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Lipschitz connectivity and filling invariants
in solvable groups and buildings

ROBERT YOUNG

Filling invariants of a group or space are quantitative versions of finiteness properties
which measure the difficulty of filling a sphere in a space with a ball. Filling spheres
is easy in nonpositively curved spaces, but it can be much harder in subsets of
nonpositively curved spaces, such as certain solvable groups and lattices in semisimple
groups. In this paper, we give some new methods for bounding filling invariants of
such subspaces based on Lipschitz extension theorems. We apply our methods to find
sharp bounds on higher-order Dehn functions of Sol2nC1 , horospheres in euclidean
buildings, Hilbert modular groups and certain S –arithmetic groups.

20F65, 20E42

1 Introduction

Many of the techniques used to find upper bounds on the Dehn function are difficult
to generalize to higher-order Dehn functions. For example, one can prove that a
nonpositively curved space has a Dehn function which is at most quadratic in a couple
of lines: the fact that the distance function is convex implies that the disc formed by
connecting every point on the curve to a basepoint on the curve has quadratically large
area. On the other hand, proving that a nonpositively curved space has a k th –order Dehn
function bounded by V .kC1/=k takes several pages; see Gromov [13] and Wenger [22].

One reason for this is that the geometry of spheres is generally much more complicated
than the geometry of curves. A closed curve is geometrically very simple. It has
diameter bounded by its length, it has a natural parameterization by length, and a
closed curve in a space with a geometric group action can be approximated by a word
in the group. None of these hold for spheres. A k –sphere of volume V may have
arbitrarily large diameter, has no natural parameterization, and though it can often be
approximated by a cellular or simplicial cycle, that cycle may have arbitrarily many
cells of dimension less than k .

One way around this is to consider Lipschitz extension properties. A typical Lipschitz
extension property is Lipschitz k –connectivity; we say that a space X is Lipschitz
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k –connected (with constant c ) if there is a c such that for any 0 � d � k and any
l –Lipschitz map f W Sd !X , there is a cl –Lipschitz extension xf W DdC1!X . The
advantage of dealing with Lipschitz spheres rather than spheres of bounded volume
is that techniques for filling closed curves often generalize to Lipschitz spheres. For
example, the same construction that shows that a nonpositively curved space has
quadratic Dehn function shows that such a space is Lipschitz k –connected for any k .
Any map f W Sd !X can be extended to a map xf W DdC1!X by coning f off to
a point along geodesics, and if f is Lipschitz, so is xf .

In this paper, we describe a way to use Lipschitz connectivity to prove bounds on
higher-order filling functions of subsets of spaces with finite Assouad–Nagata dimension.
These spaces include euclidean buildings and homogeneous Hadamard manifolds (see
Lang and Schlichenmaier [17]) and we will show that a higher-dimensional analogue of
the Lubotzky–Mozes–Raghunathan theorem holds for Lipschitz n–connected subsets
of spaces with finite Assouad–Nagata dimension. Recall that Lubotzky, Mozes, and
Raghunathan proved the following.

Theorem 1.1 (Lubotzky, Mozes, and Raghunathan [19]) If � is an irreducible lattice
in a semisimple group G of rank greater than or equal to 2, then the word metric on �
is quasi-isometric to the restriction of the metric on G to � .

One way to state this theorem is to say that the inclusion � ,!G does not induce any
distortion of lengths. That is, there is a c > 0 such that if x;y 2 � are connected by a
path of length l in G , then they are connected by a path of length less than or equal to cl

in the Cayley graph of � . Bux and Wortman [6] conjectured that filling volumes should
also be undistorted in lattices in higher-rank semisimple groups. We will state a version
of this conjecture in terms of homological filling volumes; in a highly-connected space,
these are equivalent to homotopical filling volumes in dimensions above 2; see [13],
White [23] and Groft [12].

To state the conjecture, we introduce Lipschitz chains. A Lipschitz d –chain in Y is a
formal sum of Lipschitz maps �d ! Y . One can define the boundary of a Lipschitz
chain as for singular chains, and this gives rise to a homology theory. If ˛ is a Lipschitz
d –cycle in Y , define

FVdC1
Y

.˛/D inf
@ˇD˛

massˇ

to be the filling volume of ˛ in Y . In particular, if Y is a geodesic metric space and ˛
is the 0–cycle x�y , then FV1

Y .˛/D d.x;y/.
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If Z �X , we say that Z is undistorted up to dimension n if there is some r � 0 and c

such that if ˛ is a Lipschitz d –cycle in Z and d < n, then

FVdC1
Z

.˛/� c FVdC1
X

.˛/C c:

(Note that this differs from Bux and Wortman’s definition in [6]; Bux and Wortman’s
definition deals with extending spheres in a neighborhood of Z to balls in a larger
neighborhood.)

Conjecture 1.2 (cf [6, Question 1.6]) If � is an irreducible lattice in a semisimple
group G of rank n, then there is a nonempty � –invariant subset Z � G such that
dHaus.Z; �/ <1 and Z is undistorted up to dimension n� 1.

Here, dHaus.Z; �/ represents the Hausdorff distance between the two sets.

Theorem 1.1 is a special case of this conjecture, and the conjecture also generalizes
conjectures of Gromov and Thurston on filling inequalities in lattices. Thurston fa-
mously conjectured that SL.nIZ/ has quadratic Dehn function for n � 4 [11], and
Gromov conjectured that the .k � 2/th order Dehn function of a lattice in a symmetric
space of rank k should be bounded by a polynomial [14]. As Bestvina, Eskin and
Wortman note in [5], Conjecture 1.2 would imply that the k th –order Dehn function
of � is bounded by V .kC1/=k . In recent years, a significant amount of progress has
been made toward these conjectures. Drut,u proved that a lattice of Q–rank 1 in a
symmetric space of R–rank greater than or equal to 3 has a Dehn function bounded
by n2C� for any � > 0 [9], Leuzinger and Pittet proved that, conversely, any irreducible
lattice in a symmetric space of rank 2 which is not cocompact has an exponentially
large Dehn function [18], and the author proved Thurston’s conjecture in the case that
n� 5 [24].

In this paper, we make a step toward proving Conjecture 1.2 by showing that, under
some conditions on G and � , undistortedness follows from a Lipschitz extension
property.

We say that Z is Lipschitz n–connected if there is a c such that for any 0� d � n and
any l –Lipschitz map f W Sd !Z , there is a cl –Lipschitz extension xf W DdC1!Z .
If X is a metric space, the Assouad–Nagata dimension of X is the smallest integer n

such that there is a c such that for all s > 0, there is a covering Bs of X by sets of
diameter at most cs (a cs–bounded covering) such that any set with diameter less than
or equal to s intersects at most nC 1 sets in the cover (ie Bs has s–multiplicity at
most nC 1).
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Theorem 1.3 Suppose that Z �X is a nonempty closed subset with metric given by
the restriction of the metric of X . Suppose that X is a geodesic metric space such
that the Assouad–Nagata dimension dimAN.X / of X is finite. Suppose that one of the
following is true:

� Z is Lipschitz n–connected.

� X is Lipschitz n–connected, and if Xp;p 2 P are the connected components
of X XZ , then the sets Hp D @Xp are Lipschitz n–connected with uniformly
bounded implicit constant.

Then Z is undistorted up to dimension nC 1.

In the applications in this paper, X will be a CAT(0) space (either a symmetric space
or a building), and Z will either be a horosphere of X or the complement of a set of
disjoint horoballs.

When X is CAT(0), a theorem of Gromov [13; 22] implies that the k th –order Dehn
function of X grows at most as fast as V .kC1/=k (ie if ˛ is a Lipschitz k –cycle in X ,
there is a Lipschitz .kC 1/–chain ˇ in X such that @ˇ D ˛ and

massˇ . .mass˛/.kC1/=k
C c:

Therefore:

Corollary 1.4 If X is CAT(0) and the hypotheses above hold, the k th –order Dehn
function of Z grows at most as fast as V .kC1/=k for k � n.

This bound is often sharp; for instance, if there is a rank-.kC 1/ flat of X contained
in Z , then the k th –order Dehn function of Z grows at least as fast as V .kC1/=k .

We will apply Theorem 1.3 to find fillings in a family of solvable groups and in the
Hilbert modular groups:

Theorem 1.5 The group Sol2n�1 D Rn�1 Ë Rn is Lipschitz .n� 2/–connected, is
undistorted in .H2/

n up to dimension .n � 1/, and its k th –order Dehn function is
asymptotic to V .kC1/=k for k < n� 1.

This is a higher-dimensional version of a theorem of Gromov [14, 5.A9 ] which states
that Sol2n�1 has quadratic Dehn function when n> 2. These bounds are sharp; there
are n–spheres in Sol2n�1 with volume V but filling volume exponential in V , so
the nth order Dehn function of Sol2n�1 is exponential [14]. The same bounds apply to
Hilbert modular groups:
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Theorem 1.6 If � � SL2.R/
n is a Hilbert modular group, then the k th –order Dehn

function of � is asymptotic to V .kC1/=k for k < n� 1.

Pittet showed that � has an exponential .n� 1/th order Dehn function [20].

We will also apply the methods of Theorem 1.3 to horospheres in euclidean buildings
and to the S –arithmetic groups considered by Bux and Wortman in [7].

Let X be a thick euclidean building and E �X be an apartment. Then the vertices
of E form a lattice, and if r W Œ0;1/!E is a geodesic ray, we say that r has rational
slope if it is parallel to a line segment connecting two vertices of E . This condition
is independent of the choice of E , so if r W Œ0;1/! X is a geodesic ray, we say it
has rational slope if it has rational slope considered as a ray in some apartment E .
The boundary at infinity of X consists of equivalence classes of geodesic rays, so if
� 2X1 is a point in the boundary at infinity of X , we say it has rational slope if one
of the rays asymptotic to � has rational slope. In particular, if the isometry group of X

acts cocompactly on a horosphere centered at � , then � has rational slope.

Theorem 1.7 Let X be a thick euclidean building and let � 2 X1 be a point in its
boundary at infinity which has rational slope and is not contained in a factor of rank
less than n (in particular, X has rank at least n). Let Z be a horosphere in X centered
at � . Then Z is Lipschitz .n� 2/–connected, undistorted in X up to dimension n� 1,
and its k th –order Dehn function grows asymptotically like V .kC1/=k for k � n� 2.

The horosphere Z is not .n� 1/–connected, so the bound on k is sharp. Indeed, for
every r > 0, there is a map ˛W Sn�1! Z such that ˛ is not nullhomotopic in the
r –neighborhood of Z (see Lemma 4.15).

Note that if � does not have rational slope, then Z may be .n� 2/–connected and
locally Lipschitz .n� 2/–connected but not Lipschitz .n� 2/–connected. Cells of X

may intersect Z in arbitrarily small sets, and this can lead to arbitrarily small spheres
which have small fillings in X but not in Z .

Theorem 1.7 is similar to [7, Theorem 7.7], and gives a higher-order version of [9, The-
orem 1.1] for buildings and products of buildings. (Though note that [9, Theorem 1.1]
applies to R–buildings as well as discrete buildings.)

The same methods lead to quantitative finiteness properties for S –arithmetic groups of
K–rank 1.
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Theorem 1.8 (cf [7, Theorems 1.2, 8.1]) Let K be a global function field, G be
a noncommutative, absolutely almost simple K–group of K–rank 1, let S be a finite
set of pairwise inequivalent valuations on K , and let X be the associated euclidean
building. Then the k th –order Dehn function of the S –arithmetic group G.OS / grows
asymptotically like V .kC1/=k for k � dim X � 2.

Again, this is sharp; Bux and Wortman showed that G.OS / is not of type Fdim X , so
its .dim X � 1/th order Dehn function is undefined.

