� is the one with a node that looks like C.)

Lemma 35 The only nonvanishing invariants of a curve of arithmetic genus two with
a pair of complex conjugate nodes are n0;R D 1 and n1;R D 0 and n2;R D 1.
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We conclude:

Proposition 36 For a nodal curve C with ıD ıCC ı�C2ı0 nodes, where ı˙ are of
the form RŒŒx;y��=.x2˙y2/ and the 2ı0 are complex conjugates,

n
ı;R
C
D .�1/ı� D .�1/ıC�ı:

Moreover, n
i;R
C
D 0 for i > ı .

Theorem 37 Let C be a real reduced plane curve, and let C! B be a versal defor-
mation of its singularities. Let B

ı;ı�
C � B.R/ be the locus of nodal curves with ı

nodes of which ı� are of the form RŒŒx;y��=.x2 � y2/. Let Dj be a general disc of
dimension j , preserved by complex conjugation, passing near ŒC � 2 B . Then

n
j ;R
C
D

X
k

.�1/kD.R/j \B
j ;k
C :

In particular, n
j ;R
C
D 0 for j > ı.C /.

Proof In the following we write ı WD ı.C /. View nj ;R as a constructible function
on B.R/ taking b 7! nj ;R

Cb
.

Let Di
0
� B be a general (complex but preserved by conjugation) disc of dimension i

containing ŒC �. Then by [22; 67], CŒ�i�
Di

0
are all smooth, and if i � ı then all CŒn�Di

0

are smooth. The real locus of a smooth variety is smooth, so the same holds upon
passing to real points. Taking a disc DıC1 containing Dı

0
and Dı

1
a sufficiently nearby

slice, the spaces CŒn�Dı
0
.R/ and CŒn�Dı

1
.R/ are diffeomorphic (by smoothness) and

therefore have the same compactly supported Euler characteristics. Note that the first j

Hilbert schemes suffice to determine nj ;R . By additivity it follows that

(3)
Z

Di
0
.R/

nj ;Rd�D

Z
Di

1
.R/

nj ;Rd� for any j � i , and for all j if i � ı .

We first show the vanishing of the nj ;R for j >ı.C /. Note we have already established
it for smooth and nodal curves. We induct on ı.C /. Take i D ı in (3). By Diaz and
Harris [17] and Teissier [69], the locus of curves of cogenus at least ı is of codimension
ı and is the closure of the locus of ı–nodal curves. Thus by genericity its only
intersection with Dı

0
is at the central point ŒC �, and its only intersection with Dı

1
is in

finitely many nodal curves. Thus by induction and our explicit verification in the case
of nodal curves, the integral on the right vanishes for j > ı , hence so does the integral
on the left, which is again equal to nj ;R

C
by induction.
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Now we consider the remaining nj . Take i D j in the above equality. Then by
the same reasoning the only contribution to the integral on the left is n

i;R
C

, and the
only contribution to the integral on the right is the j –nodal curves. By our previous
calculation, these contribute as required.

Remark 38 If C has a real line bundle of degree 1 then the proof of Proposition 15
and Corollary 17 carries through in K0.var=R/; we may use this instead to conclude
that n

i;R
C
D 0 for i > g.C /. However we have not found an analogous argument if C

has no such bundle.

Remark 39 In [67], the proof of Theorem 1 used as an input the vanishing of the ni
C

for i > ı ; the argument given above shows this was unnecessary.

Remark 40 Thus a necessary condition for the statement of Theorem 31 to hold
for a singularity X is the existence a curve C containing a real form of X with
�1.ZC /DZR

C
.

Corollary 41 Let C!B be a family of reduced real plane curves in which all curves
have cogenus less than or equal to ı and there are finitely many curves of cogenus ı ,
all nodal. Then defining ni;R

C=B by

1X
nD0

�c.CŒn�B
.R//qn�gC1

D

1X
iD0

n
i;R
C=B

�
q

1� q2

�i�gC1

;

the number of ı–nodal curves counted with signs .�1/ı� D .�1/ıC�ı is n
ı;R
C=B .

3 Refined invariants of linear systems

Let � W C! B be a family of plane curves, and � Œn� W CŒn�! B the relative Hilbert
schemes. Denote by MHM.B/ the category of mixed Hodge modules (see Saito [64])
over B . We define

ZC=B D

1X
nD0

�
Œn�
!

QCŒn�q
nC1�g

2K0.MHM.B//ŒŒq��:

We define invariants N i
C=B 2K0.MHM.B// by the formula

(4)
1X

nD0

�
Œn�
!

QCŒn�q
nC1�g

D

1X
iD0

N i
C=B �Z

iC1�g

P1=pt :
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Proposition 42 If � W C!B is a family of integral plane curves and moreover CŒn� is
smooth for all n, then N i

C=B D 0 for i > g .

Proof In fact, according to [52; 54] we know much more. Writing z� for the restriction
of the map to the locus on the base where it is smooth, and .1/ for the Tate twist (it
decreases weights by 2, so Œ2�.1/ preserves weights) we have

.1� q/.1� qQB Œ2�.1//

1X
nD0

qn�
Œn�
!

QCŒn� Œdim BC n�

D

2gX
nD0

qnIC.B; ƒiR1
z��QC Œdim BCg�/Œ�i �:

The right-hand side of the above equation is a polynomial of degree 2g which enjoys
the symmetry ƒiR1 Š ƒ2g�iR1 by hard Lefschetz; we deduce the vanishing of
the N i

C=B as in Corollary 17.

Remark 43 One may write the same definition in K0.var=B/, but then we do not
know whether N i vanishes for i > g . The problem arises already for families of
smooth curves; the question here is whether a family of Jacobians is equivalent to its
torsors in the Grothendieck group of varieties.

We may take pointwise Euler characteristic in order to define an integer valued con-
structible function ni WD �.N i/, or global Euler characteristic to define ni

C=B 2 Z.
(By proper base-change, these are the same ni as in the introduction.) Since we have
that ni is supported on the locus of curves of cogenus i , certainly nk

C=B vanishes if k

is greater than the maximum cogenus of any curve in the family. These are the same as
the constructible functions of the introduction, that is, they satisfy (and could take as
their definition) the formula

1X
nD0

�.CŒn�/qnC1�g
D

1X
iD0

ni
C=B

�
q

.1� q/2

�iC1�g

:

Definition 44 We define N i
C=B.y/ WD ��y..B! pt/!N i/. Equivalently we can apply

��y ı.B! pt/! to both sides of (4) in order to directly define N i
C=B.y/ by the formula

1X
nD0

��y.CŒn�/qnC1�g
D

1X
iD0

N i
C=B.y/

�
q

.1� q/.1� qy/

�iC1�g

:

From Proposition 42, we see that N i
C=B.y/ vanishes for i greater than the maximum

genus of any curve in a family whose relative Hilbert schemes are nonsingular. But
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for both the ��y invariants of a single curve, and the � invariants of families, we had
vanishing beyond the maximum cogenus. Thus we may at least plausibly ask whether
this holds for N i

C=B . In fact it need not: Fantechi and Pandharipande observed that
this vanishing can fail already for B a curve of positive genus and C! B a family
of smooth curves. However, empirically, the situation appears to be better for linear
systems of curves in surfaces. We have the following conjecture:

Conjecture 45 Let L be a line bundle on a surface S , C ! jLj the tautological
family of curves, and P ı � jLj be a linear subsystem. Assume the relative Hilbert
schemes CŒn�

Pı
are nonsingular for all n� 0. Then N i

C=Pı .y/D 0 for i > ı .

From the smoothness criterion in [22] one may deduce that the maximum cogenus of
any curve in any such P ı is ı . The assumption holds in the following situations:

Theorem 46 Let L be a line bundle on a surface S , C!jLj the tautological family of
curves, and P ı � jLj a general linear subsystem. Then all relative Hilbert schemes CŒn�

Pı

are nonsingular in the following situations:

� S is arbitrary and L is ı–very ample [43; 22; 67].6

� S is a K3 or abelian surface and L is irreducible (see Mukai [56]).
� S is a rational surface and P ı contains no nonreduced curves, and no curves

with components which intersect KS nonnegatively [40]; in particular, for a
general P�2d�2 � jOP2.d/j.

Rather than simply integrate to get ni
C=B D

R
B nid�, we can extract more refined

information by taking Chern–Schwarz–Macpherson classes cSM
� . We recall that cSM

�

is the unique map from constructible functions to homology which commutes with
pushforward and satisfies the normalization cSM

� .1X / D c.TX / \ ŒX � when X is
smooth projective; its existence was conjectured by Deligne and Grothendieck and
established by Macpherson [49]. Now taking ni WD cSM

� .ni/ 2 H�.B/, we see by
Macpherson’s theorem that

1X
nD0

�
Œn�
� .c.T CŒn�/\ ŒCŒn��/qnC1�g

D

1X
iD0

ni
C=B

�
q

.1� q/2

�iC1�g

:

Of course we are also free to take this as the definition of the ni
C=B and conclude from

Macpherson’s theorem that ni
C=B vanishes if i is greater than the maximum cogenus

6 What is actually observed in [43] is the (obvious) fact that the first ı relative Hilbert schemes are
nonsingular under this hypothesis, and the less obvious fact that the assumption implies that no nonreduced
curves or curves of cogenus greater than ı occur in the P ı . Consequently, we have that the smoothness
criteria in [22; 67] may be used to establish smoothness of the remaining relative Hilbert schemes.
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of any curve in the family. In good cases, the constructible function ni and the class ni

carry singularity-theoretic meaning:

Theorem 47 Let C=B be a family of reduced plane curves with all CŒn�
B

nonsingular.
Let Bi be the locus of curves of cogenus i , and let Bi

C be the sublocus of curves
smooth away from i nodes. Assume Bj � xBi

C for all j � i . Then

multb. xB
i
C/D ni.b/D Eub. xB

i
C/:

Here Eu is the local Euler obstruction. Moreover, ni
C=B is the Chern–Mather class

of xBi
C .

Proof The first equality was asserted in [67] in the case of a locally versal family, but
in fact the same argument applies in the above generality.

