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Asymptotic behaviour and the Nahm transform of
doubly periodic instantons with square integrable curvature

TAKURO MOCHIZUKI

We study the asymptotic behaviour of doubly periodic instantons with square-
integrable curvature. Then we establish an equivalence given by the Nahm transform
between the doubly periodic instantons with square integrable curvature and wild
harmonic bundles on the dual torus. We also introduce algebraic Nahm transforms,
which describe the transformations of the underlying filtered objects.
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1 Introduction

Set T := C/L, where L is a lattice of C. The product 7" x C is equipped with
the standard metric dz dz + dw dw, where (z, w) is the standard local coordinate of
T x C. In this paper, we shall study L? instantons (E,V,h) on T x C, ie triples
where the curvature F(V) satisfies the equation A F(V) =0 and is L.

There is a natural decay condition around oo, the quadratic curvature decay, ie
|F(V)| = O(Jw|~2) with respect to /& and the Euclidean metric dz dz + dw dw.
M Jardim [24] studied the Nahm transform of some kinds of harmonic bundles with
tame singularities on the dual torus 7 to produce instantons on 7 x C satisfying
quadratic curvature decay. O Biquard and Jardim [8] studied the asymptotic behaviour
of such instantons with rank 2. Upon on those results, Jardim [26] constructed an
inverse transform, ie the Nahm transform of such instantons on 7" x C, to produce
some types of harmonic bundles with tame singularities on 7"V . See also Jardim [25;
27] and Ford and Pawlowski [16].

In this paper we aim to to generalise these results. Namely, we will study the asymptotic
behaviour of L? instantons and establish an equivalence between the L? instantons on
T x C and harmonic bundles with wild singularities on 7. We shall also introduce
algebraic counterparts of the transforms. They are useful for describing induced
transformations of the singular data.
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1.1 Asymptotic behaviour of L? instantons

1.1.1 The dimensional reduction of N Hitchin Briefly said, our goal in the study of
asymptotic behaviour of L? instantons is to show that they behave like wild harmonic
bundles around oo (see Section 1.1.3). As a preliminary, we recall the dimensional
reduction of N Hitchin [22; 23].

Let U be any open subset of C. Let (V, 51/) be a holomorphic vector bundle on U
with a Higgs field 6. Let /& be a Hermitian metric on V. We have the Chern connection
Vyn = Iy + dy,. We have the adjoint 0T of @ with respect to 4. The tuple
(V, 9y, h,0) is called a harmonic bundle if the Hitchin equation F (Vyn) +10, 611=0
is satisfied.

Let p: T x U — U be the projection. We have the expressions 6 = f dw and
0t = /Y dw, where f is a holomorphic endomorphism of V and fT is the adjoint
of f. We set (E,hg) := p*(V,h). Let Vg be the unitary connection given by
Ve =p*(Vyp) + fdz - fYdz. Then (E,hg,VE) is an instanton if and only if
(v, 51/, h, 0) is a harmonic bundle. Indeed, Hitchin discovered that the above procedure
gives an equivalence between harmonic bundles on U and 7—equivariant instantons
on T xU.

1.1.2 Examples and remarks We set U := {w € C | |[w| > R}. The dimensional
reduction allows us to construct easy examples of L? instantons on 7' x U . Let a be
any holomorphic function on U . We obtain a harmonic bundle £(a) as the tuple of
the trivial line bundle Oy e, the trivial metric /(e,e) = 1 and the Higgs field da. By
using the dimensional reduction above, we get an associated instanton on 7" x U . Its

curvature is 02,a dw dz + 0% a dz diw. In this case, the curvature is L? if and only if
it has quadratic decay.

We can obtain more examples by considering ramifications along co. We set U, :=
{neC ||n| > R'?}. We consider a harmonic bundle £(a), where a is a holomorphic
function on U;. Let ¢: U, — U be given by ¢(n) = n*. We obtain a harmonic
bundle ¢« L(a) of rank 2 on U by pushforward. It is easy to check that the associated
instanton is L2 if and only if n~2a(z) is holomorphic at co. In that case, the curvature
F satisfies the decay condition O(|w|™3/2). If a = an for « # 0, we have 0 < C; <
|F||w|*/? < C, for some constants C;.

More generally, for any positive integer p, we set U {P) := {wp eC | |wpy| > R'/PY. For
a covering ¢p: U r 5 yu given by ¢p(wp) = wl],’ and for a holomorphic function a
on U{P) we obtain a harmonic bundle ¢pxL(a) of rank p on U. The associated
instanton is L2 if and only if (p; (w)~'a is holomorphic at co. If a is polynomial

Geometry & Topology, Volume 18 (2014)



L? doubly periodic instantons 2825

in wp, then holomorphicity is described as a condition degw (a)/p < 1. In that case,
the curvature F satisfies O(Jw|~'~1/?)_ It is easy to construct an example satisfying
0<Cy <|F||lw|'*t1P < C, for some C; > 0.

Let (E §E 0, h) be a wild harmonic bundle on U, ie the (possibly multivalued)
eigenvalues of 6 are meromorphic at co. As the above examples suggest, the L2 and
quadratic decay conditions for the associated instanton can be described in terms of the
eigenvalues of 6. For simplicity, by shrinking U, we assume that the ramification of
the eigenvalues of 8 may happen at most along oo. If we take an appropriate covering
op: U {P) - U, we have a holomorphic decomposition

(1) oy(E.0)= P (Eaba)

acw, Clwp]

such that 6, —d a are tame, ie for the expression 6, —da = f, dw,/w), the eigenvalues
of f, are bounded. We set Irr(6) := {a | E; # 0}. Then by using results of the author
on the asymptotic behaviour of wild harmonic bundles [36], it is not difficult to prove
that the instanton associated to (E,dg, 0, k) is L? if and only if deg,,, (a)/p <1 for
any a € Irr(6). It moreover satisfies the quadratic decay condition if and only if the
harmonic bundle is unramified, ie it has a decomposition as in (1) on U.

The condition can also be described in terms of the spectral variety of 6. We have the
expression 0 = f dw. Let Sp(f) C C¢ x U denote the support of the cokernel of
§— f: Ocexu = Oc,xu - It induces a subvariety ®(Sp(f)), where ®: C¢ x U —
TV x U denotes the projection. Then the instanton associated to (E, g, 0, h) is L?
if and only if the closure of ®(Sp(f)) in T x U is a complex subvariety, where
U =U U{oo}.

1.1.3 Brief description of the asymptotic behaviour of the L? instantons Let
(E,V.,h) bean L? instantonon T x U. Let (E, dg) denote the underlying holomor-
phic vector bundle on 7'xU . By using a theorem of Uhlenbeck, we obtain F(V) =0(1).
This implies that the restrictions (E, 5E)|Tx{w} are semistable of degree 0 if |w| is
sufficiently large. Hence, the relative Fourier—Mukai transform of (E,dg) gives an
Orvxy—module whose support Sp(FE) is finite and flat over U . Our first important
result is the following.

Theorem 5.10 Sp(E) extends to a complex analytic subvariety Sp(E) in T x U .
We shall use an effective control of the spectrum of semistable bundles of degree 0 in

terms of the eigenvalues of the monodromy transformations of unitary connections with
the small curvature (Corollary 4.10). If we fix an embedding Sym™* £ (TV) c PV,
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the spectrum induces a holomorphic map from U to PV, which we can regard as a
harmonic map. We will observe that the energy of the harmonic map is dominated by
the L2 norm of the curvature of the instanton. Then we obtain the desired extendability
of the spectral curve from the regularity theorem of J Sacks and K Uhlenbeck [42] for
harmonic maps with finite energy.

Let 7: T x U — U denote the projection. We fix a lift of Sp(E) to :S‘;(E) cCxU.
Then we obtain a holomorphic vector bundle V' on U with an endomorphism g, with
a C* jsomorphism 7*V ~ E such that 7*dy + g dZ = dg and Sp(g) = :S;(E).
By the identification £ = 7*V', we obtain a T—action on E .

We set gﬁoo(E) = (C x {o0}) N :S;(E). We have a decomposition (V, g) =
@aeg}; (E)(Va,ga) such that the eigenvalues of g (w) go to @ when w — oo.
We have a corresponding decomposition £ = P, $pou(E) E,.

The Hermitian metric /2 of E is decomposed into the sum 2 = hy g, Where hq g are
the sesquilinear pairings of Eq and Eg. By using a Fourier expansion, we decompose
hy,p into a T—invariant part and its complement. Let /° denote the 7—invariant part
of 3" hg.o. We shall prove that the complement 41 := 1 — h° and its derivatives have
exponential decay.

Theorem 5.11 For any polynomial P(a,b,c,d) of noncommutative variables, there
exists C > 0 such that

2) P(V3, Vz, Vi, Vig)ht = O(exp(—C|w))).

We have a Hermitian metric 4 on V induced by A°. As a result, (V, 9y, hy, g dw)
satisfies the Hitchin equation up to an exponentially small term (Proposition 5.13). Such
atuple (V, 9y, hy, g dw) can be studied as in the case of wild harmonic bundles [36]
with minor modifications. (See Section 5.5.) Thus, we will arrive at a satisfactory
stage of understanding of the asymptotic behaviour of L? instantons. We state some
significant consequences.

Theorem 5.14 There exists p > 0 such that

3) F(V):O( dzdz )+0( dw dw )

[w]?(—log [w])? [w]?(—log [w])?

dwdz dz dw
* 0(|w|1+p) * 0(|w|l+p)'

In particular, F(V) = O(|lw|~!=P) for some p > 0 with respect to h and the Euclidean
metric dw dw +dz dz.
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The estimate (3) implies that (E, d g, &) is acceptable, ie F(V) is bounded with respect
to h and the Poincaré-like metric |w|™2(log |w|?) " 2dw dw + dzdz on T x U. By
applying a general result in [36], we obtain the following prolongation result.

Corollary 5.16 The holomorphic bundle (E,d E) extends naturally to a filtered bundle
P«E on (T xU, T x {o0}).

Here the filtered bundle Px E on (T x U, T x {oc}) is an increasing sequence (P, E |
a € R) of locally free Oy, ;—modules such that:

(1) Pa(E)|T><U =E.

(i) Pa(E)/P<a(E) are locally free O ooy —modules, where P<a E= ) Py E.
(iii)) Pg(E) = Pa+e(E) for some € > 0. b=a
V) Pat1(E) = Pa(E) ® Op, (T x {o0}).

The sheaf P, E is obtained as the space of holomorphic sections of £ whose norms
with respect to 4 have growth order O(|w|%™€) for any € > 0.

The filtered bundle is useful in the study of the instanton. For example, it turns out that
# fo(C Tr(F(h)?) is equal to foIP’l c2 (P4 E) for any a € R, where ¢, denotes the
second Chern class (Proposition 6.6). In particular, the number # fo(C Tr(F(h)?) is
an integer. (See Wehrheim [50] for this kind of integrality in a more general situation.!)

We can also use this filtered bundle to characterise the metric, ie the uniqueness part of
the so-called Kobayashi—Hitchin correspondence. The stability condition for this type
of filtered bundles is defined in Section 2.4.4 as in [8]. (Note that it is not a standard
(slope-)stability condition for filtered bundles.)

Proposition 1.1 (Propositions 6.4 and 6.5) The associated filtered bundle Py E is
polystable of degree 0. The metric h is uniquely determined as a Hermitian—Einstein
metric of (E,0f) adapted to P« E , up to obvious ambiguity. (See Section 6.1.3 for
uniqueness.)

We observe that we need only a weaker assumption on the curvature decay if we assume
the prolongation of the spectral curve.

Theorem 5.17 Suppose that F(V) — 0 when |w| — oo and that the spectral curve
Sp(E) extends to a complex subvariety of T x U. Then (E,V,h) is an L? instanton.

More precisely, we can directly prove the claims of Theorems 5.11 and 5.14 under the
assumption without considering the L? condition.

I'The author was informed of this by the referee.
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1.1.4 Some remarks In [8], Jardim and Biquard showed that an instanton of rank 2
with quadratic decay is an exponentially small perturbation of a tuple (V, Ay, gdw, hy)
which satisfies the Hitchin equation up to an exponentially small term. Our result could
be regarded as a generalization of theirs. However, the methods are rather different. To
obtain a decomposition into a 7T—invariant part and its complement, they started with
the construction of a global frame satisfying a nice property, which is an analogue of
the Coulomb gauge of Uhlenbeck. Their method seems to require a stronger decay
condition than L?, for example the quadratic decay condition. We use a more natural
decomposition induced by a standard method of the Fourier—Mukai transform in
complex geometry, which allows us to consider L? instantons once we deal with the
issue of the prolongation of the spectral curve. (See also Charbonneau [12] for some
discussion on the relation between the L? property and the quadratic decay property
of doubly periodic instantons.)

As mentioned above, we shall establish that an L? instanton is an exponentially
small perturbation of (V, 9y . hy, 0y) which satisfies the Hitchin equation up to an
exponentially small term. Interestingly to the author, we can obtain a more refined
result. Namely, we can naturally construct a harmonic metric h/V on (V,dy, g dw)
defined on a neighbourhood of oo from the L? instanton. It is an analogue of the
reductions from wild harmonic bundles to tame harmonic bundles studied in [36]. We
consider a kind of meromorphic prolongation of the holomorphic vector bundle on
the twistor space associated to 7" x C and encounter a kind of infinite-dimensional
Stokes phenomenon. By taking the graduation with respect to the Stokes structure, we
obtain a wild harmonic bundle. Similarly, in this paper, we consider only the product
holomorphic structure of 7" x C. From the viewpoint of twistor theory, the holomorphic
vector bundle with respect to the other holomorphic structures should also be studied.
The prolongation of the twistor family of the holomorphic structure is related to the
above construction of harmonic metrics. The author hopes to return to this deeper
aspect of the study elsewhere.

Although we do not use it explicitly, we prefer to regard an instanton on 7" x U as an
infinite-dimensional harmonic bundle on U, which is suggested by Hitchin’s reduction.
This heuristic is useful in our study of the asymptotic behaviour of L? instantons.
From this viewpoint, Theorems 5.11 and 5.17 can be naturally regarded as a variant of
Simpson’s main estimate [45]. (See also the author’s [35; 36].)

1.2 Nahm transforms for wild harmonic bundles and L? instantons

1.2.1 Nahm transforms and algebraic Nahm transforms As an application of
the study of the asymptotic behaviour, we shall establish the equivalence between
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L? instantons on 7 x C and wild harmonic bundles on TV given by the Nahm
transforms, which is a differential geometric variant of the Fourier—Mukai transform.
(See Bartocci, Bruzzo and Herndndez Ruipérez [5] and [27] for the long history of
various versions of the Nahm transforms. See also Braam and Baal [11], Donaldson [13],
Hitchin [21], Nakajima [38], Schenk [43] and Szabd [48].)

Once we understand the asymptotic behaviour of an L? instanton (E,V,h), we
can prove the desired property of the associated cohomology groups and harmonic
sections. Then the standard L? method allows us to construct the Nahm transform
Nahm(E, V, i), which is a wild harmonic bundle on (7T, Sp,(E)) (see Section 6.4).
Conversely, we may construct the Nahm transform of any wild harmonic bundle
(£,03¢,0,he) on (TV, D) to L? instantons Nahm(E, d¢, 0, he) on T x C, by using
the result on wild harmonic bundles on curves (see [36], Sabbah [40] and Zucker [51]),
although we need some estimates to establish the L? property (see Section 7.1).

To study their more detailed properties, we introduce the algebraic Nahm transforms
for filtered Higgs bundles on (7, D) and filtered bundles on (7T x C, T x {o0}),
which do not necessarily come from wild harmonic bundles or L? instantons. The
constructions are based on the Higgs interpretation of the Nahm transforms. It could
be regarded as a filtered version of the Fourier transform for Higgs bundles studied in
Bonsdorff [10], although we restrict ourselves to the case where the base space is an
elliptic curve.

As mentioned in Section 1.1.3, we obtain the filtered bundle Px E on (T xP!, T x{oo})
associated to any L? instanton (E,V,h), and the metric /4 is determined by Py E
essentially uniquely. We have the good filtered Higgs bundle (P«&,6) on (TV, D)
associated to any wild harmonic bundle (&, 55, 0, he), and the metric h¢ is determined
by (P«&,0) essentially uniquely; see Biquard and Boalch [7] and [36]. So, it is
significant to describe the induced transformation between the underlying filtered
bundles on 7 x P! and the underlying good filtered Higgs bundles on (7Y, D) that is
given by the algebraic Nahm transforms. They allow us to describe how the singular
data are transformed. We may also use them to prove that the Nahm transforms are
mutually inverse.

1.2.2 Algebraic Nahm transform for filtered Higgs bundles Let us briefly explain
how the algebraic Nahm transform is constructed for filtered Higgs bundles (P«&, 6)
on (T, D). (The details will be given in Section 3 after the preliminaries in Section 2.)
We should impose several conditions on the filtered Higgs bundles.

Goodness and admissibility One of the conditions is the compatibility of the filtered
bundle P.E€ and the Higgs field € at each P € D. Suppose that the filtered Higgs
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bundle (P«&,0) comes from a good wild harmonic bundle. Let Up be a small
neighbourhood of P with a coordinate {p with {p(P) = 0. If we take a ramified
covering ¢p: Up — Up given by ¢,(u) = u? = {p for an appropriate p, then we
have a decomposition

on(PE.0)= P (P«£,.06)).

acu—1C[u—1]

Here, 6] — da are logarithmic in the sense that (6, — a)P,E. C P& du/u. Such a
filtered Higgs bundle is called good. This kind of filtered Higgs bundle is also closely
related to L? instantons.

But it seems more natural to consider a wider class of filtered Higgs bundles for our
algebraic Nahm transform. For (p,m) € Z- X Z>¢ with ged(p,m) = 1, we say
that a filtered Higgs bundle has type (p,m) at P if u go*@ gives a morphism of
filtered bundles ¢, P«E — ¢, P« du/u on Up and, if (p, m) # (1, 0), the morphism
is an isomorphism. We say that (P«&,0) is adm1551ble at P if it is a direct sum
DPEp (p.m) 0p (p.m) ) of the filtered bundles of type (p, m), after Up is shrunk appro-
priately. We say that its slope is smaller (resp. strictly smaller) than « if £p (p-m) —
form/p > o (resp. m/p = a).

Each (P«&p (p.m) 9(p m)) has a refined decomposition as we will explain in Section 2.3.1.
In pamcular (P«&p £0.0 9(1 0)) has a decomposition

(e . 057) = P (Puy 2. 05.7).

aeC

Here, for the expression 9(1 0 fa(1 0 g tp/Cp, the eigenvalues of fa go to o
when {p — 0. On Up, we set

@ COPEOr= D PorjrmpEd™ P Po1)2E8Y BPoESY.

(p,m)#(1,0) a#0
(5) CI(P*&G)P: ( @ 7)1/ S(ps )@®P 12 5(1 0))
(p.m)#(1,0) a#0

® (P15 @ Q' + 05 PoESy)).

Here, (77<18(1 -0) R Q! + 9(1 0)7308(1 0)) is the sum taken in 7318(1 -0) ® Q. The
Higgs field 6 gives a morphlsm CO(P*S 0)p — CL(P«E,0)p. Thus we obtain a
complex C*(P+E,0) on Up, which is an extension of §: £ - £ Q! on Up \ P.

We say that (P&, 0) on (T, D) is admissible if its restriction to a neighbourhood of
each P € D is admissible. By considering the extension at each P € D, we obtain a
complex C*(P+E,0) on TV as an extension of £ > E® Q! on TV \ D.
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Vanishing conditions on some cohomology groups For each w € C and each holo-
morphic line bundle L of degree 0 on TV, we obtain a complex C;}, 1 (P«£.,0) =
C*(P«EQ®L,O+wdl). To consider the algebraic Nahm transform for (P&, 0), it is
natural to impose the following vanishing condition:

(AO) HY(TV, Cy 1 (P«£,0)) =0 unless i =1 forany w € C and any holomorphic
line bundle L of degree 0 on TV.

For I C {1,2,3}, let p; denote the projection of TV x T x P! onto the product of
the i™ components (i € I). Let Poin denote the Poincaré bundle on TV x T'. We
consider the following complex on 7V x T x P1:

9+wd§‘

It turns out that N (P«&, 0) := R1p23*C' is a locally free O, p1—module on 7' x P!,
In particular, we obtain a locally free O, p1(*(7T X {oo}))—module

Nahm(P4E, 0) := N (P+E,0) ® Op,p1 (+(T x {o0})).

Filtered bundles on (7 x U, T x {oo}) The algebraic Nahm transform of (P«&, 6)
is defined to be a filtered bundle over the meromorphic bundle Nahm (P&, 6). For the
construction of such a filtration, it would be convenient to have a description of any
filtered bundle Py E on (T x U, T x {oo}) satisfying the following condition, where U
denotes a neighbourhood of oo in P!.

(A1) GrzJ (E) are semistable bundles of degree 0 on T for any ¢ € R.

By shrinking U, we may assume that P¢(E) 1 xy) are semistable of degree 0 for
any w € U and for any ¢ € R. We set Sp,(E) := Sp(Pc E|Tx{o0}) C T, which
is independent of ¢ € R. We fix a lift :S';oo(E) C C of Sp(E), ie :ST/poo(E) is
mapped bijectively to Sp,(E) by the projection C — 7"V. Then we have a filtered
bundle PxV on (U, o) with an endomorphism g such that Sp(g|ec) = :S‘; oo(E)
correspondmg to P« E . Namely, we have a C* isomorphism Py E >~ 7*P,V , under
which 379* E=T *(87;* v) + gdz, where m: T x U — U denotes the projection.
The filtered bundle with an endomorphism (P«V, g), or equivalently the filtered
Higgs bundle (P« V, g dw), completely determines Px E. We have the decomposition
(P+V. &) = Byedp.. () (P Va: ga) With Sp(gajoo) = {a}. The filtered bundle Py E
satisfying (A1) is called admissible if the following holds:

(A2) The filtered Higgs bundles (P« Vy, (go — @) dw) are admissible for any
o€ Spo(E).

The slope of (P« Vy, (2o — @) dw) is strictly smaller than 1 by construction.
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Local algebraic Nahm transform and algebraic Nahm transform The local alge-
braic Nahm transform A%% is a transform from the germs of admissible filtered Higgs
bundles to the germs of admissible filtered Higgs bundles whose slopes are strictly
smaller than 1. It is an analogue of the local Fourier transform §%° for meromorphic
flat bundles on P! in Bloch and Esnault [9] and Garcia Lépez [19]. See also Arinkin [3],
Beilison, Bloch, Deligne and Esnault [6], Fang [15], Fu [17], Graham-Squire [20]
and Sabbah [41]. (More precisely, it is an analogue of the local Fourier transform of
the minimal extension of meromorphic flat bundles.) It gives a procedure to make an
admissible filtered bundle P« Ep on (T x U, T x {oo}) such that Sp,,(Ep) = { P},
from an admissible filtered Higgs bundle (P«&, 0)y, on (Up, P). From the local
Nahm transform @ p.p, P« Ep and the meromorphic bundle Nahm(Px&, 0), we ob-
tain a filtered bundle on (7 x P!, T x {oo}), denoted by Nahmy (Px&, ), that is the
algebraic Nahm transform for admissible filtered Higgs bundles.

1.2.3 Algebraic Nahm transform for admissible filtered bundles Let P, E be an
admissible filtered bundle on (7 x P!, T x {oo}). To define the algebraic Nahm
transform of Py« E, we impose the following vanishing condition.

(A3) HYT xP',PyE® L) =0 and H*(T xP!,P._E ® L) = 0 for any
holomorphic line bundle L of degree 0 on 7.

We set D := Spy,(E). It is easy to observe that condition (A3) implies that H' (T x
PLP.E®LY)=0 (i #1) forany ¢ € R unless L € D. Forany I C {1,2,3},
let p; denote the projection of 7V x T x P! onto the product of the i™ components
(i € I). We define
(6) Nahm(PyE) := R' p14(p},Poin” ® p33;PoE)(*D)

~ Rlpl*(pi"zpoinv & p;377_1E)(*D).
It is a locally free Orv (* D)—module. The multiplication of —w d{ gives a Higgs
field 6 of Nahm(Px E). Thus, we obtain a meromorphic Higgs bundle on (7Y, D).

Let U be a small neighbourhood of co in P'. On T x U, we have a decomposition
P*E|T><U = EBPGD P«Ep with Sp(Ep) = {P}. We fix a lift D C C. We have
the corresponding filtered bundles (P« Vp, gp). We have the decomposition

(P«Vp.gp—P) = EB(P* Vlgp,m)’ g}p,m))’

where (P V,S"”"), gg,p’m) dw) has slope (p,m) with m/p <1, and P e D is alift
of P. Moreover, we have the decomposition

(P 25”) = D (PV5s” £5))-

aeC
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It turns out that we have a decomposition of the meromorphic bundle

Nahm(P* E) |Up

=Nahm(P,E)5 ) & D) Nahm(PL E)p P @ €D Nahm(PLE){¥™.
aFC (p.m)#(1,0)

and we also have that Nahm(P*E)(1 :0) (¢ # 0) and Nahm(P*E)gf”m) ((p,m) #
(1,0)) are determined by

(PVpa gpy)) and (PuVEl™ &™),

We have the local algebraic Nahm transform A**-°, which is a transform of admis-
sible Higgs bundles (P.«V,8) such that the slopes are strictly smaller than 0 and
Py Vo(l’o) = 0. It is an analogue of the local Fourier transform §°°% in [9; 19]. It is an
inverse of A/%> except for the part (p,m) = (1,0) and a = 0. We may introduce
filtrations of Nahm(PxE)$’Y (e # 0) and Nahm(Px E)"™ ((p.m) # (1,0)) by
using the local algebraic Nahm transform A%-%. As for the part with (p,m) = (1,0)
and o = 0, we have an injection

P0V1§10(|)) C Rlpl*(szpoinV & P;3P—1E)§’l,b()l)P’

by which we can introduce a filtration on Nahm(Py E )g,l’(?). Therefore, we obtain a
filtered Higgs bundle denoted by Nahmy (P4 E). We obtain the following correspon-
dence.

Theorem 1.2 (Propositions 3.13, 3.22 and 3.25) The Nahm transforms Nahm, give
an equivalence of the following objects, and they are mutually inverse:

e Admissible filtered Higgs bundles on (T, D) satisfying condition (A0).

 Admissible filtered bundles P+ E on (T x P!, T x {oo}) with Spo(E) =
satisfying condition (A3).

Nahm transforms also preserve the parabolic degrees (Proposition 3.17).

As already mentioned, the filtered Higgs bundles associated to wild harmonic bundles
satisfy a stronger condition called goodness. Similarly, it turns out that the filtered
bundles associated to L? instantons are also good, in the sense that the corresponding
filtered Higgs bundles are good. We can observe that the algebraic Nahm transforms
preserve the goodness conditions.
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Theorem 3.27 The Nahm transforms Nahm, give an equivalence of the following
objects:

* Good filtered Higgs bundles on (T, D) satistying condition (A0).

* Good filtered bundles P« E on (T xP!, T x{oo}) with Sp.,(E) = D satisfying
condition (A3).

1.2.4 Application of the algebraic Nahm transform We have the following com-
patibility of the Nahm transform and the algebraic Nahm transform.

Theorem 1.3 (Theorems 7.12 and 7.13) e Let (E,V,h) bean L? instanton on
T x C. Let P+ E be the associated filtered bundle on (T x P!, T x {oo}). Then
the associated filtered Higgs bundle of the wild harmonic bundle Nahm(E, V, h)
on (TV,8ps(E)) is naturally isomorphic to the algebraic Nahm transform
Nahm(P«E).

o Let (5,55, 6, he) be a wild harmonic bundle on (T, D). Let (P«&,0) be the
associated good filtered Higgs bundle on (T, D). Then the associated filtered
bundle of the L? instanton Nahm(E, d¢, he, 0) is naturally isomorphic to the
algebraic Nahm transform Nahm(P.&, 0). ad

As an application, we obtain the inversion property of the Nahm transforms.

Corollary 7.14 For an L? instanton (E,V,h) on T x C, we have an isomorphism
Nahm(Nahm(E, V, h)) ~ (E, V, h).
For a wild harmonic bundle (€,9¢, 6, hg) on (T, D), we have an isomorphism

Nahm(Nahm(E, 9¢, 6, he)) ~ (£, d¢. 0, he).

Indeed, it follows from Theorem 1.3 and the uniqueness of the Hermitian—Einstein
metric (resp. the harmonic metric) adapted to the filtered bundle (resp. filtered Higgs
bundle).

As another application of the compatibility, we can easily compute the characteris-
tic classes of the bundles obtained by the algebraic Nahm transform, which allows
us to describe the rank and the second Chern class of the bundle obtained by the
Nahm transform. The local algebraic Nahm transform also gives us a rather complete
understanding of the transformation of singularity data by the Nahm transform.
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1.2.5 Some remarks Recall that the hyperkéhler manifold 7" x C has twistor defor-
mations. Namely, for any complex number A, we have a moduli space M?* of line
bundles of degree 0 with a flat A—connection on 7V. We have M° = T x C. The
spaces M?* can also be regarded as the deformation associated to the hyperkihler
structure of 7' x C. An instanton on 7' x C naturally induces a holomorphic vector
bundle. If the instanton is L2, the holomorphic bundle with the metric induces a filtered
bundle on (/W)‘, To)‘o), where M is a natural compactification of M* and T Cf‘o ~T is
the infinity. A wild harmonic bundle has the underlying good filtered A—flat bundle for
each complex number A. It is also natural to study the transformation of the underlying
filtered bundles on (M*, Tg‘o) and the underlying filtered A—flat bundles. It should be
a filtered enhancement of the generalised Fourier—Mukai transform for elliptic curves
due to G Laumon and M Rothstein. We would like to study this interesting aspect
elsewhere.

If we consider a counterpart of the algebraic Nahm transform for the other nonproduct
holomorphic structure of 7" x C underlying the hyperkihler structure, it is essentially
a filtered version of the generalised Fourier—Mukai transform in Laumon [29] and
Rothstein [39]. Interestingly to the author, we have an analogue of the stationary phase
formula even in this case. The details will be given elsewhere.

In this paper, we consider transforms between filtered bundles on 7 x P! and filtered
Higgs bundles on 7. We may introduce similar transforms for filtered Higgs bundles
on P! with additional work on the local Nahm transform N> which is an analogue
of the local Fourier transform §°°°°. It should be the Higgs counterpart of the Nahm
transforms between wild harmonic bundles on P!, which is given by the procedure for
wild pure twistor D—modules established in [36].

Similarly, Szab6 [48] studied the Nahm transform for an interesting type of harmonic
bundles on P! . He also studied the transform of the underlying parabolic Higgs bundles,
which looks closely related to the regular version of ours in Section 3.2. K Aker and
Szabé [2] introduced a transformation of more general parabolic Higgs bundles on P!,
which they call the algebraic Nahm transform. Their method to define the transform is
different from ours, and the precise relation between them is not clear at this moment.

1.3 Outline of the paper

This paper is roughly divided into three parts: Sections 2-3, 4-5 and 6-7. In the first
part, we introduce algebraic Nahm transforms and study their basic properties. In the
second part, we study the asymptotic behaviour of L? instantons on the product of
a torus T and a region {w | |[w| > R}. Then in the third part, we study the Nahm
transforms between L2 instantons on 7' x C and wild harmonic bundles on the dual
torus 7.
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2 Preliminaries on filtered objects

2.1 Semistable bundles of degree 0 on elliptic curves

2.1.1 Elliptic curve and the Fourier-Mukai transform For a variable z, let C,
denote a complex line with the standard coordinate z. For a C—vector space V' and a
C*° manifold X, let Vx denote the product bundle V' x X over X . If X is a complex
manifold, the natural holomorphic structure of ¥V yx is denoted just by a.

We have a real bilinear map C, x C; — R given by (z,{) Im(zZ). Let T =
71 + v/ =112 (r; € R) be a complex number such that 7, # 0. Let L:=7Z+ Zt C C,.
In this paper, the dual lattice LY means

LY:={{eCy|Im(x) e nZ forall x € L} = {Z(n+m7) | n,m e L}.

We have the elliptic curves 7' :=C,/L and TV :=C¢/L".
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For any v € LY, we have p, € C®(T) given by py(z) := exp(2+/—11Im(v2)) =
exp(vz —vz). We have d,p, = pyvdz and 9,0, = —p,V dz.

We can naturally regard 7 as the moduli space Pico(7") of holomorphic line bundles
of degree 0 on T'. Indeed, ¢ gives a holomorphic bundle £; = (Cr,d+¢d?). It
induces an isomorphism 7" =~ Pico(7). We have the isomorphism ®: L; ~ L¢4,,
given by ®(f) = p—v- /.

We have the unitary flat connection associated to £ with the trivial metric, d — Cdz+
¢ dz. The monodromy along the segment from 0 to y € L is exp(2+/—11Im({Y)).

We recall a differential-geometric construction of the Poincaré bundle on 7" x TV,
following Donaldson and Kronheimer [14]. On 7" x C¢, we have the holomorphic line
bundle

Poin = (Crxc,. 9+ dZ).

The LY -action on T xC; is naturally lifted to the action on Poin given by v(z,{,v) =
(z,¢+ v, p—y(2)v). Thus, a holomorphic line bundle is induced on 7' x T, /\ﬂl/lc\;l is
the Poincaré bundle denoted by Poin. The dual bundle Poin" is induced by Poin =
(QTXQ,g— ¢ dZ) with the action v(z, ¢, v) = (z,¢ 4+ v, py(2)v).

Let S be any complex analytic space. For I C {1, 2, 3}, let p; denote the projection
of T x TV x S onto the product of the i components (i € I). For any object
Me Db((’)sz), we set

REMt (M) := Rpa3«(p}5 (M) @ pFyPoint1)[1] € DY (Orvxs).
For any object N € D?(O7vys), we set
RFEM 4 () = Rp134(pls(N) ® plyPoin®!) € D?(Orxs).

Recall that we have a natural isomorphism @4_ o RFM_ (M) >~ M Mukai [37].

2.1.2 Semistable bundles of degree 0 For a holomorphic vector bundle (E, F] E)
on T, we have the degree given by deg(E) := [, ¢;(E) and the slope given by
W(E) :=deg(E)/rank(E). A holomorphic vector bundle £ on T is called semistable
if w(F) < p(E) holds for any nontrivial holomorphic subbundle F C E. Semistable
bundles on elliptic curves were thoroughly studied by Atiyah in [4]. In the following,
we shall not distinguish a holomorphic vector bundle and the associated sheaf of
holomorphic sections.

