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On the topology of ending lamination space

DAVID GABAI

We show that if S is a finite-type orientable surface of genus g and with p punctures
where 3gCp � 5 , then EL.S/ is .n�1/–connected and .n�1/–locally connected,
where dim.PML.S//D 2nC1D 6gC2p�7 . Furthermore, if gD 0 , then EL.S/
is homeomorphic to the .p� 4/–dimensional Nöbeling space. Finally if n¤ 0 , then
FPML.S/ is connected.

57M50; 20F65

1 Introduction

This paper is about the topology of the space EL.S/ of ending laminations on a
finite-type hyperbolic surface, ie a complete hyperbolic surface S of genus g with p

punctures. An ending lamination is a geodesic lamination L in S that is minimal and
filling, ie every leaf of L is dense in L and any simple closed geodesic in S nontrivially
intersects L transversely.

Since Thurston’s seminal work on surface automorphisms in the mid 1970s, laminations
in surfaces have played central roles in low-dimensional topology, hyperbolic geometry,
geometric group theory and the theory of mapping class groups. From many points
of view, the ending laminations are the most interesting laminations. For example,
the stable and unstable laminations of a pseudo-Anosov mapping class are ending
laminations [39] and associated to a degenerate end of a complete hyperbolic 3–
manifold with finitely generated fundamental group is an ending lamination; see
Thurston [38] and Bonahon [6]. Also, every ending lamination arises in this manner;
see Brock, Canary and Minsky [9].

The Hausdorff metric on closed sets induces a metric topology on EL.S/. Here two
elements L1 , L2 in EL.S/ are close if each point in L1 is close to a point of L2 and
vice versa. In 1988, Thurston [40] showed that with this topology EL.S/ is totally
disconnected and in 2004 Zhu and Bonahon [42] showed that EL.S/ has Hausdorff
dimension zero with respect to the Hausdorff metric.

It is the coarse Hausdorff topology that makes EL.S/ important for applications and
gives EL.S/ a very interesting topological structure. This is the topology on EL.S/
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induced from that of PML.S/, the space of projective measured laminations of S .
Let FPML.S/ (called MPML.S/ in Hamenstädt [14]) denote the subspace of
PML.S/ consisting of those measured laminations whose underlying lamination is
an ending lamination. (Facts: Every ending lamination fully supports a measure and
FPML.S/ consists of the filling laminations of PML.S/.) Then EL.S/ is a quotient
of FPML.S/ and is topologized accordingly. Equivalently, by [14], a sequence
L1;L2; : : : converges to L in the coarse Hausdorff topology if each subsequence that
is convergent in the Hausdorff topology, converges to a diagonal extension of L, ie a
lamination obtained by adding finitely many leaves. From now on EL.S/ will have the
coarse Hausdorff topology.

In 1999, Erica Klarreich [24] showed that EL.S/ is the Gromov boundary of C.S/,
the curve complex of S ; see also [14]. As a consequence of many results in hyperbolic
geometry (eg Bers [4], Thurston [37], Mosher [32], Brock, Canary and Minsky [9],
Agol [2], and Calegari and the author [10]), Leininger and Schleimer [26] showed
that the space of doubly degenerate hyperbolic structures on S �R is homeomorphic
to EL.S/� EL.S/ n�, where � is the diagonal. For other applications see Rafi and
Schleimer [36] and Section 19.

If S is the thrice-punctured sphere, then EL.S/D∅. If S is the 4–punctured sphere
or once-punctured torus, then EL.S/ D FPML.S/ D R nQ. In 2000 Peter Storm
conjectured that if S is not one of these exceptional surfaces, then EL.S/ is connected.
Various partial results on the connectivity and local connectivity of EL.S/ were obtained
by Leininger, Mj and Schleimer [26; 25].

Using completely different methods, essentially by bare hands, we showed [13] that
if S is neither the 3– or 4–punctured sphere nor the once-punctured torus, then EL.S/
is path connected, locally path connected, cyclic and has no cut points. We also
asked whether ending lamination spaces of sufficiently complicated surfaces were
n–connected.

Here are our two main results:

Theorem 1.1 Let S be a finite-type hyperbolic surface of genus g and with p

punctures. Then EL.S/ is .n� 1/–connected and .n� 1/–locally connected, where
2nC 1D dim.PML.S//D 6gC 2p� 7.

Theorem 1.2 Let S be a .4C n/–punctured sphere. Then EL.S/ is homeomorphic
to the n–dimensional Nöbeling space.

Remark 1.3 Let T denote the compact surface of genus g with p open discs removed
and S the p–punctured genus-g surface. It is well known that there is a natural
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homeomorphism between EL.S/ and EL.T /. In particular, the topology of EL.S/ is
independent of the hyperbolic metric and hence all topological results about EL.S/ are
applicable to EL.T /. Thus the main results of this paper are purely topological and
applicable to compact orientable surfaces.

The m–dimensional Nöbeling space R2mC1
m (frequently denoted N 2mC1

m ) is the
space of points in R2mC1 with at most m rational coordinates. In 1931 Nöbeling
[34] showed that the m–dimensional Nöbeling space is a universal space for m–
dimensional separable metric spaces, ie any m–dimensional separable metric space
embeds in R2mC1

m . This extended the work of his mentor Menger [31], who in 1926
defined the m–dimensional Menger spaces M 2mC1

m , showed that the Menger curve
is universal for 1–dimensional compact metric spaces and suggested that M 2mC1

m

is universal for m–dimensional compact metric spaces. That M 2mC1
m is universal

for m–dimensional separable metric spaces was formally proved by Bothe [8]. See
Engelking [11, pages 128–129] for a more detailed historical discussion. It is known
to experts (eg see Bestvina [5]) that any map of a compact less than or equal to m–
dimensional space into M 2mC1

m can be approximated by an embedding. It is also
known to experts (eg see Nagórko [33]) that any map of a less than or equal to m–
dimensional complete separable metric space into R2mC1

m is approximable by a closed
embedding.

A recent result of Ageev [1], Levin [27] and Nagorko [33] gave a positive proof of
a major long standing conjecture characterizing the m–dimensional Nöbeling space.
(The analogous conjecture for Menger spaces was proven by Bestvina [5] in 1984.)
Nagorko [17] recast this result to show that the m–dimensional Nöbeling space is one
that satisfies a series of topological properties that are discussed in detail in Section 8,
eg the space is .m� 1/–connected, .m� 1/–locally connected, m–dimensional and
satisfies the locally finite m–discs property. To prove Theorem 17.1 we will show that
EL.S/ satisfies these conditions for mD n.

In 2005 Bestvina and Bromberg asked whether ending lamination spaces are Nöbeling
spaces. They were motivated by the fact that Menger spaces frequently arise as
boundaries of locally compact Gromov hyperbolic spaces, Klarreich’s theorem and the
fact that the curve complex is not locally finite.

Using [13], Sebastian Hensel and Piotr Przytycki [17] showed that if S is either the
5–punctured sphere or twice-punctured torus, then EL.S/ is homeomorphic to the
one-dimensional Nöbeling space. They also asked if EL.S/ is homeomorphic to the
n–dimensional Nöbeling space where dim(PML.S//D 2nC 1.

The methods of this paper are essentially by bare hands. There are two main difficulties
that must be overcome to generalize the methods of [13] to prove Theorem 1.1. First of
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all it is problematic to get started. To prove path connectivity, given �0 , �1 2 EL.S/
we first chose �0 , �1 2PML.S/ such that �.�i/D �i , where � is the forgetful map.
The connectivity of PML.S/ implies there exists a path �W Œ0; 1�! PML.S/ such
that �.0/D �0 and �.1/D �1 . In [13] we found an appropriate sequence of generic
such paths, projected them into lamination space, and took an appropriate limit which
was a path in EL.S/ between �0 and �1 . (See [25; 26] for earlier partial results for
the path connectivity case.) To prove simple connectivity, say for EL.S/ where S is
the surface of genus 2, the first step is already problematic, for there is a simple closed
curve  in EL.S/ whose preimage in PML.S/ does not contain a loop projecting
to  ; see Theorem 19.7. In the general case, the preimage is a Čech-like loop and
that turns out to be good enough. The second issue is that points along a generic path
in PML.S/ project to laminations that are almost filling almost minimal, a property
that was essential in order to take limits in [13]. In the general case, the analogous
laminations are not close to being either almost filling or almost minimal. To deal with
this we develop the idea of markers, which is a technical device that enables us to take
limits of laminations with the desired controlled properties.

This paper basically accomplishes two things. It shows that if k�n, then any generic PL
map f W Bk! PML.S/ can be �–approximated by a map gW Bk! EL.S/ and con-
versely any map gW Bk!EL.S/ can be �–approximated by a map f W Bk!PML.S/.
Here dim.PML.S//D 2nC 1. See Section 14 for the precise statements.

In Section 2 we provide some basic information and facts about ending lamination
space, point out an omission in [13, Section 7] (see Correction 2.23) and prove the
following.

Theorem 1.4 If S is a finite-type hyperbolic surface that is not the 3– or 4–holed
sphere or 1–holed torus, then FPML.S/ is connected.

In Section 3 we show that if gW Sk ! EL.S/ is continuous, then there exists a con-
tinuous map F W BkC1 ! PMLEL.S/ that extends g . Here PMLEL.S/ is the
disjoint union of PML.S/ and EL.S/ appropriately topologized. In Section 4 we
develop markers. In Section 5 we give more facts relating the topologies of EL.S/ and
PML.S/. In Section 6 we give a criterion for a sequence f1; f2; : : : of maps of BkC1

into PMLEL.S/ that restrict to gW Sk ! EL.S/ to converge to a continuous map
GW BkC1! EL.S/ extending g . The core technical work of this paper is carried out
in Sections 7–11. In Sections 12–13 we prove Theorem 1.1. In Section 14 we isolate
out our PML.S/ and EL.S/ approximation theorems. In Section 15 we develop
a theory of good cellulation sequences of PML.S/, which may be of independent
interest. In Section 16 we give various upper and lower estimates of dim.EL.S// and
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prove that dim.S0;nC4/D n and �n.S0;nC4/¤ 0. In Section 17 we state Nagorko’s
recharacterization of Nöbeling spaces. In Section 17 we prove that S0;nC4 satisfies
the locally finite n–discs property. In Section 19 various applications are given.
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2 Basic definitions and facts

In what follows, S or Sg;p will denote a complete hyperbolic surface of genus g and p

punctures. We will assume that the reader is familiar with the basics of Thurston’s theory
of curves and laminations on surfaces, eg L.S/ the space of geodesic laminations with
topology induced from the Hausdorff topology on closed sets, ML.S/ the space of
measured geodesic laminations endowed with the weak* topology, PML.S/ projective
measured lamination space, as well as the standard definitions and properties of train
tracks. For example, see Penner and Harer [35], Harvey [16], [32; 39], or Fathi,
Laudenbach and Poenaru [12]. All laminations in this paper will be compactly supported.
See [13] for various ways to view and measure distance between laminations as well as
for standard notation. For example, if x;y 2PML.S/ or ML.S/, then dPT.S/.x;y/

is the minimal distance between points of the geodesic laminations x and y after being
lifted to the projective unit tangent bundle. Unless said otherwise, distance between
elements of L are computed via the Hausdorff topology on closed sets in PT.S/.
Sections 1 and 2 (through Remark 2.5) of [13] are also needed. Among other things,
important aspects of the PL structure of PML.S/ and ML.S/ are described there.

Notation 2.1 We denote by pWML.S/ n 0! PML.S/, the canonical projection
and �W PML.S/ ! L.S/ and y�WML.S/ ! L.S/, the forgetful maps. If � is a
train track, then V .�/ will denote the cell of measures supported on � and P .�/ the
polyhedron p.V .�/ n 0/.

Definition 2.2 Let EL.S/ denote the set of ending laminations on S, ie the set of
geodesic laminations that are filling and minimal. A lamination L 2 L.S/ is minimal
if every leaf is dense and filling if the metric closure (with respect to the induced path
metric) of S nL supports no simple closed geodesic.
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The following is well known.

Lemma 2.3 If x 2 PML.S/, then �.x/ is the disjoint union of minimal laminations.
In particular �.x/ 2 EL.S/ if and only if �.x/ is filling.

Proof Since the measure on x has full support, no noncompact leaf L is proper,
ie noncompact leaves limit on themselves. It follows that �.x/ decomposes into a
disjoint union of minimal laminations. If �.x/ is filling, then there is only one such
component.

Notation 2.4 Let FPML.S/ (called MPML.S/ in [14]) denote the subspace
of PML.S/ consisting of filling laminations and UPML.S/ denote the subspace
of unfilling laminations. Thus PML.S/ is the disjoint union of FPML.S/ and
UPML.S/.

Definition 2.5 Topologize EL.S/ by giving it the quotient topology induced from
the surjective map �W FPML.S/ ! EL.S/ where FPML.S/ has the subspace
topology induced from PML.S/. After [14] we call this the coarse Hausdorff topology.
Hamenstädt observed that this topology is a slight coarsening of the Hausdorff topology
on EL.S/; a sequence L1;L2; : : : in EL.S/ limits to L 2 EL.S/ if and only if any
convergent subsequence in the Hausdorff topology converges to a diagonal extension L0
of L. A diagonal extension of L is a lamination obtained by adding finitely many
leaves.

Remark 2.6 It is well known that EL.S/ is separable and supports a complete metric.
Separability follows from the fact that PML.S/ is a sphere and FPML.S/ is dense
in PML.S/ (eg FPML.S/ is the complement of countably many codimension-1
PL–cells in PML.S/.) Masur and Minsky [30] showed that the curve complex C.S/
is Gromov-hyperbolic and Klarreich [24] (see also [14]) showed that the Gromov
boundary of C.S/ is homeomorphic to EL.S/ with the coarse Hausdorff topology.
Being the boundary of a Gromov hyperbolic space, EL.S/ is metrizable. Bonk and
Schramm showed that with appropriate constants in the Gromov product, the induced
Gromov metric is complete [7]. See also [17].

Definition 2.7 Recall that a Polish space is a separable metric space that supports a
complete metric.

The following are characterizations of continuous maps in EL.S/ analogous to [13, Lem-
mas 1.13–1.15]. Lemma 2.10 will be the one used to proving our fundamental
Proposition 6.2. Here X is a metric space.
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Lemma 2.8 A function f W X!EL.S/ is continuous if and only if for each t 2X and
each sequence ftig converging to t; f .t/ is the coarse Hausdorff limit of the sequence
f .t1/; f .t2/; : : :

Lemma 2.9 A function f W X ! EL.S/ is continuous if and only if for each � > 0

and t 2X there exists a ı > 0 such that dX .s; t/ < ı implies that the maximal angle of
intersection between leaves of f .t/ and leaves of f .s/ is less than � .

Lemma 2.10 A function f W X!EL.S/ is continuous if and only if for each �>0 and
t 2X there exists a ı > 0 such that dX .s; t/ < ı implies that dPT.S/.f

0.t/; f 0.s// < � ,
where f 0.s/ (resp. f 0.t/) is any diagonal extension of f .s/ (resp. f .t/).

The forgetful map �W PML.S/! L.S/ is discontinuous, for any simple closed curve
viewed as a point in PML.S/ is the limit of filling laminations and any Hausdorff
limit of a sequence of filling laminations is filling.

Definition 2.11 Let X1;X2; : : : be a sequence of subsets of the topological space Y .
We say that the subsets fXig superconverge to X if for each x 2 X , there exists
xi 2Xi so that lim

i!1
xi D x . In this case we say X is a sublimit of fXig.

We will repeatedly use the following result that first appears in [38]. See [13, Proposi-
tion 3.2] for a proof.

Proposition 2.12 If the projective measured laminations �1; �2; : : : converge to
� 2 PML.S/, then �.�1/; �.�2/; : : : superconverges to �.�/ as subsets of PT.S/.

The following consequence of the superconvergence of Proposition 2.12 was used in
[13] and is repeatedly used in this paper.

Lemma 2.13 If z1; z2; : : : is a convergent sequence in EL.S/ limiting to z1 and
x1;x2; : : : is a sequence in PML.S/ such that for all i , �.xi/D zi , then any conver-
gent subsequence of the xi converges to a point of ��1.z1/.

Proof After passing to subsequence it suffices to consider the case that x1;x2; : : :

converges to x1 in PML.S/ and that z1; z2; : : : converges to L 2L.S/ with respect
to the Hausdorff topology. By superconvergence, Proposition 2.12 �.x1/ is a sublam-
ination of L and by definition of coarse Hausdorff topology L is a diagonal extension
of z1 . Since z1 is minimal and each leaf of L n z1 is noncompact and proper it
follows that �.x1/D z1 .
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Corollary 2.14 If L� EL.S/ is compact, then ��1.L/� PML.S/ is compact.

Corollary 2.15 The function �W FPML.S/! EL.S/ is a closed map.

Lemma 2.16 If �2EL.S/, x1;x2; : : :!x is a convergent sequence in PML.S/ and
limi!1 dPT.S/.�.xi/; �

0/D 0 for some diagonal extension �0 of �, then x 2��1.�/.

Proof After passing to subsequence, by superconvergence �.x1/; �.x2/; : : : con-
verges to L 2 L.S/ with respect to the Hausdorff topology, where �.x/ � L. If
�.x/¤ �, then for every diagonal extension �00 of �, dPT.S/.L; �00/ > 0 and hence
for i sufficiently large dPT.S/.�.xi/; �

00/ is uniformly bounded away from 0.

Lemma 2.17 Let � be a train track and � 2 EL.S/. Then, either � carries � or
inffdPT.S/.�.t/; �/ j t 2 P .�/g> 0.

Proof If inffdPT.S/.�.t/; �/ j t 2 P .�/g D 0, then by compactness of P .�/ and the
previous lemma, there exists x 2 P .�/ such that �.x/D � and hence � carries �.

The following is well known, eg it can be deduced from [13, Proposition 1.9].

Lemma 2.18 If z 2 EL.S/, then ��1.z/D �z is a compact convex cell, ie if � is any
train track that carries z , then �z D p.V /, where V � V .�/ is the bi-infinite cone on a
compact convex cell in V .�/.

Theorem 2.19 If S is a finite-type hyperbolic surface that is not the 3– or 4–holed
sphere or 1–holed torus, then FPML.S/ is connected.

Proof If FPML.S/ is disconnected, then it is the disjoint union of nonempty closed
sets A and B . By the previous lemma, if L 2 EL.S/, then ��1.L/ is connected. It
follows that �.A/\ �.B/ D ∅ and hence by Corollary 2.15, EL.S/ is the disjoint
union of the nonempty closed sets �.A/, �.B/ and hence EL.S/ is disconnected.
This contradicts [13].

Remark 2.20 In the exceptional cases, FPML.S0;3/ D ∅ and FPML.S0;4/ D

FPML.S1;1/DR nQ.

Definition 2.21 The curve complex C.S/ introduced by Harvey [16] is the simplicial
complex with vertices the set of simple closed geodesics and .v0; : : : ; vp/ span a
simplex if the vi are pairwise disjoint.

There is a natural injective continuous map yI W C.S/ ! ML.S/. If v is a ver-
tex, then I.v/ is the measured lamination supported on v with transverse measure
1= length.v/. Extend yI linearly on simplices. Define I W C.S/ ! PML.S/ by
I D p ı yI .
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Remark 2.22 The map I is not a homeomorphism onto its image. If C.S/sub denotes
the topology on C.S/ obtained by pulling back the subspace topology on I.C.S//,
then C.S/sub is coarser than C.S/. Indeed, if C is a vertex, then there exists a sequence
C0;C1; : : : of vertices that converges in C.S/sub to C , but does not have any limit
points in C.S/.

Correction 2.23 In [13, Section 7] the author states without proof Corollary 7.4
which asserts that if S is not one of the three exceptional surfaces, then EL.S/ has
no cut points. This is not a corollary of the statement of [13, Theorem 7.1] because
as [13, Figure 8] shows, cyclic does not imply no cut points. It is not difficult to
prove Corollary 7.4 by extending the proof of [13, Theorem 7.1] to show that given
x ¤ y 2 EL.S/, there exists a simple closed curve in EL.S/ passing through both x

and y . Alternatively, no cut points follow from local connectivity and the locally finite
1–discs property, Proposition 18.8.

