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Asymptotic behaviour and the Nahm transform of
doubly periodic instantons with square integrable curvature

TAKURO MOCHIZUKI

We study the asymptotic behaviour of doubly periodic instantons with square-
integrable curvature. Then we establish an equivalence given by the Nahm transform
between the doubly periodic instantons with square integrable curvature and wild
harmonic bundles on the dual torus. We also introduce algebraic Nahm transforms,
which describe the transformations of the underlying filtered objects.

53C07; 14J60
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1 Introduction

Set T WD C=L, where L is a lattice of C . The product T � C is equipped with
the standard metric dz dzC dw dw , where .z; w/ is the standard local coordinate of
T �C . In this paper, we shall study L2 instantons .E;r; h/ on T �C , ie triples
where the curvature F.r/ satisfies the equation ƒF.r/D 0 and is L2 .

There is a natural decay condition around 1, the quadratic curvature decay, ie
jF.r/j D O.jwj�2/ with respect to h and the Euclidean metric dz dz C dw dw .
M Jardim [24] studied the Nahm transform of some kinds of harmonic bundles with
tame singularities on the dual torus T _ to produce instantons on T �C satisfying
quadratic curvature decay. O Biquard and Jardim [8] studied the asymptotic behaviour
of such instantons with rank 2. Upon on those results, Jardim [26] constructed an
inverse transform, ie the Nahm transform of such instantons on T �C , to produce
some types of harmonic bundles with tame singularities on T _ . See also Jardim [25;
27] and Ford and Pawlowski [16].

In this paper we aim to to generalise these results. Namely, we will study the asymptotic
behaviour of L2 instantons and establish an equivalence between the L2 instantons on
T �C and harmonic bundles with wild singularities on T _ . We shall also introduce
algebraic counterparts of the transforms. They are useful for describing induced
transformations of the singular data.
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2824 Takuro Mochizuki

1.1 Asymptotic behaviour of L2 instantons

1.1.1 The dimensional reduction of N Hitchin Briefly said, our goal in the study of
asymptotic behaviour of L2 instantons is to show that they behave like wild harmonic
bundles around 1 (see Section 1.1.3). As a preliminary, we recall the dimensional
reduction of N Hitchin [22; 23].

Let U be any open subset of C . Let .V; x@V / be a holomorphic vector bundle on U

with a Higgs field � . Let h be a Hermitian metric on V . We have the Chern connection
rV;h D

x@V C @V;h . We have the adjoint �| of � with respect to h. The tuple
.V; x@V ; h; �/ is called a harmonic bundle if the Hitchin equation F.rV;h/C Œ�; �

|�D 0

is satisfied.

Let pW T � U ! U be the projection. We have the expressions � D f dw and
�| D f | dw , where f is a holomorphic endomorphism of V and f | is the adjoint
of f . We set .E; hE/ WD p�.V; h/. Let rE be the unitary connection given by
rE D p�.rV;h/C f dz � f |dz . Then .E; hE ;rE/ is an instanton if and only if
.V; x@V ; h; �/ is a harmonic bundle. Indeed, Hitchin discovered that the above procedure
gives an equivalence between harmonic bundles on U and T–equivariant instantons
on T �U .

1.1.2 Examples and remarks We set U WD fw 2 C j jwj > Rg. The dimensional
reduction allows us to construct easy examples of L2 instantons on T �U . Let a be
any holomorphic function on U . We obtain a harmonic bundle L.a/ as the tuple of
the trivial line bundle OU e , the trivial metric h.e; e/D 1 and the Higgs field da. By
using the dimensional reduction above, we get an associated instanton on T �U . Its
curvature is @2

wa dw dzC @2
wa dz dw . In this case, the curvature is L2 if and only if

it has quadratic decay.

We can obtain more examples by considering ramifications along 1. We set U� WD

f� 2C j j�j>R1=2g. We consider a harmonic bundle L.a/, where a is a holomorphic
function on U� . Let 'W U� ! U be given by '.�/ D �2 . We obtain a harmonic
bundle '�L.a/ of rank 2 on U by pushforward. It is easy to check that the associated
instanton is L2 if and only if ��2a.�/ is holomorphic at 1. In that case, the curvature
F satisfies the decay condition O.jwj�3=2/. If aD ˛� for ˛ ¤ 0, we have 0< C1 <

jF jjwj3=2 < C2 for some constants Ci .

More generally, for any positive integer p , we set U hpi WDfwp 2C j jwpj>R1=pg. For
a covering 'pW U

hpi! U given by 'p.wp/D w
p
p and for a holomorphic function a

on U hpi , we obtain a harmonic bundle 'p�L.a/ of rank p on U . The associated
instanton is L2 if and only if '�p .w/

�1a is holomorphic at 1. If a is polynomial
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in wp , then holomorphicity is described as a condition degwp
.a/=p � 1. In that case,

the curvature F satisfies O.jwj�1�1=p/. It is easy to construct an example satisfying
0< C1 < jF jjwj

1C1=p < C2 for some Ci > 0.

Let .E; x@E ; �; h/ be a wild harmonic bundle on U , ie the (possibly multivalued)
eigenvalues of � are meromorphic at 1. As the above examples suggest, the L2 and
quadratic decay conditions for the associated instanton can be described in terms of the
eigenvalues of � . For simplicity, by shrinking U , we assume that the ramification of
the eigenvalues of � may happen at most along 1. If we take an appropriate covering
'pW U

hpi! U , we have a holomorphic decomposition

(1) '�p .E; �/D
M

a2wpCŒwp�

.Ea; �a/

such that �a�da are tame, ie for the expression �a�daDfa dwp=wp , the eigenvalues
of fa are bounded. We set Irr.�/ WD fa jEa ¤ 0g. Then by using results of the author
on the asymptotic behaviour of wild harmonic bundles [36], it is not difficult to prove
that the instanton associated to .E; x@E ; �; h/ is L2 if and only if degwp

.a/=p � 1 for
any a 2 Irr.�/. It moreover satisfies the quadratic decay condition if and only if the
harmonic bundle is unramified, ie it has a decomposition as in (1) on U .

The condition can also be described in terms of the spectral variety of � . We have the
expression � D f dw . Let Sp.f / � C� �U denote the support of the cokernel of
� � f W OC��U !OC��U . It induces a subvariety ˆ.Sp.f //, where ˆW C� �U !

T _ �U denotes the projection. Then the instanton associated to .E; x@E ; �; h/ is L2

if and only if the closure of ˆ.Sp.f // in T � xU is a complex subvariety, where
xU D U [f1g.

1.1.3 Brief description of the asymptotic behaviour of the L2 instantons Let
.E;r; h/ be an L2 instanton on T �U . Let .E; x@E/ denote the underlying holomor-
phic vector bundle on T�U . By using a theorem of Uhlenbeck, we obtain F.r/Do.1/.
This implies that the restrictions .E; x@E/jT�fwg are semistable of degree 0 if jwj is
sufficiently large. Hence, the relative Fourier–Mukai transform of .E; x@E/ gives an
OT_�U –module whose support Sp.E/ is finite and flat over U . Our first important
result is the following.

Theorem 5.10 Sp.E/ extends to a complex analytic subvariety Sp.E/ in T � xU .

We shall use an effective control of the spectrum of semistable bundles of degree 0 in
terms of the eigenvalues of the monodromy transformations of unitary connections with
the small curvature (Corollary 4.10). If we fix an embedding Symrank E.T _/� PN ,
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the spectrum induces a holomorphic map from U to PN , which we can regard as a
harmonic map. We will observe that the energy of the harmonic map is dominated by
the L2 norm of the curvature of the instanton. Then we obtain the desired extendability
of the spectral curve from the regularity theorem of J Sacks and K Uhlenbeck [42] for
harmonic maps with finite energy.

Let � W T �U !U denote the projection. We fix a lift of Sp.E/ to fSp .E/�C� xU .
Then we obtain a holomorphic vector bundle V on U with an endomorphism g , with
a C1 isomorphism ��V ' E such that ��x@V C g dz D x@E and Sp.g/D fSp .E/.
By the identification E D ��V , we obtain a T–action on E .

We set fSp1.E/ WD .C � f1g/ \ fSp .E/. We have a decomposition .V;g/ DL
˛2 �Sp1.E/

.V˛;g˛/ such that the eigenvalues of g˛.w/ go to ˛ when w ! 1.
We have a corresponding decomposition E D

L
˛2 �Sp1.E/

E˛ .

The Hermitian metric h of E is decomposed into the sum hD
P

h˛;ˇ , where h˛;ˇ are
the sesquilinear pairings of E˛ and Eˇ . By using a Fourier expansion, we decompose
h˛;ˇ into a T–invariant part and its complement. Let hı denote the T–invariant part
of
P

h˛;˛ . We shall prove that the complement h? WD h� hı and its derivatives have
exponential decay.

Theorem 5.11 For any polynomial P .a; b; c; d/ of noncommutative variables, there
exists C > 0 such that

(2) P .rz;rz;rw;rw/h
?
DO.exp.�C jwj//:

We have a Hermitian metric hV on V induced by hı . As a result, .V; x@V ; hV ;g dw/

satisfies the Hitchin equation up to an exponentially small term (Proposition 5.13). Such
a tuple .V; x@V ; hV ;g dw/ can be studied as in the case of wild harmonic bundles [36]
with minor modifications. (See Section 5.5.) Thus, we will arrive at a satisfactory
stage of understanding of the asymptotic behaviour of L2 instantons. We state some
significant consequences.

Theorem 5.14 There exists � > 0 such that

(3) F.r/DO

�
dz dz

jwj2.� log jwj/2

�
CO

�
dw dw

jwj2.� log jwj/2

�
CO

�
dw dz

jwj1C�

�
CO

�
dz dw

jwj1C�

�
:

In particular, F.r/DO.jwj�1��/ for some � > 0 with respect to h and the Euclidean
metric dw dwC dz dz .
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The estimate (3) implies that .E; x@E ; h/ is acceptable, ie F.r/ is bounded with respect
to h and the Poincaré-like metric jwj�2.log jwj2/�2dw dwC dz dz on T �U . By
applying a general result in [36], we obtain the following prolongation result.

Corollary 5.16 The holomorphic bundle .E; x@E/ extends naturally to a filtered bundle
P�E on .T � xU ;T � f1g/.

Here the filtered bundle P�E on .T � xU ;T �f1g/ is an increasing sequence .PaE j

a 2R/ of locally free OT� xU –modules such that:

(i) Pa.E/jT�U DE .

(ii) Pa.E/=P<a.E/ are locally free OT�f1g–modules, where P<aED
P

b<a

PbE .

(iii) Pa.E/D PaC�.E/ for some � > 0.

(iv) PaC1.E/D Pa.E/˝OT� xU .T � f1g/.

The sheaf PaE is obtained as the space of holomorphic sections of E whose norms
with respect to h have growth order O.jwjaC�/ for any � > 0.

The filtered bundle is useful in the study of the instanton. For example, it turns out that
1

8�2

R
T�C Tr.F.h/2/ is equal to

R
T�P1 c2.PaE/ for any a 2R, where c2 denotes the

second Chern class (Proposition 6.6). In particular, the number 1
8�2

R
T�C Tr.F.h/2/ is

an integer. (See Wehrheim [50] for this kind of integrality in a more general situation.1)

We can also use this filtered bundle to characterise the metric, ie the uniqueness part of
the so-called Kobayashi–Hitchin correspondence. The stability condition for this type
of filtered bundles is defined in Section 2.4.4 as in [8]. (Note that it is not a standard
(slope-)stability condition for filtered bundles.)

Proposition 1.1 (Propositions 6.4 and 6.5) The associated filtered bundle P�E is
polystable of degree 0. The metric h is uniquely determined as a Hermitian–Einstein
metric of .E; x@E/ adapted to P�E , up to obvious ambiguity. (See Section 6.1.3 for
uniqueness.)

We observe that we need only a weaker assumption on the curvature decay if we assume
the prolongation of the spectral curve.

Theorem 5.17 Suppose that F.r/! 0 when jwj !1 and that the spectral curve
Sp.E/ extends to a complex subvariety of T � xU . Then .E;r; h/ is an L2 instanton.

More precisely, we can directly prove the claims of Theorems 5.11 and 5.14 under the
assumption without considering the L2 condition.

1The author was informed of this by the referee.
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1.1.4 Some remarks In [8], Jardim and Biquard showed that an instanton of rank 2

with quadratic decay is an exponentially small perturbation of a tuple .V; x@V ;gdw; hV /

which satisfies the Hitchin equation up to an exponentially small term. Our result could
be regarded as a generalization of theirs. However, the methods are rather different. To
obtain a decomposition into a T–invariant part and its complement, they started with
the construction of a global frame satisfying a nice property, which is an analogue of
the Coulomb gauge of Uhlenbeck. Their method seems to require a stronger decay
condition than L2 , for example the quadratic decay condition. We use a more natural
decomposition induced by a standard method of the Fourier–Mukai transform in
complex geometry, which allows us to consider L2 instantons once we deal with the
issue of the prolongation of the spectral curve. (See also Charbonneau [12] for some
discussion on the relation between the L2 property and the quadratic decay property
of doubly periodic instantons.)

As mentioned above, we shall establish that an L2 instanton is an exponentially
small perturbation of .V; x@V ; hV ; �V / which satisfies the Hitchin equation up to an
exponentially small term. Interestingly to the author, we can obtain a more refined
result. Namely, we can naturally construct a harmonic metric h0

V
on .V; x@V ;g dw/

defined on a neighbourhood of 1 from the L2 instanton. It is an analogue of the
reductions from wild harmonic bundles to tame harmonic bundles studied in [36]. We
consider a kind of meromorphic prolongation of the holomorphic vector bundle on
the twistor space associated to T �C and encounter a kind of infinite-dimensional
Stokes phenomenon. By taking the graduation with respect to the Stokes structure, we
obtain a wild harmonic bundle. Similarly, in this paper, we consider only the product
holomorphic structure of T �C . From the viewpoint of twistor theory, the holomorphic
vector bundle with respect to the other holomorphic structures should also be studied.
The prolongation of the twistor family of the holomorphic structure is related to the
above construction of harmonic metrics. The author hopes to return to this deeper
aspect of the study elsewhere.

Although we do not use it explicitly, we prefer to regard an instanton on T �U as an
infinite-dimensional harmonic bundle on U , which is suggested by Hitchin’s reduction.
This heuristic is useful in our study of the asymptotic behaviour of L2 instantons.
From this viewpoint, Theorems 5.11 and 5.17 can be naturally regarded as a variant of
Simpson’s main estimate [45]. (See also the author’s [35; 36].)

1.2 Nahm transforms for wild harmonic bundles and L2 instantons

1.2.1 Nahm transforms and algebraic Nahm transforms As an application of
the study of the asymptotic behaviour, we shall establish the equivalence between
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L2 instantons on T � C and wild harmonic bundles on T _ given by the Nahm
transforms, which is a differential geometric variant of the Fourier–Mukai transform.
(See Bartocci, Bruzzo and Hernández Ruipérez [5] and [27] for the long history of
various versions of the Nahm transforms. See also Braam and Baal [11], Donaldson [13],
Hitchin [21], Nakajima [38], Schenk [43] and Szabó [48].)

Once we understand the asymptotic behaviour of an L2 instanton .E;r; h/, we
can prove the desired property of the associated cohomology groups and harmonic
sections. Then the standard L2 method allows us to construct the Nahm transform
Nahm.E;r; h/, which is a wild harmonic bundle on .T _;Sp1.E// (see Section 6.4).
Conversely, we may construct the Nahm transform of any wild harmonic bundle
.E ; x@E ; �; hE/ on .T _;D/ to L2 instantons Nahm.E ; x@E ; �; hE/ on T �C , by using
the result on wild harmonic bundles on curves (see [36], Sabbah [40] and Zucker [51]),
although we need some estimates to establish the L2 property (see Section 7.1).

To study their more detailed properties, we introduce the algebraic Nahm transforms
for filtered Higgs bundles on .T _;D/ and filtered bundles on .T � C;T � f1g/,
which do not necessarily come from wild harmonic bundles or L2 instantons. The
constructions are based on the Higgs interpretation of the Nahm transforms. It could
be regarded as a filtered version of the Fourier transform for Higgs bundles studied in
Bonsdorff [10], although we restrict ourselves to the case where the base space is an
elliptic curve.

As mentioned in Section 1.1.3, we obtain the filtered bundle P�E on .T �P1;T �f1g/

associated to any L2 instanton .E;r; h/, and the metric h is determined by P�E
essentially uniquely. We have the good filtered Higgs bundle .P�E ; �/ on .T _;D/
associated to any wild harmonic bundle .E ; x@E ; �; hE/, and the metric hE is determined
by .P�E ; �/ essentially uniquely; see Biquard and Boalch [7] and [36]. So, it is
significant to describe the induced transformation between the underlying filtered
bundles on T �P1 and the underlying good filtered Higgs bundles on .T _;D/ that is
given by the algebraic Nahm transforms. They allow us to describe how the singular
data are transformed. We may also use them to prove that the Nahm transforms are
mutually inverse.

1.2.2 Algebraic Nahm transform for filtered Higgs bundles Let us briefly explain
how the algebraic Nahm transform is constructed for filtered Higgs bundles .P�E ; �/
on .T _;D/. (The details will be given in Section 3 after the preliminaries in Section 2.)
We should impose several conditions on the filtered Higgs bundles.

Goodness and admissibility One of the conditions is the compatibility of the filtered
bundle P�E and the Higgs field � at each P 2 D . Suppose that the filtered Higgs
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bundle .P�E ; �/ comes from a good wild harmonic bundle. Let UP be a small
neighbourhood of P with a coordinate �P with �P .P / D 0. If we take a ramified
covering 'pW U

0
P
! UP given by 'p.u/ D up D �P for an appropriate p , then we

have a decomposition

'�p .P�E ; �/D
M

a2u�1CŒu�1�

.P�E 0a; � 0a/:

Here, � 0a � da are logarithmic in the sense that .� 0a � a/PaE 0a � PaE 0a du=u. Such a
filtered Higgs bundle is called good. This kind of filtered Higgs bundle is also closely
related to L2 instantons.

But it seems more natural to consider a wider class of filtered Higgs bundles for our
algebraic Nahm transform. For .p;m/ 2 Z>0 �Z�0 with gcd.p;m/ D 1, we say
that a filtered Higgs bundle has type .p;m/ at P if um'�p� gives a morphism of
filtered bundles '�pP�E! '�pP�E du=u on U 0

P
and, if .p;m/¤ .1; 0/, the morphism

is an isomorphism. We say that .P�E ; �/ is admissible at P if it is a direct sumL
.P�E.p;m/P

; �
.p;m/
P

/ of the filtered bundles of type .p;m/, after UP is shrunk appro-
priately. We say that its slope is smaller (resp. strictly smaller) than ˛ if E.p;m/

P
D 0

for m=p > ˛ (resp. m=p � ˛ ).

Each .P�E.p;m/P
; �
.p;m/
P

/ has a refined decomposition as we will explain in Section 2.3.1.
In particular, .P�E.1;0/P

; �
.1;0/
P

/ has a decomposition�
P�E.1;0/P

; �
.1;0/
P

�
D

M
˛2C

�
P�E.1;0/P;˛

; �
.1;0/
P;˛

�
:

Here, for the expression � .1;0/
P;˛

D f
.1;0/
˛ d�P=�P , the eigenvalues of f .1;0/˛ go to ˛

when �P ! 0. On UP , we set

C0.P�E ; �/P D
M

.p;m/¤.1;0/

P�1=2�m=pE
.p;m/
P

˚

M
˛¤0

P�1=2E
.1;0/
P;˛
˚P0E.1;0/P;0

;(4)

C1.P�E ; �/P D
� M
.p;m/¤.1;0/

P1=2E
.p;m/
P

˚

M
˛¤0

P1=2E
.1;0/
P;˛

�
˝�1

T_(5)

˚
�
P<1E.1;0/P;0

˝�1
C �

.1;0/
P;0

P0E.1;0/P;0

�
:

Here, .P<1E.1;0/P;0
˝�1 C �

.1;0/
P;0

P0E.1;0/P;0
/ is the sum taken in P1E.1;0/P;0

˝�1 . The
Higgs field � gives a morphism C0.P�E ; �/P ! C1.P�E ; �/P . Thus we obtain a
complex C�.P�E ; �/ on UP , which is an extension of � W E! E ˝�1 on UP nP .

We say that .P�E ; �/ on .T _;D/ is admissible if its restriction to a neighbourhood of
each P 2D is admissible. By considering the extension at each P 2D , we obtain a
complex C�.P�E ; �/ on T _ as an extension of E! E ˝�1 on T _ nD .
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Vanishing conditions on some cohomology groups For each w 2C and each holo-
morphic line bundle L of degree 0 on T _ , we obtain a complex C�

w;L
.P�E ; �/ WD

C�.P�E˝L; �Cw d�/. To consider the algebraic Nahm transform for .P�E ; �/, it is
natural to impose the following vanishing condition:

(A0) Hi.T _; C�
w;L

.P�E ; �//D 0 unless i D 1 for any w 2C and any holomorphic
line bundle L of degree 0 on T _ .

For I � f1; 2; 3g, let pI denote the projection of T _ �T �P1 onto the product of
the i th components .i 2 I/. Let Poin denote the Poincaré bundle on T _ � T . We
consider the following complex on T _ �T �P1 :

zC 0
WD p�1C

0
˝p�12Poin˝p�3OP1.�1/

�Cw d�
�����! zC 1

WD p�1C
1
˝p�12Poin:

It turns out that N .P�E ; �/ WDR1p23�
zC � is a locally free OT�P1 –module on T �P1 .

In particular, we obtain a locally free OT�P1.�.T � f1g//–module

Nahm.P�E ; �/ WDN .P�E ; �/˝OT�P1.�.T � f1g//:

Filtered bundles on .T �U;T � f1g/ The algebraic Nahm transform of .P�E ; �/
is defined to be a filtered bundle over the meromorphic bundle Nahm.P�E ; �/. For the
construction of such a filtration, it would be convenient to have a description of any
filtered bundle P�E on .T �U;T �f1g/ satisfying the following condition, where U

denotes a neighbourhood of 1 in P1 .

(A1) GrPc .E/ are semistable bundles of degree 0 on T for any c 2R.

By shrinking U , we may assume that Pc.E/jT�fwg are semistable of degree 0 for
any w 2 U and for any c 2 R. We set Sp1.E/ WD Sp.PcEjT�f1g/ � T _ , which
is independent of c 2 R. We fix a lift fSp1.E/ � C of Sp1.E/, ie fSp1.E/ is
mapped bijectively to Sp1.E/ by the projection C! T _ . Then we have a filtered
bundle P�V on .U;1/ with an endomorphism g such that Sp.gj1/ D fSp1.E/

corresponding to P�E . Namely, we have a C1 isomorphism P�E ' ��P�V , under
which x@P�E D ��.x@P�V / C g dz , where � W T � U ! U denotes the projection.
The filtered bundle with an endomorphism .P�V;g/, or equivalently the filtered
Higgs bundle .P�V;g dw/, completely determines P�E . We have the decomposition
.P�V;g/D

L
˛2 �Sp1.E/

.P�V˛;g˛/ with Sp.g˛j1/D f˛g. The filtered bundle P�E
satisfying (A1) is called admissible if the following holds:

(A2) The filtered Higgs bundles .P�V˛; .g˛ � ˛/ dw/ are admissible for any
˛ 2 fSp1.E/.

The slope of .P�V˛; .g˛ �˛/ dw/ is strictly smaller than 1 by construction.
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Local algebraic Nahm transform and algebraic Nahm transform The local alge-
braic Nahm transform N 0;1 is a transform from the germs of admissible filtered Higgs
bundles to the germs of admissible filtered Higgs bundles whose slopes are strictly
smaller than 1. It is an analogue of the local Fourier transform F0;1 for meromorphic
flat bundles on P1 in Bloch and Esnault [9] and García López [19]. See also Arinkin [3],
Beilison, Bloch, Deligne and Esnault [6], Fang [15], Fu [17], Graham-Squire [20]
and Sabbah [41]. (More precisely, it is an analogue of the local Fourier transform of
the minimal extension of meromorphic flat bundles.) It gives a procedure to make an
admissible filtered bundle P�EP on .T �U;T � f1g/ such that Sp1.EP /D fPg,
from an admissible filtered Higgs bundle .P�E ; �/jUP

on .UP ;P /. From the local
Nahm transform

L
P2D P�EP and the meromorphic bundle Nahm.P�E ; �/, we ob-

tain a filtered bundle on .T �P1;T � f1g/, denoted by Nahm�.P�E ; �/, that is the
algebraic Nahm transform for admissible filtered Higgs bundles.

1.2.3 Algebraic Nahm transform for admissible filtered bundles Let P�E be an
admissible filtered bundle on .T � P1;T � f1g/. To define the algebraic Nahm
transform of P�E , we impose the following vanishing condition.

(A3) H 0.T � P1;P0E ˝ L/ D 0 and H 2.T � P1;P<�1E ˝ L/ D 0 for any
holomorphic line bundle L of degree 0 on T .

We set D WD Sp1.E/. It is easy to observe that condition (A3) implies that H i.T �

P1;PcE ˝L_/ D 0 .i ¤ 1/ for any c 2 R unless L 2 D . For any I � f1; 2; 3g,
let pI denote the projection of T _ �T �P1 onto the product of the i th components
.i 2 I/. We define

(6) Nahm.P�E/ WDR1p1�.p
�
12Poin_˝p�23P0E/.�D/

'R1p1�.p
�
12Poin_˝p�23P�1E/.�D/:

It is a locally free OT_.�D/–module. The multiplication of �w d� gives a Higgs
field � of Nahm.P�E/. Thus, we obtain a meromorphic Higgs bundle on .T _;D/.

Let U be a small neighbourhood of 1 in P1 . On T �U , we have a decomposition
P�EjT�U D

L
P2D P�EP with Sp1.EP / D fPg. We fix a lift zD � C . We have

the corresponding filtered bundles .P�VP ;gP /. We have the decomposition

.P�VP ;gP �
zP /D

M�
P�V .p;m/

P
;g
.p;m/
P

�
;

where .P�V .p;m/
P

;g
.p;m/
P

dw/ has slope .p;m/ with m=p < 1, and zP 2 zD is a lift
of P . Moreover, we have the decomposition�

P�V .1;0/
P

;g
.1;0/
P

�
D

M
˛2C

�
P�V .1;0/

P;˛
;g
.1;0/
P;˛

�
:
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It turns out that we have a decomposition of the meromorphic bundle

Nahm.P�E/jUP

D Nahm.P�E/.1;0/P;0
˚

M
˛¤C

Nahm.P�E/.1;0/P;˛
˚

M
.p;m/¤.1;0/

Nahm.P�E/.p;m/P
;

and we also have that Nahm.P�E/.1;0/P;˛
.˛ ¤ 0/ and Nahm.P�E/.p;m/P

(.p;m/ ¤
.1; 0/) are determined by�

P�V .1;0/
P;˛

;g
.1;0/
P;˛

�
and

�
P�V .p;m/

P;˛
;g
.p;m/
P

�
:

We have the local algebraic Nahm transform N1;0 , which is a transform of admis-
sible Higgs bundles .P�V; �/ such that the slopes are strictly smaller than 0 and
P�V .1;0/

0
D 0. It is an analogue of the local Fourier transform F1;0 in [9; 19]. It is an

inverse of N 0;1 except for the part .p;m/D .1; 0/ and ˛ D 0. We may introduce
filtrations of Nahm.P�E/.1;0/P;˛

.˛ ¤ 0/ and Nahm.P�E/.p;m/P
(.p;m/ ¤ .1; 0/) by

using the local algebraic Nahm transform N1;0 . As for the part with .p;m/D .1; 0/
and ˛ D 0, we have an injection

P0V
.1;0/

P;0j1
�R1p1�.p

�
12Poin_˝p�23P�1E/

.1;0/

P;0jP
;

by which we can introduce a filtration on Nahm.P�E/.1;0/P;0
. Therefore, we obtain a

filtered Higgs bundle denoted by Nahm�.P�E/. We obtain the following correspon-
dence.

Theorem 1.2 (Propositions 3.13, 3.22 and 3.25) The Nahm transforms Nahm� give
an equivalence of the following objects, and they are mutually inverse:

� Admissible filtered Higgs bundles on .T _;D/ satisfying condition (A0).

� Admissible filtered bundles P�E on .T � P1;T � f1g/ with Sp1.E/ D D

satisfying condition (A3).

Nahm transforms also preserve the parabolic degrees (Proposition 3.17).

As already mentioned, the filtered Higgs bundles associated to wild harmonic bundles
satisfy a stronger condition called goodness. Similarly, it turns out that the filtered
bundles associated to L2 instantons are also good, in the sense that the corresponding
filtered Higgs bundles are good. We can observe that the algebraic Nahm transforms
preserve the goodness conditions.
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Theorem 3.27 The Nahm transforms Nahm� give an equivalence of the following
objects:

� Good filtered Higgs bundles on .T _;D/ satisfying condition (A0).

� Good filtered bundles P�E on .T �P1;T �f1g/ with Sp1.E/DD satisfying
condition (A3).

1.2.4 Application of the algebraic Nahm transform We have the following com-
patibility of the Nahm transform and the algebraic Nahm transform.

Theorem 1.3 (Theorems 7.12 and 7.13) � Let .E;r; h/ be an L2 instanton on
T �C . Let P�E be the associated filtered bundle on .T �P1;T �f1g/. Then
the associated filtered Higgs bundle of the wild harmonic bundle Nahm.E;r; h/
on .T _;Sp1.E// is naturally isomorphic to the algebraic Nahm transform
Nahm.P�E/.

� Let .E;x@E ; �; hE/ be a wild harmonic bundle on .T _;D/. Let .P�E ; �/ be the
associated good filtered Higgs bundle on .T _;D/. Then the associated filtered
bundle of the L2 instanton Nahm.E ; x@E ; hE ; �/ is naturally isomorphic to the
algebraic Nahm transform Nahm.P�E ; �/.

As an application, we obtain the inversion property of the Nahm transforms.

Corollary 7.14 For an L2 instanton .E;r; h/ on T �C , we have an isomorphism

Nahm.Nahm.E;r; h//' .E;r; h/:

For a wild harmonic bundle .E ; x@E ; �; hE/ on .T _;D/, we have an isomorphism

Nahm.Nahm.E ; x@E ; �; hE//' .E ; x@E ; �; hE/:

Indeed, it follows from Theorem 1.3 and the uniqueness of the Hermitian–Einstein
metric (resp. the harmonic metric) adapted to the filtered bundle (resp. filtered Higgs
bundle).