Let E be a semistable bundle of degree 0 on 7'. It is well known that the support
Sp(E) of REM_(E) consists of finite points. Indeed, E is obtained as an extension
of the line bundles L (¢ € Sp(E)). We call Sp(E) the spectrum of E. We have the
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spectral decomposition E = D, sp(E) Ea, where the support of RFM_(Eg) is {o}.
We say a subset Sp (E) C C is alift of Sp(E) if the projection ®: C — T induces
a bijection Sp (E) ~ Sp(E). If we fix a lift, an O¢c -module M(FE) is determined
(up to canonical isomorphisms) by the following conditions: the support of M(E)
is :STpf(E), and &, M(E) ~ RFM_(E). Such M(E) is called a lift of RFM_(E).
The multiplication of ¢ on M(E) induces endomorphisms of REFM_(E) and E. The
endomorphism of E is denoted by fz.

Let S be any complex analytic space. Let E be a holomorphic vector bundle on 7" x S'.
It is called semistable of degree 0 relative to S if E|7x () 1s semistable of degree 0 for
any s € S. The support of REM_(E) is relatively 0—dimensional over S. It is denoted
by Sp(E), and called the spectrum of E. If we have a hypersurface :S‘; (E)CCexS
such that the projection ®: C; x § — TV x S induces Sp(E) Sp(E), then we
call Sp(E) a lift of Sp(E). If we have a lift of Sp(E), we obtain a lift M(E) of
RFM_(E) as in the case when S is a point. We also obtain an endomorphism f of
E induced by the multiplication of ¢ on M(E).

2.1.3 Equivalence of categories For a vector space V, let ¥V denote the product
bundle 7 x V over T, and let 9y denote the natural holomorphic structure of V.
For any f € End(V'), we have the associated holomorphic vector bundle &(V, f) :=
(V.30 + f dZ). We have a natural isomorphism &(V, f) ~ &(V, f + vidy) for
each v € LY, induced by the multiplication of p_,. Let Sp(f) denote the set of the
eigenvalues of f.

Lemma2.1 &(V, f) is semistable of degree 0 and Sp(&(V, [))=®(Sp(f)) in TV,
where ®: C — TV denotes the projection.

Proof We have only to consider the case where f has a unique eigenvalue «. In that
case, B(V, f) is an extension of the line bundle £, . Then the claim is clear. |

Let VS* denote the category of finite-dimensional C—vector spaces with an endomor-
phism, ie an objectin VS* is a finite-dimensional vector space V' with an endomorphism
/', and a morphism (V, /) — (W, g) in VS™ is a linear map ¢: V — W such that
gogp—go f =0. For a given subset § C C, let VS*(5) C VS* denote the full
subcategory of objects (V, f) such that Sp(f) C5.

Let VB (T') denote the category of semistable bundles of degree 0 on T, ie an
object in VB{(T') is a semistable vector bundle of degree 0 on T, and a morphism
Vi — V, in VB (T') is a morphism of coherent sheaves. For a given subset s C T,
let VB (T, 5) C VB (T') denote the full subcategory of semistable bundles of degree 0
whose spectrum are contained in s.
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We have the functor &: VS* — VB{'(T') given by the above construction. If 5 is
mapped to s by the projection ®: C; — T, it induces a functor &: VS*(5) —
VB{(T, 5).

Proposition 2.2 If ®: C — T induces a bijection 5 >~ 5, then & gives an equivalence
of the categories VS*(5) ~ VB (T, 5).

Proof Let us prove that it is fully faithful. We set Ef := &(V, f). We will not
distinguish between E ¢ and the associated sheaf of holomorphic sections. Suppose that
/ has a unique eigenvalue o such that & # 0 modulo LV . Because E ' is obtained as an
extension of the holomorphic line bundle L, we have H(T, E r)=H WT.E ) =0.
In particular, we obtain the following.

Lemma 2.3 Assume that f; € End(V') has a unique eigenvalue «; fori = 1,2. If
o # o modulo LY, any morphism Ef — Ey, is 0. O

Suppose that f is nilpotent. We have the natural inclusion V — C*°(T, Ey) as
constant functions. We have a linear map V — C®(T, Ef ® Q%!) given by s > s d=.
They induce a chain map ¢ from C; = (f: V — V) to the Dolbeault complex
C®(T, E; ® Q") of Ey.

Lemma 2.4  is a quasi-isomorphism.

Proof Let W be the monodromy weight filtration of f. It induces filtrations of C;
and C®°(T, Er ® Qg:*), and ¢ gives a morphism of filtered chain complex. It in-
duces a quasi-isomorphism of the associated graded complexes. Hence, ¢ is a quasi-
isomorphism. |

We obtain the following lemma as an immediate consequence.

Lemma 2.5 Assume that f; € End(V') are nilpotent (i = 1,2). Then holomorphic
morphisms Ey — Ey, naturally correspond to holomorphic morphisms ¢: Eqg — Eq

such that fop—¢o f1 =0.
In particular, if f is nilpotent, holomorphic sections of End(Ey) bijectively corre-
sponds to holomorphic sections g of End(Ey) such that [ f, g] = 0. |

The full faithfulness of the functor & follows from Lemmas 2.3 and 2.5. Let us prove
the essential surjectivity of &. Let E € VB (T, 5). We have the Oc, -module M(E)
and the endomorphism f; of E as in Section 2.1.2. We have a natural isomorphism

Geometry € Topology, Volume 18 (2014)



2840 Takuro Mochizuki

RFM+ oRFM_(E) ~ E. The functor RFMJ,_ is induced by the holomorphic line bundle
on T x TV, obtained as the descent of Poin = (C,d0+¢dz). Let p and ¢ denote the
projections T'x C¢ — T and T' x C¢ — C¢. We have E =~ py(q* (M(E)) ®770m),
and the latter is naturally isomorphic to

(H°(C¢, M(E)), 3o + f; d).

We obtained the essential surjectivity of &. The proof of Proposition 2.2 is finished. O

As appeared in the proof of Proposition 2.2, we have another equivalent construction
of &. Let N'(V, /) denote the cokernel of the endomorphism ¢id—f on V ® Oc, .
It naturally induces an O7v -module N (V, /). We obtain REM 4 (N (V, f)), which is
naturally isomorphic to &(V, f). We obtain a quasi-inverse of & as follows. Let £ be
a semistable bundle of degree 0 on 7'. We obtain a vector space H°(TV,RFM_(E)).
If we fix a lift of Sp(E) to 3; (E) C C, then the multiplication of ¢ induces an endo-
morphism g¢ of H®(TY,RFM_(E)). The construction of (H*(T,RFM_(E)), g¢)
from E gives a quasi-inverse of &.

Let (E,dg) be a semistable bundle of degree 0 on 7. Let 5 C C be a lift of Sp(E).

Corollary 2.6 We have a unique decomposition g =20 E,0+ f dz with the following
properties:

o (E, F] E,0) is holomorphically trivial, ie it is isomorphic to a direct sum of copies
of Or.

e f is a holomorphic endomorphism of (E, 3 E,0). We impose the condition that
Sp(H(f)) C5, where 1110 (f) is the induced endomorphism of the space of
the global sections of (E,0Eg o).

Proof The existence of such a decomposition follows from the essential surjectivity
of &. Let us prove the uniqueness. By considering the spectral decomposition, we
have only to consider the case 5§ = {0}. Suppose that 0p = 5IE,0 + g dz is another
decomposition with the desired property. Because f is holomorphic with respect
to 0, we have 5,E,Of =0 and [f, g] = 0 by Lemma 2.5. We put # = f — g, which
is also nilpotent. The identity induces an isomorphism (£, 55,0 +h) ~ (E, 5,E,0)'
Because & is fully faithful, we obtain 4 = 0.
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The family version We have a family version of the equivalence. Let S be any
complex manifold. Let 7g: T x S — S denote the projection. Let VB*(S) denote
the category of pairs (V, f) of a coherent locally free Og—module V' and its endomor-
phism f. A morphism (V, /) — (V’/, f) in VB*(S) is a morphism of Og-modules
g: V —V'suchthat f"og =go f. Such (V, f) naturally induces an Oc,xs-module
M(V, f). The support is denoted by Sp( /). When we are given a divisor 5 C C¢ x S
which is finite over S, then VB*(S,5) denote the full subcategory of (V, ) € VB*(S)
such that Sp(f) C5.

Let VBF (T x §/S) denote the full subcategory of Orxs—modules, whose objects
are semistable of degree 0 relative to S. When we are given a divisor s C TV x S
which is finite over S, then let VB (T x S/S,5) denote the full subcategory of
E € VBy(T x §/S) such that Sp(E) C 5.

Let V' be a holomorphic vector bundle on S with a holomorphic endomorphism f".
The C* vector bundle JTEI V' is equipped with a naturally induced holomorphic
structure obtained as the pullback, denoted by dy. We obtain a holomorphic vector
bundle &(V, f) = (ngl V,d0+ f dZ). By Lemma 2.1, & gives a functor VB*(S) —
VBY(T x S/S). If we are given s C T x S and its lift § C C; x S, it gives an
equivalence of the categories VB*(S,s) — VB (T x §/S.5).

We have another equivalent description of &. Let (V, /) € VB*(S). We have the natu-
rally induced Oc, xs—module M(V, f), which induces an Orv xs—module N'(V, f).
We have a natural isomorphism &(V, /) ~ RFM_(N(V, f)).

Suppose that we are given s C TV x S with a lift § C C; x S. For an object
E € VB{(T' xS/S,s), we obtain an Oc, xs-module M(E) such that the support of
M(E) is contained in 5 and @« M (E) ~ RFM_(FE). The multiplication of ¢ induces
an endomorphism of RFM_(FE), and hence an endomorphism of wg.«(RFM_(E)),
denoted by g¢, where ng: TV x S — S. The construction of (75« RFM_(E), g¢)
from E gives a quasi-inverse of &.

2.1.4 Differential-geometric criterion We recall a differential-geometric criterion
in terms of the curvature for a metrized holomorphic vector bundle to be semistable
of degree 0. Let (FE, dg) bea holomorphic vector bundle on 7" with a Hermitian
metric /. Let F(h) denote the curvature of the Chern connection. We use the standard
metric dzdz of T.

Lemma 2.7 There exists a constant € > 0, depending only on T and rank E, with
the following property:

o If|F(h)|y <e,then (E,dg,h) is semistable of degree 0.
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Proof The number deg(E) = [ Tr F(h) is an integer, and we have [ |Tr F(h)| <
|T | rank Ee, where |T'| is the volume of 7. Hence, we have [ Tr F(Ey) =0 if € is
sufficiently small. For any subbundle E’ C E, by using the decreasing property of the
curvature of subbundles, we also obtain deg(E’) < 1 and hence deg(E’) <0. a

2.2 Filtered bundles

2.2.1 Filtered sheaves Let us recall the notion of filtered sheaves and filtered bundles.
Let X be a complex manifold with a smooth hypersurface D. (We restrict ourselves
to the case that D is smooth, because we are interested in only the case in this paper.)
Let £ be a coherent Oy (*D)-module. Let D = [ [;c Di be the decomposition into
the connected components. A filtered sheaf P& over £ is a sequence of coherent
Oy —submodules P,&E C & indexed by RA satisfying the following.

* Pa&ix\p =& x\p: We have Py C P& if a; <aj (i € A), where a = (a; |
i€A)and a’ = (da}|i€A).

e On a small neighbourhood U of D; (i € A), Pa& |y depends only on a;, which
we denote by Py, (E|r), or "Pg; () when we emphasise 7.

e Foreachi € A and ¢ € R, there exists € > 0 such that P, Eu) = i770+€(5|U).

e Wehave Pyyn = Pa&(X_niD;), where n = (n;) € 7A.

The tuple (£, {P4E |a € RA}) is denoted by Py&. The filtration {P,E |a € RA} is
also denoted by Py&. We say that £ is the Ox (x D)—module underlying PxE.

For a small neighbourhood U of D;, we set ‘P, (Ev) = "p<a Pp(Ey). We also put
iPa(5)|Di :=Pa(&v)D,; > and iGrP (&) := iPa(5|U)/i77<a(5|U), which are coherent
Op, —modules. We set

Par(PaS,i):={be]ai—l,ai]|iGrf(€)7é0}, Par(P&E,i) = U Par(Py&,1).
acRA

A morphism of filtered sheaves P& — Px&> is a morphism of Oy —modules £; — &,
compatible with the filtrations. A subobject Px&; C P« & is a subsheaf £; C £ satisfying
Pa(E1) C Pa(€) for any a € RA . Tt is called strict if Py () = & N Pa(€) for any
acRA.

2.2.2 Filtered bundles and basic operations A filtered sheaf P.& is called a fil-
tered bundle if P,& are locally free Oy —-modules and * Grf (&) are locally free Op, -
modules for any i € A and @ € R. In that case, for any b € Ja — 1, a], we set

Fy("Pa(€)ip,) := Im("Po(E) p, = Pa(E)i,):

This is called the parabolic filtration.
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The direct sum of filtered bundles P«& (i = 1,2) is defined to be the locally
free Oy (xD)-module & & &, with the Oy —submodules P, (E1 B &) = Pal1 @
PaE> (a € RY). The tensor product of filtered bundles Px& (i = 1,2) is de-
fined as the Oy (*D)-module £ ® £ with the Oy —submodules P,(&; ® &) =
Y bic<a Pp(E1) ® Pe(E2). The inner homomorphism is defined as the Oy (xD)—
module Homp, (xp)(€1, E2) with the Ox —submodules

PaHom(E1,E) ={f € Hom(E1,E) | f(Pp€r) C Ppialal.

The most typical example is the Ox (x D)—-module Oy (* D) with the Ox —submodules
Pa(Ox (xD)) := O _lai]D;), where [a] := max{n € Z | n < a}. The filtered bundle
is denoted just by Ox (D). For any filtered bundle P&, the dual P«(EY) is defined
as Hom(PxE, Ox (xD)). We have a natural isomorphism P, (V) ~ P-_,.5(E)Y,
where § = (1,...,1).

Let ¢: (X', D') — (X, D) be a ramified covering with D’ = [[;c, D; and D =
[1;ea Di- Let e; be the degree of the ramification along D;. Let P«& be a filtered
bundle over £. The pullback of a filtered bundle is defined as the Oy (*D’)—module
@*(£) with the Ox/—submodules Pap*E = Y ,p1n<a ¢*(Ps€) ® Ox/ (3_n;i Dj),
where eb = (e;b; | i € A). The filtered bundle is denoted by ¢*(PxE).

Let P«E&’ be a filtered bundle on (X', D’). We obtain a locally free Oy (x D)—module
@«&" with the Ox —submodules P¢ (p«E”) such that Pe (9«E") v = @5 (Pe;c; Elp—1 (w;)) -
The filtered bundle is denoted by ¢« (P«E). Suppose that ¢: (X', D) — (X, D) is a
Galois covering with the Galois group Gal(g), and that P& be a Gal(¢)—equivariant
filtered bundle. Then @« (P«E) is equipped with an induced Gal(¢)—action. The
Gal(g)—invariant part is called the descent of P&’ with respect to ¢.

2.2.3 The parabolic first Chern class Let P, be a filtered sheaf on (X, D). Sup-
pose that £ is torsion-free. The parabolic first Chern class of P& is defined as

par-c; (PxE) =c1(Pa€)—»_ > bdim’Gr} (£)[Di].
i€A bePar(Py&,i)

Here, [D;] is the cohomology class of D;. It is independent of the choice of a.

Let U; be a small neighbourhood of D;. Suppose that we are given a decomposition
Px&lu; = Drer) P«Eix foreach i € A. Let U be a locally free Ox —submodule
of & such that Uy, = ®kel(i) Paik)Eik» where a(i, k) € R. Itis easy to check the
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equalities

parc; (P+) = c1@) =Y Y 8(PaEig.ali.k)).
ieA kel(i)

8(Pe&ik.ali.k)):== > brankGr} (& x)[Di].
bePar(Pai k)Eik)

2.2.4 Compatible frames For simplicity, we consider the case where X is a neigh-
bourhood of 0 in C and D = {0}. Let P+& be a filtered bundle on (X, D). For any
section f of £, we set deg” (f) :=min{a € R | f € P,E}. Let v = (vy,...,v,) be
a frame of P,€. We say that it is compatible with the parabolic structure if for any
b € Par(P,E), the set {v; | deg(v;) = b} induces a base of Grf(é’).

Let ¢: (X’, D') — (X, D) be a ramified covering given by ¢(u) = u?. Let P«E be a
filtered bundle on (X, D). Let v be a compatible frame of P,E. Let ¢; := deg” (v;).
We set nj :=max{n €Z |n+ pc; < pa},and w; :=u""i¢*v;. Then w = (wy, ..., w,)
is a compatible frame of ¢*(P,&) such that deg” (w;) = n; + pc;.

Let P«&’ be a filtered bundle on (X', D’). Let v’ be a compatible frame of P,&’. Let
ci = deg” (v}). For 0 < j < p, we set wlfj :=u’v]. They naturally induce sections of
Payp(@xE), denoted by ﬁ)'lfj. Then we have that &’ := (j; | 1 <7 <rank &, 0= j < p)
gives a compatible frame of P,/ ,(¢«&) such that degp(zﬂl{ ) =(ci—]J) /D.

2.2.5 Adapted metric Let us return to the setting in Section 2.2.1. Let V be a
holomorphic vector bundle on X \ D with a Hermitian metric /. Recall that, for
any a € R™, we obtain a natural Oy —module P2V on X as follows. Let U be any
open subset of X'. For any P € U, we take a holomorphic coordinate neighbourhood
(Xp,z1,...,2zp) around P such that Xp is relatively compact in U, Xp N D =
XpND; forsomei € A,and Xp N D = {z; =0}. Then let P;’(U) denote the space
of holomorphic sections f* of Vi p such that | fixp\plp = O(|z1|7% ™€) for any
€ >0 and any P € U. In general, Pé’V are not Oy —coherent.

Suppose that we are given a filtered bundle PV on (X, D), and that V := P« V|x\p
is equipped with a Hermitian metric / such that P?V = P,V . In that case, we say
that / is adapted to Py V.

2.3 Filtered Higgs bundles

Let us recall the notion of filtered Higgs bundles on curves. Let X be a complex curve
with a discrete subset D. Let P.& be a filtered sheaf on (X, D). Let 6 be a Higgs
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field of £, ie 6 is an Oy —-homomorphism £ - £ ® Q)I( Then (P«&, 0) is called a
filtered Higgs bundle.

We shall consider two conditions on the compatibility of € and the filtration P& .
One is the admissibility, and the other is goodness. The latter is what we are really
interested in, because it is closely related to wild harmonic bundles and L? instantons.
The former is easier to handle, and more natural when we consider algebraic Nahm
transforms. We shall explain the easier one first.

The conditions are given locally around each point of D. So, we shall explain them in
the case X :={ze€C ||z] < po} and D := {0}.

2.3.1 Admissible filtered Higgs bundles For each positive integer p, let ¢,: X (P) =
{lzpl < ,o(l)/p} — X be given by ¢p(zp) = 25. Let P« V be a filtered bundle on (X, D)
with a Higgs field 6. Let m € Z>g and p € Z~¢ such that gcd(p,m) = 1. We say
that (P« V, 0) has slope (p,m) if the following hold:

o Let (PV{P) 9{P)) be a filtered Higgs bundle obtained as the pullback of
(P+«V,0) by ¢p. Then we have z;'0 Py (p.viry c P.vIPdz,/z, for any
ceR.

e Let Res(z’”@“’ ) denote the endomorphism of GrP(V“’ ) obtained as the
residue of Z’”Q(P If (p,m) # (1,0), we impose that Res(zm9 )) is invertible
for any c.

Although Res(zme P)) may depend on the choice of a coordinate, the above condition
is independent. Let Z(6) denote the set of the eigenvalues of Res(z,'0 Py, We
have Gal(¢p)—action on (P«V v{r) 9(P)y and Z(A). The quotient set I(@) / Gal(p)
is denoted by Z(#). We have the orbit decomposition Z(6) = ][] o. We say that
(P« V., 0) has type (p,m, o) if moreover Z(6) = {o}. 0€ZL(0)

If m # 0, then o is naturally an element of 7 (p,m) := C*/ Gal(g,), where the action
is given by (¢,a) — t™«a. If m = 0, then o is an element of 7(1,0) := C. When
(P+«V, 0) has slope (p, m), it has a decomposition (PxV, 0) = @OGJ(P’m)(P* Vo,00)
after X is shrunk appropriately, such that (P«V,, 6,) has type (p,m, o).

The filtered Higgs bundle (P.V, 6) is called admissible if it has a decomposition

(P«V,0) = @ (P*V(P,m)’ g(p,m))
(p,m)

after X is shrunk appropriately, such that each (P V #™ §(P7)) has slope (p,m).
Here, the decomposition is called the slope decomposition. It is refined to a decom-

position (PxV,0) = @ (PxV,P™ 6P such that (PyVP"™ , 657™) has type
(p’mio)
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(p,m,0). In this paper, the decomposition is called the type decomposition. For
o € Qx¢, we say that the slope of (P« V, 0) is smaller (resp. strictly smaller) than o if
PV PM =0 for p/m >« (resp. p/m > &) in the slope decomposition.

Suppose that (P« V, 0) has type (p,m, o). After X is shrunk appropriately, we have a
decomposition

(P*V(p), 9(1))) — @(p* Va(p), 90(!17))

aco

such that Res(z;," Gé[p )) has a unique eigenvalue ov. We have a natural isomorphism
ps(PuVa? 0P)) = (P, V. 6)

for any o € 0.

Lemma 2.8 Let (P.V,0) be an admissible filtered Higgs bundle on (X, D). Let
Py« V' be a strict filtered Higgs subbundle, ie it is a strict filtered subbundle such that
0(V') C V' ® Q. The restriction of § to V' is denoted by 6’. Then (PxV',0') is
admissible. O

2.3.2 Good filtered Higgs bundles We have a stronger condition. Let X and D be
as in Section 2.3.1. We say that a filtered Higgs bundle (P« V, 6) on (X, D) is good
if there exists a ramified covering ¢p: (x (P} p{rP)y > (X, D) given by ¢p(zp) = ZII;
with a decomposition

%) or(PV.0) = P (P.VP 0P,

agzy 'Clz; ]

such that Gél’ )—da idy(» is logarithmic in the sense that it gives a morphism Py Va<1’ )
P Va(l’) dzp/zp. Let Irr((p;e) denote the set of a such that Va(l’) # 0. The Ga-
lois group Gal(¢p) naturally acts on ¢, (PxV,0) and Irr(go; 0). The quotient set
Irr(p,6)/ Gal(gp) is denoted by Irr(¢, ). We have the orbit decomposition

Irr(p, 0) = ]_[ 0.
oclrr(g; 0)

We set (P Vo(p), Grfp)) = Puco(Px Va(p), Gép)). We obtain a Gal(gp,)—equivariant
decomposition @3 (PxV,0) = @gerrr(ys o) (Pr Va??, 647)). By the descent, we obtain
a decomposition

®) (PiV.0) = €D (PuVe,6o).
o€lrr(¢p*0)
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If we have a factorisation ¢, = ¢p, 0 ¢p, such that (p* (P+V, 0) has a decomposition
as above, ¢p, gives a bijection Irr(p,, 0) =~ Irr(p, 9) It induces a bijection of the
quotient sets by the Galois groups. By the identification, we denote them by Irr(6) and
Irr(6). The decomposition (8) is independent of the choice of ¢ .

For each o € Irr(f), there exists a minimum p, among the numbers p such that
@, (P« Vs, 6) has a decomposition such as (7). In this case, we have |o| = p,. We set

X0 .= x(po), @o := ¢p, and z, := z, . We have the following decomposition on X°:
) 03 (PuVa. 00) = D (P V2. 67).
aco

For any a € 0, we have a natural isomorphism (P« Vo, 6) = @ox (P« V2, 03). We set
My 1= (ordza_l a) which is independent of a € 0. In this paper, we say that (P« V, )
has pure irregularity o if (P«V, 0) = (P«Vs, 6).

If X is shrunk appropriately, we have a decomposition (which is a refinement of (7))
o PV.0) = P PP.vie o)
aezpl(C[z 1]‘3'56(C

such that the eigenvalues of the residues Res(@ —(da+ padzp/zp)idysr)) are 0.
Let (P« Vo, 6o,0) be the descent of

@ (P* Va<,ge)’ Qéfx))
aco
to X. We obtain a decomposition
PV.0) = P P PiVos:boa)
oelrr(9) aeC
On X°, we have a decomposition

(,0: (P« Vo0, 0o,0) = @(P* Vaua’ 930:)

aco

Lemma 2.9 Let (P«V,0) be a good filtered Higgs bundle. Let Py V' be a strict Higgs
subbundle. The restriction of 6 to V' is denoted by 6’. Then (P«V’,6") is also good.

Proof Suppose (P«V, 0) is unramifiedly good with the decomposition (P« V., 0) =

P(PsVa. 0s). Because (V') C V'®@QL , wehave V! =@ (V'NV,). By the strictness,
we obtain Py V' = @P(V' NPy V,). Hence, (P« V', 0’) is good. The ramified case can
be reduced to the unramified case by the descent. |
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Take p € Z~o and m € Z>q with gcd(p,m) = 1. Let Irr(0, p,m) := {0 € Irr(0) |
Do/ Mo = p/m}. We have

o€lrr(6, p,m)
For any o € J(p, m), we have Irr(6, p,m, 0) C Irr(6, p, m) such that
PV = D Pute.
o€lrr(6, p,m,0)
Take any o € 0. For each o € Irr(6, p, m, 0), we have a € o such that

P*Voﬁ")= @ P(pa) p)x(PxV3).

o€lrr (6, p,m,0)

Here, ¢,,/, is the ramified covering X° — X(P) given by ©po/p(Z0) = Zo o/P et
c € R. We take a frame vy = (Vo,;) of Pp, VY compatible with the parabolic structure.
Then the tuple of the sections

{Z‘{vo,i }o elrr(6, p,m,o0), 1 <i <rank V7, 0<j < po/p}

gives a frame of Py VOSP ),

2.3.3 Filtered bundles with an endomorphism Let U; be a small neighbourhood
of 0 in C;. Let P« V be a filtered bundle on (U, 0) with an endomorphism g. We
say that (P4V, g) has type (p,m,o) (slope (p,m)) if (P«V,—t2gdt) has type
(p,m, o) (resp. slope (p,m)). The condition implies p > m. We say that (P.V, g)
is admissible if (PxV, —t2gdt) is admissible. If (P4V, g) is admissible, we have
the type and slope decompositions

(P«V.g) = GB(P* v, g,(,p’m)) and (P«V,g) = @(p*v(li,fn)’ g(»m)

respectively, after X is shrunk appropriately.

Similarly, (P« V, g) is called good if (P« V, —t~2gd 1) is a good filtered Higgs bundle.

Remark 2.10 We regard U; as a neighbourhood of co in P!. Of course, —72dt =

dw forw =171,

Remark 2.11 We shall be interested in the case that (P«V, g) is decomposed into
Docc (P« Va, ga) such that Sp(gyjo) = {a} and (P Vy, go — ) is admissible. In
that case, in the slope decomposition

(PiVy, 8o —) = @(7)* Va(p,m)’ gép,m))’
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we have m/p < 1 for Va(p’m) #0.

2.4 Filtered bundles on (T x P!, T x {o0})

2.4.1 Local conditions Let U C P! be a small neighbourhood of co. We introduce
some conditions on filtered bundles P« E on (T x U, T x {oc0}).

(A1) PcE|Txoo is semistable of degree 0 for any ¢ € R.

The condition is equivalent to Grf(E ) being semistable of degree 0 for any ¢ € R. Let
Spoo(E) C T denote the spectrum of P E|rxo - It is independent of ¢. We fix its
lift to :S’zz;oo(E ) C C. Then as observed in Section 2.1, for a small neighbourhood U’
of oo € P!, we obtain the corresponding filtered bundle P,V with an endomorphism g
on (U’, 00) such that Sp(g|0) = :S'\p?oo(E ). We have the decomposition

PV.e)= € (PuVp.gp)
PeSp(E)

such that Sp(gp) N (C x {o0}) = {ﬁ} is the lift of P. A filtered bundle satisfying
(A1) is called admissible if it satisfies the following condition.

(A2) (P+«Vp,gp — Pid) is admissible in the sense of Section 2.3.3 for any P €
Spoo(E). This condition is independent of the choice of Sp o (E).

We have the type decomposition (P« Vp, gp — P id)= @ (P« VI(,IL”"), gg,p ")’”)), and
we have the corresponding decomposition pm.o

PE=EP @ P.EF™.
P p.m,0

which is called the type decomposition of Py E. The following lemma is clear.

Lemma 2.12 If P E satisfies condition (Al) (resp. the admissibility), then the dual
P«(EY) also satisfies condition (A1) (resp. the admissibility). O

We also have the following condition.
(Good) Let P« E be a filtered bundle on (7T x U, T x {co}) satisfying (A1l). Take
any lift Sp (E) C C of Sp,.(E). Then the filtered bundle is called good

if the corresponding filtered bundle P,V with an endomorphism g is good
in the sense of Section 2.3.3.
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2.4.2 Some remarks on the cohomology groups Let Py E be a filtered bundle on
(T x P!, T x {oo}) satistying (Al). Let U be any O, p1—-submodule of P.E for
some ¢ € R, such that U7xc,, = Pc E|7xC,, and U|Tx{co} 18 semistable of degree 0.
We give some remarks on the cohomology groups of I/.

Lemma 2.13 Suppose that 0 & Sp(P«E). Then we have that H/ (T x P!, U) =
H/(T x P! PeE).

Proof Let 7: TxP!— P! be the projection. By assumption, we have Ry (U® L)~
Ry (P. E ® L), because both of them vanish around co. Then the claim of the lemma
follows. |

Suppose that Py E is admissible, and we take some refinement. We have the decom-
position U = Pp @p’m,o U}{)‘;m) around 7" x {oo}, where L[;fj;m) =UnN PCEE,Ij;m).
Let U' C P, E be a subsheaf satisfying the above conditions. If 0 & Sp (P« E), we
have H (T xP',U{) = H' (T xP',1/") by Lemma 2.13.

Lemma 2.14 If0 e Sp(P«E) and Z/{él(;o) = L{(/)(é’o), we have natural isomorphisms

H{(T xP'U)~ H(T xP', i) fori =0,2.

Proof We have only to consider the case that & C U’, and we shall prove that the
natural morphisms H' (T x P!,U{) — H!(T x P',U’) are isomorphisms. Let ¢ €
HO(T xP', ). Around T x {oo}, we have the decomposition ¢ = > P.pmo wl(olf")m).
We see that gol(plj;m) =0 unless (P, p,m,0) = (0,1,0,0). Hence,

HY(T xP', 1) - HY(T x P, i)

is an isomorphism. The duals &Y and (i)Y are subsheaves of P,/ (EY) for some
¢’, and satisfy the above conditions. Hence, by using the Serre duality, we obtain that
H*(T xP!, 1) - H*>(T xP',U{") is an isomorphism. m|

2.4.3 Vanishing condition Let (P4 E, 6) be a filtered bundle on (7' x P!, T x {0}).
We will be concerned with the following condition on the vanishing of the cohomology
groups:

(A3) HY (T xP',PyE® p*L)=0and H*(T xP!,P._,E® p*L) =0 for any
line bundle L of degree 0 on T, where p denotes the projection 7 x P! — T'.

We shall often omit to denote p* if there is no risk of confusion.
Lemma 2.15 If Py E satisfies condition (A3), the dual P«(E") also satisfies condi-
tion (A3).
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Proof Note that P,(EY)Y ® Q]iﬂ ~ P-_,—1(E). Hence, by Serre duality, we have
that Ho(T x P, Po(EY) ® LV) is the dual space of H*(T xP!,P._E® L), and
H*(TxP',P._{(EV)®LV) is the dual space of H%(T xP!, Py E® L). The claim
of the lemma follows. O

Lemma 2.16 Let L be any holomorphic line bundle on T of degree 0. If Py E
satisfies (A3), then we have that H(T x P!, P.E ® L) = 0 for any ¢ < 0 and
H*(T xP!,P.,E®L)=0 forany ¢ > —1.

Proof We have only to consider the case L = Op. For ¢ <0, we have
HYT xP',P.E)c HY(T xP!, PyE) =0.

For ¢ > —1, the support of the quotient P~. E/P~_1 E is one-dimensional. Hence,
the morphism 0 = H*(T x P!, P_._E) — H*(T x P!, P_.E) is surjective. a

2.4.4 Stability condition We introduce a stability condition for filtered bundles
satisfying (A1) on (T x P!, T x {oo}), by following [8]. Note that this is not the same
as the standard slope stability condition for filtered bundles on projective varieties; see
Maruyama and Yokogawa [33].

Let wr € H*(T x P!, Z) denote the pullback of the fundamental class of T by the
projection T'x P! — T'. For any filtered torsion-free sheaf P& on (T xP!, T x{o0}),
we define the degree of P& by

deg(P+€) := /

T xP

par-c; (P«&)owr = /
1

{z}xP

par-c; (P«&).
1
We set ((P«€) := deg(P«E)/ rank £. We say that a filtered bundle P« E is stable
(semistable) if w(PxE) < wW(P«E) (resp. n(P«E) < (P« E)) for any P& C P+ E
such that 0 < rank & < rank £ and P also satisfies (Al) around T x {oo}. We
say that a semistable filtered bundle P« E is polystable if it has a decomposition

P+ E = @ P« E; such that each Py E; is stable. The following lemma is clear and
standard.

Lemma 2.17 Let P, E be a filtered bundle satisfying (A1) on (T x P, T x {o0}). If
Py E is stable, then Py EV is also stable. m]

It is standard to obtain the vanishing of some cohomology groups under the assumption
of the stability and the degree 0.