For the second, it is shown by Migliorini and Shende in [53] that for any proper map
f W X ! Y of algebraic varieties, the varieties V ˛ which appear in the expansion
f�1D

P
c˛ �Eu.V ˛/ are all components of the higher discriminants (introduced in [53])

of the morphism f . It was shown in [67] that the higher discriminants of the map
CŒn�

B
! B are precisely the loci xBi , which by assumption agree with xBi

C . It remains
to determine the coefficients c˛ ; this may be done at the general point of each xBi

C , ie
in Bi

C . Now we can either make a calculation for nodal curves, or alternatively observe
that since the loci Bi

C are all immersed in B their Euler obstructions agree with their
multiplicities.

The identification of ni with the Chern–Mather class of xBi
C now follows from Macpher-

son’s construction of the functorial Chern class.

Remark 48 The assumption on genericity of nodal curves in Theorem 47 holds for a
locally versal family by [17; 69], for the general P ı � jLj when L is ı–very-ample
by [43], for the general P ı � jLj when L is irreducible on a general K3 surface (the
genericity of nodal curves in maximal cogenus is shown in Chen [14]), and it was
known classically for the general P � jOP2.d/j containing no nonreduced curves.

Remark 49 Aluffi [3] has shown that the multiplicity and Euler obstruction of the
discriminant of cubic curves on P2 differ at a triple line. The argument above fails here
because the total space of the restriction of the universal family to a one-dimensional
disc passing through this point is necessarily singular. Aluffi has also managed to extract
enumerative information about curves with singularities more complicated than nodes
from the Chern–Mather and Chern–Schwarz–Macpherson classes of discriminants;
perhaps the same can be done with the higher Severi strata.
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The map cSM
� admits a refinement due to Brasselet, Schürmann and Yokura. We

denote it by X BSY
�y W MHM. � /! H�. � /Œy�. It commutes with pushforward and obeys

the normalization X BSY
�y .QM /DX�y.TM /\ŒM � for M proper smooth. Thus we may

apply their functor to the N i
C=B and conclude that there are N i

C=B.y/DX BSY
�y .N i/ 2

H�.B/Œy� such that N i
C=B.y/D 0 for i greater than the arithmetic genus of the curves

(in a family of integral curves with nonsingular relative Hilbert schemes), and
1X

nD0

�
Œn�
� .X�y.T CŒn�/\ ŒCŒn��/qnC1�g

D

1X
iD0

N i
C=B.y/

�
q

.1� q/.1� qy/

�iC1�g

:

In the case of interest when B D P ı , we denote by abuse N i
C=B.y;H / 2 H�.P ı/ the

Poincaré dual class of N i
C=B.y/. Since N i

C=B.1/ is, in good cases, the Chern–Mather
class of the (codimension i ) Severi variety of cogenus i curves, we might expect:

Conjecture 50 Let L be a line bundle on a surface S , and let P ı � jLj be a linear
subsystem of reduced curves over which the relative Hilbert schemes CŒn�! P ı are
nonsingular for all n � 0. Then N i

C=Pı .y;H / is a polynomial of minimal degree i

in H , and in particular vanishes for i > ı .

We will see shortly that this conjecture is in fact equivalent to Conjecture 45. First we
recall how the Hirzebruch genera of the relative Hilbert schemes may be computed.

3.1 Genera of relative Hilbert schemes

Following Hirzebruch [31], we take a (normalized) genus to mean a natural transfor-
mation of contravariant functors ˆW K0. � /! H�. � ; ƒ/ (where ƒ is a commutative
ring) such that:

� For the trivial bundle C , we have ˆ.C/D 1.

� Sums go to products: ˆ.E˚F /Dˆ.E/ˆ.F /.

� There is a power series fˆ 2 1C zƒŒŒz�� such that for a line bundle L, we have
ˆ.L/D fˆ.c1.L//.

In the remainder of the paper we will be concerned only with the Hirzebruch genus
ˆDX�y , for which ƒDQŒŒy�� and f .z/D .z.1�ye�z.1�y///=.1� e�z.1�y//. In
any case fix some ƒ;ˆ. We write �.X / WDˆ.TX /.

Let S be a surface, L a line bundle on it, P ı � jLj some linear system, H D

OPı .1/. Let S Œn� be the Hilbert scheme of n points on S , and let Zn.S/� S �S Œn�

be the universal family, with the projections qW Zn.S/! S , p WZn.S/! S Œn� . Let
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LŒn� WD p�q
�L. This is a vector bundle of rank n on S Œn� with fiber H0.Z;LjZ /

over Z 2 S Œn� . Let � W CPı ! P ı be the universal curve over P ı and denote by
� Œn�W CŒn�

Pı
! P ı the relative Hilbert scheme of points. The relative Hilbert scheme

always has the expected dimension ıCn (see Altman, Iarrobino and Kleiman [1]), and
is the scheme-theoretic zero locus of a tautological section of LŒn�� H ; this section is
transverse when CŒn�

Pı
is nonsingular.

As a bookkeeping device, let ex denote a trivial line bundle with nontrivial C� action
giving equivariant first Chern class x , ie ˆ.ex/D fˆ.x/.

Definition 51 Let

DS;L;ˆ
n .x/ WD

Z
S Œn�

ˆ.TS Œn�/
cn.L

Œn�˝ ex/

ˆ.LŒn�˝ ex/
2ƒŒŒx��:

Proposition 52 Assume CŒn�
Pı

is nonsingular. Then

�
Œn�
�

�
ˆ
�
T CŒn�

Pı

�
\ ŒCŒn��

�
D fˆ.H /ıC1DS;L;ˆ

n .H /\ ŒP ı �:

In particular,

�
�
CŒn�

Pı

�
D ResxD0

�
fˆ.x/

x

�ıC1

DS;L;ˆ
n .x/:

Proof Denote qW S Œn�! pt. Then

�
Œn�
�

�
ˆ
�
T CŒn�

Pı

�
\ ŒCŒn��

�
D .q � 1Pı /�

�
cn.L

Œn�� H /
ˆ.TS Œn�/ˆ.T P Œı�/

ˆ.LŒn�� H /
\ ŒS Œn��

�
\ ŒP ı �

Dˆ.H /ıC1q�

�
ˆ.TS Œn�/

cn.L
Œn�˝ ex/

ˆ.LŒn�˝ ex/

� ˇ̌̌̌
xDH

\ŒP ı �:

This completes the proof.

Remark 53 If h0.L/ > ı , the formula makes sense without requiring smoothness, if
we view it as a virtual contribution. The description of CŒn�

ı
as zero locus of a section

of LŒn�� H gives it a virtual fundamental class and a virtual tangent bundle (see eg
Fantechi and Göttsche [21]). Thus independent of the singularities of CŒn�

ı
, what is

computed here is �.CŒn�/ with this virtual structure. Without any assumption on L,
we can view the second equality in Proposition 52 as a definition of �.CŒn�/.

The D
S;L;ˆ
n enjoy a certain multiplicativity. Introduce the series

(5) DS;L;ˆ
D

X
DS;L;ˆ

n qn:
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We denote by ŒS;L� the algebraic cobordism class of the pair of the surface S and the
line bundle L. For us7 this is the equivalence class of pairs .S;L/, where two such
.S1;L1/, .S2;L2/ are equivalent if the numbers L2

i , LiKSi
, KSi

2 , c2.Si/ coincide
for i D 1; 2. These form a group where in particular ŒS1;L1�C ŒS2;L2�D ŒS1tS2;L�

with L the line bundle which is L1 on S1 and L2 on S2 .

Proposition 54 The map ŒS;L� 7!DS;L;ˆ is a homomorphism from the cobordism
group of surfaces with bundles to the multiplicative group of invertible power series in q

with coefficients in ƒ. In particular there exist universal power series D1;D2;D3;D42

ƒŒŒq�� such that
DS;L;ˆ

DDL2

1 D
LKS

2
D

K 2
S

3
D

c2.S/
4

:

Proof The D
S;L;ˆ
n .x/ are defined by a genus applied to LŒn� and TS Œn� , so the first

statement follows from the arguments in [20].

For the second statement, let .Si ;Li/, i D 1; : : : ; 4 be chosen such that the four vectors
.L2

i ;LiKSi
;K2

Si
; c2.Si// are linearly independent. Then for any .S;L/ we can write

ŒS;L�D a1ŒS1;L1�C a2ŒS2;L2�C a3ŒS3;L3�C a4ŒS4;L4�, with ai 2Q and thus

DS;L;ˆ
D

4Y
iD1

.DS;Li ;ˆ/ai :

For simplicity we write ŒSi ;Li � also for the corresponding vector. Let e1D .1; 0; 0; 0/,
e2 D .0; 1; 0; 0/, e3 D .0; 0; 1; 0/, e4 D .0; 0; 0; 1/. Choosing .ai;j /

4
i;jD1 in Q withP

j ai;j ŒSj ;Lj �D ei for all i , we put Di D
Q4

jD1.D
S;Li ;ˆ/ai;j . As ŒS;L�DL2e1C

LKSe2CK2
S

e3C e.S/e4 , this gives

DS;L;ˆ
DDL2

1 D
LKS

2
D

K 2
S

3
D

c2.S/
4

:

The multiplicativity of Proposition 54 allows D
S;L;ˆ
n .x/ (and therefore also �.CŒn�/

and the BPS invariants) to be computed by localization in the following standard way.

By the above argument to compute DS;L;ˆ for any .S;L/ it is enough to compute them
for pairs .Li ;Si/ whose corresponding vectors are linearly independent. We can choose
the .Si ;Li/ as .P2;O/, .P1�P1;O/, .P1�P1;O.1; 0//, .P1�P1;O.1;�1//. In
this case S D Si is a toric surface, ie it has an action by a torus .C�/2 with finitely
many fixed points, and LDLi has an natural equivariant lifting. The action of .C�/2

on S induces in a natural way an action on S Œn� , and the equivariant lifting of L

7 For a geometric account of algebraic cobordism of varieties with bundles see Lee and Pandhari-
pande [47]; we however do not require any results of this theory and only use “cobordism class” as a
convenient shorthand.
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induces an equivariant lifting of LŒn� . Thus we can apply equivariant localization
to compute D

S;L;ˆ
n .x/, in terms of the weights of the action on the fibers of TS Œn�

and LŒn� at the fixed points. The fixed points are parametrized by tuples of Young
diagrams and the weights of the action can be expressed explicitly in terms of this data.
For more details in a slightly different situation see eg Ellingsrud and Göttsche [19],
Nakajima and Yoshioka [57] and Carlsson and Okounkov [13].