As another application of the compatibility, we can easily compute the characteris-
tic classes of the bundles obtained by the algebraic Nahm transform, which allows
us to describe the rank and the second Chern class of the bundle obtained by the
Nahm transform. The local algebraic Nahm transform also gives us a rather complete
understanding of the transformation of singularity data by the Nahm transform.
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1.2.5 Some remarks Recall that the hyperkähler manifold T �C has twistor defor-
mations. Namely, for any complex number �, we have a moduli space M� of line
bundles of degree 0 with a flat �–connection on T _ . We have M0 D T �C . The
spaces M� can also be regarded as the deformation associated to the hyperkähler
structure of T �C . An instanton on T �C naturally induces a holomorphic vector
bundle. If the instanton is L2 , the holomorphic bundle with the metric induces a filtered
bundle on . SM�;T �

1/, where SM� is a natural compactification of M� , and T �
1'T is

the infinity. A wild harmonic bundle has the underlying good filtered �–flat bundle for
each complex number �. It is also natural to study the transformation of the underlying
filtered bundles on . SM�;T �

1/ and the underlying filtered �–flat bundles. It should be
a filtered enhancement of the generalised Fourier–Mukai transform for elliptic curves
due to G Laumon and M Rothstein. We would like to study this interesting aspect
elsewhere.

If we consider a counterpart of the algebraic Nahm transform for the other nonproduct
holomorphic structure of T �C underlying the hyperkähler structure, it is essentially
a filtered version of the generalised Fourier–Mukai transform in Laumon [29] and
Rothstein [39]. Interestingly to the author, we have an analogue of the stationary phase
formula even in this case. The details will be given elsewhere.

In this paper, we consider transforms between filtered bundles on T �P1 and filtered
Higgs bundles on T _ . We may introduce similar transforms for filtered Higgs bundles
on P1 with additional work on the local Nahm transform N1;1 , which is an analogue
of the local Fourier transform F1;1 . It should be the Higgs counterpart of the Nahm
transforms between wild harmonic bundles on P1 , which is given by the procedure for
wild pure twistor D–modules established in [36].

Similarly, Szabó [48] studied the Nahm transform for an interesting type of harmonic
bundles on P1 . He also studied the transform of the underlying parabolic Higgs bundles,
which looks closely related to the regular version of ours in Section 3.2. K Aker and
Szabó [2] introduced a transformation of more general parabolic Higgs bundles on P1 ,
which they call the algebraic Nahm transform. Their method to define the transform is
different from ours, and the precise relation between them is not clear at this moment.

1.3 Outline of the paper

This paper is roughly divided into three parts: Sections 2–3, 4–5 and 6–7. In the first
part, we introduce algebraic Nahm transforms and study their basic properties. In the
second part, we study the asymptotic behaviour of L2 instantons on the product of
a torus T and a region fw j jwj � Rg. Then in the third part, we study the Nahm
transforms between L2 instantons on T �C and wild harmonic bundles on the dual
torus T _ .
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2 Preliminaries on filtered objects

2.1 Semistable bundles of degree 0 on elliptic curves

2.1.1 Elliptic curve and the Fourier–Mukai transform For a variable z , let Cz

denote a complex line with the standard coordinate z . For a C–vector space V and a
C1 manifold X , let V X denote the product bundle V �X over X . If X is a complex
manifold, the natural holomorphic structure of V X is denoted just by x@.

We have a real bilinear map Cz � C� ! R given by .z; �/ 7! Im.zx�/. Let � D
�1C
p
�1�2 .�i 2R/ be a complex number such that �2¤ 0. Let L WDZCZ� �Cz .

In this paper, the dual lattice L_ means

L_ WD
˚
� 2C�

ˇ̌
Im.�x�/ 2 �Z for all � 2L

	
D
˚
�
�2
.nCm�/

ˇ̌
n;m 2 Z

	
:

We have the elliptic curves T WDCz=L and T _ WDC�=L
_ .
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For any � 2 L_ , we have �� 2 C1.T / given by ��.z/ WD exp.2
p
�1 Im.�z// D

exp.�z�x�z/. We have x@z�� D ��� dz and @z�� D���x� dz .

We can naturally regard T _ as the moduli space Pic0.T / of holomorphic line bundles
of degree 0 on T . Indeed, � gives a holomorphic bundle L� D .CT ; x@C � dz/. It
induces an isomorphism T _ ' Pic0.T /. We have the isomorphism ˆW L� ' L�C�
given by ˆ.f /D ��� �f .

We have the unitary flat connection associated to L� with the trivial metric, d �x� dzC

� dz . The monodromy along the segment from 0 to � 2L is exp.2
p
�1 Im.�x�//.

We recall a differential-geometric construction of the Poincaré bundle on T � T _ ,
following Donaldson and Kronheimer [14]. On T �C� , we have the holomorphic line
bundle

ePoin D
�
CT�C� ;

x@C � dz
�
:

The L_–action on T �C� is naturally lifted to the action on ePoin given by �.z; �; v/D
.z; �C �; ���.z/v/. Thus, a holomorphic line bundle is induced on T �T _ , which is
the Poincaré bundle denoted by Poin. The dual bundle Poin_ is induced by ePoin

_
D

.CT�C� ;
x@� � dz/ with the action �.z; �; v/D .z; �C �; ��.z/v/.

Let S be any complex analytic space. For I � f1; 2; 3g, let pI denote the projection
of T � T _ � S onto the product of the i th components .i 2 I/. For any object
M 2Db.OT�S /, we set

RFM˙.M/ WDRp23�.p
�
13.M/˝p�12Poin˙1/Œ1� 2Db.OT_�S /:

For any object N 2Db.OT_�S /, we set

1RFM˙.N / WDRp13�.p
�
23.N /˝p�12Poin˙1/ 2Db.OT�S /:

Recall that we have a natural isomorphism 1RFMC ıRFM�.M/'M Mukai [37].

2.1.2 Semistable bundles of degree 0 For a holomorphic vector bundle .E; x@E/

on T , we have the degree given by deg.E/ WD
R

T c1.E/ and the slope given by
�.E/ WD deg.E/= rank.E/. A holomorphic vector bundle E on T is called semistable
if �.F /� �.E/ holds for any nontrivial holomorphic subbundle F �E . Semistable
bundles on elliptic curves were thoroughly studied by Atiyah in [4]. In the following,
we shall not distinguish a holomorphic vector bundle and the associated sheaf of
holomorphic sections.

Let E be a semistable bundle of degree 0 on T . It is well known that the support
Sp.E/ of RFM�.E/ consists of finite points. Indeed, E is obtained as an extension
of the line bundles L� .� 2 Sp.E//. We call Sp.E/ the spectrum of E . We have the
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spectral decomposition E D
L
˛2Sp.E/E˛ , where the support of RFM�.E˛/ is f˛g.

We say a subset fSp .E/�C is a lift of Sp.E/ if the projection ˆW C! T _ induces
a bijection fSp .E/' Sp.E/. If we fix a lift, an OC –module M.E/ is determined
(up to canonical isomorphisms) by the following conditions: the support of M.E/

is fSp .E/, and ˆ�M.E/ ' RFM�.E/. Such M.E/ is called a lift of RFM�.E/.
The multiplication of � on M.E/ induces endomorphisms of RFM�.E/ and E . The
endomorphism of E is denoted by f� .

Let S be any complex analytic space. Let E be a holomorphic vector bundle on T �S .
It is called semistable of degree 0 relative to S if EjT�fsg is semistable of degree 0 for
any s 2S . The support of RFM�.E/ is relatively 0–dimensional over S . It is denoted
by Sp.E/, and called the spectrum of E . If we have a hypersurface fSp .E/�C� �S

such that the projection ˆW C� � S ! T _ � S induces fSp.E/ ' Sp.E/, then we
call fSp.E/ a lift of Sp.E/. If we have a lift of Sp.E/, we obtain a lift M.E/ of
RFM�.E/ as in the case when S is a point. We also obtain an endomorphism f� of
E induced by the multiplication of � on M.E/.

2.1.3 Equivalence of categories For a vector space V , let V denote the product
bundle T � V over T , and let x@0 denote the natural holomorphic structure of V .
For any f 2 End.V /, we have the associated holomorphic vector bundle G.V; f / WD

.V ; x@0 C f dz/. We have a natural isomorphism G.V; f / ' G.V; f C � idV / for
each � 2L_ , induced by the multiplication of ��� . Let Sp.f / denote the set of the
eigenvalues of f .

Lemma 2.1 G.V; f / is semistable of degree 0 and Sp.G.V; f //Dˆ.Sp.f // in T _ ,
where ˆW C! T _ denotes the projection.

Proof We have only to consider the case where f has a unique eigenvalue ˛ . In that
case, G.V; f / is an extension of the line bundle L˛ . Then the claim is clear.

Let VS� denote the category of finite-dimensional C–vector spaces with an endomor-
phism, ie an object in VS� is a finite-dimensional vector space V with an endomorphism
f , and a morphism .V; f /! .W;g/ in VS� is a linear map 'W V !W such that
g ı ' � ' ı f D 0. For a given subset zs � C , let VS�.zs/ � VS� denote the full
subcategory of objects .V; f / such that Sp.f /�zs.

Let VBss
0 .T / denote the category of semistable bundles of degree 0 on T , ie an

object in VBss
0 .T / is a semistable vector bundle of degree 0 on T , and a morphism

V1! V2 in VBss
0 .T / is a morphism of coherent sheaves. For a given subset s� T _ ,

let VBss
0 .T; s/�VBss

0 .T / denote the full subcategory of semistable bundles of degree 0

whose spectrum are contained in s.
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We have the functor GW VS� ! VBss
0 .T / given by the above construction. If zs is

mapped to s by the projection ˆW C� ! T _ , it induces a functor GW VS�.zs/ !
VBss

0 .T; s/.

Proposition 2.2 If ˆW C!T _ induces a bijection zs' s, then G gives an equivalence
of the categories VS�.zs/' VBss

0 .T; s/.

Proof Let us prove that it is fully faithful. We set Ef WD G.V; f /. We will not
distinguish between Ef and the associated sheaf of holomorphic sections. Suppose that
f has a unique eigenvalue ˛ such that ˛ 6�0 modulo L_ . Because Ef is obtained as an
extension of the holomorphic line bundle L˛ , we have H 0.T;Ef /DH 1.T;Ef /D 0.
In particular, we obtain the following.

Lemma 2.3 Assume that fi 2 End.V / has a unique eigenvalue ˛i for i D 1; 2. If
˛1 6� ˛2 modulo L_ , any morphism Ef1

!Ef2
is 0.

Suppose that f is nilpotent. We have the natural inclusion V ! C1.T;Ef / as
constant functions. We have a linear map V !C1.T;Ef ˝�

0;1/ given by s 7! s dz .
They induce a chain map � from C1 D .f W V ! V / to the Dolbeault complex
C1.T;Ef ˝�

0;�
T
/ of Ef .

Lemma 2.4 � is a quasi-isomorphism.

Proof Let W be the monodromy weight filtration of f . It induces filtrations of C1

and C1.T;Ef ˝�
0;�
T
/, and � gives a morphism of filtered chain complex. It in-

duces a quasi-isomorphism of the associated graded complexes. Hence, � is a quasi-
isomorphism.

We obtain the following lemma as an immediate consequence.

Lemma 2.5 Assume that fi 2 End.V / are nilpotent .i D 1; 2/. Then holomorphic
morphisms Ef1

!Ef2
naturally correspond to holomorphic morphisms �W E0!E0

such that f2 ı� �� ıf1 D 0.

In particular, if f is nilpotent, holomorphic sections of End.Ef / bijectively corre-
sponds to holomorphic sections g of End.E0/ such that Œf;g�D 0.

The full faithfulness of the functor G follows from Lemmas 2.3 and 2.5. Let us prove
the essential surjectivity of G. Let E 2VBss

0 .T; s/. We have the OC� –module M.E/

and the endomorphism f� of E as in Section 2.1.2. We have a natural isomorphism
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1RFMCıRFM�.E/'E . The functor 1RFMC is induced by the holomorphic line bundle
on T �T _ , obtained as the descent of ePoinD .C; x@0C� dz/. Let p and q denote the
projections T �C�! T and T �C�!C� . We have E ' p�.q

�.M.E//˝ ePoin/,
and the latter is naturally isomorphic to�

H 0.C� ;M.E//; x@0Cf� dz
�
:

We obtained the essential surjectivity of G. The proof of Proposition 2.2 is finished.

As appeared in the proof of Proposition 2.2, we have another equivalent construction
of G. Let N 0.V; f / denote the cokernel of the endomorphism � id�f on V ˝OC� .
It naturally induces an OT_ –module N .V; f /. We obtain 1RFMC.N .V; f //, which is
naturally isomorphic to G.V; f /. We obtain a quasi-inverse of G as follows. Let E be
a semistable bundle of degree 0 on T . We obtain a vector space H 0.T _;RFM�.E//.
If we fix a lift of Sp.E/ to fSp .E/�C , then the multiplication of � induces an endo-
morphism g� of H 0.T _;RFM�.E//. The construction of .H 0.T _;RFM�.E//;g�/
from E gives a quasi-inverse of G.

Let .E; x@E/ be a semistable bundle of degree 0 on T . Let zs�C be a lift of Sp.E/.

Corollary 2.6 We have a unique decomposition x@E D
x@E;0Cf dz with the following

properties:

� .E; x@E;0/ is holomorphically trivial, ie it is isomorphic to a direct sum of copies
of OT .

� f is a holomorphic endomorphism of .E; x@E;0/. We impose the condition that
Sp.H 0.f // � zs, where H 0.f / is the induced endomorphism of the space of
the global sections of .E; x@E;0/.

Proof The existence of such a decomposition follows from the essential surjectivity
of G. Let us prove the uniqueness. By considering the spectral decomposition, we
have only to consider the case zs D f0g. Suppose that x@E D

x@0E;0C g dz is another
decomposition with the desired property. Because f is holomorphic with respect
to x@E , we have x@0E;0f D 0 and Œf;g�D 0 by Lemma 2.5. We put hD f �g , which
is also nilpotent. The identity induces an isomorphism .E; x@E;0 C h/ ' .E; x@0

E;0
/.

Because G is fully faithful, we obtain hD 0.
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The family version We have a family version of the equivalence. Let S be any
complex manifold. Let �S W T �S ! S denote the projection. Let VB�.S/ denote
the category of pairs .V; f / of a coherent locally free OS –module V and its endomor-
phism f . A morphism .V; f /! .V 0; f 0/ in VB�.S/ is a morphism of OS –modules
gW V !V 0 such that f 0ıgDgıf . Such .V; f / naturally induces an OC��S –module
M.V; f /. The support is denoted by Sp.f /. When we are given a divisor zs�C��S

which is finite over S , then VB�.S;zs/ denote the full subcategory of .V; f /2VB�.S/
such that Sp.f /�zs.

Let VBss
0 .T �S=S/ denote the full subcategory of OT�S –modules, whose objects

are semistable of degree 0 relative to S . When we are given a divisor s � T _ �S

which is finite over S , then let VBss
0 .T � S=S; s/ denote the full subcategory of

E 2 VBss
0 .T �S=S/ such that Sp.E/� s.

Let V be a holomorphic vector bundle on S with a holomorphic endomorphism f .
The C1 vector bundle ��1

S
V is equipped with a naturally induced holomorphic

structure obtained as the pullback, denoted by x@0 . We obtain a holomorphic vector
bundle G.V; f / WD .��1

S
V; x@0Cf dz/. By Lemma 2.1, G gives a functor VB�.S/!

VBss
0 .T � S=S/. If we are given s � T _ � S and its lift zs � C� � S , it gives an

equivalence of the categories VB�.S; s/! VBss
0 .T �S=S;zs/.

We have another equivalent description of G. Let .V; f /2VB�.S/. We have the natu-
rally induced OC��S –module M.V; f /, which induces an OT_�S –module N .V; f /.
We have a natural isomorphism G.V; f /' RFM�.N .V; f //.

Suppose that we are given s � T _ � S with a lift zs � C� � S . For an object
E 2VBss

0 .T �S=S; s/, we obtain an OC��S –module M.E/ such that the support of
M.E/ is contained in zs and ˆ�M.E/'RFM�.E/. The multiplication of � induces
an endomorphism of RFM�.E/, and hence an endomorphism of �S�.RFM�.E//,
denoted by g� , where �S W T

_ �S ! S . The construction of .�S� RFM�.E/;g�/
from E gives a quasi-inverse of G.

2.1.4 Differential-geometric criterion We recall a differential-geometric criterion
in terms of the curvature for a metrized holomorphic vector bundle to be semistable
of degree 0. Let .E; x@E/ be a holomorphic vector bundle on T with a Hermitian
metric h. Let F.h/ denote the curvature of the Chern connection. We use the standard
metric dz dz of T .

Lemma 2.7 There exists a constant � > 0, depending only on T and rank E , with
the following property:

� If jF.h/jh � � , then .E; x@E ; h/ is semistable of degree 0.
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Proof The number deg.E/ D
R

Tr F.h/ is an integer, and we have
R
jTr F.h/j �

jT j rank E� , where jT j is the volume of T . Hence, we have
R

Tr F.Ew/D 0 if � is
sufficiently small. For any subbundle E0 �E , by using the decreasing property of the
curvature of subbundles, we also obtain deg.E0/ < 1 and hence deg.E0/� 0.

2.2 Filtered bundles

2.2.1 Filtered sheaves Let us recall the notion of filtered sheaves and filtered bundles.
Let X be a complex manifold with a smooth hypersurface D . (We restrict ourselves
to the case that D is smooth, because we are interested in only the case in this paper.)
Let E be a coherent OX .�D/–module. Let D D

`
i2ƒDi be the decomposition into

the connected components. A filtered sheaf P�E over E is a sequence of coherent
OX –submodules PaE � E indexed by Rƒ satisfying the following.

� PaEjX nD D EjX nD : we have PaE � Pa0E if ai � a0i .i 2ƒ/, where aD .ai j

i 2ƒ/ and a0 D .a0i j i 2ƒ/.
� On a small neighbourhood U of Di .i 2ƒ/, PaEjU depends only on ai , which

we denote by Pai
.EjU /, or iPai

.EjU / when we emphasise i .
� For each i 2ƒ and c 2R, there exists � > 0 such that iPc.EjU /D iPcC�.EjU /.
� We have PaCnE D PaE

�P
niDi

�
, where nD .ni/ 2 Zƒ .

The tuple .E ; fPaE j a 2Rƒg/ is denoted by P�E . The filtration fPaE j a 2Rƒg is
also denoted by P�E . We say that E is the OX .�D/–module underlying P�E .

For a small neighbourhood U of Di , we set iP<a.EjU / WD
P

b<a Pb.EjU /. We also put
iPa.E/jDi

WD Pa.EjU /jDi
, and iGrPa .E/ WD iPa.EjU /= iP<a.EjU /, which are coherent

ODi
–modules. We set

Par.PaE ; i/ WD fb 2 �ai�1; ai � j
iGrPb .E/¤ 0g; Par.P�E ; i/ WD

[
a2Rƒ

Par.PaE ; i/:

A morphism of filtered sheaves P�E1!P�E2 is a morphism of OX –modules E1!E2

compatible with the filtrations. A subobject P�E1�P�E is a subsheaf E1�E satisfying
Pa.E1/ � Pa.E/ for any a 2 Rƒ . It is called strict if Pa.E1/D E1 \Pa.E/ for any
a 2Rƒ .

2.2.2 Filtered bundles and basic operations A filtered sheaf P�E is called a fil-
tered bundle if PaE are locally free OX –modules and iGrPa .E/ are locally free ODi

–
modules for any i 2ƒ and a 2R. In that case, for any b 2 �a� 1; a�, we set

Fb.
iPa.E/jDi

/ WD Im
�

iPb.E/jDi
!

iPa.E/jDi

�
:

This is called the parabolic filtration.
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The direct sum of filtered bundles P�Ei .i D 1; 2/ is defined to be the locally
free OX .�D/–module E1 ˚ E2 with the OX –submodules Pa.E1 ˚ E2/ D PaE1 ˚

PaE2 .a 2 Rƒ/. The tensor product of filtered bundles P�Ei .i D 1; 2/ is de-
fined as the OX .�D/–module E1 ˝ E2 with the OX –submodules Pa.E1 ˝ E2/ DP

bCc�a Pb.E1/˝ Pc.E2/. The inner homomorphism is defined as the OX .�D/–
module HomOX .�D/.E1; E2/ with the OX –submodules

PaHom.E1; E2/D ff 2Hom.E1; E2/ j f .PbE1/� PbCaE2g:

The most typical example is the OX .�D/–module OX .�D/ with the OX –submodules
Pa.OX .�D// WDO.

P
Œai �Di/, where Œa� WDmaxfn 2 Z j n� ag. The filtered bundle

is denoted just by OX .�D/. For any filtered bundle P�E , the dual P�.E_/ is defined
as Hom.P�E ;OX .�D//. We have a natural isomorphism Pa.E_/' P<�aCı.E/_ ,
where ı D .1; : : : ; 1/.

Let 'W .X 0;D0/ ! .X;D/ be a ramified covering with D0 D
`

i2ƒD0i and D D`
i2ƒDi . Let ei be the degree of the ramification along Di . Let P�E be a filtered

bundle over E . The pullback of a filtered bundle is defined as the OX 0.�D
0/–module

'�.E/ with the OX 0 –submodules Pa'
�E D

P
ebCn�a '

�.PbE/˝ OX 0.
P

niD
0
i/,

where ebD .eibi j i 2ƒ/. The filtered bundle is denoted by '�.P�E/.

Let P�E 0 be a filtered bundle on .X 0;D0/. We obtain a locally free OX .�D/–module
'�E 0 with the OX –submodules Pc.'�E 0/ such that Pc.'�E 0/jU D'�.Pei ci

E 0j'�1.Ui /
/.

The filtered bundle is denoted by '�.P�E/. Suppose that 'W .X 0;D0/! .X;D/ is a
Galois covering with the Galois group Gal.'/, and that P�E 0 be a Gal.'/–equivariant
filtered bundle. Then '�.P�E/ is equipped with an induced Gal.'/–action. The
Gal.'/–invariant part is called the descent of P�E 0 with respect to ' .

2.2.3 The parabolic first Chern class Let P�E be a filtered sheaf on .X;D/. Sup-
pose that E is torsion-free. The parabolic first Chern class of P�E is defined as

par-c1.P�E/D c1.PaE/�
X
i2ƒ

X
b2Par.PaE;i/

b dim iGrPb .E/ŒDi �:

Here, ŒDi � is the cohomology class of Di . It is independent of the choice of a .

Let Ui be a small neighbourhood of Di . Suppose that we are given a decomposition
P�EjUi

D
L

k2I.i/ P�Ei;k for each i 2 ƒ. Let U be a locally free OX –submodule
of E such that UjUi

D
L

k2I.i/ Pa.i;k/Ei;k , where a.i; k/ 2R. It is easy to check the

Geometry & Topology, Volume 18 (2014)



2844 Takuro Mochizuki

equalities

par-c1.P�E/D c1.U/�
X
i2ƒ

X
k2I.i/

ı.P�Ei;k ; a.i; k//;

ı.P�Ei;k ; a.i; k// WD
X

b2Par.Pa.i;k/Ei;k/

b rank GrPb .Ei;k/ŒDi �:

2.2.4 Compatible frames For simplicity, we consider the case where X is a neigh-
bourhood of 0 in C and D D f0g. Let P�E be a filtered bundle on .X;D/. For any
section f of E , we set degP.f / WDminfa 2R j f 2 PaEg. Let v D .v1; : : : ; vr / be
a frame of PaE . We say that it is compatible with the parabolic structure if for any
b 2 Par.PaE/, the set fvi j deg.vi/D bg induces a base of GrPb .E/.

Let 'W .X 0;D0/! .X;D/ be a ramified covering given by '.u/D up . Let P�E be a
filtered bundle on .X;D/. Let v be a compatible frame of PaE . Let ci WD degP.vi/.
We set ni WDmaxfn2Z jnCpci �pag, and wi WDu�ni'�vi . Then wD .w1; : : : ; wr /

is a compatible frame of '�.P�E/ such that degP.wi/D ni Cpci .

Let P�E 0 be a filtered bundle on .X 0;D0/. Let v0 be a compatible frame of PaE 0 . Let
ci WD degP.v0i/. For 0� j < p , we set w0ij WD ujv0i . They naturally induce sections of
Pa=p.'�E/, denoted by zw0ij . Then we have that zw0 WD . zw0ij j1� i � rank E ; 0� j <p/

gives a compatible frame of Pa=p.'�E/ such that degP. zw0ij /D .ci � j /=p .

2.2.5 Adapted metric Let us return to the setting in Section 2.2.1. Let V be a
holomorphic vector bundle on X nD with a Hermitian metric h. Recall that, for
any a 2Rƒ , we obtain a natural OX –module Ph

a V on X as follows. Let U be any
open subset of X . For any P 2 U , we take a holomorphic coordinate neighbourhood
.XP ; z1; : : : ; zn/ around P such that XP is relatively compact in U , XP \D D

XP \Di for some i 2ƒ, and XP \D D fz1 D 0g. Then let Ph
a .U / denote the space

of holomorphic sections f of VjUnD such that jfjXPnD jh D O.jz1j
�ai��/ for any

� > 0 and any P 2 U . In general, Ph
a V are not OX –coherent.

Suppose that we are given a filtered bundle P�V on .X;D/, and that V WD P�VjX nD
is equipped with a Hermitian metric h such that Ph

�V D P�V . In that case, we say
that h is adapted to P�V .

2.3 Filtered Higgs bundles

Let us recall the notion of filtered Higgs bundles on curves. Let X be a complex curve
with a discrete subset D . Let P�E be a filtered sheaf on .X;D/. Let � be a Higgs
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field of E , ie � is an OX –homomorphism E ! E ˝�1
X

. Then .P�E ; �/ is called a
filtered Higgs bundle.

We shall consider two conditions on the compatibility of � and the filtration P�E .
One is the admissibility, and the other is goodness. The latter is what we are really
interested in, because it is closely related to wild harmonic bundles and L2 instantons.
The former is easier to handle, and more natural when we consider algebraic Nahm
transforms. We shall explain the easier one first.

The conditions are given locally around each point of D . So, we shall explain them in
the case X WD fz 2C j jzj< �0g and D WD f0g.

2.3.1 Admissible filtered Higgs bundles For each positive integer p , let 'pW X
hpiD

fjzpj<�
1=p
0
g!X be given by 'p.zp/D z

p
p . Let P�V be a filtered bundle on .X;D/

with a Higgs field � . Let m 2 Z�0 and p 2 Z>0 such that gcd.p;m/D 1. We say
that .P�V; �/ has slope .p;m/ if the following hold:

� Let .P�V hpi; � hpi/ be a filtered Higgs bundle obtained as the pullback of
.P�V; �/ by 'p . Then we have zm

p �
hpi.PcV hpi/ � PcV hpidzp=zp for any

c 2R.
� Let Res.zm

p �
hpi/ denote the endomorphism of GrPc .V

hpi/ obtained as the
residue of zm

p �
hpi . If .p;m/¤ .1; 0/, we impose that Res.zm

p �
hpi/ is invertible

for any c .

Although Res.zm
p �
hpi/ may depend on the choice of a coordinate, the above condition

is independent. Let I.�/ denote the set of the eigenvalues of Res.zm
p �
hpi/. We

have Gal.'p/–action on .P�V hpi; � hpi/ and I.�/. The quotient set I.�/=Gal.'/
is denoted by I.�/. We have the orbit decomposition I.�/ D

`
o2I.�/

o . We say that
.P�V; �/ has type .p;m; o/ if moreover I.�/D fog.

If m¤ 0, then o is naturally an element of J .p;m/ WDC�=Gal.'p/, where the action
is given by .t; ˛/ 7! tm˛ . If m D 0, then o is an element of J .1; 0/ WD C . When
.P�V; �/ has slope .p;m/, it has a decomposition .P�V; �/D

L
o2J .p;m/.P�Vo; �o/

after X is shrunk appropriately, such that .P�Vo; �o/ has type .p;m; o/.

The filtered Higgs bundle .P�V; �/ is called admissible if it has a decomposition

.P�V; �/D
M
.p;m/

�
P�V .p;m/; � .p;m/

�
after X is shrunk appropriately, such that each .P�V .p;m/; � .p;m// has slope .p;m/.
Here, the decomposition is called the slope decomposition. It is refined to a decom-
position .P�V; �/D

L
.p;m;o/

.P�V .p;m/
o ; � .p;m/o / such that .P�V .p;m/

o ; �
.p;m/
o / has type
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.p;m; o/. In this paper, the decomposition is called the type decomposition. For
˛ 2Q�0 , we say that the slope of .P�V; �/ is smaller (resp. strictly smaller) than ˛ if
P�V .p;m/ D 0 for p=m> ˛ (resp. p=m� ˛ ) in the slope decomposition.

Suppose that .P�V; �/ has type .p;m; o/. After X is shrunk appropriately, we have a
decomposition �

P�V hpi; � hpi
�
D

M
˛2o

�
P�V hpi˛ ; � hpi˛

�
such that Res.zm

p �
hpi
˛ / has a unique eigenvalue ˛ . We have a natural isomorphism

'p�

�
P�V hpi˛ ; � hpi˛

�
' .P�V; �/

for any ˛ 2 o .

Lemma 2.8 Let .P�V; �/ be an admissible filtered Higgs bundle on .X;D/. Let
P�V 0 be a strict filtered Higgs subbundle, ie it is a strict filtered subbundle such that
�.V 0/ � V 0˝�1

X
. The restriction of � to V 0 is denoted by � 0 . Then .P�V 0; � 0/ is

admissible.

2.3.2 Good filtered Higgs bundles We have a stronger condition. Let X and D be
as in Section 2.3.1. We say that a filtered Higgs bundle .P�V; �/ on .X;D/ is good
if there exists a ramified covering 'pW .X

hpi;Dhpi/! .X;D/ given by 'p.zp/D z
p
p

with a decomposition

(7) '�p .P�V; �/D
M

a2z�1
p CŒz�1

p �

�
P�V hpia ; � hpia

�
;

such that � hpia �da idV hpia
is logarithmic in the sense that it gives a morphism P�V hpia !

P�V hpia dzp=zp . Let Irr.'�p�/ denote the set of a such that V hpia ¤ 0. The Ga-
lois group Gal.'p/ naturally acts on '�p .P�V; �/ and Irr.'�p�/. The quotient set
Irr.'�p�/=Gal.'p/ is denoted by Irr.'�p�/. We have the orbit decomposition

Irr.'�p�/D
a

ooo2Irr.'�p �/

ooo:

We set .P�V hpiooo ; � hpiooo / WD
L

a2ooo.P�V hpia ; � hpia /. We obtain a Gal.'p/–equivariant
decomposition '�p .P�V; �/D

L
ooo2Irr.'�p �/.P�V

hpi
ooo ; � hpiooo /. By the descent, we obtain

a decomposition

(8) .P�V; �/D
M

ooo2Irr.'��/

.P�Vooo; �ooo/:
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If we have a factorisation 'p D 'p1
ı'p2

such that '�p2
.P�V; �/ has a decomposition

as above, 'p1
gives a bijection Irr.'�p2

�/ ' Irr.'�p�/. It induces a bijection of the
quotient sets by the Galois groups. By the identification, we denote them by Irr.�/ and
Irr.�/. The decomposition (8) is independent of the choice of 'p .