Lemma 2.18 Let P« E be a filtered bundle satisfying (A1) on (T x P!, T x {oo}). If
Py E is stable with deg(P« E) = 0 and rank Py E > 1, it satisfies condition (A3).
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Proof Because Py E is stable of degree 0 with rank E > 1, HO(T x P!, P.E) =0
for any ¢ < 0. Indeed, a nonzero section of P, E induces a filtered strict subsheaf
P«O C P« E with deg(P«O) > 0 and 0 < rank O < rank E . Because (P« E)" is also
stable of degree 0, we obtain the vanishing H?(T x P!, P__; E) by using the Serre
duality. |

Remark 2.19 Line bundles of degree 0 on 7" naturally correspond to filtered bundles
P« E which satisfy (A1) with deg(P«E) = 0 and rank P« E = 1. Indeed, there exists
a line bundle L of degree 0 on T such that P, E >~ p*L ® O([a](T x {oo})) for any
a € R, where [a] := max{n € Z | n < a}. In this case, condition (A3) is not satisfied
for L1,

3 Algebraic Nahm transforms

3.1 Local algebraic Nahm transforms

3.1.1 Complex Let X :={z € C | |z| < po} and D := {0}. In the rest of this
subsection, we shall shrink X without mentioning it. We shall use the notation of
Section 2.3.1. We define a complex of sheaves associated to an admissible filtered
Higgs bundle (Ps«V,0) on (X, D). First, let us consider the case that (P4 V, 8) has
type (p,m,0). Suppose (p,m,0) # (1,0,0). For each ¢ € R, let P.(V ® Q%.,0)
denote the complex

Peem)pV — Peq1Vdz,

where the first term sits in the degree 0. Take any o € o. For each ¢ € R, let

PC(VOSP '® QY 90(61: )) denote the following complex on X (P):

05 d
Peem VP 2 PV{P @ 22,
Zp
We have a natural isomorphism

Pe(V ®Q°.0) = 0puPep(Vi" @ Ly - 657

This is also isomorphic to the descent of @, Pep (VP & Q5w 6.P). For ¢ <
¢’, the natural inclusion P.(V ® Q°,0) — P (V ® Q°,60) is a quasi-isomorphism.
We set C*(P«V,0) :=P_12(V ® 2°,0). In the case (p,m,0) = (1,0,0), we set
CO(P«V,0) :=PyV and

CH(PuV,0) =P VRQ +0(PV) C PV ®Q.
Thus, we obtain the complex C*(PyV, 0) when (PxV, 0) has type (p,m, o).
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For a general admissible filtered Higgs bundle (P«V, 0), the complex C*(PxV, 0)
is defined as the extension of the complex (V — V ® Q )1() on X \ D to a complex
on X, such thatitis Py, , ) C*(Px V,,(p ’m), 9,51’ ’m)) around D, according to the type
decomposition.

Lemma 3.1 If (P4 V,6) comes from a wild harmonic bundle (E,dg, 0, h) on (X, D),
then C*(PV,0) is naturally quasi-isomorphic to the complex of square-integrable
sections of the Higgs complex E ® Q°.

Proof We consider the unramified case. We omit to denote p. We have the naturally
defined map 7.: P,V — Grf(V). Let W be the weight filtration of the nilpotent part
of the endomorphism Res(6) on Grf(V). We set Wy PV := n; L (W Grf(V)).
We introduce a complex sz (P«V,0). If (P«V,0) has type (m,0) # (0,0), let
C}2(P+V. 0) be the complex

W_o PV — W_PoV ® Q) (log D).

We have a natural inclusion C*(Px«V, 0) — C; ,(P«V, 0) which is a quasi-isomorphism.
If (P+V,0) has type (m,0) = (0,0), let C7,(PxV,0) be the complex

WoPoV — W_,PoV & Q} (log D).

It is easy to check that the natural inclusion C72(PxV,0) — C*(P«V, 0) is a quasi-
isomorphism. In general, we define

Cr2(PeV.0) = P Cr2(PuVs™. 05™)

by using the type decomposition.

According to the result in [36, Section 5.1], CZZ (P«V, 0) is naturally quasi-isomorphic
to the complex of square-integrable sections of the Higgs complex E ® 2°. Hence,
we are done in the unramified case. The general case can be easily reduced to the
unramified case. O

3.1.2 Transform We shall construct some transformations for filtered Higgs bundles,
which are analogous to the local Fourier transform in [9; 19]. In the following, for a
variable x, let Uy denote a small neighbourhood of 0 in C,. For two variables x
and y,let Uy, := Ux x U, and let y: Uy, y — Uy and my: Uy, — U, denote the
projections.

Let (P« V, 0) be an admissible filtered Higgs bundle on (Ug, 0). Let us define a filtered

bundle ./\/*0’00(73* V, 8) with an endomorphism g on U;. We consider the following

complex on Ug . :

0+d
2O PV, 0) X e (p, v 6).
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Let Q be the quotient. We define
NO®PV, 0):=12,Q, NO®P.V,0):=NO® PV, 0)(x1).

Here (x7) means the localization with respect to t. If U; is sufficiently small, the
support of Q is proper and relatively 0—dimensional over U . Indeed, QN ({0} xU;) =
{(0,0)}. Hence, NO®(P,V,0) is coherent. Let us check that N (P,V,0) is
torsion-free. Let v be a section of nl*Cl (P«V,0), such that there exists a section u
of nTCO(P* V, 0) satisfying tv = (t0 4+ d¢)u. We obtain that d{ - u is contained in
T-7FC1 (P4 V, 0). Then we obtain that u = ru’ for some section u’ of 7*C°(PsV,0),
and we have v = (76 + d{)u’. It implies that N (P,V, 0) is torsion-free. Hence,
N (P, V, 0) is alocally free Oy, -module. In particular, N'%%° (P, V, §) is alocally
free Oy, (*t)-module. The multiplication of ¢ induces the endomorphism g. By
setting v := —gt~2dt, we obtain a Higgs field of N (P, V, §). We shall introduce
a filtered bundle N (PyV,0) = (N2"® (P V. 0) | a € R) over NO®(P,V,6).

If (P«V,0) hastype (p,m,0)#(1,0,0), we consider the following complexes on Ut .
for any ¢ e R:

% 0+d
(10) Ty 7Dc—m/p(V)—)Tfl Pe(V)(AE/D).

Let Q. denote the quotient. We define

2pc—m
N:g?;mc)(P*V, 0) =124 Qc, Kk1(p,m,c):= 2ptm)

By construction, we have N 0.00 (P*V 0) = N (P«V,0) in this case. It is easy to
check that Ny (P« V,0) are locally free Oy, —modules of finite rank. We have a
naturally induced map

NE®(PLV, ) —> NO®(P,V, 0)

for ' < a. Tts restriction to {t # 0} is an isomorphism, and hence it is injective.
We also obtain N2"® (P V, 0) (1) = NO°(P,V, ). For ¢’ :=c¢— (1 +m/ p), the
images of 7-7P.V(d;/¢) and 7P V(d(/{) are the same in the quotient of Q.
This implies

tNO®(PLV,0) = Ngiolo(P* V,0) forany a € R.
Hence, N**° (P«V,0) (a € R) gives a filtered bundle over N%®(P,V, 0).

If (P«V,0) has type (p,m,0)=(1,0,0), we define ./\/'(;)’00(73* V,0):=N%®(P,V,0).
We have natural morphisms

NY PPV, 0)j0 = CH(PLV, 0)/CO(PyV, 0)d¢ — (Po V).
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Here, the subscript “|0” means the fibre of the vector bundle over 0, and the latter
map is given by the residue, which is injective. Hence, the parabolic filtration of the
right-hand side induces a parabolic filtration of Ng "°(P«V,0))o indexed by ]-1,0].
This in turn induces a filtered bundle N (P V, 6) over N (P, V., 6).

If (P«V,0) is admissible, we replace Uy with smaller neighbourhoods so that it has
the type decomposition, and we define

NEP(PV.0) i= @D NP®(PLVaP™ . 6).

b,m,o

The construction N, ,(9 "%° gives a functor from the category of the germs of admissible
filtered Higgs bundles to the category of the germs of filtered Higgs bundles. We set

NZX(PLV.0) =Y NP (PV.0).

b<a

Lemma 3.2 Suppose (PxV, ) has type (p,m,o0). The rank of N%®°(P,V,0) is
(p +m)rank V/ p in the case (p,m,0) # (1,0,0), or rank V — dimKerGrg(Res 0)
in the case (p,m,0) = (1,0,0).

Proof The rank is equal to the dimension of C!(P,V,0)/CO(P:V,0)d¢ as a C—
vector space. Then the claim can be checked by a direct computation. (See also the
proof of Proposition 3.3 below for the case (p,m,0) # (1,0,0).) |

Proposition 3.3 (./\/'f (P« V,0), V) is admissible. If (P+V,0) has type (p,m,0),
then (N°° (P4 V., 0),v) has type (p +m,m,o’) for some o’

Proof We have only to consider the case that (PxV, 0) has type (p,m,0). Let us
consider the case (p,m,0) = (1,0,0). For the expression 8 = f d{/¢, f gives an
endomorphism of P,V forany ¢, and f|o is nilpotent. We have v = —1t7!g(dt/7) and
—1r~!g isinduced by f, so it preserves J\/’é)’oo(P* V,0). If we regard J\/'é)’oo(P* V. 0)0
as a subspace of PgV)q as above, then (=t ! g)|o is the restriction of f|o. Hence it is
nilpotent and preserves the parabolic filtration, ie (MO (P, V, 0), ¥) is admissible of
type (1,0,0).

Let us consider the case (p,m,0) # (1,0,0). Fix a € 0. We consider the following
on Ug, ;:

x (o) O i)
(11) 77173pc—mVa — T PpCVa (dé‘l’/é‘p)

The quotient is denoted by Q... The pushforward 7,4 Q.. is naturally isomorphic to

NO-00 J(PiV.6).

k1(p,m,c
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The natural map Q/, — Q. (¢’ <c¢) is injective. We set Q" := QZ. We have an
exact sequence b<c

n‘)[i")
0 —> 7} Grho_, (VAP = 7} Gl (VP (dEp [ Lp) — Q) Q- —> 0.

The sequence induces the following isomorphism of C —vector spaces for any ¢ € R:

0,00
(12) o (v = Meiwamo PV 6)
pct o - 0,00 ’
N (PyV, 0)

<k1(p,m,c)

Let v = (v;) be a frame of Py Va(p). Set ¢; := min{a € R|v; € P, Vofp)}. We assume
that v is compatible with the parabolic structure in the sense that the induced tuple
{[vi] | ¢i = d} of elements in Grzij(Va(p)) is a basis for any d € |pc — 1, pc]. We set
Vij 1= {;;vj (dp/p) for 0<i <p+m—1and 1= j <rank Va(p). The induced
sections of

K

0,00
N 1(p’m’c)(P*V, 0)
are also denoted by the same symbols. Because they induce a basis of
0,00 0,00
le(p,m,c)(P* V,60) / Tle(p,m,c)(P* V,0)
according to (12), these induced sections give a frame of
0,00
NKI (p.m,c) (P+V.0)

on a neighbourhood of 0. (In particular, the rank of A /?{?im, o) (P«V,0) is (p +

m) rank Vofp ) = p~Y(p + m)rank V.) Moreover, by the isomorphism (12), the frame

is compatible with the parabolic structure of N’ I?l’((); m C)(P* V,0).

We take a ramified covering ¢: Uy — Uz by @(17) = n?T™ . Let PxV be the filtered
bundle on (Uy, 0) obtained as the pullback of N, 2 (P4 V,0) by ¢. The tuple of the
sections Vj; := " '¢*v;; gives a frame v of Ppe_,, 2V which is compatible with the
parabolic structure. By the frames v and ¥, we obtain an isomorphism of P,._;,/2V|0
t0 (PpeValh)o @ CPHm.

Let us prove that = —t~2gdt has type (p+m,m, o) for some o’. Note that g is in-
duced by the multiplication of { = ¢ If . Let g; be the endomorphism of N'®® (P, V, )
which is induced by the multiplication of {,. We have that g; (/\/;? PPV, 0)) C
N:’_OIO/(p+m)(73* V,0). Hence, n~'g; gives an endomorphism of Ppe—m/2V. In par-
ticular, n~? g gives an endomorphism of P,._,,/2V. Let us prove that the restriction

(n?g)|o has a unique nonzero eigenvalue modulo the action of Gal(g).
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We have the parabolic filtration F of (PpcVa)|o indexed by |pc — 1, pc]. Let w
denote the monodromy weight filtration of the nilpotent part of Res((y' 0y (p) ) on
Grf (Ppe Vo). Let ma: Fa(PpeVyjo) — Gr (Ppc Vo) denote the projection. Let
M :=min{la —b[|a,b € Par(PpcVa),a # b}. We take a small positive number §
such that 5rank73pCV < M/100. We set Fa+5k =1, ~1(W}). Then we obtain a
filtration F of PpcValo indexed by |pc—1+€, pc + €] for some small € > 0. Then F
is preserved by Res(¢)’ 9(p )) and the induced endomorphism on the associated graded
space Grf is semisimple. We may assume that the frame v is compatible with F.

Let F’ be a filtration of
indexed by |pc—1438, pc+46], determined by the condition that degﬁ/ (vij) = degﬁ (vj).

The multiplication of 7 !¢, induces an endomorphism of Ppe—ms2V. We have
(1) Vij =TViy1,j fori < p+m—1,and (771¢p)Vp4m—1,; is equal to the section s
induced by

—p—leéf’><¢;"v,-)=(—(a/p>vj+ ) yk-vk+zpu)<dcp/zp).

deg? (vi)<degf (v))

Here, yx are complex numbers, and u is a section of P, Vofp)' It degﬁ(vj o) = .
then sj0 + (/ p)Vo, jjo € F<,

The endomorphism n~!g of Ppc—m/2V is induced by the multiplication of the p'
power of n71¢,. Therefore (n?g)|o is compatible with F”, F’, and the induced endo-
morphism on Grf’ is represented by the matrix

m p
D IQEptii+ ) (—a/p) ® Eimyi.

i=1 i=1

Here, [ is the identity matrix and E;; denote the (p + m)—square matrix whose
(k,0)—entry is 1 if (k,£) = (i, j), and O otherwise. Then the set of the eigenvalues is
27V =1j/(p+m) g p (j=0,...,p+m—1). Thus, we are done. |

Corollary 3.4 The construction N, ,,9 *%° gives a functor from the category of the germs
of admissible filtered Higgs bundles to the category of the germs of admissible filtered
Higgs bundles whose slopes are strictly less than 1. O
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3.1.3 Inverse transform Let P,V be a filtered bundle on (U, 0) with an endomor-
phism g, which is admissible in the sense of Section 2.3.3. In this subsection, we
impose the following vanishing:

(CO) VO(I’O) =0 and V™ =0 unless p > m.

Note that the eigenvalues of g(7) go to 0 when 7 — 0 under the assumption (CO).

If (P«V, g) has slope (p,m), we consider the following complex on Uy ¢ :

n{ PV —>7r PV

The quotient is denoted by M.. If Ug is sufficiently small, the support of M, is
proper over Uz. We define

2pc+m
2(p—m)

These are locally free OU; —modules. For a < d’, we naturally have

Nz(pmc)Jrl(P*Vg) = m« M, Kz(p,m c) =

NPV, g) = NG (PaV. g)
which induce NS (P, V, g)(x¢) ~ N;O’O(P* V, g)(x¢). We have
NP PV, g) =SNG0 (P V. g)

for any a € R. Thus, we obtain a filtered bundle Ng° -0 (P«V,g) on (Ug,0). In the
general case, we define

NPV, g) = PNZOPVG™ g ™)

by using the slope decomposition of (PxV, g). The multiplication of —t~! gives a
meromorphic endomorphism f. We put 8 = fd{. The construction gives a functor
from the category of the germs of admissible filtered Higgs bundles satisfying (CO) to
the category of the germs of filtered Higgs bundles.

Proposition 3.5 (N;° -0 (P+V, g),0) is admissible. If (P+V, g) has type (p,m,0),
then N2°(P,V, g) has type (p —m,m, o') for some o', and moreover, the rank is
(p—m)rank V/p.

Proof We have only to consider the case that (P«V, g) has type (p,m,0). Let
@p: Uy — Uy be given by ¢,(n) = n?. Let ¢: U, — U; be given by ¢(u) = u?™".
Let P,V be the filtered bundle on U, obtained as the pullback of N:° ’0(73* V,g)
by ¢.
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We use the decomposition ¢, (Ps«V, g) = D (P« Vofp , ga ) We consider the follow-

ing complex on Uy ¢: aco

sp ) £ an L)
T Ppe Vy?! ——— i Ppc VP

The quotient is denoted by M/,. We have 2. M, ~ NED 1 oy 41 (P« V. g). Because
gé‘” ) (Py Vofp ) P<aVy V{P) | we have the following exact sequence, as in the case of
N0 (see the proof of Proposmon 3.3):

0 — 7§ Gl (Vi) = Grh, (VP = M, /M, — 0
It induces the following isomorphism of C—vector spaces:
N (PxV. g)

(p,m,c)+1
(13) Grp (ViPh) ~ —2
N2 Kz(pmc)+1(7D*V g)

We take a frame v of Pp, V&(p ) compatible with the parabolic structure. We set

Vij = nivj. By the isomorphism (13), they induce a frame of

N ipmer+1(PxV.8)

compatible with the parabolic structure. We set V;j 1= u “Iniv i . The tuple v induces a
frame of Pp(¢+1)—m/2V compatible with the parabolic structure.

We consider the endomorphism / := n"~? gép ) on Pre VO,<P ) , which is invertible.
We have n~?T"yP~™ — J on V. Let k be the integer determined by the condition
0<—-p+k(p—m)<p—m. Weseta:=—p+k(p—m). We have n"Pu? =
neu—ahk = pa—(p—m)y—a+(p=m)pk=1 e have

S LI ) (a+i<p—m).
b na+i_(P—M)u_(a+i)+17—mhk—1 (vj) (a +i>p— Wl)

Hence u?n~? preserves Ppc+1)—m/2V-

By the frames v and v, we have an isomorphism Ppc+1)—m/2Vjo and PpcVyjo @
CP~™_ We take a refinement F of the parabolic filtration of Py Vy|o such that F
is preserved by /o and the induced endomorphism on GrF is semisimple with a
unique eigenvalue 8. It induces a filtration F of Pp(c+1)—m/2V)0- (See the proof of
Proposition 3.3 for a concrete construction.) We express u?n~? by the matrix

Z Ea+i,i & ,Bkl + Z Ei,i+p—m—a ® IBk_II
on Grf ", with respect to an appropriate base. Then (PN (P,V, g),0) has type

(p —m,m,0") for some o’. O
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Corollary 3.6 The construction Ng° 0 gives a functor from the category of the germs
of admissible filtered Higgs bundles satistying (CO) to the category of the germs of
admissible filtered Higgs bundles. O

We denote (N"® (P4 V., 0), g) in Section 3.1.2 by NO°(P,V, 0) for simplicity. We
also denote (V2 %(P,V, g).6) by N0 (P, V. g).

Proposition 3.7 e Suppose that (P« V, 6) is admissible such that VO(I’O) =0 in
the type decomposition. Then we have a natural isomorphism of the germs of
filtered Higgs bundles N,.?O’ON,,?’OO(P* V,0) >~ (P.V,0).

* Suppose that (P«V, g) is admissible and satisfies condition (C0O). Then we have
a natural isomorphism of the germs of filtered bundles with endomorphisms
NEENZA PV g) = (PuV.g).

Proof Suppose that (P« V, 6) has type (p,m). Note that, if we set d :=k1(p,m,c),
then we have «»(p +m,m,d) = c. Let p; be the projection of Uz x Uy x Ugs onto
the i™ component. We have the following diagram on Ug xUr x Upr:

0+d¢
PPy p(V) = p*Po(V)dE/C

§—§’j jé—f’

PiPe=m/p(V) ordr piPe(V)dE/E

We regard it as a double complex, where the left upper piPc_/,(V) sits in the
degree (0,0). Let C*® denote the associated total complex. By construction, we obtain
Nf_i’lof\/,,?’oo(P* V,0) as p3«+H>(C*®). We can observe that it is isomorphic to the
pushforward of Q. in Section 3.1.2 by the projection U ; — Ug, which is naturally
isomorphic to P.V d¢/¢ ~ P,V . The action of —t~! is equal to f for the expres-
sion § = f d{. Hence, we obtain the desired isomorphism N° A2 PV, 0) ~
(P«V,0).

Suppose that (P« V, g) has type (p,m) with p > m. Let p; denote the projection of
Ur x Ug x Uy onto the i component. We have the following commutative diagram
of the sheaves on Uy x Ug x Uyps:

g—¢
pTPc—l V—s pTPc—l 14

(—f’(f_l)-f-l)di't l(—f’(f_l)-f-l)di'
pTPcV df —— PTPCV dg
g—¢
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We regard it as the double complex, where the left upper piP._;V sits in the degree
(0,0). Let C* be the associated total complex. By construction, Nf N ’0(72‘< V,g)
is naturally isomorphic to p3«H?(C*®). We can observe that it is naturally isomorphic
to the pushforward of M, in Section 3.1.3 by the projection U X Uy — Uz, which is
naturally isomorphic to P,V . The action of ¢ is given by g. Hence, we obtain the
desired isomorphism NP NPV, g) ~ (P V. g). O

3.1.4 Description of the functors Let (P4 V, 0) be a filtered Higgs bundle with slope
(p,m) # (1,0) on Ug. Suppose that there exists a ramified covering ¢q4: U, — Uy
and a filtered Higgs bundle (P«V’,6") on U, with an isomorphism ¢gs«(P« V", 0") ~
(P«V,0). For ¢ € R, we consider the following morphism on U, . :

70’ +dtd
7)q(c—rn/p) v Pyqc v’ dq/8q.

The quotient is denoted by Q... The following lemma is clear by construction.

. . . 0,00
Lemma 3.8 7,, Q. is naturally isomorphic to le (pm.c)(PxV.0). O

Let (P« V, ¥) be a filtered Higgs bundle with slope (p,m) on U, such that (p, m) #
(1,0) and p > m. Suppose that there exist a ramified covering ¢q4: Ur, — U and
a filtered Higgs bundle (P«V’,v’) on Uy, with an isomorphism ¢g+«(P« V', ¥') ~
(P«V.¥). Let ' = g’¢*(—t~2d1). For ¢ € R, we consider the following morphism
on Up, ¢:

PucV' £8PV,

Let M., denote the quotient. The following is clear by construction.

Lemma 3.9 7,, M., is naturally isomorphic to N/cojfg,m,c)+1 (P«V,2). |

3.2 Algebraic Nahm transform for admissible filtered Higgs bundle

3.2.1 Construction of the transform Let 7V :=C/LY. Let D C T" be an effec-
tive reduced divisor. Let (Px&, 6) be a filtered Higgs bundle on (7Y, D). Suppose
that it is admissible around each point of D in the sense of Section 2.3.1. We shall

construct a filtered bundle Nahmy (P&, 0) on (T x P, T x {oo}) from (P&, 6). We
begin with a construction of an object N (P&, 0) in D? (Orxp1)-

For 1 C {1,2,3},let p; be the projections of TV x T x P! onto the product of the i
components (i € I). Let Poin be the Poincaré bundle on TV x T'. Applying the
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construction in Section 3.1.1 around each point of D, we extend £ and £ ® Q)l{ on
X\ D to CO(P«&,0) and C1(P«E, 0), respectively. We set

COUPLE, 0) := pFCO(P«E, 0) ® pt,Poin® piOpi(—1),
Cl(PE.0) == piC (P&, 0) ® p},Poin.

Let ¢ be the standard coordinate of C, which induces local coordinates of 7V . We
have the holomorphic 1-form d¢ on TV Let w be the standard coordinate of C C P!,
which we can naturally regard as a section of Op1(1). Then we have a morphism

(14) 0+ wde: COPLE,0) — CL(PLE. D).
Thus we obtain a complex C*(Px&,0) on TY x T x P!, We define
N (P+€.6) := Rp23«(C*(P+E. O)1].
Lemma 3.10 There is a neighbourhood U of oo in P! such that H! (N (P+&,6)) =0

on T x U unless i # 0. Moreover, H°(N (Ps&, )T x(py are semistable bundles of
degree O forany P e U .

Proof Let 7; denote the projection of 7V x P! onto the i component. We have the
following complex C;(Px&,60) on TV x P1:

6 d
TFCO(PLE.0) ® 1 0pi (1) 2% el (p,e ).

By construction, N (Px€, 6) is isomorphic to @Jr(gf(ﬂké’, 0))[1]. If U is suffi-
ciently small, § + w d¢ is injective on TV x U, and the support of the cokernel is
relatively O—dimensional over U . Then the claim of the lemma follows. |

We consider the following vanishing condition.

(A0) HY(TV,C*(P+£EQ®L,O +wdl)) =0 unless i =1 for any w € C and any
holomorphic line bundle L of degree 0 on 7.

Under the assumption (A0), we naturally identify N (Px&, 6) with the 0™ cohomology
sheaf HO(N (P&, 0)), which is a locally free sheaf on 7 x P!. Indeed, C*(P+x&E ®
L, 0 4+ wd¢) is naturally identified with the specialization of c* (P«E,60) to TV x
{(L,w)}. Note that we always have H!(TV,C*(Px€ ® L,d{)) =0 unless i = 1 for
any L, which corresponds to the specialization at w = co. We define

Nahm(PxE&, 6) := N (P+&€,0) @ O yp1 (x(T x {o0})).
We shall define a filtered bundle Nahmy (P«&, ) over Nahm(PxE, 6).
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By Lemma 3.10, there is a neighbourhood U of oo € P! such that N (Ps&, T x{e1}
are semistable of degree 0 for any 7y € U. Let s C T x U denote the spectrum. We
have s N (T x {o0}) C D. We fix a lift of D to D C C. Then after shrinking U
appropriately, we may have a lift of s to § C C x U. We obtain the corresponding
holomorphic vector bundle ¥ with an endomorphism g such that Sp(g) C 5. (See
Section 2.1.3.) We have the decomposition

V.2)= P Ve.2p).

PeD

where Sp(gp) N (C x {oco}) is the lift P of P. We have the induced decomposition
onT xU,
Nahm(Px«£, 6) = @) Nahm(PxE.6)p.
PeD

Let Up C TV be a small neighbourhood of P € D. We use the coordinate {p :=
- P. By construction, we have a natural isomorphism Vp ~ N2 (P, (€, Nup)-
We have gp = g}, + Pid, where g}, is the endomorphism induced by {p. Thus,
we obtain a filtered bundle Nahmy (P«&, ) p over Nahm(P,E, 6) p by transferring
N (P«(€.0)|up). We obtain a filtered bundle Nahmy (P« &, ) over Nahm(P«&, 0)
by taking the direct sum.

Remark 3.11 We obtain a different transformation by replacing Poin and wd{ with
Poin” and —wd(, respectively, for which we can argue in a similar way.

Remark 3.12 In [10], the Fourier transform for Higgs bundles on smooth projective
curves are studied. The algebraic Nahm transform in this paper may be regarded as a
filtered variant, although we consider only the case where the base space is an elliptic
curve. We also remark that this construction is an analogue of the Fourier transform of
the minimal extension of algebraic meromorphic flat bundles on affine lines.

3.2.2 A property Let (P&, 0) be a filtered Higgs bundle on (7Y, D) which satis-
fies (AO).

Proposition 3.13 The filtered bundle Nahm, (P&, 0) is admissible and satisfies con-
dition (A3).

Proof of Proposition 3.13 Let (Px&, 6) be an admissible filtered Higgs bundle on
(TV, D). Clearly, Nahm(Px&, 0) satisfies (A1). It satisfies (A2) by Proposition 3.3.
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Let L be any line bundle on 7" with degree 0. In the following, we also naturally regard
itasapointin 7V. We set Nz := N (P«£,0) ® LY. We have the type decomposition

Ne=ED P ",
P p.m,o0

By construction, we have

P_172 Nahm(PoE. )% @ LY if (p.m.0) # (1,0.0).

PoNahm(PE, )00 LY if (p.m,0) = (1,0,0).

(NLE = {
PQL,0

Here, P® L € TV denotes the multiplication of P, L € T in the group 7"¥. We shall
study the cohomology of Ny, and its variant. Let us consider the following complex
on TV xTxP!:

~ ~ O+wdt ~ ~

Cl:=C'® piLY —= J Cl=C'®piLY.

By construction, we have Ny =~ R1p23*5]:. We have Rplz,,fz ~ Rlplz*gz[—l] ~
Cl(P«E,0) ® Poin® LV[—1] on TV x T . For the projection 7: TV x T — TV, we
have R4 (C1(P+E,0) @ Poin® L) ~ C1(P+E,0) ® Ry (Poin® LV)[—1], which
is a skyscraper sheaf C1(Py&, ). at L. Hence, we have

, ~ 0 | #£2),
(15) H’(TVxTxIP’l,Ci):{Cl(PE o 27:23

We obtain H*(T xP', N;)=0unlessi =1,and H'(T xP!, Np) ZCI(P*5,9)|L.
We have

Rp124(C; ®@0p1(=1)) = R' p124(C; ®O0p1 (= ))[-1]=C(P:E, ) @Poin®@ L[~ 1]

on 7 x TV . Hence, we have
. ~ 0 (i #2),
H(TYV xT xP',C @ Opi(—1 :{
( LEO D= \cope 0y, (=2,

We obtain
H(T xP', Np  Opi1(=1)) =0  unlessi = 1,

HY T xP' N ® Opi1(=1)) = C*(P«E,0)L.

Lemma 3.14 The map H'(T x P!, Ny ® Op1(—1)) - H (T x P!, Np) induced
by the multiplication of w is equal to the map C°(Px&, ) — CL(PLE, 6),r induced
by 8, up to signatures.
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Proof Let V; (i =0, 1) be vector spaces with morphisms fy, foo € Hom(Vy, V7).
Let ax: Op1(—1) = Op:1 be morphisms induced as Op1(—1) ~ Opi(—{x}) — Op1.
The induced morphisms Op1(—m — 1) — Op1(—m) are also denoted by o .

We consider a complex C*® on P! givenas C® = Vy® Op1(—1) and C! = V| ® Op1
with 500 — feo®oo. We have HI(P!, C®) >~ V; and H!(P!,C* ® O(-1)) ~ V.
The morphism g induces C* @ Opi1(—1) — C*®. Let us prove that the induced map
a: HY(P!, C* ® Opi1(—1)) — H! (P!, C*) is equal to fo up to signatures under the
identifications, which implies the claim of the lemma.

We can check this by a direct computation or use the following argument. We consider
a double complex given as follows: We set C%° =V, ® O(=2), C°! = V; ® O(-1),
C'0=V,®O(-1) and C'"' = V; ® O©. The morphisms C° — C!/ are given by
g, and the morphisms C*® — C’! are given by fy00 — feoloo-

Fori = 0,1, we set Dij =C¥j and ij =0 for k # i. Then we have an exact
sequence of the double complexes 0— D” — C** — Dg* — 0. Similarly, we
set E’ "'=CJi and E; ik 0 for k #1. Then we have an exact sequence 0 —
E}* - C** — Eg* 0. We set F) =C% and F” =0 for (i, j) # (0,0). We
set F, =i for (@, j) # (0,0) and F 00 — . Then we have an exact sequence
0— F 1*— C** — F3* — 0. We have the following commutative diagrams:

D;. C[IO Da. E;. CL.. E(;.
Fl.. C.Q F(;. Fl.. C.. F(;.

The natural morphisms H* (P!, Tot D?*) — H*(P I Tot F?P*) < H*(P 1 Tot E?*) are
isomorphisms. The map a is regarded as the connecting homomorphism of the long
exact sequence associated to 0 — Tot D}* — Tot C* — Tot D§® — 0. The cokernel of
C% — C1 are the skyscraper sheaf at oo, whose fibres are V;. Hence, the connecting
homomorphism for 0 — Tot E7* — TotC** — Tot E5* — 0 is foo up to signature.
Thus, we are done. |

For any Y, let (oo: ¥ X {00} — Y x P!. The morphism Ny — Loox VLT x {00}
is obtained as the pushforward of 5’ — i0ox(C'/C® ® Poin ® LV). Therefore,
HY T xP',Ny) - HU(T, NL|Tx{oo}) is identified with C1 — (C /C0)|L By
construction, the parabolic filtration of ((N L)( ))|T x{oo} 18 1nduced by the isomor-
phism ((NL)(1 D)\ Txfooy = (CI/CO)(1 N ® OT
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We have the following commutative diagram:

H(T xP' NL® O(-1) = H'(T xB'.G”, (NL) %))

bz b3l2

HY(T xP',Ny) HY(T xP'.Grf) ((NL) pp))

4

Here, b, and b3 are induced by the multiplication of w. By the previous consideration,
the composite b4 0 b, is identified with

Clp = Gri ((C'/CO)p),
which is surjective. Hence, by is surjective. Let Nz denote the kernel of
NL ® O(—1) = G (Np)§.

From the surjectivity of »; and the fact that H>(T xP!, Ny ® O(=1)) =0, we obtain
H?*(T xP!, N7) = 0. By the construction, N7, C Py Nahm(PE,0) ® LV satisfies
the conditions in Section 2.4.2, and we have

(NL)(()I’(’)O) = P._1(Nahm(PxE€,0) ® Lv)(()f(,)o)'
Hence, by Lemma 2.14, Nahm, (P&, 0) satisfies condition (A3). -

3.2.3 Characteristic number For compact complex manifolds Z; (i = 1,2), let
wz, € H *(Z1 x Z,) denote the pullback of the fundamental class of Z; by the
projection.

Let (P«&, 0) be a filtered Higgs bundle on (7Y, D) satisfying condition (A0). We
shall study the characteristic numbers of Nahm(P.&, 0).

Lemma 3.15 We have / c1(Nahmg, (P«€, 0))wp1 =0 forany a € R.
T xP1

Proof This follows from Nahm, (P&, 0)/ Nahm,(P+E, 0) being of degree 0 for
any a € R. a

The following lemma can be checked easily.
Lemma 3.16 c¢,(Nahmg(P«€&, 0)) is independent of a € R. |

Because of the lemma, we will denote ¢, (Nahmg(P«&, 0)) by co(Nahmy (P&, 6)).
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We have the type decomposition (P«&, 0) |y, = EB(p,mgo)(P*SI(,p;m), Gg,p;m)) on a
small neighbourhood Up of each P € D. We set
£p = dim Cok(Res(0): Gr}) (51(,,1;)0)) — Gr)) (51(,160))).

We put rl(,po’m) = rank(EI(,p;m))/p and rl(,p’m) =), 7™ We have > (pm) ), —

P,o p,m 'p

rank £.
Proposition 3.17 The following equalities hold:
(16) rank Nahm(P,.&, 0) = ZZrl(,p’m)(p—km)—Zﬁp.

P pm P
a7 / c1(Nahmy (P«&, 0)) - o = deg(P«E).