Some possible other applications of Theorem 1.3 include the study of higher-order
fillings in, for instance, metabelian groups, as in de Cornulier and Tessera [8], lattices
of Q–rank 1 in semisimple groups, as in [9], and S –arithmetic lattices when jS j is
large, as in [5].

Notational conventions If f and g are expressions, we will write f . g (or say
that f is of order at most g ) if there is some constant c such that f � cg . We write
f � g if there is some constant c such that c�1g � f � cg . When we wish to
emphasize that c depends on x and y , we write f .x;y g or f �x;y g . We give Sk

the round metric, scaled so that diam Sk D 1, and we define the standard k –simplex
to be the equilateral euclidean k –simplex, scaled to have diameter 1.

Acknowledgements This work was supported by a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada and by the Connaught Fund,
University of Toronto. The author would like to thank MSRI and the organizers of
the 2011 Quantitative Geometry program for their hospitality, and would like to thank
Cornelia Drut,u, Enrico Leuzinger, Romain Tessera, and Kevin Wortman for helpful
discussions and suggestions.

2 Building fillings from simplices

The proof of Theorem 1.3 is based on the proof of a theorem of Lang and Schlichen-
maier [17]. Lang and Schlichenmaier proved:

Theorem 2.1 Suppose Z � X is a nonempty closed set and dimAN X � m <1.
If Y is Lipschitz .m� 1/–connected, then there is a C such that any Lipschitz map
f W Z! Y extends to a map xf W X ! Y with Lip. xf /� C Lip.f /.

Here, dimAN.X / is the Assouad–Nagata dimension of X .

One consequence of Theorem 2.1 is if Z is Lipschitz n–connected for nD dimAN.X /,
then the identity map Z!Z can be extended to a Lipschitz map xf W X !Z and Z
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is a Lipschitz retract of X . Consequently, if ˛ is a .k � 1/–cycle in Z and ˇ is a
chain in X with boundary ˛ , then xf].ˇ/ is a chain in Z with boundary ˛ , so

FVk
Z .˛/� C k FVk

X .˛/;

and Z is undistorted in X up to dimension n. Theorem 1.3 claims that the same is
true under the weaker condition that X has finite Assouad–Nagata dimension.

Before we sketch the proof of Theorem 1.3, we need the notion of a quasiconformal
complex. We define a Riemannian simplicial complex to be a simplicial complex with
a metric which gives each simplex the structure of a Riemannian manifold with corners.
We say that such a complex is quasiconformal (or that the complex is a QC complex) if
there is a c such that the Riemannian metric on each simplex is c–bilipschitz equivalent
to a scaling of the standard simplex.

QC complexes are a compromise between the rigidity of simplicial complexes and the
freedom of Riemannian simplicial complexes. A key feature of simplicial complexes is
that curves and cycles can be approximated by simplicial curves and cycles. This is
not true in Riemannian simplicial complexes, but it holds in QC complexes.

Specifically, a version of the Federer–Fleming deformation theorem holds in QC
complexes. Recall that the Federer–Fleming theorem for simplicial complexes states
that any Lipschitz cycle a in a simplicial complex can be approximated by a simplicial
cycle P .a/ whose mass is comparable to the mass of a. We will use the following
variation of the Federer–Fleming theorem:

Theorem 2.2 Let † be a finite-dimensional scaled simplicial complex, that is, a
simplicial complex where each simplex is given the metric of the standard simplex of
diameter s . There is a constant c depending on dim† such that if a 2 C

Lip
k
.†/ is a

Lipschitz k –cycle, then there are P .a/ 2 C cell
k
.X / and Q.a/ 2 C

Lip
kC1

.X / such that:

(1) @aD @P .a/

(2) @Q.a/D a�P .a/

(3) mass P .a/� c �mass.a/

(4) mass Q.a/� cs �mass.a/

Epstein, Cannon, Holt, Levy, Paterson and Thurston proved this theorem for s D 1

in [10, Chapter 10.3]. A simple scaling argument proves the general case. Note that,
while the bound on mass Q.a/ depends on the size of the simplices, the bound on
mass P .a/ does not.

Because the bound on mass P .a/ is independent of the size of the simplices in the
complex, the following version of Theorem 2.2 holds for a QC complex:

Geometry & Topology, Volume 18 (2014)



2382 Robert Young

Theorem 2.3 Let † be a QC complex. There is a constant c depending on dim†

such that if a 2 C
Lip
k
.†/ is a Lipschitz k –cycle, then there is a P .a/ 2 C cell

k
.X / such

that @aD @P .a/ and mass P .a/� c �mass.a/.

Now we will sketch a proof of Theorem 1.3. Note that this sketch is incorrect due
to some technical issues; we will fix these issues in the actual proof. In the proof of
Theorem 1.5 of [17], Lang and Schlichenmaier show that, if dimAN.X / <1, there are
a> 0, 0< b < 1 and a cover B D .Bi/i2I0

of X nZ by subsets of X nZ such that

(1) diam Bi � ad.Bi ;Z/ for every i 2 I0 ,

(2) every set D �X nZ with diam D � bd.D;Z/ meets at most dimAN.X /C 1

members of .Bi/i2I0
.

They then define functions �i W X nZ!R,

�i.x/Dmaxf0; ıd.Bi ;Z/� d.x;Bi/g;

where ı D b=.2.bC 1//, and show that these have the property that for any x , there
are no more than dimAN.X /C1 values of i for which �i.x/ > 0. Using these �i , they
construct a Lipschitz map gW X nZ!†0 , where †0 is the nerve of the supports of
the �i . One can give †0 the structure of a QC complex so that if � is a simplex of †0

with a vertex corresponding to �i , then diam�� diam supp �i . Since the diameter of
supp �i is proportional to d.�i ;Z/, this means that the parts of †0 which are close
to Z are given a fine triangulation and the parts of †0 which are far from Z are given
a coarse triangulation.

Since Z is Lipschitz n–connected, one can construct a Lipschitz map hW †.nC1/
0

!Z ,
where †.nC1/

0
is the .nC 1/–skeleton of †0 . Then, if ˛ is an n–cycle in Z , it has a

filling ˇ in X . We can use the Federer–Fleming theorem to approximate g].ˇ/ by
some simplicial .nC1/–chain P .ˇ/ which lies in †.nC1/

0
. The pushforward of P .ˇ/

under h will then be a filling of ˛ .

The problem with this argument is twofold. First, since g is only defined on X nZ ,
we can’t define g].ˇ/ without extending g to Z . We could define an appropriate
metric on the disjoint union †0qZ and a map X !†0qZ , but this is no longer a
simplicial complex. Second, since the cells of † get arbitrarily small close to Z , P .ˇ/

may be an infinite sum of cells of †.

We know of two ways to fix this issue. First, one can make sense of infinite sums of
cells of † by introducing Lipschitz currents; see Ambrosio and Kirchheim [4]. The
set of Lipschitz currents is a completion of the set of Lipschitz chains, and the P .ˇ/

defined above is a current in †0qZ . Its pushforward is then a filling of ˛ . Second,
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we can change the construction of †0 to avoid the problem. We take this approach in
the rest of this section.

All the constants and all the implicit constants in . and � in this section will depend
on X;Z , and n.

First, we construct a QC complex † which approximates X . This complex will have
geometry similar to †0 on X nZ and it will have �–small simplices on Z . For t > 0,
let Nt .Z/�X be the t –neighborhood of Z .

Lemma 2.4 There are a; b;  > 0 such that if � > 0 and ı D b=.2.bC 1//, there is a
covering D of X by sets Dk , k 2K and functions r W K!R, �k W X !R

r.k/Dmaxfıd.Dk ;Z/; �g;

�k.x/Dmaxf0; r.k/� d.x;Dk/g;

such that for any k 2K :

(1) diam Dk . r.k/

(2) d.Dk ;Z/. r.k/

(3) If �D �ı.1C a/ and d.Dk ;Z/ � � , then supp �k is contained in a connected
component of X XZ .

(4) The cover of X by the sets supp �k has multiplicity at most 2 dimAN.X /C 2.

(5) If supp �k \ supp �k0 ¤∅, then

�1r.k 0/� r.k/�  r.k 0/

Proof Let a > 0, 0 < b < 1, and B D .Bi/i2I0
be as in the Lang–Schlichenmaier

construction above. Let We may assume that each Bi is contained in a connected
component of X XZ . Let �D �ı.1C a/, and let I � I0 be the set

I WD fi 2 I0 j Bi 6�N�.Z/g:

Then
S

i2I Bi � X nN�.Z/. Since dimAN.X / � 1, we can let C D fCj gj2J be
a 2c0�–bounded covering of N�.Z/ with 2�–multiplicity at most dimAN.X /C 1,
where c0 is the constant in the definition of dimAN.X /. Let DD C [fBigi2I and let
K D I qJ .

Conditions (1) and (2) are easy to check. For (3), note that if d.Dk ;Z/ � � , then
k 2 I , so Di DBi lies in a single connected component of X nZ , and supp �i lies in
the same component. For (4), note that if i 2 I , then �i D �i , so the cover fsupp �igi2I

has multiplicity at most dimAN.X /C1. Likewise, if x 2 supp �j for some j 2 J , then
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Cj \B.x; �/¤∅, where B.x; �/ is the closed ball of radius � around x . Since C has
bounded 2�–multiplicity, this can be true for only dimAN.X /C 1 values of j .

To check (5), suppose that supp �k \ supp �k0 ¤ ∅. If r.k 0/D � , then r.k 0/ � r.k/.
Otherwise, r.k 0/ D ıd.Dk0 ;Z/. But d.Dk ;Dk0/ . r.k/ and diam Dk . r.k/, so
d.Dk0 ;Z/. r.k/, and r.k 0/. r.k/. By symmetry, r.k/� r.k 0/.

Let † be the nerve of the cover fsupp �kgk2K , with vertex set fvkgk2K and let
sW †!R is the function such that s.vk/D r.k/ and s is linear on each simplex of †.
Define a Riemannian metric xc on each simplex of † by letting dx2

c D s2 dx2 . If
S D hvk1

; : : : ; vkn
i is a simplex of †, then s varies between �1r.k1/ and  r.k1/

on S , so this metric makes † a QC complex.

Lemma 2.5 There is a Lipschitz map gW X ! † with Lipschitz constant c1 inde-
pendent of � . Furthermore, if x 2 supp �k for some k 2 K , then g.x/ is in the star
of vk .

Proof Consider the infinite simplex

�K WD fpW K! Œ0; 1� j kpk1 D 1g

with vertex set K , so that † is a subcomplex of �K . Let

g.x/.k/D
�k.x/

x�.x/
;

where x�.x/D
P

k2K �k.x/. The image of g then lies in †, and we can consider g

as a function X !†.

It remains to show g is Lipschitz with respect to the QC metric on †. Since X is geo-
desic, it suffices to show if x;y2X and d.x;y/<ı2�<� , then d.g.x/;g.y//.d.x;y/.
Let S and T be the minimal simplices of † which contain g.x/ and g.y/ respectively.
First, we claim that S and T share some vertex vm .