For each ooo 2 Irr.�/, there exists a minimum pooo among the numbers p such that
'�p .P�Vooo; �ooo/ has a decomposition such as (7). In this case, we have joooj D pooo . We set
X ooo WDX hpoooi , 'ooo WD 'pooo and zooo WD zpooo . We have the following decomposition on X ooo :

(9) '�ooo .P�Vooo; �ooo/D
M
a2ooo

�
P�V ooo

a ; �
ooo
a

�
:

For any a 2 ooo, we have a natural isomorphism .P�Vooo; �ooo/' 'ooo�.P�V ooo
a ; �

ooo
a /. We set

mooo WD .ordz�1
ooo

a/ which is independent of a 2 ooo. In this paper, we say that .P�V; �/
has pure irregularity ooo if .P�V; �/D .P�Vooo; �ooo/.

If X is shrunk appropriately, we have a decomposition (which is a refinement of (7))

'�p .P�V; �/D
M

a2z�1
p CŒz�1

p �

M
˛2C

�
P�V hpia;˛ ; �

hpi
a;˛

�
such that the eigenvalues of the residues Res.� hpia;˛ � .daCp˛dzp=zp/ idV hpia;˛

/ are 0.
Let .P�Vooo;˛; �ooo;˛/ be the descent ofM

a2ooo

�
P�V hpia;˛ ; �

hpi
a;˛

�
to X . We obtain a decomposition

.P�V; �/D
M

ooo2Irr.�/

M
˛2C

.P�Vooo;˛; �o;˛/:

On X ooo , we have a decomposition

'�ooo .P�Vooo;˛; �ooo;˛/D
M
a2ooo

�
P�V ooo

a;˛; �
ooo
a;˛

�
:

Lemma 2.9 Let .P�V; �/ be a good filtered Higgs bundle. Let P�V 0 be a strict Higgs
subbundle. The restriction of � to V 0 is denoted by � 0 . Then .P�V 0; � 0/ is also good.

Proof Suppose .P�V; �/ is unramifiedly good with the decomposition .P�V; �/DL
.P�Va; �a/. Because �.V 0/�V 0˝�1

X
, we have V 0D

L
.V 0\Va/. By the strictness,

we obtain P�V 0D
L
.V 0\P�Va/. Hence, .P�V 0; � 0/ is good. The ramified case can

be reduced to the unramified case by the descent.
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Take p 2 Z>0 and m 2 Z�0 with gcd.p;m/D 1. Let Irr.�;p;m/ WD fooo 2 Irr.�/ j
pooo=mooo D p=mg. We have

P�V .p;m/
D

M
ooo2Irr.�;p;m/

P�Vooo:

For any o 2 J .p;m/, we have Irr.�;p;m; o/� Irr.�;p;m/ such that

P�V .p;m/
o D

M
ooo2Irr.�;p;m;o/

P�Vooo:

Take any ˛ 2 o . For each ooo 2 Irr.�;p;m; o/, we have a 2 ooo such that

P�V hpi˛ D

M
ooo2Irr.�;p;m;o/

'.pooo=p/�.P�V
ooo
a /:

Here, 'pooo=p is the ramified covering X ooo! X hpi given by 'pooo=p.zooo/ D z
pooo=p
ooo . Let

c 2R. We take a frame voooD .vooo;i/ of PpooocV ooo
a compatible with the parabolic structure.

Then the tuple of the sections˚
z

j
ooo vooo;i

ˇ̌
ooo 2 Irr.�;p;m; o/; 1� i � rank V ooo

a ; 0� j < pooo=p
	

gives a frame of PpcV
hpi
˛ .

2.3.3 Filtered bundles with an endomorphism Let U� be a small neighbourhood
of 0 in C� . Let P�V be a filtered bundle on .U� ; 0/ with an endomorphism g . We
say that .P�V;g/ has type .p;m; o/ (slope .p;m/) if .P�V;���2gd�/ has type
.p;m; o/ (resp. slope .p;m/). The condition implies p �m. We say that .P�V;g/
is admissible if .P�V;���2gd�/ is admissible. If .P�V;g/ is admissible, we have
the type and slope decompositions

.P�V;g/D
M�

P�V .p;m/
o ;g

.p;m/
o

�
and .P�V;g/D

M�
P�V .p;m/;g.p;m/

�
respectively, after X is shrunk appropriately.

Similarly, .P�V;g/ is called good if .P�V;���2gd�/ is a good filtered Higgs bundle.

Remark 2.10 We regard U� as a neighbourhood of 1 in P1 . Of course, ���2d� D

dw for w D ��1 .

Remark 2.11 We shall be interested in the case that .P�V;g/ is decomposed intoL
˛2C.P�V˛;g˛/ such that Sp.g˛j0/ D f˛g and .P�V˛;g˛ � ˛/ is admissible. In

that case, in the slope decomposition

.P�V˛;g˛ �˛/D
M�

P�V .p;m/
˛ ;g.p;m/˛

�
;
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we have m=p < 1 for V
.p;m/
˛ ¤ 0.

2.4 Filtered bundles on .T �P 1;T � f1g/

2.4.1 Local conditions Let U � P1 be a small neighbourhood of 1. We introduce
some conditions on filtered bundles P�E on .T �U;T � f1g/.

(A1) PcEjT�1 is semistable of degree 0 for any c 2R.

The condition is equivalent to GrPc .E/ being semistable of degree 0 for any c 2R. Let
Sp1.E/� T _ denote the spectrum of PcEjT�1 . It is independent of c . We fix its
lift to fSp1.E/�C . Then as observed in Section 2.1, for a small neighbourhood U 0

of12P1 , we obtain the corresponding filtered bundle P�V with an endomorphism g

on .U 0;1/ such that Sp.gj1/D fSp1.E/. We have the decomposition

.P�V;g/D
M

P2Sp1.E/

.P�VP ;gP /

such that Sp.gP /\ .C � f1g/ D f zPg is the lift of P . A filtered bundle satisfying
(A1) is called admissible if it satisfies the following condition.

(A2) .P�VP ;gP �
zP id/ is admissible in the sense of Section 2.3.3 for any P 2

Sp1.E/. This condition is independent of the choice of fSp1.E/.

We have the type decomposition .P�VP ;gP �
zP id/D

L
p;m;o

.P�V .p;m/
P;o

;g.p;m/
P;o

/, and
we have the corresponding decomposition

P�E D
M
P

M
p;m;o

P�E.p;m/
P;o ;

which is called the type decomposition of P�E . The following lemma is clear.

Lemma 2.12 If P�E satisfies condition (A1) (resp. the admissibility), then the dual
P�.E_/ also satisfies condition (A1) (resp. the admissibility).

We also have the following condition.

(Good) Let P�E be a filtered bundle on .T �U;T � f1g/ satisfying (A1). Take
any lift fSp1.E/�C of Sp1.E/. Then the filtered bundle is called good
if the corresponding filtered bundle P�V with an endomorphism g is good
in the sense of Section 2.3.3.
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2.4.2 Some remarks on the cohomology groups Let P�E be a filtered bundle on
.T � P1;T � f1g/ satisfying (A1). Let U be any OT�P1 –submodule of PcE for
some c 2R, such that UjT�Cw D PcEjT�Cw and UjT�f1g is semistable of degree 0.
We give some remarks on the cohomology groups of U .

Lemma 2.13 Suppose that 0 62 Sp1.P�E/. Then we have that H j .T �P1;U/ D
H j .T �P1;PcE/.

Proof Let � W T �P1!P1 be the projection. By assumption, we have R��.U˝L/'

R��.PcE˝L/, because both of them vanish around 1. Then the claim of the lemma
follows.

Suppose that P�E is admissible, and we take some refinement. We have the decom-
position U D

L
P

L
p;m;o U .p;m/

P;o
around T � f1g, where U .p;m/

P;o
WD U \PcE

.p;m/
P;o

.
Let U 0 � PcE be a subsheaf satisfying the above conditions. If 0 62 Sp1.P�E/, we
have H i.T �P1;U/DH i.T �P1;U 0/ by Lemma 2.13.

Lemma 2.14 If 0 2 Sp1.P�E/ and U .1;0/
0;0
D U 0.1;0/

0;0
, we have natural isomorphisms

H i.T �P1;U/'H i.T �P1;U 0/ for i D 0; 2.

Proof We have only to consider the case that U � U 0 , and we shall prove that the
natural morphisms H i.T � P1;U/! H i.T � P1;U 0/ are isomorphisms. Let ' 2
H 0.T �P1;U 0/. Around T �f1g, we have the decomposition 'D

P
P;p;m;o '

.p;m/
P;o

.
We see that '.p;m/

P;o
D 0 unless .P;p;m; o/D .0; 1; 0; 0/. Hence,

H 0.T �P1;U/!H 0.T �P1;U 0/

is an isomorphism. The duals U_ and .U 0/_ are subsheaves of Pc0.E
_/ for some

c0 , and satisfy the above conditions. Hence, by using the Serre duality, we obtain that
H 2.T �P1;U/!H 2.T �P1;U 0/ is an isomorphism.

2.4.3 Vanishing condition Let .P�E; �/ be a filtered bundle on .T �P1;T �f0g/.
We will be concerned with the following condition on the vanishing of the cohomology
groups:

(A3) H 0.T �P1;P0E˝p�L/D 0 and H 2.T �P1;P<�1E˝p�L/D 0 for any
line bundle L of degree 0 on T , where p denotes the projection T �P1!T .

We shall often omit to denote p� if there is no risk of confusion.

Lemma 2.15 If P�E satisfies condition (A3), the dual P�.E_/ also satisfies condi-
tion (A3).
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Proof Note that Pa.E
_/_˝�1

P1 ' P<�a�1.E/. Hence, by Serre duality, we have
that H 0.T �P1;P0.E

_/˝L_/ is the dual space of H 2.T �P1;P<�1E˝L/, and
H 2.T �P1;P<�1.E

_/˝L_/ is the dual space of H 0.T �P1;P0E˝L/. The claim
of the lemma follows.

Lemma 2.16 Let L be any holomorphic line bundle on T of degree 0. If P�E
satisfies (A3), then we have that H 0.T � P1;PcE ˝ L/ D 0 for any c � 0 and
H 2.T �P1;P<cE˝L/D 0 for any c � �1.

Proof We have only to consider the case LDOT . For c � 0, we have

H 0.T �P1;PcE/�H 0.T �P1;P0E/D 0:

For c � �1, the support of the quotient P<cE=P<�1E is one-dimensional. Hence,
the morphism 0DH 2.T �P1;P<�1E/!H 2.T �P1;P<cE/ is surjective.

2.4.4 Stability condition We introduce a stability condition for filtered bundles
satisfying (A1) on .T �P1;T �f1g/, by following [8]. Note that this is not the same
as the standard slope stability condition for filtered bundles on projective varieties; see
Maruyama and Yokogawa [33].

Let !T 2H 2.T �P1;Z/ denote the pullback of the fundamental class of T by the
projection T �P1!T . For any filtered torsion-free sheaf P�E on .T �P1;T �f1g/,
we define the degree of P�E by

deg.P�E/ WD
Z

T�P1

par-c1.P�E/!T D

Z
fzg�P1

par-c1.P�E/:

We set �.P�E/ WD deg.P�E/= rank E . We say that a filtered bundle P�E is stable
(semistable) if �.P�E/ < �.P�E/ (resp. �.P�E/ � �.P�E/) for any P�E � P�E
such that 0 < rank E < rank E and P�E also satisfies (A1) around T � f1g. We
say that a semistable filtered bundle P�E is polystable if it has a decomposition
P�E D

L
P�Ei such that each P�Ei is stable. The following lemma is clear and

standard.

Lemma 2.17 Let P�E be a filtered bundle satisfying (A1) on .T �P1;T �f1g/. If
P�E is stable, then P�E_ is also stable.

It is standard to obtain the vanishing of some cohomology groups under the assumption
of the stability and the degree 0.

Lemma 2.18 Let P�E be a filtered bundle satisfying (A1) on .T �P1;T �f1g/. If
P�E is stable with deg.P�E/D 0 and rankP�E > 1, it satisfies condition (A3).
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Proof Because P�E is stable of degree 0 with rank E > 1, H 0.T �P1;PcE/D 0

for any c � 0. Indeed, a nonzero section of PcE induces a filtered strict subsheaf
P�O�P�E with deg.P�O/� 0 and 0< rankO< rank E . Because .P�E/_ is also
stable of degree 0, we obtain the vanishing H 2.T �P1;P<�1E/ by using the Serre
duality.

Remark 2.19 Line bundles of degree 0 on T naturally correspond to filtered bundles
P�E which satisfy (A1) with deg.P�E/D 0 and rankP�E D 1. Indeed, there exists
a line bundle L of degree 0 on T such that PaE ' p�L˝O.Œa�.T � f1g// for any
a 2R, where Œa� WDmaxfn 2 Z j n� ag. In this case, condition (A3) is not satisfied
for L�1 .

3 Algebraic Nahm transforms

3.1 Local algebraic Nahm transforms

3.1.1 Complex Let X WD fz 2 C j jzj < �0g and D WD f0g. In the rest of this
subsection, we shall shrink X without mentioning it. We shall use the notation of
Section 2.3.1. We define a complex of sheaves associated to an admissible filtered
Higgs bundle .P�V; �/ on .X;D/. First, let us consider the case that .P�V; �/ has
type .p;m; o/. Suppose .p;m; o/ ¤ .1; 0; 0/. For each c 2 R, let Pc.V ˝�

�
X
; �/

denote the complex
Pc�m=pV ! PcC1Vdz;

where the first term sits in the degree 0. Take any ˛ 2 o . For each c 2 R, let
Pc.V

hpi
˛ ˝��

X hpi
; �
hpi
˛ / denote the following complex on X hpi :

Pc�mV hpi˛

�
hpi
˛
���! PcV hpi˛ ˝

dzp

zp
:

We have a natural isomorphism

Pc.V ˝�
�; �/' 'p�Pcp

�
V hpi˛ ˝��

X hpi
; � hpi˛

�
:

This is also isomorphic to the descent of
L
˛2o Pcp.V

hpi
˛ ˝��

X hpi
; � hpi˛ /. For c �

c0 , the natural inclusion Pc.V ˝�
�; �/! Pc0.V ˝�

�; �/ is a quasi-isomorphism.
We set C�.P�V; �/ WD P�1=2.V ˝�

�; �/. In the case .p;m; o/ D .1; 0; 0/, we set
C0.P�V; �/ WD P0V and

C1.P�V; �/ WD P<1V ˝�1
X C �.P0V /� P1V ˝�1

X :

Thus, we obtain the complex C�.P�V; �/ when .P�V; �/ has type .p;m; o/.

Geometry & Topology, Volume 18 (2014)



L2 doubly periodic instantons 2853

For a general admissible filtered Higgs bundle .P�V; �/, the complex C�.P�V; �/
is defined as the extension of the complex .V ! V ˝�1

X
/ on X nD to a complex

on X , such that it is
L
.m;p;o/ C�.P�V

.p;m/
o ; �

.p;m/
o / around D , according to the type

decomposition.

Lemma 3.1 If .P�V; �/ comes from a wild harmonic bundle .E; x@E ; �; h/ on .X;D/,
then C�.P�V; �/ is naturally quasi-isomorphic to the complex of square-integrable
sections of the Higgs complex E˝�� .

Proof We consider the unramified case. We omit to denote p . We have the naturally
defined map �c W PcV !GrPc .V /. Let W be the weight filtration of the nilpotent part
of the endomorphism Res.�/ on GrPc .V /. We set WkPcV WD ��1

c .Wk GrPc .V //.

We introduce a complex C�
L2.P�V; �/. If .P�V; �/ has type .m; o/ ¤ .0; 0/, let

C�
L2.P�V; �/ be the complex

W�2P�mV !W�2P0V ˝�1
X .log D/:

We have a natural inclusion C�.P�V; �/! C�
L2.P�V; �/ which is a quasi-isomorphism.

If .P�V; �/ has type .m; o/D .0; 0/, let C�
L2.P�V; �/ be the complex

W0P0V !W�2P0V ˝�1
X .log D/:

It is easy to check that the natural inclusion C�L2.P�V; �/! C�.P�V; �/ is a quasi-
isomorphism. In general, we define

C�L2.P�V; �/D
M

C�L2

�
P�V .m/

o ; �
.m/
o

�
by using the type decomposition.

According to the result in [36, Section 5.1], C�
L2.P�V; �/ is naturally quasi-isomorphic

to the complex of square-integrable sections of the Higgs complex E˝�� . Hence,
we are done in the unramified case. The general case can be easily reduced to the
unramified case.

3.1.2 Transform We shall construct some transformations for filtered Higgs bundles,
which are analogous to the local Fourier transform in [9; 19]. In the following, for a
variable x , let Ux denote a small neighbourhood of 0 in Cx . For two variables x

and y , let Ux;y WD Ux �Uy , and let �1W Ux;y! Ux and �2W Ux;y! Uy denote the
projections.

Let .P�V; �/ be an admissible filtered Higgs bundle on .U� ; 0/. Let us define a filtered
bundle N 0;1

� .P�V; �/ with an endomorphism g on U� . We consider the following
complex on U�;� :

��1 C
0.P�V; �/

��Cd�
�����! ��1 C

1.P�V; �/:
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Let Q be the quotient. We define

N 0;1.P�V; �/ WD �2�Q; N 0;1.P�V; �/ WDN 0;1.P�V; �/.��/:

Here .��/ means the localization with respect to � . If U� is sufficiently small, the
support of Q is proper and relatively 0–dimensional over U� . Indeed, Q\.f0g�U�/D

f.0; 0/g. Hence, N 0;1.P�V; �/ is coherent. Let us check that N 0;1.P�V; �/ is
torsion-free. Let v be a section of ��

1
C1.P�V; �/, such that there exists a section u

of ��
1
C0.P�V; �/ satisfying �v D .�� C d�/u. We obtain that d� �u is contained in

� ���
1
C1.P�V; �/. Then we obtain that uD �u0 for some section u0 of ��

1
C0.P�V; �/,

and we have v D .�� C d�/u0 . It implies that N 0;1.P�V; �/ is torsion-free. Hence,
N 0;1.P�V; �/ is a locally free OU� –module. In particular, N 0;1.P�V; �/ is a locally
free OU� .��/–module. The multiplication of � induces the endomorphism g . By
setting  WD�g��2d� , we obtain a Higgs field of N 0;1.P�V; �/. We shall introduce
a filtered bundle N 0;1

� .P�V; �/D .N 0;1
a .P�V; �/ j a 2R/ over N 0;1.P�V; �/.

If .P�V; �/ has type .p;m; o/¤ .1; 0; 0/, we consider the following complexes on U�;�
for any c 2R:

(10) ��1Pc�m=p.V /
��Cd�
�����! ��1Pc.V /.d�=�/:

Let Qc denote the quotient. We define

N 0;1
�1.p;m;c/

.P�V; �/ WD �2�Qc ; �1.p;m; c/ WD
2pc �m

2.pCm/
:

By construction, we have N 0;1
�1=2

.P�V; �/DN .P�V; �/ in this case. It is easy to
check that N 0;1

a .P�V; �/ are locally free OU� –modules of finite rank. We have a
naturally induced map

N 0;1
a0 .P�V; �/ �!N 0;1

a .P�V; �/

for a0 � a. Its restriction to f� ¤ 0g is an isomorphism, and hence it is injective.
We also obtain N 0;1

a .P�V; �/.��/DN 0;1.P�V; �/. For c0 WD c � .1Cm=p/, the
images of � ���

1
PcV .d�=�/ and ��

1
Pc0V .d�=�/ are the same in the quotient of Qc .

This implies

�N 0;1
a .P�V; �/DN 0;1

a�1
.P�V; �/ for any a 2R.

Hence, N 0;1
a .P�V; �/ .a 2R/ gives a filtered bundle over N 0;1.P�V; �/.

If .P�V; �/ has type .p;m; o/D.1; 0; 0/, we define N 0;1
0

.P�V; �/ WDN 0;1.P�V; �/.
We have natural morphisms

N 0;1
0

.P�V; �/j0 ' C1.P�V; �/=C0.P�V; �/d�! .P0V /j0:
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Here, the subscript “j0” means the fibre of the vector bundle over 0, and the latter
map is given by the residue, which is injective. Hence, the parabolic filtration of the
right-hand side induces a parabolic filtration of N 0;1

0
.P�V; �/j0 indexed by ��1; 0�.

This in turn induces a filtered bundle N 0;1
� .P�V; �/ over N 0;1.P�V; �/.

If .P�V; �/ is admissible, we replace U� with smaller neighbourhoods so that it has
the type decomposition, and we define

N 0;1
� .P�V; �/ WD

M
p;m;o

N 0;1
� .P�V .p;m/

o ; �/:

The construction N 0;1
� gives a functor from the category of the germs of admissible

filtered Higgs bundles to the category of the germs of filtered Higgs bundles. We set

N 0;1
<a .P�V; �/ WD

X
b<a

N 0;1
b

.P�V; �/:

Lemma 3.2 Suppose .P�V; �/ has type .p;m; o/. The rank of N 0;1.P�V; �/ is
.pCm/ rank V =p in the case .p;m; o/¤ .1; 0; 0/, or rank V � dim Ker GrP0 .Res �/
in the case .p;m; o/D .1; 0; 0/.

Proof The rank is equal to the dimension of C1.P�V; �/=C0.P�V; �/d� as a C–
vector space. Then the claim can be checked by a direct computation. (See also the
proof of Proposition 3.3 below for the case .p;m; o/¤ .1; 0; 0/.)

Proposition 3.3 .N 0;1
� .P�V; �/;  / is admissible. If .P�V; �/ has type .p;m; o/,

then .N 0;1
� .P�V; �/;  / has type .pCm;m; o0/ for some o0 .

Proof We have only to consider the case that .P�V; �/ has type .p;m; o/. Let us
consider the case .p;m; o/D .1; 0; 0/. For the expression � D f d�=� , f gives an
endomorphism of PcV for any c , and fj0 is nilpotent. We have  D���1g.d�=�/ and
���1g is induced by f , so it preserves N 0;1

0
.P�V; �/. If we regard N 0;1

0
.P�V; �/j0

as a subspace of P0Vj0 as above, then .���1g/j0 is the restriction of fj0 . Hence it is
nilpotent and preserves the parabolic filtration, ie .N 0;1.P�V; �/;  / is admissible of
type .1; 0; 0/.

Let us consider the case .p;m; o/¤ .1; 0; 0/. Fix ˛ 2 o . We consider the following
on U�p;� :

(11) ��1Ppc�mV hpi˛

��
hpi
˛ Cd�

p
p

��������! ��1PpcV hpi˛ .d�p=�p/:

The quotient is denoted by Q0c . The pushforward �2�Q0c is naturally isomorphic to
N 0;1
�1.p;m;c/

.P�V; �/.
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The natural map Q0c0!Q0c .c0 � c/ is injective. We set Q0<c WD
S

b<c

Q0
b

. We have an
exact sequence

0 �! ��1 GrPpc�m.V
hpi
˛ /

��
hpi
˛
���! ��1 GrPpc.V

hpi
˛ /.d�p=�p/ �!Q0c=Q0<c �! 0:

The sequence induces the following isomorphism of C–vector spaces for any c 2R:

(12) GrPpc.V
hpi
˛ /'

N 0;1
�1.p;m;c/

.P�V; �/

N 0;1
<�1.p;m;c/

.P�V; �/
:

Let v D .vi/ be a frame of PpcV
hpi
˛ . Set ci WDminfa 2Rjvi 2 PaV

hpi
˛ g. We assume

that v is compatible with the parabolic structure in the sense that the induced tuple
fŒvi � j ci D dg of elements in GrPd .V

hpi
˛ / is a basis for any d 2 �pc � 1;pc�. We set

�ij WD �
i
pvj .d�p=�p/ for 0 � i � pCm� 1 and 1 � j � rank V

hpi
˛ . The induced

sections of
N 0;1
�1.p;m;c/

.P�V; �/

are also denoted by the same symbols. Because they induce a basis of

N 0;1
�1.p;m;c/

.P�V; �/
ı
�N 0;1

�1.p;m;c/
.P�V; �/

according to (12), these induced sections give a frame of

N 0;1
�1.p;m;c/

.P�V; �/

on a neighbourhood of 0. (In particular, the rank of N 0;1
�1.p;m;c/

.P�V; �/ is .p C
m/ rank V

hpi
˛ D p�1.pCm/ rank V .) Moreover, by the isomorphism (12), the frame

is compatible with the parabolic structure of N 0;1
�1.p;m;c/

.P�V; �/.

We take a ramified covering 'W U�! U� by '.�/D �pCm . Let P�V be the filtered
bundle on .U�; 0/ obtained as the pullback of N 0;1

� .P�V; �/ by ' . The tuple of the
sections z�ij WD �

�i'��ij gives a frame z� of Ppc�m=2V which is compatible with the
parabolic structure. By the frames v and z� , we obtain an isomorphism of Ppc�m=2Vj0
to .PpcV

hpi
˛ /j0˝CpCm .

Let us prove that  D���2gd� has type .pCm;m; o0/ for some o0 . Note that g is in-
duced by the multiplication of �D �p

p . Let g1 be the endomorphism of N 0;1.P�V; �/
which is induced by the multiplication of �p . We have that g1.N 0;1

a .P�V; �// �
N 0;1

a�1=.pCm/
.P�V; �/. Hence, ��1g1 gives an endomorphism of Ppc�m=2V . In par-

ticular, ��pg gives an endomorphism of Ppc�m=2V . Let us prove that the restriction
.��pg/j0 has a unique nonzero eigenvalue modulo the action of Gal.'/.

Geometry & Topology, Volume 18 (2014)



L2 doubly periodic instantons 2857

We have the parabolic filtration F of .PpcV˛/j0 indexed by �pc � 1;pc�. Let W

denote the monodromy weight filtration of the nilpotent part of Res.�m
p �
hpi
˛ / on

GrF .PpcV˛j0/. Let �aW Fa.PpcV˛j0/! GrF
a .PpcV˛j0/ denote the projection. Let

M WD minfja� bj j a; b 2 Par.PpcV˛/; a¤ bg. We take a small positive number ı
such that ı rankPpcV˛ < M=100. We set zFaCık WD �

�1
a .Wk/. Then we obtain a

filtration zF of PpcV˛j0 indexed by �pc�1C�;pcC�� for some small � > 0. Then zF
is preserved by Res.�m

p �
hpi
˛ /, and the induced endomorphism on the associated graded

space Gr zF is semisimple. We may assume that the frame v is compatible with zF .

Let zF 0 be a filtration of

Ppc�m=2Vj0 ' PpcV
hpi

˛j0
˝CpCm;

indexed by �pc�1Cı;pcCı�, determined by the condition that deg zF
0

.z�ij /Ddeg zF .vj /.

The multiplication of ��1�p induces an endomorphism of Ppc�m=2V . We have
.��1�p/z�ij Dz�iC1;j for i <pCm�1, and .��1�p/z�pCm�1;j is equal to the section s

induced by

�p�1� hpi˛ .�m
p vj /D

�
�.˛=p/vj C

X
deg zF .vk/<deg zF .vj /


k � vk C �pu

�
.d�p=�p/:

Here, 
k are complex numbers, and u is a section of PpcV
hpi
˛ . If deg zF .vj j0/ D a,

then sj0C .˛=p/z�0;j j0 2
zF 0<a .

The endomorphism ��1g of Ppc�m=2V is induced by the multiplication of the pth

power of ��1�p . Therefore, .��pg/j0 is compatible with zF 0 , and the induced endo-
morphism on Gr zF

0

is represented by the matrix

mX
iD1

I ˝EpCi;i C

pX
iD1

.�˛=p/I ˝Ei;mCi :

Here, I is the identity matrix and Eij denote the .p Cm/–square matrix whose
.k; `/–entry is 1 if .k; `/D .i; j /, and 0 otherwise. Then the set of the eigenvalues is
e2�
p
�1j=.pCm/˛p .j D 0; : : : ;pCm� 1/. Thus, we are done.

Corollary 3.4 The construction N 0;1
� gives a functor from the category of the germs

of admissible filtered Higgs bundles to the category of the germs of admissible filtered
Higgs bundles whose slopes are strictly less than 1.
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3.1.3 Inverse transform Let P�V be a filtered bundle on .U� ; 0/ with an endomor-
phism g , which is admissible in the sense of Section 2.3.3. In this subsection, we
impose the following vanishing:

(C0) V
.1;0/

0
D 0 and V .p;m/ D 0 unless p >m.

Note that the eigenvalues of g.�/ go to 0 when � ! 0 under the assumption (C0).

If .P�V;g/ has slope .p;m/, we consider the following complex on U�;� :

��1PcV
g��
���! ��1PcV:

The quotient is denoted by Mc . If U� is sufficiently small, the support of Mc is
proper over U� . We define

N1;0
�2.p;m;c/C1

.P�V;g/ WD �2�Mc ; �2.p;m; c/ WD
2pcCm

2.p�m/
:

These are locally free OU� –modules. For a� a0 , we naturally have

N1;0a .P�V;g/!N1;0a0 .P�V;g/

which induce N1;0a .P�V;g/.��/'N1;0a0 .P�V;g/.��/. We have

N1;0
a�1

.P�V;g/D �N1;0a .P�V;g/

for any a 2 R. Thus, we obtain a filtered bundle N1;0� .P�V;g/ on .U� ; 0/. In the
general case, we define

N1;0� .P�V;g/ WD
M

N1;0� .P�V .p;m/
o ;g

.p;m/
o /

by using the slope decomposition of .P�V;g/. The multiplication of ���1 gives a
meromorphic endomorphism f . We put � D fd� . The construction gives a functor
from the category of the germs of admissible filtered Higgs bundles satisfying (C0) to
the category of the germs of filtered Higgs bundles.

Proposition 3.5 .N1;0� .P�V;g/; �/ is admissible. If .P�V;g/ has type .p;m; o/,
then N1;0� .P�V;g/ has type .p �m;m; o0/ for some o0 , and moreover, the rank is
.p�m/ rank V =p .