Notation 2.24 If X is a space, then jX j denotes the number of components of X .
If X and Y are sets, then X nY is X with the points of Y deleted, but if X;Y 2L.S/,
then X nY denotes the union of leaves of X that are not in Y . Thus by Lemma 2.3, if
X D �.x/, Y D �.y/ with x;y 2PML.S/, then X nY is the union of those minimal
sublaminations of X which are not sublaminations of Y .

3 Extending maps of spheres into EL.S / to maps of balls
into PMLEL.S /

Definition 3.1 We let PMLEL.S/ (resp. MLEL.S/) denote the disjoint union
PML.S/ [ EL.S/ (resp. ML.S/ [ EL.S/). Define a topology on PMLEL.S/
(resp. MLEL.S/) as follows. A basis consists of all sets of the form U [V , where
��1.V / � U (resp. y��1.V / � U ) and U is open in PML.S/ (resp. ML.S/) and
V (possibly ∅) is open in EL.S/. We will call this the PMLEL topology (resp.
MLEL topology). Also �W PMLEL.S/! L.S/ will denote the natural extension of
�W PML.S/! L.S/.

Lemma 3.2 The PMLEL (resp. MLEL) topology has the following properties.

(i) PMLEL.S/ (resp. ML.S/[EL.S/) is non-Hausdorff. In fact x and y cannot
be separated if and only if x 2 EL.S/ and y 2 ��1.x/ (resp. y 2 y��1.x//, or
vice versa.

(ii) PML.S/ (resp. ML.S/) is an open subspace.
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(iii) EL.S/ is a closed subspace.

(iv) If U � PML.S/ is a neighborhood of ��1.x/ where x 2 EL.S/, then there
exists an open set V � EL.S/, such that x 2 V and ��1.V /� U , ie U [V is
open in PMLEL.S/.

(v) A sequence x1;x2; : : : in PML.S/ converges to x 2 EL.S/ if and only if every
limit point of the sequence lies in ��1.x/. A sequence x1;x2; : : : in ML.S/
bounded away from both 0 and 1 converges to x 2 EL.S/ if and only if every
limit point of the sequence lies in y��1.x/.

Proof Parts (i)–(iii) and (v) are immediate. Part (iv) follows from Lemma 2.13.

Definition 3.3 Let V be the underlying space of a finite simplicial complex. A
generic PL map f W V ! PML.S/ is a PL map transverse to each Ba1

\ � � �Bar
\

@Bb1
\� � �\@Bbs

, where a1; : : : ; ar ; b1; : : : ; bs are simple closed geodesics. (Notation
as in [13].) More generally f W V ! PMLEL.S/ is called a generic PL map if
f �1.EL.S//DW is a subcomplex of V and f j.V nW / is a generic PL map.

Lemma 3.4 Let LD I.L0/ where L0 is a finite q–dimensional subcomplex of C.S/.
If f W V ! PMLEL.S/ is a generic PL map where dim.V / D p and pC q � 2n,
then f .V /\LD∅. If either pC q � 2n� 1 or p � n, then for every simple closed
geodesic C , f .V /\Z D∅, where Z D ��1.C /� .@BC \L/.

Proof By genericity and the dimension hypothesis, the first conclusion is immediate.
For the second, L\ @BC is at most min.q; n� 1/ dimensional, hence any simplex in
the cone .L\ @BC / � �

�1C is at most min.qC 1; n/–dimensional. Thus the result
again follows by genericity.

Remark 3.5 In this paper, V will be either Bk , Sk or Sk � I .

Notation 3.6 Fix once and for all a map  W EL.S/!PML.S/ so that �ı D idEL.S/ .
If i W PML.S/!ML.S/ is the map sending a projective measured geodesic lam-
ination to the corresponding measured geodesic lamination of length 1, then define
y W EL.S/ !ML.S/ by y D i ı  . Let pWML.S/ n 0 ! PML.S/ denote the
standard projection map and let y� D � ıp .

While  is very discontinuous, it is continuous enough to carry out the following
which is the main result of this section.
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Proposition 3.7 Let gW Sk�1! EL.S/ be continuous where k � dim.PML.S//D
2nC 1. Then there exists a generic PL map F W Bk ! PMLEL.S/ (resp. yF W Bk !

MLEL.S/) such that F jSk�1 D g (resp. yF jSk�1 D g ) and F.int.Bk//�PML.S/
(resp. yF .int.Bk//�ML.S//.

Idea of proof for PML.S/ It suffices to first find a continuous extension and then
perturb to a generic PL map. To obtain a continuous extension F , consider a sequence
K1;K2; : : : of finer and finer triangulations of Sk�1 . For each i , consider the map
fi W S

k�1 ! PML.S/ defined as follows. If � is a simplex of Ki with vertices
v0; : : : ; vm , then define fi.vj /D .g.vj // and extend fi linearly on � . Extend f1 to
a map of Bk into PML.S/ and extend fi ; fiC1 to a map of Fi W S

k�1� Œi; iC1� into
PML.S/. Concatenating these maps and taking a limit yields the desired continuous
map F W Bk [Sk�1� Œ1;1�!PMLEL.S/, where @Bk is identified with Sk�1�1,
GjSk�1 � Œi; i C 1�D Fi and H jSn �1D g .

Remark 3.8 The key technical issue is making precise the phrase “extend fi linearly
on � ”. The reader primarily interested in connectivity properties of EL.S/ (and the
first time reader) should now read Remark 3.19 which allows one to bypass various
technicalities, in particular the use of Lemma 3.18.

Before we prove the proposition we establish some notation and then prove a series of
lemmas.

Notation 3.9 Let � be the cellulation on PML.S/ whose cells are the various
P .�i/, where the �i are the standard train tracks to some fixed parametrized pants
decomposition of S . If � D P .�i/ is a cell of � and Y � � , then define the convex
hull of Y to be p.C.p�1.Y ///, where C.Z/ is the convex hull of Z in V .�i/. If
x 2 EL.S/, then let �x denote the unique standard train track that fully carries x

and �x the cell P .�x/.

If L 2 L.S/, then L0 will denote a diagonal extension of L, ie a lamination obtained
by adding finitely many noncompact leaves.

Remark 3.10 It follows from Lemma 2.18 that if x 2 EL.S/, then ��1.x/� int.�x/

and is closed and convex.

Lemma 3.11 Let x1;x2; : : :!x be a convergent sequence in EL.S/. If y2PML.S/
is a limit point of f .xi/g, then �.y/D x .

Proof This follows from Lemma 2.13.
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Definition 3.12 Fix �1 < 1=1000.minfd.�; � 0/ j �; � 0 disjoint cells of �g/. For
each cell � of � define a retraction r� W N.�; �1/! � . For every ı < �1 define a
discontinuous map �ıW PML.S/ ! PML.S/ as follows. Informally, �ı retracts
a closed neighborhood of �0 to �0 , then after deleting this neighborhood retracts
a closed neighborhood of �1 to �1 , then after deleting this neighborhood retracts
a closed neighborhood of �2 to �2 and so on. As ı ! 0, the neighborhoods are
required to get smaller. More formally, let ı.0/D ı . If � is a 0–cell of �, then define
�ıjN.�; ı.0//D r� j.N.�; ı.0//. Now choose ı.1/ � ı such that if �; � 0 are distinct
1–cells, then N.�; ı.1//\N.� 0; ı.1// � N.� \ � 0; ı/. If � is a 1–cell, then define
�ıjN.�; ı.1// nN.�0; ı.0// D r� jN.�; ı.1// nN.�0; ı.0//. Having defined �ı on
N.�0; ı.0//[� � �[N.�k ; ı.k//, extend �ı in a similar way over N.�kC1; ı.kC1//

using a sufficiently small ı.kC1/. We require that if ı < ı0 , then for all i; ı.i/ < ı0.i/.

Remark 3.13 Let x 2 � a cell of �. If ı1 < ı2 � �1 and �1; �2 are the lowest-
dimensional cells of � respectively containing �ı1

.x/; �ı2
.x/, then �2 is a face of �1

which is a face of � .

Lemma 3.14 Let fi W B
k ! EL.S/ be a sequence of maps such that fi.B

k/ !

x 2 EL.S/ in the Hausdorff topology on closed sets in EL.S/.

(i) For i sufficiently large  .fi.B
k//� st.�x/, the open star of �x in �.

(ii) Given � > 0 and ı < �1 , then for i sufficiently large, if t 2Ci , where Ci denotes
the convex hull of r�x

. .fi.B
k/// in �x , then x �NPT.S/.�.t/; �/.

Proof If (i) is false, then after passing to subsequence, for each i there exists ai 2Bk

such that  .fi.ai// 62 st.�x/. This contradicts Lemma 3.11 which implies that any
limit point of  .fi.ai// lies in ��1.x/� �x .

This argument shows if U is any neighborhood of ��1.x/, then  .fi.B
k//�U for i

sufficiently large and hence r�x
. .fi.B

k///� U \ �x for i sufficiently large. Since
��1.x/ is convex it follows that Ci �U for i sufficiently large. By superconvergence
there exists a neighborhood V of ��1.x/ such that if y 2V , then x�NPT.S/.�.y/; �/.
Now choose U so that the r�x

.U /� V .

Lemma 3.15 If � > 0 and x1;x2; : : :! x 2 EL.S/, then there exists ı > 0 such that
for i sufficiently large x �NPT.S/.�.�ı. .xi///; �/.

Proof Let U be a neighborhood of ��1.x/ so that �2U implies x�NPT.S/.�.�/; �/.
Next choose ı > 0 so that �ı.N.��1.x/; ı//� U . Now apply Lemma 3.11 to show
that for i sufficiently large the conclusion holds.
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Lemma 3.16 Let � > 0;gi W B
k ! EL.S/ and gi.B

k/! x . There exists N 2 N ,
ı > 0, such that if ı1; ı2 � ı; i � N and � a simplex of �, then if Ci is the convex
hull of � \ .�ı1

. .gi.B
k/// [ �ı2

. .gi.B
k/// [ . .gi.B

k//// and t 2 Ci , then
x �NPT.S/.�.t/; �/.

Proof Let V be a neighborhood of ��1.x/ so that if y2V , then x�NPT.S/.�.y/; �/.
Let V1�V be a neighborhood of ��1.x/ such that for each cell � �� containing �x

as a face, the convex hull of V1 \ � � V . Also assume that xV1 \ � D ∅ if � is
a cell of � disjoint from �x . Choose ı < �1 so that d.�;V1/ > 2ı for all cells �
disjoint from �x . Choose N so that if i �N and ı0 � ı , then �ı0.gi.B

k//� V1 and
gi.B

k/� V1 . Therefore, if ı1; ı2 < ı and i �N then Ci lies in V .

We now address how to approximate continuous maps into EL.S/ by PL maps into
PML.S/.

Definition 3.17 Let � be a cell of �. Let � be a p–simplex and H 0W �0 ! � ,
where �0 are the vertices of � . Define the induced map H W � ! � , such that
H j�0 D H 0 as follows. Let yH be the linear map of � into y� D p�1.�/ such
that yH j�0D i ıH 0 . Then define H Dp ı yH . In a similar manner, if K is a simplicial
complex and hjK0! PML.S/ is such that for each simplex �; h.�0/� � , for some
cell � of �, then h extends to a map H W K!PML.S/ also called the induced map.
Since the linear structure on a face of a cell of ML.S/ is the restriction of the linear
structure of the cell, H is well defined.

Lemma 3.18 Let gW K1 ! EL.S/ be continuous where K1 is a finite simplicial
complex. Let K1;K2; : : : be such that mesh.Ki/! 0 and each KiC1 is a subdivision
of Ki . For every ı < �1 there exists an i.ı/ 2N , monotonically increasing as ı! 0,
such that if ı0� ı; i � i.ı0/ and � is a simplex of Ki , then �ı0. .g.�///[�ı. .g.�///

is contained in a cell of �.

Given � > 0 there exist ı.�/ > 0 and N.�/ 2N such that if i DN.�/, � is a simplex
of Ki , � a simplex of �; ı1; ı2� ı.�/ and C is the convex hull of �\.�ı1

. .g.�///[

�ı2
. .g.�///[ .g.�///, then given z12�; z22C we have dPT.S/.g.z1/; �.z2//<� .

Fix � > 0. If ı is sufficiently small, i > i.ı/ and Hi W Ki! PML.S/ is the induced
map arising from �ı ı ıgjK0

i , then for each z 2K1; dPT.S/.�.Hi.z//;g.z// < � .

Proof Fix 0<ı0<�1 . For each x2EL.S/, there exists a neighborhood Vx of ��1.x/

such that �ı0.Vx/� int.�x/. By Lemma 3.2 iv) there exists a neighborhood Ux of x

such that  .Ux/ � Vx . By compactness there exist Ux1
; : : : ;Uxn

that cover g.K/.
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There exists i.ı0/ > 0 such that if i � i.ı0/ and � is a simplex of Ki , then g.�/�Uxj

for some j and so �ı0. .g.�/// � int.�xj
/. Now let ı0 < ı < �1 . It follows from

Remark 3.13 that �ı. .g.�///� �xj
.

The proof of the second conclusion follows from the proof of Lemma 3.16 and
Proposition 2.12.

If the third conclusion of the lemma is false, then after passing to a subsequence there
exist .�1; !j.1/; ı1; t1/; .�2; !j.2/; ı2; t2/; : : : so that for all i; �iC1 is a codimension-
zero subsimplex of �i which is a simplex of Ki ; !j.i/ � �i is a simplex of Kj.i/

for some j .i/ � i; ıi ! 0 and for some ti 2 !j.i/; dPT.S/.�.Hj.i/.ti//;g.ti// > � ,
where Hj.i/ is the induced map corresponding to ıi and Kj.i/ . Also j .1/< j .2/< � � � .
If t D

T1
iD1 �i and B is homeomorphic to �1 , then there exists maps gi W B! EL.S/

such that gi.B/Dg.�i/ and limi!1gi.B/Dg.t/. Let �i be a cell of � that contains
Hj.i/.ti/. Since Hj.i/.ti/ lies in the convex hull of �ıi

. .gi.B///\ �i it follows by
Lemma 3.16 that for i sufficiently large g.t/�NPT.S/.�.Hj.i/.ti/; �=2/. Convergence
in the coarse Hausdorff topology implies that for i sufficiently large if z 2 �i then
g.t/�NPT.S/.g.z/; �=2/. Taking z D ti we conclude dPT.S/.�.Hj.i/.ti/;g.ti// < � ,
a contradiction.

Proof of Proposition 3.7 Let K1;K2; : : : be subdivisions of Sk�1 so mesh.Ki/! 0

and each KiC1 is a subdivision of Ki . Let ıi D �1= i . For each j 2 N pick nj >

i.ıjC1/, where i.ı/ is as in Lemma 3.18. Assume that n1 < n2 < � � � . Replace
the original fKig sequence by the subsequence fKni

g. With this new sequence, let
fj W Kj ! PML.S/ be the induced map arising from �ıj ı ıgjK0

j .

Define a triangulation T on Sk�1 � Œ0;1/ by first letting T jSk�1 � j D Kj and
then extending in a standard way to each Sk�1 � Œj ; j C 1� so that if � is a simplex
of T jSk�1 � Œj ; j C 1�, then �0 � .�0 � j /[ .�0

1
� .j C 1//, where � is a simplex

of Kj and �1 � � is a simplex of KjC1 . �ıj . .g.�
0///[ �ıj C1

. .g.�0
1
/// lie in

the same cell of � by the first conclusion of Lemma 3.18, so the induced maps on
T jSk�1 � fj ; j C 1g extend to one called fj ;jC1 on T jSk�1 � Œj ; j C 1�.

Since k � dimPML.S/, f1 extends to a map f 0
1

of Bk into PML.S/. Define
F W Bk [ Sk�1 � Œ1;1�! PMLEL.S/ so that F jBk D f 0

1
, F jSk�1 � Œi; i C 1� D

fi;iC1 and F jSk�1 � 1 D g . It remains to show that F is continuous at each
.z;1/ 2 Sk�1 �1. Let .z1; t1/; .z2; t2/; : : :! .z;1/. By passing to subsequence
we can assume that �.F.zi ; ti//! L 2 L.S/ where convergence is in the Hausdorff
topology. If L is not a diagonal extension of g.z/, then L is transverse to g.z/ and
hence dPT.S/.F.zi ; ti/;g.z// > � for i sufficiently large and some � > 0. By passing
to subsequence we can assume that zi 2 �mi

, where mi is the greatest integer less than
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or equal to ti and �mi
is a simplex in Kmi

. Also g.�mi
/! g.z/. Apply Lemma 3.16

to �mi
; ımi

, and ımiC1 to conclude that limi!1dPT.S/.g.z/; �.F.zi ; ti/// D 0, a
contradiction.

Remark 3.19 (i) If there exists a train track � such that each z 2 g.Sk�1/ is carried
by � and V �P .�/ is the convex hull of ��1.g.Sk�1//, then there exists a continuous
extension F W Bk!PMLEL.S/ such that F.int.Bk//�V . Indeed, since V is convex
we can dispense with the use of the �ı and directly construct the maps fi ; fi;iC1; f

0
1

to have values within V .

(ii) The referee pointed out that since the stable laminations of pseudo-Anosov maps
are dense in PML.S/ and a pseudo-Anosov map acts on PML.S/ with north–south
dynamics it follows that for any gW Sk�1! EL.S/ there exists a train track � car-
rying ��1.g.Sk�1/. Indeed, if  is a pseudo-Anosov map whose stable lamination
misses ��1.g.Sk�1// and �0 is a complete train track that fully carries the unstable
lamination but does not carry the stable one, then for i sufficiently large  i.�0/ carries
��1.g.Sk�1//. The referee also pointed out the second sentence of Remark 3.8.

The following local version is needed to prove local .k � 1/–connectivity of EL.S/,
when k � n and dim.PML.S//D 2nC 1.

Proposition 3.20 If z 2 EL.S/, then for every neighborhood U of ��1.z/ there
exists a neighborhood V of ��1.z/ such that if gW Sk�1! EL.S/ is continuous and
 �1.g.Sk�1//� V , then there exists a generic PL map F W Bk ! PMLEL.S/ such
that F j.int.Bk//� U and F jSk�1 D g .

Proof There is a parametrized pair of pants decomposition of S such that z is fully
carried by a maximal standard train track � . Thus y��1.z/ is a closed convex set in
int.V .�//�0. If yU D p�1.U /, then yU \ .int.V .�/// is a neighborhood of y��1.z/ in
ML.S/, since � is maximal. Let yV � int.V .�// be a convex neighborhood of y��1.z/

saturated by open rays through the origin such that yV � yU . Let V Dp. yV /. Then V is
a convex neighborhood of ��1.z/ with V �U . By Remark 3.19 if  .g.Sk�1//� V ,
then there exists a continuous map F W Bk!PMLEL.S/ such that F jSk�1D g and
F.int.Bk//� V . Now replace F by a generic perturbation.

4 Markers

In this section we develop the idea of a marker which is a technical device for controlling
geodesic laminations in a hyperbolic surface. In the next two sections, using markers,
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we show under appropriate circumstances a sequence of maps fi W B
k! PMLEL.S/,

i D 1; 2; : : : extending a given continuous map gW Sk�1 ! EL.S/ converges to an
extension f1W Bk ! EL.S/. As always, S will denote a finite-type surface with a
fixed complete hyperbolic metric.

Definition 4.1 Let ˛0; ˛1 be open embedded geodesic arcs in S . A path from ˛0

to ˛1 is a continuous map f W Œ0; 1�! S such that for i D 0; 1; f .i/� ˛i . Two paths
are path homotopic if they are homotopic through paths from ˛0 to ˛1 . Given two
path homotopic paths f;g from ˛0 to ˛1 , a lift z̨0 of ˛0 to H2 determines unique
lifts zf ; zg; z̨1 respectively of f;g; ˛1 so that zf ; zg are homotopic paths from z̨0 to z̨1 .
Define d zH .f;g/D dH . zf .I/; zg.I//, where dH denotes Hausdorff distance measured
in PT. zS/. Note that this is well-defined independent of the lift of ˛0 .