Let �D �ı.1Ca/ as above. If d.x;Z/ < � , then there is some j 2 J such that x 2Cj

and �j .x/D � . Since �j is 1–Lipschitz, �j .y/ > 0, so we can let mD j . Otherwise,
if d.x;Z/� � , then there is some i 2 I such that x 2 Bi . We have

d.x;Z/� diam.Bi/C d.Bi ;Z/� .aC 1/d.Bi ;Z/;

so �i.x/D ıd.Bi ;Z/� ı
2� , and �i.y/ > 0 as desired. We let mD i .
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Since S and T share vm , the value of s on S [T is at most  r.m/, and

d.g.x/;g.y//�  r.m/
X

k2.S[T /.0/

ˇ̌̌̌
�k.x/

x�.x/
�
�k.y/

x�.y/

ˇ̌̌̌

�  r.m/
X

k2.S[T /.0/

ˇ̌̌̌
�k.x/

x�.x/
�
�k.y/

x�.x/

ˇ̌̌̌
C

ˇ̌̌̌
�k.y/

x�.x/
�
�k.y/

x�.y/

ˇ̌̌̌

�  r.m/
X

k2.S[T /.0/

1

x�.x/

�ˇ̌̌̌
�k.x/� �k.y/jC

�k.y/

x�.y/
jx�.x/�x�.y/

ˇ̌̌̌�

�  .2 dim†C 1/.2 dim†C 2/
r.m/

x�.x/
d.x;y/:

Furthermore, if x 2Dm0 , then

x�.x/� r.m0/� �1r.m/;

so g has Lipschitz constant at most

c1 D 
2.2 dim†C 1/.2 dim†C 2/:

Next, we construct a map hW †.nC1/! Z on the .nC 1/–skeleton of †. If � is a
simplex of †, denote its vertex set by V.�/.

Lemma 2.6 For any �0 > 0, there is a Lipschitz map h.0/W †.0/!Z with Lipschitz
constant independent of � which satisfies

(1) d.h.0/.vj /;Cj /. � for every j 2 J ,

(2) if Xp;p 2 P are the connected components of X XZ and

Hp.�
0/D fx 2X j d.x;Xp/� �

0
g\Z;

then for any simplex ��†, we either have diam h.0/.V.�// . � (if � has a
vertex of the form vj for some j 2 J ) or h.0/.V.�//�Hp.�

0/ for some p 2P

(otherwise).

Proof For each vertex vk 2 †, choose a point zk 2 Z such that d.zk ;Dk/ <

d.Z;Dk/C �H =2, and let h.0/.vk/ D zk . If k 2 J , then d.Z;Dk/ . � , and so
d.zk ;Dk/. � and property (1) holds. We claim that this map is Lipschitz. Suppose
that v;w are vertices of †. Then there is a path  W Œ0; 1� ! † between them of
length `. / � 2d.v; w/, and the Federer–Fleming theorem implies that this can be
approximated by a path  0W Œ0; 1�!†.1/ in the 1–skeleton of † with `. 0/. `. /.
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So, to check that h.0/ is Lipschitz, it suffices to show that if vk and vk0 are connected
by an edge e , then d.zk ; zk0/. `.e/.

We may assume that r.k/� r.k 0/, so `.e/� �1r.k/. Then we can bound d.zk ; zk0/

by

d.zk ; zk0/� d.zk ;Dk/C diam.Dk/C d.Dk ;Dk0/C diam.Dk0/C d.Dk0 ; zk0/:

Each term on the right is of order at most r.k/. For each term except d.Dk ;Dk0/,
this follows from the remarks after the definition of S . To bound d.Dk ;Dk0/, note
that since there is an edge from vk to vk0 , there is a w 2 supp �k \ supp �k0 . Then
d.w;Dk/ < r.k/ and d.w;Dk0/ < r.k/, so d.Dk ;Dk0/� 2r.k/. Therefore, h.0/ is
Lipschitz.

It remains to check property (2). Let � D hvk0
; : : : ; vkn

i be a simplex of † and
suppose that ki 2 J for some i . Then r.ki/ . � , so diam� . � , and therefore,
diam h.0/.V.�//. � .

Otherwise, ki 2 I for all i . Then there is some p 2 P such that supp �ki
� Xp for

all i , and h.0/.V.�//�Hp.�
0/.

If � > 0 and n are such that whenever k � n and � W Sk!Z is a map with Lip � � � ,
there is an extension x� W DkC1!Z with Lip x� . Lip � , we say that Y is �–locally
Lipschitz n–connected.

Lemma 2.7 If X and Z satisfy the conditions of Theorem 1.3 and � is sufficiently
small, then there is a Lipschitz extension hW †.nC1/ ! Z with Lipschitz constant
independent of � such that d.h.g.z//; z/. � for every z 2Z .

Proof In this proof, it will be convenient to let Sk be the boundary of the standard
.kC 1/–simplex and Dk be the standard k –simplex. If t > 0, we let tSk and tDk

be scalings of Sk and Dk . If a space Y is Lipschitz n–connected, there is a c such
that if k � n, any Lipschitz map � W Sk ! Y can be extended to a Lipschitz map
x� W DkC1! Y with Lip x� � c Lip � . By scaling, any Lipschitz map � W tSk ! Y can
be extended to a Lipschitz map x� W tDkC1! Y with Lip x� � c Lip �

If Z is Lipschitz n–connected, then we can use Lipschitz n–connectivity to extend h.0/ .
That is, if we have already defined h on †.k/ and ��† is a .kC 1/–simplex, then
the Riemannian metric on � is bilipschitz equivalent to s.x/DkC1 for any x 2 �.
Since hj@� is a Lipschitz map of a k –sphere, we can extend h over �, and the
extension satisfies Lip h . Lip h.0/ .
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If Z is not Lipschitz n–connected, we need a more careful approach. By hypothesis, X

is Lipschitz n–connected; let c > 0 be the constant in the definition of Lipschitz n–
connectivity.

Let �0D �H =c and let k � n. If � W Sk!Z is a map with Lip � � �0 , we claim that �
can be extended to a Lipschitz map on DkC1 . If �.Sk/�Hp.�H / for some p2P , then
we can extend � to DkC1 using the Lipschitz n–connectivity of Hp.�H /. Otherwise,
there is some x 2 Sk such that d.�.x/;X nZ/ > �H . Since diam x�0.D

kC1/ � �H ,
the image of x�0 is contained in Z . Therefore, Z is �0–locally Lipschitz n–connected.

If ��† is a simplex, we say that it is coarse if all its vertices are of the form vi for i 2I .
We say that it is fine if it has a vertex of the form vj for some j 2 J ; all fine simplices
have diameter of order at most � and all coarse ones have diameter of order at least � .
By the previous lemma, we can choose h.0/ so that for every coarse simplex �, there is
some p 2P such that h.0/.V.�//�Hp.�H /. If †c �† is the subcomplex consisting
of coarse simplices, we can extend h.0/ to a map hc W †

.0/[†.nC1/
c !Z by induction;

if hcj@� is defined, then hc.@�/ � Hp.�H / for some p 2 P . We extend hc over
� using the Lipschitz n–connectivity of Hp.�H /. The Lipschitz constant of hc is
bounded independently of � .

Again by the previous lemma, we may choose � sufficiently small that any fine simplex
has diameter much less than �0=Lip hc . We can then extend hc over the fine simplices
of † using the local Lipschitz connectivity of Z to get the desired map h.

In either case, if z 2Z , then z 2 supp �k only if k 2 J . In particular, g.z/ is contained
in a fine simplex of diameter of order at most � and and d.z; zi/. � , so

d.h.g.z//; z/� d.h.g.z//; h.vi//C d.zi ; z/. �

as desired.

Therefore, h ıg has small displacement. To complete the proof of Theorem 1.3, we
will need a lemma concerning such maps:

Lemma 2.8 Suppose that m � n, that ˛ is a Lipschitz m–cycle in Z , that Z is
�0 –locally Lipschitz n–connected, and that C > 0. For any � > 0, there is a ı > 0 such
that if f W Z!Z is a C–Lipschitz map with displacement � ı (ie d.f .z/; z/� ı for
all z 2Z ), then

FVmC1
Z

.f].˛/�˛/� �:

Proof Since Z is locally Lipschitz n–connected, if M is a simplicial .mC 1/–
complex, N is a subcomplex, and f W N !Z is a map with sufficiently small Lipschitz
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constant, then there is an extension xf W M !Z with Lip. xf /� Lip.f /. Write ˛ as a
sum ˛D

Pk
iD1 ˛i of Lipschitz maps ˛i W �

m!Z . Let L be the maximum Lipschitz
constant of the ˛i . In the following calculations, all our implicit constants will depend
on k , n, Z , C , and L. We claim that

FVmC1
Z

.f].˛/�˛/. ı:

First, we can subdivide �m into roughly ı�m simplices each with diameter less than
or equal to ı=L. We can use this subdivision to replace ˛ with a sum ˛0 D

Pk0

iD1 ˛
0
i

where k 0 . ı�m and each ˛0i W �
m!Z has Lipschitz constant at most ı .

There is a simplicial m–complex A with at most k 0 top-dimensional faces, a simplicial
cycle ! on A, and a map gW A ! Z with Lip.g/ � ı such that the restriction
of g to each top-dimensional face of A is one of the ˛0i and g].!/ D ˛

0 . Define
r0W A�f0; 1g!Z by letting r0jA�0D g and r0jA�1D f ıg . Then Lip.r0/. ı , and
if ı is sufficiently small, we can extend it to a Lipschitz map r W A� Œ0; 1�!Z with
Lip r � Lip r0 . This is a homotopy from g to f ıg , so the pushforward of ! � Œ0; 1�
is a filling of f].˛/�˛ with mass

mass r].! � Œ0; 1�/. k 0ımC1 . ı

as desired.

Proof of Theorem 1.3 Suppose that ˛ is a .m� 1/–cycle in Z and ˇ is a m–chain
filling it. Let †J be the subcomplex of † spanned by the vertices vj ; j 2 J . Then
g.Z/�†J , and g].˛/ is a cycle in †J with mass �Lip.g/m�1 mass˛ . Each simplex
of †J has diameter approximately � , so by Theorem 2.2, there is a c3 > 0 depending
only on X , a simplicial cycle P˛ WD P†J

.g].˛// approximating g].˛/, and a chain
Q˛ WDQ†J

.g].˛// such that mass Q˛ � c3�mass.˛/ and @Q˛ D P˛ �g].˛/.

Then g].ˇ/CQ˛ is a m–chain in † with boundary P˛ and mass

mass.g].ˇ/CQ˛/� Lip.g/m massˇC c3�mass.˛/:

Theorem 2.3 lets us approximate this by a chain

Pˇ WD P†.g].ˇ/CQ˛/

with boundary P˛ .

By Lemma 2.8, if �0 > 0, then for � sufficiently small, there is a Lipschitz .mC 1/–
chain R in Z such that

@RD ˛� .h ıg/].˛/
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and mass R� �0 . Let
B DR� h].Q˛/� h].Pˇ/:

Then @B D ˛ and
mass B . massˇC �mass.˛/C �0;

so
FVk

Z .˛/. massˇ

as desired.

The rest of this paper is dedicated to applying this theorem to horospheres and lattices
in symmetric spaces and buildings.

3 Fillings in Sol2n�1

Theorem 1.3 is useful because it reduces a difficult to prove statement about the
undistortedness of an inclusion to an easier to prove Lipschitz extension property. For
example, in this section, we will prove:

Theorem 3.1 The solvable Lie group Sol2n�1 D Rn�1 Ë Rn is Lipschitz .n� 2/–
connected.

Theorem 1.5 follows as a direct application of Theorem 1.3.

We start by defining Sol2n�1 , n � 2. This group is a solvable Lie group which can
be written as a semidirect product of Rn and Rn�1 , where Rn�1 acts on Rn as the
group of n� n diagonal matrices with positive coefficients and determinant 1. When
nD 2, this is the three-dimensional solvable group corresponding to solvegeometry.

All the constants and implicit constants in this section will depend on n.

One feature of this group is that it can be realized as a horosphere in a product
of hyperbolic planes. Let H2 be the hyperbolic plane and let ˇW H2 ! R be a
Busemann function for H2 . We can define Busemann functions ˇ1; : : : ; ˇn in the
product Hn

2
by letting ˇi.x1; : : : ;xn/D ˇ.xi/. Then b D n�1=2

P
ˇi is a Busemann

function for Hn
2

, and Sol2n�1 acts freely, isometrically, and transitively on the resulting
horosphere b�1.0/. The metric induced on Sol2n�1 by inclusion in Hn

2
is bilipschitz

equivalent to a left-invariant Riemannian metric on Sol2n�1 .