Proof We have only to consider the case that .P�V;g/ has type .p;m; o/. Let
'pW U�! U� be given by 'p.�/D �

p . Let 'W Uu! U� be given by '.u/D up�m .
Let P�V be the filtered bundle on Uu obtained as the pullback of N1;0� .P�V;g/
by ' .
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We use the decomposition '�p .P�V;g/D
L̨
2o
.P�V hpi˛ ;g

hpi
˛ /. We consider the follow-

ing complex on U�;� :

��1PpcV hpi˛

g
hpi
˛ ��
�����! ��1PpcV hpi˛ :

The quotient is denoted by M0
c . We have �2�M0

c 'N1;0�2.p;m;c/C1.P�V;g/. Because
ghpi˛ .PaV hpi˛ / � P<aV hpi˛ , we have the following exact sequence, as in the case of
N 0;1 (see the proof of Proposition 3.3):

0! ��1 GrPpc.V
hpi
˛ /

��
��! ��1 GrPpc.V

hpi
˛ /!M0

c=M0
<c! 0:

It induces the following isomorphism of C–vector spaces:

(13) GrPpc.V
hpi
˛ /'

N1;0
�2.p;m;c/C1

.P�V;g/

N1;0
<�2.p;m;c/C1

.P�V;g/
:

We take a frame v of PpcV
hpi
˛ compatible with the parabolic structure. We set

�ij WD �
ivj . By the isomorphism (13), they induce a frame of

N1;0
�2.p;m;c/C1

.P�V;g/

compatible with the parabolic structure. We set z�ij WD u�i�ivj . The tuple z� induces a
frame of Pp.cC1/�m=2V compatible with the parabolic structure.

We consider the endomorphism h WD �m�pg
hpi
˛ on PpcV

hpi
˛ , which is invertible.

We have ��pCmup�m D h on V . Let k be the integer determined by the condition
0 � �p C k.p �m/ < p �m. We set a WD �p C k.p �m/. We have ��pup D

�au�ahk D �a�.p�m/u�aC.p�m/hk�1 . We have

up��p�ij D

�
�aCiu�.aCi/hk.vj / .aC i < p�m/;

�aCi�.p�m/u�.aCi/Cp�mhk�1.vj / .aC i � p�m/:

Hence up��p preserves Pp.cC1/�m=2V .

By the frames v and z� , we have an isomorphism Pp.cC1/�m=2Vj0 and PpcV˛j0˝

Cp�m . We take a refinement zF of the parabolic filtration of PpcV˛j0 such that zF
is preserved by hj0 and the induced endomorphism on Gr zF is semisimple with a
unique eigenvalue ˇ . It induces a filtration zF 0 of Pp.cC1/�m=2Vj0 . (See the proof of
Proposition 3.3 for a concrete construction.) We express up��p by the matrixX

EaCi;i ˝ˇ
kI C

X
Ei;iCp�m�a˝ˇ

k�1I

on Gr zF
0

, with respect to an appropriate base. Then .P�N1;0.P�V;g/; �/ has type
.p�m;m; o0/ for some o0 .
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Corollary 3.6 The construction N1;0� gives a functor from the category of the germs
of admissible filtered Higgs bundles satisfying (C0) to the category of the germs of
admissible filtered Higgs bundles.

We denote .N 0;1
� .P�V; �/;g/ in Section 3.1.2 by N 0;1

� .P�V; �/ for simplicity. We
also denote .N1;0� .P�V;g/; �/ by N1;0� .P�V;g/.

Proposition 3.7 � Suppose that .P�V; �/ is admissible such that V
.1;0/

0
D 0 in

the type decomposition. Then we have a natural isomorphism of the germs of
filtered Higgs bundles N1;0� N 0;1

� .P�V; �/' .P�V; �/.
� Suppose that .P�V;g/ is admissible and satisfies condition (C0). Then we have

a natural isomorphism of the germs of filtered bundles with endomorphisms
N 0;1
� N1;0� .P�V;g/' .P�V;g/.

Proof Suppose that .P�V; �/ has type .p;m/. Note that, if we set d WD �1.p;m; c/,
then we have �2.pCm;m; d/D c . Let pi be the projection of U� �U� �U�0 onto
the i th component. We have the following diagram on U� �U� �U�0 :

p�
1
Pc�m=p.V /

��Cd� //

���0

��

p�
1
Pc.V /d�=�

���0

��
p�

1
Pc�m=p.V /

��Cd�

// p�
1
Pc.V / d�=�

We regard it as a double complex, where the left upper p�
1
Pc�m=p.V / sits in the

degree .0; 0/. Let C � denote the associated total complex. By construction, we obtain
N1;0

cC1
N 0;1
� .P�V; �/ as p3�H2.C �/. We can observe that it is isomorphic to the

pushforward of Qc in Section 3.1.2 by the projection U�;� ! U� , which is naturally
isomorphic to PcV d�=� ' PcC1V . The action of ���1 is equal to f for the expres-
sion � D f d� . Hence, we obtain the desired isomorphism N1;0� N 0;1

� .P�V; �/'
.P�V; �/.

Suppose that .P�V;g/ has type .p;m/ with p >m. Let pi denote the projection of
U� �U� �U� 0 onto the i th component. We have the following commutative diagram
of the sheaves on U� �U� �U� 0 :

p�
1
Pc�1V

g�� //

.�� 0.��1/C1/d�
��

p�
1
Pc�1V

.�� 0.��1/C1/d�
��

p�
1
PcV d�

g��

// p�
1
PcV d�
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We regard it as the double complex, where the left upper p�
1
Pc�1V sits in the degree

.0; 0/. Let C � be the associated total complex. By construction, N 0;1
c N1;0� .P�V;g/

is naturally isomorphic to p3�H2.C �/. We can observe that it is naturally isomorphic
to the pushforward of Mc in Section 3.1.3 by the projection U� �U�! U� , which is
naturally isomorphic to PcV . The action of � is given by g . Hence, we obtain the
desired isomorphism N 0;1

� N1;0� .P�V;g/' .P�V;g/.

3.1.4 Description of the functors Let .P�V; �/ be a filtered Higgs bundle with slope
.p;m/¤ .1; 0/ on U� . Suppose that there exists a ramified covering 'qW U�q

! U�
and a filtered Higgs bundle .P�V 0; � 0/ on U�q

with an isomorphism 'q�.P�V 0; � 0/'
.P�V; �/. For c 2R, we consider the following morphism on U�q ;� :

Pq.c�m=p/V
0
�� 0Cd�

q
q

������! PqcV 0 d�q=�q:

The quotient is denoted by Q0c . The following lemma is clear by construction.

Lemma 3.8 �2�Q0c is naturally isomorphic to N 0;1
�1.p;m;c/

.P�V; �/.

Let .P�V;  / be a filtered Higgs bundle with slope .p;m/ on U� , such that .p;m/¤
.1; 0/ and p > m. Suppose that there exist a ramified covering 'qW U�q

! U� and
a filtered Higgs bundle .P�V 0;  0/ on U�q

with an isomorphism 'q�.P�V 0;  0/ '
.P�V;  /. Let  0D g0'�.���2d�/. For c 2R, we consider the following morphism
on U�q ;� :

PqcV 0
g0��
���! PqcV 0:

Let M0
c denote the quotient. The following is clear by construction.

Lemma 3.9 �2�M0
c is naturally isomorphic to N1;0

�2.p;m;c/C1
.P�V;g/.

3.2 Algebraic Nahm transform for admissible filtered Higgs bundle

3.2.1 Construction of the transform Let T _ WDC=L_ . Let D � T _ be an effec-
tive reduced divisor. Let .P�E ; �/ be a filtered Higgs bundle on .T _;D/. Suppose
that it is admissible around each point of D in the sense of Section 2.3.1. We shall
construct a filtered bundle Nahm�.P�E ; �/ on .T �P1;T �f1g/ from .P�E ; �/. We
begin with a construction of an object N .P�E ; �/ in Db.OT�P1/.

For I � f1; 2; 3g, let pI be the projections of T _�T �P1 onto the product of the i th

components .i 2 I/. Let Poin be the Poincaré bundle on T _ � T . Applying the
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construction in Section 3.1.1 around each point of D , we extend E and E ˝�1
X

on
X nD to C0.P�E ; �/ and C1.P�E ; �/, respectively. We set

zC 0.P�E ; �/ WD p�1C
0.P�E ; �/˝p�12Poin˝p�3OP1.�1/;

zC 1.P�E ; �/ WD p�1C
1.P�E ; �/˝p�12Poin:

Let � be the standard coordinate of C , which induces local coordinates of T _ . We
have the holomorphic 1–form d� on T _ . Let w be the standard coordinate of C�P1 ,
which we can naturally regard as a section of OP1.1/. Then we have a morphism

(14) � Cw d�W zC 0.P�E ; �/! zC 1.P�E ; �/:

Thus we obtain a complex zC �.P�E ; �/ on T _ �T �P1 . We define

N .P�E ; �/ WDRp23�. zC �.P�E ; �//Œ1�:

Lemma 3.10 There is a neighbourhood U of1 in P1 such that Hi.N .P�E ; �//D 0

on T �U unless i ¤ 0. Moreover, H0.N .P�E ; �//jT�fPg are semistable bundles of
degree 0 for any P 2 U .

Proof Let �i denote the projection of T _�P1 onto the i th component. We have the
following complex zC �

1
.P�E ; �/ on T _ �P1 :

��1 C
0.P�E ; �/˝��2OP1.�1/

�Cw d�
�����! ��1 C

1.P�E ; �/:

By construction, N .P�E ; �/ is isomorphic to 1RFMC. zC �1 .P�E ; �//Œ1�. If U is suffi-
ciently small, � Cw d� is injective on T _ �U , and the support of the cokernel is
relatively 0–dimensional over U . Then the claim of the lemma follows.

We consider the following vanishing condition.

(A0) Hi.T _; C�.P�E ˝L; � Cwd�//D 0 unless i D 1 for any w 2 C and any
holomorphic line bundle L of degree 0 on T _ .

Under the assumption (A0), we naturally identify N .P�E ; �/ with the 0th cohomology
sheaf H0.N .P�E ; �//, which is a locally free sheaf on T �P1 . Indeed, C�.P�E ˝
L; � Cwd�/ is naturally identified with the specialization of zC �.P�E ; �/ to T _ �

f.L; w/g. Note that we always have Hi.T _; C�.P�E ˝L; d�//D 0 unless i D 1 for
any L, which corresponds to the specialization at w D1. We define

Nahm.P�E ; �/ WDN .P�E ; �/˝OT�P1.�.T � f1g//:

We shall define a filtered bundle Nahm�.P�E ; �/ over Nahm.P�E ; �/.
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By Lemma 3.10, there is a neighbourhood U of 12 P1 such that N .P�E ; �/jT�f�1g

are semistable of degree 0 for any �1 2 U . Let s� T _ �U denote the spectrum. We
have s\ .T _ � f1g/ � D . We fix a lift of D to zD � C . Then after shrinking U

appropriately, we may have a lift of s to zs � C �U . We obtain the corresponding
holomorphic vector bundle V with an endomorphism g such that Sp.g/ � zs. (See
Section 2.1.3.) We have the decomposition

.V ;g/D
M
P2D

.VP ;gP /;

where Sp.gP /\ .C � f1g/ is the lift zP of P . We have the induced decomposition
on T �U ,

Nahm.P�E ; �/D
M
P2D

Nahm.P�E ; �/P :

Let UP � T _ be a small neighbourhood of P 2 D . We use the coordinate �P WD
� � zP . By construction, we have a natural isomorphism VP 'N 0;1.P�.E ; �/jUP

/.
We have gP D g0

P
C zP id, where g0

P
is the endomorphism induced by �P . Thus,

we obtain a filtered bundle Nahm�.P�E ; �/P over Nahm.P�E ; �/P by transferring
N 0;1
� .P�.E ; �/jUP

/. We obtain a filtered bundle Nahm�.P�E ; �/ over Nahm.P�E ; �/
by taking the direct sum.

Remark 3.11 We obtain a different transformation by replacing Poin and wd� with
Poin_ and �wd� , respectively, for which we can argue in a similar way.

Remark 3.12 In [10], the Fourier transform for Higgs bundles on smooth projective
curves are studied. The algebraic Nahm transform in this paper may be regarded as a
filtered variant, although we consider only the case where the base space is an elliptic
curve. We also remark that this construction is an analogue of the Fourier transform of
the minimal extension of algebraic meromorphic flat bundles on affine lines.

3.2.2 A property Let .P�E ; �/ be a filtered Higgs bundle on .T _;D/ which satis-
fies (A0).

Proposition 3.13 The filtered bundle Nahm�.P�E ; �/ is admissible and satisfies con-
dition (A3).

Proof of Proposition 3.13 Let .P�E ; �/ be an admissible filtered Higgs bundle on
.T _;D/. Clearly, Nahm.P�E ; �/ satisfies (A1). It satisfies (A2) by Proposition 3.3.
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Let L be any line bundle on T with degree 0. In the following, we also naturally regard
it as a point in T _ . We set NL WDN .P�E ; �/˝L_ . We have the type decomposition

NL D

M
P

M
p;m;o

.NL/
.p;m/
P;o

:

By construction, we have

.NL/
.p;m/
P;o

D

(
P�1=2 Nahm.P�E ; �/.p;m/P˝L;o

˝L_ if .p;m; o/¤ .1; 0; 0/;

P0 Nahm.P�E ; �/.1;0/P˝L;0
˝L_ if .p;m; o/D .1; 0; 0/:

Here, P˝L2T _ denotes the multiplication of P;L2T _ in the group T _ . We shall
study the cohomology of NL and its variant. Let us consider the following complex
on T _ �T �P1 :

zC 0
L WD

zC 0
˝p�2L_

�Cwd�
�����! zC 1

L WD
zC 1
˝p�2L_:

By construction, we have NL 'R1p23�
zC �
L

. We have Rp12�
zC�
L
'R1p12�

zC�
L
Œ�1�'

C1.P�E ; �/˝Poin˝L_Œ�1� on T _ �T . For the projection � W T _ �T ! T _ , we
have R��.C1.P�E ; �/˝Poin˝L_/' C1.P�E ; �/˝R1��.Poin˝L_/Œ�1�, which
is a skyscraper sheaf C1.P�E ; �/jL at L. Hence, we have

(15) Hi.T _ �T �P1; zC�L/'
�

0 .i ¤ 2/;

C1.P�E ; �/jL .i D 2/:

We obtain H i.T �P1;NL/D 0 unless i D 1, and H 1.T �P1;NL/' C1.P�E ; �/jL .
We have

Rp12�. zC�L˝OP1.�1//'R1p12�. zC�L˝OP1.�1//Œ�1�'C0.P�E ; �/˝Poin˝L_Œ�1�

on T �T _ . Hence, we have

Hi.T _ �T �P1; zC�L˝OP1.�1//'

�
0 .i ¤ 2/;

C0.P�E ; �/jL .i D 2/:

We obtain
H i.T �P1;NL˝OP1.�1//D 0 unless i D 1;

H 1.T �P1;NL˝OP1.�1//' C0.P�E ; �/jL:

Lemma 3.14 The map H 1.T �P1;NL˝OP1.�1//!H 1.T �P1;NL/ induced
by the multiplication of w is equal to the map C0.P�E ; �/jL! C1.P�E ; �/jL induced
by � , up to signatures.
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Proof Let Vi .i D 0; 1/ be vector spaces with morphisms f0; f1 2 Hom.V0;V1/.
Let ˛� W OP1.�1/!OP1 be morphisms induced as OP1.�1/'OP1.�f�g/!OP1 .
The induced morphisms OP1.�m� 1/!OP1.�m/ are also denoted by ˛� .

We consider a complex C � on P1 given as C 0D V0˝OP1.�1/ and C 1D V1˝OP1

with f0˛0 � f1˛1 . We have H1.P1;C �/ ' V1 and H1.P1;C �˝O.�1// ' V0 .
The morphism ˛0 induces C �˝OP1.�1/! C � . Let us prove that the induced map
aW H1.P1;C �˝OP1.�1//!H1.P1;C �/ is equal to f1 up to signatures under the
identifications, which implies the claim of the lemma.

We can check this by a direct computation or use the following argument. We consider
a double complex given as follows: We set C 00 D V0˝O.�2/, C 01 D V1˝O.�1/,
C 10 D V0˝O.�1/ and C 11 D V1˝O . The morphisms C 0i ! C 1i are given by
˛0 , and the morphisms C i0! C i1 are given by f0˛0�f1˛1 .

For i D 0; 1, we set D
ij
i D C ij j and D

kj
i D 0 for k ¤ i . Then we have an exact

sequence of the double complexes 0 ! D��
1
! C �� ! D��

0
! 0. Similarly, we

set E
ji
i D C ji and E

jk
i D 0 for k ¤ i . Then we have an exact sequence 0 !

E��
1
! C �� ! E��

0
! 0. We set F00

0
D C 00 and F

ij
0
D 0 for .i; j / ¤ .0; 0/. We

set F
ij
1
D C ij for .i; j / ¤ .0; 0/ and F00

1
D 0. Then we have an exact sequence

0! F��
1
! C ��! F��

0
! 0. We have the following commutative diagrams:

D��
1

//

��

C �� //

��

D��
0

��
F��

1
// C �� // F��

0

E��
1

//

��

C �� //

��

E��
0

��
F��

1
// C �� // F��

0

The natural morphisms H�.P1;Tot D��i /!H�.P1;Tot F��i / H�.P1;Tot E��i / are
isomorphisms. The map a is regarded as the connecting homomorphism of the long
exact sequence associated to 0!Tot D��

1
!Tot C ��

1
!Tot D��

0
! 0. The cokernel of

C 0i!C 1i are the skyscraper sheaf at 1, whose fibres are Vi . Hence, the connecting
homomorphism for 0! Tot E��

1
! Tot C ��! Tot E��

0
! 0 is f1 up to signature.

Thus, we are done.

For any Y , let �1W Y � f1g ! Y � P1 . The morphism NL ! �1�NLjT�f1g

is obtained as the pushforward of zC�
L
! i1�.C1=C0 ˝ Poin ˝ L_/. Therefore,

H 1.T � P1;NL/ ! H 1.T;NLjT�f1g/ is identified with C1
jL
! .C1=C0/jL . By

construction, the parabolic filtration of ..NL/
.1;0/
0;0

/jT�f1g is induced by the isomor-
phism ..NL/

.1;0/
0;0

/jT�f1g ' .C1=C0/.1;0/
L;0
˝OT .
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We have the following commutative diagram:

H 1.T �P1;NL˝O.�1//
b1 //

b2

��

H 1
�
T �P1;GrP

�1

��
NL

�1;0
P;0

��
b3 '

��

H 1.T �P1;NL/
b4

// H 1
�
T �P1;GrP0

��
NL

�1;0
P;0

��
Here, b2 and b3 are induced by the multiplication of w . By the previous consideration,
the composite b4 ı b2 is identified with

C1
jL! GrF

1 ..C
1=C0/L/;

which is surjective. Hence, b1 is surjective. Let NL denote the kernel of

NL˝O.�1/! GrP.NL/
.1;0/
0;0 :

From the surjectivity of b1 and the fact that H 2.T �P1;NL˝O.�1//D 0, we obtain
H 2.T �P1;NL/D 0. By the construction, NL � P0 Nahm.P�E ; �/˝L_ satisfies
the conditions in Section 2.4.2, and we have

.NL/
.1;0/
0;0
D P<�1.Nahm.P�E ; �/˝L_/

.1;0/
0;0

:

Hence, by Lemma 2.14, Nahm�.P�E ; �/ satisfies condition (A3).

3.2.3 Characteristic number For compact complex manifolds Zi .i D 1; 2/, let
!Zi
2 H�.Z1 � Z2/ denote the pullback of the fundamental class of Zi by the

projection.

Let .P�E ; �/ be a filtered Higgs bundle on .T _;D/ satisfying condition (A0). We
shall study the characteristic numbers of Nahm.P�E ; �/.

Lemma 3.15 We have
Z

T�P1

c1.Nahma.P�E ; �//!P1 D 0 for any a 2R.

Proof This follows from Nahma.P�E ; �/=Nahm<a.P�E ; �/ being of degree 0 for
any a 2R.

The following lemma can be checked easily.

Lemma 3.16 c2.Nahma.P�E ; �// is independent of a 2R.

Because of the lemma, we will denote c2.Nahma.P�E ; �// by c2.Nahm�.P�E ; �//.
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We have the type decomposition .P�E ; �/jUP
D
L
.p;m;o/.P�E

.p;m/
P;o

; �
.p;m/
P;o

/ on a
small neighbourhood UP of each P 2D . We set

`P WD dim Cok
�
Res.�/W GrP0

�
E.1;0/

P;0

�
! GrP0

�
E.1;0/

P;0

��
:

We put r
.p;m/
P;o

D rank.E.p;m/
P;o

/=p and r
.p;m/
P

WD
P

o r
.p;m/
P;o

. We have
P

p;m r
.p;m/
P

pD

rank E .

Proposition 3.17 The following equalities hold:

rank Nahm.P�E ; �/D
X
P

X
p;m

r
.p;m/
P

.pCm/�
X
P

`P :(16) Z
T�P1

c1.Nahm�.P�E ; �// �!T D deg.P�E/:(17) Z
T�P1

c2.Nahm�.P�E ; �//D rank E :(18)

Proof Let us prove (16) and (17). We have only to consider the rank and the degree
of Nahm�.P�E ; �/jf0g�P1 . Let V �P1E be the subsheaf determined by the following
conditions:

� V D P1E on the complement of D .

� It has a decomposition V D
L

p;m;o V.p;m/
P;o

around each P 2D .

� We have V.p;m/
P;o

DP1=2E
.p;m/
P;o

for .p;m; o/¤ .1; 0; 0/, and V.1;0/
P;0
DP1E.1;0/P;0

.

Let �i denote the projection of T _ � P1 onto the i th component. We have the
K–theoretic description

(19) . zC 1.P�E ; �/� zC0.P�E ; �//jT_�f0g�P1

D ��1

�
V �

X
P2D

O˚`P

P

�
���2OP1.�1/ ���1

�
V �

X
P2D

X
p;m;o

O
˚r

.p;m/

P;o .pCm/

P

�
:

The Chern character of (19) is equal to

(20) ��1 ch.V/�
X

P2D

`P!T_�.1�!P1/

�
��1 ch.V/�

X
P

X
p;m

r
.p;m/
P

.pCm/!T_

�

D

�X
P

X
p;m

r
.p;m/
P

.pCm/�
X
P

`P

�
!T_

C!P1��1 ch.V/�!P1

X
P

X
p;m

r
.p;m/
P

.pCm/!T_ :
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Hence, the Chern character of N .P�E ; �/jf0g�P1 is

(21)
X
P

X
p;m

r
.p;m/
P

.pCm/�
X
P

`P C!P1

�
deg.V/�

X
P

X
p;m

r
.p;m/
P

.pCm/

�

D

X
P

X
p;m

r
.p;m/
P

.pCm/�
X
P

`P C!P1

�
deg.V.�D//�

X
P

X
p;m

r
.p;m/
P

m

�
:

In particular, we obtain (16). We also obtain

deg.N .P�E ; �/jf0g�P1/D deg.V.�D//�
X
P

X
p;m

r
.p;m/
P

m:

We set a.p;m; o/D�1
2

if .a;m; o/¤ .1; 0; 0/, and a.1; 0; 0/ WD 0. For the parabolic
characteristic numbers, we have the expressions

(22) deg.P�E/D deg.V.�D//�
X

P2D

X
p;m;o

ı.P�E.p;m/P;o
; a.p;m; o//;

(23) deg.Nahm�.P�E ; �/jf0g�P1/

D deg.N .P�E ; �/jf0g�P1/�
X

P2D

X
p;m;o

ı.Nahm�.P�E ; �/.pCm;m/
P;o

; a.p;m; o//:

Here, ı.B; a.p;m; o// denote the contributions of the locally given filtered bundles B

to the parabolic degree. (See Section 2.2.3.) In the following, we omit a.p;m; o/. In
the case .p;m; o/D .1; 0; 0/, we have

ı.Nahm�.P�E ; �/.1;0/P;0
/D

X
�1<c<0

c dim GrPc Nahm.P�E ; �/.1;0/P;0
(24)

D

X
�1<c<0

c dim GrPc
�
E.1;0/

P;0

�
D ı

�
P�E.1;0/P;0

�
:

Let us consider the case .p;m; o/¤ .1; 0; 0/. Let 'pW Uu!UP be given by 'p.u/D

up . We have the decomposition

'�p
�
P�E.p;m/P;o

; �
.p;m/
P;o

�
D

M
˛2o

.P�V˛; �˛/:

For any c 2R, we put
r
.p;m/
P;o;c

WD dim GrPc V˛:

It is independent of the choice of ˛ 2 o . We have

ı.P�E.p;m/P;o
/D

X
�p=2�1<c��p=2

0�j�p�1

r
.p;m/
P;o;c

c � j

p
D

X
�p=2�1<c��p=2

r
.p;m/
P;o;c

�
c � 1

2
.p� 1/

�
:
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We also have the following equality from the expression of the parabolic structure of
N 0;1
� .P�E ; �/ in the proof of Proposition 3.3:

ı.Nahm.P�E ; �/.pCm;m/
P;o

/D
X

�p=2�1<c��p=2
0�j�pCm�1

r
.p;m/
P;o;c

2c � 2j �m

2.pCm/
(25)

D

X
�p=2�1<c��p=2

r
.p;m/
P;o;c

�
c �m� 1

2
.p� 1/

�
:

Then the equality (17) follows from
P

c;o r
.p;m/
P;c;o

D r
.p;m/
P

.

Let us prove (18). We have
R

T�P1 c2.Nahm�.P�E ; �//D
R

T�P1 c2.N .P�E ; �//. We
also haveZ

T�P1

c2.N .P�E ; �//D�
Z

T�P1

ch2.N .P�E ; �//D�
Z

T_�T�P1

ch3. zC 1
� zC0/:

We have ch3. zC 1/D 0 and c1.Poin/2 D�2!T!T_ . We also haveZ
T_�T�P1

ch3. zC0/D

Z
T_�T�P1

rank.V/!T!T_!P1 D rank.V/:

Hence, we obtain (18).

3.2.4 Stable filtered Higgs bundles of degree 0 We consider the standard stability
condition for filtered Higgs bundles on .T _;D/. For any filtered bundle .P�E ; �/ on
a projective curve .X;D/, we define the slope �.P�E/ WD

R
X par-c1.P�E/= rank E .

The bundle is called stable (resp. semistable) if �.P�E 0/ < �.P�E/ (resp. �.P�E 0/�
�.P�E/) for any nontrivial filtered subbundle P�E 0 �P�E such that �.E 0/� E 0˝�1 .
A semistable filtered Higgs bundle is called polystable if it is a direct sum of stable
ones. The following lemma is easy to see.

Lemma 3.18 If .P�E ; �/ be a stable Higgs bundle on .T _;D/, then its dual is also
stable.

The following proposition is standard.

Proposition 3.19 Let .P�E ; �/ be a stable admissible filtered bundle on .T _;D/
with deg.P�E/D 0. If rank E > 1, it satisfies condition (A0).

Proof of Proposition 3.19 Indeed, an element of H0.T _; C�.P�E ˝L; � Cwd�//

corresponds to a morphism .OT_.�D/; 0/! .P�E ˝L; �/. By the stability with
deg.P�E/D 0 and rank E > 1, we obtain that such a morphism has to be 0. We obtain
the vanishing of H2 from the following lemma.
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Lemma 3.20 Hi.T _; C.P�E_;��_// is naturally isomorphic to the dual space of
H2�i.T _; C.P�E ; �//.

Proof We use the natural identification �1
T_
'OT_ . Let P 2D . We have

.P0E.1;0/P;0 /_ ' P<1.E_/.1;0/P;0 DW C
1.P�E_;��_/.1;0/P;0 :

Let � denote the projection P0.E_/.1;0/P;0
! GrP0 ..E

_/.1;0/
P;0

/. We have a subspace

Ker
�
GrP0

�
�
.1;0/
P;0

�_�
� GrP0

��
E_
�.1;0/
P;0

�
:

We have a natural isomorphism

C 0
�
P�E_;��_

�.1;0/
P;0
WD ��1

�
Ker

�
GrP0

�
�
.1;0/
P;0

�_��
'
�
C1
�
P�E ; �

�.1;0/
P;0

�_
:

The Higgs field ��_ induces

C 0.P�E_;��_/.1;0/P;0 ! C 1.P�E_;��_/.1;0/P;0 :

The complex C �.P�E_;��_/.1;0/P;0
Œ1� is the dual of C�.P�E ;��_/.1;0/P;0

. The natural
inclusions induce a quasi-isomorphism

C �.P�E_;��_/.1;0/P;0 ! C�.P�E_;��_/.1;0/P;0 :

For .p;m; o/¤ .1; 0; 0/, the dual of the complex C�.P�E ; �/.p;m/P;o
is

P<1=2.E_/
.p;m/
P;�o

��_

���! P<3=2Cm=p.E_/
.p;m/
P;�o

where the first term sits in the degree �1. It is moreover naturally quasi-isomorphic
to C�.P�E_;��_/.p;m/P;�o

Œ1�. Then the claim of the lemma follows from Serre duality.
Thus, we complete the proof of Lemma 3.20 and Proposition 3.19.

3.2.5 Filtered Higgs bundles of rank 1 on .T _;D/ Filtered Higgs bundles of
rank 1 are always admissible and stable. Let .P�E ; �/ be a filtered Higgs field
of rank 1 on .T _;D/. For each P 2 D , we have the complex number ResP .�/.
We also have a.P / 2 R such that Par.P�E ;P / D fa.P /C n j n 2 Zg. Such an
a.P / is uniquely determined in R=Z. We say that P is a nontrivial singularity of
.P�E ; �/ if .ResP �; a.P // ¤ .0; 0/ in C � .R=Z/. If P is a trivial singularity, ie
.ResP �; a.P // D .0; 0/, we obtain a filtered Higgs bundle on .T _;D n fPg/ by
considering the lattice P0.E/ around P . The following lemma is clear.
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Lemma 3.21 Let .P�E ; �/ be a filtered Higgs bundle of rank 1 on .T _;D/.

� If each P 2D is a trivial singularity of .P�E ; �/, then .P�E ; �/'.L.�D/; ˛ d�/

for some ˛ 2C and some line bundle L of degree 0. Here the parabolic structure
of L.�D/ is given in a typical way as in Section 2.2.2.

� If one of P 2D is a nontrivial singularity of .P�E ; �/, then .P�E ; �/ satisfies
(A0).

3.3 Algebraic Nahm transform for admissible filtered bundles

3.3.1 Construction of the transform For I � f1; 2; 3g, let pI be the projection of
T _ �T �P1 onto the product of the i th components .i 2 I/. Let Poin denote the
Poincaré bundle on T _ �T .