From now on we specialize to ˆDX�y and abbreviate D
S;L
n .y;x/ WDDS;L;X�y

n .x/,
DS;L.y;x; q/ WD

P
n�0 D

S;L
n .y;x/qn . In this case a computer calculation yields the

D
S;L
n .y;x/ for n � 10 and modulo x14 . The ��y.CŒn�Pı

/ are computed from this by
Proposition 52.

3.2 A reformulation of the conjectures, and evidence.

Let ti be the Chern roots of the tangent bundle of the Hilbert scheme, and let li be the
Chern roots of the bundle LŒi� . In the previous subsection we introduced the series

(6) DS;L.y;x; q/ WD
X

qn

Z
S Œn�

2nY
iD1

ti.1�ye�ti .1�y//

.1� e�ti .1�y//

�

nY
jD1

.1� e�.ljCx/.1�y//

.1�ye�.ljCx/.1�y//
2QŒy� ŒŒx�� ŒŒq��:

For convenience we write QD q=..1� q/.1� qy//.8

By Proposition 52 we have

(7)
1X

iD0

N i
C=Pı .y;H /Qi

D

�
q

Q

�1�g�
H.1�ye�H .1�y//

1� e�H .1�y/

�ıC1

DS;L.y;H; q/:

8 We record here that the compositional inverse is given by what are called the Narayana numbers,

q.Q/D

1X
nD1

nX
kD1

Qnyk�1..�1/n�1=n/

�
n

k

��
n

k � 1

�
;

which specializes to the following formulas involving Catalan numbers,

q.Q/jyD1 D

1X
nD1

Qn..�1/n�1=.nC 1//

�
2n

n

�
;

q.Q/jyD0 DQ=.1CQ/;

q.Q/jyD�1 D

1X
nD0

Q2nC1.�1/n=.2nC 1/

�
4n

2n

�
:

Note also that Q.q/ 2 qZŒŒq; qy�� and q.Q/ 2QZŒŒQ;Qy�� .
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Conjecture 55 For any surface S and line bundle L, we have

.q=Q/1�g.L/DS;L.y;x; q/ 2QŒy� ŒŒx;xQ��:

Proposition 56 Conjectures 45, 50 and 55 are equivalent.

Proof Note f .x/ WD X�y.e
x/ 2 1C xQŒy� ŒŒx�� is invertible. From (7), we see that

Conjecture 55 implies Conjectures 45 and 50.

Assume Conjecture 45. Now consider some fixed linear system P ı � jLj on some
surface S such that all the relative Hilbert schemes CŒn� ! P ı are nonsingular.
Conjecture 50 amounts to the statement

.Q=q/g�1f .x/ıC1DS;L.y;x; q/ 2QŒŒx;xQ��CO.xıC1/:

This obviously holds at ı D 0; let us prove it holds at ı by induction. If we know this
statement holds for some ıD r �1 and wish to check it for ıD r , since f .x/ 2QŒŒx��
we already know the statement modulo xr . So we need only check

degQ Coeffxr .Q=q/g�1fˆ.x/
rC1DS;L.y;x; q/� r:

But this is precisely the assertion of Conjecture 45 for P r . And since all the relative
Hilbert schemes will also be smooth over a general P r � P ı for any r � ı , the
hypothesis of Conjecture 45 is satisfied and we may deduce Conjecture 50.

Finally, Conjecture 50 asserts that Conjecture 55 holds modulo xıC1 . We have an
expression

DS;L
DDL2

1 D
L:KS

2
D

K 2
S

3
D

c2.S/
4

;

where the Di are power series starting with 1. Thus we compare DS;L for various
surfaces and line bundles to conclude the statement of Conjecture 55 for the series
Di , modulo some xk . Taking k!1 by choosing increasingly ample line bundles
recovers the statement for DS;L .

Remark 57 The above argument implies in particular that Conjecture 55 holds in the
Euler characteristic limit y D 1. From this it follows formally that for any P ı � jLj,
with no assumptions on the reducedness or irreducibility of the curves that appear or
on the smoothness of the relative Hilbert schemes, there are integers ni

C=Pı such that

1X
nD0

qnC1�g

Z
ŒCŒn��vir

ctop.T
virCŒn�/D

ıX
iD0

ni
C=Pı

�
q

.1� q/2

�iC1�g

:
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Recall that DS;L can be expressed in four universal power series,

DS;L
DDL2

1 D
KS :L
2

D
K 2

S

3
D

c2.S/
4

:

To avoid writing .Q=q/g�1 we adjust these series slightly.

Definition 58 We write zDS;L WD .Q=q/g�1DS;L . We also take zD1 WD .Q=q/
1=2D1 ,

zD2 WD .Q=q/
1=2D2 and zD3 DD3 , zD4 DD4 , so that

zDS;L
D zDL2

1
zD

KS :L
2

zD
K 2

S

3
zD

c2.S/
4

:

We have zDS;L 2 1C .y;x;Q/QŒy� ŒŒx;Q�� for all S;L, hence the same is true for
the zDi . Similarly, Conjecture 55 is equivalent to the assertion that zDi 2QŒy� ŒŒx;xQ��

for all i .

Theorem 59 We have zD1; zD4 2QŒy� ŒŒx;xQ��.

Proof Let .A;L/ be a primitively polarized abelian surface of Picard rank 1. If
L2 D 2k C 2 then dim jLj D k and the curves in jLj have arithmetic genus k C 2.
Note such .A;L/ exist for all k . By [56] the relative Hilbert schemes are smooth, and
so from Proposition 42 we find that the N i vanish beyond the arithmetic genus. By
this vanishing and the formula (7) extracting the N i from DS;L ,

degQ Coeffxk fˆ.x/
kC1 zD2kC2

1
� kC 2:

We write �.x;Q/ D fˆ.x/ zD
2
1
2 1 C .x;Q/QŒy� ŒŒx;Q��. We want to show that

zD1 2 QŒy� ŒŒx;xQ��; since this evidently holds for fˆ.x/ and we may take roots
of power series starting with 1, it suffices to show this for � . So we have that
degQ Coeffxk �.x;Q/kC1 � kC 2.

The following argument is completely formal and does not involve the geometric mean-
ing of � . We write dQ.k/ WDdegQ Coeffxk �.x;Q/kC1 . Let k1Dminfk jdQ.k/>kg,
assuming this set is nonempty. Then dQ.k1/ D degQ Coeffxk1 �.x;Q/

k1C1 , since
no lower (in x ) degree term can contribute such a high power of Q. There are
two cases, dQ.k1/ D k1 C 2 or dQ.k1/ D k1 C 1. In the first case, consider
Coeffx2k1 �.x;Q/

2k1C1 . There will be a contribution from products of two terms of
the form Qk1C2xk1 , which gives the highest possible power of Q and thus cannot be
canceled. But then degQ Coeffx2k1 �.x;Q/

2k1C1 D 2k1C4, which is a contradiction.
In the second case, consider Coeffx3k1 �.x;Q/

3k1C1 . In order that the degree 3k1C3

contribution from products of three terms Qk1C1xk1 be canceled, there must be some
hC h0 D 3k1 with dQ.h/D hC 2 and dQ.h

0/ > h0 . By minimality of k1 , we have
h0 > k1 hence h < 2k1 . Let k2 D minfk j dQ.k/ > k C 1g � h < 2k1 . Finally
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consider Coeffxk1Ck2 �.x;Q/k1Ck2C1 . There is a contribution from products of terms
the form xk1Qk1C1 and xk2Qk2C2 ; since k2 < 2k1 this contribution cannot be
canceled. This is a contradiction. So finally we must have dQ.k/� k for all k , hence
�.x;Q/ 2CŒy� ŒŒx;xQ��, hence the same holds for zD1 .

Now let .K;L/ be a primitively polarized K3 surface of Picard rank 1. If L2D 2g�2

then dim jLj D g and the curves in jLj have genus g . Such .K;L/ exist for all g .
By vanishing of the N i beyond the arithmetic genus we have

degQ Coeffxg fˆ.x/
gC1 zD

2g�2
1

D24
4 � g:

Since we know fˆ.x/; zD1 2QŒy� ŒŒx;xQ��, we may conclude the same for D4 .

Corollary 60 Conjectures 45, 50 and 55 hold for surfaces with numerically trivial
canonical class.

Remark 61 Note the slightly curious nature of the proof of the theorem and corollary:
for geometric reasons, namely smoothness of the relative Hilbert schemes and the
near equality of the genus and dimension of the linear system for certain line bundles
on K3 and abelian surfaces, we know the conjecture for complete linear systems on K3

surfaces and something close for abelian surfaces. Then by leveraging the universality
of the expressions, and the existence of K3 and abelian surfaces of all genera, we can
conclude the result also for not necessarily complete linear systems.

This sort of approach was suggested to the authors by Pandharipande [60], who further
suggested that the other power series may be similarly constrained by finding enough
other surfaces with nontrivial canonical class but for which nonetheless the genus and
dimension of linear systems are close. However to use these (or any) surfaces for the
present purposes, one must establish smoothness of the relative Hilbert schemes, which
we do not know how to do.

Using the localization calculation described in Section 3.1, we can give evidence for
Conjecture 55 for arbitrary surfaces.

Proposition 62 Conjecture 55 holds modulo q11 and x14 . Therefore, if 0� ı � 13

and P ı � jLj is a linear system over which the relative Hilbert scheme is smooth, there
exist polynomials N i

C=Pı .y/ 2 ZŒy�, where i D 0; : : : ; ı , such that

X
n�0

��y.CŒn�/qnC1�g
�

ıX
lD0

N i
C=Pı .y/Q

lC1�g mod O.q11C1�g/;

and furthermore these polynomials are explicitly computed. If moreover g < 11 and
all curves are irreducible, then the equality is established to all orders.
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For example, Conjecture 45 holds for a general P4 in jOP2.6/j.

The relation between the various n;n;N;N and the series DS;L has in this section
always been contingent on the smoothness of the relative Hilbert schemes over the
appropriate linear subsystem P ı � jLj. To avoid continually making this hypothesis,
we introduce the following:

Definition 63 For a surface S and a line bundle L, we define N i
ı;ŒS;L�

, N i
ı;ŒS;L�

, by
the formulas

1X
iD0

N i
ı;ŒS;L�Q

i
D

�
H.1�ye�H .1�y//

1� e�H .1�y/

�ıC1

zDS;L.y;H; q/;

1X
iD0

N i
ı;ŒS;L�Q

i
D ResxD0

��
1�ye�x.1�y/

1� e�x.1�y/

�ıC1

zDS;L.y;x; q/

�
;

and similarly for the specializations n;n.