This group also appears as a subgroup of a Hilbert modular group. If � � SL2.R/
n is

a Hilbert modular group and X D .H2/
n , then there is a collection H of disjoint open
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horoballs in X such that the boundary of each horosphere is bilipschitz equivalent to
Sol2n�1 and � acts cocompactly on X XH [20]. Consequently, Theorem 1.6 is also a
corollary of Theorem 3.1.

To prove Theorem 3.1, we will use the following condition, which is equivalent to
Lipschitz connectivity (cf Gromov [15]):

Lemma 3.2 Let Z be a metric space, let �Z be the infinite-dimensional simplex with
vertex set Z , and let �.k/

Z
be its k –skeleton. Let hz0; : : : ; zki denote the k –simplex

with vertices z0; : : : ; zk . Then Z is Lipschitz n–connected if and only if there exists a
map �W �.nC1/

Z
!Z such that:

(1) For all z 2Z , we have �.hzi/D z .

(2) There is a c such that for any d � nC 1 and any simplex ı D hz0; : : : ; zd i, we
have

Lip�jı � c diamfz0; : : : ; zdg:

Proof One direction is clear; if Z is Lipschitz n–connected, then one can construct �
by letting �.hzi/ D z for all z 2 Z , then using the Lipschitz connectivity of Z to
extend � over each skeleton inductively.

The other direction is an application of Whitney decomposition. We view DdC1 as
a subset of RdC1 ; by the Whitney covering lemma, the interior of DdC1 can be
decomposed into a union of countably many dyadic cubes such that for each cube C ,
one has diam C �d d.C;Sd /. We can decompose each cube into boundedly many
simplices to get a triangulation � of the interior of DdC1 where each simplex is
bilipschitz equivalent to a scaling of the standard simplex.

We construct a map hW DdC1!Z using this triangulation. For each vertex v in � ,
let h.v/ be a point in Sd such that d.v; h.v// is minimized. One can check that h is
a Lipschitz map from � .0/! Sd , so g0 D ˛ ı hW � .0/!Z is a Lipschitz map with
Lip.g0/�d;� Lip.˛/. We can extend g0 to a map gW � !Z by sending the simplex
hv0; : : : ; vki to the simplex �.hg0.v0/; : : : ;g0.vk/i/, and this is also Lipschitz with
Lip.g/�d;� Lip.˛/.

Finally, we extend g to a map ˇW DdC1!Z by defining g.v/D ˛.v/ when v 2 Sd .
Since the diameter of the simplices of � goes to zero as one approaches the boundary,
this extension is continuous and therefore Lipschitz, as desired.

It therefore suffices to prove the following:
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Lemma 3.3 Let � D �Sol2n�1
be the infinite-dimensional simplex with vertex set

Sol2n�1 . There is a map �W �.n�1/ ! Sol2n�1 which satisfies the properties in
Lemma 3.2. Therefore, Sol2n�1 is Lipschitz .n� 2/–connected.

Our construction is based on techniques from [5]; we will construct � using nonposi-
tively curved subsets of Sol2n�1 called k –slices.

Recall that we defined Sol2n�1 as a horosphere in .H2/
n . Let ˇW H2 ! R be the

Busemann function used to define Sol2n�1 and let � be the corresponding point at
infinity. If  is a geodesic in H2 which has one endpoint at �, we call  a vertical
geodesic. For i D 1; : : : ; n, let si �H2 be either a vertical geodesic or all of H2 . If
k of the si are equal to H2 , we call the intersection s1� � � � � sn\Sol2n�1 a k –slice.

Suppose that k < n and that S is a k –slice; without loss of generality, we may assume
that

S DH2 � � � � �H2 � 1 � � � � � n�k \Sol2n�1 :

Then the projection to the first n�1 factors (ie all but the last factor) is a homeomorphism
from S to .H2/

k � Rn�k�1 . In fact, this map is bilipschitz, so S is bilipschitz
equivalent to a Hadamard manifold.

If k < n, then any k –slice is Lipschitz d –connected for any d :

Lemma 3.4 If X is a Hadamard manifold, it is Lipschitz n–connected for any n.

Proof Let ˛W Sn!X , and let v 2 Sn . Let .x; r/ 2 Sn � Œ0; 1� be polar coordinates
on DnC1 . We can construct a map x̨W DnC1!X by letting x̨.x; r/ be the geodesic
from ˛.v/ to ˛.x/. Because the distance function on X is convex, this is a Lipschitz
map, and Lip.x̨/. Lip.˛/.

If � is a polyhedral complex and f W � ! Sol2n�1 , we say that f is a slice map if the
image of every cell ı of � is contained in a .dim ı/–slice.

Our main tool in the proof of Lemma 3.3 is the following:

Lemma 3.5 Let k < n. Suppose that � is a polyhedral complex which is bilipschitz
equivalent to Sk�1 . Then there is a c > 0 and a polyhedral complex � bilipschitz
equivalent to Dk which has boundary � . Furthermore, if f W � ! Sol2n�1 is a
Lipschitz slice map, there is an extension gW � ! Sol2n�1 which is a slice map with
Lip.g/� c Lip.f /.
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The basic idea of the lemma is to first construct a family of projections along horospheres
whose images lie in .n � 1/–slices, then construct homotopies between f and its
projections. Gluing these homotopies together will give a map � � Œ0; n�! Sol2n�1 ,
and adding a final contraction will extend the map to all of � .

Let ˇW H2 ! R be the Busemann function used to define Sol2n�1 . If  is a ver-
tical geodesic in H2 and x 2 H2 , let p.x/ be the unique point on  such that
ˇ.x/ D ˇ.p.x//. This defines a map p W H2 !  . It is straightforward to check
that p is distance-decreasing and that d.x;p.x//� 2d.x;  /.

Suppose that xD .x1; : : : ;xn/2 .H2/
n . For i D 1; : : : ; n, let i be a vertical geodesic

containing xi , and let ˇW H2!R be the Busemann function used to define Sol2n�1 .
For each i , let pi W Soln2n�1! Sol2n�1 be the map

pi.y1; : : : ;yn/D .y1; : : : ;yi�1;pi
.yi/;yiC1; : : : ;yn/:

Let S be the 0–slice
S D 1 � � � � � n\Sol2n�1

and let Si be the .n� 1/–slice

Si DH2 � � � � � i � � � � �H2\Sol2n�1;

where i occurs in the i th factor. It is easy to check the following properties:
� pi is distance-decreasing
� d.y;pi.y//� 2d.y;x/ for all y 2 Sol2n�1

� pi preserves S pointwise
� If S 0 is a d –slice, then pi.S

0/ lies in a d –slice and S 0 and pi.S
0/ both lie in

the same .d C 1/–slice. In particular, y and pi.y/ lie in a 1–slice for every
y 2 Sol2n�1 .

Lemma 3.6 For any i , if � is a polyhedral complex with dim � <n, f W �!Sol2n�1

is a Lipschitz slice map, and s 2 � satisfies f .s/D x , then there is a homotopy gW � �

Œ0; 1�!Sol2n�1 from f to piıf which is a Lipschitz slice map with Lip.g/. Lip.f /.

Proof We construct g one skeleton at a time. For any cell ı , the image g.ı� Œ0; 1�/

will be contained in the minimal slice that contains f .ı/ and pi.f .ı//. Since f .ı/
and pi.f .ı// lie in a common .dim ıC 1/–slice, this ensures that g is a slice map.

The map g is already defined on the vertices of � � Œ0; 1� and we claim that it is
Lipschitz on the 0–skeleton. If l D Lip.f /, then f and pi ı f are l –Lipschitz, and
if v is a vertex of � , then

d.f .v/;pi.f .v///� 2d.f .v/;x/� 2l diam �;
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so g is Lipschitz on the vertex set and Lip.g/. l .

Now suppose that we have defined g on the .d � 1/–cells of � � Œ0; 1� and that for
any .d � 2/–cell ı , the image g.ı � Œ0; 1�/ is contained in the minimal slice that
contains f .ı/ and pi.f .ı//. Consider a cell of the form ı� Œ0; 1� for some .d � 1/–
cell ı in � . Since f is a slice map, f .ı/ lies in some .d�1/–slice, so f .ı/[pi.f .ı//

lies in some d –slice, and this d –slice also contains g.@ı � Œ0; 1�/ by the inductive
hypothesis. Let S 0 be the minimal slice that contains

g.@.ı� Œ0; 1�//D f .ı/[pi.f .ı//[g.@ı� Œ0; 1�/:

By Lemma 3.4, we can extend g over ı� Œ0; 1� so that it sends ı� Œ0; 1� to S 0 . The
extension is Lipschitz and Lip g . Lipf .

Now we can prove Lemmas 3.5 and 3.3

Proof of Lemma 3.5 Let � be the complex � � Œ0; n� [ C�= �, where Œ0; n� is
subdivided into n unit-length edges, C� is the cone over � and � is the relation
gluing the base of C� to � � fng. This is bilipschitz equivalent to Dk .

Choose a basepoint v� 2 � and suppose that f .v�/D x D .x1; : : : ;xn/ 2 .H2/
n . For

i D 0; : : : ; n, let fi D pi � � � � �p1 ı f . By Lemma 3.6, for i D 1; : : : ; n, there is a
homotopy gi W � � Œi �1; i �! Sol2n�1 from fi�1 to fi which is a Lipschitz slice map
with Lip.gi/. Lip.f /. Concatenating the gi gives a map � � Œ0; n�! Sol2n�1 which
is a Lipschitz homotopy from f to fn . To define g , it suffices to extend this map over
C� , but since the image of fn lies in S , we can use Lemma 3.4 to construct such an
extension. Since this extension lies in a 0–slice, it is a slice map, so g is a slice map
and Lip.g/. Lip.f /.

Proof of Lemma 3.3 Let �d be the standard d –simplex. We define a sequence
�i ; i D 0; : : : ; n� 1 of polyhedral complexes homeomorphic to �i and a sequence
�i ; i D 0; : : : ; n� 1 of polyhedral complexes homeomorphic to @�iC1 inductively.
Let �0 be a single point. For each i � 0, let �i be the complex obtained by replacing
each i –face of @�iC1 by a copy of �i . Let �iC1 be the complex obtained by applying
Lemma 3.5 to �i . This is PL-homeomorphic to �i and has boundary �i .

Let �0 be the complex obtained by subdividing each d –simplex of �.n�1/ into a copy
of �d and let i W �.n�1/!�0 be a bilipschitz equivalence taking each simplex to the
corresponding copy of �d . We can construct a slice map �0W �0 ! Z by defining
�0.hxi/D x for all x 2 Sol2n�1 and using Lemma 3.5 inductively to extend �0 over
each of the �d .
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That is, if ı D hx0; : : : ;xdC1i �� is a .d C 1/–cell, �0 is defined on i.@ı/, and

�ji.@ı/W �d ! Sol2n�1

is a slice map, and Lip.�ji.@ı// . diamfx0; : : : ;xdC1g, we may extend it to a slice
map on i.ı/ using Lemma 3.5. The resulting map �jı has

Lip.�jı/. diamfx0; : : : ;xdC1g

as desired.

Thus, by Lemma 3.2, Sol2n�1 is Lipschitz .n� 2/–connected, and by Theorem 1.3,
it is undistorted up to dimension n inside Hn

2
. Consequently, if k < n and if ˛ is a

Lipschitz k –cycle in Sol2n�1 , then

FVkC1
Sol2n�1

.˛/. FVkC1
Hn

2

.˛/. .mass˛/.kC1/=k ;

as desired.