T xP1
(18) / ¢y (Nahmy (P« €, 0)) = rank £.
T xP1

Proof Let us prove (16) and (17). We have only to consider the rank and the degree
of Nahmy (Px«&, 0)4gyxp1 - Let V C P1E be the subsheaf determined by the following
conditions:

e V =P;€ on the complement of D.

e It has a decomposition V = P p.m,0 V;,p "Jm) around each P € D.

e  We have Vg,{’(’,m) = 731/251(,1;;"1) for (p,m,0) # (1,0,0), and VI(,I’E)O) =P 51(,1’60).

Let 7; denote the projection of TV x P! onto the i component. We have the
K-theoretic description

(19)  (C1(P+E.0) —CO(P+E.0))1v xi0ixp!

(p.m)
ZET(V_Z O;?ep) _”;O]pl(—l)'nf(l/—z Z O;‘?rP,o (p+m))'

PeD PeDp,m,0
The Chern character of (19) is equal to

20) wfch(V)— > Lporv—(1—wp1) (n;* ch(V)-Y "> rm (p —|—m)a)Tv)

PeD P p.m

= (ZZrl(,p’m)(p —i—m)—ZEp)a)Tv
P

P p.m

+ wpi 7] ch(V) — wp: Z Zr},p’m)(p +m)ory.
P p.m
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Hence, the Chern character of N (P«&, 0)o1xp! 18

(21 ZZr},”’m)(p—i—m) Zﬁp—l—wpl(deg()}) ZZ (p’m)(p+m))

B opm P pm
=22 m) - Zﬁp +a)]p1(deg(V( D)) — ZZr“”’")m).
popm P pm

In particular, we obtain (16). We also obtain

deg(N (P+E, 0) oyxp1) = degV(=D)) = 3 > ri™m.
P p.m

We set a(p,m,0) = —% if (a,m,0) # (1,0,0), and a(1,0,0) := 0. For the parabolic
characteristic numbers, we have the expressions

22) deg(P+f) = deg(V(=D)) = > Y 8(PLEL. a(p.m. o)),
PeD p,m,o

(23)  deg(Nahmy(P«E, 0)1o3xp1)
=deg(N (P+&. O)jioyxp)— . Y 6(Nahm(PE.0)F ™™ a(p.m. 0)).
PeD p,m,o

Here, (B, a(p, m, 0)) denote the contributions of the locally given filtered bundles B
to the parabolic degree. (See Section 2.2.3.) In the following, we omit a(p, m, 0). In
the case (p,m,0) = (1,0,0), we have

@4 SMNahm (P& O)5) = > cdimGrl Nahm(PoE. 6)’ )

—1<c<0
= Z ¢dim Grf (51(;’60)) = 5(7)*519,60))'
—1<c<0

Let us consider the case (p,m,0) # (1,0,0). Let ¢,: U, — Up be given by ¢, (1) =
u? . We have the decomposition

05 (PLELT 65) = APy Ve ).
aco
For any ¢ € R, we put
r = dim Grl, V,
It is independent of the choice of o € 0. We have

: m€—J
SPEL = 3 = Y rle=1- D),

—p/2—1<c<—p/2 P —p/2—1<c<—p/2
0<j=<p-1
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We also have the following equality from the expression of the parabolic structure of
N2 (P,E, 6) in the proof of Proposition 3.3:

20-2j -
(25)  S(Nahm(P.&.O)FI™™y= Y r}(,{’o’f';)—;( . )m
—p/2—1<c<—p/2 pm

0<j=p+m—1

= Z rl(,,{’;i'é)(c—m—%(p—l)).

—p/2—1<c<—p/2

Then the equality (17) follows from ) .0 rl(,p ;";) = rl(,p )

Let us prove (18). We have [, p1 c2(Nahmy(P+&, 0)) = [1, p1 c2(N (P+E, 6)). We
also have

[ c2(N (P, 0)) =—/ chy (N (P+E, 0)) = —/ ch3(C' =CY).
TxP1 TxP1 T

VxTxP!

We have chj (51) =0 and ¢; (Poin)?> = —2wrwrv . We also have

/ ch; (50) = / rank(V)ororvop: = rank()).
TVxTxP! TV xTxP!

Hence, we obtain (18). O

3.2.4 Stable filtered Higgs bundles of degree 0 We consider the standard stability
condition for filtered Higgs bundles on (7Y, D). For any filtered bundle (P«&, ) on
a projective curve (X, D), we define the slope j1(Px&) := [y par-c|(P«E)/rank €.
The bundle is called stable (resp. semistable) if w(PxE’) < w(P«E) (resp. w(PxE’) <
1 (PxE)) for any nontrivial filtered subbundle P&’ C Py& such that H(E') C £’ @ QL.
A semistable filtered Higgs bundle is called polystable if it is a direct sum of stable
ones. The following lemma is easy to see.

Lemma 3.18 If (P«&, 0) be a stable Higgs bundle on (T, D), then its dual is also
stable. m|

The following proposition is standard.

Proposition 3.19 Let (P«£,0) be a stable admissible filtered bundle on (T, D)
with deg(P«&) = 0. If rank € > 1, it satisfies condition (AQ).

Proof of Proposition 3.19 Indeed, an element of HO(TV,C*(P+E ® L, 6 + wd())
corresponds to a morphism (O7v(xD),0) — (P«€ ® L, 6). By the stability with
deg(P+«€) =0 and rank £ > 1, we obtain that such a morphism has to be 0. We obtain
the vanishing of H? from the following lemma.
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Lemma 3.20 H/(TV,C(P«EY,—0Y)) is naturally isomorphic to the dual space of
H2-(TV, C(PLE. 0)).

Proof We use the natural identification QITV ~ Orv.Let P € D. We have
8(1’0) \ gV (1,0) __. Cl gV —QV (1,0)

(PO P,0 ) — 7D<1( )P,O —- (P* ’ )P,O .

Let & denote the projection Py(E V)(1 0) GrP((S V)(Il,’g)). We have a subspace
P (n(1,00\V P (1,0)
Ker(Gry (GP,O )") CGry ((5V)P,o )-
We have a natural isomorphism
COPEY.—6Y) 50 = m (Ker(Grf (05) ")) = (C' (PeE.0)5y)) .

The Higgs field —6" induces

CO('P*SV, —QV)SDI:(?) N CI(P*EV, _QV)%},(;)).

s

The complex C*(PEY, —GV)SDI’(?)[I] is the dual of C*(Px&, —GV)SDI’(?). The natural
inclusions induce a quasi-isomorphism

CH(PEY, =0V)3 ) — C* (P, —0) 3.

For (p,m,0) # (1,0,0), the dual of the complex C*(PxE, 9)%’;,’") is

P<1/2(5V)(P m) _) 7)<3/2+m/p(gV)(P ,m)

where the first term sns in the degree —1. It is moreover naturally quasi-isomorphic
to C*(P«EY, —GV)(p o™ [1]. Then the claim of the lemma follows from Serre duality.
Thus, we complete the proof of Lemma 3.20 and Proposition 3.19. |

3.2.5 Filtered Higgs bundles of rank 1 on (7TV, D) Filtered Higgs bundles of
rank 1 are always admissible and stable. Let (P&, 0) be a filtered Higgs field
of rank 1 on (7Y, D). For each P € D, we have the complex number Resp(f).
We also have a(P) € R such that Par(P«&, P) = {a(P) +n |n € Z}. Such an
a(P) is uniquely determined in R/Z. We say that P is a nontrivial singularity of
(P&, 0) if (Resp 8,a(P)) # (0,0) in C x (R/Z). If P is a trivial singularity, ie
(Resp 6,a(P)) = (0,0), we obtain a filtered Higgs bundle on (TV, D \ {P}) by
considering the lattice Py(£) around P. The following lemma is clear.
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Lemma 3.21 Let (P«&, 6) be a filtered Higgs bundle of rank 1 on (TV, D).

e Ifeach P € D isa trivial singularity of (P«&, 6), then (P+«&E, 0)~(L(x D), d{)
for some o € C and some line bundle L of degree 0. Here the parabolic structure
of L(xD) is given in a typical way as in Section 2.2.2.

e Ifone of P € D is a nontrivial singularity of (P«&, 0), then (P«&, ) satisfies
(A0). O

3.3 Algebraic Nahm transform for admissible filtered bundles

3.3.1 Construction of the transform For I C {1, 2, 3}, let p; be the projection of
TV x T x P! onto the product of the i components (i € I). Let Poin denote the
Poincaré bundle on 7V x T .

Let P4 E be an admissible filtered bundle on (7' x P!, T x {oo}) satisfying condition
(A3). We put D := Sp(P«E). We define

Nahm(PxE) := R p1«(pF,Poin” & p3,P_1 E) @ Orv (D).

By (A3), Nahm(P« E) is a locally free Opv (x D)—module. By Lemma 2.13, we have
a natural isomorphism

Nahm(Px E) = R' p14(p},Poin” ® p33PoE) ® Orv (xD).

Let w be the standard coordinate of C C P!, It naturally gives a section of Op1(1). The
multiplication of —w induces an endomorphism f of Nahm(P« E). We obtain a Higgs
field 0 := fd{ of Nahm(PxE). We shall define a filtered bundle Nahmy (P« E) =
(Nahmg (P« E) | @ € R) over Nahm (P« E).

We have the type decomposition PxE = P pep D p.m.o Pr Eg,p l’)m) on a neighbour-
hood of T x {oo}. Let U C P.E be an Op,p1—submodule for some large ¢ € R,
satisfying the conditions in Section 2.4.2. We suppose

P, E}l”oo) C u}l’bo) C Po Eg,;)o)

for any P € D. We define N(U) := R' p1«(p},Poin’ ® p3,U). By Lemmas 2.13
and 2.14, we have Ripl*(pi"zPoinV ® p33U) =0 unless i =1, and N () is a locally
free sheaf on TV.

We have the following object in Db(OT\/XPl):

RFEM_(U) := Rp13x(p},Poin” & p3l0)[1].
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We can express REM_(U/) as a two term complex of locally free O ,p1— modules
N_i 5 No.

Because « is generically isomorphism, it is injective. Hence, we have REM_ () >~
HO(RFM_(U/)). We will not distinguish between the two.

Suppose 0 € D. Let Uy C TV denote a small neighbourhood of 0. Let Wy, C P! be
a small neighbourhood of co. We have the decomposition

REM_ () yyxio, = €D REM_(USZ™).

p,m,o

If (p,m,0) # (1,0,0), the support of RFM_ (Ué’;’m)) is proper over Uy. Hence, we
have the decomposition

(26) REM_U) gt = @D REM_UE™) @ MU).
(p’m’0)¢(1’0’0)

Here, M(U)y,xw,, =RFM_- (L{(g 160)) . We have similar decompositions forany P € D.

We have N (U)(x D) =Nahm(P«E). The following decomposition around any P € D
is induced by the decomposition (26) considered for P:

Nuy = P N

p,m,o

In particular, we have the following decomposition around any P € D:

27) Nahm(P, E) = @) Nahm(P.E)¥".

p.m,0

We fix a lift P € C of any P € D, and we use a local coordinate {p := ¢ — P around
P. Let W4 be a small neighbourhood of co. We have the filtered bundles

(P 85"

with an endomorphism on (W, 00), as in Section 2.4.1. If (p,m,0) # (1,0,0), we
have a natural isomorphism

Nahm(Px E)g:;w ~ N0 (P, }{’0””), g ;;;m)).
Under the isomorphism, we define

Nahmq (P, E)J:" := NGO (P, ViEm g (rm).
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Let us consider the case (p,m,0) = (1,0,0). First, we define

Nahmo(PxE)py) i= N(P_1 E) ).
- (1 0) (1,0) . ]
We set €p:=PoEp,’ /P-1Epy - We have the following exact sequence around P:

0> N(P_1E)oy) = N(PoE)5 ) — R pra(plyPoin ® p3;€p) — 0.

We may regard €p as a locally free sheaf on 7', and then it is isomorphic to a direct
sum of some copies of the line bundle corresponding to P. Hence, the multiplication
of p on R p1(p,Poin® p3,€p) is 0. This induces a surjection

N(PoE)y 3y = N(PoE)py) ® Op — R' pra(plyPoin® p3,Cp).

Let K denote the kernel. We have the morphisms

. h
R p1a(piyPoin® pis€p) = N(PoE)y oy [ K= N(P_1E)5 .

Here, h is the injection induced by the multiplication of {p. We have a natural
isomorphism of C —vector spaces

Hence, for any —1 < ¢ < 0, we define

Fe(Nahmo(P+E) 5y’ ® Op) = Fe(Po Vi),

We also set Fo(Nahmg (P E)(1 :0) ® Op) = Nahmg (P E)(1 :0) ® Op. The filtration
of Nahmgy (P« E )SD o %0 P 1ndexed by |—1, 0] induces a ﬁltered bundle

Nahm,(P+E) 3 — Nahm(Py E) ).

We obtain a filtered bundle Nahmy (P« E) over Nahm(Px E) by taking the direct sum.

Proposition 3.22 Nahm, (P, E) with 0 is admissible, and satisfies condition (A0).
Moreover, the complex

NV ® Opi(—1)) —> N(V)

naturally identifies with C*(Nahmy (P« E)). Here, V C Py E is an Oy p1 —submodule
satistying the conditions in Section 2.4.2 and

(p.m) PoE(l ) (p.m,0) = (1,0,0),
Vpo = (p m) .
’ P_12EZ)"  otherwise.
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Proof of Proposition 3.22 If (p,m,0) # (1,0,0), then by Proposition 3.5, we have
Nahmy (P« E )S;D;m) with 6 is admissible. Moreover,

NV ® Op1 (-1) " = Ny E)

is naturally identified with C®*(Nahm, (P« E )(p m)) by the construction.

Lemma 3.23 Nahm,(PxE )(1 9) with @ is admissible of type (1,0, 0) and the com-
plex

N(PLE)S) == N(PoE)Sy

is naturally identified with C*(Nahm(Pyx E )(1 0))

Proof We use the above notation. The morphism f induces

1,0 1,0
foi N(P_IE)S’,ORO - N(,POE)EJ’(”)()/K

The endomorphism

fooh on N(POE)S;O‘?O/K

is identified with

—wgg,l(;)) on POVISIO(IBO

It is nilpotent, and it also preserves the parabolic filtration on Py VIQO?) . By the

construction of the parabolic filtration, & o f; preserves the parabolic filtration on
N(P_1E)§ oy Thus, we obtain that Nahm,. (P« E) g is admissible of type (1,0, 0).

By construction, we have a natural isomorphism
N(P_1E)y)y) ~CO(Nahm(PLE) ).

Because ¢p - N(POE)(1 0) N(P_lE)g,l’é)) and QITV ~ Orv, we have the natural
morphism
A: N(PoE)3 Y — N(P_1E)p ) @ Q' (P).

Let p denote the natural map

N(PoE)5y) — N(PoE)y g/ K ~ PoViylan,.

By the construction of Nahm, (PxE )g,l é)), the image of p~1(F-g) by 4 is equal
to P<o Nahmy (Py E )(1 0 @ QI(P). By the construction of 6, Im(A4) also contains
O(N(P-1 E )(1 0)) Hence C!(Nahmy (Ps E )(1 0)) is contained in Im(A4). We remark
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that the following morphism is surjective, because H*(T xP!,P-_1E ® L) = 0 for
any holomorphic line bundle L of degree 0 on T :

28) NP1 E)py’ = R'pra(piyPoin® p3y i (Ep"))
. 1,0
=~ R'p1e(p},Poin® p3; Grg (Ep))).
It implies that the morphism

N(P_1E)5 — PoVylan./ F<o

which is induced by 6 is surjective. Then we obtain that Im A =C! (Nahmy (Px E )SDI ’00)) .
The proof of Lemma 3.23 is finished. |

Let us prove that Nahmy (P« E) with 6 satisfies condition (A0). For I C {1,2, 3},
let p; denote the projection of TV x T x P! onto the product of the i™ components
(i € I). For any a € C and a line bundle L of degree 0 on TV, consider the complex

Ci=(phP1E® plyPoin® pTL = p3 PoE ® plyPoin piL)
where the first term sits in the degree —1. Since R pl*g is the complex
N(P_1(E))® L —— N(POE)®L
on TV which is identified with C*(Nahm4(E) ® L, 0 + ad{), we have
HY(TY x T xP!,C) ~ H (T, C*(Nahm«(E) ® L, 6 + adt))

Because Rpj34C is quasi-isomorphic to P_ E ¢y yxpt = PoE|(1)xp1 . Where the first
term sits in the degree 0, we have H! (T x T x P!, C) = 0 unless i = 1. Thus, we
obtain that Nahm, (P« E) with 6 satisfies (A0), and the proof of Proposition 3.22 is
finished. |

We denote the filtered Higgs bundle (Nahmy (P« E), ) just by Nahmy (P« E).

Remark 3.24 We obtain a slightly different transformation by replacing Poin with
Poin” , for which we can argue in a similar way.

3.3.2 Inversion

Proposition 3.25 e Let (P«£,0) be an admissible filtered Higgs bundle on
(TV, D) which satisfies condition (A0). Then we have a natural isomorphism
Nahmy (Nahmy (P+ &, 0)) >~ (P&, 0).

o Let Py E be an admissible filtered bundle on (T x P!, T x {oo}) satisfying (A3).
Then we have a natural isomorphism Nahmy (Nahmy (P« E)) >~ P+ E
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Proof Forany I C{1,2,3,4},let p; denote the projection of TV xT xP!xT" onto
the product of the ;™ components (j € I). We set C’ := C*(PxE, ). We consider
the following complex on TV x T x P! x T'V:

piC’ ® pt,Poin® Opi(—1) ® pi,Poin” Srrwdt, pic' ® pt,Poin® pi, Poin".
We denote the complex by C*. We can observe that Rp;4+C® is quasi-isomorphic
to p’fC1 ® Oa[-2], where py: TV x TV — TV denotes the projection onto the first
component, and Oa denote the structure sheaf of the diagonal. Hence, Rp44C® is nat-
urally isomorphic to C![—2]. We can also observe that Rp,34+C® is quasi-isomorphic
to g1, N (P+£,0) ® q75Poin”[—1], where ¢; denotes the projection of 7" x Pl xTVv
onto the product of the i™ components (i € I'). Hence, we have Rp4+C®(xD) is quasi-
isomorphic to Nahm(Nahmy (P&, 6)). We obtain an isomorphism of meromorphic
Higgs bundles
Nahm(Nahm(Px&, 0)) ® O(xD) ~ (£, 0).

If (p,m,0) # (1,0,0), then we obtain the comparison of the filtered bundles over
51(91” l’,m) from Proposition 3.7. We obtain the comparison of the filtered bundles
over 5)9,60) directly from the construction. Thus, we obtain the first claim.

Let P4 E be an admissible filtered bundle on (T x P!, T x {oo}) satisfying (A3). Let
Y C Py E be as in Proposition 3.22. By Proposition 3.22, we have C°(Nahm, (Px E)) =
NV ® Opi(—1)) and C!(Nahm« (P« E)) = N(V) d¢. The differential C® — C! is
induced by the multiplication of —w. We shall rewrite the complex

50 O+wdf ~4
(29) CO(Nahmy (Px E)) ——22% G1(Nahmy (Px E)).

For I C {1,2,3,4,5}, let p; denote the projection of T x P! x TV x T x P! onto
the product of the i™ components (i € I). We set

Co = pl,(V® Opi(—1)) ® pi;Poin” & p;,Poin® p:Opi(—1),
C := p},V ® pi3Poin” ® p;,Poin.

We regard Op1(1) = Opi1({oo}), and let i: Op1 — Op1({oo}) be the natural inclusion.
Let G: Co — C; be induced by —pSw ® pit+ p5t® piw. Then (29) is naturally
isomorphic to

R1P345*(C0 LA Cl)-

For I C {1,2,3,4} let g7 denote the projection of 7 x TV x T x P! onto the product
of the i components (i € I). The complex

P1345*(C0 LA Cl)
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is quasi-isomorphic to
414V ® ¢, Poin” ® q55Poin[—1].

For I C {1,2,3}, let 57 denote the projection of 7 x T x P! onto the product of
the i™ components (i € I). We have a natural isomorphism

q134%(q74V ® 41, Poin” & q53Poin[—1]) ~ 573,V ® s7,Oa-2].

Here, O denote the structure sheaf of the diagonal in 7 x 7. Then we obtain a
natural isomorphism V >~ N (Nahm(PxE, 0)) as Opp1—modules. If (p,m,0) #
(1,0,0), then from Proposition 3.7 we obtain the comparison of the filtered bundles
over V(x(T x {oo}))%f;m) The comparison in the case (p,m,0) = (1,0,0) follows
directly from the construction. O

Corollary 3.26 Let P.E be an admissible filtered bundle on (T x P!, T x {oc})
satistying the condition (A3). We have

deg(P« E) = deg(Nahm(P« E)).
Proof It follows from Propositions 3.17 and 3.25. a

3.4 Refinement for good filtered Higgs bundles

3.4.1 A stationary phase formula We have the following type of stationary phase
formula for the local Nahm transform, which is analogue of the stationary phase
formula for the local Fourier transforms. (See [15; 17; 20; 41], Laumon [30] and
Malgrange [32].) We will prove it in Section 3.4.4 after the preliminaries in Sec-
tions 3.4.2-3.4.3.

Theorem 3.27 Let U; be a small neighbourhood of 0 in C¢. Let (P«V,0) be an
admissible filtered Higgs bundle on U .

o (PyV,0) is good if and only if NO°° (P, V., 0) is good.

e Suppose (PxV,0) >~ ¢p«(PxV',0"), where 6’ — daid is logarithmic for some
ae Z;I(C[Cljl] with deg;—1 a =m > 0. Then there exists (P« W’ ") onUy,,,,
such that '—db is logarithmic for some b € rpjlm(C[f;jlm] with degtpim b=m,
and we have an isomorphism

(/)p“l‘m*(P* W,’ w/) ~ N,S’OO(P* V, 9)

Moreover, we have an isomorphism Grf(V/ ) ~ Grz,)_m /Z(W/ ) under which
Res(¢,6)) =Res(¢, ., ¥"). (The choice of b will be explained in the proof.)
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o If (P«V,0) is logarithmic, (P«W,{) := NS’OO(P* V,0) is also logarithmic.
Moreover, we have an isomorphism

Grz,)(V) (-1 <c<0),

P ~
Gre (W) = {Im(Res(e): Gry (V) = Gy (V)) (c=0).

Under the isomorphism, we have Res(y) = Res(6).

We obtain the following corollary from Theorem 3.27. (Recall the notion of good
filtered bundle in Section 2.4.1.)

Corollary 3.28 e Let (P&, 0) be a good filtered Higgs bundle on (T, D) satis-
fying (AO). Then Nahmy (P«&, ) is a good filtered bundle on (T xP!, T x{oco}).

o Let P+E be a good filtered bundle on (T x P!, T x {oo}) satisfying (A3) with
Spoo(E) = D. Then Nahmy (P« E) is a good filtered Higgs bundle on (T, D).

3.4.2 Description of the parabolic structure of N, ,? P (PLV,0) Let (PyV,6) be
a good filtered Higgs bundle on (Ug, 0). For simplicity, we assume that (P« V, 6) has
slope (p,m). We take a € 0 for each o0 €Irr(6). Let c € R. We take a frame vy = (v,,;)
of Pep, V{ that is compatible with the parabolic structure. Each ¢Jvo,idzo/ 2o induces
a section [{J vo,idzo/zo] of NO%°(P,V,0). The following lemma is clear by the
construction of the filtered bundle NO*™ (P«V,0). (See the proof of Proposition 3.3.)

Lemma 3.29 The tuple
{84 vo,id 8o/ o] | 0 €Irr(B), 0 < j < po+mg, 1 <i <rank V?}

is a frame of N /?1’(()107 m.c) (P«V,0), compatible with the parabolic structure. If the
parabolic degree of v, ; is b, the parabolic degree of [{J v, id8s/Co] is (b — j —

mo/2)(Po +mu)_1- O

3.4.3 Description of the parabolic structure of N/ ° ’0(’P* V,g) Let (P«V,g) be
a filtered bundle with an endomorphism on (Uy, 0) such that Py V with ¥ :=—1"2gdt
is a good filtered Higgs bundle. For simplicity, we assume that (P, V, g) has a slope
(p,m) with p>m #0.

We take a € o for each 0 € Irr(y). Let ¢ € R. We take a frame vy = (vo,i) of Pep, Vy
that is compatible with the parabolic structure. Each 7J vo,; induces a section of
N0 (P,V, g), denoted by [zJ v;]. The following lemma is clear by the construction
of the filtered bundle A/¢° ’0(73* V, g). (See the proof of Proposition 3.5.)
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Lemma 3.30 The tuple

tJvei]|lo eIrr(¥), 0< j < po—mo, 1 <i <rank V°
s J p a

is a frame of N :20 (’2 m.c) (P«V, g) that is compatible with the parabolic structure. If the

parabolic degree of v,; is b, the parabolic degree of TJ ve ; is (b — j + po—mo/2) -
(Po—mo) ™. d

3.4.4 Proof of Theorem 3.27 Let us return to the situation in Section 3.4.1. Let us
begin with the third claim. We obtain the isomorphism of the associated graded vector
spaces by the construction of Py W . We have the expression 6 = f d{/{, where f is
an endomorphism of P,V . It naturally induces an endomorphism f’ of P, W, and
we have Y = f/ dt/t by the construction. Thus, we obtain the third claim.

Let us consider the second claim. Our argument is close to that in [15]. To simplify the
notation, we set 1:= Ty, and u:={¢,. Weset G(u) :=ud,a(u) = Z;-’Ll Olju_j. Let
w 1= e2"V=1/(P+m) "We have holomorphic functions u® () (i =0,..., p+m—1)
on U, satisfying Bnu(i)(O) = Bnu(o) (0)w’ # 0 and

Gw® () + pu® ()P /pP ™ = 0.

For any ¢ € R, we consider P._,,/2V := Pc_m/zgo;+mN0’°°(77*V, 0). We take a
frame v of P, V' compatible with the parabolic structure. We put v;; := (n~u)v i
0<i<p+m—1,1=j <rankV’). They induce a frame of P._,,/,V, which is
compatible with the parabolic structure. By the frames, for ¢ — 1 < d < ¢, we obtain
an isomorphism

(30) Grj_, (V) =Gy (V) @ CP+™,

The following lemma can be checked by a direct computation.

Lemma 3.31 7~ 'u gives an endomorphism F of P4V . On GrZ;_m /2(V)’ we have
F@; ) = Vi1, i<p+m-—1,
bJ —p_lOlmT)’(),j l:p+m—1
The eigenvalues of F on Gr” are anu(i)(O) i=0,....,p+m—1). a

By the lemma, we obtain the decomposition (P« V, F) = EBJP :(;n 1Py, FU) such
that F, |(0j) has a unique eigenvalue 8nu(j )(0). Note that we have a natural isomorphism

NO’OO(,P* v, 9) = (/’p+m*(73*v(0), f(—‘[_zd‘[)).

We also have an isomorphism Grf(V/ ) ~ Grf_m /Z(V(O)).

Geometry € Topology, Volume 18 (2014)



2880 Takuro Mochizuki

We have the expression 0, = (G(u)+ f) du/u, where f is an endomorphism of Py V.
On Pe_pm 2V, we have 0 (G (u) + pu? /nP+T™M) = —n™ f . We have the decomposition

" (G(u) + pu? [nP+™) —
= u—n"u@m)xp [T 7 u—n""u@ ) ')
i=1

1

Because n~'u—n~'u) () (1 <j < p—m) are invertible on Pc_m/ZV(O), we obtain

the following on P,_,, /ZV(O):

p+m—1
nlu—nTu @Oy =—p~tym - T 07— u D ) )™
j=1

Let Qk('xv J/) = Zi-}—j:k xiyj. ‘We have

(0)( p

u™(n) . _ o

e =7 " u =0 u @) - Qpi (17 u ™ O ()
p+m—1

=—f [] G tu=n""uDam) " G uymp~!
= < Qp (17w @ ()

Hence, we obtain that (¢/7 —u©@ ()2~ 2~™)P, V@ c P, VO On Gr? (V@) the
endomorphisms /7 and 1% () /7 are the multiplication of 8,7u(0) (0). Hence, (¢/7—
u©@()Py=P=™) acts as —(p +m)~' f on GrF (V). We set Px W' := P,V and
V' ==t 2dt =—(¢/t)(p+m)dn/n. Wehave b € n~!C[n~!] uniquely determined
by the condition that nd,b is equal to the polar part of —(p+ m)u©@ (n)Pyn~P~™  Then
Y’ —db is logarithmic. The residue acts as /. Hence, the second claim of Theorem 3.27
follows. It also implies the “only if” part in the first claim.

@Bl §/r—

Let us prove the “if” part of the first claim. We use the inverse transform. Let (P« W, ¥)
be a good filtered Higgs bundle on (U, 0) which is isomorphic to @p«(P+W', ¥'),
where ¥' —dbid is logarithmic for some b € rp_l(C[tp_l] with degrp—l b=m< p. The
claim of Theorem 3.27 follows from the next proposition.

Proposition 3.32 There exists (P«V',0') on Ug,_,, such that 0" —daid is logarith-
mic for some a € {;_lm(C[g_lm], and we have an isomorphism @p_m,«(PxV', 6') ~
NEUPW. ).

Proof To simplify the notation, we set 1:= 1, and u :={,_,,. We have the expression

¥ = (G id+n? ey (-t 2d7),
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such that G(n) = Z;'Ll Bin?~/ with By # 0, and f is an endomorphism of Py W'.
We fix a holomorphic function 7(® (u) such that G(n‘® (1)) — u?~™ = 0 and that
0 < Cy <[n©®/u| < C, for some constants C;.

We set Pey pm/2V = 730+P_m/2<p;_m/\f°°’0(73* W, ). Let v be a frame of P, W’
compatible with the parabolic structure. We set v;; =u ‘n'v; (0<i <p—-m—1,
1 < j <rank W’). They induce a frame of P, ,_p,/2V compatible with the parabolic
structure. By using the frame, for any ¢ — 1 < d < ¢, we obtain an isomorphism
GrZID tp-m /2(V) ~ Gr?(W’ ) ® CP~™  The following lemma can be checked directly.

Lemma 3.33 u~!n gives an endomorphism F of PV, preserving the parabolic
structure, and the induced endomorphism on Gr” (V) is given by
F(gp—m—l,j) = —,B;llf)'o,j and F(T)(ij) = §i+l,j (i =0,..., p—m —2).

The eigenvalues are ' 9,7 (0) (i =0,..., p—m—1), where = 27V =1/(p=—m)

We obtain the decomposition (P«V, F) = @7_" 1PV ®, FDY) such that F |(0i) has

a unique eigenvalue o’ Bun(o) (0). We have an isomorphism

Pp-m PV, —171dE) > NIV (PLW. ).

We also have an isomorphism Grf+p_m/2(v<0)) ~ Grf(W’).
We have G(n) —u?™™ = —n? f on V. Note that
m
w= PN B0, 51 (@ ). )
j=1

is invertible on Pey /ZV(O). Hence, we obtain the following on Py, /ZV(O):

m —1
u? (O (1) ) = 7 f - ( 385 0pjr (1O ). n)) yrm-t.
j=1
We have
(32) uP™ 7P =Wy = 17 Qpei (1O @) @ ) !

" —1
) (Z BjOp—j-1 (77(0) (u), 77)) ubP=m,
j=1

Hence, we obtain that u?~"(n~? — (© ()~P) is an endomorphism of P, V@ . We
set Po V' :=PV©® and 0 := —r_1<p;_md§ =—n"P(p—m)uP ™ (du/u). We have
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a€u~'C[u~"] uniquely determined by the condition ud,a=—n@ (u) =P (p—m)uP="™"
Then 6’ — da is logarithmic. Thus, the proofs of Proposition 3.32 and Theorem 3.27
are finished. |

4 Family of vector bundles on torus with small curvature

4.1 Small perturbation

We use the notation in Section 2.1. We use the metric dz dz of T . For any finite-
dimensional vector space V', let L,’(’ (V) be the space of V—-valued L,f —functions
on 7', and let L,f (V ® Q%7) be the space of V—valued Llf —differential (7, j)—forms.
We have the linear map [: LY (V) — V given by [ [ := |T|7" [ f|dz dZ|,
where |T| denotes the volume of 7. The kernel is denoted by LII; (V). We have
a natural inclusion V — Llf (V) as constant functions. We have the decomposition
L,f V) = L,f (V)o@ V as topological vector spaces.

Suppose that V' is equipped with a Hermitian metric Ay . Set r :=dim V. Let p > 2.
Let gk (V') be the space of Lk+2 —maps from 7" to GL(V'). We set

AL (V):={do+ 4| ALy  (End(V)®Q"")},
ie the space of (0, 1)~type differential operators of the product bundle V' of the form
do+A (AeL? P (End(V) ® Q%')). Here, 9, is the trivial holomorphic structure of
V. We have the natural right G7 1 —action on le (V') given by

ged:=g lodog=0+g log.

Let I be an endomorphism of V. Let Uy C L,f +2(End(V))0 be a sufficiently small
neighbourhood of 0 such that 1 4+ U; C gk Let U, be a neighbourhood of 0 in
End(V). We consider the map ¥: U; x U, — Ql,f(V) given by

W(a,b):=(1+a)e @+ (T +b)dz).
We use the norm on L?

k+2
L£+2(End(V)) = L£+2(End(V))0 ®End(V)

(End(V)) such that

is an isometry, and the norm on L?

%41 (End(V)) such that

(End(V)) — Ly, (End(V)). A+ 0od + / A

k+2 T

is an isometry.
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Proposition 4.1 Fix § > 0. Suppose that I" is decomposed as ' = 'y + 'y where
the pieces satisfy the following conditions:

e I'y is commutative with its adjoint rf , ie it is diagonalizable and the eigenspaces
are orthogonal with respect to hy . Moreover, there exists {y € C such that
Sp(I") is contained in

K{(L.%.8):={¢eC|0=<Im—{) < (1—8)m0=<Im((—¢)T) < (1-8)r}.
e |Tylp, <8/100.

Then there exist positive constants C; (i =1, 2), independently from I" and ¢y, such
that the following holds:

e ForBe L£+1(End(V) ® Q%) with |B| < (1, there exists a unique (a,b) €
Uy x U, with |a| + |b| < C,|B| satistying 09 + I'dz + Bdz = V(a,b).

Proof We set K(L) :={ € C ||Im@)| = (1 —=98)n, |Im(T)| < (1—-08)m}. We
have Sp(ad(I'g)) C K(L). In the following, C; will be positive constants which are
independent from I'" and .