By comparison with (7), we see that for a linear system P ı � jLj containing only
reduced curves, and whose relative Hilbert schemes are smooth, N i

Pı�jLj
DN i

ı;ŒS;L�
.

4 The term of the deepest stratum

For a linear system P ı � jLj, the numbers nıC=Pı have the clearest enumerative
significance, counting the number of ı–nodal curves in the linear system. Thus we
might also hope that the N ı

C=Pı .y/ have an enumerative meaning refining this. In any
case, assuming Conjecture 55, the N ı

ı;ŒS;L�.y/ are the easiest to compute and their
generating function is multiplicative.

We have been in the meantime in able to prove the main conjecture of this section
(Conjecture 67) in case KS is numerically trivial. The proof appears in [28], and
depends on several results from this paper, Theorem 59 in particular.

Proposition 64 Assume Conjecture 55, or KS D 0. View zDS;L as an element of
QŒy� ŒŒx; s�� with s D xQ. ThenX

ı�0

N ı
ı;ŒS;L�s

ı
D zDS;L.y;x D 0; s/:

Corollary 65 Assume Conjecture 55, or KS D0. Then there exist series Ai 2QŒy� ŒŒs��
such that X

ı�0

N ı
ı;ŒS;L�.y/s

ı
DAL2

1 A
LKS

2
A

K 2
S

3
A

c2.S/
4

:
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Proof Viewing zDi 2QŒy� ŒŒx; s��, where s D xQ, take Ai WD
zDi jxD0 .

In the unrefined (yD1) setting, more explicit formulas were expressed after substituting
for s a certain quasimodular form. Specifically, in [27, Conjecture 2.4], the following
expansion was proposed:

(8)
X
ı�0

nıı;ŒS;L� � .DG2/
ı
D
.DG2=q/

�.L/B
K 2

S

1
B

LKS

2

.� �DDG2=q2/�.OS /=2
:

Here G2 is the Eisenstein series, � is the discriminant:

�.q/D q

1Y
nD1

.1� qk/24; G2.q/D
1

24
C

1X
mD1

qm
X
d jm

d:

The series B1;B2 2 1C qQŒŒq�� are not known explicitly, although their first several
coefficients may be computed and are given in [27]. We also write D D q d

dq
. The

above formula is by now a theorem, since the existence of universal formulas has been
established [70; 43], and the case of the K3 surface (where KS D 0 hence the Bi do
not appear) was solved explicitly; see Bryan and Leung [10].

Notation 66 We write xN ı
ı;ŒS;L�

WDN ı
ı;ŒS;L�

=yı .

Now we give a conjectural refinement of Equation (8). The series �;DG2 are refined
as follows:9

z�.y; q/ WD q

1Y
nD1

.1� qn/20.1�yqn/2.1�y�1qn/2;

eDG2 WD

1X
mD1

mqm
X
d jm

Œd �2y

d
:

9 These functions are related to certain Jacobi forms. Let q D e2�i� , y D e2�iz . (1) Then
z�.y; q/D �10;1.�; z/=.y

1=2 � y�1=2/2 . Here �10;1.�; z/D �.�/
18�.�; z/2 is up to normalization the

unique Jacobi cusp form on Sl2.Z/ of weight 10 and index 1 . (2) We can write

.y � 2Cy�1/fDG2 D

1X
mD1

qm
X
d jm

m

d
.yd
� 2Cy�d /

D�2.G2.�/C 1=24/C
X

d;e>0

e.yd
�y�d /qde

D�
1
2

D log
�
�10;1.�; z/

�.�/

�
D�

1
2

D log.��2;1.�; z//:

Here �.�/ is the discriminant function and ��2;1 D �10;1=� is the up to normalization unique weak
Jacobi cusp form of weight �2 and index 1 on Sl2.Z/ .
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Conjecture 67 There exist universal power series B1.y; q/;B2.y; q/ 2QŒy;y�1� ŒŒq��

such that

(9)
X
ı�0

xN ı
ı;ŒS;L�.y/.

eDG2/
ı
D
.eDG2=q/

�.L/B1.y; q/
K 2

S B2.y; q/
LKS

.z�.y; q/DeDG2=q2/�.OS /=2
:

Here, to make the change of variables, view all functions as elements of QŒy;y�1� ŒŒq��.

This conjecture is again checked modulo q11 , and we get that

B1.y; q/D 1� q� ..y2
C 3yC 1/=y/q2

C ..y4
C 10y3

C 17y2
C 10yC 1/=y2/q3

� ..18y4
C 87y3

C 135y2
C 87yC 18/=y2/q4

C ..12y6
C 210y5

C 728y4
C 1061y3

C 728y2
C 210yC 12/=y3/q5

� ..2y8
C 259y7

C 2102y6
C 5952y5

C 8236y4
C 5952y3

C 2102y2
C 259yC 2/=y4/q6

C ..162y8
C 3606y7

C 19668y6
C 48317y5

C 64253y4
C 48317y3

C 19668y2
C 3606yC 162/=y4/q7

� ..47y10
C 3789y9

C 41999y8

C 177800y7
C 392361y6

C 505678y5
C 392361y4

C 177800y3

C 41999y2
C 3789yC 47/=y5/q8

C ..5y12
C 2416y11

C 60202y10

C 445989y9
C 1576410y8

C 3197831y7
C 4018919y6

C 3197831y5

C 1576410y4
C 445989y3

C 60202y2
C 2416yC 5/=y6/q9

� ..896y12
C 58504y11

C 793194y10
C 4483755y9

C 13818256y8

C 26192369y7
C 32243357y6

C 26192369y5
C 13818256y4

C4483755y3
C 793194y2

C 58504yC 896/=y6/q10
CO.q11/;

B2.y; q/D
1

.1�yq/.1� q=y/
.1C 3q� ..3y2

CyC 3/=y/q2
C ..y4

C 8y3
C 18y2

C 8yC 1/=y2/q3
� ..13y4

C 53y3
C 76y2

C 53yC 13/=y2/q4

C ..7y6
C 100y5

C 316y4
C 455y3

C 316y2
C 100yC 7/=y3/q5

� ..y8
C 112y7

C 779y6
C 2076y5

C 2819y4
C 2076y3

C 779y2

C 112yC 1/=y4/q6
C ..67y8

C 1243y7
C 6129y6

C 14386y5

C 18870y4
C 14386y3

C 6129y2
C 1243yC 67/=y4/q7

� ..19y10

C1281y9
C12417y8

C48879y7
C104034y6

C132579y5
C104034y4

C 48879y3
C 12417y2

C 1281yC 19/=y5/q8
C ..2y12

C 822y11
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C 17542y10
C 117829y9

C 393703y8
C 775411y7

C 965540y6

C 775411y5
C 393703y4

C 117829y3
C 17542y2

C 822yC 2/=y6/q9

� ..310y12
C 17206y11

C 207074y10
C 1085712y9

C 3197506y8

C 5913778y7
C 7223539y6

C 5913778y5
C 3197506y4

C 1085712y3

C2070742y2
C 17206yC 310/=y6/q10

CO.q11//:

At y D 1, we recover modulo q11 the functions B1.q/, B2.q/ of [27].

As in [27, Remark 2.6], the expansion in eDG2 may be exchanged for an expansion in q

while simultaneously trading a sum over varying numbers of point conditions while
fixing the line bundle for a sum over line bundles while fixing the point conditions.
Note the latter form is more natural from the point of view of the GW/DT/pairs theories,
and indeed this is the form in which the K3 is solved in [10].

In detail this procedure is as follows. For any power series f 2 RŒŒq�� and g 2

qC q2RŒŒq��, we may expand f in terms of g by the residue formula:

f .q/D

1X
lD0

g.q/l Coeffq0

�
f .q/Dg.q/

g.q/lC1

�
:

Conjecture 67 asserts that xN ı
ı;ŒS;L� is the coefficient of eDG

ı

2 of a certain expression;
taking this coefficient by the above residue formula gives the equivalent formulation
xN ı
ı;ŒS;L�

.y/

D Coeffq0

�
eDG
�ı�1

2 DeDG2

.eDG2=q/
�.L/B1.y; q/

K 2
S B2.y; q/

LKS

.z�.y; q/DeDG2=q2/�.OS /=2

�

D Coeff
q.L

2�LKS /=2

�
.eDG2/

�.L/�1�ıDeDG2B1.y; q/
K 2

S B2.y; q/
LKS

.z�.y; q/DeDG2/�.OS /=2

�
:

We would now like to collect coefficients of q to write the entire series in the . � / in terms
of the xN . So we must choose some values of ı; ŒS;L� such that K2

S
;LKS ; �.OS /

and k WD�.L/�1�ı remain constant, but .L2�LKS /=2 assumes every integer value
starting from kC 1��.OS /. In other words, the cobordism class of the surface, the
number of point conditions kD�.L/�1�ı , and LKS are fixed, and L2 varies. Note
that it is not necessarily possible to find a fixed surface S and honest line bundles Li

which realize all the desired values. This causes no difficulties as the xN ı
ı;ŒS;L� may

be viewed as just functions of the four values L2;LKS ;K
2
S
; c2.S/. Making this

dependence explicit we write

SMk;ŒS �..L
2
�LKS /=2;LKS / WD xN

�.L/�1�k

�.L/�1�k;ŒS;L�
;
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where the right-hand side is viewed just as a function of two integers and is determined
by evaluating the left-hand side on the cobordism class ŒS;L� with the specified
invariants. In terms of the SM , we have

(10)
1X

lDkC1��.OS /

SMk;ŒS �.l;LKS /q
l

DeDG2.y; q/
k B1.y; q/

K 2
S B2.y; q/

LKS DeDG2.y; q/

.z�.y; q/DeDG2.y; q//�.OS /=2
:

We can also express this in a slightly different way, fixing LKS , k and varying ı :
write xNk;ŒS �.ı;LKS / WD xN

ı
ı;ŒS;L�

with k D �.L/� 1� ı . Then

(11)
1X
ıD0

xNk;ŒS �.ı;LKS /q
ı

D .eDG2.y; q/=q/
k B1.y; q/

K 2
S B2.y; q/

LKS .DeDG2.y; q/=q/

.z�.y; q/ �DeDG2.y; q/=q2/�.OS /=2
:

When S is a K3 surface, the right-hand side simplifies dramatically. Moreover, on the
left-hand side, for each term we may choose a representative K3 surface Sg of genus
g , with an irreducible line bundle Lg giving the polarization. That is,

SMk;ŒK3�.g� 1; 0/D xN
g�k

g�k;ŒSg;Lg�
:

The relative Hilbert schemes over the general P ı � jLgj are all smooth [56], so the
xN ı
ı;ŒSg;Lg�

are equal to the geometric xN ı
C=Pı . Summarizing the preceding discussion:

Conjecture 68 For any k ,
1X

gDk

qg�1 xN
g�k

g�k;ŒSg;Lg�
.y/D

eDG2.y; q/
k

z�.y; q/
:

Proposition 69 Assume Conjecture 55. Then Conjectures 67 and 68 are equivalent.