4 Fillings in horospheres of euclidean buildings

In this section, we prove Theorem 1.7. A horosphere in a building of rank at least n

contains a flat of dimension n� 1, so its k th –order Dehn function grows at least as
fast as V .kC1/=k when k � n� 2. It remains to show that it grows at most as fast
as V .kC1/=k .

If Y is a spherical building modeled on a Coxeter complex S with Weyl group W , let
�mod.Y /D S=W be its model chamber. There is a canonical map pW Y !�mod.Y /

such that each chamber of Y is sent to M.Y / by an isometry, and we claim:

Theorem 4.1 Let X be a thick euclidean building and let X1 be the Bruhat–Tits
building of X . If X is reducible, then X1 is a join of buildings; let � be a point in X1
which has rational slope and is not contained in a join factor of rank less than n. Let Z

be a horosphere in X centered at � and let pW X1! �mod.X1/ be the projection
of X1 to its model chamber. Then Z is Lipschitz .n� 2/–connected with implicit
constant depending only on X and p.�/.

By Theorem 1.3 and Corollary 1.4, this implies Theorem 1.7.

Furthermore, if K is a global function field, G is a noncommutative, absolutely almost
simple K–group of K–rank 1, and S is a finite set of pairwise inequivalent valuations
on K , then � DG .OS / is an S –arithmetic group. If X is the associated euclidean
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building and n is its rank, then by [7, Theorem 3.7], there is a collection H of pairwise
disjoint open horoballs in X such that X XH is G .OS /–invariant and cocompact. By
Theorem 4.1, the boundary of each of these horoballs is Lipschitz .n� 2/–connected
with a uniform implicit constant, so Theorem 1.3 implies Theorem 1.8.

As in [9, Remark 4.2], it suffices to consider the case that X is a thick euclidean
building of rank n and that � is not parallel to any factor of X . If X D X1 �X2 ,
then X1 D .X1/1 � .X2/1 . If � 2 .X1/1 , then Z D Z1 �X2 , where Z1 � X1

is a horosphere of X1 centered at � . If ˛W Sk ! Z is c–Lipschitz, we can replace
it with its projection to Z1 by using an homotopy with Lipschitz constant at most
.diam Sk C 1/c , so if Z1 is Lipschitz .n� 2/–connected, so is Z .

Therefore, in this section, we will let X be a thick euclidean building of rank n equipped
with its complete apartment system, and let X1 be its Bruhat–Tits building. We fix a
direction at infinity � 2X1 which is not contained in any factor of X1 , and let h be
a Busemann function centered at � , with corresponding horosphere Z D h�1.0/. We
orient h so that h.x/ increases as x approaches � ; we use this orientation so that we
can treat h as a Morse function on X more easily.

All the constants in this section and its subsections will depend on X and Z .

The proof that Z is Lipschitz .n� 2/–connected is based on Lemma 3.2. Let �Z be
the infinite-dimensional simplex with vertex set Z , and let �.k/

Z
be its k –skeleton. We

will show:

Lemma 4.2 There exists a map �W �.n�1/
Z

!Z such that:

(1) For all z 2Z , we have �.hzi/D z .

(2) For any d � nC 1 and any simplex ı D hz0; : : : ; zd i, we have

Lip�jı . diamfz0; : : : ; zdgC 1:

The only difference between the map in Lemma 4.2 and the map in Lemma 3.2
is the bound on Lip�jı . In Lemma 3.2, Lip�jı is bounded by a multiple of
diamfz0; : : : ; zdg; in Lemma 4.2, it is bounded by a multiple of diamfz0; : : : ; zdg

and an additive constant.

As a corollary, we have:

Lemma 4.3 For any t > 0, there is a Lipschitz map rt W h
�1..1; t �/\X .n�1/!Z

which restricts to the identity map on Z .
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Proof Define rt on h�1..1; 0�/ as the closest-point projection. Since horoballs are
convex, this is a distance-decreasing map.

To define rt on h�1..0; t �/\X .n�1/ , we view X as a polyhedral complex, ie a complex
whose faces consist of convex polyhedra in Rn , glued along faces by isometries. Then h

is linear on each face of X , so if P is a face of X , then the intersections h�1.Œ0; t �/\P ,
Z\P , and h�1.t/\P are convex polyhedra. Since � has rational slope, the set h.X .0//

of possible values of h on the vertices of X is discrete, so only finitely many isometry
classes of polyhedra occur this way, and we can give Zt D h�1.Œ0; t �/\X .n�1/ the
structure of a polyhedral complex with only finitely many isometry classes of cells.
We subdivide each cell to make Zt into a simplicial complex. We define rt on the
vertices of Zt so that d.rt .v/; v/ is minimized. If � is a simplex of Zt with vertices
v0; : : : ; vk , we define

rt j� D�jhrt .v0/;:::;rt .vk/i:

This gives a Lipschitz map with Lipschitz constant depending on the size of the smallest
simplex in Zt .

The proof of this lemma is the only place that we use the assumption that � has rational
slope.

Given these lemmas, we prove Theorem 4.1 as follows.

Proof of Theorem 4.1 Suppose that ˛W Sk !Z is a Lipschitz map. If Lip.˛/� 1,
we can extend ˛ to a map ˇW DkC1 ! X by coning ˛ to a point along geodesics
in X . Since X is CAT(0), ˇ is Lipschitz and Lip.ˇ/ � Lip.˛/. Furthermore, the
image of ˇ lies in h�1.Œ�1; 1�/, so r1 ı ˇW D

kC1 ! Z is an extension of ˛ with
Lip.r1 ıˇ/� Lip.˛/.

If Lip.˛/ > 1, let L 2N be the smallest integer such that L� Lip.˛/, let DkC1.L/

be the cube Œ0;L�kC1 � RkC1 , and let Sk.L/ D @Dk.L/. We view ˛ as a map
Sk.L/!Z such that Lip.˛/� 1 and try to construct an extension to DkC1.L/ with
comparable Lipschitz constant.

As in the proof of Lemma 3.2, the Whitney covering lemma implies that DkC1.L/

can be decomposed into a union of countably many dyadic cubes such that for each
cube C , one has diam C � d.C;Sk.L//. Since these cubes are dyadic, each cube of
side length less than one is contained in a cube of side length 1. Let C be the cover
of DkC1.L/ obtained by combining cubes of side length less than 1 into cubes of side
length 1. Then for each cube C in C , we have diam C � d.C;Sk.L//C 1, and each
cube which touches Sk.L/ has side length 1. We call the cubes that touch Sk.L/ the
boundary cubes and we call the rest interior cubes. We can decompose each cube into
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boundedly many simplices to get a triangulation � of DdC1 where each simplex is
bilipschitz equivalent to a scaling of the standard simplex. Let �i be the subcomplex
of � contained in the interior cubes.

We construct a map hW Sk.L/[ �i !Z using this triangulation. If x 2 Sk.L/, we
define h.x/ D f .x/. For each vertex v in �i , let h.v/ be a point in Sd such that
d.v; h.v// is minimized, and if �D hv0; : : : ; vki is a simplex of �i , define

hj� D�jhh.v0/;:::;h.vk/i:

Since diam�& 1, this is Lipschitz with Lip.h/� 1.

Since X is CAT(0) and thus Lipschitz n–connected, we can extend h over the boundary
cubes inductively; if C is a face of a boundary cube and h is already defined on @C ,
we extend h over C by coning hj@C to a point along geodesics. This produces an
extension hW DkC1.L/!X with Lipschitz constant Lip.h/� 1.

Finally, since the boundary cubes are all contained in a neighborhood of Sk.L/, their
image is contained in a neighborhood of Z , so if c is large enough, then

rc ı hW DkC1.L/!Z

is an extension of ˛ and Lip.rc ı h/� 1.

In the rest of this section, we will prove Lemma 4.2. The proof is a quantitative Morse
theory argument, like the “pushing” arguments by Abrams, Brady, Dani, Duchin and
the author in [3]. Bux and Wortman [7] used a Morse theory argument to prove that Z

is n–connected; we sketch their proof in the case that � is a generic direction. In
general, X is contractible, and Z is the level set of h. If � is generic, then h is
nonconstant on every edge of X , and we can treat it as a combinatorial Morse function.

That is, if u is a vertex of X , then every vertex of its link Lk.u/ corresponds to
a vertex v adjacent to u. We define the downward link Lk# u � Lk u to be the
subcomplex spanned by vertices v with h.v/ < h.u/. By results of Schulz [21], Lk# u

is .n� 2/–connected for all u, so combinatorial Morse theory implies that Z is also
.n� 2/–connected. Bux and Wortman apply a similar argument in the general case,
but with h replaced by a more complicated function to deal with faces of dimension
greater than 0 that are orthogonal to � .

Arguments like this, however, give poor quantitative bounds. Given an .n� 2/–sphere
in Z , one can construct a filling in the horosphere h�1.Œ0;1// and use Morse theory
to homotope it to Z , but the filling may grow exponentially large in the process. The
pushing methods in [3] avoid this sort of exponential growth by constructing maps
from Lk# u to Z , and we will apply similar methods here.
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Let a be a chamber of X1 which contains � in its closure and let

X 0
1.a/ WD fb j b is a chamber of X1 opposite to ag:

Abramenko [1] showed that if Y is a sufficiently thick classical spherical building,
then Y 0.a/ is .rank Y � 2/–connected for any chamber a of Y . We will show that
if X is a thick euclidean building of rank n, then X 0

1.a/ is .n� 2/–connected.

Roughly, we show .n� 2/–connectivity by showing that “most” pairs of chambers
b; c�X 0

1.a/ are opposite to one another and that if Eb;c is the apartment they span,
then @1Eb;c � X 0

1.a/. Then, for each sphere ˛W Sk ! X 0
1.a/ with k < n� 2, we

choose a c such that for any b in the support of ˛.Sn�2/, b is opposite to c and
@Eb;c �X 0

1.a/. We can then contract ˛ to a point in c along geodesics. Since X 0
1.a/

is .n� 2/–connected, there is no obstruction to constructing a map

�1W �
.n�1/
Z

!X 0
1.a/:

Next, we construct a map to Z . Given a point x 2 X and a direction � 2 X1 , we
let r be the ray emanating from x in the direction of � . If h.x/ > 0 and � 2X 0

1.a/,
this ray will eventually intersect Z . This provides a map X 0

1.a/ ! Z , but this
map is not Lipschitz: a ray may travel a long distance before intersecting Z . To
fix this, we define the downward link at infinity Lk#1.x/ at x . This is a subset
Lk#1.x/�X1 of directions that point “downward” from x (ie away from a). Rays
in these directions intersect Z after traveling distance roughly h.x/, so we can define
a map ix W Lk#1.x/ ! Z with Lip.ix/ . h.x/ which sends each direction to the
corresponding intersection point.

The sets Lk#1.x/ get bigger as x! a, and any finite subset of X 0
1.a/ is contained in

some Lk#1.x/. This lets us convert �1 into a map to Z ; for each simplex �, we
choose some x� so that �1.�/� Lk#1.x�/ and define (after some patching around
the edges)

�j� D ix�
ı�1:

Finally, we show that restrictions of � to simplices satisfy Lipschitz bounds. To do
this, we need some control over the Lipschitz constants of the ix�

. We know that
Lip.ix�

/ . h.x�/, so we try to bound the h.x�/ by controlling which chambers
of X 0

1.a/ we use in fillings of spheres. This proves the theorem.

The rest of this section is devoted to filling in the details of this sketch. First, in
Sections 4.1 and 4.2, we describe our notation and define some maps and subsets that
we will use in the rest of the proof. In Section 4.3, we construct Lk#1.x/ and show
that there are many apartments in Lk#1.x/. In Section 4.4, we use this fact to show
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that X 0
1.a/ is .n� 2/–connected and to construct �1 and the x� . In Section 4.5,

we use these to construct �.