We have a morphism
®p: Ly, (End(V)) = Ly, (End(V))o ®@End(V) — Ly (End(V) ® Q%)

given by ®r(4, B) = 04 + [, A]dZ + B dz, where 4 € L£+2(End(V))0 and B €
End(V). We have ®y(A4, B) = 04 + B dz, which is an isometry by our choice of the
norms.

Lemma 4.2 ®r is a homeomorphism.

Proof Note that @ is an isomorphism, and that & —! ®, is compact. Hence, the index
of @r is 0. Due to the condition for I'g, we have [|doA4 + [I'o, A]dZ| 12 = $m[A|L2

forany 4 € L%(End(V)). By the condition for I'y, we obtain that dg A +[I", A]dz # 0
forany A4 € L%(End(V)). Then we obtain that ®r is injective. a

Lemma 4.3 We have |<D61 o®dr| < (5 and |<I>li1 o ®y| < C3, independently from T,
where |- | denotes the operator norm.

Proof Let S be the set of I" satisfying the conditions of the proposition. It is compact.
For any fixed (A, B) € L]€+2(End(V))0 @ End(V), the map T +— d);l o ®y(4, B)
gives a continuous map from S to L,f 4+, (End(V)) @ End(V), and hence is bounded.
Then we obtain the claim for <I>;1 o ®( by the uniform boundedness principle. We
obtain the claim for CIJO_1 o & similarly. |
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We set A(a, b) := W(a,b)—¥(0,0) € Ly, (End(V) ® Q*1), ie

A(a,b) = (1 +a) 1 (9pa + [T, a]) + Ad(1 + a)b dz.

We have |A(a, b)| = O(|a| + |b|), independently from I'. The derivative T(4 )WV
of W at any (a, b) € Uy x U, is given by

(33) Tun¥(X.Y)=®(X,Y)+[Aab), (1 +a) ' X]
—[¥(0,0), (1 +a) 'aX]+ (Ad(1 +a) — 1)Y.

Hence, we obtain an estimate |CI>111 oT(a,p)¥—id | < C4(|a|+]b]), which is independent
from I". Then the claim of Proposition 4.1 follows from the classical inverse function
theorem (see Lang [28], for example). O

Corollary 4.4 W gives a diffeomorphism of a neighbourhood of (0,0) in Uy x U,
and a neighbourhood of 0y + I'dZ in Ql,f(V). O

4.2 Frames

4.2.1 Preliminaries Weset Uy :={(x1,x2)|0=<x; <1} and U, :={(&1,...,&1—2)|
|&/| < 1}. Let Ty = R?/Z2. Let U; x Uy — T, x U, denote the natural projection.
We also use the variables t; = x; (i =1,2) and t;, =&;_, (i =3,...,n). We also use
X =X1, Yy =X2.

For any nonnegative integer k, we set Sy (k) := {(my,my) | my +my =k, m; > 0}.
We also set Sy (k) :={(my,...,mu—2) | > _mi =k,m; >0}. Weset S(ky,kp) :=
Sy(k1) x Sa(kz). We put 97 ;=[] 9%, and ot = ]—[Bg". We put N; (k) :=|S; (k)|
and N(kl, kz) =N (k]) X Nz(kz)

Let V be a vector space. For f € C®(U; x U,, V), we set
DI DE(f) = (M7 f | (m1.m2) € S(ky.ky)) € C°(Uy x Uy, VN k1K),

Formally, we set D° f := f € C®(U; x U,, V). We use similar notation for the
functions on Ty x U, and [0, 1] x U,.

4.2.2 Orthonormal frame Let E be a topologically trivial C* vector bundle on
Ty x U, with a Hermitian metric /4 and a unitary connection V. We set r := rank .
Let F denote the curvature of V. For any frame v of E, let A* = Y7, AY di;
denote the connection form of V with respect to v. We put '4? := AY dty + A% dity
and 24" :=Y"7_; AVds;. Similarly F¥ =) F}. dtj dtj denote the curvature form
with respect to v.

Fix a positive number M . Let € be a small positive number. Assume the following:
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e Take any m € Z’;O such that m; +m, < M and Z?=3 m; < M. Then
|V;710...0V;Z"F|h§€.

Lemma 4.5 If ¢ is sufficiently small, there exist an orthonormal frame v of (E, h)
on Ty x U, and anti-Hermitian matrices A®), A®) such that the following hold:

(Al) Fork =x,y, there exist 0 < 6, <2m such that any eigenvalue ~/—1la of A%
satisfies |@ — 0| < w(2r —1)/2r. They satisty |[A®), AD]| < Ce.

(A2) |'4° — A| < Ce, and | D} D{(14°)| < Ce for any 0 < ky < M and
0 <k, <M with (ky,k,) # (O 0), where A = A®) dx + AP dy.

(A3) |D§'DE(24%)| < Ce forany 0 <ky.ky <M.
Here, the constant C may depend only on r and M .

Proof We shall indicate an outline of the construction, although it is elementary. We
say that a quantity P is O(e) if P < Ce for some constant C which may depend only
on r and M . Let [a, b]z denote the set of integers k& such that a <k <b. For j > 1,
let H; be the subset of U; x U, determined by the condition ; =0 (i €1, j]z). We
set Hy :=U; x U,.

Let u be an orthonormal frame of 7*(E, ) on Uy x U, satisfying V,,u =0 on H;_,
for any j. We have A7 = 0 on H,_; by the construction. For j < p, we have
0 Ap = F;‘p on Hj_;.

For 0 <k <M and j =0,...,n+ 1, we consider the following claim:

O(j.k) Take m € Z%, such that my +my <k, Y [_ym; <k and m; = 0
(i <j).Put P:=[[i_, a""‘ Then on Hj_1, we have PA, = O(e) for
p=Jj.and PFy —O(G)forpq>]

If j =n+ 1, the claim holds for any k. We shall prove the claims Q(j, k) for any k
by assuming Q(j + 1, k) for any k.

The claim Q(;,0) holds by the construction of A7 and the assumption on F. We
have only to prove Q(j, k) by assuming Q(j,k —1). For any section s of End(E),
let s* denote the matrix representation of s with respect to #. Suppose that V:’l“ 0-::0
V;Z”s = O(e) for any m € Z" such that m; + my <k, > ;_ym; <k and m; =0
(i < j). Because (VZ” 0.0 V;;’”s)” = (0y + A)™ 042 0(0yg, + Ap)"ns", we
have [ 82”@9” = O(e) for any such m if Q(j,k — 1) holds. In particular, we obtain
I1 8;:”' F3 = 0(e) forany p,q = j for such m. For a monomial P of d;;,,...,d;

n
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and for p > j, we have 8‘,);“ PAj = 8%, PF ;’p on Hj_;. Hence, we obtain the desired
estimates for A, (p > j) from the estimate on H;.

By considering the case j = 0 and k = M, we obtain D];I DéQAZ = O(¢) and
Dl Dé‘z F" = O(e) for any (k1,kz) €[0, M]%.

Let G™): Hy — U(r) be determined by U(1,y,8) = u|(0,y,§)G(x)(y,§), where U(r)
denotes the r™ unitary group. By the equation
3,G(ta, .. ) =G (ta, ... 1y) A" VA 0ty G (2 1) =0,

i|(17t23"'31n

we obtain the equality | D} G™| + |Dg G™| = O(e). By an easy induction, we obtain
the equality
DY DRG] = 0(e)

for any (k1, k,) €]0, M]é\{(0,0)}. We also have |G(x)(y,§)—G(X)(y’,§/)| = 0(e).
Let GO)(x, &) be determined by Ui(x,1,6) = u|(x,0,§-)G(y) (x,&). Similarly, we have
DX DEGY)| = 0(e)
for any (ky, k) € [0, M7 \{(0,0)}, and |G (x, &) = G (¥, §")| = O(e).

Since G (0,£)GX(1,€) = GX(0,£)GO)(1,&), we have
[G)(0,0), GX(0,0)] = O(e).
We set GO = G™)(0,0) and G™ = GX)(0,0).

Let Z, denote the set of the eigenvalues of G® for k = x, v. Let dg1 denote the
standard distance on

S'={eV"1? |6 eR)

which is induced by the metric df df. There exist y, € S! such that dg1 (Y, y) >
7/(2r) for any y € 7. Let 6, be determined by

eﬁe" =—y and 0=<6, <2m.

For any y € Z,, we can take o(y) satisfying eVl — y and |6 —a(y)] <
w(2r —1)/2r. We remark that, for any y;, yj € Z,, we have

(34) loe(yi) — ()] = O(lyi = i)

We have the eigendecompositions C" = B, 7, V},(K) for G®). We set A® =
Dyer, vV-1a(yi) idV;K). By construction, we have exp(A®)) = G®) .
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Lemma 4.6 We have [A®) A0 = 0(e).

Proof According to the decomposition C" = @y €T, Vy(x) , we have the decomposi-
tion
GO — 2182)
GV = Z Gl’iyj’
YisVj €7Ix

where 5,(,{)3,]. EHom(Vy(jx), V). Since [GX), GP] = 0(e), ()/i—]/j)é)(,?}’)yj = 0(¢).
By using (34), we obtain
(G, AD] = 0e).

By using a similar consideration again, we obtain [A®?, A®)] = O(e). |
Let us return to the proof of Lemma 4.5. We put g (x) := exp(—xA®), g0 (y):=
exp(—yA®)), and g(x, y) := g™ (x)g® (»). We obtain an orthonormal frame u’ :=

ug(x,y) of 7*(E,h). Let A’ := A*'. We have |4’ — A| = O(¢) and |D§1D§2A’| =
O(e) for any (ky,kz) € [0, M]3\ {(0,0)}.

Let G'®)(y, &) and G’ (x, &) be determined by
¥y = W00 08 U1 g = U060 (8.

We have G’ (p,£) = gO (»)71GW (3, £)(GX) "1 g0 (p) and hence |G’ —1| =
O(€). We have

4G =g (371G (3. £)(G) TP (1)~ [g ()T dgP (7). (¢"F =D)L

Hence, we have |D)1,G/(x)| = O(¢) and |D§.1G/(x)| = O(e). By an easy induction, we
obtain the equality
1Dk DEG™)| = 0(e)

for (k1,k;) €0, M]% \ {(0,0)}. We have
G'O) = g(x)(x)_lG(y)(x,E)g(x)(x)(é(y))_l
and obtain

(35) G’V _1= g(x)(x)—l (G(y)(x, S)(é(y))—l _ 1)g(x)(x)
— gD )G (x, HIGY) ™, gW ()] = OCe).

As in the case Kk = x, we also obtain |fo1 D?G/(x)l = O(e) for (k1,ky) €]0, M]%\
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Let x(x) be a nonnegative valued C function on [0, 1] such that x(x) =0 (x <1/3)
and x(x) =1 (x >2/3). We put

ha(x, y.§) = x(x) exp™ (G"P (. §)).
By construction, we have that |D§1Dk2h2| = O(e) for (ky,kz) €0, M15.
Let g, := exp(hy), and we set u” ;= u'g,. Let A” = A*”. We have

A" = gz_lA/gz +g; 'dg,.

Hence, we have |!4” — A| = O(e), and |Dkl Dkz(lA”)| = O(e) for (ky,k;) €
[0, M3\ {(0,0)}. We also have | DX1 Dk2(2A”)| = 0(6) for (k1.kz) €0, M]3
We put G"O)(x, &) 1= g2(x,0,E)7'G'P)(x, £)ga(x, 1,£), and then we have

"I//<x,1,;=) = ”f/(x,o,s)G "0 (x, §).

We have [G"®)(x.£) — 1| = O(e), and | D' DZG"D)| = O(e) for (k1.ky) €
[0. M3\ {(0. 0)}.

We put g3 := exp(x(y) exp~ 1 (G")(x, £))), and v := u” g5. Then it naturally gives
an orthonormal frame of (E, /) on Ty x U,. By construction, we have the desired
estimate for the connection form A?. Thus, the proof of Lemma 4.5 is finished. O

4.2.3 Partially almost holomorphic frame We identify the C°° manifolds Ty :=
R?/Z? and T by the diffeomorphism Ty ~ T given by (x, y) — x + 1y = z. We
have the description A = I'dZ—'T dz, where A is as in Lemma 4.5. Let V5 := V(35)
and V, := V(d;). For any frame w, let A} and AY be determined by V,w = wAY
and Vzw = wAY, respectively. Let H(/, w) denote the function from 7" x U, to the
space of r'" positive-definite Hermitian matrices, whose (i, j)—entries are h(w;, w;).
When a function f on 7" x U, is regarded as a function f U, > Lp (T'), we obtain
an R>—valued function ||f||Lp &) := ||f(£)||Lp(T) on U,.

Proposition 4.7 If € > 0 is sufficiently small, there exists a frame u of E on T x U,
with the following properties:

o A% is constant along the T—direction, and |A% —T'| = O(e).
o || AY —I—’f||L§\:4 = O(e¢) and ||D§A’Z‘||L5\>4 =0(e) fork e[l, M]z.
© |DECA) | = Ofe) fork €[0. M]z.

Moreover, |H(h,u)— I||LM+1—O(6) and ||DkH(h u)||Lp —O(E) forke[l, Mz,
where I denotes the identity matrix.
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Proof Let v be the orthonormal frame as in Lemma 4.5. We have Vzv = v(I"' + N),
where ||D§N||L§4 = 0(e).

Lemma 4.8 We have a decomposition I' = I'y 4+ I'y such that:

(i) [To,TJ]=0 and Sp(Ty) = Sp(T').
(ii) |Iy]=O0(!/?).

Moreover, if § > 0 is sufficiently much smaller than 1/r, then there exists £y € C such
that Sp(T") is contained in K(L, {y,8). (See Proposition 4.1 for K{(L, ¢y,5).) We
may take 6 independently from any sufficiently small €. We also have | Im {y| < m and
| Im(T8o)| = 7.

Proof We give only an indication of the proof. With an appropriate change of
orthonormal basis, we may assume that I" is upper triangular. By the basis, we identify
matrices and endomorphisms. Let I'y be the diagonal part, and we put I'y :=T1"—T.
By construction, condition (i) is satisfied. Let y;; denote the (i, j)—entry of I". Then
the (k, k)—entries of [[,T'T] are 3", 1Vk.il> — Y i<k |7k.il*. Then we obtain the
desired estimate for 'y from [T, FT] = O(¢), which follows from condition (A1) in
Lemma 4.5. Thus, we obtain the first condition.

Let us prove the second condition. Let us observe that there exist decompositions
A = AL LAY (c=x,y).

such that Ag'c) are anti-Hermitian, [Af)x), A(()y )] =0, and ASK) = O(e'/?). We have
the eigendecomposition

c =P

iel

of A where I denotes the set of eigenvalues of A*). We have a decomposition
I =[]xes Ik such that if o, B € I} then |a — | < r~17e'/2/10, and if & € I} and
B €I, with k # £ then |o — B| > r27e'/2/10. We set V| := EBiE[k Vi. We choose
Bi € I foreach k € S, and put

Agx) = @ B idV,é .

keS

We have the decomposition A©) = 3~ Al(cye) according to C” = P V/. Since

[A(X), A(y)] = O(e),
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we have A(y) O(e'/?) if k # £. We set

A(J’) ZA()’) and AEK) - A(K) _A(()K)

Then the decompositions A(") = A(()K) + A(l'c) have the desired properties. We have
I'=(-7)"1@A® — AD)). Because the eigenvalues of I' are close to those of
(t—7)7! (IA(()") — Agy )} on the order of O(e!/?), the second condition is satisfied for
small § > 0. m|

By Proposition 4.1, if € is sufficiently small, we have that there exist functions a: U, —
M+1(M (C))o and b: U, — M, (C) satisfying the following:

. ||D§a||%+l = O(e) for k €[0, M]z, and | Dfb| = O(e) for k € [0, M]z.
e (I14+a)e(Vzo+ (I'+b)dz) = Vz, where Vz is given by Vz v =0.

Let u := v(1 +a). By construction, we have Vzu = u(I" 4 b). The other estimates
for A% and 24 are also satisfied. Because H(/, u) = ‘(1 + a)(1 + a), we obtain the
estimate for H(h,u). |

Remark 4.9 If A;" is constant along the 7T—direction, such a frame w is called a
partially almost holomorphic frame, in this paper.

4.2.4 Spectra Let E¢ denote the holomorphic bundle on 7" which is given by E|7xg
with Vz7xg . According to Lemma 2.7, if € is sufficiently small, E¢ are semistable
of degree 0 for any & € U,. We have the spectrum Sp(Eg) C TV. We regard it as a
point in Sym” 7. The point is denoted by [Sp(Eg)]. Let T be as in Section 4.2.3.
The eigenvalues of T" give a point in Sym” C, denoted by [Sp(T")]. The quotient map
®: C — TV induces Sym” C — Sym” TV, denoted by ®. Recall that Sym” TV
is naturally a smooth complex manifold. Let dgyn 7v be a distance induced by a
C*° Riemannian metric.

Corollary 4.10 There exist ¢y > 0 and C > 0, depending only on r, such that the
following holds if € < €q:

dsymr 7v ((Sp(Eg)]. P[Sp(I)]) = Ce.

In particular, for &, &' € U,, we have dsyyr v ([Sp(Eg)]. [Sp(Eg/)]) < 2Ce.
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Proof Let u be a frame as in Proposition 4.7. Recall that Sym” C is naturally a
complex manifold. We take a distance dgy,- ¢ induced by a C* Riemannian metric.
We have dgyr ¢ ([Sp(D)], [Sp(AZ)]) < Cre. There exists §o € C and § > 0 such that
Sp(T') and Sp(A%) are contained in Ky (L, {o,6),and |Im{o| <7 and |Im(Tlp)| <.
Note that the restriction of ® to Sym” K (L, o, §) is Lipschitz continuous, and the
Lipschitz constant is uniform for {o. Then the claim of the corollary follows. |

4.3 Estimates

4.3.1 Preliminaries We continue to use the setting in Section 4.2. We impose
additional assumptions.

Assumption 4.11 We take € to be sufficiently small so that E¢ is semistable of
degree 0 for any & € U,. Moreover, we are given a finite subset Z C C and a positive
number p > 0 with the following properties:

e Z is contained in K;(L,p,d) for some appropriate ¢y and § > 0, where
Ki(L, ¢y, 6) is as in Section 4.1.

e For any distinct points vy, vy € Z, dc (v, v2) > 100r2p.

e For any k € Sp(Eg), there exists v € Z such that d7v(®(v),«) < p, where
®: C — TV denotes the projection.

We also assume that € is sufficiently smaller than p2. |

We have the spectral decomposition Eg = @ crv Eg /. Let E, ¢ be the direct
sum of Eg ./, where v’ is contained in a p—ball of ®(v). We obtain a decomposition
Eg =@,z Ev ¢ . Itinduces a C* decomposition E =P, Ey, which is com-
patible with Vz. We may assume that the partially almost holomorphic frame u in
Proposition 4.7 is compatible with the decomposition.

We have the decomposition Vz = Vz o + f such that (E, Vz9)|rx(¢} are holomor-
phically trivial for any & € U,, Vz(f) = 0, and Sp(f) is contained in the union
of the p—balls around v € Z. For each § € U,, we obtain the vector space Vg
of the holomorphic global sections of (E, Vzo)rx{g}. It is easy to see that Vg
(& € U,) naturally gives a C° vector bundle V on U,, and that we have a natural
isomorphism p*V ~ E as C* bundles. We identify them by the isomorphism. A
C®° section s of p*V is constant along the T—direction if and only if V3 os = 0 under
the identification. It can be regarded as a section of V. We have the decomposition
V=@,cz V:, corresponding to E =P, E,.
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4.3.2 Spaces of functions Let CEM Lﬁl . denote the space of C M _functions
Uy — LY (T).

We use CgMLfo (E) denote the sections f =) fiu; of E suchthat f; € CgMLfo ,
where u = (u;) is a frame as in Proposition 4.7. It is independent of the choice of u. We
have the naturally defined integration fT: CgM L]’(,[ L(E)—>C M (U,, V). The kernel is
denoted by CgM Li[, + (E)o- Similar spaces are defined for End(E) and Hom(E;, Ej).
We set

CM LY, (End(E))® := P CM (U,, End(W)).

v
CM LY, (End(E)" =P CM LY, | (End(E)))o
v ® @ CEM Ly, (Hom(Ey, Ey)).
vFEU

We have a decomposition
CM LY, (End(E)) =CM LY, (End(E)° & CM LY,  (End(E))™.

For any s € CEM LJI"L . (End(E)), the corresponding decomposition is denoted by
s=s°+s1. Any se C;M LJI\’L . (End(E)) is represented as a matrix valued function s
with respect to . We have the decomposition s = s° + s1 according to s = s° + 5.
We use similar notation for sections of End(E) ® Q7.

4.3.3 Some estimates Let u be a frame as in Proposition 4.7. We set H(h, u); j :=
h(u;,uj), and we obtain a function H(h,u) from T x U, to the space H of positive
definite Hermitian »™ matrices. Each entry is of class CgM L]’(,[, .- Let Hy be a function
of U, to ‘H determined by

()2 = [T Hh.w).

Then we have |H; —I| = O(¢) and |D§H1| = O(e) for k €[1, M]z. Note that u" :=
u H; also has the property in Proposition 4.7. So, we may assume that |, r Hhu)y=1
from the beginning.

We set g := H(h,~u). We have ||fg'—l||LJz(Frl = 0(e), ”D§§”L§4+1 =0(¢) (k €
[1,M]z),and [; =1

Lemma 4.12 There exist C > 0 and €y > 0 such that
1§11z, <CIFZlLs,

M+2 —

holds for any 0 < € < €q. In particular, supy gy |8 —1] =< C/||FZJ;||L2 for some C’ > 0.
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Proof We put B := A%. Let I'; be the diagonal matrix whose (i,7)—entry v;
is determined by u; € E,,. Let I' be as in Section 4.2.3, which is decomposed
[ =Ty +1I; asin Lemma 4.8. We have [Ty —I'2| <rp and |T;| = O(¢'/2). We have
|A% —T'| = O(e). Hence, if € is sufficiently small, we may have |A% —I's| < 2rp.

We have 4% = —g~! ('B)g +5719,8. Let B,z be the matrix-valued function deter-
mined by F;zu = uB3;z. We have B,z = 0; A% —0; A} +[A7, A%]. Hence, we have
(36) B.z=[2 'BZ. g '0:8) -2 '9:0:(3) + (27 '0:2)(Z'9.2)

~1g7""Bg. B~ [B.g'9:8].

Let b:=g—1. We have a polynomial Q(t1,t2,13.t4,t5,16) =Y Qjy,.c..imbinlin***Lim
in noncommutative variables #; such thatif Qj, . ;. # 0 then m; +my +m3 > 2,
where m; = {k | jr =i}, and we have

(37) (9z+ad(B)) o (3, —ad('B))b = —gB.z —['B, B]

+ Q(b,d,b,3zb,(1+b)"1, B,'B).
By taking the | —part, we find that
(38) (0z+ad(B))o(d;—ad('B))b=—(ZB.z)+ Q(b,d;b,0:b, 1+b)~", B,'B)*.

We then get
1bllzp, ., < Call FslLn, + Cacllbllyy,
: 1
and hence obtain ||b||L§\>4Jr2 < C3”F23”sz\4' |
Lemma 4.13 Let a; and a; be sections of End(E) 1 (g} Assume that a; = af- and
ap = a5 . Then we have
'/Th(auaz) <llarlz2 lazllz2 1(F:5) 7 xie3ll 2

Proof It follows from Lemma 4.12 and H(h,u) = 2. |

Lemma 4.14 Let P be an endomorphism of E , and let Pt denote the adjoint with
respectto h. Let R (resp. R') be the matrix representing P (resp. PT) with respect
to u. Then we have

(RY° = (R)° + O(R*| | F5lI12) + O F112,1R°)).
(RN = (R)L + ORI IIFEIL2) + O FEl L2 IR).

In particular, we have |(RT)*| = |RL| + O(IR| | F£ ] .2).
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Proof Let H = H(h,u). We have RT = H=1(*R)H . Then the claim follows from
the estimate for H. =]

k
Lemma 4.15 For k € [1, M|z, we have ||D§§||L5;+2 = O(Z ID{ FZJ;||L5W).
j=0

Proof We obtain the estimate from (38) by a standard inductive argument. a

5 Estimates for L? instantons

5.1 Preliminaries

Let t be a complex number such that Imz > 0. Let 7" be a complex torus obtained
as the quotient of C by a lattice Z + Zzt. Let z be the standard coordinate of C. It
also gives a local coordinate of a small open subset in 7', once we fix a lift of the open
subset in C. We shall use the metric dz dz for C and 7" unless otherwise specified.

For any open subset W C Cy,, we use the metric dwdw on W, and the metric
dzdz 4+ dwdw on T x W unless otherwise specified. Let w denote the associated
Kahler form. For w e W, weput Ty, :=T x{w} C T xW.

Let E be a complex C* vector bundle on 7" x W with a Hermitian metric / and a
unitary connection V. Let F(V) denote the curvature of V. We shall often denote it
simply by F. The (0, 1)—part and the (1,0)—part of V are denoted by dg and 9,
respectively. The restrictions of (E, 1) to Ty, are denoted by (Ey, fiy).

Recall that (E, V, h) is called an instanton if A, F(V)=0. For the expression F(V) =
F,;dzdz+ F,dzdw+ Fyz dw dz+ Fyg dw dw, the equation is F,z + Fyi = 0.
We have the following equalities:

(39) (VZVE + vwvﬁ)Fww = _(VZVE + VwVW)FzE = [FZE’ FwZ]»
(V2Vz+ Vo Vw) Foo = 2[Fuw. Fzwl,

“0) (VZVE + VwVE)FwE = 2[Fw2a Fww]-

5.1.1 Hitchin’s equivalence Let us recall the relation between harmonic bundles on
an open subset W C C,, and instantons on 7' x W due to Hitchin. Let (E, 55, h,0)
be a harmonic bundle on W . Let V(® :=9 E + d g be the Chern connection. Let 6T be
the adjoint of 6. Let p: T x W — W be the projection. The pullback p*(E,V©® h)
is denoted by (E1, VD, hy). Weset V=V 4 fdz— fTdz. Then (E;,V, hy) is
an instanton on 7' x W.
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Conversely, let (E, V® h,) bea T—equivariant instanton on 7" x W . By considering
T—equivariant sections, we obtain a vector bundle E on W such that p*E ~ E,. Itis
naturally equipped with a connection V(® such that p*VI()O) = Vl(,z), where v denotes
the natural horizontal lift of vector fields on W . By using the T—equivariance of V),
we have the expression V® — p*V(© = p* £ gz — p* fTdz where f is a section
of End(E). Then (E,dg,h, f dz) is a harmonic bundle. In summary, we have the
following.

Proposition 5.1 (Hitchin) Harmonic bundles on W naturally correspond to T—
equivariant instantonson T X W . |

5.2 Local estimate

Let U be a closed disc {w | |[w —wg| < 1} of C. Let (£, V, k) be an instanton on
TxU.

Assumption 5.2 We assume that | F(V)| < e for a given positive small number €.
We also impose Assumption 4.11. O

We use the notation from Sections 4.2 and 4.3. Note that |V;” LoV o Vi3 ovg“ Flp =<

Cme, where Cyy, is a constant depending only on m = (m, my, m3,my).

5.2.1 Estimates of the L —part of the connection form Let u# be a partially almost
holomorphic frame as in Proposition 4.7. We assume that [ H(h,u) = I, as in
Section 4.3.3. Let A be the connection form of V with respect to u. Let B,z
represent F,z with respect to u. We use B,y and B,z in similar ways.

We prepare notation in a general situation. Let V' be any vector bundle with a Hermitian
metric iy on U. Let m: T x U — U be the projection. Let p > 2. For any
section f of 7*V on T'x U, let || f |, denote the function on U given by || f],(w) =

(fTX{w} |f|}1;V)1/p

Lemma 5.3 We have | Ay, = O(|Fii.llp) and |05 Agl, = O(IVaFi ) +
O(e|| Fi.llp) -

Proof Because 0y Az — 05 Ay + [Aw, Az] = Byz, we have
(1) 9z Ay +[Az, Af] = —Bys.
Then we obtain the first estimate. We also get
005 Ay, +[Az, g AL = — 0B, — [0p Az, A].

Because di Az = O(€), we obtain the second estimate. |
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Lemma 5.4 We have ||A$||p = O(||F$E||p + ||FZJ:||p + ||VszL lp). We also have

z z

18w AZ ], = OUVG Fi:llp + I F:llp + I FElp + Vo F:lp)-

Proof Weset 3:= H(h,u). Wehave Ay =—5 1 ("4,,)g+2 102 . Hence, the first
claim follows from Lemmas 5.3, 4.12 and 4.15. We have 0y Ay — 05 Aw +[Aw, Aw| =
By - Hence, we have

19w Az, = OUldm Az l1p) + OU Ao + 1 Az llp) + | Faislp-

Then the second claim follows. O

5.2.2 Estimate of the L—part of the curvature We prepare notation in a general
situation. Let V' be any vector bundle with a Hermitian metric iy on T x U. Let
m: T xU — U be the projection. For any section f of V on T x U, let | /|| denote
the function on U given by ([, |f|iV)1/2. For any sections f and g of V,let ((f, g))
denote the function on U given by [, hy(f.g).

Proposition 5.5 We have

42) Al FEI?
< —|IVzF5> = IV F)* = | Ve Fl* — [V F5
+ O(e| FEI> + €l FLN I FEN + el Vo Fazll || Fo5ll + €l V2 E5 I I 51
+ O(el Vo F5 I I 51 + €l Foz | + €l Fiorz |l | Vi F251).

Proof We have

Aw| FE?
= _(vawFl

zz’

F3) — (F&

z zz?

ViV Fi2) — (Vi F&

zz?

VuwFL)— (Vg F

zz?

Vo FL)

and
— (Vo Vi F

zz’

FZJ:) = —(Vyu Vi Fyz, FZJ') =+ (VwVEF;E’ FzJE’)

z z

Let us consider the estimate of (Vy, Vg F ., F ZJ;). The endomorphism Vy, Vi F7 is

represented by the following with respect to u:

0w dwBys + [Aw. 0wBos] + dwl[Aw, Bos] + [Aw. [Aw, Boz]]-
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Recall Lemma 4.13. We have the following estimates:

(43) (Owdw B2, BENK = 0(10wdnBn 182 s |1 FA 14,

zz> z

@) (Aw, 05821 B2)n = Ol Ayl 18wl 1Bz 111)
+O((143,. 9wBAln 1Bz 1a | F25lln).
@5)  (BwAw, B21 Bi)n = (0w Az, B3 Bo)n + (8w Ag, B:1 B
= OBl 19w A 115 1Bz 14)
+ O(I[Bw Az, B:ln 1Bl I F251),
46)  (Aw. 0wBL). B)n = O10wB 14 1|45l | B=11)
+ O(I[A5, 3w Bl 1Bzl | F35 114,
47) (Aw.[Aw. BSIL BE)s = O A5 15 | A%l 18215 1B514)
+ Ol Al 1 A5 1w 1811 1B 1)
+ Ol Al 145 14 18211 1B 1)
+ O A5, 1 1 A1 1Bl 1Bzl | F21)-

We obtain the following estimate for (Vy, Vig F2, F ZLE) from (43)—(47) with Lemma 5.3:

zz’

48) (VoVeFS. FL))
= O(e|| FEI2 + el FL | | FE| + € Vo FoLll | FEI + €| Vo FEI I FID.

We also have

49) —(VuViFez, F2) = (V2V:Foz, F2) + (Fow, Fuwsl F2))

= —((VzFzz, V: F5) + (Fzw, Fuzl, F22).
(50)  —((VzFsz, ViF) = —(VsF5, V2 F2) — (V2 F2y, Vi F))

z z

= —(VzFL, VzFL) + O(|V2FSN IV FEN I F£DD,
D) (Few, Fuwzl, F2) = O(I[Fy. Fo Al FEIFEID

+ O FSS I Fs N 1 FE 1D
+ O ES AN FENNFEID+OUEE NN ELNIFED.

We have a similar estimate for the contribution of —((F ZJ-E, ViV F ZJ-Z)). In all, we

obtain the claim of Proposition 5.5. |
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Proposition 5.6 We have the inequality

(52) AwlF)12 <~V F5 012 = V2 FA 12 = 1V Fi |12 — | Vg Fi5112
+ O(e| FA I I F5I + €l Vi Farz | | F5
+ el FL N IFAN + el Vi Fll | Fo1)
+ O (el V2 Fi5 L 1 Fozll + el il | o).

Proof We have

(53) —dwdm|Fis|?

= |V Fr|? = |V Fio|? — (Vo Vg Fiks, Fi2) — (F, Vg Vi Fi).
We also have
(54)  —(VoVgFh, Fi) = —(Vy Vg Fop, Fio) + (Vo Vg Fop, FE).

Let us look at the contribution of (Vy Vg F g, F. ZJ-E). Let B,y express Fp with

respect to u as in the proof of Proposition 5.5. Then Vy, Vi F2o is represented by
We have the estimates

55 —((wdaBg. B = O10wdwBgln 1Bsln | Fx1).
56)  ((dwAw. Byl Ba)n = O10w A Bglla 1Bl I F51)
+ 0| 0w Al 1B l4 1Bz 114).
&7 (Aw. 0wBg) Bas)n = OU Al 19w B4 1Bxsla | Fx511)
+ O(| A5 111 119w B 14 11B335114),
58)  (([Aw. 95B2g) Basha = OUIAY 19w B2g 11l Bz la | 1)
+ Ol A5 1410w B2 141 B 1)
(59)  ((Aw.[Aw. Bl B = Ol Al I A 14 183514 1B355114)
+ 0|45, 14 14514 182511 1B 11
+ O A4 1A 14 1B 11 1B 1)
+ O A5, 1 1451 1B 1 1B la I Fos )
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Hence, we obtain

60) (Vo Vi Fig. Fs)) = O(el| sl | Fzzlln + €l Vi Fos |l | Fll

zw’ T zw
el FE | FENn + el Ve FE I | FE ).