Proof According to Corollary 65, from Conjecture 55 we can deduce that the xN have
a multiplicative generating series. The two of its components which are made explicit
in Conjecture 67 are determined by the case when S is a K3 surface, and we have
seen that the posited explicit formula is equivalent to that given in Conjecture 68.

Proposition 70 Conjecture 68 is true at k D 0.

Proof The relative Hilbert schemes over the general P ı � jLgj are smooth, so the
quantity xN g

g;ŒSg;Lg�
is the ��y genus of the relative compactified Jacobian of the
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tautological family of curves C=jLgj. In fact, Kawai and Yoshioka compute the Hodge
polynomial of this space [38]. Alternatively, as in [5] one may note that the relative
compactified Jacobian over jLgj is birational to the Hilbert scheme of points S

Œg�
g ;

since both are hyper-Kähler they are deformation equivalent by Huybrechts [32], and
the Hodge polynomial of the Hilbert scheme of points was computed by Göttsche and
Soergel in [29]. In either case the result is given by the right-hand side.

We do not know how to compute the ��y genera of relative Hilbert schemes over
linear subsystems for K3 surfaces. In fact, while the Euler numbers of these spaces are
known, the only known calculation of them (due to Maulik, Pandharipande and Thomas)
is extremely indirect, and involves at least two uses of the Gromov–Witten/Pairs
correspondence [51]. Rather remarkably, the same series which we have conjectured
describes the xN ı

ı
is found in [51] to encode all the Euler numbers of relative Hilbert

schemes over linear subsystems.

Theorem 71 [51] For each g , let .Sg;Lg/ be a K3 surface of genus g , and as-
sume Lg is irreducible. Let H be the hyperplane class on jLgj. Then for any k ,

.y � 2Cy�1/k�1
eDG

k

2

z�
D

1X
gDk

qg�1
1X

nD0

ynC1�g

Z
CŒn�
jLg j

cnCg�k.T CŒn�
jLgj

/ � ��.H k/:

Comparing powers of q , we see that given [51], Conjecture 68 is equivalent to the
following statement:

Conjecture 72 Let .S;L/ be a K3 surface of genus g with L irreducible. For all k ,

.y � 2Cy�1/k�1 xN
g�k

g�k;ŒS;L�
D

1X
nD0

ynC1�g

Z
CŒn�
jLj

cnCg�k.T CŒn�
jLj
/ � ��.H k/:

Remark 73 The statement of Theorem 71 in [51] differs slightly; there are some signs
owing to the use of � rather than T , and it is formulated in terms of the space of
“stable pairs” rather than the relative Hilbert scheme. But since Lg is irreducible, these
are the same space as per [62, Appendix B]. In the language of [51], Conjecture 72
may be viewed as asserting that the xN encode certain descendent integrals in the stable
pairs theory, or equivalently in the Gromov–Witten theory.

We may instead specialize to abelian surfaces: let .A;Lg/ denote a primitively polarized
abelian surface with L2

g D 2g� 2, hence �.L/D g� 1 and g.L/D g ; assume L is
irreducible. Note such surfaces exist for all g � 1. Equation (10) specializes to

1X
gDkC2

xN
g�k�2

g�k�2;ŒA;Lg�
qg�1

D

1X
lDkC1

SMk;ŒA�.l; 0/q
l
DeDG2.y; q/

kDeDG2.y; q/:
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The above formula is not equivalent to Conjecture 67, since �.OA/D 0. Moreover we
do not know how to establish it, even at k D 0. However:

Proposition 74 Assume Conjecture 55 or KS D 0. Conjecture 67 is equivalent to the
formulas

1X
gD0

xN
g

g;ŒK3;Lg�
qg�1

D z�.y; q/�1;(12)

1X
gD2

xN
g�2

g�2;ŒA;Lg�
qg�1

DDeDG2.y; q/:(13)

Proof It is enough to show that the given invariants of the complete linear system
suffice to determine the series A1;A4 and then apply the residue trick explained
above. But xN g�2

g�2;ŒA;Lg�
.y/ D Coeffsg�2 A1.y; s/

2g�2 . Beginning at g D 2 this
allows us to iteratively determine the coefficients of A1 . Then xN g

g;ŒK3;Lg�
.y/ D

Coeffsg A1.y; s/
2g�2A4.y; s/

24 ; since we now know A1 this determines A4 .

As we have established (12), it remains only to compute the invariants for complete
linear systems on abelian surfaces. In the meantime in [28] we have proved a gener-
alized version of (13) using the methods of [38]. By the above this gives a proof of
Conjecture 67 in the case KS numerically trivial. This also provides an entirely sheaf
theoretic proof of the formula [51, Theorem 6] for linear subsystems for irreducible
line bundles on K3 surfaces.

5 Refined Severi degrees

The Severi degrees nd;ı are the numbers of ı–nodal reduced degree d curves in P2

though
�
dC2

2

�
�1�ı general points. The famous Caporaso–Harris formula [12] gives a

recursive method of computing the Severi degrees. The recursion involves the relative
Severi degrees nd;ı.˛; ˇ/ (we sketch their definition below) which count ı–nodal
curves with tangency conditions along a fixed line in P2 . More generally, for a line
bundle L on a surface S , one can define the Severi degree nL;ı as the number of
ı–nodal reduced curves in jLj though dim jLj�ı general points, provided this number
is finite.

We begin by a review of the Caporaso–Harris recursion formula; we will use the more
general formulation of Vakil [71], which also applies to rational ruled surfaces. By a
sequence we mean a collection ˛ D .˛1; ˛2; : : :/ of nonnegative integers, almost all
of which are zero. We write d for the sequence .d; 0; 0; : : :/ and ek for the sequence
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whose k th element is 1 and all other ones 0. For two sequences ˛ , ˇ we define
j˛j D

P
i ˛i , I˛D

P
i i˛i , ˛CˇD .˛1Cˇ1; ˛2Cˇ2; : : :/,

�
˛
ˇ

�
D
Q

i

�˛i

ˇi

�
. We write

˛ � ˇ to mean ˛i � ˇi for all i .

Throughout this section we take S to be P2 or a rational ruled surface. In case S DP2 ,
let E be a line in P2 , in case S is a rational ruled surface †e D P .OP1˚OP1.�e//,
let E be the class of the section with E2D�e . We denote by H the hyperplane class
on P2 , F the class of a fiber on †e .

Let L be a line bundle on S and let ˛ , ˇ be sequences with I˛C Iˇ DEL, and let
ı � 0 be an integer. Let  .L; ˇ; ı/ WD dim jLj �ELC jˇj � ı . The relative Severi
degree nL;ı.˛; ˇ/ is the number of ı–nodal curves C in jLj, which do not contain E

as a component and for each k with ˛k points of contact of order k to E at given
points of E and ˇk points of contact of order k to E at variable points of E , and
passing through  .L; ˇ; ı/ general points of S (see [71] for a more formal definition).

Recursion 75 [12; 71] The relative Severi degrees nL;ı.˛; ˇ/ are recursively given
as follows: nL;ı.˛; ˇ/D 0 if  .L; ˇ; ı/ < 0. If  .L; ˇ; ı/ > 0, then

(14) nL;ı.˛; ˇ/D
X

kWˇk>0

k � nL;ı.˛C ek ; ˇ� ek/

C

X
˛0;ˇ0;ı0

Y
i

iˇ
0
i
�ˇi

�
˛

˛0

��
ˇ0

ˇ

�
nL�E;ı0.˛0; ˇ0/:

Here the second sum runs through all ˛0; ˇ0; ı0 satisfying the conditions

˛0 � ˛; ˇ0 � ˇ; I˛0C Iˇ0 DE.L�E/;

ı0 D ıCg.L�E/�g.L/Cjˇ0�ˇjC 1D ı�E.L�E/Cjˇ0�ˇj:
(15)

Initial conditions If  .L; ˇ; ı/D 0 we have nL;ı.˛; ˇ/D 0 unless we are in one of
the following cases.

(1) In case S D P2 we put nH ;0.1; 0/D 1.

(2) In case SD†e , let F be the class of a fiber of the ruling; we put nkF;0.k; 0/D1.

We put nL;ı WD nL;ı.0;LE/. In case S D P2 , we write nd;ı.˛; ˇ/ WD ndH ;ı.˛; ˇ/

and nd;ı WD ndH ;ı.0; d/.

5.1 Refined Severi degrees

We formally introduce a refinement of this recursion.
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Recursion 76 With the same notation, assumptions, limits of summation and initial
values as for the relative Severi degrees in Recursion 75, we define the refined relative
Severi degrees N L;ı.˛; ˇ/.y/ for  .L; ˇ; ı/ > 0 by

(16) N L;ı.˛; ˇ/.y/

D

X
kjˇk>0

1�yk

1�y
�N L;ı.˛C ek ; ˇ� ek/.y/C

X
˛0;ˇ0;ı0

yI˛0CIˇ

�

Y
i

�
1�yi

1�y

�ˇ0
i
�ˇi

�
˛

˛0

��
ˇ0

ˇ

�
N L�E;ı0.˛0; ˇ0/.y/:

We abbreviate N L;ı WD N L;ı.0;LE/, and, in case S D P2 , then N d;ı.˛; ˇ/ WD

N dH ;ı.˛; ˇ/, N d;ı WDN dH ;ı.0; d/. As with the refined invariants, we define normal-
ized refined relative Severi degrees which are Laurent polynomials in y1=2 , symmetric
under y 7! 1=y .