4.1 Preliminaries

In this section, we fix some notation for dealing with buildings, define some maps
and subsets that will be important in the rest of the section, and prove some of their
properties. Our primary reference is Abramenko and Brown [2].

As stated in the introduction to this section, we let X be an irreducible thick euclidean
building of rank n, equipped with its complete apartment system and let X1 be its
Bruhat–Tits building. If E is an apartment of X , we can identify it with the Coxeter
complex of a Euclidean reflection group W , and we can identify the correspond-
ing apartment @1E � X1 with the Coxeter complex of SW , the reflection group
corresponding to the linear parts of the elements of W .

Recall that X1 can be defined as the set of classes of parallel unit-speed geodesic
rays in X , where r; r 0W Œ0;1/!X are parallel if d.r.t/; r 0.t// is bounded as t!1.
For any x 2 X and any � 2 X1 , there is a unique ray based at x and parallel
to � [2, Lemma 11.72]. Given a subset Y � X , we define @1Y to be its boundary
at infinity; for the subsets we will consider in this paper, @1Y consists of the set of
parallelism classes of geodesic rays in Y . If d is a chamber of @1E , we say that E

is asymptotic to d.

If x 2 E , there is a conical cell x C d based at x for every chamber d of @1E ;
we call these cells sectors. Note that xC d doesn’t depend on our choice of E ; this
construction gives the same result for any apartment E0 such that d � @1E0 and
x 2E0 .

The codimension-1 cells of E are called panels. Each panel is contained in a
codimension-1 subspace of E which we call a wall. Each wall divides E into a
pair of closed half-apartments. We say that E0 is a ramification of E if either E DE0

or E \E0 is a half-apartment. Since X is thick, each wall is the boundary of at least
three half-apartments. We say that two chambers are adjacent if they have disjoint
interiors and share a panel. A sequence of chambers C1; : : : ;Ck such that Ci and CiC1

are adjacent is called a gallery of combinatorial length k . The minimal combinatorial
length of a gallery connecting two chambers is called the combinatorial distance
between them, and a gallery realizing this length is called a minimal gallery. We denote
the combinatorial distance between C and C 0 by dcomb.C;C

0/.

There is also a CAT(0) metric on X which gives each apartment the metric of Rn . We
denote this metric by d W X �X !R. Likewise, there is a CAT(1) metric (the angular
metric) on X1 , which we also denote by d .
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If c; d � X1 are chambers and dcomb.c; d/ D diamcomb.X1/, we say that c and d

are opposite. Any pair of opposite chambers of X1 determines a unique apartment
of X1 [2, Theorem 4.70]. Indeed, if c; d�X1 are opposite chambers, then there is a
unique apartment of X which is asymptotic to c and d [2, Theorem 11.63].

4.2 Folded apartments

In order to prove Theorem 4.1, we will need to understand how apartments in X are
positioned relative to a. In this section, we describe some notions that will be useful to
understand the arrangement of apartments in X .

Recall that if E is an apartment of X and C � E is a chamber, there is a retrac-
tion �E;C W X ! E such that if C D C1; : : : ;Ck is a minimal gallery in X , then
C D �.C1/; : : : ; �.Ck/ is a minimal gallery in E . We will use a related retraction
which is based at a chamber of X1 rather than a chamber of X .

Following Abramenko and Brown [2, 11.7], if E is an apartment of X and c is a
chamber of @1E , we define �E;cW X!E to be the map such that if E0 is an apartment
of X which is asymptotic to c, then �E;cjE0 is the isomorphism �E0 W E

0!E which
fixes E \E0 pointwise. (In the case that X is a tree, this is the map obtained by
“dangling” the tree from a point at infinity.)

Fix some apartment F which is asymptotic to a and let �D�F;a . Note that changing the
choice of F changes � by an isomorphism; if F 0 is asymptotic to a and �F W F ! F 0

is the isomorphism fixing F \F 0 pointwise, then �F 0;a D �F ı �F;a . Furthermore, �
preserves Busemann functions centered at points in a. In particular, h ı �D h.

If E is an apartment of X , then � maps E to F by a “folding” process. If X is a
tree, for instance, then either �jE is an isomorphism E! F or it folds E once. In
higher rank buildings, �jE can be more complicated. The following lemmas will help
us describe these maps.

For any chamber C of X and any chamber c of X1 , we define the direction DC .c/

of �.c/ at �.C / as follows. Let �!xy be a directed line segment in C in the direction of
an interior point of c. Then �.�!xy/ is a directed line segment in F pointing toward the
interior of some chamber of @1F . We let DC .c/ be that chamber.

Lemma 4.4 Let C be a chamber of an apartment E . Then DC j@1E W @1E! @1F

is a type-preserving isomorphism.
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a

Figure 1: A subset of an apartment and its image under � . (The three-
dimensional effect is for clarity: the map sends triangles to triangles.) Each
triangle is a–characteristic for the chamber of X1 in the direction of its
arrow.

Proof If E0 is an apartment containing C and asymptotic to a and c0 � @1E0 , we
have DC .c

0/D �1.c
0/. If �W E!E0 is the isomorphism fixing E \E0 pointwise,

then DC .c/DDC .�1.c// for any c� @1E , so

DC j@1E D �1j@1E0 ı�1:

By [2, Proposition 11.87], �1 is a type-preserving isomorphism. Likewise, since �jE0
is the isomorphism fixing E0\F pointwise, it induces a type-preserving isomorphism
on @1E0 .

If C is a chamber of X , x 2 C , and c � X1 , then there is some subsector x0C c

of xC c such that some apartment of X contains x0C c and is asymptotic to a. The
proof of Theorem 11.63(2) in [2] contains the following lemma, which gives us a
criterion for when we can take x0 D x .

Lemma 4.5 Suppose that E is an apartment of X and c is a chamber in @1E . If C

is a chamber of E such that

dcomb.a;DC .c//D max
B�E

dcomb.a;DB.c//

and x 2 C , then there is an apartment of X containing xC c and asymptotic to a.

In particular, if a and DC .c/ are opposite, then a and c are opposite.

If C is a chamber of X and c is a chamber of @1X such that a is opposite to DC .c/,
we call C an a–characteristic chamber for c.
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Lemma 4.6 The following are equivalent:

(1) C is an a–characteristic chamber for c.

(2) a and c are opposite and the unique apartment asymptotic to a and c contains C .

(3) a and c point in opposite directions at C , that is, whenever x is in the interior
of C , the rays from x toward the barycenters of a and c point in opposite
directions.

Proof By Lemma 4.5, (1) implies (2). If (2) holds and E is the unique apartment
asymptotic to a and c, then the rays toward the barycenters of a and c from any
point in E are rays in E pointing in opposite directions, so (3) holds. Finally, if (3)
holds, then DC .a/ and DC .c/ are opposite chambers of @1F . Since DC .a/D a, this
implies (1).

We can replace a in the above constructions with any chamber d � X1 , so more
generally, we may say that C is an d–characteristic chamber for c if d and c are
opposite and the unique apartment asymptotic to d and c contains C . Then C is an
d–characteristic chamber for c if and only if a and c point in opposite directions at C .

Similarly, we say that c and c0 point in the same direction at C if, whenever x is in
the interior of C , the rays from x toward the barycenters of c and c0 have the same
tangent vector at x . It follows that we have:

Lemma 4.7 If c and c0 point in the same direction at C and C is d–characteristic
for c, then it is also d–characteristic for c0 .

We can apply this lemma to ramifications: if C �E is a–characteristic for c� @1E

and E0 is any apartment of X that contains C , let �W E!E0 be the isomorphism
fixing E\E0 pointwise and let c0D �1.c/. Then c and c0 point in the same direction
at C , so c0 is opposite to a.

Figure 1 gives an example of the possible behavior of � on an apartment; in the figure, �
“folds” E along the thick lines. Each of the arrows is sent to an arrow pointing in the
direction opposite a, so each chamber of E is a–characteristic for the chamber of E

that its arrow points toward. Since there are arrows pointing toward every chamber of
@1E , we have @1E �X 0

1.a/. Any apartment E0 that contains the pictured portion
of E also satisfies @1E0 �X 0

1.a/. In fact, if E0 is such an apartment, then � “folds”
E0 in the same way as E (ie if �W E!E0 is the isomorphism fixing E\E0 pointwise,
then �jE D �jE0 ı� ).

As the figure suggests, every apartment can be decomposed into a–characteristic
chambers:
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Lemma 4.8 (cf [9, Lemma 3.1.1]) If E is an apartment of X and c1; : : : ; cd 2 @1E

are the chambers of @1E which are opposite to a, then E is a union of subcomplexes
Y1; : : : ;Yd such that the chambers of Yi are the chambers of E that are a–characteristic
for ci . The Yi are convex in the sense that if C;C 0�Yi , then any minimal gallery from
C to C 0 is contained in Yi , and the restriction of � to any of the Yi is an isomorphism.

Proof For each i , let Ei be the apartment asymptotic to a and ci . Then Yi DE\Ei

is a convex subcomplex of E consisting of the union of the chambers of E that are
a–characteristic for ci . If C is a chamber of E , let �!xy be a line segment in �.C / in
a direction opposite to a. We can pull it back under � to a line segment in C which
points in the direction of a chamber ci � @1E . Then C is an a–characteristic chamber
for ci and C � Yi .

Even when C is not a–characteristic for c, the direction DC .c/ still tells us about �jxCc
for x 2 C . The following lemma strengthens Lemma 4.5.

Lemma 4.9 Suppose that c is a chamber in @1X , that C is a chamber of X , and
x0 2 C . Let C 0 be a chamber which intersects the sector x0 C c. Then either
DC .c/DDC 0.c/ or dcomb.a;DC .c// < dcomb.a;DC 0.c//.

Proof We proceed similarly to [2, 11.63(2)].

Let x 2 C 0 be a point in C 0\x0C c. We may choose x so that the geodesic segment
��!x0x never crosses two walls simultaneously. Then ��!x0x passes through chambers
C D C0; : : : ;Cl D C 0 which all meet x0C c and which form a minimal gallery in X .
For each i , let xi be a point on ��!x0x which lies on the interior of Ci .

We proceed inductively. Suppose that the lemma is true for C 0 D C0; : : : ;Ci and
consider C 0 D CiC1 .

Let E be an apartment containing Ci and asymptotic to a. Let A be the common
panel between Ci and CiC1 and let H be the wall of E containing A. Let EC �E

be the half-apartment bounded by H which is asymptotic to a and let E� �E be the
opposite half-apartment.

We consider two cases: Ci �EC and Ci �E� .

If Ci � EC , let E0 be a ramification of E (possibly E itself) which contains EC

and CiC1 . This is an apartment asymptotic to a, so by the definition of � , the
restriction �jE0 is an isomorphism fixing E0\F pointwise. This map sends the line
segment ����!xixiC1 to the line segment

����������!
�.xi/�.xiC1/. Since ����!xixiC1 is a line segment in

the direction of an interior point of c, this implies that

(1) DCi
.c/DDCiC1

.c/:
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If Ci � E� , then we have two possibilities: either CiC1 � E or CiC1 6� E . If
CiC1 � E , then the argument above, applied to E , shows that DCi

.c/DDCiC1
.c/.

Otherwise, let E0 be a ramification of E which contains E� and CiC1 and let
DDE0XE� . Then D[EC is an apartment asymptotic to a, so �jD is an isomorphism.
Likewise, �jE� is an isomorphism. In fact, the restriction of � to E0 DE�[D is a
map E0! F which “folds” E0 along H , sending both E� and D to �.E�/.

If sW F ! F is the reflection fixing �.H /, then DCiC1
.c/D s1.DCi

.c//. But ��!x0x

passes from E� to EC , so c� @1EC and DCi
.c/ is on the same side of @1�.H /

as a. Therefore,

(2) dcomb.a;DCi
.c// < dcomb.a;DCiC1

.c//:

Either (1) or (2) holds for each i . The lemma follows by induction.

