Volume 18, issue 4 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Subscriptions
Author Index
To Appear
Contacts
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Tetrahedra of flags, volume and homology of $\mathrm{SL}(3)$

Nicolas Bergeron, Elisha Falbel and Antonin Guilloux

Geometry & Topology 18 (2014) 1911–1971
Abstract

In the paper we define a “volume” for simplicial complexes of flag tetrahedra. This generalizes and unifies the classical volume of hyperbolic manifolds and the volume of CR tetrahedral complexes considered in Falbel [Q. J. Math. 62 (2011) 397–415], and Falbel and Wang [Asian J. Math. 17 (2013) 391–422]. We describe when this volume belongs to the Bloch group and more generally describe a variation formula in terms of boundary data. In doing so, we recover and generalize results of Neumann and Zagier [Topology 24 (1985) 307–332], Neumann [Topology ’90 (1992) 243–271] and Kabaya [Topology Appl. 154 (2007) 2656–2671]. Our approach is very related to the work of Fock and Goncharov [Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1–211; Ann. Sci. Éc. Norm. Supér. 42 (2009) 865–930].

Keywords
Bloch group, $3$–manifolds, $\mathrm{PGL}(3,\mathbb{C})$, tetrahedra
Mathematical Subject Classification 2010
Primary: 57M50
Secondary: 57N10, 57R20
References
Publication
Received: 30 September 2011
Revised: 3 October 2013
Accepted: 27 February 2014
Published: 2 October 2014
Proposed: Walter Neumann
Seconded: Dmitri Burago, Jean-Pierre Otal
Authors
Nicolas Bergeron
Institut de Mathématiques de Jussieu
Université Pierre et Marie Curie
4 place Jussieu
75252 Paris
France
http://people.math.jussieu.fr/~bergeron
Elisha Falbel
Institut de Mathématiques
Université Pierre et Marie Curie
4 place Jussieu
75252 Paris
France
http://people.math.jussieu.fr/~falbel
Antonin Guilloux
Institut de Mathématiques
Université Pierre et Marie Curie
4 place Jussieu
75252 Paris
France
http://people.math.jussieu.fr/~aguilloux