Definition 4.2 A marker M for the hyperbolic surface S consists of two embedded
(though not necessarily pairwise disjoint) open geodesic arcs ˛0; ˛1 called posts and
a path homotopy class Œ˛� from ˛0 to ˛1 . ˛0; ˛1 are respectively called the initial
and final posts. A representative ˇ of Œ˛� is said to span M. The marker M is an
�–marker if whenever ˇ and ˇ0 are geodesics in S spanning M, then d zH .ˇ; ˇ

0/ < �

and length.ˇ/� 1.

Let C be a simple closed geodesic in S . A C –marker is a marker M such that if ˇ
is a geodesic arc spanning M, then ˇ is transverse to C and jˇ\C j> 4gCpC 1

where g D genus.S/ and p is the number of punctures.

In a similar manner we define the notion of closed � or closed C –marker. Here the
posts are closed geodesic arcs. In this case the requirement d zH .ˇ; ˇ

0/ < � is replaced
by d zH .ˇ; ˇ

0/� � . If M is an � or C –marker, then SM will denote the corresponding
closed � or C –marker.

Remark 4.3 We thank the referee for pointing out that earlier forms of markers, used
in a different context and called H s, were used by Bonahon; see [6, Section 4.1].

Definition 4.4 We say that the geodesic L hits the marker M if there exist greater than
or equal to 3 distinct embedded arcs in L that span M. We allow for the possibility
that distinct arcs have nontrivial overlap. We say that the geodesic lamination L hits the
marker M if there exists a leaf L of L that hits M. If b1; : : : ; bm are simple closed
geodesics, then we say that M is L–free of fb1; : : : ; bmg if some leaf L 62 fb1; : : : ; bmg

of L hits M.

Remark 4.5 Suppose we want to show f W S1 ! EL.S/ extends to a map of a
disc. Intuitively, to first approximation, this involves finding a sequence of extensions
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Fi W D
2! PMLEL.S/ which avoid more and more simple closed curves (eg Fi.t/

has no leaf among the first i simple closed curves C1; : : : ;Ci ) and then taking a weak
limit. It suffices to show that there are enough Cj –markers hit by the laminations Fi.t/

and that there are enough �–markers to show things actually converge. See Section 6
for details. For technical reasons, because of the inductive nature of the argument, to
achieve this, certain markers need to free of various geodesics. If the simple closed leaf
b 2L has exactly three subarcs that span M, then a given post has two subarcs p1;p2

with endpoints in b such that if  is a leaf of L and j \ .p1[p2/j D n, then  has n

spanning subarcs. If n � 3, then M is hit by  and is L–free of b . The value of 3
(versus 2) is that if b is separating, then some pi lies to each side of b . The argument
in passing from Fi to FiC1 may require us to work with only one side of b .

Lemma 4.6 Let S be a finite-type hyperbolic surface with a fixed hyperbolic metric.
Given � > 0 there exists N.�/ 2 N such that if ˇ is an embedded geodesic arc,
length.ˇ/ � 2 and L 2 L.S/ is such that jL \ ˇj > N.�/, then there exists an �–
marker M hit by L with posts ˛0; ˛1 � ˇ .

Proof L has at most 6j�.S/j boundary leaves. Thus some boundary leaf of L hits ˇ
at least jL\ ˇj=.6j�.S/j/ times. Since length.ˇ/ is uniformly bounded, if jL\ ˇj
is sufficiently large, then three distinct segments of some leaf must have endpoints
in ˇ , be nearly parallel and have length greater than or equal to 2. Now restrict to
appropriate small arcs of ˇ to create ˛0 and ˛1 and let Œ˛� be the class represented by
the three segments.

Lemma 4.7 If L 2 L.S/ has a noncompact leaf L, then for every � > 0 there exists
an �–marker hit by L 2 L.

Corollary 4.8 If L 2 EL.S/, then for every � > 0 there is an �–marker hit by L.

The next lemma states that hitting a marker is an open condition.

Lemma 4.9 If L 2 L.S/ hits the marker M, then there exists a ı > 0 such that if
L0 2 L.S/and L�NPT.S/.L0; ı/, then L0 hits M.

By superconvergence we have the following.

Corollary 4.10 If x 2 PML.S/ is such that �.x/ hits the marker M, then there
exists an open set U containing x such that y 2 U implies that �.y/ hits M.

Lemma 4.11 Let C � S be a simple closed geodesic. There exists a k > 0 such that
if L 2 L.S/ and jC \Lj> k , then there exists a C –marker that is hit by L.
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Proof An elementary topological argument shows that if k is sufficiently large, then
there exists a leaf L containing 5 distinct, though possibly overlapping embedded
subarcs u1; : : : ;u5 with endpoints in C which represent the same path homotopy class
rel C such that the following holds. Each arc uj intersects C more than 4gCpC 1

times and fixing a preimage zC of C to zS , these arcs have lifts to arcs xu1; : : : ; xu5 in zS
starting at zC and ending at the same preimage zC 0 . After reordering we can assume
that xu1 and xu5 are outermost.

Let y̨0 and y̨1 be the maximal closed arcs respectively in zC and zC 0 with endpoints
in
S
xui and for i D 0; 1 let x̨i D �.y̨i/, where � is the universal covering map.

This gives rise to a C –marker M with posts ˛0; ˛1 where ˛i D int.x̨i/ and u2;u3;u4

represent the path homotopy class. Note that if the geodesic arc ˇ spans SM, then ˇ
lifts to y̌ with endpoints in y̨0 and y̨1 . Being a geodesic it lies in the geodesic rectangle
formed by y̨0; y̨1; xu1; xu5 . Thus it intersects C more than 4gCpC 1 times.

In the rest of this section V will denote the underlying space of a finite simplicial
complex. In applications, V D Bk or Sk � I .

Definition 4.12 A marker family J of V is a finite collection

.M1;W1/; : : : ; .Mm;Wm/;

where each Mi is a marker and each Wj is a compact subset of V . Let f W V !
PMLEL.S/. We say that f hits the marker family J if for each 1 � i � m and
t 2Wi , �.f .t// hits Mi . Let C D fb1; : : : ; bqg be a set of simple closed geodesics.
We say that J is f–free of C if for each 1� i �m and t 2Wi , Mi is �.f .t//–free
of C . More generally, if U � V , then we say that f hits J along U (resp. J is
f–free of C along U ) if for each 1 � i � m and t 2 U \Wi , �.f .t// hits Mi

(resp. Mi is �.f .t//–free of C ). We say that the homotopy F W V �I!PMLEL.S/
is J–marker preserving if for each t 2 I , F jV � t hits J .

Note that if J is f–free of C , then F is in particular a J–marker preserving homotopy.

An �–marker cover (resp. C –marker cover) of V is a marker family

.M1;W1/; : : : ; .Mm;Wm/;

where each Mi is an �–marker (resp. C –marker) and the interior of the Wi form an
open cover of V .

The next lemma gives us conditions for constructing � and C –marker families.
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Lemma 4.13 Let S be a finite-type hyperbolic surface such that dim.PML.S//D
2nC 1. Let V be a finite simplicial complex.

(i) If � > 0 and f W V ! PMLEL.S/ is a generic PL map such that dim.V /� n,
then there exists an �–marker family E hit by f .

(ii) Given the simple closed geodesic C , there exists N.C /2N such that if f W V !
PMLEL.S/ is such that for all t 2 V , j�.f .t//\C j �N.C /, then there exists
a C –marker family S hit by f .

Proof (i) Since k�n and f is generic, for each t 2V , A.�.t//¤∅, where A.�.t//
is the arational sublamination of �.t/. By Lemma 4.6 for each t 2 V there exists
an �–marker Mt and compact set Wt such that t 2 int.Wt / and for each s 2 Wt ,
�.f .s// hits Mt . The result follows by compactness of V .

(ii) Given C , choose N.C / as in Lemma 4.11. Thus for each t 2 V there exists a
C –marker Mt and compact set Ut such that t 2 int.Ut / and for each s 2Ut , �.f .s//
hits Mt . The result follows by compactness of V .

5 Convergence lemmas

This section establishes various criteria to conclude that a sequence of ending lamina-
tions converges to a particular ending lamination or to show that two ending laminations
are close in EL.S/. We also show that markers give neighborhood bases of elements
L 2 EL.S/ and sets in PML.S/ of the form ��1.L/, where L 2 EL.S/.

Lemma 5.1 Let � 2 EL.S/ and

W�.�/D fL 2 EL.S/ j dPT.S/.L; �0/ < �; �0 is some diagonal extension of �g:

Then W.�/D fW�.�/ j � > 0g is a neighborhood basis of � 2 EL.S/.

Proof By definition of the coarse Hausdorff topology, W�.�/ is open in EL.S/.
Therefore if the lemma is false, then there exists a sequence L1;L2; : : : such that
Li 2 W1=i.�/ for all i and a c > 0 such that for all i;Li ª NPT.S/.�

0; c/ for all
diagonal extensions �0 of �. After passing to subsequence we can assume that
fLig ! L1 with respect to the Hausdorff topology. Since L1 is not a diagonal
extension of � it is transverse to each diagonal extension of � and hence there exists
an � > 0 such that dPT.S/.�

0;Li/ > � for all i sufficiently large and every diagonal
extension of �, a contradiction.

Lemma 5.2 If � 2 EL.S/, �0 a diagonal extension and x1;x2; : : : 2 PML.S/ such
that limi!1 dPT.S/.�.xi/; �

0/D 0, then after passing to subsequence, we have that
xi! x1 2 �

�1.�/.
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Proof After passing to subsequence we can assume that xi ! x1 2 PML.S/. If
�.x1/ ¤ �, then �.x1/ intersects � transversely. Let p 2 �.x1/\� and L be
the leaf of � containing p . Then �.x1/ intersects L at p at some angle � > 0. By
superconvergence, for i sufficiently large �.xi/ intersects � at pi 2 L at angle �i ,
where pi is very close to p (distance measured intrinsically in L) and �i is very close
to � . Since every leaf of �0 is dense in �, it follows that there exists N > 0 such
that if J is a segment, of length greater than or equal to N , of a leaf of �0 and i

is sufficiently large, then J \�.xi/¤∅ with angle of intersection at some point at
least �=2. Thus dPT.S/.�.xi/; �

0/ must be uniformly bounded below, else some �.xi/

would have a transverse self intersection.

Lemma 5.3 If K � PML.S/ and L � EL.S/ are compact and K \ ��1.L/D ∅,
then there exists ı > 0 such that if dPT.S/.�.x/; �/ < ı , where x 2 PML.S/ and
� 2L, then x 62K .

Proof Otherwise there exists sequences x1;x2; : : :! x1 , �1; �2; : : :! �1 such
that for all i and j , xi 2K and �j 2 L and limi!1 dPT.S/.�.xi/; �i/D 0. After
passing to subsequence we can assume that the �i converge to a diagonal extension of
�1 . This contradicts Lemma 5.2.

Lemma 5.4 If L�EL.S/ is compact and U �PML.S/ is open so that ��1.L/�U ,
then there exists a neighborhood V of L such that ��1.V /� U .

Proof Let

W�.L/D fL 2 EL.S/ j dPT.S/.L; �0/ < �; �0 is a diagonal extension of � 2Lg:

Then W�.L/ is open and for � sufficiently small ��1.W�.L//�U . Otherwise taking
K D PML.S/ nU contradicts the previous lemma.

Lemma 5.5 Let � 2 EL.S/ and M1;M2; : : : a sequence of markers such that for
every i 2 Z, Mi is a 1= i –marker hit by �. If Ui D fL 2 EL.S/ j L hits Mig, then
U D fUig is a neighborhood basis of � in EL.S/.

Proof By definition of 1= i –marker, if L hits Mi , then dPT.S/.L; �/ < 1= i . There-
fore, for all i , Ui �W1=i . Since each Ui is open in EL.S/ the result follows.

Lemma 5.6 Let � 2 EL.S/. For each � > 0 and k 2 N there exists ı > 0 such
that if fL1;L2; : : : ;Lk ; zg � L.S/, dPT.S/.Lk ; z/ < ı , dPT.S/.Li ;LiC1/ < ı for
1 � i � k � 1 and dPT.S/.�

0;L1/ < ı for some diagonal extension �0 of �, then
dPT.S/.�; z/ < � .
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Proof We give the proof for k D 1, the general case being similar. If the lemma is
false, then there exists a sequence .Li ; zi ; ıi/ for which the lemma fails, where ıi! 0.
After passing to subsequence we can assume that Li!L1 and zi! z1 with respect
to the Hausdorff topology. Since z1 is nowhere tangent to �, it is transverse to �.
Since the ends of every leaf of every diagonal extension of � is dense in � and � is
filling, there exists K > 0 such that any length K immersed segment lying in a leaf
of z1 intersects any length K segment lying in any diagonal extension of � at some
angle uniformly bounded away from 0. Thus a similar statement holds for each zi ; i

sufficiently large, where K is replaced by KC 1. Therefore if ıi is sufficiently small
and i is sufficiently large, then Li has length KC 2 immersed segments �1; �2 such
that �1 is nearly parallel to a leaf of �0 and �2 is nearly parallel to a leaf of zi . This
implies that �1 nontrivially intersects �2 transversely, a contradiction.

Lemma 5.7 Let � > 0. Let �1; �2; : : : be a full unzipping sequence of the transversely
recurrent train track �1 . If each �i fully carries the geodesic lamination L, then there
exists N > 0 such that if L1 is carried by �i , for some i �N , then dPT.S/.L1;L/ < � .

Proof This follows from the proof of Lemma 1.7.9 [35] (see also [13, Proposition 1.9]).
That argument shows that each bi-infinite train path of each �i is a uniform quasi-
geodesic and that given L > 0, there exists N > 0 such that any length L segment
lying in a leaf of a lamination carried by �i ; i � N , is isotopic to a leaf of L by an
isotopy such that the track of a point has uniformly bounded length.

Lemma 5.8 If � is a train track that carries �2 EL.S/, then � fully carries a diagonal
extension of �.

Proof By analyzing the restriction of � to each closed complementary region of �, it
is routine to add diagonals to � to obtain a lamination fully carried by � .

Lemma 5.9 Let � be a transversely recurrent train track that carries �2EL.S/. Given
ı > 0 there exists N > 0 so that if � is obtained from � by a sequence of greater than
or equal to N full splittings (ie along all the large branches) and � carries both � and
L 2 L.S/, then dPT.S/.L; �/ < ı .

Proof It suffices to show that dPT.S/.L; �0/ < ı1 for some diagonal extension �0

of � and some ı1 > 0, that depends on ı and �. Since there are only finitely many
train tracks obtained from a given finite number of full splittings of � it follows that
if the lemma is false, then there exist �1; �2; : : : such that �1 D �; �i is a full splitting
of �i�1 and for each i 2 N there exists Li 2 L.S/ carried by some splitting of �ni

with dPT.S/.Li ; �/ > ı and ni !1. Note that Li is also carried by �ni
. Since �

has only finitely many diagonal extensions we can assume from the previous lemma
that each �i fully carries a fixed diagonal extension �0 of �.
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On the other hand, there is a full unzipping sequence � 0
1
D �1; �

0
2
; : : : with the property

that each � 0i carries exactly the same laminations as some �mi
and mi!1. Therefore

by Lemma 5.7 it follows that for i sufficiently large dPT.S/.Li ; �
0/ < ı1 , a contradic-

tion.

Once and for all fix a parametrized pants decomposition of S , with the corresponding
finite set of standard train tracks.

Proposition 5.10 Given � > 0, � 2 EL.S/, there exists N > 0, ı > 0 such that if �
is obtained from a standard train track by N full splittings and � carries �, then the
following holds. If L 2 L.S/ is carried by � , z 2 L.S/ and dPT.S/.L; z/ < ı , then
dPT.S/.�; z/ < � . In particular, if L is carried by � , then dPT.S/.�;L/ < � .

Proof Apply Lemmas 5.9 and 5.6.

6 A criterion for constructing continuous maps of compact
manifolds into EL.S /

This section is a generalization of the corresponding one of [13] where a criterion was
established for constructing continuous paths in EL.S/. Our main result is much more
general and is technically much simpler to verify. It will give a criterion for extending
a continuous map gW Sk�1! EL.S/ to a continuous map LW Bk! EL.S/, though it
is stated in a somewhat more general form.

Recall that our compact surface S is endowed with a fixed hyperbolic metric. Let
fCigi2N denote the set of simple closed geodesics in S .

Notation 6.1 If Uj is a finite open cover of a compact set V , then its elements will
be denoted by Uj .1/; : : : ;Uj .kj /.

Proposition 6.2 Let V be the underlying space of a finite simplicial complex and
W � V . Let gW W ! EL.S/ and for i 2N let fi W V ! PMLEL.S/ be continuous
extensions of g . Let Lm.t/ denote �.fm.t//. Let �1; �2; : : : be such that for all i ,
�i=2 > �iC1 > 0. Let U1;U2; : : : be a sequence of finite open covers of V . Suppose
each Uj .k/ is assigned both an �j –marker j̨ .k/ and a Cj –marker ǰ .k/. Assume
that the following two conditions hold.

(sublimit) For each t 2 Uj .k/ and m� j , Lm.t/ hits j̨ .k/.

(filling) For each t 2 Uj .k/ and m� j , Lm.t/ hits ǰ .k/.

Then there exists a continuous map LW V ! EL.S/ extending g so that for t 2 V ,
L.t/ is the coarse Hausdorff limit of fLm.t/gm2N .
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Proof Fix t . We first construct a minimal and filling L.t/. After passing to subse-
quence we can assume that the sequence Lmi

.t/ converges in the Hausdorff topology
to a lamination L0.t/. If t 2Ui.j /, then the filling and sublimit conditions imply that if
k > i , then some arcs i.k/; �i.k/ in leaves of Lk.t/ respectively span the �i and Ci –
markers ˛i.j / and ˇi.j /. This implies that arcs in L0.t/ span the corresponding closed
markers and hence, L0.t/ intersects each Ci transversely and hence L0.t/ contains no
closed leaves. Thus spanning arcs in L0.t/ are embedded (as opposed to wrapping
around a closed geodesic) and hence jL0.t/\Ci j> 4gCpC1 for all i . Let L.t/ be a
minimal sublamination of L0.t/. If L.t/ is not filling, then there exists a simple closed
geodesic C , disjoint from L.t/ that can be isotoped into any neighborhood of L.t/
in S . An elementary topological argument shows that jC \ L0.t/j � 4g C p C 1,
contradicting the filling condition.

We next show that L.t/ is independent of subsequence. Let L0
0
.t/ 2 EL.S/ be a

lamination that is the Hausdorff limit of the subsequence fLki
.t/g and L0.t/ the

sublamination of L0
0
.t/ in EL.S/. By the sublimit condition each of L0.t/;L0

0
.t/

have arcs that span the same set fx̨ig of closed markers, where ˛i is an �i –marker
with associated open set Ui � V , where t 2 Ui . Since �i ! 0, the lengths of the
initial posts f˛i0

g go to 0. Thus after passing to a subsequence of the initial posts,
f˛ij0
g ! x 2 S . Now let vij be the unit tangent vector to the initial point of some

spanning arc of ˛ij . After passing to another subsequence, vij !v a unit tangent vector
to x . The sublimit condition implies that v is tangent to a leaf of both L0.t/ and L0

0
.t/

and hence L0.t/ and L0
0
.t/ have a leaf in common. It follows that L.t/D L0.t/.

We apply Lemma 2.10 to show that f is continuous at t . Let v and f˛ij gi2N be as
in the previous paragraph, where f˛ij gi2N is the final subsequence produced in that
paragraph. Fix � > 0. There exists N 2 N such that for i � N , dPT.S/.v

0
ij
; v/ � �

where v0ij is any unit tangent vector to the initial point of a spanning arc of x̨ij .
Therefore if m �Nj and s 2 UNj

, then dPT.S/.Lm.s/; v/ � � . Since this is true for
all m�Nj it follows that for all s 2 UNj

, dPT.S/.L0.s/;L0.t//� 2� .