We will also define some families of subsets of X and X1 . Our argument is essentially
a quantitative version of Morse theory, so for each point x 2 X with h.x/ � 0, we
will define a set Lk#1.x/ of downward directions, the downward link at infinity and
a map from that set to Z . By showing that the set of downward directions is highly
connected, we will show that Z is highly connected.

For any x 2 X , let S.x/ be the union of the apartments E such that x 2 E and
a� @1E . Let

Lk#1.x/D @1S.x/\X 0
1.a/:

The following properties of Lk#1.x/ will be helpful.

Lemma 4.10 (1) If C is a chamber of X and x is in the interior of C , then c is a
chamber of Lk#1.x/ if and only if C is a–characteristic for c.

(2) If C is a chamber of X , x is in the interior of C , and c; c0 � Lk#1.x/, then c

and c0 point in the same direction at C .

(3) If x0 2 xC a, then Lk#1.x/� Lk#1.x0/.

(4) If Q�X is a bounded subset, then there is an x2X such that d.Q;x/.diam Q

and x 2 qC a for any q 2Q.

(5) If r W Œ0;1/! X is a unit-speed ray emanating from x in the direction of a
point � 2 Lk#1.x/, then

h.r.t//D h.x/C t cos d.�; �/:

Furthermore, there is an � > 0 which depends on X and p.�/ such that
� cos d.�; �/ > � .
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Proof The first property follows from the definition of Lk#1.x/ and the fact that C

is an a–characteristic chamber for c if and only if a and c are opposite and the unique
apartment asymptotic to a and c contains C .

If x is in the interior of C and c; c0 � Lk#1.x/, then C is a–characteristic for c and c0 .
Consequently, DC .c/ and DC .c

0/ are both the chamber of @1F opposite to a, so c

and c0 point in the same direction at C .

For the third property, we show that S.x/ � S.x0/. If y 2 S.x/, then there is an
apartment containing x and y and asymptotic to a. Since x0 2 xC a, x0 lies in this
apartment as well. It follows that Lk#1.x/� Lk#1.x0/.

To prove the fourth property, for all q 2Q, let rqW Œ0;1/! X be a ray emanating
from q in the direction of the barycenter of a. Let E be an apartment asymptotic to a

that intersects Q nontrivially. Then d.q;E/� diam Q for any q 2Q, so by Kleiner
and Leeb [16, Lemma 4.6.3], there is a c such that if t � c diam Q, then rq.t/ 2E . In
particular, V D

T
q rq.t/C a is a sector in E that satisfies V � qC a for all q and

d.V;Q/. diam Q. Choose x 2 V .

Finally, if r is a ray in the direction of � , let E be an apartment which contains x and
is asymptotic to a and to � . Then r is a geodesic ray in E , which makes an angle of
d.�; �/ with the ray emanating from x in the direction of � . The formula for h.r.t//

follows by trigonometry.

To bound d.�; �/, consider
mDmax

�2a
d.�; �/:

If x� is the direction opposite to � in @1E , then by the definition of Lk#1.x/, we have
x� 2 a, so d.�; �/D � � d.�; x�/� � �m. We claim that m< �=2.

By [7, Lemma 4.1], the diameter of a is at most �=2, and if the diameter is equal
to �=2, then a is a nontrivial spherical join and X is a nontrivial product of buildings.
Furthermore, if � 2 a is such that d.�; �/ D �=2, then we can write X D X1 �X2

such that � 2 .X1/1; � 2 .X2/1 . This contradicts the hypothesis that � is not parallel
to a factor of X , so m< �=2 and � cos d.�; �/� � cos m> 0.

4.3 Apartments in X0
1.a/

In this section, we use the tools of the previous section to construct apartments in X 0
1.a/;

in the next section, we will use these apartments to contract spheres in X 0
1.a/. First,

we show that every chamber in X 0
1.a/ is part of some apartment in X 0

1.a/:
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Lemma 4.11 Suppose that c is a chamber of X1 opposite to a and suppose that C is
an a–characteristic chamber for c. There is an apartment E containing C such that E

is asymptotic to c and every chamber of @1E is opposite to a.

Furthermore, there is a c > 0 depending only on X and an a–characteristic chamber
Cb �E for each chamber b� @1E such that Cc D C and

diam
[

b�@1E

Cb � c:

We will prove this lemma by starting with an apartment E � X , then producing a
series of ramifications of E so that more and more chambers of @1E are opposite
to a. Since X is thick, if c is a chamber of @1E which is not opposite to a, then
there is some ramification E0 of E that replaces c with a chamber that is farther
(in X1 ) from a. This might replace a chamber of @1E which is already opposite
to a with a chamber which is not, but we avoid this by ensuring that E0 contains the
same a–characteristic chambers as E .

The following lemma produces these ramifications:

Lemma 4.12 Let E be an apartment of X and let cD c1; : : : ; ck be chambers of @1E

which are opposite to a. Let Ci �E be a a–characteristic chamber for ci for each i .
Let b be a chamber of @1E , distinct from the ci , which is adjacent to c. There is
a ramification E0 of E such that if �W E ! E0 is the isomorphism fixing E \E0

pointwise, then:

� Ci �E \E0 for all i (and thus �1.ci/ is opposite to a)

� �1.b/ is opposite to a

� There is an a–characteristic chamber B0�E0 for �1.b/ so that d.B0;
S

Ci/.
diam

S
Ci .

Proof Let C DC1 and let x0 2C . Let H be a wall in E such that @1H separates b

and c. Let M;M 0 �E be the half-apartments of E bounded by H . By translating H

and possibly switching M and M 0 , we may arrange that:

� c 2 @1M and b 2 @1M 0

� Ci �M for all i

� d.H;C /. diam.
S

Ci/
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We claim that there is a ramification E0 of E which contains M and satisfies the
conditions of the lemma.

By our choice of H , the intersection x0 C b \M 0 is a sector of E , and we can
choose B � x0C b\M 0 to be a chamber which borders H and satisfies d.x0;B/.
diam.

S
Ci/. Let A be the panel of H bordering B , let D �M be the chamber of E

adjacent to B along A, and let B0 be a chamber adjacent to A and distinct from B

and D . Let E0 be a ramification of E that contains B0 and let �W E ! E0 be the
isomorphism fixing E \E0 . We claim that either the lemma is satisfied for E0 DE

and B0 D B or it is satisfied for E0 DE0 and B0 D B0 .

Since a is opposite to DC .c/ and DC .b/ is adjacent to DC .c/,

dcomb.a;DC .b//D dcomb.a;DC .c//� 1:

Lemma 4.9 implies that either DB.b/ is opposite to a or DB.b/ D DC .b/. By
Lemma 4.4, DB and DC are type-preserving isomorphisms from @1E to @1F ,
so if DB.b/ D DC .b/, then DB D DC , and B is a–characteristic for c. So B is
a–characteristic for either b or c. In the first case, the lemma is satisfied for E0 DE

and B0 D B .

Likewise, if b0D�1.b/, then DC .b
0/DDC .b/ is adjacent to DC .c/ and B0�x0Cb

0 ,
so B0 is a–characteristic for either b0 or c. In the first case, the lemma is satisfied for
E0 DE0 and B0 D B0 .

Suppose by way of contradiction that B and B0 are both a–characteristic for c.
The union of the set of chambers of X that are a–characteristic for c is the unique
apartment Ea;c asymptotic to a and c, so in particular, it is convex. It contains B

and C , so it contains D as well. But then B , B0 , and D are distinct chambers of Ea;c

which are all adjacent to the same panel. This is impossible.

Proof of Lemma 4.11 Let Ea;c � X be the apartment spanned by a and c, so that
C � Ea;c . By applying Lemma 4.12 to Ea;c repeatedly, we can construct an apart-
ment E such that for any chamber b 2 @1E , there is an a–characteristic chamber Cb

for b, and diam
S

b�@1E0 Cb is bounded.

In fact, we can find many apartments in X 0
1.a/ simultaneously:

Lemma 4.13 Suppose that E is an apartment of X and suppose that for each chamber
c� @1E there is a chamber Cc�E which is a–characteristic for c and a point xc 2Cc .
Let b and xb be two opposite chambers in @1E . Suppose that C is a chamber of X
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and x is a point in the interior of C such that x 2 xb C b and Cc � x C xb for all
c� @1E . Then there is an x0 2 xC a such that

d.x;x0/. diam
[

c�@1E

Cc

and for every chamber d� Lk#1.x/:

� d is opposite to xb.

� If Ed;xb is the apartment spanned by d and xb, then @1Ed;xb � Lk#1.x0/.

Proof Suppose that d�Lk#1.x/. Then C is a–characteristic for b and d, so b and d

point in the same direction at C . Since b and xb point in opposite directions at C , we
conclude that C is xb–characteristic for d. Thus, xb and d are opposite and C �Ed;xb .

In particular, xCxb�Ed;xb , so Cc �Ed;xb for all c� @1E . Let �W Ed;xb!E be the
isomorphism fixing Ed;xb\E pointwise and suppose that c0 � @1Ed;xb . If cD �1.c0/,
then Cc is an a–characteristic chamber for c0 , so c0 � Lk#1.xc/.

By Lemma 4.10(3) and (4), there is an

x0 2
\

c�@1E

xcC a

such that x0 2 xC a and Lk#1.xc/� Lk#1.x0/ for every c� @1E .

Combining Lemmas 4.13 and 4.11 we get:

Lemma 4.14 For any x 2 X , there is a chamber d � X1 opposite to a and an
x0 2 xC a such that:

� If c� Lk#1.x/ then d is opposite to c.

� If c� Lk#1.x/ and Ec;d is the apartment spanned by c and d, then @1Ec;d �

Lk#1.x0/.

� d.x;x0/. 1

Proof Let b � Lk#1.x/ and let E be the unique apartment asymptotic to a and b.
Since b� Lk#1.x/, we have x 2E . We may perturb x in the direction of a to ensure
that x is in the interior of some chamber C of E ; this doesn’t change Lk#1.x/. Let r

be a unit-speed ray emanating from x in the direction of the barycenter of a and let

Geometry & Topology, Volume 18 (2014)



Lipschitz connectivity and filling invariants 2409

0< � < �=2 be the minimum angle between the barycenter of a and any point on its
boundary. Let c be the constant in Lemma 4.11 and let t > c=sin � , so that

BE.r.t/; c/� xC a;

where BE.r.t/; c/ is the ball in E with center r.t/ and radius c . Let x0 D r.t/.

Let C0 � E be a chamber such that x0 2 C0 . Since C0 � E , it is a–characteristic
for b. By Lemma 4.11, there is an apartment E0 and a collection of a–characteristic
chambers Cc �E0 for c� @1E0 such that x0C b�E0 and[

c�@1E0

Cc � BE0.x0; c/:

Let xb be the chamber of @1E0 opposite to b. We claim that xCxb contains all of
the Cc .

Let �W E!E0 be the isomorphism fixing E\E0 pointwise. Then � fixes C and C0

and sends a to xb, so �.xC a/D xCxb and �.BE.x0; c//D BE0.x0; c/. Therefore,[
c�@1E0

Cc � BE0.x0; t/� xCxb:

By applying Lemma 4.13 to E0 , we obtain an x0 that satisfies the required properties
and has

d.x;x0/. diam
[

c�@1E0

Cc . 1:

We can also use these techniques to construct .n� 1/–spheres in Z which are homo-
topically nontrivial in Z . This generalizes results of Bux and Wortman [6] on buildings
acted on by S –arithmetic groups to arbitrary euclidean buildings.