Definition 77 The normalized (relative) refined Severi degrees xN L;ı.y/ are defined
by

xN L;ı.˛; ˇ/.y/DN L;ı.˛; ˇ/.y/=yıC.Iˇ�jˇj/=2; xN L;ı.y/DN L;ı=yı:

Proposition 78 The xN L;ı.˛; ˇ/.y/ are determined by the same initial conditions as
the N L;ı.˛; ˇ/.y/ and the recursion

(17) xN L;ı.˛; ˇ/D
X

kWˇk>0

Œk�y � xN
L;ı.˛C ek ; ˇ� ek/

C

X
˛0;ˇ0;ı0

�Y
i

Œi �
ˇ0

i
�ˇi

y

��
˛

˛0

��
ˇ0

ˇ

�
xN L�E;ı0.˛0; ˇ0/

with the same conditions on ˛0; ˇ0; ı0 as above. In particular xN L;ı.˛; ˇ/.y/ is sym-
metric under y 7! 1=y .

Proof It is enough to prove that every summand on the right-hand side of (16) is
obtained from the corresponding summand of (17) by multiplying by yıC.Iˇ�jˇj/=2 .
Each summand in the first sum is multiplied by ym with

mD .k � 1C I.ˇ� ek/� .jˇ� ek j//=2C ı D ıC .Iˇ� jˇj/=2:

Each summand in the second sum is multiplied by ym with

mD I˛0C IˇC .I.ˇ0�ˇ/� jˇ0�ˇj/=2C ı0C .Iˇ0� jˇ0j/=2D ıC .Iˇ� jˇj/=2;

where we use I˛0C Iˇ0 DE.L�E/D ı� ı0Cjˇ0�ˇj.
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It is clear that the recursions for the refined Severi degrees specialize at y D 1 to the
recursion for the usual Severi degrees. Thus:

Proposition 79 We have N L;ı.˛; ˇ/.1/D xN L;ı.˛; ˇ/.1/D nL;ı.˛; ˇ/.

According to [40], if the general P ı � jLj contains no nonreduced curves and no
curves containing components with negative self intersection, the Severi degrees are
computed by the universal formulas: nL;ı D nı

ı;ŒS;L�
. We expect the same for refined

Severi degrees.

Conjecture 80 Let S be P2 or a rational ruled surface, let L be a line bundle, and
assume P ı � jLj contains no nonreduced curves and no curves containing components
with negative self intersection. Then the refined Severi degrees are computed by the
universal formulas: N L;ı DN ı

ı;ŒS;L�
. Explicitly:

(1) On P2 , N d;ı DN ı
ı;ŒP2;dH �

for ı � 2d � 2.

(2) On P1 �P1 , N nFCmG;ı DN ı
ı;ŒP1�P1;nFCmG�

for ı �min.2n; 2m/.

(3) On †e with e>0, N nFCmE;ıDN ı
ı;Œ†e;nFCmE�

for ı�min.2m; n�em/.

Directly from the defining Recursion 76 we have computed all the N d;ı.y/ for d � 15

and ı � 30. Assuming the vanishing Conjecture 55 and part (1) of Conjecture 80,
the refined Severi degrees suffice to determine all the power series in Corollary 65 or
equivalently in Conjecture 67. Note that Recursion 76 is much more computationally
tractable than equivariant localization. Thus under the above assumption, we have
verified Conjecture 67 modulo q29 and determined B1.y; q/ and B2.y; q/ modulo q29 .

5.2 Irreducible refined Severi degrees

Denote by n
L;ı
0

the irreducible Severi degrees, ie informally the number of irreducible
ı–nodal curves in jLj ¤ jEj passing though dim jLj�ı general points. In [24] Getzler
observes in the case S D P2 that the n

d;ı
0

can be expressed in terms of the Severi
degrees nd;ı by the relationX

d;ı

z.
dC2

2 /�ı�1��
dC2

2

�
� ı� 1

�
!
qdn

d;ı
0
D log

�
1C

X
d;ı

z.
dC2

2 /�ı�1��
dC2

2

�
� ı� 1

�
!
qdnd;ı

�
:

The generalization of this to n
L;ı
0

is in [71]. The same formula can be used to define
the irreducible normalized refined Severi degrees xN L;ı

0
.y/ byX

L;ı

zdim jLj�ı

.dim jLj � ı/!
vL xN

L;ı
0

.y/D log
�

1C
X
L;ı

zdim jLj�ı

.dim jLj � ı/!
vL xN L;ı.y/

�
;

Geometry & Topology, Volume 18 (2014)



2292 Lothar Göttsche and Vivek Shende

and the irreducible refined Severi degrees by N
L;ı
0

.y/ WD yı xN
L;ı
0

.y/. Here we have
that

fvL
gL effective;L¤E

are elements of the Novikov ring, ie vL1vL2 D vL1CL2 . Evidently xN L;ı
0

.y/ is a
Laurent polynomial in y invariant under y 7! 1=y , and

N
L;ı
0

.1/D xN
L;ı
0

.1/D n
L;ı
0
:

Theorem 81 [9] The polynomial N
L;ı
0

has nonnegative integer coefficients.

From this positivity, one can conclude vanishing results for N
L;ı
0

from the analogous
(known) results for n

L;ı
0

. For instance

N
L;ı
0

.y/D n
L;ı
0
D 0 for ı > g.L/

since there are no irreducible curves of cogenus greater than g.L/.

We list the first few of the N
d;ı
0
.y/. Write

N d
0 .y; t/ WD

X
ı�0

N
d;ı
0
.y/tı:

We have computed the N d
0
.y; t/ for d � 14. We have

N 1
0 .y; t/D 1;

N 2
0 .y; t/D 1;

N 3
0 .y; t/D 1C .y2

C 10yC 1/t;

N 4
0 .y; t/D 1C .3y2

C 21yC 3/t C .3y4
C 33y3

C 153y2
C 33yC 3/t2

C .y6
C 13y5

C 94y4
C 404y3

C 94y2
C 13yC 1/t3;

N 5
0 .y; t/D 1C .6y2

C 36yC 6/t C .15y4
C 156y3

C 540y2
C 156yC 15/t2

C .20y6
C 268y5

C 1555y4
C 4229y3

C 1555y2
C 268yC 20/t3

C .15y8
C 228y7

C 1674y6
C 7407y5

C 18207y4
C 7407y3

C 1674y2
C 228yC 15/t4

C .6y10
C 96y9

C 792y8
C 4398y7

C17190y6
C42228y5

C17190y4
C4398y3

C792y2
C96yC6/t5

C .y12
C 16y11

C 139y10
C 867y9

C 4203y8
C 16377y7

C 44098y6
C 16377y5

C 4203y4
C 867y3

C 139y2
C 16yC 1/t6:
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On P1 � P1 we have computed the N
nFCmG;ı
0

for 1 �; n;m � 8. We list the first
few; write N

n;m
0
WD
P
ı�0 N

n;m;ı
0

.y/tı . We have

N
1;k
0
.y; t/D 1 for all k,

N
2;2
0
.y; t/D 1C .y2

C 10yC 1/t;

N
2;3
0
.y; t/D 1C .2y2

C 16yC 2/t C .y4
C 12y3

C 79y2
C 12yC 1/t2;

N
2;4
0
.y; t/D 1C .3y2

C 22yC 3/t C .3y4
C 36y3

C 174y2
C 36yC 3/t2

C.y6
C 14y5

C 117y4
C 596y3

C 117y2
C 14yC 1/t3;

N
3;3
0
.y; t/D 1C .4y2

C 26yC 4/t C .6y4
C 64y3

C 256y2
C 64yC 6/t2

C .4y6
C 52y5

C 332y4
C 1168y3

C 332y2
C 52yC 4/t3

C.y8
C14y7

C109y6
C636y5

C2430y4
C636y3

C 109y2
C 14yC 1/t4:

5.3 The refined invariants at y D 0

Now we compute the specialization of the refined Severi degrees at y D 0.

Notation 82 For a sequence ˇ we write
�
jˇj
ˇ

�
WD jˇj!=

Q
i ˇi !.

Proposition 83 We have that N L;ı.˛; ˇ/.0/D
�
jˇj
ˇ

��g.L/
ı

�
. In particular, we have that

N L;ı.0/D
�g.L/
ı

�
.

Proof It is easy to see that the statement holds for the initial values. Setting y D 0 in
the recursion formula (16) gives the two recursion formulas

N L;ı.˛; ˇ/.0/D
X

kjˇk>0

N L;ı.˛C ek ; ˇ� ek/.0/ if ˇ ¤ 0;

N L;ı.˛; 0/.0/D
X

IˇDE.L�E/

N L�E;ı�E.L�E/Cjˇj.0; ˇ/.0/:
(18)

The first formula gives

(19) N L;ı.˛; ˇ/.0/D

�
jˇj

ˇ

�
N L;ı.˛Cˇ; 0/.0/:

The second formula shows in particular that N L;ı.˛; 0/.0/ is independent of ˛ , thus
N L;ı.˛; 0/.0/ D N L;ı.LE; 0/.0/ D N L;ı.0/; the last equality is by (19). Thus
N L;ı.˛; ˇ/.0/D

�
jˇj
ˇ

�
N L;ı.0/.
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Finally, writing LDL0CaE with L0DH in case S D P2 and L0D kF in case S

is a rational ruled surface, we prove N L;ı D
�g.L/
ı

�
by induction over a. It is easy to

see that the claim is true for L0 . By induction the second equation of (18) becomes

N L;ı.0/D
X

IˇDE.L�E/

�
g.L�E/

ı�E.L�E/Cjˇj

��
jˇj

ˇ

�
:

Thus we need to show the identity

(20) .1C t/g.L/ D
X
ı�0

X
IˇDE.L�E/

�
g.L�E/

ı� IˇCjˇj

��
jˇj

ˇ

�
tı:

Note that by the multinomial formula we have

x

1�x.1C t/
D

1

1� x
1�tx

�1D
X
n>0

.xC tx2
C t2x3

C� � � /nD
X
ˇ¤0

�
jˇj

ˇ

�
tIˇ�jˇjxIˇ:

Thus the right-hand side of (20) becomes

CoeffxE.L�E/

�
.1C t/g.L�E/ x

1�x.1C t/

�
D .1C t/g.L/:

Using the tropical interpretation of the N L;ı.˛; ˇ/ of [9] using refined multiplicities
(see also Section 6), this result has been generalized in [35] to arbitrary toric surfaces.