7 Pushing off of BC

Given a generic PL map f W Bk ! PMLEL.S/ and a simple closed geodesic C ,
this section will describe homotopies of f such that if f1 is a resulting map, then
f �1

1
.BC /D∅. The map f1 is said to be obtained from f by pushing off of C . Various

technical properties associated with such pushoffs will be obtained. The concept of
relatively pushing f off of C will be introduced and analogous technical results will be
established. In subsequent sections we will produce a sequence f1; f2; : : : satisfying
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the hypothesis of Proposition 6.2, where fiC1 is obtained by relatively pushing fi off
of a finite set of geodesics, one at a time.

Remark 7.1 Recall the convention that n is chosen so that dim.PML.S//D 2nC1.
Let C be a simple closed geodesic. Let �C denote the projective measure lamination
with support C . As in [13], we denote by BC the PL 2n–ball consisting of those
projective measured laminations that have intersection number 0 with �C . Recall
that BC is the cone of the PL .2n� 1/–sphere ıBC to �C , where ıBC consists of
those points of BC which do not have C as a leaf. Furthermore, if x 2BC n�C , then
x D p..1� t/y�C ty�C /, for some y� 2ML.S/ representing a unique � 2 ıC , some
y�C 2ML.S/ representing �C and some t < 1.

Definition 7.2 The ray through x 2 BC n �C is the set of points r.x/ in PML.S/
represented by measured laminations of the form fty�C .1� t/y�C j 0� t � 1g where
y� and y�C are as above. If K � BC and K\�C D∅, then define r.K/D

S
x2K

r.x/.

Remark 7.3 Note that r.x/ is well defined and r.K/ is compact if K is compact.

Using the methods of [13; 35; 39] it is routine to show that there exists a neighborhood
of BC homeomorphic to 2B2n � Œ�1; 1�, where 2B2n denotes the radius-2 2n–ball
about the origin in R2n , such that BC is identified with B2n�0, �C is identified with
.0; 0/ and for each x 2 BC n�C , r.x/ is identified with a ray through the origin with
an endpoint on S2n�1 � 0.

While the results in this section are stated in some generality, on first reading one
should imagine that if f W V !PMLEL.S/, then V DBk and f �1.EL.S//DSk�1 ,
where k � 2n.

Definition 7.4 Let V be the underlying space of a finite simplicial complex and W

that of a finite subcomplex. If f W V ! PMLEL.S/ and W D f �1.EL.S//, then the
generic PL map f1W V ! PMLEL.S/ is said to be obtained from f by ı–pushing
off of BC if there exists a homotopy F W V �I!PMLEL.S/, called a .C; ı/ pushoff
homotopy such that:

(i) f �1
1
.BC /D∅.

(ii) F.t; s/ D f .t/ if either s D 0, dV .t; f
�1.BC // � ı , dV .t;W / � ı , or

dPML.S/.f .t/;BC //� ı .

(iii) For each t 2V such that dPML.S/.f .t/;BC /<ı there exists an x 2f .V /\BC

such that for all s 2 Œ0; 1�, dPML.S/.F.t; s/; r.x// < ı ; further if F.t; s/ 2BC ,
then F.t; s/ 2 r.f .t//.
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Lemma 7.5 If f W V ! PMLEL.S/ is a generic PL map, dim.V / � 2n and C is
a simple closed geodesic, then for all sufficiently small ı > 0 there exists a .C; ı/
pushoff homotopy of f .

Proof Using Lemma 5.4 it follows that if C is a simple closed geodesic, then
f �1.BC / is a compact set disjoint from some neighborhood of W . By genericity
of f , ie Lemma 3.4, there exists an �1 > 0 such that dPML.S/.f .V /; �C / � �1 .
Consider a natural homotopy F�W ..2B2n n �B2n/ � Œ�1; 1�/ � I ! 2B2n � Œ�1; 1�

from the inclusion to a map whose image is disjoint from B2n� 0, which is supported
in an �–neighborhood of .B2n n �B2n/ � 0 and where points in .B2n n �B2n/ � 0

are pushed radially out from the origin. Let gW N.BC /! 2B2n � Œ�1; 1� denote the
parametrization given by Remark 7.3. The desired .C; ı/–homotopy is obtained by
appropriately interpolating the trivial homotopy outside of a very small neighborhood
of f �1.BC / with g�1 ıF� ıg ı f restricted to a small neighborhood of f �1.BC /,
where � is sufficiently small and then doing a small perturbation to make f1 generic.

Lemma 7.6 Let C be a simple closed geodesic and f W V !PMLEL.S/ be a generic
PL map with dim.V / � 2n. Let J be a marker family of V hit by f that is f–free
of C . If ı is sufficiently small, then any .C; ı/ pushoff homotopy F from f to f1 is
J–marker preserving, f–free of C .

Proof Since there are only finitely many markers in a marker family, it suffices to
show that if K � V is compact and �.f .t// hits the marker M free of C at all t 2K ,
then for ı sufficiently small �.F.t; s// hits M free of C at all t 2K and s 2 I . This
is a consequence of superconvergence and compactness. Indeed, if x 2 f .K/\BC ,
then there exists a leaf of �.x/ distinct from C that hits M. Since all points in
r.x/ n �C have the same underlying lamination this fact holds for all y 2 r.x/. By
superconvergence it holds at all points in a neighborhood of r.x/ in PML.S/. Let U

be the union of these neighborhoods over all x 2 f .K/\BC . By compactness of K

and BC , there exists a � > 0 such that if y 2BC and dPML.S/.y; f .t//� � for some
t 2K , then NPML.S/.r.y/; �/ � U . Any .C; ı/ homotopy with ı < � satisfies the
conclusion of the lemma.

Definition 7.7 If x 2 PML.S/ and A is a simple closed geodesic, then define
g.x;A/ 2 Z�0[1, the geometric intersection number of x with A, by g.x;A/D

minfj�.x/\A0j jA0 is isotopic to Ag. If f W V ! PMLEL.S/ define the geometric
intersection number of f with A by g.f;A/ D minfg.�.f .t//;A/ j t 2 V g. If
0<g.f;A/ <1, then we say that the multigeodesic J is the stryker curve for A if for
some t 2 V , J � �.f .t//, jJ \Aj D g.f;A/ and j \A¤∅ for each component j

of J . We call J the f .t/–stryker curve for A or sometimes just the stryker curve
at f .t/.
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Remark 7.8 Note that j�.x/\A0j is minimized when A D A0 unless A is a leaf
of �.x/ in which case g.x;A/D 0.

Lemma 7.9 If we have f W V ! PMLEL.S/;A is a simple closed geodesic and
0< g.f;A/ <1, then the set of stryker curves is finite and nonempty. We also have
m.f;A/ D ft 2 V j j�.f .t// \Aj D g.f;A/g is compact. Finally m.f;A/ is the
disjoint union of the compact sets mJ1

.f;A/; : : : ;mJm
.f;A/, where t 2 mJi

.f;A/

implies that Ji is the stryker curve at f .t/.

Proof Superconvergence implies that V nm.f;A/ is open, hence m.f;A/ is compact.
If the first assertion is false, then there exists t1; t2; : : : converging to t such that if Ji

denotes the stryker curve at ti , then the Ji are distinct. By compactness, t 2m.f;A/,
so let J be the stryker curve at t . Superconvergence implies that if s is sufficiently
close to t , then either s 62m.f;A/ or J is the stryker curve at s, a contradiction. The
final assertion again follows from superconvergence.

Lemma 7.10 Let f W V ! PMLEL.S/ be a generic PL map and A and C disjoint
simple closed geodesics such that g.f;A/ <1. Then for ı sufficiently small, any
.C; ı/ pushoff f1 satisfies g.f1;A/ � g.f;A/. If equality holds and J is an f1 –
stryker curve for A, then J is an f–stryker curve for A.

Proof If t 2 f �1.BC /, then j.�.f .t// n C /\Aj D j�.f .t//\Aj � g.f;A/. By
superconvergence there exists a neighborhood U 0 of r.f .t// such that y 2U 0 implies
that g.�.y/;A/�g.f;A/ and hence there exists a neighborhood U of r.f .V /\BC /

with the same property. If ı is sufficiently small to have any .C; ı/ pushoff homotopy
supported in U , then g.f1;A/� g.f;A/.

Now assume that equality holds. If t 2m.f;A/\f �1.BC / and J is the stryker curve
at f .t/, then by superconvergence there exists a neighborhood U 0 of r.f .t// such
that if x 2 U 0 and g.x;A/D g.f;A/, then J is the stryker curve at x . Thus, there
exists a neighborhood U of f .V /\BC such that if x 2 U and g.x;A/D g.f;A/,
then the stryker curve at x is a stryker curve of f . If ı is sufficiently small to have
any .C; ı/ pushoff of f supported in U , then the second conclusion holds.

This argument proves the following sharper result.

Lemma 7.11 If f W V ! PMLEL.S/ is a generic PL map, A and C disjoint simple
closed curves, � > 0 and 0< g.f;A/ <1, then if ı is sufficiently small and f1 is the
result of a .C; ı/ pushoff homotopy of f and g.f1;A/D g.f;A/, then m.f1;A/�

NV .m.f;A/; �/ and if t 2m.f1;A/ and dV .t;mJi
.f;A// < �, then Ji is the stryker

curve at f1.t/.
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We need relative versions of generalizations of the above results.

Definition 7.12 Let V be the underlying space of a finite simplicial complex and W

that of a finite subcomplex. Let f W V ! PMLEL.S/ be a generic PL map with
f �1.EL.S//DW . Let K � f �1.BC / be closed. We say that the generic PL map
f1W V ! PMLEL.S/ is obtained from f by .C; ı;K/ pushing off if there exists a
homotopy F W V � I ! PMLEL.S/ called a .C; ı;K/ pushoff homotopy such that:

(i) f1.K/\BC D∅.

(ii) F.t; s/Df .t/ if sD0, dV .t;K/�ı , dV .t;W /�ı or dPML.S/.f .t/; f .K//�ı .

(iii) For each t 2V such that dPML.S/.f .t/; f .K//<ı there exists x 2 r.f .K// so
that for all s 2 Œ0; 1�, dPML.S/.F.t; s/; r.x// < ı ; furthermore, if F.t; s/ 2BC ,
then F.t; s/ 2 r.f .t// and if f1.t/ 2 int.BC /, then f .t/ 2 int.BC /.

Lemma 7.13 If f W V !PMLEL.S/ is a generic PL map, dim.V /�2n, C a simple
closed geodesic and K a closed subset of f �1.BC /, then for every sufficiently small
ı > 0 there exists a .C; ı;K/ pushoff homotopy of f .

Proof For ı sufficiently small let U � V nNV .W; ı/ be open such that K � U �

NV .K; ı=10/ \ f �1.NPML.S/.r.f .K//; ı=10//. Let �W V ! Œ0; 1� be continuous
such that �.K/D 1 and �.V nU /D 0. If F.t; s/ defines a .C; ı/ pushoff homotopy,
then F.t; �.t/s/ suitably perturbed defines a .C; ı;K/ pushoff homotopy.

Lemma 7.14 Let V be a finite p–complex and f W V ! PMLEL.S/ a generic PL
map, C a simple closed geodesic, L � PML.S/ a finite q–subcomplex of C.S/
and K a closed subset of f �1.BC /. If p C q � 2n � 1 or p � n, then for every
sufficiently small ı > 0 any .C; ı;K/ pushoff homotopy of f is supported away
from L.

Proof Let Z D .@BC \L/ �C . By Lemma 3.4, f .V /\ .Z [L/D ∅ and hence
r.f .K// \ .Z [ L/ D ∅. Thus the conclusion of the lemma holds provided that
ı < dPML.S/.r.f .K//;Z [L/.

We have the following relative version of Lemma 7.6.

Lemma 7.15 Let b1; b2; : : : ; br ;C be simple closed geodesics, f W V !PMLEL.S/
a generic PL map and K� f �1.BC / be compact. Let J be a marker family that is f–
free of fb1; : : : ; br ;C g. If ı is sufficiently small, then J is F–free of fb1; : : : ; br ;C g

for any .C; ı;K/ pushoff homotopy F of f .
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Definition 7.16 Let f W V !PMLEL.S/. Let Y be a compact subset of V and A a
simple closed geodesic. Define g.f;AIY /Dminfg.f .t/;A/ j t 2Y g, the Y–geometric
intersection number of f and A. If 0< g.f;AIY / <1, define the Y–stryker curves
for f and A to be those multigeodesics � such that for some t 2 Y , � � �.f .t//,
j� \ Aj D g.f;A;Y / such that s \ A ¤ ∅ for all components s of � . Define
m.f;AIY /Dft 2Y jg.f .t/;A/Dg.f;AIY /g. If � is a Y–stryker curve then define
m� .f;AIY /D ft 2m.f;AIY / j � � �.f .t//g.

The proof of Lemma 7.9 holds for in the relative case.

Lemma 7.17 If f W V ! PMLEL.S/, A is a simple closed geodesic, Y � V is
compact and 0 < g.f;AIY / < 1, then the set of Y–stryker curves is finite and
nonempty. Also m.f;AIY / is compact and is the disjoint union of compact sets
mJ1

.f;AIY /; : : : ;mJm
.f;AIY / where t 2 mJi

.f;AIY / implies that Ji is the Y–
stryker curve at f .t/.

We have the following analogy of Lemmas 7.10 and 7.11.

Lemma 7.18 Let f W V !PMLEL.S/ be a generic PL map, �> 0 and A and C be
disjoint simple closed geodesics. Let K be a closed subset of f �1.BC / and Y � V be
compact. If 0< g.f;AIY / <1, then there exists a neighborhood U of Y such that
for ı sufficiently small, any .C; ı;K/ pushoff f1 satisfies g.f1;AI xU /� g.f;AIY /.
If equality holds, then m.f1;AI xU /�NV .m.f;AIY /; �/ and if t 2m.f1;AI xU / and
dV .t;mJi

.f;AIY // < �, then Ji is the xU–stryker curve to A at f1.t/.

Definition 7.19 We say that the set B of simple closed geodesics solely hits the
marker M at t if each leaf of the lamination �.f .t// that hits M lies in B . If Z�V

then let S.f;M;B;Z/ denote the set of points in Z where f solely hits M.

By superconvergence we have the following result.

Lemma 7.20 If f W V !PMLEL.S/ is a generic PL map, B is a finite set of simple
closed geodesics, and Z � V is compact, then S.f;M;B;Z/ is compact.

8 Marker tags

Definition 8.1 Let A be a simple closed multigeodesic in S . We say that � is a tag
for A, if � is a compact embedded geodesic curve (with @� possibly empty) transverse
to A such that @� �A and int.�/\A¤∅.
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Let M be a marker hit by the simple closed multigeodesic A. Then r � 3 distinct
subarcs of A span M, where r 2N is maximal. These arcs run from ˛0 to ˛1 , the
posts of M. Suppose that the initial points of these arcs intersect ˛0 at c1; : : : ; cr .
Let � be the maximal subarc of ˛0 with endpoints in fc1; : : : ; cr g. Such a tag is called
a marker tag.

Given f W V !PMLEL.S/ that hits the marker M we may need to find a new f that
hits M free of a particular multigeodesic. For example the hypothesis of Proposition 6.2
implies that all the �p and ˇq markers are fjC1 –free of CjC1 for p; q � j . Tags
are introduced to measure progress in that effort. We will find a sequence of pushoff
homotopies whose resulting maps intersect a given tag more and more so that we can
ultimately invoke the following result.

Lemma 8.2 Let f W V !PMLEL.S/, M a marker, A a simple closed multigeodesic
that hits M and � the corresponding marker tag. Let b1; : : : ; br be simple closed
geodesics such that for all t 2 f �1.BA/,ˇ̌̌̌�

�.f .t//

�� r[
iD1

bi [A

��ˇ̌̌̌
\ � � 3.3g� 3Cp/;

then M is f–free of fA; b1; : : : ; br g along f �1.BA/.

Proof If f .t/ 2 BA , then any leaf L of �.f .t// distinct from A with L\ � � m

has at least m distinct subarcs that span M. If L is a noncompact leaf of �.f .t//
and L\ � ¤∅, then jL\ � j D1, since L is nonproper. If only closed geodesics of
�.f .t// intersect � , then since �.f .t// can have at most 3g� 3Cp such geodesics,
one of them, say L, distinct from fb1; : : : ; br ;Ag must satisfy jL\ � j � 3.

Definition 8.3 Let � be a tag for the multigeodesic A, f W V !PMLEL.S/ a generic
PL map and Y a compact subset of f �1.BA/. Define

g.f; �;Y /Dminfj.�.f .t// nA/\ � j j t 2 Y g

to be the geometric intersection number of f with � along Y .

If 0< g.f; �;Y / <1, then define the multigeodesic J to be a Y–stryker curve for �
if J � �.f .t//, J \AD∅, jJ \� j D g.f; �;Y / and j \� ¤∅ for all components j

of J .

The proof of Lemma 7.9 readily generalizes to the following result.
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Lemma 8.4 If f W V ! PMLEL.S/ is a generic PL map, � is a tag for the simple
closed geodesic A and Y is closed in f �1.BA/, then the set of Y–stryker curves for �
is finite. Also the set

m.f; �;Y /D ft 2 Y j g.f; �;Y /D j.�.f .t// nA/\ � jg

is compact and canonically partitions as the disjoint union of the compact sets
mJ1

.f; �;Y /; : : : ;mJk
.f; �;Y /, where Ji is the Y–stryker curve for � at all t 2

mJi
.f; �;Y /.

Similarly, Lemma 7.18 generalizes to the following result.

Lemma 8.5 Let f W V ! PMLEL.S/ be a generic PL map, � a tag for the simple
closed geodesic A, Y a closed subset of f �1.BA/ and 0< g.f; �;Y / <1. Let C be
a simple closed geodesic such that C\.A[�/D∅ and K a closed subset of f �1.BC /.
If �> 0, then there exists a neighborhood U of Y such that for ı sufficiently small, any
.C; ı;K/ pushoff f1 satisfies g.f1; �;Y1/ � g.f; �;Y /, where Y1 D f

�1
1
.BA/\ xU .

If equality holds, then m.f1; �;Y1/�NV .m.f; �;Y /; �/ and if t 2m.f1; �;Y1/ and
dV .t;mJi

.f; �;Y // < �, then Ji is the Y1 stryker curve to � at f1.t/. In particular
if J is a Y1 –stryker curve for f1 and � , then J is a Y–stryker curve for f and � .

9 Marker cascades

This technical section begins to address the following issue. To invoke Proposition 6.2
we need to find a sequence f1; f2; : : : satisfying the sublimit and filling conditions,
in particular satisfying the property that f �1

j .BCi
/ D ∅ for i � j . We cannot just

create fi from fi�1 by pushing off of Ci , because Ci may be needed to hit previously
constructed markers. To make these markers free of Ci we may need to relatively
pushoff of other curves. We may not be able to pushoff of those curves because they in
turn are needed to hit markers. In subsequent sections we shall see that finiteness of S ,
genericity of f and the k � n condition will force this process to terminate. Thus
before we pushoff of Ci we will do a sequence of relative pushoffs of other curves.