We have
61) —(VuVw Ew.Fg) = (VVz Fw. Fp) —2(Fow. Fow). )

= —((VzFow. V2 F;5) = 2(Fw,w. Fzwl. Fi5)).
(62) —(VzFzw. VzFz) = —(VzFzip. V2 Figp) = (V2 Fp. V2 Fi))

= —((VzF;

zw’

VzF)+ OV Fopll V2 oo | F5 ).
and

63) (Fww, Fzwl, F5) = O Fl | FA 1 1 F5 1D

+ O(IFS 5 I FENIIFSID

+ O FEo Il I FE5 I I FS 1)

+ Ol Fym» Foulll 1 55l | Fz21D-
We have a similar estimate for the contribution of —(F ZJ-E, ViV F ZJ-E). In all, we
obtain the desired estimate (52). O

Proposition 5.7 There exist C > 0 and €y > 0 such that the following inequality
holds if € < €g:

64)  Aw(IF517+ 1F501%)
<—C(IFZI>+1IF51Y
— C(IVF51> + IV2F51% + [ Vw F5 1 + | Ve F551%)
— CIV=F5l1* + IV2F5 17 + 1V Fo5 1> + | Vs Fo11).
Proof There exist C; > 0 such that |V;s| > Ci||s|| and ||Vzs| = Cq||s| for any

section of End(E) such that s = s1. Then the claim follows from Propositions 5.5
and 5.6. |

5.2.3 Higher derivative Assume that || F||2 + || F5[|? < §? for some §; < €. For
p<l,weset U(p)={w||lw—wo|<p}CU.

Proposition 5.8 For any k, p, there exists C > 0 such that

”FZJE’”L,‘E(TxU(p)) = Céy, ”lew”L,’;(TXU(p)) = C4y.
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Proof This can be shown by a standard bootstrapping argument. We give only an
indication. We take p < p’ < 1. In the following, we shall replace p’ with a smaller one.
Let x denote z, ZJ,_ w and w. By Proposition 5.7, we obtain ||VKFZJ‘2||L2(T><U(p/)) =
O(81) and [|Vie Fz | L2 (rxu(ory) = O(81)-

With respect to the frame u, the endomorphism —V,, Vi F, 7 is represented by
(65)  —0uwdwBzz — [0wAw, Bzz] — [Aw, 0wBzz] + [Aw, 0wBzz] + [Aw. [Aw. Bzz]]
and the endomorphism —V,V;z F,z is represented by

(66)  —0:0zB:z —[0:Az, Bzz] —[Az, 0:Bzz] + [Az, 0z822] + [Az. [Az, Bz]]-

The sum of (65) and (66) is equal to By, Byz]. By looking at the L —part of the
equation, we obtain

(67) the L —part of (65) + the L—part of (66) = [B.w, Buws]*.
By using Lemmas 5.3 and 5.4, we obtain ||(dy 0w + 828§)B;§||L2(TxU(p/)) = 0(8;).
Similarly, we obtain ||(0ydw + aZaE)B;_w”LZ(TXU(p’)) = O(8y). It follows that
IF5 e rxveey) + 1 sl e rxugy) = OG1).
IVe Fzzll Lacrxuiry + 1 Ve Frll e xueery = O61).
By using Lemmas 5.3 and 5.4 and (67), we obtain ||(0, 0w + BZBE)B;EHM(TX[]W)) =
O(81). Similarly, we obtain |[(0y 0w + aZaE)Bi_w”L‘L(TXU(p’)) = O(d;). By the same
argument, we obtain the following for any p:
1 1 1
I FzzllLr(rxueey) + | FzpllLerxuen) + IV Fzl Le(rxue)
HIVe FrpllLr (rxugey) = O@1),
||(3waw + a282)8;_2||LP(TXU(,0’)) + ||(3w3w + a282)5’;_@”LI’(TXU(;D’)) = 0(51)-

Namely, we obtain ||FZJ§||L§(T><U(p/)) + ||FZJ‘E||L§(TXU(,,/)) = 0(dy).

By the argument in Lemma 5.3, we obtain || A5 || L? = O(81). By the argument in
Lemma 5.4, we obtain ||A$||Lf = O(8;). By the relation

3wAw— aEAw + [Awa AE] = wa

we obtain ||8wA1JU;||LII’ = 0(81). We also have ||A;-||Lg = 0(d;), which follows from
Lemma 4.15. Then we get

| (Owdw + 3z32)52lz||L11’(TxU(p/)) = 0(81).
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Hence, ||B *”L”(TxU(p/)) = 0(§;). Similarly, we obtain ||B ”L"(TxU(p y = O0@61).
By an 1nduct1ve argument, we obtain

1 1
||Bz2||ij(T><U(p/)) + ||Bzw”L}l;(TXU(p/)) = 0(81)
for any k. m|

Corollary 5.9 For any k, p, there is C > 0 such that | H (h, u)J-||lei(TxU(p)) <Cé;.

Proof This follows from Proposition 5.8 and Lemma 4.15. |

5.3 Global estimate

5.3.1 Preliminaries For R >0,weset Yr:={weC ||w|> R} and Xg:=T xYg.
An instanton (E,V,h) is called L? if the curvature F := F(V) is L?. We study
the behaviour of L? instantons around infinity. We suppose that (E,V, /) is an
L? instanton in this subsection. For wy € Yg and a > 0, let Byy(a) :={w e C |
|lw—wo| <aj}.

Let € > 0 be sufficiently small. There exists R; such that | F] Xg, |2 < €. Let
wo € Y, R, . By the theorem of Uhlenbeck [49], for any (z, w) € T' x By, (1), we have
|F(z,w)| = 0(”F|TXBw0(2)||L2) = O(¢). In particular, we may assume that £, are
semistable if w € Y, g, . Because we are interested in the behaviour around infinity,
we may assume that (Ey,, F] E,, ) are semistable of degree 0 for any w € Yg from the
beginning.

5.3.2 Prolongation of the spectral curve We consider the relative Fourier—Mukai
transform RFM_(E,dg), which is a coherent sheaf on TV x Yg. Its support is
relatively O—dimensional over Yg, denoted by Sp(E ). It is called the spectral curve
of (E, 85) Let Y be the closure of Yz in P!, ie Y = Y U{oo}.

Theorem 5.10 Sp(E) is extended to a closed subvariety Sp(E) in TV x Yg.

Proof Let p denote the rank of E. We have the holomorphic map ¢: Yg — Sym” TV
induced by Sp(E). We have only to prove that it extends to a holomorphic map
Yg — Sym” TV. We fix a closed immersion Sym” TV c PV for a sufficiently
large N, and we regard ¢ as a holomorphic map Yz — PV . Let dpn~ denote the
distance of P¥ , induced by the Fubini-Study metric.

Take any wg € Y>g. By Corollary 4.10, for any wq, w, € Bwo(%), we have

(68) dpn (p(w1), ¢(w2)) = O Firx B, 2)llL2)-
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Note that ¢ is holomorphic. We can also regard it as a harmonic map between Kéhler
manifolds. Let Ty,¢ be the derivative of ¢, and |Ty,¢| denote the norm of Ty,¢ with
respect to the Euclidean metric dw d and the Fubini—Study metric of PV . For any
w e Bwo(%), we obtain the following estimate from (68) by using Cauchy’s formula
for differentiation in complex analysis:

(69) | Twe| = O FirxB,, @ ID-
Hence, we obtain finiteness of the energy of the harmonic map ¢:
| el dw il < I, < .
2R

Then ¢ is extended on I_’R, according to [42, Theorem 3.6]. O
The intersection Sp(E) N (T x {oo}) is denoted by Sp(E).

5.3.3 Asymptotic decay By making R larger, we may assume we have a lift of
Sp(E) to a closed subvariety Sp(E); C Yg x C¢, which induces an action of ¢
on REM_(E,dg). (See Section 2.1.) Let J¢ be the corresponding holomorphic
endomorphism of E. We set 90 :=0p — Je¢dz, which gives a holomorphic structure
of E. For each w, the restriction of & = (E, dg) to T, x {w} is holomorphically
trivial. It is naturally isomorphic to p* p«(E’), where p: Xg — Y denotes the natural
projection. We obtain the decomposition 4 = h° 4+ A as in Section 4.3.

Theorem 5.11 For any polynomial P(t1,t;, t3,t4) of noncommutative variables, there
exists C > 0 such that

P(Vz,Vz, Vy, Vip)h™ = O(exp(—C|wl)).

Proof Let € > 0 be any sufficiently small number. We may assume that || Xg, | <e
for some R; > 0. By Theorem 5.10, we may assume that Assumption 5.2 is satisfied
for the restriction of (E,V, ) to any disc contained in Xg, . In particular, we can
apply Proposition 5.7 to (E, V., h) Xg, - We obtain

Aw(IFEI2 + I F5I%) < —Cr(IFEI? + | F5112)

for some C; > 0. The following lemma follows from a standard argument.

Lemma 5.12 We have ||FZJ;||2 + ||FZJ-W||2 = O(exp(—C,|w])) for some C, > 0.
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Proof This is a variant of a lemma of Ahlfors [1] and Simpson [45] We give only an
indication. We put G := ||FZJ;||2+ ||FZJ-w||2 and f¢ := Czexp(— 2C1 2|w|)—i—e where
€ >0 and C3 > 0. We have the inequality A, fe > —Cy fc. If C; is sufficiently large,
we have f¢ > G on {|{w| = R;}. For each € > 0, we have fc > G outside a compact
subset. We put U :={w | fe(w) < G(w)}. Then U is relatively compact, and we
have f. = G on the boundary of U. On U, we have Ay (G — f¢) < —C(G — f¢) <0.
By the maximum principle, we have supy (G — f¢) < maxyy (G — fe) = 0. Hence,
we obtain that U is empty. It means G < f on Y for any €. We obtain the desired
inequality by taking the limit € — 0. a

Now the claim of Theorem 5.11 follows from Corollary 5.9. |

5.3.4 Reduction to asymptotic harmonic bundles Let p: Xg — Y denote the
projection. By using the pushforward of @O—modules, we obtain a holomorphic vector
bundle V := p«&" on Y. It is equipped with a Higgs field 0y := frdw. For any
si € Vi (i =1,2), we denote the corresponding holomorphic section of 5\T by 5;.
We set hy(s1,57) := fT h(51,52). We have the Chern connection 9y + 9y with respect
to hy . Let QT denote the adjoint of 6y .

Proposition 5.13 There exists C > 0 such that

(70) F(hy) + [0y, 0}] = O(exp(—C|w])).

Proof We identify p*V = &’. According to Theorem 5.11, the difference 7 — p*hy
and its derivatives are O(exp(—Cp|w])). (The constant C; may depend on the order of
derivatives.) We also have 9 = p*dy + Jtdz. Hence, (p*V, Py + Jedz, p*hy)
satisfies

Ao F(p*hy) = O(exp(=Ca|w))),

which is equivalent to (70). O
5.3.5 Estimate of the curvature
Theorem 5.14 There exists p > 0 such that
dzdz dw dw dwdz dz dw
F(h)=0 +0 +0| ———|+0| ———).
" (|w|2<—1og|w|>2) (|w|2(—log|w|)2) (|w|1+p) (|w|l+p)

Proof We shall use an estimate for asymptotic harmonic bundles which is explained
in Section 5.5 below. Let ¢: A, = {|lu| < R™1/¢} — Yg be given by ¢(u) = u®.
For the expression 6 = frdw = f;(—eu_e_ldu), according to Theorem 5.10, the
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spectral curve Sp( f;) C C x Yp is contained in {|¢| < R’} x Yg for some R’, and
the closure in C x Yg is a complex variety. Hence, we may assume that ¢*(E, 9, 0)

decomposes into
D &

a€lr(p*0y)
as in (71). Moreover, we have deg,—1 a < e for any a € Irr(¢*6y).

We set (V/, 8y, Opr, h') := ¢~ 1(V,dyp, Oy, hy). According to Proposition 5.13, it
satisfies (72). By Corollary 5.19, we have

| F(hy)ln, = O(Ju|™>(log |u|)">du di).
Hence, we have |F(h)ww|n = |F(h)zz|n = O(lw|~*(log |w[)~?).
We take a frame v of P,V as in Section 5.5.2. Let ® be determined by ¢* frv =v0.

Let Cy be determined by ¢*(0y)v = vCy. We have ¢* (0w f£)v = v (9™ (0w)O +
[Cw, ®]). We have the expression

® = @(((p*awa— e_lome)la,a — e_lue®a,a),

where the entries of ®, 4 are holomorphic at ¥ = 0. The norm of the endomor-
phism determined by v and ©,4 is O((log|w|)™') by Proposition 5.18. Note that
@* () = —e~1uft19, and ¢*(3%)a = O(J¢*(w)|~'~*) for some p > 0. Hence,
the contribution of ¢*(9)® to ¢*(dy f¢) is dominated as O(p*|w|~!~*) for some
p>0. Let Gy, be the endomorphism determined by v and Cy,. By using Lemma 5.21,
we obtain [Gy, ¢* f¢] = O(p*|w|™?). Hence, we obtain |y fz|p, = O(lw|~17F)
for some p > 0. Then we obtain |F(h),z|; = |F(h)wsz|p = O(|lw|~17P) for some
p>0. O

Corollary 5.15 (E,dg.,h) is acceptable, ie the curvature F(h) is bounded with
respect to h and the Poincaré metric |w|~?(log |w|)~?dw dw + dz dz on X around
T x {oo}. |

5.3.6 Prolongation to a filtered bundle We set Xg:=T xYg.

Corollary 5.16 The holomorphic vector bundle (E, 5E) is naturally extended to
a filtered bundle P+ E on (Xg,T x {o0}). (See Section 2.2 for filtered bundles.)
Moreover, the filtered bundle is good in the sense of Section 2.4.1.

Proof Because (F, 55, h) is acceptable, we obtain the first claim from [36, Theo-
rem 21.31]. As explained in Section 5.5.2, we obtain al filtered bundle P« V on (Yg, 00)
from the Higgs bundle with the Hermitian metric (V, dy, hy, 68y). By Proposition 5.18,
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the filtered Higgs bundle (P« V, 0y) is good. By construction, (P« V, 8y) corresponds
to P« E in the sense of Section 2.4.1. It implies the claim of the corollary. |

We obtain the spectral curve Sp(PyE) C TV x Yg of P,E. Itis equal to Sp(E) in
Theorem 5.10, and independent of the choice of a € R.

5.4 An estimate in a variant case

We continue to use the notation in Section 5.3. Let (£, V, &) be an instanton on Xpg.
Let F = F(V) be its curvature. We suppose the following:

e |F(z,w)| — 0 when |w| — oo, ie for any § > 0, there exists Rg > 0 such that
|F(z,w)|p =6 for any |w| = Rs. In particular, we obtain the spectral curve
Sp(E,dp) C TV x Yg, if § is sufficiently small.

e The closure of Sp(E) in TV x YRa is a complex subvariety.

We denote the closure by Sp(E), and we set Spo.(E) := Sp(E) N(TV x {o0}). We
obtain the following theorem.

Theorem 5.17 Under the assumption, (E, V. h) is an L? instanton.

Proof By the assumption, there exists Ry > 0, such that Assumption 5.2 is satisfied for
(E,V,h) Xg, - In particular, we can apply Proposition 5.7 to (£, V, h), Xg, - We obtain
the estimate as in Theorem 5.11 by the same argument. Then we obtain estimates as in
Proposition 5.13 and Theorem 5.14 by the same arguments. In particular, (£, V, h) is
an L? instanton. |

Theorem 5.17 implies that we can replace the L? condition with a weaker one, under
the assumption that the spectral curve is extended in a complex analytic way.

5.5 Asymptotic harmonic bundles

In this subsection, we explain that some of the results for the asymptotic behaviour
of wild harmonic bundles are naturally extended for Higgs bundles with a Hermitian
metric satisfying the Hitchin equation up to an exponentially small term. It is used in
the proof of Theorem 5.14.

Weput X :=A, ={zeC||z] <1}, X :={|z| <1} and D :={0}. Let gp be the
Poincaré metric of X \ D. Let (E, dg, 8) be a Higgs bundle on X \ D. We suppose
that there exists a decomposition

(71) (E.0)= D (Eou:boe)

aez71C[z71]
aeC
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such that, for the expression 0y = da +adz/z + fq,o dz/z, the eigenvalues of
Ja,a(2) goto 0 when z — 0. We put Irr(0) := {a | there exists « such that E, o 7 0}.

For any a(z) = ij—N Clij with a_y # 0, we set ord(a) := —N. We also set
ord(0) := 0. We take a negative number p satisfying p < min{ord(a —b) | a,b €

Irr(9), a # b}.

Let / be a Hermitian metric of E. Let 6% denote the adjoint of 6 with respect to /.
Let F(h) denote the curvature of (E,dg, k). We impose the following condition for
some Cy > 0 and ¢y > 0:

(72) |F(h) +10. 04, < Coexp(—eolz|?).

5.5.1 Asymptotic orthogonality and acceptability We have the following version
of Simpson’s main estimate.

Proposition 5.18 Suppose that (E, 55, 0, h) satisfies (72).

o Ifa##b, there exists € > 0 such that E, o and Ey g are O (exp(—e|z|ord(@=0)y) _
asymptotically orthogonal, ie there exists C > 0 such that, for any u,v € E|g,
we have |h(u,v)| < C; exp(—e|z(Q)|d@)),

o Ifa# B, thereexists € > 0 such that Eq o and E, g are O(|z|*)—-asymptotically
orthogonal.

* 0Ono —(da+adz/z)idg,, is bounded with respect to h and the Poincaré
metric gp .

Proof By considering the tensor product with a harmonic bundle of a rank one, we
may assume p < min{ord(a) | a € Irr(0)}. We have a map

ne: 2 'Clz7 = I, = Z_Z(C[Z_l]
by forgetting the terms ij_“_l aj z/ . For each b € T;, we set
£
B2 @ D Fe
ne(@)=b acC

Let née) denote the projection of E onto E ée) with respect to the decomposition
E=BE ée). In the case £ = 1, we omit the superscript (1).

Let Irr(6, £) be the image of Irr(6) by ny. We take a total order <’ on Irr(6, £) for

each ¢ such that the induced map Irr(6, 1) — Irr(6, £) is order-preserving. Let E é(e)
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be the orthogonal C(zmplement of @,y Ec in P.</y Ec. Let né(e) be the orthogonal
projection onto E ;( ) In the case £ = 1, we omit the superscript (1). We have

0= 3 al
ne(a)=b

We put {¢ :=ng —ng+1. We have the expression 8 = f dz. We put
fO =13 0npi(@ma, 1O = O3 8.5,
a a

and Rgﬁ) = nég) — n[/,(e). We consider the following claims:

(P) 1S =0(z[7F") for €/ = €.
Qo) 1, =0(=z[7Y) for £/ > €.
(Ry) IRy = O(exp(=C|z|™Y)) for £/ > £ and for b € Trr(6, £').

The asymptotic orthogonality of Eq, 4 and Ey, g (a # b) follows from (R).

In the proof of [36, Theorem 7.2.1], we proved the claims for any wild harmonic bundle
by using descending induction on £. Essentially the same argument can work. We give
an indication for a modification in this situation.

We have the expression 8T = fTdZz. Let A := —9,d. If a holomorphic section s of
End(E) satisfies [s, /] = 0, we obtain the following inequality from (72):

s

(73) Alog|s|7 < :
|S|h

+ Co exp(—€o|z]?).

By applying (73) to f, we obtain the following as in [36, (99)]:

Ot Oz
1S OR
By using the argument in the proof of Proposition 2.10 of [34], we obtain | f|, =
O(|z|7P~!). Then, we can observe that the claims P,, Q, and R, hold. Then by the
same argument as that in [36, Sections 7.3.2-7.3.3], we obtain P, and Q,. We put
4 14 14 14 14
kD = 10g (17" 2 /17O 2) = log(1 + |IRL 12 /171 P13).

By applying (73) to nb(e) , we obtain

14
RARAT
(€)|2

Aloglf(Z)IiE— + Cy.

Alogkée) < + Co exp(—e€olz|?).
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There exists C; > 0 and R; > 0 such that the following holds for any |z| < Ry:
_ _ 2 _
(74 Aexp(=Alz]™") = —exp(— 4|z~ (G 47|z ¢HD)
g\ g2 _
> —exp(=Alz| 75 A2 C11z| 24D 4 Co exp(—eolz ).

Hence we obtain R; by using the argument in [36, Section 7.3.4]. Similarly, we
obtain the asymptotic orthogonality of E, 4 and E, g (o # B), and the boundedness
of Oy — (da+ adz/z)idg, , by using the argument in [36, Sections 7.3.5-7.3.7]
with (73). |

We obtain the following corollary. (See [36, Section 7.2.5] for the argument.)

Corollary 5.19 (E,dg,h) is acceptable, ie the curvature F(h) is bounded with
respectto h and gp . |

5.5.2 Prolongation and the norm estimate For any U C X and for any a € R,
let P, E(U) denote the space of holomorphic sections s of E g\ p such that |s], =
O(|z|7%7¢) (for all €) locally around any point of U . (See Section 2.2.5.) According
to a general theory of acceptable bundles, we obtain a locally free Oy -module P, E,
and a filtered bundle Py E = (P, E | a € R). (See Section 2.2 for a review of filtered
bundles.) The decomposition (71) is extended to a decomposition of P, E':

PaE =D PaEqa.

Weset PE :=|J,cg PaE and PEqq :=J,cg PaEae- Set Gt (E):=P,E /P<,E,
which we naturally regard as C—vector spaces.

By Proposition 5.18, 6 gives a section of End(PE) ® Q) , which preserves the
decomposition PE = P E, . By the estimate in Proposition 5.18, we have that
0,0 —(da+adz/z)idg, , is logarithmic with respect to the lattice P, Eq,o . Hence,
we have the induced endomorphism Res(6q,) of GrZ; Eq«, which has a unique
eigenvalue or. We set Res(0) = @ Res(by,0). Let W Ger(E) be the monodromy
weight filtration of the nilpotent part of Res(6).

For each section s of PE, let deg” (s) := min{a | s € P,E}. Forany g € Grf E, let
deg" (g) := min{m | g € W,,,}. Let v = (v;) be a frame of P, E which is compatible
with the decomposition Py E = @ P, Eq«, the parabolic filtration and the weight
filtration, ie each v; is a section of a direct summand E 4, the tuple

v® .= (vi | deg"v; = b)
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induces a basis [v®)]:= ([vfb)]) of Gr;)D E forany a —1 < b < a, and the tuple
[v®-7] .= ([vl.(b)] ‘ devilgb) =m)

induces a basis of Gr,Ifl/ Gr;)j E. We set a; := deg” (v;) and k; := deg” (v;). Let hy
be the metric of E determined by /o (v;, v;) = |z|72% (—log |z|)% and h¢(v;, vj)=0
(i # j). The following proposition can be proved by the argument in [36, Section 8.1.2].

Proposition 5.20 / and h¢ are mutually bounded. |

5.5.3 Connection form Let v be a frame of P, E, which is compatible with the
decomposition Pz E = @ Py Eq ., the parabolic filtration and the weight filtration.
Let G be the endomorphism of E determined by G(v;) dz=0v; fori =1,...,rank E.
We can prove the following by the arguments of Lemma 7.5.5, Lemma 10.1.3 and
Proposition 10.3.3 of [36].

Lemma 5.21 We have |G|, = O(|z|™!). For the decomposition G =Y G (a,0),(6,8)
according to E = @ E, 4, we have the estimate

G | _ [Ofexp(elz"e)) ifaz b,
@@ CAE T 0z 1+¢) ifa=b,a#p.

for some € > 0. O

We have the expression 6 = f dz. Let us consider dy f. Let ® be determined by
fv=v0. Let C be determined by dyv =vC. We have (d; f)v =v(3,0 dz+[C, ®))
and [G, f]v = v[C, ®]. We have the decompositions dj, /" = D (35 /) (a,«),(6,8) and
aft = Z(aff)(a,a)’(b,ﬂ) accordingto E =P Eq 4.

Corollary 5.22 Let m := min{ord(a) | a € Irr(0)}. If m < 0, we have 0, f =
O(|z|7?*™dz) with respect to h and dz dz. We have

0 . ord(a—b) if b,
O Neoenh= {0 ez

We also have

O(exp(—elz|C)) ifa# b,

[CrrA YA {0(|z|€—2) ifa="b, a#p.

Proof It follows from Lemma 5.21. O
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5.54 Some estimates Let 1 be a C*° endomorphism of E. According to the
decomposition E = @ Eq,q, we have the decomposition ¢ = ) f(q a)(b,8), Where
Ha,),6,8) € Hom(Ey g, Eqq). Let C be the set of C* endomorphisms ¢ such that
the following holds for some € > 0 which may depend on ¢:

o = {O(IZIG exp(—e[z[™C) if (a.0) # (b. B).
@A 01 if (0, @) = (b, B).

Note that C is closed under the addition and the composition.

Proposition 5.23 Suppose ¢ and |z|?0,05t are contained in C. Then zd,t and Zd5t
are also contained in C.

Proof Tet V:H :={u e C |Imu >0} > {z € C |0 < |z| < 1} be given by
W(u) = exp(~/—lu). Because W*r and 0,03 V*(¢) are bounded, we obtain that
0,V*t and 07¥*¢ are also bounded.

In the following argument, positive constants € can change. We use the notation in the
proof of Proposition 5.18. We clearly have anéﬁ) = 0. By Lemma 5.21, we have
anb = O(exp(—e|z|7%)). We also have

020, =[F(h), m{"] = O(exp(—e|z[™")).

We have the decomposition ¢ = ) tgb) according to the decomposition £ = P E §“.
We have léeb) = O(exp(—€|z|7%)) if a # b. Hence, we have

(¢ 14 14
[t, g )] = Zt( ) Zt( ) = O(exp(—e|z| ).
a#b a#b

We also have |z[2050. {1, (| =[|z[20:0,1, w1+ (205, 20,1+, |2 2020, 7)) =
O(exp(—e|z|7%)). Hence, we obtain

29,[t, (V] = 0(exp(-e|z|—f)), 20:(t, 7P = O(exp(—e|z| ™).

Therefore, we obtain zd, t = O(exp(—e|z|™%)) and 95 ta b = O(exp(—e|z|™Y)) for
a#b.

We have 20,744 = O(|z|€) and |z|?070,744 = O(|z|€) by Lemma 5.21. Then we
obtain z0(q ¢),s,8) = |21 and Z0z1(q 4),(a,8) = |2|€ for a # B. If we have that a # b
with £ = ord(a — b), we obtain the desired estimate by using

4
Ha,0),(6,8) = Ta,a © Ly o) 7o (6) © 0.6 u
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5.5.5 Refined asymptotic orthogonality We obtain an asymptotic orthogonality of
the derivative by assuming the following with respect to /4 and dz dz, in addition
to (72):

(75) 970, (F(h) +1[6.,67]) = O(exp(—€oz|?)).

Let v be a holomorphic frame of Py E, compatible with the decomposition Py E =
D Po Eq,« the parabolic filtration and the weight filtration. Let (a;, ;) be determined
by v; € PoEq; ;- We say that a matrix valued function B = (B;;) satisfies condition
C; if the following holds for some € > 0 which may depend on B:

[ O(Iz|¢ exp(—e|z |y f (a7, 1) # (a5, 0t5),
Y 0 vilwlvile) otherwise.

Let H be the matrix valued function determined by H;; = h(v;,vj). Lemma 5.21
implies that zd, H and zdz H satisfy condition Cj .

Proposition 5.24 (|z|20;0,)> H satisfies condition C; .

Proof Let G(A) denote the endomorphism determined by v and a matrix-valued
function 4. By Lemma 5.21, we have

G(H 'z0,H),G(H 'z20;H), G(H 'z0,H), G(H 'z0; H) e C.
Because G(Z0:(H ™ 'z0,H)) = |z|> F(h) € C, we have G(H'|z|?0;0,H) € C.

We have the expression @ = fdz. We have 3:9,[f, /1] = [[F(h)z.. f1. f1 +
[0, 1.0, f]. It gives an estimate for 859,[f, /1] by Corollary 5.22, from which we
can deduce that |z|?8,0z(|z|> F(h)) € C. By Proposition 5.23, z9,(|z|* F(h)) € C and
z0:(|z|> F(h)) € C. We have G(Z05(Z0:(H™'20,H))), G(z9,(Zd:(H 29, H))) € C.
We also obtain G(H 1(z05)%z9,H), G(H 'Z05(z9;)*H) € C. Then we obtain
G(H1(20,)%(205)2H) € C from |z|?,95(|z|>F(h)) € C. Tt implies the claim of
the lemma. |

Corollary 5.25 (z0,)?H satisfies the condition C; . |

Remark 5.26 The estimate as in Corollary 5.25 will be used in the study for the
extension of the associated twistor family, which will be discussed elsewhere.
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6 LZ instantonson T x C

6.1 Some standard properties

6.1.1 Instantons of rank one Let (£, V,h) be an L? instanton on T x C with
rank £ =1.

Lemma 6.1 (E,V,h) is a unitary flat bundle.

Proof Because rank £ = 1, we have (V,Vz 4+ V' V) F,z = 0 and (V,Vz +
Vw Vi) Fziy = 0. We obtain the inequalities

_(awaw+azai)|FzZ|2 507 —(3waw+3z32)|sz|2 =<0.

We use the notation in Section 5.2.2. By applying the fibre integral for 7 x C — C, we
obtain —dy || Foz||?> < 0 and —0y 05 || Fow||?> < 0. Because the functions || F,z||?
and || F,||% are L' on Cy, they are 0. |

Corollary 6.2 Let (E,V,h) bean L? instanton on T x C of an arbitrary rank. Then
det(E, V, h) is a flat unitary bundle, ie we have Tr F(V) = 0. |

If we do not impose the L? property, there exist much more instantons of rank one on
TxC.

(i) Let a be any holomorphic function on C. Then the trivial holomorphic line
bundle O¢ with the trivial metric and the Higgs field da gives a harmonic bundle £(a)
on C. By Hitchin’s equivalence, we have the associated instanton on 7" x C.

(ii) Let p be an R—valued harmonic function on 7" x C. Then the trivial holo-
morphic line bundle O7xce with the metric 4, given by log/,(e,e) = p gives an
instanton L£(p) on 7 x C. Note that there exist many harmonic functions which
are not the real part of a holomorphic function on 7 x C. We can construct such
a function by using a Bessel function [ly(r) = f_ll cosh(rt)(t2 — 1)~Y/2ds which
satisfies 1)) +r~11) —Io = 0. Itis a C function on R, satisfying Zo(r) = Io(—r).
In particular, k (w) := Io(Jw]|) gives a C function on C satisfying (—dy, dw+4)x =0.
We can construct a harmonic function p on 7" x C from k such that p is not constant
along T, by using Fourier series on 7" x C in a standard way. (See [26].) It is not the
real part of any holomorphic function.

In general, any instanton of rank one (FE, 9, h) can be expressed as the tensor product
of instantons of types (i) and (ii). Indeed, by considering the support RFM_(E, dg),
we obtain a holomorphic function C — TV. Because C is simply connected, it is
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lifted to a holomorphic function b: C — C. We have a holomorphic function a such
that dyya = b. Then we can observe that (E, dg, /) is isomorphic to £(a) ® L(p) for
a harmonic function p on T x C.

6.1.2 Polystability of the associated filtered bundle We let (E,V, /) be an L? in-
stanton on T'xC . Let (E, dg) be the underlying holomorphic vector bundle on 7 x C |
For a saturated O7 ¢ —subsheaf 7 C E, let hr denote the induced Hermitian metric
of the smooth part of F. Let F(hr) denote the curvature. As in [8] and Simpson [44],
we set

deg(F,h) = v/—1 / Tr(A F(hr))dvolpxc .
TxC

Let mx denote the orthogonal projection of E to JF, where it is considered only on
the smooth part of F. By the Chern—Weil formula [44], we have

deg(F,h) = —/

T x

|97 |7 dvolrxc -
C

Lemma 6.3 The degree deg(F, h) is finite if and only if:

(i) The degree of Fi1x{y) is 0 forany w € C.
(i) F is extended to a saturated subsheaf PyF of PyE .

In that case, we have deg(F, h) = 2n|T| f{z}xP1 par-c; (PxF) for any z, where PsxJF
denotes PyF with the induced parabolic structure, and |T | denotes the volume of T .

Proof This type of claim is standard in the study of Kobayashi—Hitchin correspondence
for parabolic objects, and well established by Li and Narasimhan in [31], based on
the fundamental results in [44; 45] and Siu [47]. We give only an indication for our
situation.

By [44, Lemmas 10.5 and 10.6], Fj;yxc is extended to a parabolic subsheaf if and

only if [ |07 1xc|? < co. In that case, (v/—1/27) Jo Te(F(hF))|zxc is equal to
the parabolic degree of the parabolic subsheaf.

If conditions (i) and (ii) are satisfied, then we have

deg(F, h)=/TdV01T(/ c \/—_lTr(F(h]:)))=27r|T|/ IF>lpar—cl(77*.7:)>—oo.

Conversely, suppose deg(F, h) is finite. Because

deg(F, h) 5/ dvolg (—/ |V27r|2dV01T) =271/ deg(F|Tx{w})dvolc
C T C
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we have deg(F|Tx{w}) = 0 for any w. Because

—deg(F, h) :/ dvolp (/ |57T|{z}x(C|2) < 00,
T C

there exists a thick subset 4 C TV such that Fizxc 1s extendable for any z € 4. (A
subset is called thick if it is not contained in a countable union of complex analytically
closed subsets.) Then, F is extendable according to [47, Theorem 4.5]. O

Proposition 6.4 P, E is polystable. We have deg(P« E) = 0. (See Section 2.4.1 for
the stability condition in this case.)

Proof The second claim directly follows from Lemma 6.3 and Corollary 6.2. Let Py F
be a filtered subsheaf Py E satisfying (A1) and (A2) in Section 2.4.1. Let F be its
restriction to X x C. By Lemma 6.3, we have u(P«F) = u(F,h) < 0. Moreover,
if it is 0, the orthogonal projection onto F is holomorphic. Hence, the orthogonal
decomposition E = F @ F1 is holomorphic. It is extended to a decomposition
PE = Py F ® Py« FL. Both F and F+ with the induced metrics are L? instantons.
Hence, we obtain the first claim of the corollary by an easy induction on the rank. O

6.1.3 Uniqueness of the L2 instanton adapted to a filtered bundle Let (E,V, )
be an L? instanton on T x C. We have the associated filtered bundle PxE on
(T x P!, T x {oo}). Let #’ be a Hermitian metric of E, and let Vj, be a unitary
connection of (E,4’) such that (E, Vy, ') is an L? instanton, the (0, 1)—parts of
Vy and Vj, are equal, and /' is adapted to P« E . (See Section 2.2.5 for adaptedness.)