Let P�E be an admissible filtered bundle on .T �P1;T � f1g/ satisfying condition
(A3). We put D WD Sp1.P�E/. We define

Nahm.P�E/ WDR1p1�.p
�
12Poin_˝p�23P�1E/˝OT_.�D/:

By (A3), Nahm.P�E/ is a locally free OT_.�D/–module. By Lemma 2.13, we have
a natural isomorphism

Nahm.P�E/'R1p1�.p
�
12Poin_˝p�23P0E/˝OT_.�D/:

Let w be the standard coordinate of C�P1 . It naturally gives a section of OP1.1/. The
multiplication of �w induces an endomorphism f of Nahm.P�E/. We obtain a Higgs
field � WD fd� of Nahm.P�E/. We shall define a filtered bundle Nahm�.P�E/ D
.Nahma.P�E/ j a 2R/ over Nahm.P�E/.

We have the type decomposition P�E D
L

P2D

L
p;m;o P�E.p;m/

P;o
on a neighbour-

hood of T � f1g. Let U � PcE be an OT�P1 –submodule for some large c 2 R,
satisfying the conditions in Section 2.4.2. We suppose

P<�1E
.1;0/
P;0
� U .1;0/

P;0
� P0E

.1;0/
P;0

for any P 2 D . We define N.U/ WD R1p1�.p
�
12
Poin_˝p�

23
U/. By Lemmas 2.13

and 2.14, we have Rip1�.p
�
12
Poin_˝p�

23
U/D 0 unless i D 1, and N.U/ is a locally

free sheaf on T _ .

We have the following object in Db.OT_�P1/:

RFM�.U/ WDRp13�.p
�
12Poin_˝p�23U/Œ1�:
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We can express RFM�.U/ as a two term complex of locally free OT_�P1 – modules

N�1
a
�!N0:

Because a is generically isomorphism, it is injective. Hence, we have RFM�.U/'
H0.RFM�.U//. We will not distinguish between the two.

Suppose 0 2D . Let U0 � T _ denote a small neighbourhood of 0. Let W1 � P1 be
a small neighbourhood of 1. We have the decomposition

RFM�.U/jU0�W1 D

M
p;m;o

RFM�.U .p;m/0;o
/:

If .p;m; o/¤ .1; 0; 0/, the support of RFM�.U .p;m/0;o
/ is proper over U0 . Hence, we

have the decomposition

(26) RFM�.U/jU0�P1 D

M
.p;m;o/¤.1;0;0/

RFM�.U .p;m/0;o
/˚M.U/:

Here, M.U/jU0�W1DRFM�.U .1;0/0;0
/. We have similar decompositions for any P 2D .

We have N.U/.�D/DNahm.P�E/. The following decomposition around any P 2D

is induced by the decomposition (26) considered for P :

N.U/D
M

p;m;o

N.U/.p;m/
P;o

:

In particular, we have the following decomposition around any P 2D :

(27) Nahm.P�E/D
M

p;m;o

Nahm.P�E/.p;m/P;o
:

We fix a lift zP 2C of any P 2D , and we use a local coordinate �P WD � � zP around
P . Let W1 be a small neighbourhood of 1. We have the filtered bundles�

P�V .p;m/
P;o

;g
.p;m/
P;o

�
with an endomorphism on .W1;1/, as in Section 2.4.1. If .p;m; o/¤ .1; 0; 0/, we
have a natural isomorphism

Nahm.P�E/.p;m/P;o
'N .1;0/

�
P�V .p;m/

P;o
;g
.p;m/
P;o

�
:

Under the isomorphism, we define

Nahma.P�E/.p;m/P;o
WDN1;0a

�
P�V .p;m/

P;o
;g
.p;m/
P;o

�
:
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Let us consider the case .p;m; o/D .1; 0; 0/. First, we define

Nahm0.P�E/.1;0/P;0
WDN.P�1E/

.1;0/
P;0

:

We set CP WD P0E
.1;0/
P;0

=P�1E
.1;0/
P;0

. We have the following exact sequence around P :

0!N.P�1E/
.1;0/
P;0
!N.P0E/

.1;0/
P;0
!R1p1�.p

�
12Poin˝p�23CP /! 0:

We may regard CP as a locally free sheaf on T , and then it is isomorphic to a direct
sum of some copies of the line bundle corresponding to P . Hence, the multiplication
of �P on R1p1�.p

�
12
Poin˝p�

23
CP / is 0. This induces a surjection

N.P0E/
.1;0/

P;0j0
WDN.P0E/

.1;0/
P;0
˝OP !R1p1�.p

�
12Poin˝p�23CP /:

Let K denote the kernel. We have the morphisms

R1p1�.p
�
12Poin˝p�23CP /'N.P0E/

.1;0/

P;0j0

ı
K

h
�!N.P�1E/

.1;0/

P;0j0
:

Here, h is the injection induced by the multiplication of �P . We have a natural
isomorphism of C–vector spaces

R1p1�.p
�
12Poin˝p�23CP /' P0V

.1;0/

P;0j1
:

Hence, for any �1< c < 0, we define

Fc.Nahm0.P�E/.1;0/P;0
˝OP / WD Fc

�
P0V

.1;0/

P;0j1

�
:

We also set F0.Nahm0.P�E/.1;0/P;0
˝OP /D Nahm0.P�E/.1;0/P;0

˝OP . The filtration
of Nahm0.P�E/.1;0/P;0

˝OP indexed by ��1; 0� induces a filtered bundle

Nahm�.P�E/.1;0/P;0
! Nahm.P�E/.1;0/P;0

:

We obtain a filtered bundle Nahm�.P�E/ over Nahm.P�E/ by taking the direct sum.

Proposition 3.22 Nahm�.P�E/ with � is admissible, and satisfies condition (A0).
Moreover, the complex

N.V˝OP1.�1//
�w
��!N.V/

naturally identifies with C�.Nahm�.P�E//. Here, V �P0E is an OT�P1 –submodule
satisfying the conditions in Section 2.4.2 and

V.p;m/
P;o

D

(
P0E

.1;0/
P;0

.p;m; o/D .1; 0; 0/;

P�1=2E
.p;m/
P;o

otherwise:
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Proof of Proposition 3.22 If .p;m; o/¤ .1; 0; 0/, then by Proposition 3.5, we have
Nahm�.P�E/.p;m/P;o

with � is admissible. Moreover,

N.V˝OP1.�1//
.p;m/
P;o

�w
��!N.V/.p;m/

P;o

is naturally identified with C�.Nahm�.P�E/.p;m/P;o
/ by the construction.

Lemma 3.23 Nahm�.P�E/.1;0/P;0
with � is admissible of type .1; 0; 0/ and the com-

plex

N.P�1E/
.1;0/
P;0

�w
��!N.P0E/

.1;0/
P;0

is naturally identified with C�.Nahm.P�E/.1;0/P;0
/.

Proof We use the above notation. The morphism f induces

f0W N.P�1E/
.1;0/

P;0j0
!N.P0E/

.1;0/

P;0j0
=K:

The endomorphism

f0 ı h on N.P0E/
.1;0/

P;0j0
=K

is identified with
�wg

.1;0/
P;0

on P0V
.1;0/

P;0j1
:

It is nilpotent, and it also preserves the parabolic filtration on P0V .1;0/
P;0j1

. By the
construction of the parabolic filtration, h ı f0 preserves the parabolic filtration on
N.P�1E/

.1;0/

P;0j0
. Thus, we obtain that Nahm�.P�E/.1;0/P;0

is admissible of type .1; 0; 0/.

By construction, we have a natural isomorphism

N.P�1E/
.1;0/
P;0
' C0

�
Nahm

�
P�E

�.1;0/
P;0

�
:

Because �P �N.P0E/.1;0/
P;0
� N.P�1E/.1;0/

P;0
and �1

T_
' OT_ , we have the natural

morphism
AW N.P0E/.1;0/P;0 !N.P�1E/.1;0/P;0 ˝�

1.P /:

Let � denote the natural map

N.P0E/
.1;0/
P;0
!N.P0E/

.1;0/

P;0j0
=K ' P0V

.1;0/

P;0j1
:

By the construction of Nahm�.P�E/.1;0/P;0
, the image of ��1.F<0/ by A is equal

to P<0 Nahm�.P�E/.1;0/P;0
˝�1.P /. By the construction of � , Im.A/ also contains

�.N.P�1E/.1;0/
P;0

/. Hence, C1.Nahm�.P�E/.1;0/P;0
/ is contained in Im.A/. We remark
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that the following morphism is surjective, because H 2.T �P1;P<�1E˝L/D 0 for
any holomorphic line bundle L of degree 0 on T :

(28) N.P�1E/
.1;0/
P;0
!R1p1�

�
p�12Poin˝p�23 GrP

�1

�
E
.1;0/
P;0

��
w
'R1p1�

�
p�12Poin˝p�23 GrP0

�
E
.1;0/
P;0

��
:

It implies that the morphism

N.P�1E/
.1;0/
P;0
! P0V

.1;0/

P;0j1
=F<0

which is induced by � is surjective. Then we obtain that Im ADC1.Nahm�.P�E/.1;0/P;0
/.

The proof of Lemma 3.23 is finished.

Let us prove that Nahm�.P�E/ with � satisfies condition (A0). For I � f1; 2; 3g,
let pI denote the projection of T _ �T �P1 onto the product of the i th components
.i 2 I/. For any a 2C and a line bundle L of degree 0 on T _ , consider the complex

zC WD
�
p�23P�1E˝p�12Poin˝p�1L

�wCa
����! p�23P0E˝p�12Poin˝p�1L

�
where the first term sits in the degree �1. Since Rp1�

zC is the complex

N.P�1.E//˝L
�wCa
����!N.P0E/˝L

on T _ which is identified with C�.Nahm�.E/˝L; � C ad�/, we have

Hi.T _ �T �P1; zC/'Hi.T _; C�.Nahm�.E/˝L; � C ad�//

Because Rp23�
zC is quasi-isomorphic to P�1EjfLg�P1!P0EjfLg�P1 , where the first

term sits in the degree 0, we have Hi.T _ �T �P1; zC/D 0 unless i D 1. Thus, we
obtain that Nahm�.P�E/ with � satisfies (A0), and the proof of Proposition 3.22 is
finished.

We denote the filtered Higgs bundle .Nahm�.P�E/; �/ just by Nahm�.P�E/.

Remark 3.24 We obtain a slightly different transformation by replacing Poin with
Poin_ , for which we can argue in a similar way.

3.3.2 Inversion

Proposition 3.25 � Let .P�E ; �/ be an admissible filtered Higgs bundle on
.T _;D/ which satisfies condition (A0). Then we have a natural isomorphism
Nahm�.Nahm�.P�E ; �//' .P�E ; �/.

� Let P�E be an admissible filtered bundle on .T �P1;T �f1g/ satisfying (A3).
Then we have a natural isomorphism Nahm�.Nahm�.P�E//' P�E .
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Proof For any I �f1; 2; 3; 4g, let pI denote the projection of T _�T �P1�T _ onto
the product of the j th components .j 2 I/. We set Ci WD Ci.P�E ; �/. We consider
the following complex on T _ �T �P1 �T _ :

p�1C
0
˝p�12Poin˝OP1.�1/˝p�24Poin_

�Cwd�
�����! p�1C

1
˝p�12Poin˝p�24Poin_:

We denote the complex by xC� . We can observe that Rp14�
xC� is quasi-isomorphic

to p�
1
C1˝O�Œ�2�, where p1W T

_ �T _! T _ denotes the projection onto the first
component, and O� denote the structure sheaf of the diagonal. Hence, Rp4�

xC� is nat-
urally isomorphic to C1Œ�2�. We can also observe that Rp234�

xC� is quasi-isomorphic
to q�

12
N .P�E ; �/˝ q�

13
Poin_Œ�1�, where qI denotes the projection of T �P1 �T _

onto the product of the i th components .i 2 I/. Hence, we have Rp4�
xC�.�D/ is quasi-

isomorphic to Nahm.Nahm�.P�E ; �//. We obtain an isomorphism of meromorphic
Higgs bundles

Nahm.Nahm.P�E ; �//˝O.�D/' .E ; �/:

If .p;m; o/ ¤ .1; 0; 0/, then we obtain the comparison of the filtered bundles over
E.p;m/

P;o
from Proposition 3.7. We obtain the comparison of the filtered bundles

over E.1;0/
P;0

directly from the construction. Thus, we obtain the first claim.

Let P�E be an admissible filtered bundle on .T �P1;T � f1g/ satisfying (A3). Let
V�P0E be as in Proposition 3.22. By Proposition 3.22, we have C0.Nahm�.P�E//D
N.V ˝OP1.�1// and C1.Nahm�.P�E// D N.V/ d� . The differential C0! C1 is
induced by the multiplication of �w . We shall rewrite the complex

(29) zC 0.Nahm�.P�E//
�Cwd�
�����! zC 1.Nahm�.P�E//:

For I � f1; 2; 3; 4; 5g, let pI denote the projection of T �P1 �T _ �T �P1 onto
the product of the i th components .i 2 I/. We set

C0 WD p�12.V˝OP1.�1//˝p�13Poin_˝p�34Poin˝p�5OP1.�1/;

C1 WD p�12V˝p�13Poin_˝p�34Poin:

We regard OP1.1/DOP1.f1g/, and let �W OP1!OP1.f1g/ be the natural inclusion.
Let GW C0! C1 be induced by �p�

2
w˝p�

5
�Cp�

2
�˝p�

5
w . Then (29) is naturally

isomorphic to

R1p345�

�
C0

G
�! C1

�
:

For I � f1; 2; 3; 4g let qI denote the projection of T �T _�T �P1 onto the product
of the i th components .i 2 I/. The complex

p1345�

�
C0

G
�! C1

�
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is quasi-isomorphic to

q�14V˝ q�12Poin_˝ q�23PoinŒ�1�:

For I � f1; 2; 3g, let sI denote the projection of T � T � P1 onto the product of
the i th components .i 2 I/. We have a natural isomorphism

q134�

�
q�14V˝ q�12Poin_˝ q�23PoinŒ�1�

�
' s�13V˝ s�12O�Œ�2�:

Here, O� denote the structure sheaf of the diagonal in T � T . Then we obtain a
natural isomorphism V ' N .Nahm.P�E; �// as OT�P1 –modules. If .p;m; o/ ¤
.1; 0; 0/, then from Proposition 3.7 we obtain the comparison of the filtered bundles
over V.�.T � f1g//.p;m/

P;o
The comparison in the case .p;m; o/ D .1; 0; 0/ follows

directly from the construction.

Corollary 3.26 Let P�E be an admissible filtered bundle on .T � P1;T � f1g/

satisfying the condition (A3). We have

deg.P�E/D deg.Nahm.P�E//:

Proof It follows from Propositions 3.17 and 3.25.

3.4 Refinement for good filtered Higgs bundles

3.4.1 A stationary phase formula We have the following type of stationary phase
formula for the local Nahm transform, which is analogue of the stationary phase
formula for the local Fourier transforms. (See [15; 17; 20; 41], Laumon [30] and
Malgrange [32].) We will prove it in Section 3.4.4 after the preliminaries in Sec-
tions 3.4.2–3.4.3.

Theorem 3.27 Let U� be a small neighbourhood of 0 in C� . Let .P�V; �/ be an
admissible filtered Higgs bundle on U� .

� .P�V; �/ is good if and only if N 0;1
� .P�V; �/ is good.

� Suppose .P�V; �/' 'p�.P�V 0; � 0/, where � 0� da id is logarithmic for some
a2 ��1

p CŒ��1
p � with deg��1

p
aDm> 0. Then there exists .P�W 0;  0/ on U�pCm

such that  0�db is logarithmic for some b2��1
pCmCŒ��1

pCm� with deg��1
pCm

bDm,
and we have an isomorphism

'pCm�.P�W 0;  0/'N 0;1
� .P�V; �/:

Moreover, we have an isomorphism GrPc .V
0/ ' GrPc�m=2.W

0/ under which
Res.'�p�/D Res.'�pCm 

0/. (The choice of b will be explained in the proof.)
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� If .P�V; �/ is logarithmic, .P�W;  / WD N 0;1
� .P�V; �/ is also logarithmic.

Moreover, we have an isomorphism

GrPc .W /'

�
GrPc .V / .�1< c < 0/;

Im
�
Res.�/W GrP0 .V /! GrP0 .V /

�
.c D 0/:

Under the isomorphism, we have Res. /D Res.�/.

We obtain the following corollary from Theorem 3.27. (Recall the notion of good
filtered bundle in Section 2.4.1.)

Corollary 3.28 � Let .P�E ; �/ be a good filtered Higgs bundle on .T _;D/ satis-
fying (A0). Then Nahm�.P�E ; �/ is a good filtered bundle on .T�P1;T�f1g/.

� Let P�E be a good filtered bundle on .T �P1;T � f1g/ satisfying (A3) with
Sp1.E/DD . Then Nahm�.P�E/ is a good filtered Higgs bundle on .T _;D/.

3.4.2 Description of the parabolic structure of N 0;1
� .P�V; �/ Let .P�V; �/ be

a good filtered Higgs bundle on .U� ; 0/. For simplicity, we assume that .P�V; �/ has
slope .p;m/. We take a2ooo for each ooo2 Irr.�/. Let c 2R. We take a frame voooD .vooo;i/
of PcpoooV

ooo
a that is compatible with the parabolic structure. Each �j

ooo vooo;idzooo=zooo induces
a section Œ�

j
ooo vooo;idzooo=zooo� of N 0;1.P�V; �/. The following lemma is clear by the

construction of the filtered bundle N 0;1
� .P�V; �/. (See the proof of Proposition 3.3.)

Lemma 3.29 The tuple˚
Œ�

j
ooo vooo;id�ooo=�ooo�

ˇ̌
ooo 2 Irr.�/; 0� j < poooCmooo; 1� i � rank V ooo

a

	
is a frame of N 0;1

�1.p;m;c/
.P�V; �/, compatible with the parabolic structure. If the

parabolic degree of vooo;i is b , the parabolic degree of Œ�j
ooo vooo;id�ooo=�ooo� is .b � j �

mooo=2/.poooCmooo/
�1 .

3.4.3 Description of the parabolic structure of N1;0� .P�V;g/ Let .P�V;g/ be
a filtered bundle with an endomorphism on .U� ; 0/ such that P�V with  WD���2gd�

is a good filtered Higgs bundle. For simplicity, we assume that .P�V;g/ has a slope
.p;m/ with p >m¤ 0.

We take a2ooo for each ooo2 Irr. /. Let c 2R. We take a frame voooD .vooo;i/ of PcpoooV
ooo
a

that is compatible with the parabolic structure. Each �
j
ooo vooo;i induces a section of

N1;0.P�V;g/, denoted by Œ�j
ooo vooo;i �. The following lemma is clear by the construction

of the filtered bundle N1;0� .P�V;g/. (See the proof of Proposition 3.5.)
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Lemma 3.30 The tuple˚
Œ�

j
ooo vooo;i �

ˇ̌
ooo 2 Irr. /; 0� j < pooo�mooo; 1� i � rank V ooo

a

	
is a frame of N1;0

�2.p;m;c/
.P�V;g/ that is compatible with the parabolic structure. If the

parabolic degree of vooo;i is b , the parabolic degree of �j
ooo vooo;i is .b� j Cpooo�mooo=2/ �

.pooo�mooo/
�1 .

3.4.4 Proof of Theorem 3.27 Let us return to the situation in Section 3.4.1. Let us
begin with the third claim. We obtain the isomorphism of the associated graded vector
spaces by the construction of P�W . We have the expression � D f d�=� , where f is
an endomorphism of P�V . It naturally induces an endomorphism f 0 of P�W , and
we have  D f 0 d�=� by the construction. Thus, we obtain the third claim.

Let us consider the second claim. Our argument is close to that in [15]. To simplify the
notation, we set � WD �pCm and u WD �p . We set G.u/ WDu@ua.u/D

Pm
jD1 j̨ u�j . Let

! WD e2�
p
�1=.pCm/ . We have holomorphic functions u.i/.�/ .i D 0; : : : ;pCm�1/

on U� , satisfying @�u.i/.0/D @�u.0/.0/!i ¤ 0 and

G.u.i/.�//Cpu.i/.�/p=�pCm
D 0:

For any c 2 R, we consider Pc�m=2V WD Pc�m=2'
�
pCmN 0;1.P�V; �/. We take a

frame v of PcV 0 compatible with the parabolic structure. We put z�ij WD .�
�1u/ivj

.0 � i � pCm� 1; 1 � j � rank V 0/. They induce a frame of Pc�m=2V , which is
compatible with the parabolic structure. By the frames, for c � 1< d � c , we obtain
an isomorphism

(30) GrPd�m=2.V/' GrPd .V
0/˝CpCm:

The following lemma can be checked by a direct computation.

Lemma 3.31 ��1u gives an endomorphism F of P�V . On GrPd�m=2.V/, we have

F.z�i;j /D

�
z�iC1;j i < pCm� 1;

�p�1˛mz�0;j i D pCm� 1:

The eigenvalues of F on GrP are @�u.i/.0/ .i D 0; : : : ;pCm� 1/.

By the lemma, we obtain the decomposition .P�V;F /D
LpCm�1

jD0
.P�V.j/;F .j// such

that F .j/
j0

has a unique eigenvalue @�u.j/.0/. Note that we have a natural isomorphism

N 0;1.P�V; �/' 'pCm�

�
P�V.0/; �.���2d�/

�
:

We also have an isomorphism GrPc .V
0/' GrPc�m=2.V

.0//.
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We have the expression �aD .G.u/Cf / du=u, where f is an endomorphism of P�V 0 .
On Pc�m=2V , we have �m.G.u/Cpup=�pCm/D��mf . We have the decomposition

�m.G.u/Cpup=�pCm/

D
�
��1u� ��1u.0/.�/

�
�p

pCm�1Y
iD1

�
��1u� ��1u.i/.�/

�
.��1u/�m:

Because ��1u���1u.j/.�/ .1� j <p�m/ are invertible on Pc�m=2V.0/ , we obtain
the following on Pc�m=2V.0/ :

��1u� ��1u.0/.�/D�p�1�m
�f �

pCm�1Y
jD1

.��1u� ��1u.j/.�//�1.��1u/m

Let Qk.x;y/D
P

iCjDk xiyj . We have

(31) �=� �
u.0/.�/p

�pCm
D ��m

�
��1u� ��1u.0/.�/

�
�Qp�1

�
��1u; ��1u.0/.�/

�
D�f

pCm�1Y
jD1

�
��1u� ��1u.j/.�/

��1
.��1u/mp�1

�Qp�1

�
��1u; ��1u.0/.�/

�
Hence, we obtain that .�=� �u.0/.�/p��p�m/P�V.0/ � P�V.0/ . On GrPa .V.0//, the
endomorphisms u=� and u.0/.�/=� are the multiplication of @�u.0/.0/. Hence, .�=��
u.0/.�/p��p�m/ acts as �.pCm/�1f on GrP.V/. We set P�W 0 WD P�V.0/ and
 0 WD����2d�D�.�=�/.pCm/d�=�. We have b2��1CŒ��1� uniquely determined
by the condition that �@�b is equal to the polar part of �.pCm/u.0/.�/p��p�m . Then
 0�db is logarithmic. The residue acts as f . Hence, the second claim of Theorem 3.27
follows. It also implies the “only if” part in the first claim.

Let us prove the “if” part of the first claim. We use the inverse transform. Let .P�W;  /

be a good filtered Higgs bundle on .U� ; 0/ which is isomorphic to 'p�.P�W 0;  0/,
where  0�db id is logarithmic for some b2 ��1

p CŒ��1
p � with deg��1

p
bDm<p . The

claim of Theorem 3.27 follows from the next proposition.

Proposition 3.32 There exists .P�V 0; � 0/ on U�p�m
such that � 0� da id is logarith-

mic for some a 2 ��1
p�mCŒ��1

p�m�, and we have an isomorphism 'p�m�.P�V 0; � 0/ '
N1;0� .P�W;  /.

Proof To simplify the notation, we set � WD �p and u WD �p�m . We have the expression

 0 D .G.�/ idC�pf /'�p .��
�2d�/;
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such that G.�/D
Pm

jD1 ǰ�
p�j with ˇm ¤ 0, and f is an endomorphism of P�W 0 .

We fix a holomorphic function �.0/.u/ such that G.�.0/.u// � up�m D 0 and that
0< C1 � j�

.0/=uj � C2 for some constants Ci .

We set PcCp�m=2V WD PcCp�m=2'
�
p�mN1;0.P�W;  /. Let v be a frame of PcW 0

compatible with the parabolic structure. We set z�ij D u�i�ivj .0 � i � p �m� 1,
1� j � rank W 0/. They induce a frame of PcCp�m=2V compatible with the parabolic
structure. By using the frame, for any c � 1 < d � c , we obtain an isomorphism
GrPdCp�m=2.V/' GrPd .W

0/˝Cp�m . The following lemma can be checked directly.

Lemma 3.33 u�1� gives an endomorphism F of P�V , preserving the parabolic
structure, and the induced endomorphism on GrP.V/ is given by

F.z�p�m�1;j /D�ˇ
�1
m z�0;j and F.z�ij /D z�iC1;j .i D 0; : : : ;p�m� 2/:

The eigenvalues are !i@u�
.0/.0/ .i D 0; : : : ;p�m� 1/, where ! D e2�

p
�1=.p�m/ .

We obtain the decomposition .P�V;F /D
Lp�m�1

iD0
.P�V.i/;F .i// such that F

.i/

j0
has

a unique eigenvalue !i@u�
.0/.0/. We have an isomorphism

'p�m�.P�V.0/;���1d�/'N1;0� .P�W;  /:

We also have an isomorphism GrPcCp�m=2.V
.0//' GrPc .W

0/.

We have G.�/�up�m D��pf on V . Note that

u�.p�m�1/
mX

jD1

ǰ Qp�j�1.�
.0/.u/; �/

is invertible on PcCp�m=2V.0/ . Hence, we obtain the following on PcCp�m=2V.0/ :

up�m�1.�.0/.u/� �/D �pf �

� mX
jD1

ǰ Qp�j�1.�
.0/.u/; �/

��1

up�m�1:

We have

(32) up�m.��p
� �.0/.u/�p/D f �pQp�1.�

.0/.u/�1; ��1/�.0/.u/�1��1

�

� mX
jD1

ǰ Qp�j�1.�
.0/.u/; �/

��1

up�m:

Hence, we obtain that up�m.��p � �.0/.u/�p/ is an endomorphism of P�V.0/ . We
set P�V 0 WDP�V.0/ and � 0 WD���1'�p�md�D���p.p�m/up�m.du=u/. We have
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a2u�1CŒu�1� uniquely determined by the condition u@uaD��
.0/.u/�p.p�m/up�m .

Then � 0� da is logarithmic. Thus, the proofs of Proposition 3.32 and Theorem 3.27
are finished.

4 Family of vector bundles on torus with small curvature

4.1 Small perturbation

We use the notation in Section 2.1. We use the metric dz dz of T . For any finite-
dimensional vector space V , let L

p

k
.V / be the space of V–valued L

p

k
–functions

on T , and let L
p

k
.V ˝�i;j / be the space of V–valued L

p

k
–differential .i; j /–forms.

We have the linear map
R

T W L
p

k
.V / ! V given by

R
T f WD jT j

�1
R

T f jdz dzj,
where jT j denotes the volume of T . The kernel is denoted by L

p

k
.V /0 . We have

a natural inclusion V ! L
p

k
.V / as constant functions. We have the decomposition

L
p

k
.V /DL

p

k
.V /0˚V as topological vector spaces.

Suppose that V is equipped with a Hermitian metric hV . Set r WD dim V . Let p � 2.
Let Gp

k
.V / be the space of L

p

kC2
–maps from T to GL.V /. We set

A
p

k
.V / WD

˚
x@0CA

ˇ̌
A 2L

p

kC1
.End.V /˝�0;1/

	
;

ie the space of .0; 1/–type differential operators of the product bundle V of the form
x@0CA .A 2L

p

kC1
.End.V /˝�0;1//. Here, x@0 is the trivial holomorphic structure of

V . We have the natural right Gp

k
–action on A

p

k
.V / given by

g � x@ WD g�1
ı x@ ıg D x@Cg�1x@g:

Let � be an endomorphism of V . Let U1 �L
p

kC2
.End.V //0 be a sufficiently small

neighbourhood of 0 such that 1C U1 � Gp

k
. Let U2 be a neighbourhood of 0 in

End.V /. We consider the map ‰W U1 �U2! A
p

k
.V / given by

‰.a; b/ WD .1C a/ � .x@0C .�C b/ dz/:

We use the norm on L
p

kC2
.End.V // such that

L
p

kC2
.End.V //'L

p

kC2
.End.V //0˚End.V /

is an isometry, and the norm on L
p

kC1
.End.V // such that

L
p

kC2
.End.V //!L

p

kC1
.End.V //; A 7! x@0AC

Z
T

A

is an isometry.
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Proposition 4.1 Fix ı > 0. Suppose that � is decomposed as � D �0C�1 where
the pieces satisfy the following conditions:

� �0 is commutative with its adjoint �|
0

, ie it is diagonalizable and the eigenspaces
are orthogonal with respect to hV . Moreover, there exists �0 2 C such that
Sp.�/ is contained in

K1.L; �0; ı/ WD
˚
� 2C

ˇ̌
0� Im.� � �0/� .1� ı/�; 0� Im..� � �0/x�/� .1� ı/�

	
:

� j�1jhV
� ı=100.

Then there exist positive constants Ci .i D 1; 2/, independently from � and �0 , such
that the following holds:

� For B 2 L
p

kC1
.End.V /˝�0;1/ with jBj � C1 , there exists a unique .a; b/ 2

U1 �U2 with jajC jbj � C2jBj satisfying x@0C� dzCB dz D‰.a; b/.

Proof We set K.L/ WD f� 2 C j j Im.�/j � .1 � ı/�; j Im.�x�/j � .1 � ı/�g. We
have Sp.ad.�0//�K.L/. In the following, Ci will be positive constants which are
independent from � and �0 .

We have a morphism

ˆ� W L
p

kC2
.End.V //DL

p

kC2
.End.V //0˚End.V /!L

p

kC1
.End.V /˝�0;1/

given by ˆ�.A;B/D x@AC Œ�;A� dzCB dz , where A 2L
p

kC2
.End.V //0 and B 2

End.V /. We have ˆ0.A;B/D x@ACB dz , which is an isometry by our choice of the
norms.

Lemma 4.2 ˆ� is a homeomorphism.

Proof Note that ˆ0 is an isomorphism, and that ˆ��ˆ0 is compact. Hence, the index
of ˆ� is 0. Due to the condition for �0 , we have kx@0AC Œ�0;A� dzkL2 � ı�jAjL2

for any A2L2
1
.End.V //. By the condition for �1 , we obtain that x@0AC Œ�;A� dz¤ 0

for any A 2L2
1
.End.V //. Then we obtain that ˆ� is injective.