We introduce the notion of marker cascade in order to keep track of progress. Given
f W V ! PMLEL.S/, markers M1; : : : ;Mm and pairwise disjoint simple closed
curves a1; : : : ;av a marker cascade is a (complicated) measure of how far M1; : : : ;Mm

are from being free of a1; : : : ; av . At the end of this section we will show that under
appropriate circumstances relative pushing preserves freedom as measured by a marker
cascade. The next section shows that judicious relative pushing increases the level of
freedom. See Proposition 10.1.
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Definition 9.1 Let V be the underlying space of a finite simplicial complex. Associ-
ated to the generic PL map f W V !PMLEL.S/, J D .M1;W1/; : : : ; .Mm;Wm/ a
marker family hit by f , and a1; : : : ; av a sequence of pairwise disjoint simple closed
geodesics we define the marker cascade C . Here C is a .vC1/–tuple .A1; : : : ;Av;P/,
where each Ai is a 3–tuple .Ai.1/;Ai.2/;Ai.3// essentially of the form (marker,
intersection number, stryker curve) defined below and P is a finite set of v–tuples
defined in Definition 9.6. Our Ai is organized as follows:

� Ai.1/ is either a marker Mij or 1.
� Ai.2/ 2 Z�0 [1 is the geometric intersection number of f with the tag �i

associated to ai and Mij along the compact set mi.C/� V , unless Ai.1/D1

in which case Ai.2/D1.
� Ai.3/ is the set of stryker curves for �i along the compact set mi.C/�V unless

Ai.2/D1 in which case Ai.3/D1.

We define the Ai and the auxiliary mi.C/ as follows. To start with order the markers
by M1 <M2 < � � �<Mm . In what follows we abuse notation by letting qj denote
an inductively defined function of f , J , and fa1; : : : ; aqg, where q � v .

We define A1.1/ to be the maximal marker M1j
such that for all i < 1j , Mi is

f–free of a1 along Wi . If a1 is free of J , then define A1.1/D1.

If M1j
exists, then define �1 to be the marker tag associated to a1 and M1j

and
define

m1.C/D
˚
t 2 S.f;M1j

; a1;W1j
/ˇ̌

g.f; �1;S.f;M1j
; a1;W1j

//D j.�.f .t// n a1/\ �1j
	
:

Remark 9.2 We have m1.C/D∅ if and only if a1 is free of J .

Definition 9.1 (continued) Define A1.2/ D g.f; �1;m1.C// if m1.C/ ¤ ∅ and
A1.2/D1 otherwise.

We define A1.3/ to be Stryker1 the set of m1.C/–stryker curves for �1 , unless
A1.2/D1 in which case A1.3/D1.

Having defined Ai ; i < u, then Au is defined as follows. (The reader is encouraged to
first read Remark 9.3.) To start with define B1

u ; : : : ;B
m
u , where Br

u D fb
r
1
; : : : ; br

ug,
br

u D au and for q < u; br
q D aq if r < qj and br

q D∅ otherwise.

We define Au.1/ to be either the maximal marker Muj
, such that r < uj implies

that Mr is free of Br
u along mu�1.C/\Wr or Au.1/D1 if for all r �m, Mr is

free of Br
u along mu�1.C/\Wr .
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Remark 9.3 In words Au.1/ DMuj
is the maximal marker such that all lower

markers are free of fa1; : : : ; aug, where applicable. Where applicable means two things.
First, the only relevant points are those of mu�1.C/. Second if say M1;M2;M3

are free of a1 but M4 is not and along m1.C/, M1;M2;M3 are free of fa1; a2g

and M4;M5 are free of a2 but M6 is not free of a2 , then M2j
DM6 . In par-

ticular, a1 is irrelevant when considering Mp , for p � 4. In this case, we have
B1

2
D B2

2
D B3

2
D fa1; a2g and for r > 3, Br

2
D fa2g. Note that if M1 is free of

fa1; a2g along m1.C/ but M2 is not, then M2j
DM2 .

Definition 9.1 (continued) If Muj
exists, then define �u to be the marker tag arising

from au and Muj
. Let Su D S.f;Muj

;B
uj

u ;Wuj
/\mu�1.C/. Define

mu.C/D ft 2 Su j g.f; �u;Su/D j.�.f .t// n au/\ �ujg:

We define Au.2/ to be either g.f; �u;mu.C// or 1 if mu.C/D∅.

We define Au.3/ to be the set Strykeru which is either the set of mu.C/–stryker curves
for �u if mu.C/¤∅ or 1 otherwise.

We say that the cascade C is finished if mv.C/D∅ and active otherwise. We say that
the cascade is based on fa1; : : : ; avg and has length v . For r � v , then the length–r

cascade based on fa1; : : : ; ar g is called the length–r subcascade and denoted Cr . Note
that Cr and C have the same values of A1; : : : ;Ar .

Notation 9.4 The data corresponding to a cascade depends on f . When the function
must to be explicitly stated, we will use notation such as C.f /;mi.C; f /;Ap.f /

or Ar .2; f /.

We record for later use the following result.

Lemma 9.5 Let J be a marker family hit by the generic PL map f W V!PMLEL.S/.
If C is an active cascade based on a1; : : : ; av , then for every t 2mv.C/, each ai is a
leaf of �.f .t//.

Proof By definition m1.C/� S.f;M1j
; a1;W1j

/, hence a1 is a leaf of �.f .t// at
all t 2m1.C/.

Now assume the lemma is true for all subcascades of length < u. Let t 2mu.C/. By
definition at each point of mu.C/, Muj

is not f–free of B
uj

u but is f–free of B
uj

u nau .
It follows that au is a leaf of �.f .t//.
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Definition 9.6 Let C be an active cascade. To each t 2mv.C/ corresponds a v–tuple
.p1; : : : ;pv/, where pj is the (possibly empty) stryker multigeodesic for �j at t .
Such a .p1; : : : ;pv/ is called a packet. There are only finitely many packets, by the
finiteness of stryker curves. Thus mv.C/ canonically decomposes into a disjoint union
of closed sets S1; : : : ;Sr such that each point in a given Sj has the same packet.
Let P D fP1; : : : ;Pr g denote the set of packets, the last entry in the definition of C .
We will use the notation P.f /, when needed to clarify the function on which this
information is based.

Definition 9.7 In what follows all cascades use the same set of markers and simple
closed geodesics, however the function f W V ! PMLEL.S/ will vary. We put an
equivalence relation on this set of cascades and then partially order the classes. We
say that C.g/ is equivalent to C.f / if P.f /D P.g/ and for all r , Ar .f /DAr .g/.
We lexicographically partial order the equivalence classes by comparing the v–tuples
.A1.C.f //; : : : ;Av.C.f //;P.f // using the rule Ar .1; f /�Ar .1;g/ if Mrj

.f /�

Mrj
.g/, with1 being considered the maximal value and Ar .2; f /�Ar .2;g/ if their

values satisfy that inequality and Ar .3; f /�Ar .3;g/ if Strykerr .g/� Strykerr .f /.
Finally, P.f /� P.g/ if P.g/� P.f /.

Remark 9.8 More or less, C.f / < C.g/ means that the markers are freer with respect
to the function g than with respect to f . In particular, this inequality holds if M1

and M2 are g–free of a1 , but only M1 is f–free of a1 . If M1 is both g–free and
f–free of a1 but M2 is neither f–free nor g–free of a1 , then A1.2/ is a measure of
how close M2 is from being free of a1 . The bigger the number, the closer to freedom
as motivated by Lemma 8.2. If this number is the same with respect to both f and
g , then A.3/ measures how much work is needed to raise the number. More stryker
multigeodesics with respect to f , than g , means more needs to be done to f , so again
C.f / < C.g/. If A1.f /DA1.g/, then A2 is used to determine the ordering. Finally,
if all the Ai are equal, then f having more packets means that more sets of V need to
be cleaned up to finish the cascade.

Proposition 9.9 Let V be the underlying space of a finite simplicial complex, f W V !
PMLEL.S/ be a generic PL map, dim.V /� n and J D .M1;W1/; : : : ; .Mm;Wm/

a marker family hit by f . Let C be an active cascade based on fa1; : : : ; avg, C a
simple closed geodesic disjoint from the ai and the �i and K � mv.C/\ f �1.BC /

compact. For 1� i �m, let Bi
C
Dfau j i <uj g[fC g. Assume that for 1� i �m, Mi

is f–free of Bi
C

along K\Wi . If ı is sufficiently small and f1 is obtained from f

by a .C; ı;K/ pushoff homotopy, then ŒC.f /� � ŒC.f1/� and the homotopy from f

to f1 is J–marker preserving.
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Proof Since J is f–free of C along K , it follows by Lemma 7.15 that for ı
sufficiently small, any .C; ı;K/ homotopy is J marker preserving. It remains to show
that if ı is sufficiently small and f1 is the resulting map, then ŒC.f /�� ŒC.f1/�.

From C.f / we conclude that for all u 2 f1; : : : ; vg and q < uj , Mq is f–free of
B

q
u along mv.C/\Wq . By hypothesis each Mq is also f–free of B

q
C

along Wq\K .
Note that B

q
u � B

q
C

when q < uj . By Lemma 7.15, if ı is sufficiently small, then
there exists a neighborhood V of K such that any .C; ı;K/ homotopy is supported
in V and each Mq is f–free of B

q
C

along Wq \
xV . It follows that with respect to the

lexicographical ordering .A1.1; f /; : : : ;Av.1; f //� .A1.1; f1/; : : : ;Av.1; f1//.

A similar argument using Lemma 7.18 shows that if ı is sufficiently small and
Ai.1; f /DAi.1; f1/ for 1� i � u, then Ai.2; f /�Ai.2; f1/ for 1� i � u.

By Lemma 8.4 there exists � > 0 such that if dV .t1; t2/ < 2� and t1; t2 2mu.C/ for
some u, then f .t1/; f .t2/ have the same stryker curve to �u . Let ı be sufficiently
small to satisfy Lemma 8.5 with this � in addition to the previously required conditions.
That lemma implies that if Ai.1; f / D Ai.1; f1/ and Ai.2; f / D Ai.2; f1/ for all
i � u, then Strykeri.f1/� Strykeri.f / for all i � u.

Finally, Lemma 8.5 with this choice of � also implies that if .A1.f /; : : : ;Av.f //D
.A1.f1/; : : : ;Av.f1//, then P.f1/� P.f /. It follows that ŒC.f /�� ŒC.f1/�.

Remark 9.10 Note that ŒC.f /� � ŒC.f1/� holds with respect to the lexicographical
ordering, but may not hold entrywise, since there may be no direct comparison be-
tween later entries once earlier ones differ. For example, say M2 D A1.1; f / <

A1.1; f1/DM3 , then showing A2.1; f /DM3 involves verifying that M2 is f–
free of fa2g while showing A2.1; f1/DM3 involves verifying that M2 is f1 –free
of fa1; a2g.

10 Finishing cascades

The main result of this section is the following.

Proposition 10.1 Let V be the underlying space of a finite simplicial complex
and hW V ! PMLEL.S/ be a generic PL map such that k D dim.V / � n, where
dim.PML.S// D 2nC 1. Let J be a marker family hit by h and C be an active
cascade. Then there exists a marker preserving homotopy of h to h0 such that C is
finished with respect to h0 and ŒC.h/� < ŒC.h0/�. The homotopy is a concatenation of
relative pushoffs. If L� PML.S/ is a finite subcomplex of C.S/, then the homotopy
can be chosen to be disjoint from L.
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Lemma 10.2 Let fi W V ! PMLEL.S/, i 2N be generic PL maps, J be a marker
family and let fC.fi/g be cascades based on the same set of simple closed geodesics.
Any sequence ŒC.f1/� � ŒC.f2/� � � � � has only finitely many terms that are strict
inequalities.

Proof There are only finitely many possible values for Au.1; fj /.

It follows from Lemma 8.2 that each Au.2; fj / is uniformly bounded above. Indeed,
there are only finitely many ai and only finitely many markers in J , thus only
finitely many marker tags arising from them. If �u is such a tag, then for i 2 N ,
g.fi ; �;mu.C.fi///�

ˇ̌�Sv
jD1 aj

�
\ �u

ˇ̌
C 3.3g� 3C 2p/.

The finiteness of stryker curves (Lemma 4.5) shows that the number of possibilities for
both P.fj / and each Au.3; fj / is bounded.

Proof of Proposition 10.1 To prove the first two assertions it suffices to show that
given any active cascade C.h1/, there exists a J marker preserving homotopy from h1

to h2 , that is a concatenation of relative pushoffs, such that ŒC.h1/� < ŒC.h2/�. For
if C.h2/ is not finished, then we can similarly produce an h3 with ŒC.h2/� < ŒC.h3/�.
Eventually we obtain a finished C.hq/ else we contradict Lemma 10.2.

We retain the convention that dim.PML.S//D 2nC 1. We will assume that k D n

leaving the easier k < n case to the reader. The proof is by downward induction on
LD length.C/. Suppose that C.h/ is an active cascade based on fa1; : : : ; aLg. Since
the ai are pairwise disjoint, it follows that L� nC 1. Let �i denote the marker tag
associated to ai and Mij .h/. Let R0 DN.a1[ � � � [ aL[ �1 � � � [ �L/. Let R be R0

together with all its complementary discs, annuli and pants. Let T D S n int.R/. Note
that T D∅ if L� n. This uses the 3 in Definition 4.4.

Let A.h.t// denote the arational sublamination of �.h.t//, ie the sublamination ob-
tained by deleting all the compact leaves. Since h is generic and k D n, it follows
that A.h.t//¤∅ for all t 2 V . The key observation, perhaps of this paper, is that if
A.h.t//\R¤∅, then t 62mL.C.h//. To start with, Lemma 9.5 implies that a1; : : : ; aL

are leaves of �.h.t//. This implies that for some i �L, A.h.t//\ �i ¤∅, where �i

is the marker tag between ai and Mij . By Lemma 8.2 �.h.t// hits Mij along a non-
compact leaf and hence t 62mi.C.h// contradicting the fact that mL.C.h//�mi.C.h//.
It follows that C.h/ is finished if L� n.

Note that if k < n, then this argument shows that C is finished if L� k . In particular,
if k D 1, (the path connectivity case) all cascades are finished.

Now assume that the proposition is true for all cascades of length greater than L, where
L< n. Let C be an active cascade of length L.
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Let P D fp1; : : : ;pLg 2P.h/ and let SP be the closed subset of mL.C/ consisting of
points whose packet is P . Let � be the possibly empty multigeodesic p1[ � � � [pL .
By definition, if t 2 SP , then each pi is a leaf of �.h.t// and by Lemma 9.5 each of
a1; : : : ; aL is a leaf of �.h.t//. Let Y 0 D N.a1 [ � � � [ aL [ �1 � � � [ �L [ �/ and Y

be the union of Y 0 and all complementary discs, annuli and pants. Let Z D S n int.Y /.
Note that Z ¤∅, else for all t 2 SP , jA.h.t//\ �i.t/j D1 for some i.t/ which is a
contradiction as before. Let C be a simple closed geodesic isotopic to some component
of @Z .

Observe that C is neither an ai nor is C � � . Indeed, since each ai is crossed
transversely by a tag at an interior point it follows that no ai is isotopic to a component
of @Y 0 and hence @Y . Similarly, each component of Strykeri is transverse to �i at an
interior point, hence no component of � is isotopic to a component of @Y . Next observe
that SP � f

�1.BC /. Indeed, t 2 SP implies that for all i; �.h.t//\ �i � ai [ � ,
hence C is either a leaf of �.h.t// or C \�.h.t//D∅.

Extend the cascade C.h/ to the length L C 1 cascade C0.h/ by letting C be our
added aLC1 . If C0.h/ is active, then by induction, there is a marker preserving
homotopy of h to h1 , the composition of finitely many relative pushoff homotopies,
so that C0.h1/ is finished and ŒC0.h/� < ŒC0.h1/�. If C0.h/ is finished, then let’s unify
notation by denoting h by h1 . In both cases, by restricting to the length L subcascade
either ŒC.h/� < ŒC.h1/� or ŒC.h/� D ŒC.h1/� and each Mi is h1 –free of Bi

C
for all

t 2mL.C.h1//\Wi , where Bi
C

is as in the statement of Proposition 9.9. Since freedom
is an open condition and SP .h1/ is compact as are all the Wi , there exists U � V

open such that mL.C.h1//� U and each Mi is h1 –free of Bi
C

for all t 2 xU \Wi .

If ŒC.h/� D ŒC.h1/�, then invoke Proposition 9.9 by taking f D h1 , keeping the
original J and C , using the above constructed C and letting K D SP .h1/. Choose ı
sufficiently small to satisfy the conclusion of Proposition 9.9 and so that any .C; ı;K/
pushoff homotopy is supported in U .

To complete the proof of the first two assertions it suffices to show that if ı is sufficiently
small and h2 is the resulting map, then ŒC.h1/� < ŒC.h2/�. Now Proposition 9.9 implies
that ŒC.h1/�� ŒC.h2/�, thus if equality holds, then for all i , Ai.h1/DAi.h2/ (recall
Notation 11.4). We now show that P 62 P.h2/. If not, then let t 2 SP .h2/. As above
h2.t/2BC . Since h2 is the result of a relative pushoff homotopy it follows from the last
sentence of Definition 7.12(iii) that either �.h2.t//D�.h1.t// or �.h2.t//¤�.h1.t//

but C [�.h2.t//D �.h1.t//. In the former case, t 2 SP .h1/DK contradicting the
fact that h2 is the result of a .C; ı;K/ pushoff homotopy. In the latter case if t 2K ,
then we get a contradiction as before otherwise t 2 U n SP .h1/, hence there exists
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an Mi that is h1 –free of Bi
C
nC at t 2Wij , but Mi is not h2 –free of Bi

C
nC at t .

This implies that Mi is not h1 –free of Bi
C

at t which contradicts the fact that t 2 U .

Since k � n, by Lemma 3.4 it follows that h.V /\LD∅. By Lemma 7.14 and by
using sufficiently small ı , all .C; ı;K/ pushoff homotopies in the above proof could
have been done to avoid L.

Corollary 10.3 Let V be the underlying space of a finite simplicial complex. Let S be
a finite-type surface and f W V ! PMLEL.S/ be a generic PL map and dim.V /� n,
where dim.PML.S//D 2nC 1. Let J be a marker family hit by f and C a simple
closed geodesic. Then f is homotopic to f1 via a marker preserving homotopy such
that g.f;C / > 0. If L�PML.S/ is a finite subcomplex of C.S/, then the homotopy
can be chosen to be disjoint from L.

Proof By Lemma 7.6, if J is free of C and ı is sufficiently small, then any
.C; ı/ pushoff homotopy is J–marker preserving. If f1 is the resulting map, then
g.f1;C / > 0.

If J is not free of C , then let C be the active length–1 cascade based on C . By
Proposition 10.1 f is homotopic to f 0 by a marker preserving homotopy such
that C.f 0/ is finished and the homotopy is a concatenation of relative pushoff ho-
motopies. By Remark 9.2 J is f 0–free of C . Now argue as in the first paragraph.

11 Stryker cascades

Proposition 11.1 Let V be the underlying space of a finite simplicial complex
and let f W V ! PMLEL.S/ be a generic PL map such that dim.V / � n where
dim.PML.S//D 2nC1. If a1 is a simple closed geodesic such that 0<g.f; a1/<1

and J a marker family hit by f , then there exists a marker preserving homotopy of
f to f1 such that g.f1; a1/ > g.f; a1/. The homotopy is a concatenation of relative
pushoffs. If L� PML.S/ is a finite subcomplex of C.S/, then the homotopy can be
chosen to be disjoint from L.

Remark 11.2 The proof is very similar to that of Corollary 10.3, except that stryker
cascades are used in place of marker cascades. A stryker cascade is essentially a marker
cascade except that the first term is a curve a1 with g.f; a1/ > 0.

Closely following the previous two sections, we give the definition of stryker cascade
and prove various results about them.
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Definition 11.3 Associated to f W V ! PMLEL.S/ a generic PL map,

J D .M1;W1/; : : : ; .Mm;Wm/

a marker family hit by f , M1 < � � �<Mm the ordering induced from this enumer-
ation and a1; : : : ; av a sequence of pairwise disjoint simple closed geodesics with
g.f; a1/ > 0, we define a stryker cascade C which is a .vC1/–tuple .A1; : : : ;Av;P/,
where A1 is a 2–tuple .A1.1/;A1.2// and for i � 2 we have that each Ai is a 3–tuple
.Ai.1/;Ai.2/;Ai.3// and P is a finite set of v–tuples defined in Definition 11.6.

Define A1 D .g.f; a1/;Stryker1/, where Stryker1 is the set of stryker curves to f
and a1 .