Lemma 4.15 For any r >0, there is a map ˛W Sn�1!Z such that ˛ is homotopically
nontrivial in Nr .Z/, where Nr .Z/ is the r –neighborhood of Z .

Proof Let C be a chamber of X such that minx2C h.x/ > r . Let E be an apartment
containing C and asymptotic to a. If c � @1E is the chamber of @1E opposite
to a, then C is a–characteristic for c. Using Lemma 4.12, we can construct an
apartment E0 such that C �E0 and @1E0 �X 0

1.a/. In particular, the set of points
B D fx 2 E0 j h.x/ � 0g is convex and compact and contains C , so Z \ E0 is
bilipschitz equivalent to the .n� 1/–sphere. Let ˛W Sn�1!Z \E0 be a Lipschitz
homeomorphism. We claim that ˛ is homotopically nontrivial in Nr .Z/.
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Let ˇW Dn ! E be a homeomorphism from Dn ! B which extends ˛ . This has
degree 1 on any point in the interior of C . By way of contradiction, suppose that
ˇ0W Dn ! Nr .Z/ is another extension of ˛ . Then we can glue ˇ and ˇ0 together
to get a map  W Sn ! X . Since ˇ0 avoids C , this map has degree 1 on any point
in the interior of C . Since X is CAT(0), however, it is contractible, so  must be
nullhomotopic, and  sends the fundamental class of Sn to an n–boundary in X .
This contradicts the fact that this map has degree 1 on any point in the interior of C ,
because X is n–dimensional, and any n–boundary must be trivial.

4.4 Proving .n � 2/–connectivity for X0
1.a/ and constructing �1

The lemmas of the previous section will let us prove that X 0
1.a/ is .n� 2/–connected

and construct a Lipschitz map

�1W �
.n�1/
Z

!X 0
1.a/

which we will use to construct �.

Let �Z be the infinite-dimensional simplex with vertex set Z . As before, we denote
the simplex of �Z with vertices z0; : : : ; zk by hz0; : : : ; zki. If � is a simplex of �Z ,
we let V.�/�Z be the vertex set of �.

The main lemma of this section is the following:

Lemma 4.16 There is a cellular map

�1W �
.n�1/
Z

!X 0
1.a/;

a c > 0 depending on X , and a family of points x� 2 X , one for each simplex
���

.n�1/
Z

, such that:

(1) mass.�1.�//� c

(2) h.x�/� 0

(3) �1.�/� Lk#1.x�/

(4) If �0 ��, then x� 2 x�0 C a

(5) d.x�;V.�//. diamV.�/C 1 (consequently, h.x�/. diamV.�/C 1)

Furthermore, for any z 2Z , we have xhzi D z .
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The first condition is essentially a bound on the filling functions of X 0
1.a/. The

next three conditions ensure that the map ix�
(as defined in the proof sketch at the

beginning of the section) is defined on �1.�/ and that Lip.ix�
/ . diamV.�/. In

order to construct � in the next section, we will glue maps of the form ix�
ı�1j� ,

and we will use the last condition to perform this gluing.

First, we prove that X 0
1.a/ is .n� 2/–connected.

Lemma 4.17 If k < n � 1, there is a c > 0 such that for every x 2 X , there is a
x0 2X such that x0 2 xC a, d.x;x0/� c , and if

˛W Sk
! Lk#1.x/.k/;

then there is an extension

ˇW BkC1
! Lk#1.x0/.kC1/

such that Lipˇ � c0 Lip˛C c0 .

Consequently, X 0
1.a/ is .n� 2/–connected.

Proof Let x0 2 X and d � Lk#1.x0/ be opposite to every chamber of Lk#1.x/
as in Lemma 4.14. Let u be the barycenter of d. There is an � > 0 such that
dX1.u; v/ < � � � for any v 2 Lk#1.x/.k/ . By our choice of d, the geodesic from v

to u is contained in Lk#1.x0/.

Let
 W Lk#1.x/.k/ � Œ0; 1�! Lk#1.x0/

be the map which sends v � Œ0; 1� to the geodesic between v and u. This is Lips-
chitz, with Lipschitz constant depending on � . Define ˇ0W S

k � Œ0; 1�! Lk#1.x0/ by
ˇ0.v; t/D  .˛.v/; t/. This is a nullhomotopy of ˛ , and

Lipˇ0 � .Lip  /.1CLip˛/:

We obtain ˇ by approximating ˇ0 in Lk#1.x/.kC1/ ; this increases the Lipschitz
constant by at most a multiplicative factor.

To conclude that X 0
1.a/ is .n�2/–connected, consider a map ˛W Sk!X 0

1.a/. This
can be approximated by a simplicial map ˛0W Sk !X 0

1.a/
.k/ . The image of ˛0 has

finitely many simplices, and since every simplex of X 0
1.a/ is contained in Lk#1.y/ for

some y , there is an x 2X such that the image of ˛0 is contained in Lk#1.x/.k/ . There-
fore, ˛0 is nullhomotopic in Lk#1.x0/.k/ for some x0 , and Lk#1.x0/.k/ �X 0

1.a/.

Next, we use this lemma to construct �1 .
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Proof of Lemma 4.16 We construct �1 inductively. First, for each z 2 Z , we
let �1.z/ be an arbitrary vertex of Lk#1.z/. Then choosing xhzi D z satisfies the
conditions of the lemma.

Now suppose that � is a simplex of �Z with 1 � dim�D k � n� 1 and suppose
that �1 is defined on @�. Then, if

LD
[
�0��

Lk#1.x�0/;

then �1j@� is a map with image in L. By induction, we know that

d.x�0 ;V.�0//.k diamV.�0/C 1;

with implicit constant depending on k , so

diamfx�0g�0�� .k diamV.�/C 1:

By Lemma 4.10(4), there is an x0 2X such that d.x0;V.�//.k diamV.�/C 1 and
x0 2 x�0 C a for any face �0 of �. By Lemma 4.10(3), L� Lk#1.x0/.

By Lemma 4.17, there is an x0 2X such that x0 2 x0C a and an extension

ˇW �! Lk#1.x0/.kC1/

of ˛ such that Lipˇ and d.x0;x
0/ are bounded by a constant depending on k . If we

define �1j� D ˇ and x� D x0 , then

d.x�;V.�//.k diamV.�/C 1:

Since � is finite-dimensional, we may drop the dependence on k , and the lemma
holds.

4.5 Constructing �

Finally, we construct a map �W �.n�1/
Z

!Z satisfying the hypotheses of Lemma 3.2.
We will use a family of maps ix W Lk#1.x/!Z for x 2X; h.x/� 0.

For any x 2 X and � 2 X1 , there is a unit-speed ray r� W Œ0;1/! X emanating
from x and traveling in the direction of � . Define

X �1 DX1 � Œ0;1/=X1 � f0g

to be a space of “vectors” based at x . We can define an exponential map ex W X
�
1!X

by letting
ex.�; t/D r� .t/:
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For each chamber a of X1 , this map sends the open cone a� Œ0;1/=a�f0g to a sector
corresponding to a; we give X �1 a metric so that this is an isometry. This makes ex

a distance-decreasing map. Note also that, by the convexity of the distance function
on X , we have

d.ex.�; t/; ex0.�; t//� d.x;x0/:

We can use ex to construct a map from Lk#1.x/ to Z :

Lemma 4.18 Let x 2X be such that h.x/� 0. Then there is a map ix W Lk#1.x/!Z

given by

ix.�/D ex

�
�;
�h.x/

cos d.�; �/

�
:

This map has Lipschitz constant Lip.ix/ . h.x/, with implicit constant depending
on X and p.�/.

Proof By Lemma 4.10(5),

h.ex.�; t//D h.x/C t cos d.�; �/

for any � 2 Lk#1.x/ and there is an � such that � cos d.�; �/ � � > 0. The lemma
follows.

Furthermore, the map .x; �/ 7! ix.�/ is locally Lipschitz:

Lemma 4.19 Let x;x0 2 X be such that h.x/; h.x0/ � 0. Let �; � 0 2 Lk#1.x/ \
Lk#1.x0/. Then there is a c > 0 depending on X such that

d.ix.�/; ix0.�
0//� cd.x;x0/C ch.x/d.�; � 0/:

Proof By the previous lemma and the remark before it, there is a c0 > 0 such that

d.ix.�/; ix0.�
0//� d.ix.�/; ix.�

0//Cd.ix.�
0/; ix0.�

0//

� c0h.x/d.�;� 0/Cd

�
ex

�
� 0;

�h.x/

cos d.�;� 0/

�
;ex0

�
� 0;

�h.x0/

cos d.�;� 0/

��
� c0h.x/d.�; � 0/Cd.x;x0/C

jh.x/� h.x0/j

� cos d.�; � 0/
:

Since d.x;x0/. h.x0/, the lemma follows.
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w
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hu; vi � e
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�0 D��y

E.�/B.�/

Figure 2: Cells of the “exploded simplex” E.�/ are naturally products of
cells of � and cells of B.�/ .

We construct � by piecing together maps of the form ix�
.�1.�//, where � ranges

over the simplices of �Z . The main problem is that if �0 is a face of �, the maps
ix�

.�1.�// and ix�0
.�1.�

0// need not agree, since x� ¤ x�0 , so we need to add
some “padding” to make these maps agree.

Part of the construction is illustrated in Figure 2: for each simplex � of �Z , we
“explode” the barycentric subdivision B.�/ to get a complex E.�/ by inserting a
copy �0 of � in the middle. Each cell in this subdivision is of the form �1 ��2 ,
where �1 is a face of � and �2 is a face of B.�/. To be more specific, note that we
can label each vertex of B.�/ by a face ı of �, and the vertex labels of a simplex
hı0; : : : ; ıki form a flag ı0 � � � � � ık . Then each cell of E.�/ is of the form

ı� hı0; : : : ; ıki;

for some flag ı0 � � � � � ık in � and some face ı of ı0 . The map �1W E.�/! �

which projects each simplex to its first factor is a continuous map which sends �0

homeomorphically to �. Likewise, the map �2W E.�/! B.�/ which projects each
cell to its second factor is a continuous map that collapses �0 to the barycenter of �.

We define a map xW B.�/! X on the vertices of B.�/ by sending the point hıi
to the point xı for every face ı � �. We define x on the rest of B.�/ by linear
interpolation. That is, if ı0� � � �� ık is a flag of faces of �, then we have xıi

2xı0
Ca

for all i . Therefore, all the xıi
lie in a common apartment, and we can define x on

hı0; : : : ; ıki by linearly interpolating between the xıi
. This map has Lipschitz constant

Lip.x/. diamV.�/ on �.
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For any cell
� D ı� hı0; : : : ; ıki

of E.�/ and any s 2 � , let xs D x.�2.s//. We have xs 2 xıC a and therefore

�1.ı/� Lk#1.xı/� Lk#1.xs/:

This means that
ixs
.�1.�1.s///

is defined for every s 2 � , so we define

�.s/D ixs
.�1.�1.s///:

Finally, we check that this definition satisfies the conditions of Lemma 3.2. Since
xhzi D z for any z 2Z , we have �.hzi/D z , so the first condition is satisfied. Let �
be a cell of E.�/ as above and let s; t 2 � . Let xs D x.�2.s//, xt D x.�2.t//. By
Lemma 4.19, we have

d.�.s/;�.t//� cd.xs;xt /C ch.xs/d.�1.�1.s//;�1.�1.t///:

Since x� 2 xıi
C a for each i D 1; : : : ; k , we have x� 2 xs C a and thus h.xs/ .

diamV.�/. Since �1 , �2 , and �1 are Lipschitz with constants depending only on X

and Lip.xj�/ . diamV.�/, each term in the inequality above is of order at most
diamV.�/d.s; t/. Therefore,

Lip.�1j�/. diamV.�/

for every simplex ���.n�1/
Z

, as desired.

This proves Lemma 4.2.
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