Lemma 4.3 We have jˆ�1
0
ıˆ� j � C3 and jˆ�1

�
ıˆ0j � C3 , independently from � ,

where j � j denotes the operator norm.

Proof Let S be the set of � satisfying the conditions of the proposition. It is compact.
For any fixed .A;B/ 2 L

p

kC2
.End.V //0˚ End.V /, the map � 7! ˆ�1

�
ıˆ0.A;B/

gives a continuous map from S to L
p

kC2
.End.V //˚End.V /, and hence is bounded.

Then we obtain the claim for ˆ�1
�
ıˆ0 by the uniform boundedness principle. We

obtain the claim for ˆ�1
0
ıˆ� similarly.
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We set A.a; b/ WD‰.a; b/�‰.0; 0/ 2L
p

kC1
.End.V /˝�0;1/, ie

A.a; b/D .1C a/�1.x@0aC Œ�; a�/CAd.1C a/b dz:

We have jA.a; b/j D O.jaj C jbj/, independently from � . The derivative T.a;b/‰

of ‰ at any .a; b/ 2 U1 �U2 is given by

(33) T.a;b/‰.X;Y /Dˆ.X;Y /C ŒA.a; b/; .1C a/�1X �

� Œ‰.0; 0/; .1C a/�1aX �C .Ad.1C a/� 1/Y:

Hence, we obtain an estimate jˆ�1
�
ıT.a;b/‰�id j�C4.jajCjbj/, which is independent

from � . Then the claim of Proposition 4.1 follows from the classical inverse function
theorem (see Lang [28], for example).

Corollary 4.4 ‰ gives a diffeomorphism of a neighbourhood of .0; 0/ in U1 �U2

and a neighbourhood of x@0C�dz in A
p

k
.V /.

4.2 Frames

4.2.1 Preliminaries We set U1 WDf.x1;x2/ j0�xi�1g and U2 WDf.�1; : : : ; �n�2/ j

j�i j � 1g. Let T0 D R2=Z2 . Let U1 �U2! T0 �U2 denote the natural projection.
We also use the variables ti D xi .i D 1; 2/ and ti D �i�2 .i D 3; : : : ; n/. We also use
x D x1 , y D x2 .

For any nonnegative integer k , we set S1.k/ WD f.m1;m2/ jm1Cm2 D k;mi � 0g.
We also set S2.k/ WD f.m1; : : : ;mn�2/ j

P
mi D k;mi � 0g. We set S.k1; k2/ WD

S1.k1/�S2.k2/. We put @m
x WD

Q
@

mi
xi

and @m
�
WD
Q
@

mi

�i
. We put Ni.k/ WD jSi.k/j

and N.k1; k2/ WDN1.k1/�N2.k2/.

Let V be a vector space. For f 2 C1.U1 �U2;V /, we set

Dk1
x D

k2

�
.f / WD .@m1

x @
m2

�
f j .m1;m2/ 2 S.k1; k2// 2 C1.U1 �U2;V

N.k1;k2//:

Formally, we set D0f WD f 2 C1.U1 � U2;V /. We use similar notation for the
functions on T0 �U2 and Œ0; 1��U2 .

4.2.2 Orthonormal frame Let E be a topologically trivial C1 vector bundle on
T0 �U2 with a Hermitian metric h and a unitary connection r . We set r WD rank E .
Let F denote the curvature of r . For any frame v of E , let Av D

Pn
iD1 Avi dti

denote the connection form of r with respect to v . We put 1Av WDAv
1

dt1CAv
2

dt2

and 2Av WD
Pn

iD3 Avi dti . Similarly Fv D
P

Fvij dti dtj denote the curvature form
with respect to v .

Fix a positive number M . Let � be a small positive number. Assume the following:
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� Take any m 2 Zn
�0

such that m1 C m2 � M and
Pn

iD3 mi � M . Then
jr

m1

t1
ı � � � ı r

mn

tn
F jh � � .

Lemma 4.5 If � is sufficiently small, there exist an orthonormal frame v of .E; h/
on T0 �U2 and anti-Hermitian matrices ƒ.x/; ƒ.y/ such that the following hold:

(A1) For �Dx;y , there exist 0� �� < 2� such that any eigenvalue
p
�1˛ of ƒ.�/

satisfies j˛� �� j � �.2r � 1/=2r . They satisfy jŒƒ.x/; ƒ.y/�j � C� .

(A2) j1Av � ƒj � C� , and jDk1
x D

k2

�
.1Av/j � C� for any 0 � k1 � M and

0� k2 �M with .k1; k2/¤ .0; 0/, where ƒDƒ.x/ dxCƒ.y/ dy .

(A3) jDk1
x D

k2

�
.2Av/j � C� for any 0� k1; k2 �M .

Here, the constant C may depend only on r and M .

Proof We shall indicate an outline of the construction, although it is elementary. We
say that a quantity P is O.�/ if P � C� for some constant C which may depend only
on r and M . Let Œa; b�Z denote the set of integers k such that a� k � b . For j � 1,
let Hj be the subset of U1 �U2 determined by the condition ti D 0 .i 2 Œ1; j �Z/. We
set H0 WD U1 �U2 .

Let u be an orthonormal frame of ��.E; h/ on U1�U2 satisfying rtjuD 0 on Hj�1

for any j . We have Au
p D 0 on Hp�1 by the construction. For j < p , we have

@tjAu
p D Fu

jp on Hj�1 .

For 0� k �M and j D 0; : : : ; nC 1, we consider the following claim:

Q.j ; k/ Take m 2 Zn
�0

such that m1 C m2 � k ,
Pn

iD3 mi � k and mi D 0

.i < j /. Put P WD
Qn

iD1 @
mi

ti
. Then on Hj�1 , we have PAu

p D O.�/ for
p � j , and PFu

pq DO.�/ for p; q � j .

If j D nC 1, the claim holds for any k . We shall prove the claims Q.j ; k/ for any k

by assuming Q.j C 1; k/ for any k .

The claim Q.j ; 0/ holds by the construction of Au
p and the assumption on F . We

have only to prove Q.j ; k/ by assuming Q.j ; k � 1/. For any section s of End.E/,
let su denote the matrix representation of s with respect to u. Suppose that rm1

t1
ı� � �ı

r
mn

tn
s D O.�/ for any m 2 Zn such that m1Cm2 � k ,

Pn
iD3 mi � k and mi D 0

.i < j /. Because .rm1

t1
ı � � � ı r

mn

tn
s/u D .@t1

CAu
1
/m1 ı � � � ı .@tn

CAu
n /

mnsu , we
have

Q
@

mi

ti
su DO.�/ for any such m if Q.j ; k � 1/ holds. In particular, we obtainQ

@
mi

ti
Fu

p;q DO.�/ for any p; q � j for such m. For a monomial P of @tjC1
; : : : ; @tn
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and for p > j , we have @˛C1
tj

PAu
p D @

˛
tj

PFu
jp on Hj�1 . Hence, we obtain the desired

estimates for Au
p .p > j / from the estimate on Hj .

By considering the case j D 0 and k D M , we obtain D
k1
x D

k2

�
Au

p D O.�/ and
Dk1

x Dk2
�

Fu DO.�/ for any .k1; k2/ 2 Œ0;M �2Z .

Let G.x/W H1! U.r/ be determined by uj.1;y;�/ D uj.0;y;�/G
.x/.y; �/, where U.r/

denotes the r th unitary group. By the equation

@ti
G.x/.t2; : : : ; tn/�G.x/.t2; : : : ; tn/A

u
ij.1;t2;:::;tn/

CAu
ij.0;t2;:::;tn/

G.x/.t2; : : : ; tn/D 0;

we obtain the equality jD1
xG.x/jCjD1

�
G.x/j DO.�/. By an easy induction, we obtain

the equality
jDk1

x D
k2

�
G.x/
j DO.�/

for any .k1; k2/2 Œ0;M �2Znf.0; 0/g. We also have jG.x/.y; �/�G.x/.y0; � 0/jDO.�/.

Let G.y/.x; �/ be determined by uj.x;1;�/ D uj.x;0;�/G
.y/.x; �/. Similarly, we have

jDk1
x D

k2

�
G.y/
j DO.�/

for any .k1; k2/ 2 Œ0;M �2Z n f.0; 0/g, and jG.y/.x; �/�G.y/.x0; � 0/j DO.�/.

Since G.y/.0; �/G.x/.1; �/DG.x/.0; �/G.y/.1; �/, we have

ŒG.y/.0; 0/;G.x/.0; 0/�DO.�/:

We set zG.y/ WDG.y/.0; 0/ and zG.x/ WDG.x/.0; 0/.

Let I� denote the set of the eigenvalues of zG.�/ for � D x;y . Let dS1 denote the
standard distance on

S1
D
˚
e
p
�1�

ˇ̌
� 2R

	
which is induced by the metric d� d� . There exist 
� 2 S1 such that dS1.
� ; 
 / �

�=.2r/ for any 
 2 I� . Let �� be determined by

e
p
�1�� D�
� and 0� �� < 2�:

For any 
 2 I� , we can take ˛.
 / satisfying e
p
�1˛.
/ D 
 and j�� � ˛.
 /j �

�.2r � 1/=2r . We remark that, for any 
i ; 
j 2 I� , we have

(34) j˛.
i/�˛.
j /j DO.j
i � 
j j/:

We have the eigendecompositions Cr D
L

2I� V

.�/

 for zG.�/ . We set ƒ.�/ DL


2I�
p
�1˛.
i/ id

V
.�/



. By construction, we have exp.ƒ.�//D zG.�/ .
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Lemma 4.6 We have Œƒ.x/; ƒ.y/�DO.�/.

Proof According to the decomposition Cr D
L

2Ix

V
.x/

 , we have the decomposi-

tion
zG.y/
D

X

i ;
j2Ix

zG.y/

i ;
j

;

where zG.y/

i ;
j 2Hom.V .x/


j ;V
.x/

i
/. Since Œ zG.x/; zG.y/�DO.�/, .
i�
j / zG

.y/

i ;
j DO.�/.

By using (34), we obtain
Œ zG.y/; ƒ.x/�DO.�/:

By using a similar consideration again, we obtain Œƒ.y/; ƒ.x/�DO.�/.

Let us return to the proof of Lemma 4.5. We put g.x/.x/ WD exp.�xƒ.x//, g.y/.y/ WD

exp.�yƒ.y//, and g.x;y/ WD g.x/.x/g.y/.y/. We obtain an orthonormal frame u0 WD

ug.x;y/ of ��.E; h/. Let A0 WDAu0 . We have jA0�ƒj DO.�/ and jDk1
x D

k2

�
A0j D

O.�/ for any .k1; k2/ 2 Œ0;M �2Z n f.0; 0/g.

Let G0.x/.y; �/ and G0.y/.x; �/ be determined by

u0
j.1;y;�/ D u0

j.0;y;�/G
0.x/.y; �/; u0

j.x;1;�/ D u0
j.x;0;�/G

0.y/.x; �/:

We have G0.x/.y; �/Dg.y/.y/�1G.x/.y; �/. zG.x//�1g.y/.y/ and hence jG0.x/�1jD

O.�/. We have

dG0.x/Dg.y/.y/�1 dG.x/.y; �/. zG.x//�1g.y/.y/�Œg.y/.y/�1dg.y/.y/; .G0.x/�1/�:

Hence, we have jD1
yG0.x/j DO.�/ and jD1

�
G0.x/j DO.�/. By an easy induction, we

obtain the equality
jDk1

y D
k2

�
G0.x/j DO.�/

for .k1; k2/ 2 Œ0;M �2Z n f.0; 0/g. We have

G0.y/ D g.x/.x/�1G.y/.x; �/g.x/.x/. zG.y//�1

and obtain

(35) G0.y/� 1D g.x/.x/�1.G.y/.x; �/. zG.y//�1
� 1/g.x/.x/

�g.x/.x/�1G.y/.x; �/Œ. zG.y//�1;g.x/.x/�DO.�/:

As in the case � D x , we also obtain jDk1
y D

k2

�
G0.x/j DO.�/ for .k1; k2/ 2 Œ0;M �2Z n

f.0; 0/g.

Geometry & Topology, Volume 18 (2014)



2888 Takuro Mochizuki

Let �.x/ be a nonnegative valued C1 function on Œ0; 1� such that �.x/D 0 .x� 1=3/

and �.x/D 1 .x � 2=3/. We put

h2.x;y; �/ WD �.x/ exp�1.G0.x/.y; �//:

By construction, we have that jDk1
x D

k2

�
h2j DO.�/ for .k1; k2/ 2 Œ0;M �2Z .

Let g2 WD exp.h2/, and we set u00 WD u0g2 . Let A00 DAu00 . We have

A00 D g�1
2 A0g2Cg�1

2 dg2:

Hence, we have j1A00 � ƒj D O.�/, and jDk1
x D

k2

�
.1A00/j D O.�/ for .k1; k2/ 2

Œ0;M �2Z n f.0; 0/g. We also have jDk1
x Dk2

�
.2A00/j DO.�/ for .k1; k2/ 2 Œ0;M �2Z .

We put G00.y/.x; �/ WD g2.x; 0; �/
�1G0.y/.x; �/g2.x; 1; �/, and then we have

u00
j.x;1;�/ D u00

j.x;0;�/G
00.y/.x; �/:

We have jG00.y/.x; �/ � 1j D O.�/, and jDk1
x D

k2

�
G00.y/j D O.�/ for .k1; k2/ 2

Œ0;M �2Z n f.0; 0/g.

We put g3 WD exp.�.y/ exp�1.G00.y/.x; �///, and v WD u00g3 . Then it naturally gives
an orthonormal frame of .E; h/ on T0 �U2 . By construction, we have the desired
estimate for the connection form Av . Thus, the proof of Lemma 4.5 is finished.

4.2.3 Partially almost holomorphic frame We identify the C1 manifolds T0 WD

R2=Z2 and T by the diffeomorphism T0 ' T given by .x;y/ 7! xC �y D z . We
have the description ƒD�dz� tx� dz , where ƒ is as in Lemma 4.5. Let rz WDr.@z/

and rz WD r.@z/. For any frame w, let Awz and Awz be determined by rzwDwAwz
and rzwDwAwz , respectively. Let H.h;w/ denote the function from T �U2 to the
space of r th positive-definite Hermitian matrices, whose .i; j /–entries are h.wi ; wj /.
When a function f on T �U2 is regarded as a function zf W U2!L

p

k
.T /, we obtain

an R�0 –valued function kf kLp

k
.�/ WD k zf .�/kLp

k
.T / on U2 .

Proposition 4.7 If � > 0 is sufficiently small, there exists a frame u of E on T �U2

with the following properties:

� Au
z is constant along the T–direction, and jAu

z ��j DO.�/.

� kAu
z C

tx�kLp

M
DO.�/ and kDk

�
Au

z kLp

M
DO.�/ for k 2 Œ1;M �Z .

� kDk
�
.2Au/kLp

M
DO.�/ for k 2 Œ0;M �Z .

Moreover, kH.h;u/�IkLp

MC1
DO.�/ and kDk

�
H.h;u/kLp

MC1
DO.�/ for k2Œ1;M �Z ,

where I denotes the identity matrix.
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Proof Let v be the orthonormal frame as in Lemma 4.5. We have rzv D v.�CN /,
where kDk

�
N kLp

M
DO.�/.

Lemma 4.8 We have a decomposition � D �0C�1 such that:

(i) Œ�0; �
|
0
�D 0 and Sp.�0/D Sp.�/.

(ii) j�1j DO.�1=2/.

Moreover, if ı > 0 is sufficiently much smaller than 1=r , then there exists �0 2C such
that Sp.�/ is contained in K1.L; �0; ı/. (See Proposition 4.1 for K1.L; �0; ı/.) We
may take ı independently from any sufficiently small � . We also have j Im �0j � � and
j Im.x��0/j � � .

Proof We give only an indication of the proof. With an appropriate change of
orthonormal basis, we may assume that � is upper triangular. By the basis, we identify
matrices and endomorphisms. Let �0 be the diagonal part, and we put �1 WD � ��0 .
By construction, condition (i) is satisfied. Let 
ij denote the .i; j /–entry of � . Then
the .k; k/–entries of Œ�; �|� are

P
i>k j
k;i j

2 �
P

i<k j
k;i j
2 . Then we obtain the

desired estimate for �1 from Œ�; �|�DO.�/, which follows from condition (A1) in
Lemma 4.5. Thus, we obtain the first condition.

Let us prove the second condition. Let us observe that there exist decompositions

ƒ.�/ Dƒ
.�/
0
Cƒ

.�/
1

.� D x;y/;

such that ƒ.�/i are anti-Hermitian, Œƒ.x/
0
; ƒ

.y/
0
�D 0, and ƒ.�/

1
D O.�1=2/. We have

the eigendecomposition
Cr
D

M
i2I

Vi

of ƒ.x/ , where I denotes the set of eigenvalues of ƒ.x/ . We have a decomposition
I D

`
k2S Ik such that if ˛; ˇ 2 Ik then j˛�ˇj � r�1��1=2=10, and if ˛ 2 Ik and

ˇ 2 I` with k ¤ ` then j˛�ˇj � r�2��1=2=10. We set V 0
k
WD
L

i2Ik
Vi . We choose

ˇk 2 Ik for each k 2 S , and put

ƒ
.x/
0
WD

M
k2S

ˇk idV 0
k
:

We have the decomposition ƒ.y/ D
P
ƒ
.y/

k`
according to Cr D

L
V 0

k
. Since

Œƒ.x/; ƒ.y/�DO.�/;
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2890 Takuro Mochizuki

we have ƒ.y/
k`
DO.�1=2/ if k ¤ `. We set

ƒ
.y/
0
WD

X
k

ƒ
.y/

kk
and ƒ

.�/
1
WDƒ.�/�ƒ

.�/
0
:

Then the decompositions ƒ.�/ Dƒ.�/
0
Cƒ

.�/
1

have the desired properties. We have
� D .� � x�/�1.�ƒ.x/ �ƒ.y//. Because the eigenvalues of � are close to those of
.� �x�/�1.�ƒ.x/

0
�ƒ.y/

0
/ on the order of O.�1=2/, the second condition is satisfied for

small ı > 0.

By Proposition 4.1, if � is sufficiently small, we have that there exist functions aW U2!

L
p
MC1

.Mr .C//0 and bW U2!Mr .C/ satisfying the following:

� kDk
�

akLp

MC1
DO.�/ for k 2 Œ0;M �Z , and jDk

�
bj DO.�/ for k 2 Œ0;M �Z .

� .1C a/ � .rz;0C .�C b/ dz/Drz , where rz;0 is given by rz;0v D 0.

Let u WD v.1C a/. By construction, we have rzuD u.�C b/. The other estimates
for Au

z and 2Au are also satisfied. Because H.h;u/D t.1C a/.1C a/, we obtain the
estimate for H.h;u/.

Remark 4.9 If Awz is constant along the T–direction, such a frame w is called a
partially almost holomorphic frame, in this paper.

4.2.4 Spectra Let E� denote the holomorphic bundle on T which is given by EjT��
with rzjT�� . According to Lemma 2.7, if � is sufficiently small, E� are semistable
of degree 0 for any � 2 U2 . We have the spectrum Sp.E�/� T _ . We regard it as a
point in Symr T _ . The point is denoted by ŒSp.E�/�. Let � be as in Section 4.2.3.
The eigenvalues of � give a point in Symr C , denoted by ŒSp.�/�. The quotient map
ˆW C ! T _ induces Symr C ! Symr T _ , denoted by ˆ. Recall that Symr T _

is naturally a smooth complex manifold. Let dSymr T_ be a distance induced by a
C1 Riemannian metric.

Corollary 4.10 There exist �0 > 0 and C > 0, depending only on r , such that the
following holds if � � �0 :

dSymr T_.ŒSp.E�/�; ˆŒSp.�/�/� C�:

In particular, for � ; � 0 2 U2 , we have dSymr T_.ŒSp.E�/�; ŒSp.E�0/�/� 2C� .
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Proof Let u be a frame as in Proposition 4.7. Recall that Symr C is naturally a
complex manifold. We take a distance dSymr C induced by a C1 Riemannian metric.
We have dSymr C.ŒSp.�/�; ŒSp.Au

z /�/� C1� . There exists �0 2C and ı > 0 such that
Sp.�/ and Sp.Au

z / are contained in K1.L; �0; ı/, and j Im �0j�� and j Im.x��0/j�� .
Note that the restriction of ˆ to Symr K1.L; �0; ı/ is Lipschitz continuous, and the
Lipschitz constant is uniform for �0 . Then the claim of the corollary follows.

4.3 Estimates

4.3.1 Preliminaries We continue to use the setting in Section 4.2. We impose
additional assumptions.

Assumption 4.11 We take � to be sufficiently small so that E� is semistable of
degree 0 for any � 2U2 . Moreover, we are given a finite subset Z �C and a positive
number � > 0 with the following properties:

� Z is contained in K1.L; �0; ı/ for some appropriate �0 and ı > 0, where
K1.L; �0; ı/ is as in Section 4.1.

� For any distinct points �1; �2 2Z , dC.�1; �2/ > 100r2� .

� For any � 2 Sp.E�/, there exists � 2 Z such that dT_.ˆ.�/; �/ < � , where
ˆW C! T _ denotes the projection.

We also assume that � is sufficiently smaller than �2 .

We have the spectral decomposition E� D
L
�02T_ E�;�0 . Let E�;� be the direct

sum of E�;�0 , where �0 is contained in a �–ball of ˆ.�/. We obtain a decomposition
E� D

L
�2Z E�;� . It induces a C1 decomposition E D

L
�2Z E� , which is com-

patible with rz . We may assume that the partially almost holomorphic frame u in
Proposition 4.7 is compatible with the decomposition.

We have the decomposition rz D rz;0C f such that .E;rz;0/jT�f�g are holomor-
phically trivial for any � 2 U2 , rz.f / D 0, and Sp.f / is contained in the union
of the �–balls around � 2 Z . For each � 2 U2 , we obtain the vector space V�
of the holomorphic global sections of .E;rz;0/jT�f�g . It is easy to see that V�
.� 2 U2/ naturally gives a C1 vector bundle V on U2 , and that we have a natural
isomorphism p�V ' E as C1 bundles. We identify them by the isomorphism. A
C1 section s of p�V is constant along the T–direction if and only if rz;0sD 0 under
the identification. It can be regarded as a section of V . We have the decomposition
V D

L
�2Z Vz , corresponding to E D

L
�2Z E� .
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4.3.2 Spaces of functions Let C M
� L

p
M;x

denote the space of C M –functions

U2!L
p
M
.T /:

We use C M
� L

p
M;x

.E/ denote the sections f D
P
fiui of E such that fi 2C M

� L
p
M;x

,
where uD .ui/ is a frame as in Proposition 4.7. It is independent of the choice of u. We
have the naturally defined integration

R
T W C

M
�

L
p
M;x

.E/!C M .U2;V/. The kernel is
denoted by C M

�
L

p
M;x

.E/0 . Similar spaces are defined for End.E/ and Hom.Ei ;Ej /.
We set

C M
� L

p
M;x

.End.E//ı WD
M
�

C M .U2;End.V�//;

C M
� L

p
M;x

.End.E//? WD
M
�

C M
� L

p
M;x

.End.E�//0
˚

M
�¤�

C M
� L

p
M;x

.Hom.E� ;E�//:

We have a decomposition

C M
� L

p
M;x

.End.E//D C M
� L

p
M;x

.End.E//ı˚C M
� L

p
M;x

.End.E//?:

For any s 2 C M
� L

p
M;x

.End.E//, the corresponding decomposition is denoted by
sD sıCs? . Any s 2C M

� L
p
M;x

.End.E// is represented as a matrix valued function s

with respect to u. We have the decomposition s D sıC s? according to s D sıC s? .
We use similar notation for sections of End.E/˝�i;j

T
.

4.3.3 Some estimates Let u be a frame as in Proposition 4.7. We set H.h;u/i;j WD

h.ui ;uj /, and we obtain a function H.h;u/ from T �U2 to the space H of positive
definite Hermitian r th matrices. Each entry is of class C M

�
L

p
M;x

. Let H1 be a function
of U2 to H determined by

.H1/�2 D

Z
T

H.h;u/:

Then we have jH1�I j DO.�/ and jDk
�

H1j DO.�/ for k 2 Œ1;M �Z . Note that u0 WD

uH1 also has the property in Proposition 4.7. So, we may assume that
R

T H.h;u/D I

from the beginning.

We set zg WD H.h;u/. We have kzg� IkLp

MC1
DO.�/, kDk

�
zgkLp

MC1
DO.�/ .k 2

Œ1;M �Z/, and
R

T zg D I .

Lemma 4.12 There exist C > 0 and �0 > 0 such that

kzg� IkLp

MC2
� CkF?zzkL

p

M

holds for any 0<�<�0 . In particular, supT�f�g jzg�I j�C 0kF?zzkL2 for some C 0> 0.
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Proof We put B WD Au
z . Let �2 be the diagonal matrix whose .i; i/–entry �i

is determined by ui 2 E�i
. Let � be as in Section 4.2.3, which is decomposed

� D�0C�1 as in Lemma 4.8. We have j�0��2j � r� and j�1j DO.�1=2/. We have
jAu

z ��j DO.�/. Hence, if � is sufficiently small, we may have jAu
z ��2j � 2r� .

We have Au
z D�zg

�1.t xB/zgC zg�1@z zg . Let Bzz be the matrix-valued function deter-
mined by FzzuD uBzz . We have Bzz D @zAu

z � @zAu
z C ŒA

u
z ;A

u
z �. Hence, we have

(36) Bzz D Œzg
�1t xBzg; zg�1@z zg�� zg

�1@z@z.zg/C .zg
�1@z zg/.zg

�1@z zg/

� Œzg�1t xBzg;B�� ŒB; zg�1@z zg�:

Let b WD zg�I . We have a polynomial Q.t1; t2; t3; t4; t5; t6/D
P

Qj1;:::;jm
tj1

tj2
� � � tjm

in noncommutative variables ti such that if Qj1;:::;jm
¤ 0 then m1Cm2Cm3 � 2,

where mi D fk j jk D ig, and we have

(37) .@zC ad.B// ı .@z � ad.t xB//b D�zgBzz � Œ
t xB;B�

CQ.b; @zb; @zb; .1C b/�1;B; t xB/:

By taking the ?–part, we find that

(38) .@zCad.B//ı.@z�ad.t xB//bD�.zgBzz/
?
CQ.b; @zb; @zb; .1Cb/�1;B; t xB/?:

We then get
kbkLp

MC2
� C2kF

?
zzkL

p

M
CC2�kbkLp

MC2

and hence obtain kbkLp

MC2
� C3kF

?
zzkL

p

M
.

Lemma 4.13 Let a1 and a2 be sections of End.E/jT�f�g . Assume that a1D a?
1

and
a2 D aı

2
. Then we haveˇ̌̌̌Z

T

h.a1; a2/

ˇ̌̌̌
� ka1kL2 ka2kL2 k.F?zz/jT�f�gkL2 :

Proof It follows from Lemma 4.12 and H.h;u/D zg .

Lemma 4.14 Let P be an endomorphism of E , and let P| denote the adjoint with
respect to h. Let R (resp. R| ) be the matrix representing P (resp. P| ) with respect
to u. Then we have

.R|/ı D .t xR/ıCO.jR?j kF?zzkL2/CO.kF?zzk
2
L2 j

t xRıj/;

.R|/? D .t xR/?CO.jR?j kF?zzkL2/CO.kF?zzkL2 jRıj/:

In particular, we have j.R|/?j D jR?jCO.jRj kF?zzkL2/.
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Proof Let H DH.h;u/. We have R| DH�1.t xR/ xH . Then the claim follows from
the estimate for H .

Lemma 4.15 For k 2 Œ1;M �Z , we have kDk
�
zgkLp

mC2
DO

� kX
jD0

kD
j
�
F?zzkL

p
m

�
.

Proof We obtain the estimate from (38) by a standard inductive argument.

5 Estimates for L2 instantons

5.1 Preliminaries

Let � be a complex number such that Im � > 0. Let T be a complex torus obtained
as the quotient of C by a lattice ZCZ� . Let z be the standard coordinate of C . It
also gives a local coordinate of a small open subset in T , once we fix a lift of the open
subset in C . We shall use the metric dz dz for C and T unless otherwise specified.

For any open subset W � Cw , we use the metric dw dw on W , and the metric
dz dzC dw dw on T �W unless otherwise specified. Let ! denote the associated
Kähler form. For w 2W , we put Tw WD T � fwg � T �W .

Let E be a complex C1 vector bundle on T �W with a Hermitian metric h and a
unitary connection r . Let F.r/ denote the curvature of r . We shall often denote it
simply by F . The .0; 1/–part and the .1; 0/–part of r are denoted by x@E and @E ,
respectively. The restrictions of .E; h/ to Tw are denoted by .Ew; hw/.

Recall that .E;r; h/ is called an instanton if ƒ!F.r/D0. For the expression F.r/D

Fzz dz dzCFzw dz dwCFwz dw dzCFww dw dw , the equation is FzzCFww D 0.
We have the following equalities:

.rzrzCrwrw/Fww D�.rzrzCrwrw/Fzz D ŒFzw;Fwz �;(39)

.rzrzCrwrw/Fzw D 2ŒFww;Fzw �;

.rzrzCrwrw/Fwz D 2ŒFwz;Fww �:
(40)

5.1.1 Hitchin’s equivalence Let us recall the relation between harmonic bundles on
an open subset W �Cw and instantons on T �W due to Hitchin. Let .E; x@E ; h; �/

be a harmonic bundle on W . Let r.0/ WD x@EC@E be the Chern connection. Let �| be
the adjoint of � . Let pW T �W !W be the projection. The pullback p�.E;r.0/; h/

is denoted by .E1;r
.1/; h1/. We set r WD r.1/Cf dz�f |dz . Then .E1;r; h1/ is

an instanton on T �W .
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Conversely, let .E2;r
.2/; h2/ be a T–equivariant instanton on T �W . By considering

T–equivariant sections, we obtain a vector bundle E on W such that p�E'E2 . It is
naturally equipped with a connection r.0/ such that p�r

.0/
v Dr

.2/
v , where v denotes

the natural horizontal lift of vector fields on W . By using the T–equivariance of r.2/ ,
we have the expression r.2/ � p�r.0/ D p�f dz � p�f |dz , where f is a section
of End.E/. Then .E; x@E ; h; f dz/ is a harmonic bundle. In summary, we have the
following.

Proposition 5.1 (Hitchin) Harmonic bundles on W naturally correspond to T–
equivariant instantons on T �W .