Define m1.C/D ft 2 V j g.f; a1/D j�.f .t//\ a1jg.

Having defined Ai ; 1 � i < u, then Au is defined as follows. To start with define
B1

u ; : : : ;B
m
u , where Br

u Dfb
r
u; : : : ; b

r
ug, br

uD au and for 2� q < u; br
q D aq if r < qj

and br
q D∅ otherwise.

We define Au.1/ to be either the maximal marker Muj
, such that r < uj implies

that Mr is free of Br
u along mu�1.C/\Wr or Au.1/D1 if for all r �m, Mr is

free of Br
u along mu�1.C/\Wr .

If Muj
exists, then define �u to be the marker tag arising from au and Muj

. Let
Su D S.f;Muj

;B
uj

u ;Wuj
/\mu�1.C/. Define

mu.C/D ft 2 Su j g.f; �u;Su/D j.�.f .t// n au/\ �ujg:

We define Au.2/ to be either g.f; �u;mu.C// or 1 if mu.C/D∅.

We define Au.3/ to be the set Strykeru which is either the set of mu.C/–stryker curves
for �u if mu.C/¤∅ or 1 otherwise.

We say that the cascade C is finished if mv.C/D∅ and active otherwise. We say that
the cascade is based on fa1; : : : ; avg and has length v . For r � v , then the length–r

cascade based on fa1; : : : ; ar g is called the length–r subcascade and denoted Cr . Note
that Cr and C have the same values of A1; : : : ;Ar .

Notation 11.4 The data corresponding to a cascade depends on f . When the func-
tion must be explicitly stated, we will use notation such as C.f /, mi.C; f /, Ap.f /

or Ar .2; f /.

We record for later use the following result whose proof is essentially identical to that
of Lemma 9.5.
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Lemma 11.5 Let J be a marker family which is hit by the generic PL map f W V !
PMLEL.S/. If C is an active stryker cascade based on a1; : : : ; av , then for every
t 2mv.C/ and i � 2, each ai is a leaf of �.f .t//.

Definition 11.6 Let C be an active stryker cascade. To each t 2mv.C/ corresponds a v–
tuple .p1; : : : ;pv/, where p1 is the stryker multigeodesic for a1 at t and for i � 2, pi

is the (possibly empty) stryker multigeodesic for �i at t . Such a .p1; : : : ;pv/ is called
a packet. There are only finitely many packets, by the finiteness of stryker curves.
Thus mv.C/ canonically decomposes into a disjoint union of closed sets S1; : : : ;Sr

such that each point in a given Sj has the same packet. Let P D fP1; : : : ;Pr g denote
the set of packets, the last entry in the definition of C .

Definition 11.7 Use the direct analogy of Definition 9.7 to put an equivalence relation
on the set of stryker cascades based on the same ordered set of simple closed curves to
partially order the classes.

Proposition 11.8 Let f W V !PMLEL.S/ a generic PL map, dim.V /� n and J D
.M1;W1/; : : : ; .Mm;Wm/ a marker family J hit by f . Let C be an active stryker
cascade based on fa1; : : : ; aqg;C a simple closed geodesic disjoint from the ai and �j
and let K �mv.C/\f �1.BC /. For 1� i �m, let Bi

C
D fap;p � 2 j i < pj g[fC g.

Assume that for 1� i �m, Mi is f–free of Bi
C

along K\Wi . If f1 is obtained from
f by a .C; ı;K/ pushoff homotopy and ı is sufficiently small, then ŒC.f /�� ŒC.f1/�

and the homotopy from f to f1 is J–marker preserving.

Proof The fact A1.f /�A1.f1/ follows from Lemma 7.18. The rest of the argument
follows as in the proof of Proposition 9.9.

We have the following analogue of Lemma 10.2.

Lemma 11.9 Let fi W V ! PMLEL.S/, i 2 N , be generic PL maps, J a marker
family and let fC.fi/g be active stryker cascades based on the same set of simple closed
geodesics. Any sequence ŒC.f1/� � ŒC.f2/� � � � � with g.f1; a1/ D g.f2; a1/ D � � �

has only finitely many terms that are strict inequalities.

Proposition 11.10 Let hW V ! PMLEL.S/ be a generic PL map such that k D

dim.V / � n, where dim.PML.S// D 2nC 1. Let J be a marker family hit by h

and let C be an active stryker cascade with 0 < g.h; a1/ <1. Then there exists a
marker preserving homotopy of h to h0 such that ŒC.h/�< ŒC.h0/� and either g.h0; a1/>

g.h; a1/ or C.h0/ is finished. The homotopy is a concatenation of relative pushoffs. If
L� PML.S/ is a finite subcomplex of C.S/, then the homotopy can be chosen to be
disjoint from L.
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Proof As in the proof of Proposition 10.1 it suffices to show that given any active
stryker cascade C.h1/ there exists a marker preserving homotopy of h1 to h2 , that
is a concatenation of relative pushoffs, such that ŒC.h1/� < ŒC.h2/�. Here we invoke
Lemma 11.9 instead of Lemma 10.2.

Again we discuss the k D n case, the easier k < n cases being left to the reader. The
proof by downward induction on the length of the cascade follows essentially exactly
that of Proposition 10.1 until the step of proving it for length-1 cascades. So now
assume that the proposition has been proved for cascades of length greater than or
equal to 2.

Let C.h/ be a length-1 cascade based on a1 . Here P , the set of packets, consists
of the set of stryker multicurves to h and a1 . Let P be one such multicurve. Let
Y 0 D N.a1 [ P / and Y be the union of Y 0 and all components of S n Y 0 that
are discs, annuli and pants. Again, genericity and the condition k D n implies that
Y ¤ S . Let C be a simple closed geodesic isotopic to a component of @Y . The
condition g.h; a1/ > 0 implies that C is not isotopic to a1 . Since each component
of P nontrivially intersects a1 , C is not isotopic to any component of P . Let C0 denote
the length-2 stryker cascade based on fa2;C g. By induction there exists a marker
preserving homotopy of h to h1 that is a concatenation of relative pushoffs such that
ŒC0.h/� < ŒC0.h1/� and either g.h1; a1/ > g.h; a1/ or C0.h1/ is finished. In the latter
case we have either ŒC.h/� < ŒC.h1/� or ŒC.h/�D ŒC.h1/� and for each 1� i �m, Mi

is free of C along m1.C; h1/. Now argue as in the proof of Proposition 10.1 that if h2

is the result of a .C; ı;K/ homotopy, where ı is sufficiently small and K D SP .h1/,
then either g.h2; a1/ > g.h1; a1/ or g.h2; a1/D g.h1; a1/ and ŒC.h1/� < ŒC.h2/�.

Proof of Proposition 11.1 Let C.f / be the length-1 stryker cascade based on a1 . By
Proposition 11.10 there exists a marker preserving homotopy from f to f1 that is the
concatenation of relative pushoff homotopies such that C.f /< C.f1/. Therefore, either
g.f1; a1/>g.f; a/ or equality holds and jP.C.f1//j< jP.C.f //j. After finitely many
such homotopies we obtain f 0 such that g.f 0; a1/ > g.f1; a/.

12 EL.S / is .n � 1/–connected

Theorem 12.1 Let V be the underlying space of a finite simplicial complex. Let S be
a finite-type hyperbolic surface with dim.PML.S//D2nC1. If f W V !PMLEL.S/
is a generic PL map, f �1.EL.S//DW , dim.V / � n and J is a marker family hit
by f , then there exists a map gW V ! EL.S/ such that gjW D f and g hits J . The
map g is the limit of a concatenation of (possibly infinitely many) relative pushoffs. If
L� PML.S/ is a finite subcomplex of C.S/, then the homotopy can be chosen to be
disjoint from L.
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Proof Let C1;C2; : : : be an enumeration of the simple closed geodesics on S . It suf-
fices to find a sequence, f0; f1; f2; : : : of extensions of f jW and sequences fEig, fSig

of marker covers, such that Ei is a marker covering of V by 1= i markers, Si is a
marker covering of V by Ci markers and for i � j ; fj hits each Ei and Si family
of markers. Furthermore, fiC1 is obtained from fi by a finite sequence of relative
pushoffs. Then Proposition 6.2 produces g as the limit of the fj . Since fiC1 is
obtained from fi by concatenating finitely many pushoffs, concatenating all these
pushoff homotopies produces a map F W V �Œ0;1�!PMLEL.S/ with F jV �1Dg .
The proof of Proposition 6.2 shows that F is continuous. It follows from Lemma 7.14
that the homotopy can be chosen disjoint from L.

Suppose f0; f1; : : : ; fj�1; E1; : : : ; Ej�1 , and S1; : : : ;Sj�1 have been constructed so
that fq hits each Ep and Sp family of markers whenever p� q� j �1. We will extend
the sequence by constructing fj , Ej and Sj to satisfy the corresponding properties.
The theorem then follows by induction. In what follows, Ji denotes the marker family
that is the union of all the markers in the Er and Ss marker families, where r; s � i .

Construction of fj and Sj Let N .Cj/ be as in Lemma 4.13(ii). Given fj�1 ,
obtain f 1

j by applying Corollary 10.3 to fj and the marker cover Jj�1 . Repeatedly
apply Proposition 11.1 to get

f 2
j ; f 3

j ; : : : ; f
N.Cj /

j

with the property that f q
j is a generic PL map which is obtained from f

q�1
j�1

via a
Jj�1 marker preserving homotopy such that we have g.f

q
j ;C /� q . Let fj D f

N.Cj /
j

and apply Lemma 4.13(ii) to obtain Sj .

Construction of Ej Apply Lemma 4.13(i) to the generic PL map fj to obtain Ej a
marker cover by 1=j markers.

Theorem 12.2 If S is a finite-type hyperbolic surface such that dim.PML.S// D
2nC 1, then EL.S/ is .n� 1/–connected.

Proof Let k � n and gW Sk�1! EL.S/ be continuous and f W Bk ! PMLEL.S/
be a generic PL extension of g , provided by Proposition 3.7. Now apply Theorem 12.1
to extend g to a map of Bk into EL.S/.

13 EL.S / is .n � 1/–locally connected

Theorem 13.1 If S is a finite-type hyperbolic surface, then EL.S/ is .n� 1/–locally
connected, where dim.PML.S//D 2nC 1.
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Proof We need to show that if L2EL.S/, and U 0�EL.S/ is an open set containing L,
then there exists an open set U �U 0 containing L so that if k � n, gW Sk�1! EL.S/
and g.Sk�1/�U , then g extends to a map F W Bk! EL.S/ such that F.Bk/�U 0 .

Choose a pair of pants decomposition and parametrizations of the cuffs and pants so
that some complete maximal train track � fully carries L. Thus V .�/ is a convex
subset of ML.S/ that contains y��1.L/ in its interior.

Let M1;M2; : : : be a sequence of markers such that each Mi is a 1= i –marker that
is that is hit by L. Let Ui D fx 2 EL.S/ j �.x/ hits Mig. Then each Ui is an open
set containing L and by Lemma 5.5 there exists N 2 N such that if i � N , then
y��1.Ui/ � int.V .�//\ y��1.U 0/. Reduce the ends of each post of MN slightly to
obtain M�

N
so that if

U �N D fx 2 EL.S/ j �.x/ hits M�
N g and xU �N D fx 2 EL.S/ j �.x/ hits xM�

N g;

then L2U �N �
xU �N �UN . Let �W � y��1.U �N / be an open convex subset of ML.S/ con-

taining y��1.L/ and is saturated by rays through the origin. Indeed �W can chosen to
be int.V .�// for some complete train track � fully carrying L. Next choose j such
that y��1.Uj /� �W . Let U D Uj and MDMN .

Let k � n and gW Sk�1 ! EL.S/ with g.Sk�1/ � U . Since �W is convex and
contains y��1.U /, we can apply Proposition 3.7 and Remark 3.19 to find a generic PL
map f0W B

k ! PMLEL.S/ extending g such that f0.int.Bk// �W . Thus for all
t 2 Bk ; f0.t/ hits M. Theorem 12.1 produces f W Bk ! EL.S/ extending g such
that for t 2 Bk and i 2 N; fi.t/ hits M. Therefore, for each t 2 Bk ; f .t/ hits the
closed marker SM �

N
and hence f .Bk/� xUN � U 0 .

14 PML.S / and EL.S / approximation lemmas

The main technical results of this paper are that under appropriate circumstances any
map into EL.S/ can be closely approximated by a map into PML.S/ and vice versa.
In this section we isolate out these results.

We first give a mild extension of Lemma 3.18, which is about approximating a map
into EL.S/ by a map into PML.S/. The subsequent two results are about EL.S/
approximations of maps into PMLEL.S/.

Lemma 14.1 Let K be a finite simplicial complex, gW K ! EL.S/ and � > 0.
Then there exists a generic PL map hW K ! PML.S/ such that for each t 2 K ,
dPT.S/.�.h.t//;g.t// < � and dPML.S/.h.t/; �

�1.g.t 0/// < � for some t 0 2K with
dK .t; t

0/ < � .
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Proof Given g , Lemma 3.18 produces mappings hi W K ! PML.S/ such that
dPT.S/.�.hi.t//;g.t// < �= i . By superconvergence we can assume that each hi

is a generic PL map satisfying the same conclusion.

We show that if i is sufficiently large, then the second conclusion holds for hD hi .
Otherwise, there exists a sequence t1; t2; : : : of points in K for which it fails respec-
tively for h1; h2; : : :. Since for each i , h�1

i .FPML.S// is dense in K , it follows
from Lemma 2.13 that we can replace the ti by another such sequence satisfying
dPML.S/.hi.ti/; �

�1.g.ti/// > �=2, ti ! t1 , hi.ti/! x1 and �.hi.ti// 2 EL.S/
for all i 2N . By Lemmas 5.6 and 5.1, �.hi.ti//! g.t1/ and hence by Lemma 2.13,
�.x1/ D g.t1/. Therefore, we have that limi!1 dPML.S/.hi.ti/; �

�1.g.t1/// �

limi!1 dPML.S/.hi.ti/;x1/D 0, a contradiction.

Lemma 14.2 Let V be the underlying space of a finite simplicial complex. Let S be a
finite-type hyperbolic surface with dim.PML.S//D 2nC 1 and let � > 0. If hW V !

PMLEL.S/ is a generic PL map, h�1.EL.S//DW and dim.V /�n, then there exists
gW V ! EL.S/ such that gjW D h and for each t 2 V , dPT.S/.g.t/; �.h.t/// < � .

Proof Since k � n, A.�.h.t/// ¤ ∅ for every t 2 V , where A.�.h.t/// denotes
the arational sublamination of �.h.t//. Therefore, by Lemma 4.7 for each t 2 V ,
there exists an �–marker Mt that is hit by �.h.t//. By Lemma 4.9, Mt is hit by
all �.h.s// for all s sufficiently close to t . By compactness of V , there exists an
�–marker family J hit by h. By Theorem 12.1 there exists gW V ! EL.S/ such that g

hits J . Since both h and g hit J , the conclusion follows.

Lemma 14.3 Let S be a finite-type hyperbolic surface with dim.PML.S//D 2nC1.
Let V be the underlying space of a finite simplicial complex with dim.V / � n. For
i 2N , let �i > 0 and let hi W V !PML.S/ be generic PL maps. If for each z 2 EL.S/
there exists ız > 0 so that for i sufficiently large dPML.S/.hi.V /; �

�1.z// > ız , then
there exists g1;g2; : : : W V ! EL.S/ such that:

(i) For each i 2N and t 2 V; dPT.S/.gi.t/; �.hi.t/// < �i .

(ii) For each z 2 EL.S/, there exists a neighborhood Uz � EL.S/ of z such that
for i sufficiently large gi.V /\Uz D∅.

Proof For each z 2 EL.S/ there exists �.z/ > 0 and Uz � EL.S/ a neighborhood
of z such that if L 2 EL.S/ and x 2 PML.S/ such that dPT.S/.L; �.x// � �.z/=2
and dPML.S/.x; �

�1.z// > ız , then L 62Uz . To see this apply Lemma 5.2 to find �.z/
such that if y 2 PML.S/ and dPT.S/.�.y/; z

0/� � for some diagonal extension of z ,
then dPML.S/.y; �

�1.z// � ız . Finally let Uz � EL.S/ a neighborhood of z such
that if L 2 Uz , then L�NPT.S/.z

00; �.z/=2/ for some diagonal extension z00 of z .
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Since EL.S/ is separable and metrizable it is Lindelöf, hence there exists a countable
cover of EL.S/ of the form fUzj

g. By hypothesis for every j 2 N , there exists
nj 2 N such that i � nj implies dPML.S/.hi.V /; �

�1.zj // > ızj
. We can assume

that n1 < n2 < � � � . Let mi Dmaxfj j nj � ig. Note that mnk
D k .

For i 2 N apply Lemma 14.2 with hD hi and � D minf�.z1/=2; : : : ; �.zmi
/=2; �ig

to produce gi W V ! EL.S/ satisfying for all t 2 V , dPT.S/.gi.t/; �.hi.t/// < � . It
follows from the first paragraph that gi.V /\Uzj

D∅ provided that j �mi .

15 Good cellulations of PML.S /

The main result of this section, Proposition 15.6 produces a sequence of cellulations of
PML.S/ such that each cell is the polytope of a train track and face relations among
cells correspond to carrying among train tracks. Each cellulation is a subdivision of
the previous one; subdivision of cells corresponds to splitting of train tracks and every
train track eventually gets split arbitrarily much.

Definition 15.1 If � is a train track, then let V .�/ denote the set of measured lamina-
tions carried by � and P .�/ denote the polyhedron that is the quotient of V .�/ n 0,
by rescaling. A train track is generic if exactly three edges locally emanate from each
switch. All train tracks in this section are generic. We say that �2 is obtained from �1

by a single splitting if �2 is obtained by splitting without collision along a single large
branch of �1 . Also � 0 is a full splitting of � if it is the result of a sequence of single
splittings along each large branch of � .

Remark 15.2 By elementary linear algebra if �R and �L are the train tracks obtained
from � by a single splitting, then V .�R/D V .�/ or V .�L/D V .�/ or V .�R/, V .�L/

are obtained by slicing V .�/ along a codimension-1 plane through the origin.

Definition 15.3 We say that a finite set R.�/ of train tracks is descended from � ,
if there exists a sequence of sets of train tracks R1 D f�g;R2; : : : ;Rk DR.�/ such
that RiC1 is obtained from Ri by deleting one train track � 2 Ri and replacing it
either by the two train tracks resulting from a single splitting of � if P .�/ is split,
or one of the resulting tracks with polyhedron equal to P .�/ otherwise. Finally, if a
replacement track is not recurrent, then replace it by its maximal recurrent subtrack.

Remark 15.4 If R.�/ is descended from � , then P .�/D
S
�2R.�/ P .�/, each P .�/

is codimension-0 in P .�/ and any two distinct P .�/ have pairwise disjoint interiors.
Thus, any set of tracks descended from � gives rise to a subdivision of � ’s polyhedron.
A consequence of Proposition 15.6 is that after subdivision, the lower-dimensional
faces of the subdivided P .�/ are also polyhedra of train tracks.
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Definition 15.5 Let � be a cellulation of PML.S/ and T a finite set of birecurrent
generic train tracks. We say that T is associated to � if there exists a bijection
between elements of T and cells of � such that if � 2� corresponds to �� 2 T , then
P .�� /D � .

Proposition 15.6 Let S be a finite-type hyperbolic surface. There exists a sequence
of cellulations �0; �1; : : : of PML.S/ such that:

(i) Each �iC1 is a subdivision of �i .

(ii) Each �i is associated to a set Ti of generic train tracks.

(iii) If �j ; �k 2�i and �j is a face of �k , then ��j
is carried by ��k

; if �p 2�i ; �q 2

�j ; �p � �q; dim.�p/D dim.�q/ and i > j , then ��p
is obtained from ��q

by
finitely many single splittings and possibly deleting some branches.