Proposition 6.5 We have a holomorphic decomposition (E, Ig) = D, (Ei, F] E;) such
that it is orthogonal with respect to both h and h’, and for each i , there exists «; > 0
such that h|g; = aihiEi . In particular, we have Vj, = V.

Proof Let s be the self-adjoint endomorphism determined by 4’ = hs. According
to [44], we have the inequality (see [44, page 876])

— (320 + Bwdw) Tr(s) + [3(s)s ™22 < 0.

By taking the fiber integral for 7' x C — C, we obtain
— 00w f Tr(s) + / 3(s)s™1/212 < 0.
T T

It implies that |, 7 Tr(s) is a subharmonic function on Cy,. By using the norm estimate
for asymptotically harmonic bundle (Proposition 5.20), we obtain that /4 and A’ are
mutually bounded, ie s and s~! are bounded with respect to both of 4 and /4’. Hence,
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we see that [, Tr(s) is constant. We obtain [ 10(s)s™1/ 2|i = 0, which implies
d(s) = 0. Then the claim of the proposition follows. |

6.1.4 Instanton number Let (E,V, /) bean L? instanton on 7 x C. We have the
associated filtered bundle Px E on (T x P!, T x {oo}). Note that the second Chern
class of P, E is independent of a € R.

Proposition 6.6 For any a € R, we have

2y
THE0?) = /

T xP

— P.E).
8]‘[2 T'x 162( a )

Proof Let U C P! be a small neighbourhood of oo such that P, E |Txw 18 semistable
of degree 0 for any w € U. In the following argument, we will shrink U. We fix a
lift of Spoo(PxE) C TV to C. We have the filtered Higgs bundle (P«V, g dw) on
(U, 00) corresponding to Py E'.

Let p: T x U — U be the projection. We have a natural C*° isomorphism Py E ~
p*(P4V'), and the holomorphic structure of P, E is described as p*(dp,p) + g dz.

We take a holomorphic frame v of P,V which is compatible with the parabolic
structure. It induces a C*° frame u of P, E on T x U. We take a C* metric /g of
Py E such that u is orthonormal with respect to /1g;7xy . We take a connection v ()
of P,E suchthat VOyu; =0 on T xU. Weset 4:=V -V,

Let J be the endomorphism of E|7x 1\ {c0}) Which is determined by Vy,u; = J(u;)
(i=1,...,rank E). According to Lemma 5.21 and Theorem 5.11, we have J =
O(Jw|™") with respectto #. On T x U, we have

A=de+gd2—g2dz.
-}-

Here, g, denotes the adjoint of g with respect to /1. We have [g|, = gt = 0(1).
According to Theorem 5.11 and Proposition 5.18, we have

2. 211 = O(lw|"2(log |w|)72)

with respect to /. According to Lemma 5.21 and Theorem 5.11, we have [g, J] =
O(lw|™2) and [gZ, J]= O(Jw|~?) with respect to &. Hence, we have

A% = O(|w|™H) dw dz + O(|w|™?) dw dz + O(|lw|™?) dz d=.

We set VO .=tV + (1 —1)V® for 0 <7 <1. On T x (U \ {o0}), we have the
following estimate for some p > 0, which is uniform for ¢:

(76) F(VD)=tF(V)+ (12 —1)4% = O(|w|™?) dw dw + O(|w|~'7P) dw d=
+ O(lw|"""P)dw dz + O(|lw|™?)dz d=.
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We obtain the following estimate, which is uniform for ¢:

(17 Te(F(VO)A) = O(|w|™?) dw dw dz + O(|w|~?) dw dw dz
+ O(lw|"'"P)dw dz dz + O(|lw|~'"P) dw dz dz.

We finally get
18 ——= | TER)=—— [ THFE©)?)
871’2 TxC 87‘[2 xP1
=/ Chz(PaE) = —/ Cz(PaE). O
X xP1 X xP!

6.2 Cohomology

Let (E,V,h) be an L? instanton on X := T x C. The (0, 1)—part of V is denoted
by 0g. Let X := T xP'. We put D :=T x {oo}. Let AOZ(E) denote the space
of C™ sections of E ® Q%7 on X with compact supports. Its cohomology group
is denoted by H, 0, '(X E). Let A% (P,E) denote the space of C* sections of
P.E ® Q% on X. Its cohomology group is H'(X,P,E). In this subsection, we
suppose that

0 & Spoo(E).

Proposition 6.7 The natural map H g (X, E)— H% (X, P,E) is an isomorphism
forany a e R.

Proof There exists R > 0 such that, if [w| > R, E|7x{y) is semistable of degree 0,
and 0 ¢ Sp(E|Tx{w})- We have two consequences for a C* section s of Py E on Xg:

e There exists a C° section ¢ of P, E on Xp such that Vst = s.
e If Vzs =0, then s =0.

Then the claim can be shown easily. |

Let A0 l(E) be the space of L2 sections s of E® Q%% on X so that dgs is also L2.
Here, We consider the L2 conditions with respect to h and the Euclidean metric of X .
The cohomology group of the complex (A 12 (E),dF) is denoted by Hp’ 0. (X, E).

Proposition 6.8 The natural map HCO ’i(X L E)— H, 0, ’(X E) is an isomorphism.

Proof Let A% L2 (E ) C A 12 (E ) be the subspace of the sectlons with compact supports.
It gives a subcornplex and its cohomology is denoted by H 2 (X E).

Lemma 6.9 The natural map H£2’ C(X, E)— HO I(X E) is an isomorphism.
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Proof For any L? section s of £ on Xg, there exists an L? section ¢ of E on
Xgr (R’ > R) such that Vst =5 on Xg/. If Vs is L2, then Vgt is also L2. If an
L? section s of E on Xp satisfies Vzs = 0, then we have s = 0. Then the claim of
the lemma can be shown. O

We take a smooth Kihler metric g & of X and a Hermitian metric hp,E of PoE. Let
Bz’zl (P.E) be the space of L2 sections w of P,E on X such that dw is L2, where
we consider the L2 condition with respect to g ¢ and hp,g. Let

B}; (PaE) C B3 (PoE)

denote the subspace of the sections whose support is contained in X . By the same ar-
gument, the natural map Bg’;c(Pa E)— Bz’; (P4 E) is a quasi-isomorphism. We have
a natural identification ’
0,e 0,e
By (PE)=A)3 (E)

as C-linear spaces. By the L? Dolbeault theorem (see_Fujiki [18]), the cohomol-
ogy group of Bg’; (P4 E) is naturally isomorphic to H' (X, P, E). Then the claim of
Proposition 6.8 follows. a

Corollary 6.10 H LOZI (X, E) is finite-dimensional. a
Proposition 6.11 We have H(X, P,E) = H*(X,P,E) = 0.

Proof Clearly HO(X,P,(E)) = 0. Let p: X — P! be the projection. We have
p«E =0, and the support of R! p4 E is 0—dimensional. Then, H*(X,P,E)=0. O

6.3 Exponential decay of harmonic sections

6.3.1 Statement Let (E,V, /) be an L? instanton on T x C. Let dg denote
the (0, 1)—part of V, and let 0% denote the formal adjoint with respect to /& and
dz dz 4+ dw dw. We set o o

AEg = 323]5 + 3E3*E.

Proposition 6.12 Assume that 0 ¢ Sp,,(E). Let o be an L? section of E ® Q%!
on T x C such that Agw = 0. Then we have |w| = O(exp(—C|w|)) for some C > 0.

6.3.2 An estimate Take R > 0, and put Yg :={{w|> R} and Xg :=T x Yg. Let
(E,V,h) be an L? instanton on Xpg.

Lemma 6._13 Ass_ume that 0 ¢ Sp o (E). Suppose that @ is an L? section of E ®Q§),’I:
such that dpw = 0w = 0. Then there exists C > 0 such that

@l = O(exp(=Clw])).
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Proof Let w = f dZ + g dw be a harmonic section. We have —Vg f + Vzg = 0 and
V:f + Vyg =0. We have
(79) Vu Vg f =Vy(Vzg) = VzVyg + Fyzg = —VzV. [ + Fyzg
=—=VVzf + Fzf + Fuzg,
(80) VuVeg = Fywg + Vo Vwg = Fuwg + Ve (=V:z f)
= Fuwg —V:Vuof + Fzw/ = Fowg —V:Vzg + Fz f.
We obtain
®1)  —(Owdw +0:02)(f, /) = —(Vzf, Vz /) —2Re((Vw Vi + V:V2) 1, f)
=—(Vz/.Vz /) =2Re(Fez f + Fzwg. f).

Using the notation in Section 5.2.2, we obtain

~wdwll £12 = —=IV2£ 12+ OUFIA £ 12 + lIg1?))-

Similarly, we obtain

—dwdwlgl® < —IVzgl> + OUFIU S+ lgl?))-

By the assumption 0 ¢ Sp ., (E), there exist R; > R and Cy > 0 such that if |w| > R
then we have ||dzg||(w) > C1||g||[(w) and |0z f||(w) = C1|| f||(w). Hence, there exist
€ >0 and R, > R such that if |w| > R, then

(82) —dwdw (1 /11* +llgl®) < —edl £ 12 + gl

In general, if ¢ is a positive L!—subharmonic function on Yg, , then ¢p(w) = O(Jw|~?).
Indeed, by the mean value property, we have

4 ’ G

ow) < ———— w) < ———.
7T(|w|_R2)2 lw—w’|<(lw|—R2)/2 (|w|_R2)2

Hence, we have || f||> + llg]|> = O(Jw|~2). Then by a standard argument with (82),
we obtain || £||? + |g||> = O(exp(—Cj|w|)). (See the proof of Lemma 5.12.) By
a bootstrapping argument, we obtain | f(z, w)| = O(exp(—Cq4|w|)) and |g(z, w)| =
O(exp(—Calw])). 0

6.3.3 Finiteness We continue to use the notation in Section 6.3.2. Let w be a
C® section of E ® Q%! on Xg. Suppose that the support of  is contained in
Tx{|w|>R+1}. Weset D:=0dg +5*E Let dvol denote the volume form induced
by the Euclidean metric.
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Lemma 6.14 Assume that @ and Agw are L*. Then 5’;:0) and 5Ea) are L?, and
we have

/h(w,AEa))dvolzf|Dw|idvol.

Proof Let g:=dzdz+dwdw. Let |-|; ¢ denote the norm of sections of E ® Q2°
induced by / and g. Let x(¢) be a nonnegative valued C® function such that x(z) =1
(1t <0)and x(t) =0 (¢ > 1), and that 3,(x)/x"/? is also C*®. For a large N, we
put xny(w) := x(log|w|— N). Because

X;/z(w)anN(w) _ (X_l/zat)()(log lw|—N)- (2w)—1,

there exists Cy > 0 such that |X]_\71/28wXN| <Ci|lw|7! and |X§1/23WXN| <Cilw|™L.
We have

/XNh(a),AEw)dVOI—/XNlpwlidVOI

— 1/2 _ 1/2
< (/ |8XN|§,XE1|a)|i’gdvol) (/ XN|8a)|,21’gdvol)

1/2 _ 1/2
—i—(/laleg,Xﬁllwﬁ,gdvol) (/ XN|8*a)|i’gdvol) .

There exist C; > 0 (i = 2, 3) such that for any N, we have

(83)

1/2
/XN|DCU|2 gdvol < Cz(/ XN|Da)|i gdvol) + Cj3.

Then the first claim of Lemma 6.14 follows. We have

(84) ‘/h(XNa),AEw)dvol—/XN|Da)|i’gdvol

=G /(|5XN|g @i g 100],g + 10X N g |@]n,g 18*@]n,g)dvol

for some C4 > 0. By the first claim, the integrands of the right-hand side are dominated
by some integrable functions, independently from /N . By taking the limit, we obtain
the second claim. i

6.3.4 Proof of Proposition 6.12 Let us return to the setting in Section 6.3.1. Ac-
cording to Lemma 6.13, we have only to prove the following lemma to establish

Proposition 6.12.

Lemma 6.15 dpw = §*Ea) =0.
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Proof By the first claim of Lemma 6.14, Dw is L?. By the argument in the proof of
the second claim of the same lemma, we obtain [ |Da)|i gdvol =0,ie Do=0. O

6.4 Nahm transform for L? instantons

Let (E,V,h) be an L? instanton on 7 x C with rank £ > 1. Let D := Sp,.(E).
We shall construct a harmonic bundle on 7V \ D with the method in [14; 26]. Let
®: C — T denote the projection. For any ¢ € C\ ®~1(D), let L_¢=(C, A7 —d?)
denote the corresponding line bundle on 7" with the natural Hermitian metric. Let
Nahm(E, V)¢ denote the space of L? harmonic sections of E ® L ¢® Q%1 Itis
finite-dimensional, and naturally isomorphic to

HY T xP',P_1E®L_¢) >~ HY(T xP', PoE ® L_¢).

(See Section 6.2.) The Euclidean metric dz dz + dw dw of T x C and the Hermitian
metric /2 of E induce a metric /21 (§) of Nahm(E, V). The multiplication of —w €
Op1(1) induces an endomorphism Fy, () of Nahm(E, V). It is also described as
—P¢ ow, where P¢ denotes the orthogonal projection of the space of L? sections of
EQRL :® 9(7):3(((3 onto Nahm(E, V)¢. (Note Proposition 6.12.)

Let A?9(E ® L_¢) denote the space of L? sections of the bundle E ® L_:® QlT”g(C .
Let 0f,¢ denote the d—operator of £ ® £ ¢ and let 0% ¢ denote its adjoint. Let

D¢ := 5E,§ + 82,; be a closed operator
AYEQL DA ERL¢) > A" (E® L),
and let D} := g+ 5E’§ denote its adjoint

A"WE®L_¢) > A" (EQL_¢) ® AP (E® L_y).

By the results in Section 6.2, we obtain that DZ‘ is surjective. We have

Ker(Dg‘) = Nahm(E, V).

The family | Nahm(E, V), gives a C* bundle on C \ ®~1(D). Because it is
naturally LY —equivariant, it induces a bundle Nahm(E, V) on TV \ D. It is equipped
with a C° metric #; and a C% endomorphism Fy,. It is also equipped with the
induced unitary connection V. The C* bundle Nahm(FE, V) is also constructed as
the descent of the family of the cohomology of the complexes of the closed operators
(A%*(E ®L_¢), F] E.¢)- Itinduces a holomorphic structure of Nahm(E, V) as a bundle
on TV\ D, and Fy, is holomorphic. We set 0y := F, d¢. The (0, 1)—part of V; is
equal to the 5—operator of Nahm(FE, V).

Geometry & Topology, Volume 18 (2014)



L? doubly periodic instantons 2921

Proposition 6.16 (E, 5E1 , 01, hy) is a wild harmonic bundle.

Proof Because the argument is rather standard, we give only an indication for the con-
venience of the readers. For I C {1,2,3}, let p; denote the projection of TV x T x P!
onto the product of the i components. By the construction, we have a natural isomor-
phism (E;,dg,) ~ Rp1+(p33PoE® pTZPOin_l)Wv\D. The endomorphism Fy, is
equal to the multiplication of

—Ww: Rpl*(p;373_1E ®pT2P0in_l)|TV\D — Rpl*(p;3P0E ®pT2P0in_l)|TV\D.

Hence, we obtain that 6 is a wild Higgs field in the sense that, for the local expression
0 = f d{ around P € D, the coefficients of the characteristic polynomial det(z id — f')
are meromorphic at P.

Let us prove that (E}, F] E,» 01, h1) is a harmonic bundle. We have only to prove that
(E1,0E,,01,h1))y is a harmonic bundle for any small open subset U C TV \ D. By
fixing a lift of U to C \ ®~1(D), we use the holomorphic coordinate ¢ on U .

Let Ag denote the Laplacian on A%°(E), ie Ag = 5}‘555 = —/—1Adgdg. We
have
Ay = —=2(V;Vz + Vy V) y.

On A%2(E), the Laplacian is given by 555*}5 = (—v/—1)dgAdg. We have
Vg% (¥ dZ dw) = —2(VzV; + Vi Vi)V dZ dib.

Because F,z + Fyiw = 0, it is equal to Ag () dzdw. Hence, under the natural
identification A%°(E)® A%2(E) ~ A%%(E)® ({1, dZ dw)), the Laplacian D*D acts
as Ag ®id, where ((a, b)) denotes the 2—dimensional vector space generated by a, b.
The Green operator of D*D acts as Gg ® id, where Gg denotes the Green operator
for Ag on A%°(E).

We naturally identify 479 (E® L_¢) with A?>9(E). For a differential form 7, let u(7)
be an endomorphism of @ AP*9(E) given by (7)(¢) = v A ¢. We have

5E,§=5E—§,u(df) and 5*E,§:52"+“/—1'EA0M(012).

Let dy denote the trivial connection of the product vector bundle A% (E) x U over
U . For the operators on the space of the sections U — A%!(E) x U we have

[dy.d+ ¢t dz) = d¢ u(dz), [dy.(@+¢dz2)*]=v—1dCA o u(dz).

We set :=d ¢ u(dz)+dt~/—1Aou(dz). Let P; denote the orthogonal projection of

A%1(E) onto the kernel of sz. Let Ay = 5*E’§5E,; denote the Laplacian on A%%(E)
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for £ ® L'_g. Let Q; denote the Laplacian for A¢ on AO’O(E), ie Q;A; = idA0,0(E).
The Green operator G¢ for DZ‘D@ on A%9% @ 4%2 is given by G¢ ®id. We have

P = 1—D§0G§0D§.
Let Gr ® id also denote the naturally induced operator on A% ~ 490 ® ((dz, dw)).

Let (-,-) denote the inner product of 4%*(E) induced by / and dz dz + dw dw. By
a standard computation, the curvature F of the connection V; is described as follows,
for any sections v; (i =1,2) of Nahm(E, V):

(85) (V1. Fy2)=(¥1.du o Pe(du )
=—(y11,dy o D¢ 0 G¢ o D{(dy¥2))={du Y1, D¢ 0 G¢ 0 D (dur2))
=(Dgdyyn, Ge o Dy (du ) =(Qy1, Ge Q)
=d di({dzy, dZ(G; ® id)Ya)—(Adzvy), Adz(Gr ® id)y)).
We have 0(y) = P¢(wy)d{ and HT(V/) = P;(Ez/f)dz. We have
(86) (Y1, (Prw o Peb— Pgibo Prw)yra) dCd¢
= —(¥1. (w(P; = DT~ B(Pe — Dw)ya)d L dT
= (WY1, DgGy Dy W) — (w1, Dy Gy Dy wy)) d§ d§
(DE @), GeDE (@) — (D} (wy1). Ge D (wy)))dE dT
([DF. @1 Ge[DF, W) — (1D} wlyr, Ge[DF, wlya))dt dX.
We have [D}, 0] = u(dw) and [DF, w] = —+/—1A o u(dw). Hence, we obtain

(87) (lﬂl,(P;-wOP;w—Pé-wopgw)lﬂzdé'd)
= ({dWy1, dW (G ® id)¥2) — (A(dwyr), Adw(Ge ®id)y2))) di dL.

By using (dzdw, dzdw) = (A dwdw, A dwdw) = (A dzdz, A dzdz) for the metric
on Q% ., we get

(Y1, (F + (Powd{)o(Powdl))y,) =0.

Namely, the Hitchin equation is satisfied. Thus, Proposition 6.16 follows. |

Remark 6.17 We obtain a different transformation by replacing £_; with L, for
which we do not need any essential change.

Remark 6.18 We use the operators that are natural the complex geometry, instead of
the Dirac operator itself.
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7 L? instantons and wild harmonic bundles

7.1 Nahm transform for wild harmonic bundles on 7V

7.1.1 Construction Let D be a nonempty finite subset of 7. We fix a Kihler
metric grv\p of T\ D, which is Poincaré-like around D. Let (E,0g,6,h) be a
wild harmonic bundle on (7Y, D). For simplicity, we assume the following:

e (E,dg.0,h) has a singularity at each point P of D, ie P is a pole of 6, or the
parabolic structure at P is nontrivial.

o (E ,515, 0, h) is irreducible, ie it is not a direct sum of harmonic bundles of
positive ranks.

We shall construct an L2 instanton from (E, 55, 0, h) with the method in [14; 24].
Let HI’;Z(E, 9,0, h) denote the i™ L2 cohomology group of (E,dg,0,h). By
assumption, the associated filtered Higgs bundle (P« E, 0) is stable of degree 0. As
recalled in Lemma 3.1, they are isomorphic to the hypercohomology groups of the
complex C* (P« E®Q°®, 0). In particular, they are finite-dimensional, and isomorphic to
the space of L2 harmonic i —forms of (E,dg, 6, h). We also have HLOZ(E, g, 0,h) =
sz(E, 9,0, h) =0 by the above assumptions.

Remark 7.1 If D is empty, (E,dg, 6, h) is isomorphic to (L, 3,6, %) such that
rank L = 1. So we exclude the case D = &.

For any (z,w) € C2, let £, 4, denote the harmonic bundle of rank one on 7V given
by (C, d+ zd¢) with the trivial metric and the Higgs field w d¢. Let (E, 5532, Ow, h)
denote (E, dg, 6, h)®L; . Let Nahm(E, 3E. 6, h)(z,w) be the space of L? harmonic
1—forms of (E,0g 7, 0y, h). It is independent of the choice of the Poincaré-like met-
ric grv\ p. It is finite-dimensional, and naturally isomorphic to Nahm(P« E, 0)(z ) -
It is naturally equipped with the metric /2; induced by 4.

Let AP4(E) denote the space of L? sections of E ® Q;’g\ p- Let
Ty o AP s AP
denote the adjoint of the closed operator 9 E.z: APT — APATL et
0f: AP4 > 4P~14
denote the adjoint of 0y: A”9 — APT1:4 We have

05, =—v—1[A0p —Zd¢] and 6} =—+/~1[A,05]=—V~1[A. 0T + wd7].
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Weset ST := A%Y(E)Y® AV (E) and S™:= AY(E) = A1 (E)® AVO(E). Let
Dz =0gz+bw+0g, + 05

be a closed operator ST — S, and let
D}y =0p:+ 0w+ 05, +0)

denote its adjoint S~ — ST. We have KerD; ,, = Nahm(E, 9.0, h)(z,w): see [36].
By the vanishing of Hiz(E, 5E,z, bw,h) (i =0,2), we obtain that D* is surjective.
Hence, the family U(Z’w) Nahm(E, g, 0, h)(z,) gives a C vector bundle on C2.
(See [14].) It is naturally equivariant with respect to the action of L on C? by
x®(z,w)=(z+ x, w). Hence, we obtain a bundle on 7" x C. It is equipped with an
induced C* metric /; and an induced unitary connection V;. Because the C°° bundle
is also constructed as a family of the cohomology of the complexes (A®*(E), 0 Ez+60w),
it is equipped with a naturally induced holomorphic structure, which is equal to the
(0, 1)—part of V;. By the construction, the holomorphic bundle is naturally isomorphic
to Nahm(P«E, )7 xc - (See Section 7.2.2 for more details on this isomorphism.) We
shall give the proof of the following theorem in Section 7.1.4 after preliminaries.

Theorem 7.2 (Nahm(E,dg, 0, h), hy,V,) isan L? instanton.

We give a remark on the proof. It is rather easy and standard to prove that the tuple
(Nahm(E, dg, 0, h), hy, V;) is an instanton by using the twistor property of instantons
and harmonic bundles. But, we do not give such an argument in the following. Instead,
we follow another standard argument to use a description of the curvature F(Vy) in
terms of the Green operator. Because we need an estimate for the decay of F(Vy), we
need the description, anyway.

7.1.2 Preliminaries We give the preliminary for a general situation. Let X be a
torus C¢/L. Let D C X be a finite set. Let g4 = Ad¢ d¢ be a Kihler metric of
X \ D for some positive valued function A, which is Poincaré-like around D. Let
(E,dg. 0, h) be a wild harmonic bundle on X \ D. We set D := dg + 6. Let D}
(resp D7) denote the formal adjoint of D with respect to /2 and g4 (resp. d¢d ). We
set Ay =D%D and Ay =DD. We have Ay = A7TA.

Lemma 7.3 Let ¢ be any section of E on X \ D such that

/|¢|,2,A|dcd2|+/|A1go|i|dgdz| <o
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Then the following integrals are finite:
(58) [ 1otz ati+ [ 1840 alds Tl <co.

(89) / h(p. Arp)|dE dE| = / h(p. Aap)AldE dE| = / Dg|2 < oo.

Proof The finiteness (88) is clear. In (89), the first equality is trivial. The second
equality and finiteness can be shown by an argument in the proof of Lemma 6.14. O

We set DY :=dp +67. Let (DT)Z (resp. (DT)T) denote the formal adjoint of Dt with
respect to g4 (resp. d¢d¢). We have Ay = (DT)TDT and Ay = (DT);‘IDT.

Lemma 7.4 Let ¢ be as in Lemma 7.3. Then we have

(90) [ h(p. Arp)|dE dE| = / h(p. Aag)AldE dF| = / D2 < oc.

Proof The first equality is trivial. For the second, we have only to apply Lemma 7.3
to a harmonic bundle (E, g, o, h)on X\ D. O

7.1.3 Estimate Let X be a torus C¢/L with a nonempty finite subset D as in
Section 7.1.2. We use the Euclidean metric d¢ d¢ of X . Let dvoly = |d¢ d¢| denote
the associated volume form. Let (E,df, 6, k) be a wild harmonic bundle on (X, D).
Assume that the harmonic bundle has a singularity at each point of D.

We set V}(lz) =0p4+0p +2dl—Zd¢. Let ‘H - w be the space of the sections of E on
X \ D such that

fX|¢|,3dvolx+/X(|V,§z)<p|,2,+|(9+wd;)¢|;)<oo.

Proposition 7.5 There exist positive constants R > 0, C > 0 and p > 0 such that if
|w| > R, then for any ¢ € H,, we have

J (5828410 +wd0ygl) = Clul? | joliavoly
(See also a refined estimate in Proposition 7.9 below.)
Proof We use an argument in [48, Section 2.4] with an adjustment to our situation.

We use the standard distance on X'. We take small neighbourhoods Bp of P € D.
There exist Ry >0 and C; > 0 such that, if [w| > Ry, then we have |(6 +w d;)(p|,21 >
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i |w|2|<p|idV01X on X \|Upecp Bp. We have only to prove the estimate on each Bp.
We may assume P =0, and Bp is an e-ball B, = {|¢| < ¢€}.

We have a ramified covering (B.,0) — (Be,0) given by ¥(u) = u? such that
Y*(E,dE, 6, h) is unramified, ie we have a decomposition

YHE 0g.0)= B (EaIE,.0),

acu—1C[u—1]

where the Higgs fields 6, —daidg, are tame. Let £ := max{deg,—1 a | E, # 0}.

Lemma 7.6 There exist R' > 0 and C/ > 0 (i = 1,2) such that

10¢ln = Cllwl|d¢] el
on B\ {[¢] < Clw|~P/ Py if [w| = R'.
Proof We have only to estimate each 6, on B.. Let us consider the case a # 0. We
set n := deg,—1 a. For each w, we have the solutions b;(w) (i =0,...,n+ p—1)
of the equation

dua(u) + pwuP~ ! =0.

We have the equality u=?*19,a(u) + pw = « ]_[?:(f_l(u_l — bi(w)~1) for some

a € C\ {0}. We have
0o = 0yaidg, du+ gqdu,

where |gals, < Cilu|™'. We have R, > 0 and C, > 0 such that if |w| > R, then
Ct = Jbi(w)||w|OTP < Gy,
We take C3 > C,. We set Wy = {|u| < Cs|w|~ 1/ @)},
On B, \ Wi, we have |ga|s < (Cl/C3)|w|1/(”+p). We also have
™t = bi(w) ™ = [bi(w) T = a2 (G5 = G D w |V

for any i, and hence |y~ ?*19,a+ pw| > |oz|(C2_1 —C3_1)”+1’|w|. Hence, if Cj is
sufficiently larger than C,, there exist R4 > 0 and C4 > 0 such that if |w| > R4 then

|(Bua + pwul™")idg, +galp = Calw|u|”~!
Hence, we obtain the desired inequality for the integral over B, \ W, in the case a # 0.

Let us consider the case a = 0. We have the expression 6y = go du, and |gg|p <
Ciolu|™! for some Cjo > 0. We take C;; > Cjg, and we consider W := {|u| <
Ci1|w|~?}. On B.\W, we have |wuP~!| > Cﬁ_1|w|1/l’. We also have |go|; <
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(CIO/C11)|w|1/1’. Hence, if Cy; is sufficiently larger than Cg, then for some Cy; >0
we get
| pwu?~idg, +goln = Cralwu?™"|.

Hence, we obtain the desired inequality in the case a = 0. |

Let ¢ be any L? section of E on B with respect to dvoly, such that

/B (VD02 4160 + wd)gl2) < co.

€

We set Wy = {[¢] < 2C}|w| =P/ P} and W, := {|¢| < C}|w|7P/¢+P)}. We have
a kind of Poincaré inequality, ie there exist C” > 0 and R” > 0 such that if |w| > R”,
then (see [7; 48, (2.12)])

w2/ €+ / I 21ded]

Wi _
< C([ dlolil? + |w|21’/<"+1’)/ |<o|,2,|dzdz|).
Wh WI\WZ

There exists C”” such that the right-hand side is dominated by

C(/ |V,£Z)<o|%,+/ |(9+wdc)<o|,2,).
Wi Wi\W>

Thus, the proof of Proposition 7.5 is finished. O

Let D(z,w) =0 +zdl + 0 + wd(. Let D7} (z,w) denote the adjoint with respect
to the Euclidean metric d¢ d¢. Let A;(z, w) := Di(z,w)oD(z,w). Let gx\p bea
Kihler metric of X\ D which is Poincaré-like around D. Let dvoly\ p be the volume
form associated to gx\p -

Corollary 7.7 There exist p > 0, C > 0 and R > 0 such that if |w| > R, then for
any section ¢ of E such that

91) /|(p|idvolX\D+/ |Aq(z, w)(p|idvolX < o0
we have

1/2 1/2
o cur([iwhar) < ([ 12wl )

(See Corollary 7.11 for a refinement.)
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Proof Let DY (z,w) =dg —Zd¢ + (8% +wd?). From (91) and Lemmas 7.3 and 7.4,
we obtain [ |D(z, w)g0|i <oo and [ IDT(z, w)(p|i < 00. By using the same lemmas
and Proposition 7.5, there exist C; > 0 and p; > 0 such that

©3) Cywler [ o 2dvoly < f DCz. )l + [ DYz w2

= Z/h((p, Aq(z,w)p)dvoly .

Then the claim of the corollary follows. a

7.1.4 Proof of Theorem 7.2 We return to the situation in Section 7.1.1. Let wrv\ p
be the Kéhler form associated to the metric g7v\ p. The multiplication of w7v\ p in-
duces an isomorphism A%%(E) ~ AL (E). It gives an identification ST~ A%%(F)®
{((1,orv\p)), where ({1, wrv\p)) denotes the 2—dimensional vector space gener-
ated by 1 and wrv\p. By the general theory of harmonic bundles, the Laplacian
D} ,Dzw on ST is identified with Az ® id on A%°(E) ® (1, wrv\p)), where
Ay = (B*E,z +6%)0(0g,, + 0w) on A%°(E). (See Simpson [46]. In this case, it
can be easily checked directly.) The Green operator G, for D}, Dy, is identified
with G,y ® id, where G, is the Green operator of Ay on A%O(E).

For any simply connected open subset U; of 7', we fix its lift U in C, with respect to
a universal covering C, — T'. We have only to check the decay condition on U x Cy,.

For a differential form 7 on 7', let p(7) be an endomorphism of € A?*9(E) given
by u(t)(¢) =t A@. Let dyxc denote the trivial connection of the product vector
bundle S~ x (U x C) over U x C. We have the following relation for the operators
on the space of the sections U x C — S~ x (U xC):

[duxc,d+zd] = dz u(d?),
[duxc. (3 +zd0)*] = dZ(v=1A o u(d?)),
[duxc, 0 +wdl] = dw pn(d?),
]=

[duxc. (0 +w d§)*] = dw(—~=TAu(d).

We set Q = dz u(d¢) + dw u(dg) + dzZ(v—1Au(d)) + d(—~/—1Au(d?)).

Let F(V;) be the curvature of the transformed bundle Nahm(E, 3, 0, 1) with the
metric and the unitary connection. Let P, denote the orthogonal projection of S™
onto Nahm(E,gE, 0,h)zw)- Let ¥; be sections of Nahm(E,5E, 0,h). Let (-,-)
denote the Hermitian pairing on A?-4(E) induced by /4 and wrv\ p. The following is
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a standard computation:

94) (Y1, F(V)Y2) = (Y1, Pzw od o Prydyry) = (Y1, d o Pyy o dirs)

(

= (Y1.d o (Pzw — 1) od3) = —(d¥1, (Pzyy — 1) 0 d2)
(d Doy o Gy opzwdllfﬂ = (D* dWI Gz wD* d‘/’Z)
=(ld, D*w]l/fl,sz[d,D wl¥2) = (QY1, G2 QY2).

We have the expression ¥; = ;1 d¢ + Vi, d and
QY =dzyy dCde 4+ dwir, dEdT — v —1dwy AdE dE)
+ vV =1dzy1, A(dT dE).
Let A be determined by g7v\p = A d{d{. Then
95) GzwQY2 = dzGzuw(A™ Y21) AdTdE + dwGzw (A Y22) AdEd
— V=1dWG 0 (Y21 AdEdE)) + N =1dZG (Y22 A(dEd ).
We also have
96)  (Y11dCdS, AGw(A™ " Y21)dEd ) = (Y11 A(dEdE), Gow (Y21 A(dEdY)))
=4 [ W11, Geu4™ W21 dvolr
O7)  (Y12d8dE, AGw(A™ " Y22)dEd ) = (Y12 A(dEdE), Gow (Y22 A(dEdY)))
=4 [ W12, Gew4™ Y22 vl

From these equalities, we obtain (dz dZ+dw dw) A{Y1, F(V1)¥2) =0, which means
that Nahm(E, 0, 0, h) with the induced metric /; and connection Vi is an instanton.

Let us prove that it is an L? instanton. Let €] E,z + 6y)] denote the formal adjoint of
3Ez + 0y, with respect to 4 and d¢ d¢. We set Agy,1 = (3Ez +0w)] (8EZ + 6y).
Because Azy,1 = AAzy, we have Ay 1(Gzw(A™ 11//21)) = 1,1. We have

/|gzw(A_1W21)|idV01TV\D +/ Y21 ]2 dvolrv < oco.