5.2 Local estimate

Let U be a closed disc fw j jw �w0j � 1g of C . Let .E;r; h/ be an instanton on
T �U .

Assumption 5.2 We assume that jF.r/j � � for a given positive small number � .
We also impose Assumption 4.11.

We use the notation from Sections 4.2 and 4.3. Note that jrm1

z ır
m2
z ır

m3
w ır

m4

w F jh�

Cm� , where Cm is a constant depending only on mD .m1;m2;m3;m4/.

5.2.1 Estimates of the ?–part of the connection form Let u be a partially almost
holomorphic frame as in Proposition 4.7. We assume that

R
T H.h;u/ D I , as in

Section 4.3.3. Let A be the connection form of r with respect to u. Let Bzz

represent Fzz with respect to u. We use Bzw and Bwz in similar ways.

We prepare notation in a general situation. Let V be any vector bundle with a Hermitian
metric hV on U . Let � W T � U ! U be the projection. Let p � 2. For any
section f of ��V on T �U , let kf kp denote the function on U given by kf kp.w/D
.
R

T�fwg jf j
p

hV
/1=p .

Lemma 5.3 We have kA?wkp D O.kF?wzkp/ and k@wA?wkp D O.krwF?wzkp/ C

O.�kF?wzkp/.

Proof Because @wAz � @zAwC ŒAw;Az �D Bwz , we have

(41) @zA?wC ŒAz;A
?
w �D�B?wz :

Then we obtain the first estimate. We also get

@z@wA?wC ŒAz; @wA?w �D�@wB?wz � Œ@wAz;A
?
w �:

Because @wAz DO.�/, we obtain the second estimate.
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Lemma 5.4 We have kA?wkp DO.kF?wzkpCkF
?
zzkpCkrwF?zzkp/. We also have

k@wA?wkp DO.krwF?wzkpCkF
?
wzkpCkF

?
zzkpCkrwF?zzkp/:

Proof We set zg WDH.h;u/. We have AwD�zg
�1.tAw/zgCzg

�1@w zg . Hence, the first
claim follows from Lemmas 5.3, 4.12 and 4.15. We have @wAw�@wAwC ŒAw;Aw �D

Bww . Hence, we have

k@wA?wkp DO.k@wA?wkp/CO.kA?wkpCkA
?
wkp/CkF

?
wwkp:

Then the second claim follows.

5.2.2 Estimate of the ?–part of the curvature We prepare notation in a general
situation. Let V be any vector bundle with a Hermitian metric hV on T �U . Let
� W T �U ! U be the projection. For any section f of V on T �U , let kf k denote
the function on U given by .

R
T jf j

2
hV
/1=2 . For any sections f and g of V , let ..f;g//

denote the function on U given by
R

T hV .f;g/.

Let �w D�@w@w .

Proposition 5.5 We have

(42) �wkF
?
zzk

2

� �krzF?zzk
2
�krzF?zzk

2
�krwF?zzk

2
�krwF?zzk

2

CO
�
�kF?zzk

2
C �kF?wzk kF

?
zzkC �krwF?wzk kF

?
zzkC �krzF?zzk kF

?
zzk
�

CO
�
�krwF?zzk kF

?
zzkC �kF

?
wzk

2
C �kF?wzk krwF?zzk

�
:

Proof We have

�wjF
?
zzj

2

D�.rwrwF?zz;F
?
zz/� .F

?
zz;rwrwF?zz/� .rwF?zz;rwF?zz/� .rwF?zz;rwF?zz/

and

�.rwrwF?zz;F
?
zz/D�.rwrwFzz;F

?
zz/C .rwrwFızz;F

?
zz/:

Let us consider the estimate of .rwrwFızz;F
?
zz/. The endomorphism rwrwFızz is

represented by the following with respect to u:

@w@wBızzC ŒAw; @wB
ı
zz �C @w ŒAw;B

ı
zz �C ŒAw; ŒAw;B

ı
zz � �:
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Recall Lemma 4.13. We have the following estimates:

(43) ..@w@wBızz;B
?
zz//h DO.k@w@wBızzkh kB

?
zzkh kF

?
zzkh/;

(44) ..ŒAw; @wBızz �;B
?
zz//h DO.kA?wkh k@wBızzkh kB

?
zzkh/

CO.kŒAıw; @wBızz �kh kB
?
zzkh kF

?
zzkh/;

..Œ@wAw;Bızz �;B
?
zz//h D ..Œ@wA?w;B

ı
zz �;B

?
zz//hC ..Œ@wAıw;B

ı
zz �;B

?
zz//h(45)

DO.kBızzkh k@wA?wkh kB
?
zzkh/

CO.kŒ@wAıw;B
ı
zz �kh kB

?
zzkh kF

?
zzk/;

..ŒAw; @wBızz �;B
?
zz//h DO.k@wBızzkh kA

?
wkh kB

?
zzkh/(46)

CO.kŒAıw; @wB
ı
zz �kh kB

?
zzkh kF

?
zzkh/;

..ŒAw; ŒAw;Bızz ��;B
?
zz//h DO.kA?wkh kA

?
wkh kB

ı
zzkh kB

?
zzkh/(47)

CO.kA?wkh kA
ı
wkh kB

ı
zzkh kB

?
zzkh/

CO.kA?wkh kA
ı
wkh kBızzkh kB

?
zzkh/

CO.kAıwkh kA
ı
wkh kB

ı
zzkh kB

?
zzkh kF

?
zzk/:

We obtain the following estimate for .rwrwFızz;F
?
zz/ from (43)–(47) with Lemma 5.3:

(48) ..rwrwFızz;F
?
zz//

DO.�kF?zzk
2
C �kF?wzk kF

?
zzkC � krwF?wzk kF

?
zzkC �krwF?zzk kF

?
zzk/:

We also have

�..rwrwFzz;F
?
zz//D ..rzrzFzz;F

?
zz//C ..ŒFzw;Fwz �;F

?
zz//(49)

D�..rzFzz;rzF?zz//C ..ŒFzw;Fwz �;F
?
zz//;

�..rzFzz;rzF?zz//D�..rzF?zz;rzF?zz//� ..rzFızz;rzF?zz//(50)

D�..rzF?zz;rzF?zz//CO.krzFızzk krzF?zzkkF
?
zzk/;

..ŒFzw;Fwz �;F
?
zz//DO.kŒFızw;F

ı
wz �kkF

?
zzkkF

?
zzk/(51)

CO.kFızwkkF
?
wzk kF

?
zzk/

CO.kFıwzkkF
?
zwkkF

?
zzk/CO.kF?zwkkF

?
wzkkF

?
zzk/:

We have a similar estimate for the contribution of �..F?zz;rwrwF?zz//. In all, we
obtain the claim of Proposition 5.5.
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Proposition 5.6 We have the inequality

(52) �wkF
?
zwk

2
� �krzF?zwk

2
�krzF?zwk

2
�krwF?zwk

2
�krwF?zwk

2

CO
�
�kF?zwk kF

?
zzkC �krwF?wzk kF

?
zwk

C �kF?wzk kF
?
zwkC �krwF?zzk kF

?
zwk

�
CO

�
�krzF?zwk kF

?
zzkC �kF

?
zwk kF

?
wzk

�
:

Proof We have

(53) � @w@wjF
?
zwj

2

D�jrwF?zwj
2
� jrwF?zwj

2
� .rwrwF?zw;F

?
zw/� .F

?
zw;rwrwF?zw/:

We also have

(54) �.rwrwF?zw;F
?
zw/D�.rwrwFzw;F

?
zw/C .rwrwFızw;F

?
zw/:

Let us look at the contribution of .rwrwFızw;F
?
zw/. Let Bzw express Fzw with

respect to u as in the proof of Proposition 5.5. Then rwrwFızw is represented by

@w@wBızwC Œ@wAw;Bızw �C ŒAw; @wB
ı
zw �C ŒAw; @wB

ı
z;w �C ŒAw; ŒAw;B

ı
zw � �:

We have the estimates

�..@w@wBızw;B
?
zw//h DO.k@w@wBızwkh kB

?
zwkh kF

?
zzk/;(55)

..Œ@wAw;Bızw �;B
?
zw//h DO.kŒ@wAıw;B

ı
zw �kh kB

?
zwkh kF

?
zzk/(56)

CO.k@wA?wkh kB
ı
zwkh kB

?
zwkh/;

..ŒAw; @wBızw �;B
?
zw//h DO.kAıwkh k@wB

ı
zwkh kB

?
zwkh kF

?
zzk/(57)

CO.kA?wkh k@wB
ı
zwkh kB

?
zwkh/;

..ŒAw; @wBızw �;B
?
zw//h DO.kAıwkhk@wBızwkhkB

?
zwkh kF

?
zzk/(58)

CO.kA?wkhk@wBızwkhkB
?
zwkh/;

..ŒAw; ŒAw;Bızw ��;B
?
zw//h DO.kA?wkh kA

?
wkh kB

ı
zwkh kB

?
zwkh/(59)

CO.kAıwkh kA
?
wkh kB

ı
zwkh kB

?
zwkh/

CO.kA?wkh kA
ı
wkh kB

ı
zwkh kB

?
zwkh/

CO.kAıwkh kA
ı
wkh kB

ı
zwkh kB

?
zwkh kF

?
zzkh/:
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Hence, we obtain

(60) ..rwrwFızw;F
?
zw//DO.�kF?zwk kF

?
zzkhC �krwF?wzk kF

?
zwkh

C �kF?wzj jF
?
zwkhC �krwF?zzkh kF

?
zwkh/:

We have

�..rwrwFzw;F
?

zw//D ..rzrzFzw;F
?

zw//�2..ŒFww;Fzw �;F
?

zw//(61)

D�..rzFzw;rzF?z;w//� 2..ŒFw;w;Fzw �;F
?
zw//;

�..rzFzw;rzF?zw//D�..rzF?zw;rzF?zw//� ..rzFızw;rzF?zw//(62)

D�..rzF?zw;rzF?zw//CO.kŒrzFızw �kkrzF?zwkkF
?
zzk/;

and

(63) ..ŒFww;Fzw �;F
?
zw//DO.kF?wwk kF

?
zwk kF

?
zwk/

CO.kFıwwk kF
?
zwk kF

?
zwk/

CO.kF?wwk kF
ı
zwk kF

?
zwk/

CO.kŒFıww;F
ı
zw �k kF

?
zwk kF

?
zzk/:

We have a similar estimate for the contribution of �.F?zw;rwrwF?zw/. In all, we
obtain the desired estimate (52).

Proposition 5.7 There exist C > 0 and �0 > 0 such that the following inequality
holds if � < �0 :

(64) �w.kF
?
zzk

2
CkF?zwk

2/

� �C.kF?zzk
2
CkF?zwk

2/

�C.krzF?zzk
2
CkrzF?zzk

2
CkrwF?zzk

2
CkrwF?zzk

2/

�C.krzF?zwk
2
CkrzF?zwk

2
CkrwF?zwk

2
CkrwF?zwk

2/:

Proof There exist C1 > 0 such that krzsk � C1ksk and krzsk � C1ksk for any
section of End.E/ such that s D s? . Then the claim follows from Propositions 5.5
and 5.6.

5.2.3 Higher derivative Assume that kF?zzk
2CkF?zwk

2 � ı2
1

for some ı1� � . For
� < 1, we set U.�/D fw j jw�w0j � �g � U .

Proposition 5.8 For any k;p , there exists C > 0 such that

kF?zzkL
p

k
.T�U.�// � Cı1; kF

?
zwkL

p

k
.T�U.�// � Cı1:
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Proof This can be shown by a standard bootstrapping argument. We give only an
indication. We take �<�0< 1. In the following, we shall replace �0 with a smaller one.
Let � denote z , z , w and w . By Proposition 5.7, we obtain kr�F?zzkL2.T�U.�0// D

O.ı1/ and kr�F?zwkL2.T�U.�0// DO.ı1/.

With respect to the frame u, the endomorphism �rwrwFzz is represented by

(65) �@w@wBzz � Œ@wAw;Bzz �� ŒAw; @wBzz �C ŒAw; @wBzz �C ŒAw; ŒAw;Bzz � �

and the endomorphism �rzrzFzz is represented by

(66) �@z@zBzz � Œ@zAz;Bzz �� ŒAz; @zBzz �C ŒAz; @zBzz �C ŒAz; ŒAz;Bzz � �:

The sum of (65) and (66) is equal to ŒBzw;Bwz �. By looking at the ?–part of the
equation, we obtain

(67) the ?–part of (65)C the ?–part of (66)D ŒBzw;Bwz �
?:

By using Lemmas 5.3 and 5.4, we obtain k.@w@wC @z@z/B?zzkL2.T�U.�0// DO.ı1/.
Similarly, we obtain k.@w@wC @z@z/B?zwkL2.T�U.�0// DO.ı1/. It follows that

kF?zzkL4.T�U.�0//CkF
?
zwkL4.T�U.�0// DO.ı1/;

kr�F
?
zzkL4.T�U.�0//Ckr�F

?
zwkL4.T�U.�0// DO.ı1/:

By using Lemmas 5.3 and 5.4 and (67), we obtain k.@w@wC @z@z/B?zzkL4.T�U.�0//D

O.ı1/. Similarly, we obtain k.@w@wC @z@z/B?zwkL4.T�U.�0// DO.ı1/. By the same
argument, we obtain the following for any p :

kF?zzkLp.T�U.�0//CkF
?
zwkLp.T�U.�0//Ckr�F

?
zzkLp.T�U.�0//

Ckr�F
?
zwkLp.T�U.�0// DO.ı1/;

k.@w@wC @z@z/B?zzkLp.T�U.�0//Ck.@w@wC @z@z/B?zwkLp.T�U.�0// DO.ı1/:

Namely, we obtain kF?zzkL
p

2
.T�U.�0//CkF

?
zwkL

p

2
.T�U.�0// DO.ı1/.

By the argument in Lemma 5.3, we obtain kA?wkLp

2
D O.ı1/. By the argument in

Lemma 5.4, we obtain kA?wkLp

1
DO.ı1/. By the relation

@wAw � @wAwC ŒAw;Aw �D Bww

we obtain k@wA?wkL
p

1
DO.ı1/. We also have kA?z kLp

2
DO.ı1/, which follows from

Lemma 4.15. Then we get

k.@w@wC @z@z/B?zzkL
p

1
.T�U.�0// DO.ı1/:
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Hence, kB?zzkL
p

3
.T�U.�0// DO.ı1/. Similarly, we obtain kB?zwkLp

3
.T�U.�0// DO.ı1/.

By an inductive argument, we obtain

kB?zzkL
p

k
.T�U.�0//CkB

?
zwkL

p

k
.T�U.�0// DO.ı1/

for any k .

Corollary 5.9 For any k;p , there is C > 0 such that kH.h;u/?kLp

k
.T�U.�// � Cı1 .

Proof This follows from Proposition 5.8 and Lemma 4.15.

5.3 Global estimate

5.3.1 Preliminaries For R> 0, we set YR WD fw 2C j jwj �Rg and XR WDT �YR .
An instanton .E;r; h/ is called L2 if the curvature F WD F.r/ is L2 . We study
the behaviour of L2 instantons around infinity. We suppose that .E;r; h/ is an
L2 instanton in this subsection. For w0 2 YR and a > 0, let Bw0

.a/ WD fw 2 C j
jw�w0j � ag.

Let � > 0 be sufficiently small. There exists R1 such that kFjXR1
kL2 < � . Let

w0 2 Y2R1
. By the theorem of Uhlenbeck [49], for any .z; w/ 2 T �Bw0

.1/, we have
jF.z; w/j DO.kFjT�Bw0

.2/kL2/DO.�/. In particular, we may assume that Ew are
semistable if w 2 Y2R1

. Because we are interested in the behaviour around infinity,
we may assume that .Ew; x@Ew / are semistable of degree 0 for any w 2 YR from the
beginning.

5.3.2 Prolongation of the spectral curve We consider the relative Fourier–Mukai
transform RFM�.E; x@E/, which is a coherent sheaf on T _ � YR . Its support is
relatively 0–dimensional over YR , denoted by Sp.E/. It is called the spectral curve
of .E; x@E/. Let xYR be the closure of YR in P1 , ie xYR D YR [f1g.

Theorem 5.10 Sp.E/ is extended to a closed subvariety Sp.E/ in T _ � xYR .

Proof Let � denote the rank of E . We have the holomorphic map 'W YR!Sym� T _

induced by Sp.E/. We have only to prove that it extends to a holomorphic map
xYR ! Sym� T _ . We fix a closed immersion Sym� T _ � PN for a sufficiently
large N , and we regard ' as a holomorphic map YR ! PN . Let dPN denote the
distance of PN , induced by the Fubini–Study metric.

Take any w0 2 Y2R . By Corollary 4.10, for any w1; w2 2 Bw0
.1

2
/, we have

(68) dPN .'.w1/; '.w2//DO.kFjT�Bw0
.2/kL2/:
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Note that ' is holomorphic. We can also regard it as a harmonic map between Kähler
manifolds. Let Tw' be the derivative of ' , and jTw'j denote the norm of Tw' with
respect to the Euclidean metric dw dw and the Fubini–Study metric of PN . For any
w 2 Bw0

.1
4
/, we obtain the following estimate from (68) by using Cauchy’s formula

for differentiation in complex analysis:

(69) jTw'j DO.kFjT�Bw0
.2/k/:

Hence, we obtain finiteness of the energy of the harmonic map ' :Z
Y2R1

jTw'j
2
jdw dwj< CkFjYR

k
2
L2 <1:

Then ' is extended on xYR , according to [42, Theorem 3.6].

The intersection Sp.E/\ .T _ � f1g/ is denoted by Sp1.E/.

5.3.3 Asymptotic decay By making R larger, we may assume we have a lift of
Sp.E/ to a closed subvariety Sp.E/1 � xYR � C� , which induces an action of �
on RFM�.E; x@E/. (See Section 2.1.) Let f� be the corresponding holomorphic
endomorphism of E . We set x@0 WD

x@E �f�dz , which gives a holomorphic structure
of E . For each w , the restriction of E 0 D .E; x@0/ to Tz � fwg is holomorphically
trivial. It is naturally isomorphic to p�p�.E 0/, where pW XR! YR denotes the natural
projection. We obtain the decomposition hD hıC h? as in Section 4.3.

Theorem 5.11 For any polynomial P .t1; t2; t3; t4/ of noncommutative variables, there
exists C > 0 such that

P .rz;rz;rw;rw/h
?
DO.exp.�C jwj//:

Proof Let � > 0 be any sufficiently small number. We may assume that kFjXR1
k< �

for some R1 > 0. By Theorem 5.10, we may assume that Assumption 5.2 is satisfied
for the restriction of .E;r; h/ to any disc contained in XR1

. In particular, we can
apply Proposition 5.7 to .E;r; h/jXR1

. We obtain

�w.kF
?
zzk

2
CkF?zwk

2/� �C1.kF
?
zzk

2
CkF?zwk

2/

for some C1 > 0. The following lemma follows from a standard argument.

Lemma 5.12 We have kF?zzk
2CkF?zwk

2 DO.exp.�C2jwj// for some C2 > 0.
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Proof This is a variant of a lemma of Ahlfors [1] and Simpson [45]. We give only an
indication. We put G WD kF?zzk

2CkF?zwk
2 and f� WDC3 exp.�2C

1=2
1
jwj/C� , where

� > 0 and C3 > 0. We have the inequality �wf� ��C1f� . If C3 is sufficiently large,
we have f� >G on fjwj DR1g. For each � > 0, we have f� >G outside a compact
subset. We put U WD fw j f�.w/ < G.w/g. Then U is relatively compact, and we
have f� DG on the boundary of U . On U , we have �w.G�f�/��C.G�f�/ < 0.
By the maximum principle, we have supU .G � f�/ � max@U .G � f�/ D 0. Hence,
we obtain that U is empty. It means G � f� on YR for any � . We obtain the desired
inequality by taking the limit �! 0.

Now the claim of Theorem 5.11 follows from Corollary 5.9.

5.3.4 Reduction to asymptotic harmonic bundles Let pW XR ! YR denote the
projection. By using the pushforward of O–modules, we obtain a holomorphic vector
bundle V WD p�E 0 on YR . It is equipped with a Higgs field �V WD f�dw . For any
si 2 Vjw .i D 1; 2/, we denote the corresponding holomorphic section of E 0jTw by zsi .
We set hV .s1; s2/ WD

R
T h.zs1; zs2/. We have the Chern connection x@V C@V with respect

to hV . Let �|
V

denote the adjoint of �V .

Proposition 5.13 There exists C > 0 such that

(70) F.hV /C Œ�V ; �
|
V
�DO.exp.�C jwj//:

Proof We identify p�V D E 0 . According to Theorem 5.11, the difference h�p�hV

and its derivatives are O.exp.�C1jwj//. (The constant C1 may depend on the order of
derivatives.) We also have x@E D p�x@V C f�dz . Hence, .p�V;p�x@V C f�dz;p�hV /

satisfies
ƒ!F.p�hV /DO.exp.�C2jwj//;

which is equivalent to (70).

5.3.5 Estimate of the curvature

Theorem 5.14 There exists � > 0 such that

F.h/DO

�
dz dz

jwj2.� log jwj/2

�
CO

�
dw dw

jwj2.� log jwj/2

�
CO

�
dw dz

jwj1C�

�
CO

�
dz dw

jwj1C�

�
:

Proof We shall use an estimate for asymptotic harmonic bundles which is explained
in Section 5.5 below. Let 'W �u D fjuj < R�1=eg ! xYR be given by '.u/ D ue .
For the expression � D f�dw D f�.�eu�e�1du/, according to Theorem 5.10, the
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spectral curve Sp.f�/ � C � YR is contained in fj�j � R0g � YR for some R0 , and
the closure in C � xYR is a complex variety. Hence, we may assume that '�.E; x@E ; �/

decomposes into
'�E D

M
a2Irr.'��V /

Ea

as in (71). Moreover, we have degu�1 a� e for any a 2 Irr.'��V /.

We set .V 0; x@V 0 ; �V 0 ; h
0/ WD '�1.V; x@V ; �V ; hV /. According to Proposition 5.13, it

satisfies (72). By Corollary 5.19, we have

jF.hV /jhV
DO.juj�2.log juj/�2du dxu/:

Hence, we have jF.h/wwjh D jF.h/zzjh DO.jwj�2.log jwj/�2/.

We take a frame v of PaV 0 as in Section 5.5.2. Let ‚ be determined by '�f�vD v‚.
Let Cw be determined by '�.@w/v D vCw . We have '�.@wf�/v D v.'�.@w/‚C
ŒCw; ‚�/. We have the expression

‚D
M�

.'�@wa� e�1˛ue/Ia;˛ � e�1ue‚a;˛

�
;

where the entries of ‚a;˛ are holomorphic at u D 0. The norm of the endomor-
phism determined by v and ‚a;˛ is O..log jwj/�1/ by Proposition 5.18. Note that
'�.@w/ D �e�1ueC1@u and '�.@2

w/a D O.j'�.w/j�1��/ for some � > 0. Hence,
the contribution of '�.@w/‚ to '�.@wf�/ is dominated as O.'�jwj�1��/ for some
� > 0. Let Gw be the endomorphism determined by v and Cw . By using Lemma 5.21,
we obtain ŒGw; '�f� � D O.'�jwj�2/. Hence, we obtain j@wf� jhV

D O.jwj�1��/

for some � > 0. Then we obtain jF.h/zwjh D jF.h/wzjh D O.jwj�1��/ for some
� > 0.

Corollary 5.15 .E; x@E ; h/ is acceptable, ie the curvature F.h/ is bounded with
respect to h and the Poincaré metric jwj�2.log jwj/�2dw dwC dz dz on XR around
T � f1g.

5.3.6 Prolongation to a filtered bundle We set xXR WD T � xYR .

Corollary 5.16 The holomorphic vector bundle .E; x@E/ is naturally extended to
a filtered bundle P�E on . xXR;T � f1g/. (See Section 2.2 for filtered bundles.)
Moreover, the filtered bundle is good in the sense of Section 2.4.1.

Proof Because .E; x@E ; h/ is acceptable, we obtain the first claim from [36, Theo-
rem 21.31]. As explained in Section 5.5.2, we obtain a filtered bundle P�V on . xYR;1/

from the Higgs bundle with the Hermitian metric .V; x@V ; hV ; �V /. By Proposition 5.18,
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the filtered Higgs bundle .P�V; �V / is good. By construction, .P�V; �V / corresponds
to P�E in the sense of Section 2.4.1. It implies the claim of the corollary.

We obtain the spectral curve Sp.PaE/� T _ � xYR of PaE . It is equal to Sp.E/ in
Theorem 5.10, and independent of the choice of a 2R.

5.4 An estimate in a variant case

We continue to use the notation in Section 5.3. Let .E;r; h/ be an instanton on XR .
Let F D F.r/ be its curvature. We suppose the following:

� jF.z; w/j ! 0 when jwj !1, ie for any ı > 0, there exists Rı > 0 such that
jF.z; w/jh � ı for any jwj � Rı . In particular, we obtain the spectral curve
Sp.E; x@E/� T _ �YRı if ı is sufficiently small.

� The closure of Sp.E/ in T _ � xYRı is a complex subvariety.

We denote the closure by Sp.E/, and we set Sp1.E/ WD Sp.E/\ .T _ � f1g/. We
obtain the following theorem.

Theorem 5.17 Under the assumption, .E;r; h/ is an L2 instanton.

Proof By the assumption, there exists R1>0, such that Assumption 5.2 is satisfied for
.E;r; h/jXR1

. In particular, we can apply Proposition 5.7 to .E;r; h/jXR1
. We obtain

the estimate as in Theorem 5.11 by the same argument. Then we obtain estimates as in
Proposition 5.13 and Theorem 5.14 by the same arguments. In particular, .E;r; h/ is
an L2 instanton.

Theorem 5.17 implies that we can replace the L2 condition with a weaker one, under
the assumption that the spectral curve is extended in a complex analytic way.

5.5 Asymptotic harmonic bundles

In this subsection, we explain that some of the results for the asymptotic behaviour
of wild harmonic bundles are naturally extended for Higgs bundles with a Hermitian
metric satisfying the Hitchin equation up to an exponentially small term. It is used in
the proof of Theorem 5.14.

We put X WD�z D fz 2 C j jzj < 1g, xX WD fjzj � 1g and D WD f0g. Let gp be the
Poincaré metric of X nD . Let .E; x@E ; �/ be a Higgs bundle on xX nD . We suppose
that there exists a decomposition

(71) .E; �/D
M

a2z�1CŒz�1�
˛2C

.Ea;˛; �a;˛/
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such that, for the expression �a;˛ D daC ˛ dz=z C fa;˛ dz=z , the eigenvalues of
fa;˛.z/ go to 0 when z! 0. We put Irr.�/ WD fa j there exists ˛ such that Ea;˛ ¤ 0g.

For any a.z/ D
P

j��N aj zj with a�N ¤ 0, we set ord.a/ WD �N . We also set
ord.0/ WD 0. We take a negative number p satisfying p < minford.a� b/ j a; b 2

Irr.�/; a¤ bg.

Let h be a Hermitian metric of E . Let �| denote the adjoint of � with respect to h.
Let F.h/ denote the curvature of .E; x@E ; h/. We impose the following condition for
some C0 > 0 and �0 > 0:

(72) jF.h/C Œ�; �|�jh;gp
� C0 exp.��0jzj

p/:

5.5.1 Asymptotic orthogonality and acceptability We have the following version
of Simpson’s main estimate.

Proposition 5.18 Suppose that .E; x@E ; �; h/ satisfies (72).

� If a¤ b, there exists � > 0 such that Ea;˛ and Eb;ˇ are O.exp.��jzjord.a�b///–
asymptotically orthogonal, ie there exists C > 0 such that, for any u; v 2EjQ ,
we have jh.u; v/j � C1 exp.��jz.Q/jord.a�b//.

� If ˛¤ˇ , there exists � > 0 such that Ea;˛ and Ea;ˇ are O.jzj�/–asymptotically
orthogonal.

� �a;˛ � .da C ˛ dz=z/ idEa;˛
is bounded with respect to h and the Poincaré

metric gp .

Proof By considering the tensor product with a harmonic bundle of a rank one, we
may assume p <minford.a/ j a 2 Irr.�/g. We have a map

�`W z
�1CŒz�1�! I` WD z�`CŒz�1�

by forgetting the terms
P

j��`C1 aj zj . For each b 2 I` , we set

E
.`/
b WD

M
�`.a/Db

M
˛2C

Ea;˛:

Let �.`/a denote the projection of E onto E.`/
b with respect to the decomposition

E D
L

E.`/
b . In the case `D 1, we omit the superscript .1/.

Let Irr.�; `/ be the image of Irr.�/ by �` . We take a total order �0 on Irr.�; `/ for
each ` such that the induced map Irr.�; 1/! Irr.�; `/ is order-preserving. Let E

0.`/
b
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be the orthogonal complement of
L

c<0b Ec in
L

c�0b Ec . Let � 0.`/b be the orthogonal
projection onto E

0.`/
b . In the case `D 1, we omit the superscript .1/. We have

� 0.`/b D

X
�`.a/Db

� 0a:

We put �` WD �` � �`C1 . We have the expression � D f dz . We put

f .`/ WD f �
X
a

@z�`C1.a/�a; �.`/ WD f .`/�
X
a

@z�`.a/�
0
a

and R.`/b WD �
.`/
b ��

0.`/
b . We consider the following claims:

(P` ) jf .`
0/jh DO.jzj�`

0�1/ for `0 � `.

(Q` ) j�.`
0/jh DO.jzj�`

0

/ for `0 � `.

(R` ) jR.`
0/

b jh DO.exp.�C jzj�`
0

// for `0 � ` and for b 2 Irr.�; `0/.

The asymptotic orthogonality of Ea;˛ and Eb;ˇ .a¤ b/ follows from .R1/.

In the proof of [36, Theorem 7.2.1], we proved the claims for any wild harmonic bundle
by using descending induction on `. Essentially the same argument can work. We give
an indication for a modification in this situation.