(iv) There exists a subsequence �i0
D �0; �i1

; �i2
; : : : such that each complete

� 2 TiN
is obtained from a complete � 0 2 T0 by N full splittings.

Definition 15.7 A sequence of cellulations f�ig which satisfies the conclusions of
Proposition 15.6 is called a good cellulation sequence.

Proof Let T0 be the set of standard train tracks associated to a parametrized pants
decomposition of S . As detailed in [35], T0 gives rise to a cellulation �0 of PML.S/
such that each � 2�0 is the polyhedron of a track in T0 .

The idea of the proof is this. Suppose we have constructed �0; �1; : : : ; �i , and
T0;T1; : : :Ti satisfying conditions (i)–(iii). Since any full splitting of a train track
is the result of finitely many single splittings it suffices to construct �iC1 and TiC1

satisfying (i)–(iii) such that the complete tracks of TiC1 consist of the complete tracks
of Ti , except that a single complete track � of Ti is replaced by �R and/or �L . Let T 0i
denote this new set of complete tracks. The key technical Lemma 15.8 implies that
if � is a codimension-1 cell of �i with associated train track �� , then every element
of some set of train tracks descended from �� is carried by an element of T 0i . This
implies that � has been subdivided in a manner compatible with the subdivision of the
top-dimensional cell P .�/. Actually, we must be concerned with lower dimensional
cells too and new cells that result from any subdivision. Careful bookkeeping together
with repeated applications of Lemma 15.8 deals with this issue.

Lemma 15.8 Suppose that the train track � is carried by � . Let �R and �L be the
train tracks obtained from a single splitting of � along the large branch b . Then there
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exists a set R.�/ of train tracks descended from � such that for each �0 2R.�/, �0 is
carried by one of �R or �L .

If P .�/ D P .�R ) (resp. P .�L/), then each �0 is carried by the maximal recurrent
subtrack of �R (resp. �L ).

Proof Let N.�/ be a fibered neighborhood of � . Being carried by � , we can assume
that � � int.N.�// and is transverse to the ties. Let J � I denote ��1.b/ where
� W N.�/! � is the projection contracting each tie to a point. Here J D I D Œ0; 1�

and each J � t is a tie Let @s.J � i/, i 2 f0; 1g denote the singular point of N.�/

in J � i . The projection to the second factor hW J � Œ0; 1� ! Œ0; 1� gives a height
function on J � I .

We can assume that distinct switches of � inside of J � I occur at distinct heights and
no switch occurs at heights 0 or 1. Call a switch s a down (resp. up) switch if two
branches emanate from s that lie below (resp. above) s . A down (resp. up) switch is a
bottom (resp. top) switch if the branches emanating below (resp. above) s extend to
smooth arcs in � \J � I that intersect J � 0 n @s.J � 0/ (resp. J � 1 n @s.J � 1)) in
distinct components. Furthermore h.s/ is minimal (resp. maximal) with that property.
There is at most one top switch and one bottom switch. Let sT (resp. sB ) denote the
top (resp. bottom) switch if it exists.

We define the, possibly empty, b–core as the unique embedded arc in � \ J � I

transverse to the ties with endpoints in the top and bottom switches. We also require
that h.sB/ < h.sT /. Uniqueness follows since � has no bigons.

We now show that if the b–core is empty, then � is carried by one of �R or �L . To do
this it suffices to show that after normal isotopy, � has no switches in J �I . By normal
isotopy we mean isotopy of � within N.�/ through train tracks that are transverse
to the ties. It is routine to remove, via normal isotopy, the switches in J � I lying
above sT and those lying below sB . Thus all the switches can be normally isotoped
out of J � I if either sT or sB do not exist or h.sB/ > h.sT /. If sT exists, then
since the b–core D∅ all smooth arcs descending from sT hit only one component of
J �0n@s.J �0/. Use this fact to first normally isotope � to remove from J �I all the
switches lying on smooth arcs from sT to J � 0 and then to isotope sT out of J � I .

Now assume that the b–core exists. Let u1; : : : ;ur , d1; : : : ; ds be respectively the
up and down switches of � that lie on the core. For i 2 f1; : : : ; sg, let u.i/ be the
number of up switches in the b–core that lie above the down switch di . Define
C.�/D

Ps
iD1 u.i/. Define C.�/D 0 if the b–core is empty. Note that if C.�/D 1,

then r D s D 1 and u1 D sT and d1 D sB . Furthermore splitting � along the large
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branch between sT and sB gives rise to train tracks whose b–cores are empty and
hence are carried by one of �R or �S .

Assume by induction that the first part of the lemma holds for all train tracks � with
C.�/ < k . Let � be a train track with C.�/ D k . Let e be a large branch of �
lying in � ’s b–core. The two train tracks obtained by splitting along e have reduced
C –values. Therefore, the first part of the lemma follows by induction.

Now suppose P .�/DP .�R/. It follows that P .�L/�P .�R/, hence P .�L/DP .�C /,
where �C is the train track obtained by splitting � along b with collision. Therefore
if �0 is the result of finitely many simple splittings, and is carried by �L , then the
maximal recurrent subtrack of �0 is carried by �C and hence by the maximal recurrent
subtrack of �R .

Remark 15.9 (i) If each ui is to the left of the b–core and each dj is to the right
of the b–core, then if �R and �L are the train tracks resulting from a single splitting
along a large branch in the b–core, then C.�R/D C.�/� 1, while C.�L/D 0.

(ii) Any large branch of � that intersects the b–core is contained in the b–core. It
follows that if �0 is the result of finitely many single splittings of � , then C.�0/�C.�/.

Proof of Proposition 15.6 (continued) Now assume we have a sequence of cellu-
lations, .�0;T0/; : : : ; .�i ;Ti/, and associated train tracks that satisfy (i)–(iii) of the
proposition. Let � be a cell of �i with associated train track � . Since any full splitting
of a train track is the concatenation of splittings along large branches, to complete the
proof of the proposition, it suffices to prove the following claim.

Claim If �R and �L are the result of a single splitting of � , then there exists a cellu-
lation �iC1 with associated train tracks TiC1 extending the sequence and satisfying
(i)–(iii), so that � is replaced with the maximal recurrent subtracks of �R and/or �L
and if � 0 2 Ti is such that dim.P .� 0//� dim.P .�// and � 0 ¤ � , then � 0 2 TiC1 .

Proof by induction on dim.� / We will assume that each of P .�R/ and P .�L/ are
proper subcells of P .�/, for proof in the general case is similar. The claim is trivial
if dim.�/ D 0. Now assume that the claim is true if dim.�/ < k . Assuming that
dim.�/D k let �1; : : : ; �p , be the .k�1/–dimensional faces of � with corresponding
train tracks �1; : : : ; �p . By Lemma 15.8 there exist sets R.�1/; : : : ;R.�p/ descended
from the �i such that any train track in any of these sets is carried by one of �R and �L .

If R.�1/ ¤ f�1g, then there exists a single splitting of �1 into �1
1

and �2
1

such that
R.�1/ D R.�1

1
/[R.�2

1
/, where R.�i

1
/ is descended from �i

1
. (As usual, only one
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may be relevant and it might have branches deleted.) By induction there exists a
cellulation �1

i with associated T 1
i such that the sequence .�0;T0/; : : : ; .�i ;Ti/,

.�1
i ;T

1
i / satisfies (i)–(iii) and in the passage from Ti to T 1

i , P .�1/ is the only
polyhedron of dimension greater than or equal to k � 1 that gets subdivided and it is
replaced by P .�1

1
/ and P .�2

1
/. By repeatedly applying the induction hypothesis we

obtain the sequence .�0;T0/; : : : ; .�i ;Ti/; .�
1
i ;T

1
i /; : : : ; .�

p
i ;T

p
i / which satisfies

(i)–(iii) such that in the passage from �i to �
p
i , each �j is subdivided into the

polyhedra of R.�j / and no cells of dimension greater than or equal to k are subdivided
and their associated train tracks are unchanged. It follows that if �iC1 is obtained
by subdividing �p

i by replacing � by P .�R/, P .�L/ and P .�C / and TiC1 is the set
of associated train tracks, then .�1;T1/; : : : ; .�i ;Ti/; .�iC1;TiC1/ satisfies (i)–(iii)
and hence the induction step is completed.

This concludes the proof of Proposition 15.6.

Definition 15.10 If � is a cell of �i , then define the open star y� D
S

�2�i j���

int.�/.

Lemma 15.11 Let �1; �2; : : : be a good cellulation sequence.

(i) If � is a cell of �i , then �.�/\ EL.S/ is closed in EL.S/.
(ii) If LD �.x/ for some x 2 PML.S/, then for each i 2N there exists a unique

cell � 2�i such that ��1.L/� int.�/.

(iii) If U is an open set of PML.S/ which is the union of open cells of �i , then
�.U /\ EL.S/ is open in EL.S/.

(iv) If � is a cell of �i , then �.int.�//\ EL.S/ is open in �.�/\ EL.S/.
(v) If � 2 EL.S/ and ��1.�/ 2 int.�/, � a cell of �i , then there exists �.�/ > 0

such that B.�; �.�//D fx 2 PML.S/ j dPT.S/.�.x/; �/ < �.�/g � y� .

Proof Conclusion (i) follows from Corollary 2.15.

Conclusion (ii) follows from the fact that if � carries L, then ��1.L/� P .�/.

Conclusion (iii) follows from (i) and the fact that �.U /\�.PML.S/ nU /D∅.

Conclusion (iv) follows from (i) and the fact that �.int.�//\�.@�/D∅.

Let � be a cell of �i with associated train track � . If � carries �, then � \ � ¤ ∅
and hence by (ii) � is a face of � and hence int.�/� y� . If � does not carry �, then
by Lemma 2.17 B.�; �/\P .�/D ∅ for � sufficiently small. Since �i has finitely
many cells, the result follows.
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We have the following PML–approximation result for good cellulation sequences.

Proposition 15.12 Let �1; �2; : : : be a good cellulation sequence, K a finite sim-
plicial complex and gW K! EL.S/. Then for each i 2 N there exists a generic PL
map hi W K! PML.S/ such that for each t 2 K , there exists �i.t/ 2 �i such that
hi.t/[�

�1.g.t//� y�i.t/.

Proof Fix i2N . There exists a ı.i/>0 such that if �2�i , then NPML.S/.�; ı.i//�y� .
Any ı.i/ PML–approximation as in the second part of Lemma 14.1 satisfies the
conclusion of the proposition.

Lemma 15.13 If � D P .�/ is a cell of �i , � 0 is a face of � and � 2 �.� 0/\EL.S/,
then � fully carries a diagonal extension of �.

Proof Apply Lemma 5.8 and Proposition 15.6(iii).

Lemma 15.14 Let �1; �2; : : : be a good cellulation sequence. Given � > 0 there
exists N 2 N such that if i � N , L1 2 EL.S/, L2 2 L.S/ and L1;L2 are carried
by � for some � 2 Ti ; i �N , then dPT.S/.L1;L2/ < � .

Proof Apply Propositions 15.6 and 5.10.

Lemma 15.15 If � is a cell of �i , then y� is open in PML.S/ and contractible.
Indeed, it deformation retracts to int.�/.

Lemma 15.16 If � is a face of � , then y� � y� .

Definition 15.17 Define U.�/D �.y�/\ EL.S/.

Lemma 15.18 B D fU.�/ j �.int.�//\ EL.S/¤∅ and � 2�i for some i 2Ng is
a neighborhood basis of EL.S/.

Proof By Lemma 5.1 it suffices to show that for each �2EL.S/ and �>0, there exists
a neighborhood U.�/ of � such that z 2 U.�/ implies dPT.S/.z; �/ < � . Choose N

such that the conclusion of Lemma 15.14 holds. Let � be the simplex of �N such
that ��1.�/ � int.�/. If z 2 U.�/, then ��1.z/ 2 P .�/, where � is a face of � .
Therefore, z and � are carried by � and hence dPT.S/.�; z/ < � .

Remark 15.19 Lemma 15.18 shows that a good cellulation sequence gives rise to a
neighborhood basis for EL.S/. Good cellulation sequences generalize and strengthen
the good partition sequences of [17] which gave a neighborhood basis for EL.S0;5/.
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Lemma 15.20 Let U be an open cover of EL.S/. Then there exists a refinement U2

of U by elements of B , maximal with respect to inclusion, such that for each U.�2/2U2

there exists U 2 U and ı.U.�2// > 0 with the following property. If x 2 y�2 and
z 2 EL.S/ are such that dPT.S/.�.x/; z/ < ı.U.�2//, then z 2 U .

Proof It suffices to show that if �2 EL.S/ and U 2U , then there exists �2 and ı.�2/

such that the last sentence of the lemma holds. By Lemma 5.1 there exists ı1 > 0 such
that if z 2 EL.S/ and dPT.S/.z; �/ < ı1 , then z 2U . By Proposition 5.10 there exists
N1 > 0 and ı > 0 such that if � is obtained by fully splitting any one of the train tracks
associated to the top-dimensional cells of �1 at least N1 times, � is carried by � ,
L 2 L.S/ is carried by � , z 2 EL.S/ with dPT.S/.z;L/ < ı , then dPT.S/.z; �/ < ı1
and hence z 2U . Therefore, if � is the cell of �N1

such that int.�/ contains ��1.�/,
then let �2 D � and ı.U.�2//D ı .

16 Bounds on the dimension of EL.S /

In this section we give an upper bound for dim.EL.S// for any finite-type hyperbolic
surface S . When S is either a punctured sphere or torus we give lower bounds for
dim.EL.S//. For punctured spheres these bounds coincide. We conclude that if S is the
.nC 4/–punctured sphere, then dim.EL.S//D n, which generalizes [17, Lemma 3.2].

We use good cellulation sequences and the sum theorem of dimension theory to establish
the upper bounds. To compute the lower bounds we will show that �n.EL.S// ¤ 0

for S D S0;4Cn or S1;1Cn . Since EL.S/ is .n� 1/–connected and .n� 1/–locally
connected Lemma 16.5 applies.

To start with, EL.S/ is a Polish space and hence the covering dimension, inductive
dimension and cohomological dimension of EL.S/ all coincide; see Hurewicz and
Wallman [19]. By dimension we mean any of these equal values.

The next lemma is key to establishing the upper bound for dim.EL.S//. The proof
relies on a train track argument which generalizes that of Lemma 3.2 [17].

Lemma 16.1 Let S DSg;p , where p> 0 and let f�ig be a good cellulation sequence.
If � is a cell of �i and �.�/ \ EL.S/ ¤ ∅, then dim.�/ � n C 1 � g , where
dim.PML.S//D 2nC 1.

If S D Sg;0 and � is as above, then dim.�/� nC 2�g .

Proof We first consider the case p ¤ 0. By Proposition 15.6, � D P .�/ for some
generic train track � . A generic train track with e edges has 2e=3 switches, hence
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dim.V .�// � e � 2e=3 D e=3, eg see [35, page 116]. Since � carries an element
of EL.S/, all complementary regions are discs with at most one puncture. After
filling in the punctures, � has say f complementary regions all of which are discs,
thus 2� 2g D �.Sg/ D 2e=3� eC f and hence dim.V .�// � e=3 D f � 2C 2g .
Therefore, dim.P .�//D dim.V .�//�1� f �3C2g� p�3C2gD nC1�g , since
2nC 1D 6gC 2p� 7.

If p D 0, then f � 1 and hence the above argument shows that dim.P .�// D
dim.V .�//� 1� f � 3C 2g � 1� 3C 2g D nC 2�g .

Corollary 16.2 If S D Sg;p with p > 0 (resp. p D 0), then for each m 2 Z,
EL.S/D U.�1/[ � � � [U.�k/, where f�1; : : : ; �kg are the cells of �m of dimension
greater than or equal to nC 1�g (resp. greater than or equal to nC 2�g ).

Proposition 16.3 Let S D Sg;p . If p > 0 (resp. p D 0), then dim.EL.S// �
4gCp�4D nCg (resp. dim.EL.S//� 4g�5D nCg�1/, where dim.PML.S//D
2nC 1.

Proof To minimize notation we give the proof for the g D 0 case. The general case
follows similarly, after appropriately shifting dimensions and indices.

Let Er denote those elements � 2 EL.S/ such that �D �.x/ for some x in the r –
skeleton �r

i of some �i . We will show that for each r , dim.Er /�maxfr�.nC1/;�1g.
We use the convention that dim.X /D�1 if X D∅.

By Lemma 16.1 �r
i \ EL.S/ D ∅ for all i 2 N and r � n and hence En D ∅.

Now suppose by induction that for all k < m, dim.EnC1Ck/ � k . We will show
that dim.EnC1Cm/�m. Now we have EnC1Cm D

S
i2N �.�

nC1Cm
i /\EL.S/, each

�.�nC1Cm
i /\EL.S/ is closed in EL.S/ by Corollary 2.15 and EL.S/ is Polish, hence

to prove that dim.EnC1Cm/ � m it suffices to show by the sum theorem [19, Theo-
rem III 2] that dim.�.�nC1Cm

i /\ EL.S//�m for all i 2N .

Let X D�.�nC1Cm
i /\EL.S/. To show that the inductive dimension of X is less than

or equal to m it suffices to show that if U is open in X , � 2 U , then there exists V

open in X with � 2 V and @V � EnCm .

Let � 2 �j , for some j � i , such that � 2 U.�/ \ X � U . Such a � exists by
Lemma 15.18. Now y� D[ int.�u/, where the union is over all cells in �j having �
as a face. Since �nC1Cm

i � �nC1Cm
j it follows that after reindexing, U.�/\X �

�.int.�1/[ � � � [ int.�q//\ EL.S/, where �1; : : : ; �q are those �u , u 2 J , such that
dim.�u/� nCmC 1.

By Corollary 2.15 .
Sq

uD1
�.�u//\ EL.S/ is closed in EL.S/ and hence restricts to a

closed set in X . It follows that @.U.�/\X /� .
Sq

uD1
�.@�u//\ EL.S/� EnCm .
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Remark 16.4 In a future paper we will show that if S D Sg;p with p > 0 and g > 0,
then dim.EL.S//� nCg� 1.

To establish our lower bounds on dim.EL.S// we will use the following basic result
whose proof was communicated to the author by Alexander Dranishnikov.

Lemma 16.5 Let X be a separable metric space such that X is .n� 1/–connected
and .n� 1/–locally connected. If �n.X /¤ 0, then dim.X /� n.

Proof Let f W Sn ! X be an essential map. If dim.X / � n � 1, then by [19]
dim.f .Sn// � dim.X / and hence is at most n � 1. By Bothe [8] there exists a
compact, metric, absolute retract Y such dim.Y /� n and f .Sn/ embeds in Y . By
Hu [18, Theorem 10.1], since Y is metric and X is .n� 1/–connected and .n� 1/–
locally connected, the inclusion of f .Sn/ into X extends to a map gW Y !X . Now Y

is contractible since it is an absolute retract. (The cone of Y retracts to Y .) It follows
that f is homotopically trivial, which is a contradiction.

We need the following controlled homotopy lemma for PML–approximations that are
very close to a given map into EL.S/.

Lemma 16.6 Let K be a finite simplicial complex. Let gW K ! EL.S/. Let
U � PML.S/ be a neighborhood of ��1.g.K//. There exists ı > 0 such that if
f0; f1W K!PML.S/ and for every t 2K and i 2 f0; 1g, dPT.S/.�.fi.t//, g.t//< ı ,
then there exists a homotopy from f0 to f1 supported in U .

Proof Let �1; �2; : : : be a good cellulation sequence of PML.S/. Given x 2 EL.S/
and i 2N let � i

x denote the cell of �i such that ��1.x/� int.� i
x/. By Lemma 5.4,

given x 2 EL.S/ there exists a neighborhood Wx of x such that ��1.Wx/� y�
i
x \U .

Therefore, y 2Wx implies that y� i
y � y�

i
x .

Let U 0 be a neighborhood of ��1.g.K// such that xU 0 � U . By Lemma 15.18 and
Lemma 5.4, for i sufficiently large, ��1.U.� i

x// � U 0 . This implies that y� i
x � U ,

since FPML.S/ is dense in PML.S/. Let Ui D
S

x2g.K / y�
i
x . By compactness

of g.K/ and the previous paragraph it follows that for i sufficiently large Ui � U .
Fix such an i . Let †D f� 2�i j some � i

x is a face of �g.