By Corollary 7.7, we have the following for some p > 0 and C > 0:

CluP? [ 1Gau(a™ e fvolr < [ i Pavolr
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Hence, we obtain

98)  [(Y11dCdt, AGw(A™ V1) dT )|
= |(¥11A(dTdE), Gow (Y21 A(dTdY)))|

1/2 1/2
<C|w|—p(/|wnd;|,3) (/IwzldCIi) .
We have a similar estimate for

(Y12d8dE, Gz (Y22)dEdE)| = |(Y12A(dEd ), Gow (Y22 A(dTd D))

From those estimates, we obtain |F(Vy)| = O(Jw[™”) for some p > 0. Because
Nahm(E, dg, 0, h) ~ Nahm(P« E, 0)|yxc , we can apply Theorem 5.17, and hence
we obtain that F(V;) is L2. Thus, the proof of Theorem 7.2 is finished. a

Remark 7.8 Using Corollary 7.11, we can directly prove the curvature is 2.

7.1.5 Refined estimates (appendix) We refine the estimates in Section 7.1.3, ie we
prove that p can be replaced with 1 + p. Although we do not use it in this paper, this
type of argument seems useful in the study of a different type of Nahm transform, and
so we would like to keep it.

Proposition 7.9 There exist positive constants R > 0, C > 0 and p > 0 such that, if
|w| > R, the following holds for any ¢ € Hy,:

[ 4920410+ w a0y = Clul™ [ lofavlr.

Proof We again use the argument in [48, Section 2.4] with an adjustment to our
case of wild harmonic bundles. We use the standard distance on X. We take small
neighbourhoods Bp of P € D. There exists Ry >0 and C; > 0 such that, if |jw| > Ry,
then we have (6 + w d§)<p|i > (C |w|2|g0|idvolx on X \ Upep Bp. We have only
to prove the estimate on each Bp. We may assume P = 0, and Bp is an e-ball
Be ={[¢| =€}

We have a ramified covering y: (B..0) — (Be,0) given by y(u) = u? such that
Y*(E,dE, 0, h) is unramified, ie we have the decomposition

(99) VNE 3g.0)= P (Ea dE,.0),

acu—1C[u—1]
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where the Higgs field 6, —daidg, are tame. Let /' = h|g,, and let V( 2 denote the
unitary connection associated to ¥ *(E, dg) with /', By the asymptotic orthogonahty
of the decomposition (99) with respect to / (see [36]), we have the inequalities

/(}V(Z)¢‘2+|(9+Wd§)¢|i)ECZ/ (V3 el

ol +10 +wdb)el;).

/ |§0|%,W*dV01X§C3/ |7y *dvoly .
B¢ B.

Hence, we need only the estimate with respect to the metric /’.

Let us begin with the estimate for sections of E, with a # 0. We set n := deg,—1 a.

Lemma 7.10 There exist constants R’ > 0 and C’ > 0 such that if |w| > R’, then for
any L? section ¢ of E, on B! with respect to y*dvoly such that

[ (w5

|w|e/;9/ lp|2,*dvoly < C' / (Vg

Here,e =1+ p/(n+ p)>1.

h/+ |(6a + wd§)gl}) <

we have

o 1O+ wdO)pl3)

Proof For each w, we have solutions b;(w) (i =0,...,n+ p—1) of the equation
dua(u) + pwuP~! =0.

We have the equality u=?T19,a(u) + pw = « ]_[n+p 1( 1 — p;(w)~1) for some
o € C\ {0}. We have
0o = Oyaidg, du + ga du,

where |ga|py < Cilu|™!. We have R, > 0 and C, > 0 such that if |{w| > R, then
Cyt = Jbi(w)| [w] /P < G,

We take C3 > C,. We set U; = {Ju| < C3_1|w|_1/(”+P)} and Uy = {lu| <
C 71/},

Let us consider the estimate on B.. \ Uy . We have |gq|p < (C/C3)|w|/ P We
also have

™t —bi(w) ™ = |bi(w) T = a7 = (G = ¢ w| @R
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for any i, and hence |y~ ?*19,a+ pw| > |oz|(C2_1 —C3_1)”+1’|w|. Hence, if Cj is
sufficiently larger than C,, we have

|@ua+ pwuP™)e + ga(@) i = Calw] @] |u] P~
for some C,4 > 0. Hence, we obtain the inequality for the integral over B, \ U,.
Let us consider the estimate on Uf; . There exist C5 > 0 and Rs > 0 such that
|Qua + pwu?™ Mg duly = Cslu| ™ol |dul.
We also have |gq¢ dulp < Cylu™"||¢|p|du|. Hence, there exists Cg > 0 such that

(100)  [(Ba + wpuP ™ du)p|2, = Colp|3 [u|72@TP|u 2P~V |qy dil

> CsCalo | [wl*u*P~V|du di,
Therefore, we have the desired inequality for the integral over U .

We consider the estimate on U, \U;. Foreach i =0,...,n+ p—1, we set 17,- =
{lu—bi(w)] < e|w|~V@FP for some €; > 0. Let u € U \ (U UlJ; Vi). We have

n+p—1
aon  |u P90+ pwl = [pwllulP7" ] lu—bi(w)]
i=0
n+p—1
> pCtlw? T lu—bi(w)| = pCy el |w).
i=0

We also have

(102)  |ga@ln < CilulP olp - |ul™P < CilulP gy - C3|w|P/@FP)

= Cylul? oy |w] - Cslw| ™/ (1P,

Hence, there exists C7 >0 and R7 > 0 such that the following holds on U \ (43 U J; 17,~)
if l[w| > R7:

|(Bua + pwuP™ Y du + g dulpy = Crlw| ||y [u|? " |dul.

We set a := (n +2)/2(n + p). We put V; := {|u —b;j(w)| < €;|w|™?} and V] :=
{lu—bi(w)| < e|lw|~4/2}. On V; \ 'V}, we have
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n+p—1
103)  [u P o0+ pw| = pCy w* [ lu—bi(w)]
i=0
> pCyHw|? (e |w| VTP TP o (¢4 |w]79)2)

ZpC3—165+n|w|1+1/(n+p)—a‘
We also have |gq| < C; Cs|w|@+P) Because —(p—1)/(n+p)+1+1/(n+p)—a >

1/(n+ p), there exist Cg > 0 and Rg > 0 such that if [w| > Rg, then on V; \ V] we
have

(104) (B + pwu?~ du)plyy = Cy|lw| T OTP=a 1P~V gy |o]
= Cg|w| 2P 200) 1y | P71 g o

We have the following kind of Poincaré inequality, ie there exist Cy > 0 and Rg > 0
such that if |w| > Rg, then the following holds on V; (see [7; 48, (2.12)]):

|w|(n+2)/(n+p)/v |<p|;2,/|du di|

<Oo( [ Wlolu i@ 2000 [ ol )

1

We also have

(105) w200 [ g 20D
Vi
< C32(P—1)|w|(n+2)/(n+p)/ |(P|i/|du dL_l|,
Vi

106) [l [ gl fau

Vi\V;

SC3z(p—1)|w|<n+zp)/(n+p)/ 1012 [ul2?=V|du da|

i\V;
scgcf(l’“)[\ (B + pwulP ™ du)gl?,.
Vi\V/

Then we obtain the desired inequality for the integral over V;. Thus, the proof of
Lemma 7.10 is finished. a

Let us consider the case a = 0. Because this part is essentially contained in [48], we give
just an indication. We take a positive number Cyo which is sufficiently larger than |«|
for any eigenvalues « of the residue of 6y. We may assume |go| < (Ci0/10)[¢|™!
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on B.. Take Ryo > 0 sufficiently larger than Cig. For |w| > Ry, let U := {[{| <
Ciolw|™'} and U’ := {|¢] < Cyolw|™'/2}. On B\ U, we have

(107) (B0 +w dO)plw = |wllelwld¢| = golw|elwldE] = Flwlleln]dd].

There exist Ci; > 0 and Ry > 0 such that if |w| > Ry, then on U/ we have

(108) |w|2/ |¢|§,/|d§dz|§c11/ |d|¢|hf|2+|w|2/ Ip[2,1d¢ dE|
U U u\u’

< / (Cll}v;(i)sﬂ
u

We obtain the desired inequality for sections of Ey from (107) and (108). Thus, the
proof of Proposition 7.9 is finished. O

2+ 4](6o + wdO)el3).

The following is a refinement of Corollary 7.7.

Corollary 7.11 There exist p > 0, C > 0 and R > 0 such that if |w| > R, then for
any section ¢ of E such that

(109) /l(p|idV01X\D —|—/ |A1(z,w)<p|fldvolx < 00,

we have
1/2 1/2
(110) C|w|1+P(/ |¢|§dvolX) 5( |A;(z, w)<p|§dvolx) .

Proof This is proved by the argument in Corollary 7.7, by using Proposition 7.9,
instead of Proposition 7.5. |

7.2 Comparison with the algebraic Nahm transform

7.2.1 Statements Let (E,dg,0,/) be a wild harmonic bundle on (7Y, D). Let
P« E be the associated filtered bundle on (7Y, D). Let (E;, h;, Vy) be the L? in-
stanton on 7" x C obtained as the Nahm transform of (E, g, 0, h) (see Section 7.1).
Let P4 E; be the associated filtered bundle on (7 x P!, T x {o0}).

Theorem 7.12 Py E is naturally isomorphic to Nahmy (P« E, 0).
Conversely, let (E1, Vy, /1) be an L? instanton on T'xC. Let Py« E be the associated
filtered bundle on (T x P!, T x {oo}). Let (E, dg, 6, h) be the wild harmonic bundle

on (TV, D) obtained as the Nahm transform of (E;, Vy, A1) (see Section 6.4). Let
(P« E, 0) be the associated filtered Higgs bundle.
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Theorem 7.13 (P« E, 0) is naturally isomorphic to Nahmy (P« E1).
We obtain the involutivity of the Nahm transform in the following sense.

Corollary 7.14 Foran L? instanton (E;,Vy,h{) on T xC, we have an isomorphism
Nahm(Nahm(E', Vi, hy1)) >~ (Eq, Vq, hy).
For a wild harmonic bundle (E,dg,0,h) on TV, we have an isomorphism

Nahm(Nahm(E, 9, 0, h)) ~ (E, dg. 6, h).

Proof It follows from Proposition 3.25, Theorems 7.12 and 7.13, and the uniqueness
of the harmonic metric or Hermitian—Einstein metric adapted to the filtered bundle.
(See Proposition 6.5 for the uniqueness of Hermitian—Einstein metric; see [7] for the
uniqueness of the harmonic metric; see also [36]; see Section 2.2.5 for adaptedness of
metrics and filtered bundles.) O

7.2.2 Proof of Theorem 7.12 We begin by constructing an isomorphism (E1, 9 E,) >
Nahm(Py E, 0)7xc . We recall the monad construction of £ = Nahm(E, 9g.0.h);
see [14]. We use the notation in Section 7.1.1. Let g7v\ p be a Poincaré-like Kéhler
metric of 7V'\ D. Let A (E,dg,0,h) denote the space of sections ¢ of E ® Q!
on TV \ D such that ¢ and (3 + 0)¢ are L? with respect to 4 and grv\p - Note
that the conditions also imply (55,2 + 0w)p are L2 for any (z,w) € C2. Let A’
denote the sheaf of holomorphic sections of the product bundle Al (E, F] E.0,h) xC?
over C2. We have the morphisms §': A° — A'™! induced by 5532 + 0. They
are naturally equivariant with respect to the action of the lattice L on C? given by
x(z,w) = (z + x,w), as in the construction of the Poincaré bundle. The induced
bundles with operators on 7" x C are denoted by the same notation. The sheaf of
holomorphic sections of E; is isomorphic to Ker§!/Im§°.

Applying the construction in the proof of Lemma 3.1 around each point of D, we extend
Eand E® Q! to ng(P*E, 6) and CiZ (P+E,0). We let C;5(P«E, 0) denote the
Dolbeault resolution of ClL2 (P+E,0).

For I C {1,2,3}, let p; denote the projection of TV x T x C onto the product of the
i™ components (i € ). On TV x T x C, we set

~ ) .
1142 = @ pl ICLZ (P*E, 0) ®P1_10TV pTZPOZI’l.
k+Li=i
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We have §': EILZ — 5’;51 induced by 55,2 + 0y. We have a natural inclusion of
complexes
o: P23*C£2 — A*

on 7' x C. According to [36, Section 5.1], ® is a quasi-isomorphism. We also have
the following natural isomorphisms in Db (Orxc):
(IT1) P23*5L.2 >~ Rp23+(py(C] (P« E, 0)) ® p},Poin)

% Rpasa(p}(C*(PLE.6)) ® piyPoin)

~ Nahm(Px E, 0)|7xc[—1].

(See Lemma 3.1 for W.) We obtain the desired isomorphism £y > Nahm(Px« E, 0)|7xC ,
by which we shall identity the two.

Lemma 7.15 To prove Theorem 7.12, we have only to prove Nahm, (P« E, 0) C P, E;
for any a.

Proof By Proposition 3.17, we have deg(Nahmy (P« E, 0)) = deg(P«E,0) = 0. By
Proposition 6.4, we also have deg(P«E{) = 0. Hence, Nahm, (P E,0) C P, E
implies Nahm, (P« E, 0) = P, E; . a

To prove Nahm, (P« E, 68) C P, E, we need an estimate of the upper bound of the
norms of sections of Nahm, (P« E, 8). We use an argument of scaling in [48]. Because
we need only the upper bound, we will not consider more precise estimates for harmonic
representatives or their approximation.

Let U, CP! bea neighbourhood of co with the coordinate 7 = w If Uy is suffi-
ciently small, we have the decomposition Nahmy (P« E, 6)= D pc p Nahmy (P« E. 6)p
by the spectrum on T' x U;. We have the refined decomposition

Nahm(P+E.0)p= ) €D Nahmi(PiE.0)pa.
o€lrr(6,P) acC

according to the decomposition (P« E, 0) = Dyerer(o, P) Daec (PxEP.oa: 0P o)
near each P € D. We have only to prove that Nahmy (P« E, 0) p o, C Py E1. We shall
argue the case P = {0} in the following. The other case can be established similarly.
We omit the subscript P. We take a small neighbourhood Us C T v oof {0}.

Let us consider the case (0,«) # (0,0). Take a € 0. For each ¢ € R, we have the
frame of Nahm¢ (P« E, 0)p o in Lemma 3.29. We have only to prove that

(112) 16 vo.id o/ So)|,, = O(lw]| =T 7mo/Dpatma)™hy

Here, b is the parabolic degree of v, ;.
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We give a preliminary. We have the expression o0z, a+ poa = ZJ 0% {,, =:G(&).
We fix a complex number y such that oy, + p, yPetMo — (. Take a covering Up— U
glven by 1+ nPet™Me If U, is sufficiently small, we can take holomorphic functions

”0 (77) (i=1,..., potm,) satisfying
G(ug)(n))—i-pauo)(n)f”D “Po=Mo —() hrn u(’)(n)/n y exp(2m vV —1i /(mo+ po)).

There exist C; > 0 and €; > 0 such that

7l () — y exp(2 V=1 /(o + po))| < C1[n]€".

Lemma7.16 Let Z, denote the support of Cok(nPet™e ¢y 05 o+ Polo oMot /Eo)
on Ug, . If Ug and Uy are sufficiently small, then there exists a decomposition

such that for any u € Z,gi), we have
jug (m) —u] < Cln| Tt

Here C and € are positive constants which are independent of 1.

Proof Take u; € Z;. There exists a possibly multivalued holomorphic 1-form
V($o) d&o /8, obtained as the eigenvalue of 62, such that v () + n_p°_m°pouf" =0.
Because v($p) —G (&) = O(&S), there exist C; > 0 and €, > 0, independently from 7,
such that the for some unique i we have

(113) }r)_lul—yexp(Zn\/—li/(po +mo))| < Cy|n|*2.
We obtain a decomposition of Z, =[] Z ,(,i) by condition (113).
Let u; € Z,(,i). We set Qg(x, ) =3 4=y x’y7 and have
114) (g’ n/m™" = /™)

mo

x (Zajn’”“_’ 05 (@ /iy n /)
/=t @ @)
—(ug /M W1 /M) peQpy—1(1y” /1, u1/1)

= O(lur /nlIn|™*<)

We obtain |(u(()i)(n)/17)_1 —(u1/n)~Y = O(Jn|™e*€). Then we obtain the desired
estimate. m
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Let p be an R>(—valued function on C;, such that p(n) =1 for |n| < % and p(n) =0

for |n|>1. Weset ug:= u(()o). We consider the following C* sections of Ej , ® Ql,:

111 (Vo,is &) 1= p(IE[1 T2 (8o — u(£)))vo,i d o/ Lo
112 (Vo i, &) 1= (00 +EP Mo d )T @ 01 (vo i, §)).

By Lemma 7.16, if |&| is sufficiently large, p(|&|'1"e/2(¢y —uo(£))) is constantly 1
around Zg. Hence, the tuple p(vo,i, &) = (11 (vo,i, &), 2(vo,i,&)) gives a representa-
tiVe Of [vu,idé'o/é-o].

By an elementary change of variables, for any § > 0 we get

(115) / |11 (vo,i, )2 < Cys / PUEIT™2 (8o — uo(£)))2180 172 CTI21d¢, dT,|

< C1/8|§|2(b+8)—mu‘

Note that | —uo(&)| ~ [£]717™/2 for ¢, such that dp(|€|' /(o —ug(£))) # 0.
Hence, we also have

(116) f 2o H)F < Cas / Bp(E1 /2 o — uo(E))?

(& |26+ 1
800z, a4 Poet + po&PotMe Y0 |2
< Cé(s|&-|2(b+5)—2(ma+1)+2(1+mo/2) — C2'5|E|2(b+5)_m°

By the construction of /7, we have

osdo/Gal, = [ (ha(unis OF + Inaos. OF):

Hence, we obtain the desired estimate (112) for [v,,;d{o/8,]. We obtain the estimate
for [ve,iJ dCo/ o] similarly.

Let us consider the case (0, ) = ({0}, 0). The following lemma is easy to see.

Lemma 7.17 Let Z,, denote the support of Cok(6y,0 + wd{). There exist C > 0
and € > 0 such that |u| < C|w|~1=€ holds for any u € Z,. ad

For a holomorphic section s of C! (Px Ep (0),099°, 0) (see Section 3.1.1), we consider
the following C°° sections of Ep 93,0 ® Ql:

(s, w) = (p(§) — pw))s d /¢, pals,w) = (Op go0 +w d) ™ B (5)),
wi(s,w) = p(§)s dg /g, 15 (s, w) := (Bp 03,0 + w d§) ™ (B ().
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By Lemma 7.17, w5, u’, are well defined. The tuples p (s, w) = (i1 (s, w), ua(s, w))
and p'(s, w) = (7 (s, w), % (s, w)) naturally induce the same holomorphic section
of Nahm(Px E)p. If s is a section of P¢ E(g) ¢, then it is elementary to prove that for
any § > 0 we have

/mi(s, )2 < Cylw]P€+D.

We obtain [ (s, w)|p, < C(§|w|cJr5 for any § > 0. Then Nahmy (P« E) p (03,0 C P+ E1.
Thus, the proof of Theorem 7.12 is finished. a

7.2.3 Proof of Theorem 7.13 Let us construct an isomorphism of the Higgs bun-
dles (E,dg,0) ~ Nahm(PyE 1)|rv\p- Let us recall the monad construction of
Nahm(Eq, V;). Let A% denote the space of sections ¢ of E1 ® Q% on T'xC, such
that ¢ and 5E1g0 are L? with respect to /41; and the Euclidean metric. Let ®: C — TV
denote a universal covering. Let A%’ denote the sheaf of holomorphic sections of the
product bundle A% x (C \ ®~1(D)) over C\ ®~ (D). We have a morphism

Sl:AO,l_)AO,l-i-l

induced by F] E, —¢ dZz. They are naturally equivariant with respect to the action of LY
on C by the translation, as in the construction of the Poincaré bundle. The induced
bundles and the operators are denoted by the same notation. The sheaf of holomorphic
sections of (E,dg) is isomorphic to Ker§!/Im §°.

For I C {1,2,3}, let p; denote the projection of TV x T x C onto the product of
the i™ components. By construction, we have a natural morphism

Rp1+(p33P<—1 E ® p},Poin) — A%

By the results in Section 6.2, it is a quasi-isomorphism. Hence, we obtain a holomorphic
isomorphism £ ~ Nahm(Px E1)rv\ p, by which we identify them. The Higgs fields
are equal, because they are induced by the multiplication of —w.

We give a preliminary. Let U C P! be a small neighbourhood of co. On T x U, we
have a decomposition

(117) P«Er= @D PP(EDroa
PESPOO(EI) 0,

Fix a lift of Spo,(E1) C TV to gﬁoo(El) C C. We have the filtered bundles with
an endomorphism (P V, g) on U, corresponding to Py E1. It has a decomposition

(P* V7 g) = @(P* VP,O,CU gP,0,0l)’
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Let U C P_1(E) be the subsheaf such that U|7xc = P-1(E1)|rxc and

(118) u:@(P_l(El)p,{O},oea &y 7><_1(E1)p,.,,a)
P (0,0)#({0},0)

around 7 x {oo}. We use the notation from Section 3.3.1.
Lemma 7.18 We have N(U) C PyE.

Proof We give an argument around 0 € TV, by supposing 0 € D. The other case

can be proved similarly. We may suppose the lift of 0 € D is 0 € C. Let ¢ be a

holomorphic section of N (I{) around 0 € TV . We have to prove |t|, = O(|Z|7%) for

any § > 0. It is represented by a family of C® sections «(¢) = ' (¢) dZ + «2(¢) dw

of P1E1® Q(}’ipl ® LEI . According to the decomposition (118), we have
K@= ' ©proa-

P,o,x

If P 0, we may assume k' () Po.a =0 on U. (See the proof of Proposition 6.7.)
Let dvol := |dz dz dw dw].

We take a C® metric /s, of U. Note h; = O(hy|w|~2*%) for any § > 0 on
P_i1(E1)p 03,0, and hy = O(hy|w|=27€) for some € > 0 on P<_1(E1)po,a for
(0, ) # ({0},0).

If P =0 and (o, ) # ({0}, 0), we have the following finiteness uniformly for ¢:

| W @l dvol=Co [ 6 @0oalt,lul > <dvol < x.
TxU TxU

We consider the contribution from P =0 and (0, o) = ({0}, 0). We have |g¢ (03,0ln, <
Ci|w|™! for some C;. We take a sufficiently small C, > 0, and we put He :={w|
|lw|™! < C5|¢|}. We can find a unique family of C* sections u(¢) of P_1 E ® L;!

¢
on H; such that

(O + ¢ dD) ) = (k" (£)o,{03,0dZ + > (§)o,03,0d W) H, -

There exists C3 > 0 such that

[ w@lldzaz = e [ e ©ogorolh ld=dz.
T x{w} T'x{w}

x{
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Let x(w) be an R>g—valued C* function such that y(w) =1 if [w|~! < C,/4 and
x(w) =0 if lw|~! > Cy/2. We set
R1(O) =k (©o,f01,0 = 0z(x (W () = (1 = x (W) (o 0}.0-
R2(0) = k(o010 — 0w (X (W) 1(2))
= (1= x&)**(o.t03.0 — PwxX)(WE) - ¢ - 1(©).
For any § > 0, we have the following finiteness, which is uniform for ¢:

||dw dw|

|w|2+9 =Cis.

| (@, + @R,z az
For any § > 0, we have

(119) / (K", + 1®*(©);,)|dz= dz dw dw]
TxU

_ _ _ |dw dw] - _
5C2,5/T U(|K1(§)|§,2+|K2(g)|;2)|dzdz|'lL;”'H“;'ICI 2 < Gyt
X

Hence, we obtain |#({)], < Cae|¢|~? for any § > 0. Thus, the proof of Lemma 7.18 is
finished. a

Let us prove Nahmy (P« E1) = P« E . The following lemma is similar to Lemma 7.15.
Lemma 7.19 We have only to prove Nahm, (P« E{) C P, E forany a. ad

Around each P € D, we have the decomposition

(120) Nahm, (P« E1) = P Nahmy (PxE1) p 0.0

0,0

according to the decomposition (117). We have only to prove Nahmg(Px E1)p,o,e C
Pa(E). We shall argue the case P = 0 in the following. The other case can be proved
similarly. We shall omit the subscript P. We take a small neighbourhood U of P.

Let us consider the case (0, a) # (0,0). Let U, C P! be a small neighbourhood of oo
with the coordinate = w™!. Take a € 0. For each ¢ € R, we have the frame of
Lemma 3.30. We only have to prove that

. o o
(121) |15 vo.i1[, = O(g| 7=+ Pomme/Dpa=mo) ™)

Here, b is the parabolic degree of v, ;.
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We give a preliminary. We take a ramified covering U, — U given by { = uPe™"e,
We put
G (1) := dwa(to) _O‘Pufopo = Z Bj Tﬁpa_J-
Let y be a complex number such that B,y e~ —1 = 0. If Uy is sufficiently small,
there are holomorphic functions n(()i)(u) (i=1,..., po—mg) on Ug satisfying
G(nf,i)(u)) —uPe™Me =0, ;}f}) u_lng)(u) =y exp(27 vV —1i/(po —mo)).
There exist C; > 0 and €; > 0 such that
[u™" 6 ) = y exp(2 =1/ (po = ma))| < C [ul .

The following lemma is similar to Lemma 7.16.

Lemma 7.20 Let Z, denote the support of Cok(gq,q — u?°~"™°) on Uy,. If U,
and Uy are sufficiently small, then we have a decomposition

Do—My )
z,= ] z{
i=1
and we have positive constants C and € such that

[7” @) =] < ClufHmete

for any nq € Z,Si). O

We set d := 1+ m,/2. We consider the following sections of E¢ ® Qo1
1 o,z 10) 1= p(|u| ™ (2 = 10 ())) Vo, 2.
12 (Vo.i.u) = (gaa = uP* ") @p (™ (2o = 10 (1)) vo.i.

The tuple p(vo,i,u) := (141(ve,i, ), 2(Vo,i, ) induces a section of Nahm(Px E1)p o -
By Lemma 7.20, p(Ju|~% (to — 1o(u))) is constantly 1 around Z,. Hence, m(Voi, )
induces [v,,;].

By an elementary change of variables, for any § > 0 we get

(122) / |11 (vo,i, w)lj; < Cis / |o(u| ™ (ze—n0 ())) *| 7| 2@+ D dz dz||dw div]

< CI/(S |u|—2(b-i-5)—2p0—2+2d=Cv1/(S |u|_2(b+5+p°_m°/2).
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We also have

(129 /lMZ(U“’””)lizl = Cos // 190(|u) ™ (0 — 0o (1)) |76 729
1
|3wa(fa)—otporop°—upu—mo 2
< Clslu|2b+D=2(pe—me—1)-2d

— C2f§|u|—2(b+8+po—mo/2)

Hence, we obtain the estimate (121).

Let us consider the case (0, ) = ({0}, 0). Note that N(P—1 E'1)0,(03,0 =N U)o,{0},0 C
Nahmg (P« E1). Let v € Nahmy (P« E1)o0},0/ N(P-1E1)0,{0},0 for =1 <¢ < 0.
We take v € Pc Vg (03,0 Which represents v. We naturally regard v as a C* section
of P.(Eq)o. Fix a sufficiently small number b > 0, and let p be a R>o—valued
C function on C; such that p(t) =1 if |t| <b/2 and p(t) =0 if |t| > b. We obtain
a C® section d(p(v)v dZ) of P_i(E1)o® Q%2. By using H*(T xP' .U L_¢) =
0 for any ¢, we can take a holomorphic family of C*® forms «(¢) = k'(¢) dz +
Kk2(§) dw of U ® Q%! such that dpgr_ «(¢) = d(p(r)vdz). Then p(v)vdz — k(L)
induces a holomorphic section v of Nahm1+c (P« E1) around P which induces v in
Nahm 4. (P«E1)/NWU).

We consider the following sections:

1 (v, 8) == (p(x) — p(¢ 1))V dz,
12 (v, §) = 3(p(x) — p(¢ ' ) (go.403.0 — O) 7 (V).

Then w1 (v, &) 4+ w2 (v, ) — k(&) induces the same section V.

For any § > 0, we have
/ |11 |i1 |[dw dw| < Cs / |‘L’|_2(C+8)_4|d‘c dz| < C5|§|_2(c+1+8),
[z|=A¢]
We also have
/ |M2|;2,1|dZ dz| < Ca/ |5,0(§_1r)|2|§|_2|r|_2(c+5) < C8|§|_2(c+1+8).
Because the support of 5(p(t)v dz) is compact, we obtain

[ 1wt avol = 001¢)
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for any § > 0, by the argument in the proof of Lemma 7.18. We obtain |V|; <
Cs|Z|~€*1+9) for any § > 0. Thus, we obtain Nahmj (P« E1)o,03,0 C Pi+cE,
and the proof of Theorem 7.13 is finished. |

7.3 Kobayashi-Hitchin correspondence for L? instantons

7.3.1 Statements Let P4 E; be a good filtered bundle on (7 x P!, T x {o0}) of
degree 0 satisfying condition (A3). (See Section 2.4.1 for good filtered bundles.)

Proposition 7.21 P, E, is stable if and only if Nahm (P E) is a stable filtered
Higgs bundle. (See Section 2.4.4 for the stability condition of P« E1.)

Before going to the proof, we give a consequence.

Theorem 7.22 Let Py E, be a stable good filtered bundle on (T x P!, T x {oo}) with
deg(P«E;) = 0. We set Ey := (PaE>)Txc Which is independent of a. Then there
exists a Hermitian—Einstein metric h of E, on T x C such that its curvature is L with
respect to h and the Euclidean metric, and it is adapted to the filtered bundle P« E, .
(See Section 2.2.5 for adaptedness.) Such a metric is unique up to the multiplication of
positive constants.

Proof If rank £, =1, then E; is the pullback of a line bundle L of degree 0 on T’
by the projection 7' x C — T, and the parabolic structure is the natural one, as in
Remark 2.19. A flat metric of L induces a Hermitian—Einstein metric of E, adapted
to 73* E 2.

Suppose rank E» > 1. By Proposition 7.21, Nahm, (P« E;) is stable. By Corollary 3.26,
we have
deg Nahmy (P4 E,) = deg(P+« E,) = 0.

By Corollary 3.28, we have that Nahmy (P« E1) is a good filtered Higgs bundle. Hence,
by the Kobayashi—Hitchin correspondence for wild harmonic bundles on curves [7], we
obtain an adapted harmonic metric for Nahm (P, E;). Its Nahm transform induces a
Hermitian—Einstein metric of E; adapted to the filtered bundle Py E';, by Theorem 7.12
and Proposition 3.25. |

Note that the converse is given in Proposition 6.4.

Remark 7.23 This proof of Theorem 7.22 is based on the idea mentioned in [8, Re-
mark 5.13].
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7.3.2 Proof of Proposition 7.21 Let us prove the “if” part in Proposition 7.21. Sup-
pose Nahmy (P« E1) is stable. By the Kobayashi—Hitchin correspondence for wild
harmonic bundles on curves [7] (see also [36] for the case of good filtered flat bundles),
we have an adapted harmonic metric for Nahm, (P« E£1). By Theorem 7.12, its Nahm
transform gives an adapted Hermitian—Einstein metric for Py E|. By Proposition 6.4,
P« E1 is polystable. If it is not stable, the decomposition into the stable components
induces a decomposition of Nahmy (P E;), which contradicts with the stability of
Nahm, (P« E1). Hence, Py E; is stable.

Let us prove the “only if”” part in Proposition 7.21. Let (P« E, ) := Nahmy (P« E1).
Let (P« E’,0") C (P« E,0) be a strict filtered Higgs subbundle with 0 < rank E’ <
rank £ . We obtain a subcomplex C*(PxE’,0") CC*(P+E.0) on TY x T x P! Let
Y* = (Y% > Y') be the quotient complex.

Lemma 7.24 The induced morphism R' py34(C*(P+E',0")— R p23x(C*(P+E. 0))
is injective.

Proof By the construction, ﬁ" is locally free. Hence, we obtain that RO p23*370
is torsion-free. Because R0p23*(y’) — R0p23*y0 is injective, we obtain that
R®py3,)° is torsion-free.

We take a small neighbourhood U of oo in P! on which we have the vanishing
R p34(C*(P«E',0") = R p234x(C*(P«E,0)) = 0 unless i = 1. It is easy to check
that

R 23+ (C*(P+E'.0) T x(o0} = R' p23+(C*(P+E. )T x{oo)
is injective. Hence,
R'p23xC*(PE" 0)irxv = R' p234(C* (P E. 0))7xv
is injective. Because
0= R%p23ud* = R' 23 (C*(PE".6") — R' p23.(C*(P«E. )
is exact, R0p23*37° =0, and
R p23x(C*(P+E',0') = R' p23.(C*(P+E. 0))
is injective. O

We define the parabolic structure of R! p23*(5 *(P«E’,0)) asin Section 3.2.1. The
filtered sheaf is denoted by P«));. We have a naturally defined injective morphism
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P« V1 — P« E1. Hence, we have deg(P«V;) < 0. By the argument in Section 3.2.3,
we obtain

| a®vper—[ (R p 8P E 8 or = desPLE).
TxP! TxP!
Since R2py3.C*(P+E’, ') is a torsion sheaf,
/ ¢1(R*py3+C*(P+E’, 0")or > 0.
TxP1

Hence, deg(P«E’) <0, ie (P«E, 0) is semistable.

We have (P«E’,0") C (P«E,0) such that (P«E’,0’) is stable of degree 0. If
(P« E’,0") has no singularity, it is isomorphic to a line bundle on 7" with a Higgs field
ad? (¢eC),andso R! ng*CN' (P« E’, 0’) is a nonzero torsion subsheaf of £, contra-
dicting Lemma 7.24. Thus, (P« E’, 0’) has a singularity, and Nahmy (P« E’, 0’) # 0 is
a good filtered subbundle of P« E';. By the stability of P« E, we have that the rank of
Nahmy (P4 E’, 0’) is equal to rank E;. Because deg Nahm, (P« E’,0’) = deg(P+E),
we have Nahmy (P4 E’, 0') = P« E; in codimension one. Because both of them are
filtered bundles, we have Nahmy(PsE’,0’) = P+E{ on T x P'. Then we obtain
(P«E’,0") = (P« E, ) by the involutivity of the algebraic Nahm transforms. O
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