For M a line bundle on S , let Mn WD f �g�.
Nn

iD1 pr�i M /Sn 2 Pic S Œn� , where
f W S Œn�! S .n/ and gW Sn! S .n/ are the natural morphisms, and pri W S

n! S is
the i th projection. It is well known that KS Œn� D .KS /n , and it is also standard that
det M Œn� DMn˝ detOŒn�

S
(see eg [20]).

Lemma 84 We haveX
n;k�0

�.S Œn�; ƒk.LŒn�/_/xkqn
D
.1Cxq/�.L

_/

.1� q/�.OS /
:

Proof This is a corollary to [65, Theorem 5.2.1], which implies for line bundles L;M

on S that

�.S Œn�; ƒkLŒn�˝Mn/D

�
�.L˝M /

k

��
�.M /C n� k � 1

n� k

�
:
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We apply this with M DKS . Thus, by applying Serre duality on S Œn� and on S , we
have

�.S Œn�; ƒk.LŒn�/_/D �.S Œn�; ƒkLŒn�˝ .KS /n/

D

�
�.L˝KS /

k

��
�.KS /C n� k � 1

n� k

�
D

�
�.L_/

k

��
�.OS /C n� k � 1

n� k

�
;

which is equivalent to the statement of the lemma.

Proposition 85 We have N l
ı;ŒS;L�

.0/D 0 for l > ı , and for all 0� l � ı we have

N l
ı;ŒS;L�.0/D

�
�.L_/

l

�
D

�
g.L/C�.OS /� 1

l

�
:

In particular if S is a rational surface, then N ı
ı;ŒS;L�

.0/D
�g.L/
ı

�
.

Proof By Proposition 52 and Definition 63, we have

Coeffqn

�X
l�0

N l
ı;ŒS;L�.0/

ql

.1� q/lC1�g.L/

�

D resxD0

Z
S Œn�

�
1

1� e�x

�ıC1
cn.L

Œn� � ex/ td.S Œn�/
td.LŒn� � ex/

dx:

Note that by definition cn.L
Œn� � ex/=td.LŒn� � ex/ D

Pn
kD0.�e�x/k ch.ƒk.LŒn�/_/.

Thus by Riemann–Roch the right-hand side is

resxD0

��
1

1� e�x

�ıC1 nX
kD0

.�e�x/k�.S Œn�; ƒk.LŒn�/_/ dx

�
:

We put T D e�x and apply Lemma 84 to obtainX
l�0

N l
ı;ŒS;L�.0/

ql

.1� q/lC1�g.L/

D� resTD1

��
1

1�T

�ıC1 X
n�0

nX
kD0

.�T /kqn�.S Œn�; ƒk.LŒn�/_/
dT

T

�

D� resTD1

��
1

1�T

�ıC1
.1�T q/�.L

_/

.1� q/�.OS /

dT

T

�
:
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Substituting T D 1�˛ the right-hand side becomes

res˛D0

�
1

˛ıC1

.1�qC˛q/�.L
_/

.1�q/�.OS /

X
l�0

˛ld˛

�
D

ıX
lD0

�
�.L_/

l

�
ql.1� q/�.L

_/�l��.OS /

D

ıX
lD0

�
�.L_/

l

�
ql.1� q/g.L/�l�1:

This completes the proof.

5.4 Conjectural generalization to higher powers of y

Propositions 85 and 83 can be subsummed in the following statements:

(1) For any line bundle L on a surface S we haveX
ı�0

N ı
ı;ŒS;L�.0/q

ı
D .1C q/�.L

_/:

(2) If L is an effective divisor on P2 or a rational ruled surface S , thenX
ı�0

N ı
ı;ŒS;L�.0/N

L;ı.0/qı D .1C q/g.L/ D
X
ı�0

N ı
ı;ŒS;L�.0/q

ı:

We want to give a conjectural extension of these two statements to higher powers of y .
We start with the analogue of (1):

Conjecture 86 Let L be a line bundle on a surface S . Then we have for all i � 0

Coeffyi

�X
ı�0

N ı
ı;ŒS;L�.y/q

ı

�
D .1C q/�.L

_/�3iP i
L.q/:

Here P i
L
.q/ is a polynomial in q of degree at most 3i . In particular if �.L_/ � 3i

then Coeffyi N ı
ı;ŒS;L�

.y/D 0 for ı > �.L_/.

Assuming Conjecture 55 we get by Corollary 65X
ı�0

N ı
ı;ŒS;L�.y/q

ı
D F

�.L_/
1

F
LKS=2
2

F
K 2

S

3
F
�.OS /
4

;

with Fi 2 QŒy� ŒŒq��. We put C1 D .F1=.1C q//jy 7!y.1Cq/3 , C2 D F2jy 7!y.1Cq/3 ,
C3 D F3jy 7!y.1Cq/3 , C4 D F4jy 7!y.1Cq/3 .

Conjecture 87 For i D 1; : : : ; 4 we have Ci 2QŒy1=3� ŒŒy1=3q��\QŒq� ŒŒy��.
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Proposition 88 Conjecture 87 implies Conjecture 86. FurthermoreX
i�0

P i
L.q/y

i
D C

�.L_/
1

C
LKS=2
2

C
K 2

S

3
C
�.OS /
4

:

Proof By definition

.1C q/�.L
_/C

�.L_/
1

C
LKS

2
C

K 2
S

3
C
�.OS /
4

D

X
ı�0

N ı
ı;ŒS;L�.y.1C q/3/qı:

Therefore

Coeffyi

�X
ı�0

N ı
ı;ŒS;L�.y/q

ı

�
D .1Cq/�.L

_/�3i Coeffyi

h
C
�.L_/
1

C
LKS=2
2

C
K 2

S

3
C
�.OS /
4

i
:

As by Conjecture 87 all Ci are in QŒy1=3� ŒŒy1=3q��, we see that the coefficient of yi is
a polynomial of degree at most 3i in q .

Conjecture 87 has been verified modulo q11 . Assuming Conjecture 80 it has been
verified modulo q29 . We list the power series C1 , C2 , C3 , C4 modulo y4 :

C1 D 1C .4qC 2q2/yC .q� 7q2
C 12q3

C 15q4
C 3q5/y2

C .�6q2
C 56q3

� 104q4
� 112q5

C 26q6
C 32q7

C 4q8/y3
CO.y4/;

C2 D 1C .�2q� 6q2
� 2q3/yC .5q2

C 48q3
C 35q4

C 6q5
C q6/y2

C .14q3
� 390q4

� 286q5
C 60q6

C 52q7/y3
CO.y4/;

C3 D 1C .�q� 3q2
� q3/yC .q2

C 16q3
C 2q4

� 6q5
� q6/y2

C .15q3
� 130q4

C 66q5
C 199q6

C 65q7/y3
CO.y4/;

C4 D 1C .6qC 18q2
C 10q3/yC .18q2

C 64q3
C 219q4

C 222q5
C 67q6/y2

C .�44q3
C 336q4

C 72q5
C 952q6

C 2328q7
C 1608q8

C 352q9/y3
CO.y4/:

Now we formulate the conjectural analogue of (2). For simplicity we only deal with
the case of P2 and P1 �P1 .

Conjecture 89 (1) Let S D P2 and assume d � i C 2, then

Coeffyi

�X
ı�0

N d;ı.y/qı
�
D .1C q/g.dH /�3iP i

dH .q/:

(2) Let S D P1 �P1 and assume n;m� i C 1, then

Coeffyi

�X
ı�0

N nFCmG;ı.y/qı
�
D .1C q/g.nFCmG/�3iP i

nFCmG.q/:

Geometry & Topology, Volume 18 (2014)



2298 Lothar Göttsche and Vivek Shende

For d � 14, and for n;m � 8 this conjecture has been checked modulo q11 and,
assuming Conjecture 80, modulo q29 .

6 Refined, real and tropical

Mikhalkin [55] has shown that the Severi degrees of projective toric surfaces can
also be computed using tropical geometry: the Severi degrees nL;ı count — with
multiplicities — simple tropical curves through dim jLj � ı points in R2 in tropical
general position. Roughly speaking a simple tropical curve C is a trivalent graph �
immersed in R2 together with some extra data. From this data, one assigns to each
vertex v of � a multiplicity m.v/2Z�0 and defines the complex multiplicity m.C / as
the product of the m.v/ over the vertices of � . In [23] a proof of the Caporaso–Harris
recursion formula is given via tropical geometry.

The analogues of the Gromov–Witten invariants in real algebraic geometry are the
Welschinger invariants [72]. These were originally defined to count real pseudoholo-
morphic curves in real symplectic manifolds. We restrict attention to the case that S is
a smooth projective toric surface. As toric varieties are defined over Z, they certainly
carry a real structure, and we write � for the associated antiholomorphic involution.
A real curve in S is an algebraic curve C � S with C D �.C /, and the real locus
of C is C � . Fix a generic set † of dim jLj � ı general real10 points on S . The
real enumerative invariant is W L;ı.†/ WD

P
C .�1/s.C / , where C runs through the

possibly reducible real curves C 2 jLj of geometric genus g.L/� ı , passing through
all the points of †, and s.C / is the number of isolated real nodes of C , ie the points
where C analytically locally has the equation x2 C y2 . We denoted by W L;ı

0
.†/

the corresponding sum for irreducible curves. If S is an unnodal (ie it contains no
rational curve with self intersection �n, with n� 2) del Pezzo surface then the real
enumerative invariants coincide with the Welschinger invariants. In [72] it was proven
that W L;g.L/

0
.†/, ie the count of curves of geometric genus 0, is independent of the

generic †. We will denote it just by W L;g.L/
0

. In general W L;ı.†/ and W L;ı
0

.†/

will depend on † via a system of walls and chambers.

In a sense, we have already seen these invariants. For a family of real curves C=B ,
let n

i;R
C=B be defined by the same formula as the n

i;R
C

introduced for individual curves
in Section 2. Then we have:

10 We are here only considering the so-called totally real Welschinger invariants. More generally one
could consider for any 0� l � .dim jLj � ı/=2 the numbers W L;ı;l .†/ which count real curves passing
through dim jLj � ı� 2l real points and l pairs of complex conjugate points.