There exists ı > 0 and a function W W g.K/!† such that if y 2PML.S/;x 2 g.K/

and dPT.S/.x; �.y// < ı , then y 2 st.W .x//. Furthermore, if dPT.S/.x1; �.y// < ı ,
: : :, dPT.S/.xu; �.y//<ı , then after reindexing the xi , W .x1/�� � ��W .xu/. Modulo
the epsilonics (to find ı ) which follow from Lemmas 5.3 and 5.2 (ie superconvergence),
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W is defined as follows. Define d W g.K/! N by d.x/ D dim.� i
x/. Let p be the

minimal value of d.g.K//. Define W .x/D� i
x if d.x/Dp . Next define W .x0/D� i

x if
dPT.S/.x;x

0/ is very small, where d.x/D p . To guarantee that the second sentence of
this paragraph holds, we require that if both dPT.S/.x1;x

0/ and dPT.S/.x2;x
0/ are very

small, then W .x1/DW .x2/. If W .x/ has not yet been defined and d.x/D pC 1,
then define W .x/ D � i

x . Next define W .x0/ D � i
x if W .x0/ has not already been

defined and dPT.S/.x;x
0/ is very very small, where d.x/D pC 1. Again we require

that if dPT.S/.x1;x
0/ and dPT.S/.x2;x

0/ are very very small, then after reindexing,
W .x1/�W .x2/. Inductively, continue to define W on all of g.K/. Since dim.�i/

is finite this process eventually terminates. Take ı to be the minimal value used to
define smallness.

Next subdivide K such that the following holds. For every simplex � of K , there
exists t 2 � such that for all s 2 � , dPT.S/.�.f0.s//, g.t// < ı and dPT.S/.�.f1.s//,
g.t// < ı . Thus by the previous paragraph, for each simplex � of K , f0.�/[f1.�/��W .g.t// for some t 2 � where t satisfies the above property. Let �.�/ denote the
maximal-dimensional simplex of † with these properties. Note that by the second
sentence of the previous paragraph, �.�/ is well defined and if �0 is a face of � , then
�.�/ is a face of �.�0/.

We now construct the homotopy F W K � I ! PML.S/ from f0 to f1 . Assume
that K has been subdivided as in the previous paragraph. If v is a vertex of K , then
both f0.v/; f1.v/ 2 y�.v/ which is contractible by Lemma 15.15. Thus F extends over
v � I such that F.v � I/ � y�.v/. Assume by induction that if � is a simplex of K

and dim.�/ <m, then F has been extended over �� I with F.�/� y�.�/. If � is an
m–simplex, then the contractibility of y�.�/ enables us to extend F over � � I , with
F.� � I/� y�.�/.

Theorem 16.7 If S D S0;4Cn or S1;1Cn , then �n.EL.S//¤ 0.

Proof Let S denote either S0;4Cn or S1;1Cn . In either case dim.PML.S//D 2nC1

and dim.C.S// D n, where C.S/ is the curve complex. By Harer [15] (see also
Ivanov [20], and Ivanov and Ji [21]) C.S/ is homotopy equivalent to a nontrivial wedge
of n–spheres. Thus, there exists a homologically essential map hW Sn! C.S/. We
can assume that h.Sn/ is a simplicial map with image a finite subcomplex L of the
n–skeleton of C.S/ and hence 0¤ Œh�.ŒS

n�/�2Hn.L/. We abuse notation by letting L

denote the image of L under the natural embedding, given in Definition 2.21. Let Z

be a simplicial n–cycle that represents Œh�.ŒSn�/� and involves a minimal number of
simplices. Let � be a n–simplex of L in the support of Z . Let f0W S

n!PML.S/nL
be a PL embedding which links � , ie there exists an extension F0W B

nC1!PML.S/
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of f0 such that F0 is transverse to L and intersects L at a single point in int.�/.
It follows that f0ŒS

n� has nontrivial linking number with Z and hence f0 is homo-
topically nontrivial as a map into PML.S/ nL. Next homotope f0 to a generic PL
map f 0 via a homotopy disjoint from C.S/. Let † denote a triangulation of Sn for
which f 0 is generic PL.

We next show f 0 extends to a map f W Sn�I!PMLEL.S/ such that f jSn�0Df 0 ,
f .Sn � Œ0; 1// � PML.S/ n L and f .Sn � 1/ � EL.S/. Being generic and PL,
f .†0/�FPML.S/. Extend f j†0�0 to †0�I by f .t; s/Df .t; 0/, where f .t; 1/
is viewed as an element of EL.S/. Now for some u � n, assume that f extends as
desired to †u�I[Sn�0. If � is a .uC1/–simplex of †, then f j��0[@��I maps
into PMLEL.S/ with f .@� � 1/� EL.S/ and the rest mapping into PML.S/ nL.
By Theorem 12.1 f extends to � �I such that f .� �1/� EL.S/ and f .� � Œ0; 1//�
PML.S/ nL. Our extension is constructed by induction.

We finally show if g D f jSn � 1, g is an essential map into EL.S/. Otherwise there
exists GW BnC1!EL.S/ extending g . Since L�C.S/, L\��1.G.BnC1//D∅. Let
F W BnC1!PML.S/ be a ı PML–approximation of G . It follows from Lemma 14.1
that for ı sufficiently small F.BnC1/ \ L D ∅. Now F jSn and f jSn � s are
respectively ı , ı0 PML–approximations of g , where ı0! 0 as s! 1. By choosing ı
sufficiently small and s sufficiently large, it follows from Lemma 16.6 that f jSn � s

and F jSn are homotopic via a homotopy supported in PML.S/nL. By concatenating
this homotopy with F and f jSn � Œ0; s�, we conclude that f 0 is homotopically trivial
via a homotopy supported in PML.S/ nL.

By Theorems 12.2 and 13.1, EL.S/ is .n� 1/–connected and .n� 1/–locally con-
nected. By Theorem 16.7, �n.EL.S//¤ 0 if g � 1. Therefore by Lemma 16.5 and
Proposition 16.3 we obtain the following.

Theorem 16.8 If S is the .nC 4/–punctured sphere, then dim.EL.S//D n.

Theorem 16.9 If S is the .nC 1/–punctured torus, nC 1� dim.EL.S//� n.

17 Nöbeling spaces

The n–dimensional Nöbeling space R2nC1
n is the space of points in R2nC1 with at

most n rational coordinates. The goal of the next two sections is to complete the proof
of the following theorem.

Theorem 17.1 If S is the .nC 4/–punctured sphere, then EL.S/ is homeomorphic
to the n–dimensional Nöbeling space.
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By Luo [28], C.S2;0/ is homeomorphic to C.S0;6/ and thus by Klarreich [24] EL.S2;0/

is homeomorphic to EL.S0;6/.

Corollary 17.2 If S is the closed surface of genus 2, then EL.S/ is homeomorphic
to the Nöbeling surface, ie the 2–dimensional Nöbeling space.

Remark 17.3 Using [13], Sebastian Hensel and Piotr Przytycki earlier proved that
the ending lamination space of the 5–times punctured sphere is homeomorphic to the
Nöbeling curve. They used Luo [28] and Klarreich [24] to show that EL.S1;2/ is also
homeomorphic to the Nöbeling curve.

In 2005, Ken Bromberg and Mladen Bestvina asked if ending lamination spaces are
Nöbeling spaces. Subsequently, Hensel and Przytycki [17] asked if dim.PML.S//D
2nC1, then EL.S/ is homeomorphic to R2nC1

n . Theorem 17.1 gives a positive answer
to their question for punctured spheres.

Remark 17.4 Historically, the m–dimensional Nöbeling space was called the uni-
versal Nöbeling space of dimension m and a Nöbeling space was one that is locally
homeomorphic to the universal Nöbeling space. In 2006, Ageev [1], Levin [27] and
Nagorko [33] independently showed that any two connected Nöbeling spaces of the
same dimension are homeomorphic. The 0– and 1–dimensional versions of that result
were respectively given by Alexandrov and Urysohn [3] in 1928 and Kawamura, Levin
and Tymchatyn [22] in 1997.

These spaces were named after Georg Nöbeling who showed in 1930 [34] that any m–
dimensional separable metric space embeds in an m–dimensional Nöbeling space. This
generalized a result by Nöbeling’s mentor, Karl Menger, who defined in 1926 [31] the
Menger compacta and showed that any 1–dimensional compact metric space embeds in
the Menger curve. A topological characterization of m–dimensional Menger compacta
was given in [5] by Mladen Bestvina in 1984.

The following equivalent form of the topological characterization of m–dimensional
Nöbeling spaces is due to Andrzej Nagorko.

Theorem 17.5 (Nagorko [17]) A topological space X is homeomorphic to the m–
dimensional Nöbeling space if and only if the following conditions hold:

(i) X is separable.

(ii) X supports a complete metric.

(iii) X is m–dimensional.
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(iv) X is .m� 1/–connected.

(v) X is .m� 1/–locally connected.

(vi) X satisfies the locally finite m–discs property.

Definition 17.6 [17] The space X satisfies the locally finite m–discs property if for
each open cover fUg of X and each sequence fi W B

m!X , there exists a sequence
gi W B

m!X such that:

(i) For each x 2X there exists a neighborhood U of x such that gi.B
m/\U D∅

for i sufficiently large.

(ii) For each t 2 Bm , there is a U 2 U such that fi.t/;gi.t/ 2 U .

Proof of Theorem 17.1 By Remark 2.6 EL.S/ is separable and supports a complete
metric. If SDS0;nC4 , then conditions (iii)–(v) of Theorem 17.5 for nDm respectively
follow from Theorems 16.8, 12.2 and 13.1.

To complete the proof of Theorem 17.1 it suffices to show that EL.S0;nC4/ satisfies
the locally finite n–discs property. This will be done in the next section.

18 The locally finite n–discs property

Proposition 18.1 If S is the .nC 4/–punctured sphere, then EL.S/ satisfies the
locally finite n–discs property.

Hensel and Przytcki proved the locally finite 1–discs property when S is the 5–times
punctured sphere by modifying the proof proposed by Andrzej Nagorko, given in [17],
of the well-known fact that R2nC1

n satisfies the locally finite n–discs property. Our
proof, which uses good cellulation sequences, general position and the retraction
Lemma 18.7, is also based on that proof. In particular we modify their notions of
participates and attracting grid.

From now on S will denote the .nC 4/–punctured sphere. Let U be an open cover
of EL.S/. Let U2 denote the refinement of U produced by Lemma 15.20 and let
�1; �2; : : : denote a good cellulation sequence.

Definition 18.2 We say that � 2�i participates in U2 if U.� 0/2U2 for some face � 0

of � .

Define
Ai D f� 2�k ; k � i j � participates in U2g

and define �i D PML.S/ n
S
�2Ai

y� .
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Remark 18.3 (i) By Lemmas 16.1 and 15.18 each cell of Ai has dimension greater
than or equal to nC 1.

(ii) Note that �i is obtained from �iC1 by attaching the cells of AiC1 nAi .

Definition 18.4 Call �i the i th approximate attracting grid and
1T

iD1

�i the attracting
grid.

Definition 18.5 Let Yi � PML.S/ n�i be a dual cell complex to Ai . Abstractly it
is a simplicial complex with vertices the elements of Ai and fv0; v1; : : : ; vkg span a
simplex if for all j , vj � @vjC1 .

Remark 18.6 Since dim.PML.S//D 2nC 1 and each cell of Ai has dimension at
least nC 1 it follows that dim.Yi/� n. This is the crucial fact underpinning the proof
of Proposition 18.1.

The next result follows by standard PL topology.

Lemma 18.7 For every a > 0 there exists N.�i/ a regular neighborhood of �i in
PML.S/ such that N.�i/�NPML.S/.�i ; a/. Furthermore, there exists a homeomor-
phism

qW @.N.�i//� Œ0; 1/! PML.S/ n .int.N.�i//[Yi/

such that qj@N.�i/� 0 is the canonical embedding and a retraction

�W PML.S/ nYi!N.�i/

that is the identity on N.�i/, quotients Œ0; 1/ fibers to points and has the following
additional property. If � 2Ai and x 2 int.�/ nYi , then �.x/ 2 int.�/.

Proof of Proposition 18.1 Let fi W B
n! EL.S/; i 2N be a sequence of continuous

maps. Being compact fi.B
n/ is covered by finitely many elements U.� i

i1
/; : : : ;U.� i

ik
/

of U2 and hence
��1.fi.B

n//� PML.S/ n�ni

for some ni 2 N . For each i 2 N choose an ni satisfying this condition so that
n1 < n2 < � � � .

Let �i Dminfı.U.�j // j �j 2Ani
g, where ı.U.�j // is as in Lemma 15.20.

Since we have that both �ni
and ��1.fi.B

n// are compact and disjoint it follows that
ai D dPML.S/.�ni

; ��1.fi.B
n/// > 0.
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Claim It suffices to show that for each i 2 N there exists hi W B
n ! PML.S/, a

generic PL map, such that for every t 2 Bn :

(i) dPML.S/.�ni
; hi.t// < 1= i .

(ii) hi.t/[�
�1.fi.t//� y�.t/ for some �.t/ 2Ani

.

Proof To start with condition (i) implies that for every z 2 EL.S/, there exists ız > 0

such that dPML.S/.hi.B
n/, ��1.z// > ız for i sufficiently large. This uses the fact

that for each z 2 EL.S/, ��1.z/ is compact and disjoint from �i for i sufficiently
large.

Now apply the EL–approximation Lemma 14.3 to the f�ig and fhig sequences to
obtain maps gi W B

n! EL.S/; i 2N such that:

(a) For every z 2 EL.S/ there exists Uz open in EL.S/ such that gi.B
n/\Uz D∅

for i sufficiently large.

(b) If t 2 Bn , then dPT.S/.gi.t/; �.hi.t/// < �i .

Conclusion (a) gives the local finiteness condition. By (ii) of the claim, if t 2Bn , then
both hi.t/ and ��1.fi.t// lie in the same y�.t/. Since �i < ı.U.�.t///, Lemma 15.20
implies that gi.t/ lies in some U 2 U where U.�.t//� U . To apply that lemma, let
x D hi.t/ and z D gi.t/.

We now show that there exist hi satisfying (i) and (ii) of the claim. Fix i > 0.
Let ai > 0 and �i > 0 be as above. Let a D minf1=2i; ai=2g. Using this a, let
�W PML.S/ nYni

!N.�ni
/ be the retraction given by Lemma 18.7.

By the PML–approximation Proposition 15.12, there exists h0i W B
n! PML.S/ such

that for each t 2 Bn , h0i.t/[ �
�1.fi.t// � y�.t/ for some cell �.t/ of �ni

. Since
dim.Bn/C dim.Yni

/� 2n< 2nC 1 we can assume that h0i.B
n/\Yni

D∅ and this
inclusion still holds. Let hi D � ı h0i perturbed slightly to be a generic PL map.

By construction �.h0i.B
n// � �.PML.S/ n Yni

/ � N.�ni
/ � NPML.S/.�ni

; a/ �

NPML.S/.�ni
; 1=2i/. Thus condition (i) of the claim holds for hi , if it is obtained by

a sufficiently small perturbation of � ı h0i .

By Lemma 18.7, � ı h0i.t/[�
�1.fi.t//� y�.t/. Thus condition (ii) holds for � ı h0i .

Since each y� is open, this condition holds for any sufficiently small perturbation of
� ı h0i and so it holds for hi . This completes the proof of Proposition 18.1 and hence
Theorem 17.1.
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After appropriately modifying dimensions, the proof of Proposition 18.1 generalizes to
a proof of the following.

Proposition 18.8 Let S D Sg;p . Then EL.S/ satisfies the locally finite k–discs
property for k �m, where mD n�g , if p¤ 0 and mD n� .g�1/, if pD 0.

19 Applications

By Klarreich [24] (see also [14]), the Gromov boundary @C.S/ of the curve com-
plex C.S/ is homeomorphic to EL.S/. We therefore obtain the following results.

Theorem 19.1 Let C.S/ be the curve complex of the surface S of genus g and
with p punctures. Then @C.S/ is .n� 1/–connected and .n� 1/–locally connected.
If g D 0, then @C.S/ is homeomorphic to the n–dimensional Nöbeling space. Here
nD 3gCp� 4. Also @C.S2;0/DR5

2
and @C.S1;2/DR3

1
.

Remark 19.2 The cases of S0;5 and S1;2 were first proved in [17].

Let S be a finite-type hyperbolic surface. Let DD.S/ denote the space of doubly
degenerate marked hyperbolic structures on S �R. These are the complete hyperbolic
structures with limit set all of S2

1 whose parabolic locus corresponds to the cusps
of S . It is topologized with the algebraic topology; see [26, Section 6] for more details.
As a consequence of many major results in hyperbolic 3–manifold geometry, Leininger
and Schleimer proved the following.

Theorem 19.3 [26] The space DD.S/ is homeomorphic to EL.S/ � EL.S/ n�,
where � is the diagonal.

Corollary 19.4 If S is the .nC 4/–punctured sphere, then DD.S/ is homeomorphic
to R2nC1

n �R2nC1
n n�. In particular DD.S/ is .n�1/–connected and .n�1/–locally

connected.

Proof The first and third assertions are immediate. To prove the second assertion
first observe RnC1

n � RnC1
n is .n � 1/–connected. By general position any map

f W Bn!RnC1
n �RnC1

n with f .Sn�1/\�D∅ can, as a map into R2nC1�R2nC1 ,
be homotoped rel Sn�1 to a map f1 disjoint from the diagonal of R2nC1 �R2nC1 .
Finally homotope f1 rel Sn�1 to one whose image lies in R2nC1

n �R2nC1
n n�.

The subspace of marked hyperbolic structures on S �R which have the geometrically
finite structure Y on the �1 relative end is known as the Bers slice BY . As in [26],
let @0BY .S/ denote the subspace of the Bers slice whose hyperbolic structures on
the 1 relative end are degenerate.
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Theorem 19.5 [26] The space @0BY .S/ is homeomorphic to EL.S/.

Corollary 19.6 If S is a hyperbolic surface of genus g and with p–punctures, then
@0BY .S/ is .n�1/–connected and .n�1/–locally connected. If gD0, then @0BY .S/

is homeomorphic to the n–dimensional Nöbeling space. Here nD 3gCp� 4.

Theorem 19.7 If S is a p–punctured sphere, p � 5, S2;0 or S1;2 , then there exists
a simple closed curve ˛ in EL.S/ such that ��1.˛/ contains no simple closed curve
that projects to ˛ under � .

Proof By the proof of Theorem 9.1 [13] there exists a 1–simplex � � PML.S/
such that �.�/D z1 2 EL.S/ and � D lim �i , where �i is a 1–simplex in PML.S/
consisting of those projective measured laminations supported on two particular disjoint
simple closed geodesics. By [13, Theorem 9.1] each �i is a limit of 1–simplices �i with
�.�i/ 2 EL.S/. Thus � D lim �i where each �i is a 1–simplex, �.�i/D zi 2 EL.S/,
z1; z2; : : : ; z1 are distinct and zi ! z1 . Let @� D x [ y and @�i D xi [ yi . We
can assume that xi ! x and yi ! y . By Masur [29], Veech [41] or Kerckhoff [23]
there exist disjoint sequences fpig, fqig of distinct points in PML.S/ such that for
all i , each of �.pi/ D ui and �.qi/ D vi are uniquely ergodic (ie ��1.ui/ D pi

and ��1.vi/D qi ) and pi ! x and qi ! y . Since EL.S/ is a Nöbeling space, we
readily find an embedded simple closed curve ˛ 2 EL.S/ which passes through the
points u1; z2; v3; z4;u5; z6; v7; z8;u9; z10; : : : ; z1 in a cyclic-order-preserving way.
Any simple closed curve in ��1.˛/ that projects to ˛ must pass through both x and y

which is a contradiction.
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