Geometry & Topology, Volume 18 (2014)



Refined curve counting on complex surfaces 2299

Proposition 90 Let L be a real line bundle on S , and let P ı � jLj be a linear
subsystem determined by the real point conditions †. Assume that all curves in P ı are
reduced, that no curves have cogenus greater than ı , and that all curves of cogenus ı
are nodal. Then

.�1/ın
ı;R
C=Pı DW L;ı.†/:

The real enumerative invariants of toric surfaces can also be computed via tropical
geometry [55, Theorem 6]. For any real line bundle L and any ı � 0, the tropical
Welschinger invariant W L;ı

trop counts simple tropical curves in C in jLj passing through
dim jLj � ı points in R2 in tropically general position. Here the tropical curves C are
counted with the Welschinger multiplicity r.C /:

r.C /D
Y

vertices v

r.v/; r.v/D

�
.�1/.m.v/�1/=2 m.v/ odd;
0 m.v/ even:

The irreducible Welschinger invariants W L;ı
0;trop are defined by summing over only

irreducible curves. It is proven in [34] that this is independent of the points as long as
they are in tropical general position. Finally [55] shows that there exists a set † of
dim jLj � ı real points of S , so that W L;ı.†/DW

L;ı
trop , and W

L;ı
0

.†/DW
L;ı

0;trop .

If S is P2 or a rational ruled surface, there is a recursion for the tropical Welschinger
invariants [34]. We write it in a modified form which makes the close relation to the
recursion for the Severi degrees more evident.11

Definition 91 A sequence ˛ D .˛1; ˛2; : : :/ is called odd if ˛i D 0 for all even i .

Recursion 92 Let L be a line bundle on S and let ˛ , ˇ be odd sequences with
I˛CIˇDEL, and a let ı � 0 be an integer. With the same notation and assumptions
and initial values as for the relative Severi degrees in Recursion 75 the relative tropical
Welschinger invariants W

L;ı
trop .˛; ˇ/.y/ are given by the following recursion formula:

if  .L; ˇ; ı/ > 0,

(21) W
L;ı

trop .˛; ˇ/D
X

k oddWˇk>0

.�1/.k�1/=2
�W

L;ı
trop .˛C ek ; ˇ� ek/.y/

C

X
˛0;ˇ0;ı0

Y
i odd

..�1/.i�1/=2/ˇ
0
i
�ˇi

�
˛

˛0

��
ˇ0

ˇ

�
W

L�E;ı0

trop .˛0; ˇ0/:

Here the second sum runs through all odd sequences ˛0; ˇ0 and all ı0 satisfying (15).

11 Also the multiplicity assigned in [34] differs from those given above which we have taken from [55],
but it can be shown they are equivalent.
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We put W L;ı
trop WDW L;ı

trop .0;LE/, and in the case S D P2 ,

W d;ı
trop .˛; ˇ/DW dH ;ı

trop .˛; ˇ/; W d;ı
trop DW dH ;ı

trop .0; d/:

Note the following specialization:

(22) Œk��1 D
yk=2�y�k=2

y1=2�y�1=2

ˇ̌̌̌
yD�1

D

�
.�1/.k�1/=2 k odd;
0 k even:

In particular, the recursion for the refined Severi degrees interpolates between the
Caporaso–Harris recursion for Severi degrees and the Itenberg–Kharlamov–Shustin
recursion for tropical Welschinger invariants. Thus:

Proposition 93 We have that

xN L;ı.˛; ˇ/.1/D nL;ı.˛; ˇ/ and xN L;ı.˛; ˇ/.�1/DW
L;ı

trop .˛; ˇ/:

In [9], Block and Göttsche relate the refined Severi degrees to tropical geometry
and study them by the methods of tropical geometry. They introduce the refined
multiplicity M.v/ WD Œm.v/�y , which specializes to m.v/ at y D 1 and to r.v/ at
y D�1. Then the refined tropical Severi degrees xN L;ı

trop .†/ are defined by counting
curves with multiplicity M.C /D

Q
M.v/. Note this definition applies to any smooth

toric surface. It is shown that, for S D P2 or a rational ruled surface, and † a
“vertically stretched” configuration of points, the xN L;ı

trop .†/ satisfy the recursion (17).
Thus xN L;ı D xN

L;ı
trop .†/.

This is the analogue of the tropical proof of the Caporaso–Harris recursion formula
in [23], and like the original proof of Caporaso and Harris it can be viewed as a proof
by degeneration. For a vertically stretched configuration of points the tropical curve
degenerates, so that it can be described in terms of tropical curves of lower degree, and
this gives the recursion both for the Severi degrees and the refined Severi degrees.

Itenberg and Mikhalkin have in the meantime shown in [35] that xN L;ı
trop .†/ is indepen-

dent of †, and so we drop it from the notation. For S D P2 or a rational ruled surface,
Conjecture 80 then implies that the xN L;ı

trop agree with the xN ı
ı;ŒS;L�

when L is ı very
ample. More generally one expects:

Conjecture 94 [9] Let S be a smooth projective toric surface and L a real line
bundle on S . If L is ı–very ample, then xN ı

ı;ŒS;L�
D xN

ı;L
trop .

Using the refined multiplicity, in [9] the xN L;ı
trop .†/ are studied using methods similar

to those employed by Block in [8] for the nonrefined Severi degrees. In particular it is
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shown that, for L sufficiently ample with respect to ı , they are given by refined node
polynomials, and the Conjecture says that these agree with the xN ı

ı;ŒS;L�
.

According to Conjecture 94 and Proposition 93, we expect:

Conjecture 95 Let L be a ı very ample real line bundle on a toric surface S . Then
xN ı
ı;ŒS;L�

.�1/DW
ı;L

trop .

For convenience we record the corresponding specialization of Conjecture 67 at yD�1.
Consider �.�/ WD q1=24

Q
n>0.1� qn/ the Dirichlet eta function and write

xG2.�/ WDG2.�/�G2.2�/D
X
n>0

� X
d jn;d odd

n

d

�
qn:

Conjecture 96 We have

(23)
X
ı�0

xN ı
ı;ŒS;L�.�1/ xG2.�/

ı
D
. xG2.�/=q/

�.L/B1.�1; q/K
2
S B2.�1; q/LKS

.�.�/16�.2�/4D xG2.�/=q2/�.OS /=2
:

This conjecture has been checked modulo q15 and the coefficients of B1.�1; q/ and
B2.�1; q/ have been determined modulo q15 . (These computations are numerically
easier than those involving the indeterminate y , thus we get to a higher order in q ).
The values of the series Bi are computed to be

B1.�1; q/D 1� q� q2
� q3
C 3q4

C q5
� 22q6

C 67q7
� 42q8

� 319q9

C 1207q10
� 1409q11

� 3916q12
C 20871q13

� 34984q14
CO.q15/;

B2.�1; q/D 1C qC 2q2
� q3
C 4q4

C 2q5
� 11q6

C 24q7
C 4q8

� 122q9

C 313q10
� 162q11

� 1314q12
C 4532q13

� 4746q14
CO.q15/:

When S D P2 or a rational ruled surface, the Severi degrees nı;L agree with the
universal numbers n ıı;ŒS;L� somewhat beyond the regime where L is ı very ample.
Specifically, it is conjectured in [27] and proven in [40] that it suffices for the general
P ı � jLj to contain no nonreduced curves, and no curves containing components with
negative self intersection. We expect the same to hold for the comparison between
refined Severi degrees N ı;L and the universal numbers N ı

ı;ŒS;L� , and a fortiori for the
specialization at �1. However for this specialization more seems to be true:

Conjecture 97 Assume S D P2 or S D†e , and the following subloci of jLj have
codimension more than ı :

(1) The nonreduced curves with a component of multiplicity at least 3.

(2) Curves containing a component with negative self intersection.
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Then W
L;ı

trop D
xN ı
ı;ŒS;L�

.�1/. Explicitly the condition amounts to:

(1) On P2 , W
d;ı

trop D
xN ı

dH
.�1/ if ı � 3d � 3.

(2) On P1 �P1 , W
nFCMG;ı

trop D xN ı
nFCmG

.�1/ if ı � 3 min.n;m/.

(3) On †e with e>0, W
nFCmE;ı

trop D xN ı
nFCmE

.�1/, if ı�min.3m; n�em/.

Using the recursion formula (21) this conjecture has been checked for d; ı � 14.
Assuming (1) of Conjecture 97, and using the recursion formula (21), Conjecture 96
has been checked modulo q67 and B1.�1; q/ and B2.�1; q/ have been determined
modulo q67 . Note that the recursion for W d;ı

trop .˛; ˇ/ is much more efficient than those
of the N d;ı.˛; ˇ/.y/ or nd;ı.˛; ˇ/ because only odd sequences ˛ and ˇ occur.

We have seen W
d;ı

trop D
xN d;ı.�1/. In the sufficiently ample setting, taking a linear

system P ı determined by subtropical point conditions, and assuming all conjectures,
this implies N ı

C=Pı .�1/D .�1/ı xN ı
C=Pı .�1/D nı;RC=Pı . More generally we conjecture:

Conjecture 98 Let L be a sufficiently ample real line bundle on a real toric surface,
and let P ı � jLj be determined by a subtropical collection of point conditions. Then
the signatures of the relative Hilbert schemes agree with the compactly supported Euler
characteristics of their real loci. That is,

�1

�
CŒn�

Pı

�
D �c

�
CŒn�

Pı
.R/

�
:

Making the BPS change of variables, it follows that N ı
C=Pı .�1/D n

ı;R
C=Pı .

More generally one may consider the question:

Question 99 Let X be a smooth real variety. When is �1.X /D �c.X.R//?

This has been the subject of some classical study, one general result being that for
an “M–variety”, ie one for which the total dimension of the Z=2Z cohomology is
equal for the real and complex locus, the equality holds modulo 16; see Degtyarev and
Kharlamov [16].

Evidently the equality holds for any variety whose class in the Grothendieck ring of vari-
eties over R lies inside ZŒA1

R�. In particular, RPn , toric surfaces, and Hilbert schemes
of points on toric surfaces qualify. The relative Hilbert schemes are cut out of a product
of these by a section of a vector bundle, and the signature behaves predictably under
taking such sections. Thus, to study Conjecture 98 it would also suffice to give criteria
for the Euler characteristic of the real locus to exhibit the same behavior. In [7], Bertrand
and Bihan show this holds in a tropical sense for complete intersections in toric varieties.

Geometry & Topology, Volume 18 (2014)



Refined curve counting on complex surfaces 2303

Remark 100 The conjectured relation between the refined invariants at y D �1

and the Welschinger invariants is in a sense a global analogue of a conjecture of
van Straten [68, Conjectures 4.6, 4.7] (see also Theorems 31 and 37 above and the
nearby discussion).
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