We have the expression �| D f |dz . Let � WD �@z@z . If a holomorphic section s of
End.E/ satisfies Œs; f �D 0, we obtain the following inequality from (72):

(73) � log jsj2h � �
jŒf |; s�j2

h

jsj2
h

CC0 exp.��0jzj
p/:

By applying (73) to f , we obtain the following as in [36, (99)]:

� log jf .`/j2h � �
jŒf .`/|; f .`/�j2

h

jf .`/j2
h

CC1:

By using the argument in the proof of Proposition 2.10 of [34], we obtain jf jh D
O.jzj�p�1/. Then, we can observe that the claims Pp , Qp and Rp hold. Then by the
same argument as that in [36, Sections 7.3.2–7.3.3], we obtain P` and Q` . We put

k
.`/
b WD log

�
j�
.`/
b j

2
h=j�

0.`/
b j

2
h

�
D log

�
1CjR.`/b j

2
h=j�

0.`/
b j

2
h

�
:

By applying (73) to �.`/b , we obtain

� log k
.`/
b � �

jŒf |; �
.`/
b �j2

h

j�
.`/
b j

2
h

CC0 exp.��0jzj
p/:
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There exists C1 > 0 and R1 > 0 such that the following holds for any jzj<R1 :

� exp.�Ajzj�`/� � exp.�Ajzj�`/
�
`2

4
A2
jzj�2.`C1/

�
(74)

� � exp.�Ajzj�`/`
2

4
A2C1jzj

�2.`C1/
CC0 exp.��0jzj

p/:

Hence we obtain R` by using the argument in [36, Section 7.3.4]. Similarly, we
obtain the asymptotic orthogonality of Ea;˛ and Ea;ˇ .˛ ¤ ˇ/, and the boundedness
of �a;˛ � .daC ˛dz=z/ idEa;˛

by using the argument in [36, Sections 7.3.5–7.3.7]
with (73).

We obtain the following corollary. (See [36, Section 7.2.5] for the argument.)

Corollary 5.19 .E; x@E ; h/ is acceptable, ie the curvature F.h/ is bounded with
respect to h and gp .

5.5.2 Prolongation and the norm estimate For any U � X and for any a 2 R,
let PaE.U / denote the space of holomorphic sections s of EjUnD such that jsjh D
O.jzj�a��/ (for all � ) locally around any point of U . (See Section 2.2.5.) According
to a general theory of acceptable bundles, we obtain a locally free OX –module PaE ,
and a filtered bundle P�E D .PaE j a 2R/. (See Section 2.2 for a review of filtered
bundles.) The decomposition (71) is extended to a decomposition of PaE :

PaE D
M

PaEa;˛:

We set PE WD
S

a2R PaE and PEa;˛ WD
S

a2R PaEa;˛ . Set GrPa .E/ WDPaE=P<aE ,
which we naturally regard as C–vector spaces.

By Proposition 5.18, � gives a section of End.PE/ ˝ �1
X

, which preserves the
decomposition PE D

L
PEa;˛ . By the estimate in Proposition 5.18, we have that

�a;˛ � .daC˛dz=z/ idEa;˛
is logarithmic with respect to the lattice PaEa;˛ . Hence,

we have the induced endomorphism Res.�a;˛/ of GrPa Ea;˛ , which has a unique
eigenvalue ˛ . We set Res.�/ D

L
Res.�a;˛/. Let W GrPa .E/ be the monodromy

weight filtration of the nilpotent part of Res.�/.

For each section s of PE , let degP.s/ WDminfa j s 2 PaEg. For any g 2 GrPa E , let
degW .g/ WDminfm j g 2Wmg. Let v D .vi/ be a frame of PaE which is compatible
with the decomposition PaE D

L
PaEa;˛ , the parabolic filtration and the weight

filtration, ie each vi is a section of a direct summand Ea;˛ , the tuple

v.b/ WD
�
vi

ˇ̌
degPvi D b

�
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induces a basis Œv.b/� WD .Œv.b/i �/ of GrPb E for any a� 1< b � a, and the tuple

Œv.b/;m� WD
�
Œv
.b/
i �

ˇ̌
degWv

.b/
i Dm

�
induces a basis of GrW

m GrPb E . We set ai WD degP.vi/ and ki WD degW .vi/. Let h0

be the metric of E determined by h0.vi ; vi/D jzj
�2ai .� log jzj/ki and h0.vi ; vj /D 0

.i¤ j /. The following proposition can be proved by the argument in [36, Section 8.1.2].

Proposition 5.20 h and h0 are mutually bounded.

5.5.3 Connection form Let v be a frame of PaE , which is compatible with the
decomposition PaE D

L
PaEa;˛ , the parabolic filtration and the weight filtration.

Let G be the endomorphism of E determined by G.vi/ dzD@vi for iD1; : : : ; rank E .
We can prove the following by the arguments of Lemma 7.5.5, Lemma 10.1.3 and
Proposition 10.3.3 of [36].

Lemma 5.21 We have jGjh DO.jzj�1/. For the decomposition G D
P

G.a;˛/;.b;ˇ/
according to E D

L
Ea;˛ , we have the estimate

jG.a;˛/;.b;ˇ/jh D

�
O.exp.��jzjord.a�b/// if a¤ b;

O.jzj�1C�/ if aD b; ˛ ¤ ˇ:

for some � > 0.

We have the expression � D f dz . Let us consider @hf . Let ‚ be determined by
f vDv‚. Let C be determined by @hvDvC . We have .@hf /vDv.@z‚ dzCŒC; ‚�/

and ŒG; f �v D vŒC; ‚�. We have the decompositions @hf D
P
.@hf /.a;˛/;.b;ˇ/ and

x@f | D
P
.x@f |/.a;˛/;.b;ˇ/ according to E D

L
Ea;˛ .

Corollary 5.22 Let m WD minford.a/ j a 2 Irr.�/g. If m < 0, we have @hf D

O.jzj�2Cmdz/ with respect to h and dz dz . We haveˇ̌
.@hf /.a;˛/;.b;ˇ/

ˇ̌
h
D

�
O.exp.��jzjord.a�b/// if a¤ b;

O.jzj��2/ if aD b; ˛ ¤ ˇ:

We also haveˇ̌
.x@Ef

|/.a;˛/;.b;ˇ/
ˇ̌
h
D

�
O.exp.��jzjord.a�b/// if a¤ b;

O.jzj��2/ if aD b; ˛ ¤ ˇ:

Proof It follows from Lemma 5.21.
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5.5.4 Some estimates Let t be a C1 endomorphism of E . According to the
decomposition E D

L
Ea;˛ , we have the decomposition t D

P
t.a;˛/.b;ˇ/ , where

t.a;˛/;.b;ˇ/ 2 Hom.Eb;ˇ;Ea;˛/. Let C be the set of C1 endomorphisms t such that
the following holds for some � > 0 which may depend on t :

jt.a;˛/;.b;ˇ/jh D

�
O.jzj� exp.��jzjord.a�b/// if .a; ˛/¤ .b; ˇ/;
O.1/ if .a; ˛/D .b; ˇ/:

Note that C is closed under the addition and the composition.

Proposition 5.23 Suppose t and jzj2@z@z t are contained in C . Then z@z t and z@zt

are also contained in C .

Proof Let ‰W H WD fu 2 C j Im u > 0g ! fz 2 C j 0 < jzj < 1g be given by
‰.u/ D exp.

p
�1u/. Because ‰�t and @u@xu‰

�.t/ are bounded, we obtain that
@u‰

�t and @xu‰�t are also bounded.

In the following argument, positive constants � can change. We use the notation in the
proof of Proposition 5.18. We clearly have @z�

.`/
b D 0. By Lemma 5.21, we have

@z�
.`/
b DO.exp.��jzj�`//. We also have

@z@z�
.`/
b D ŒF.h/; �

.`/
b �DO.exp.��jzj�`//:

We have the decomposition t D
P

t
.`/
a;b according to the decomposition E D

L
E
.`/
a .

We have t .`/a;b DO.exp.��jzj�`// if a¤ b. Hence, we have

Œt; �
.`/
b �D

X
a¤b

t
.`/
a;b �

X
a¤b

t
.`/
b;a DO.exp.��jzj�`//:

We also have jzj2@z@z Œt; �
.`/
b �D Œjzj2@z@z t; �

.`/
b �CŒz@z t; z@z�

.`/
b �CŒt; jzj2@z@z�

.`/
b �D

O.exp.��jzj�`//. Hence, we obtain

z@z Œt; �
.`/
b �DO.exp.��jzj�`//; z@z Œt; �

.`/
b �DO.exp.��jzj�`//:

Therefore, we obtain z@z t
.`/
a;b DO.exp.��jzj�`// and z@z t

.`/
a;b DO.exp.��jzj�`// for

a¤ b.

We have z@z�a;˛ D O.jzj�/ and jzj2@z@z�a;˛ D O.jzj�/ by Lemma 5.21. Then we
obtain z@z t.a;˛/;.b;ˇ/D jzj

� and z@zt.a;˛/;.a;ˇ/D jzj
� for ˛¤ ˇ . If we have that a¤ b

with `D ord.a� b/, we obtain the desired estimate by using

t.a;˛/;.b;ˇ/ D �a;˛ ı t .`/�`.a/;�`.b/ ı�b;ˇ:
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5.5.5 Refined asymptotic orthogonality We obtain an asymptotic orthogonality of
the derivative by assuming the following with respect to h and dz dz , in addition
to (72):

(75) @z@z.F.h/C Œ�; �
|�/DO.exp.��0jzj

p//:

Let v be a holomorphic frame of P0E , compatible with the decomposition P0E DL
P0Ea;˛ , the parabolic filtration and the weight filtration. Let .ai ; ˛i/ be determined

by vi 2 P0Eai ;˛i
. We say that a matrix valued function B D .Bij / satisfies condition

C1 if the following holds for some � > 0 which may depend on B :

Bij D

�
O.jzj� exp.��jzjord.ai�aj /// if .ai ; ˛i/¤ .aj ; j̨ /;

O.jvi jhjvj jh/ otherwise:

Let H be the matrix valued function determined by Hij D h.vi ; vj /. Lemma 5.21
implies that z@zH and z@zH satisfy condition C1 .

Proposition 5.24 .jzj2@z@z/
2H satisfies condition C1 .

Proof Let G.A/ denote the endomorphism determined by v and a matrix-valued
function A. By Lemma 5.21, we have

G.H�1z@zH /;G.H�1z@zH /;G. xH�1z@z
xH /;G. xH�1z@z

xH / 2 C:

Because G.z@z. xH
�1z@z

xH //D jzj2F.h/ 2 C , we have G. xH�1jzj2@z@z
xH / 2 C .

We have the expression � D f dz . We have @z@z Œf; f
|� D ŒŒF.h/z;z; f �; f

|� C

Œ@zf; x@zf
|�. It gives an estimate for @z@z Œf; f

|� by Corollary 5.22, from which we
can deduce that jzj2@z@z.jzj

2F.h// 2 C . By Proposition 5.23, z@z.jzj
2F.h// 2 C and

z@z.jzj
2F.h//2 C . We have G.z@z.z@z. xH

�1z@z
xH ///;G.z@z.z@z. xH

�1z@z
xH ///2 C .

We also obtain G. xH�1.z@z/
2z@z

xH /;G. xH�1z@z.z@z/
2 xH / 2 C . Then we obtain

G. xH�1.z@z/
2.z@z/

2 xH / 2 C from jzj2@z@z.jzj
2F.h// 2 C . It implies the claim of

the lemma.

Corollary 5.25 .z@z/
2H satisfies the condition C1 .

Remark 5.26 The estimate as in Corollary 5.25 will be used in the study for the
extension of the associated twistor family, which will be discussed elsewhere.
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6 L2 instantons on T �C

6.1 Some standard properties

6.1.1 Instantons of rank one Let .E;r; h/ be an L2 instanton on T � C with
rank E D 1.

Lemma 6.1 .E;r; h/ is a unitary flat bundle.

Proof Because rank E D 1, we have .rzrz C rwrw/Fzz D 0 and .rzrz C

rwrw/Fzw D 0. We obtain the inequalities

�.@w@wC @z@z/jFzzj
2
� 0; �.@w@wC @z@z/jFzwj

2
� 0:

We use the notation in Section 5.2.2. By applying the fibre integral for T �C!C , we
obtain �@w@wkFzzk

2 � 0 and �@w@wkFzwk
2 � 0. Because the functions kFzzk

2

and kFzwk
2 are L1 on Cw , they are 0.

Corollary 6.2 Let .E;r; h/ be an L2 instanton on T �C of an arbitrary rank. Then
det.E;r; h/ is a flat unitary bundle, ie we have Tr F.r/D 0.

If we do not impose the L2 property, there exist much more instantons of rank one on
T �C .

(i) Let a be any holomorphic function on C . Then the trivial holomorphic line
bundle OC with the trivial metric and the Higgs field da gives a harmonic bundle L.a/
on C . By Hitchin’s equivalence, we have the associated instanton on T �C .

(ii) Let � be an R–valued harmonic function on T � C . Then the trivial holo-
morphic line bundle OT�Ce with the metric h� given by log h�.e; e/D � gives an
instanton L.�/ on T � C . Note that there exist many harmonic functions which
are not the real part of a holomorphic function on T �C . We can construct such
a function by using a Bessel function I0.r/ D

R 1
�1 cosh.r t/.t2 � 1/�1=2dt which

satisfies I 00
0
C r�1I 0

0
� I0 D 0. It is a C1 function on R, satisfying I0.r/D I0.�r/.

In particular, �.w/ WDI0.jwj/ gives a C1 function on C satisfying .�@w@wC4/�D0.
We can construct a harmonic function � on T �C from � such that � is not constant
along T , by using Fourier series on T �C in a standard way. (See [26].) It is not the
real part of any holomorphic function.

In general, any instanton of rank one .E; x@E ; h/ can be expressed as the tensor product
of instantons of types (i) and (ii). Indeed, by considering the support RFM�.E; x@E/,
we obtain a holomorphic function C ! T _ . Because C is simply connected, it is
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lifted to a holomorphic function bW C!C . We have a holomorphic function a such
that @waD b. Then we can observe that .E; x@E ; h/ is isomorphic to L.a/˝L.�/ for
a harmonic function � on T �C .

6.1.2 Polystability of the associated filtered bundle We let .E;r; h/ be an L2 in-
stanton on T �C . Let .E; x@E/ be the underlying holomorphic vector bundle on T �C .
For a saturated OT�C –subsheaf F �E , let hF denote the induced Hermitian metric
of the smooth part of F . Let F.hF / denote the curvature. As in [8] and Simpson [44],
we set

deg.F ; h/ WD
p
�1

Z
T�C

Tr.ƒF.hF //dvolT�C :

Let �F denote the orthogonal projection of E to F , where it is considered only on
the smooth part of F . By the Chern–Weil formula [44], we have

deg.F ; h/D�
Z

T�C
jx@�j2hdvolT�C :

Lemma 6.3 The degree deg.F ; h/ is finite if and only if:

(i) The degree of FjT�fwg is 0 for any w 2C .

(ii) F is extended to a saturated subsheaf P0F of P0E .

In that case, we have deg.F ; h/D 2�jT j
R
fzg�P1 par-c1.P�F/ for any z , where P�F

denotes P0F with the induced parabolic structure, and jT j denotes the volume of T .

Proof This type of claim is standard in the study of Kobayashi–Hitchin correspondence
for parabolic objects, and well established by Li and Narasimhan in [31], based on
the fundamental results in [44; 45] and Siu [47]. We give only an indication for our
situation.

By [44, Lemmas 10.5 and 10.6], Fjfzg�C is extended to a parabolic subsheaf if and
only if

R
C j
x@�jfzg�Cj

2 <1. In that case, .
p
�1=2�/

R
C Tr.F.hF //jz�C is equal to

the parabolic degree of the parabolic subsheaf.

If conditions (i) and (ii) are satisfied, then we have

deg.F ; h/D
Z

T

dvolT

�Z
z�C

p
�1 Tr.F.hF //

�
D 2�jT j

Z
z�P1

par-c1.P�F/>�1:

Conversely, suppose deg.F ; h/ is finite. Because

deg.F ; h/�
Z

C
dvolC

�
�

Z
T

jrz�j
2dvolT

�
D 2�

Z
C

deg.FjT�fwg/dvolC
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we have deg.FjT�fwg/D 0 for any w . Because

� deg.F ; h/D
Z

T

dvolT

�Z
C
jx@�jfzg�Cj

2

�
<1;

there exists a thick subset A� T _ such that Fjz�C is extendable for any z 2A. (A
subset is called thick if it is not contained in a countable union of complex analytically
closed subsets.) Then, F is extendable according to [47, Theorem 4.5].

Proposition 6.4 P�E is polystable. We have deg.P�E/D 0. (See Section 2.4.1 for
the stability condition in this case.)

Proof The second claim directly follows from Lemma 6.3 and Corollary 6.2. Let P�F
be a filtered subsheaf P�E satisfying (A1) and (A2) in Section 2.4.1. Let F be its
restriction to X �C . By Lemma 6.3, we have �.P�F/ D �.F ; h/ � 0. Moreover,
if it is 0, the orthogonal projection onto F is holomorphic. Hence, the orthogonal
decomposition E D F ˚ F? is holomorphic. It is extended to a decomposition
P�E D P�F ˚P�F? . Both F and F? with the induced metrics are L2 instantons.
Hence, we obtain the first claim of the corollary by an easy induction on the rank.

6.1.3 Uniqueness of the L2 instanton adapted to a filtered bundle Let .E;r; h/
be an L2 instanton on T � C . We have the associated filtered bundle P�E on
.T � P1;T � f1g/. Let h0 be a Hermitian metric of E , and let rh0 be a unitary
connection of .E; h0/ such that .E;rh0 ; h

0/ is an L2 instanton, the .0; 1/–parts of
rh0 and rh are equal, and h0 is adapted to P�E . (See Section 2.2.5 for adaptedness.)

Proposition 6.5 We have a holomorphic decomposition .E; x@E/D
L

i.Ei ; x@Ei
/ such

that it is orthogonal with respect to both h and h0 , and for each i , there exists ˛i > 0

such that hjEi
D ˛ih

0
jEi

. In particular, we have rh Drh0 .

Proof Let s be the self-adjoint endomorphism determined by h0 D hs . According
to [44], we have the inequality (see [44, page 876])

�.x@z@zC
x@w@w/Tr.s/Cjx@.s/s�1=2

j
2
h � 0:

By taking the fiber integral for T �C!C , we obtain

�@w@w

Z
T

Tr.s/C
Z

T

jx@.s/s�1=2
j
2
h � 0:

It implies that
R

T Tr.s/ is a subharmonic function on Cw . By using the norm estimate
for asymptotically harmonic bundle (Proposition 5.20), we obtain that h and h0 are
mutually bounded, ie s and s�1 are bounded with respect to both of h and h0 . Hence,
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we see that
R

T Tr.s/ is constant. We obtain
R

T j
x@.s/s�1=2j2

h
D 0, which implies

x@.s/D 0. Then the claim of the proposition follows.

6.1.4 Instanton number Let .E;r; h/ be an L2 instanton on T �C . We have the
associated filtered bundle P�E on .T �P1;T � f1g/. Note that the second Chern
class of PaE is independent of a 2R.

Proposition 6.6 For any a 2R, we have

1

8�2

Z
T�C

Tr.F.h/2/D
Z

T�P1

c2.PaE/:

Proof Let U �P1 be a small neighbourhood of 1 such that PaEjT�w is semistable
of degree 0 for any w 2 U . In the following argument, we will shrink U . We fix a
lift of Sp1.P�E/ � T _ to C . We have the filtered Higgs bundle .P�V;g dw/ on
.U;1/ corresponding to P�E .

Let pW T �U ! U be the projection. We have a natural C1 isomorphism PaE '

p�.PaV /, and the holomorphic structure of PaE is described as p�.x@PaV /Cg dz .

We take a holomorphic frame v of PaV which is compatible with the parabolic
structure. It induces a C1 frame u of PaE on T �U . We take a C1 metric h0 of
PaE such that u is orthonormal with respect to h0jT�U . We take a connection r.0/

of PaE such that r.0/ui D 0 on T �U . We set A WD r �r.0/ .

Let J be the endomorphism of EjT�.Unf1g/ which is determined by rwui D J.ui/

.i D 1; : : : ; rank E/. According to Lemma 5.21 and Theorem 5.11, we have J D

O.jwj�1/ with respect to h. On T �U , we have

AD J dwCg dz�g
|
h

dz:

Here, g
|
h

denotes the adjoint of g with respect to h. We have jgjh D jg|jh DO.1/.
According to Theorem 5.11 and Proposition 5.18, we have

Œg;g
|
h
�DO.jwj�2.log jwj/�2/

with respect to h. According to Lemma 5.21 and Theorem 5.11, we have Œg;J � D
O.jwj�2/ and Œg|

h
;J �DO.jwj�2/ with respect to h. Hence, we have

A2
DO.jwj�2/ dw dzCO.jwj�2/ dw dzCO.jwj�2/ dz dz:

We set r.t/ WD tr C .1 � t/r.0/ for 0 � t � 1. On T � .U n f1g/, we have the
following estimate for some � > 0, which is uniform for t :

(76) F.r.t//D tF.r/C .t2
� t/A2

DO.jwj�2/ dw dwCO.jwj�1��/ dw dz

CO.jwj�1��/ dw dzCO.jwj�2/dz dz:
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We obtain the following estimate, which is uniform for t :

(77) Tr.F.r.t//A/DO.jwj�2/ dw dw dzCO.jwj�2/ dw dw dz

CO.jwj�1��/ dw dz dzCO.jwj�1��/ dw dz dz:

We finally get

�
1

8�2

Z
T�C

Tr.F.h/2/D� 1

8�2

Z
T�P1

Tr.F.r.0//2/(78)

D

Z
X�P1

ch2.PaE/D�

Z
X�P1

c2.PaE/:

6.2 Cohomology

Let .E;r; h/ be an L2 instanton on X WD T �C . The .0; 1/–part of r is denoted
by x@E . Let xX WD T � P1 . We put D WD T � f1g. Let A

0;i
c .E/ denote the space

of C1 sections of E ˝�0;i on X with compact supports. Its cohomology group
is denoted by H

0;i
c .X;E/. Let A0;i.PaE/ denote the space of C1 sections of

PaE ˝�0;i on xX . Its cohomology group is H i. xX ;PaE/. In this subsection, we
suppose that

0 62 Sp1.E/:

Proposition 6.7 The natural map H
0;i
c .X;E/!H 0;i. xX ;PaE/ is an isomorphism

for any a 2R.

Proof There exists R> 0 such that, if jwj>R, EjT�fwg is semistable of degree 0,
and 0 62Sp.EjT�fwg/. We have two consequences for a C1 section s of PaE on XR :

� There exists a C1 section t of PaE on XR such that rz t D s .
� If rzs D 0, then s D 0.

Then the claim can be shown easily.

Let A
0;i

L2.E/ be the space of L2 sections s of E˝�0;i on X so that x@Es is also L2 .
Here, we consider the L2 conditions with respect to h and the Euclidean metric of X .
The cohomology group of the complex .A0;�

L2 .E/;
x@E/ is denoted by H

0;i

L2 .X;E/.

Proposition 6.8 The natural map H
0;i
c .X;E/!H

0;i

L2 .X;E/ is an isomorphism.

Proof Let A
0;i

L2;c
.E/�A

0;i

L2.E/ be the subspace of the sections with compact supports.
It gives a subcomplex, and its cohomology is denoted by H

0;i

L2;c
.X;E/.

Lemma 6.9 The natural map H
0;i

L2;c
.X;E/!H

0;i

L2 .X;E/ is an isomorphism.
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Proof For any L2 section s of E on XR , there exists an L2 section t of E on
XR0 .R

0 >R/ such that rz t D s on XR0 . If rws is L2 , then rwt is also L2 . If an
L2 section s of E on XR satisfies rzs D 0, then we have s D 0. Then the claim of
the lemma can be shown.

We take a smooth Kähler metric g xX of xX and a Hermitian metric hPaE of PaE . Let
B

0;i

L2 .PaE/ be the space of L2 sections ! of PaE on xX such that x@! is L2 , where
we consider the L2 condition with respect to g xX and hPaE . Let

B
0;i

L2;c
.PaE/� B

0;i

L2 .PaE/

denote the subspace of the sections whose support is contained in X . By the same ar-
gument, the natural map B

0;�

L2;c
.PaE/!B

0;�

L2 .PaE/ is a quasi-isomorphism. We have
a natural identification

B
0;�

L2;c
.PaE/DA

0;�

L2;c
.E/

as C–linear spaces. By the L2 Dolbeault theorem (see Fujiki [18]), the cohomol-
ogy group of B

0;�

L2 .PaE/ is naturally isomorphic to H i. xX ;PaE/. Then the claim of
Proposition 6.8 follows.

Corollary 6.10 H
0;i

L2 . xX ;E/ is finite-dimensional.

Proposition 6.11 We have H 0. xX ;PaE/DH 2. xX ;PaE/D 0.

Proof Clearly H 0. xX ;Pa.E// D 0. Let pW xX ! P1 be the projection. We have
p�E D 0, and the support of R1p�E is 0–dimensional. Then, H 2. xX ;PaE/D 0.

6.3 Exponential decay of harmonic sections

6.3.1 Statement Let .E;r; h/ be an L2 instanton on T � C . Let x@E denote
the .0; 1/–part of r , and let x@�E denote the formal adjoint with respect to h and
dz dzC dw dw . We set

�E WD
x@�E
x@E C

x@E
x@�E :

Proposition 6.12 Assume that 0 62 Sp1.E/. Let ! be an L2 section of E˝�0;1

on T �C such that �E! D 0. Then we have j!j DO.exp.�C jwj// for some C > 0.

6.3.2 An estimate Take R> 0, and put YR WD fjwj �Rg and XR WD T �YR . Let
.E;r; h/ be an L2 instanton on XR .

Lemma 6.13 Assume that 0 62Sp1.E/. Suppose that ! is an L2 section of E˝�
0;1
YR

such that x@E! D x@
�
E
! D 0. Then there exists C > 0 such that

j!jh DO.exp.�C jwj//:
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Proof Let ! D f dzCg dw be a harmonic section. We have �rwf CrzgD 0 and
rzf Crwg D 0. We have

rwrwf Drw.rzg/DrzrwgCFwzg D�rzrzf CFwzg(79)

D�rzrzf CFzzf CFwzg;

rwrwg D FwwgCrwrwg D FwwgCrw.�rzf /(80)

D Fwwg�rzrwf CFzwf D Fwwg�rzrzgCFzwf:

We obtain

�.@w@wC @z@z/.f; f /� �.rzf;rzf /� 2 Re..rwrwCrzrz/f; f /(81)

D�.rzf;rzf /� 2 Re.Fzzf CFzwg; f /:

Using the notation in Section 5.2.2, we obtain

�@w@wkf k
2
� �krzf k

2
CO.kFk.kf k2Ckgk2//:

Similarly, we obtain

�@w@wkgk
2
� �krzgk2CO.kFk.kf k2Ckgk2//:

By the assumption 0 62Sp1.E/, there exist R1>R and C1> 0 such that if jwj �R1

then we have k@zgk.w/�C1kgk.w/ and k@zf k.w/�C1kf k.w/. Hence, there exist
� > 0 and R2 >R such that if jwj>R2 then

(82) �@w@w.kf k
2
Ckgk2/� ��.kf k2Ckgk2/:

In general, if ' is a positive L1 –subharmonic function on YR2
, then '.w/DO.jwj�2/.

Indeed, by the mean value property, we have

'.w/�
4

�.jwj�R2/2

Z
jw�w0j�.jwj�R2/=2

'.w0/�
C2

.jwj �R2/2
:

Hence, we have kf k2Ckgk2 DO.jwj�2/. Then by a standard argument with (82),
we obtain kf k2 C kgk2 D O.exp.�C3jwj//. (See the proof of Lemma 5.12.) By
a bootstrapping argument, we obtain jf .z; w/j D O.exp.�C4jwj// and jg.z; w/j D
O.exp.�C4jwj//.

6.3.3 Finiteness We continue to use the notation in Section 6.3.2. Let ! be a
C1 section of E ˝�0;1 on XR . Suppose that the support of ! is contained in
T �fjwj �RC1g. We set D WD x@EC

x@�
E

. Let dvol denote the volume form induced
by the Euclidean metric.
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Lemma 6.14 Assume that ! and �E! are L2 . Then x@�
E
! and x@E! are L2 , and

we have Z
h.!;�E!/dvolD

Z
jD!j2hdvol :

Proof Let g WD dz dzC dw dw . Let j � jh;g denote the norm of sections of E˝��

induced by h and g . Let �.t/ be a nonnegative valued C1 function such that �.t/D 1

.t � 0/ and �.t/D 0 .t � 1/, and that @t .�/=�
1=2 is also C1 . For a large N , we

put �N .w/ WD �.log jwj �N /. Because

�
�1=2
N

.w/@w�N .w/D .�
�1=2@t�/.log jwj �N / � .2w/�1;

there exists C1> 0 such that j��1=2
N

@w�N j �C1jwj
�1 and j��1=2

N
@w�N j �C1jwj

�1 .
We have

(83)
ˇ̌̌̌Z

�N h.!;�E!/dvol�
Z
�N jD!j2hdvol

ˇ̌̌̌
�

�Z
jx@�N j

2
g�
�1
N j!j

2
h;gdvol

�1=2�Z
�N j
x@!j2h;gdvol

�1=2

C

�Z
j@�N j

2
g�
�1
N j!j

2
h;gdvol

�1=2�Z
�N j
x@�!j2h;gdvol

�1=2

:

There exist Ci > 0 .i D 2; 3/ such that for any N , we haveZ
�N jD!j2h;gdvol� C2

�Z
�N jD!j2h;gdvol

�1=2

CC3:

Then the first claim of Lemma 6.14 follows. We have

(84)
ˇ̌̌̌Z

h.�N!;�E!/dvol�
Z
�N jD!j2h;gdvol

ˇ̌̌̌
� C4

Z
.jx@�N jg j!jh;g jx@!jh;gCj@�N jg j!jh;g jx@

�!jh;g/dvol

for some C4> 0. By the first claim, the integrands of the right-hand side are dominated
by some integrable functions, independently from N . By taking the limit, we obtain
the second claim.

6.3.4 Proof of Proposition 6.12 Let us return to the setting in Section 6.3.1. Ac-
cording to Lemma 6.13, we have only to prove the following lemma to establish
Proposition 6.12.

Lemma 6.15 x@E! D x@
�
E
! D 0.
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Proof By the first claim of Lemma 6.14, D! is L2 . By the argument in the proof of
the second claim of the same lemma, we obtain

R
jD!j2

h;g
dvolD 0, ie D! D 0.

6.4 Nahm transform for L2 instantons

Let .E;r; h/ be an L2 instanton on T �C with rank E > 1. Let D WD Sp1.E/.
We shall construct a harmonic bundle on T _ nD with the method in [14; 26]. Let
ˆW C!T _ denote the projection. For any � 2Cnˆ�1.D/, let L�� D .C; x@T ��dz/

denote the corresponding line bundle on T with the natural Hermitian metric. Let
Nahm.E;r/� denote the space of L2 harmonic sections of E˝L�� ˝�0;1 . It is
finite-dimensional, and naturally isomorphic to

H 1.T �P1;P�1E˝L��/'H 1.T �P1;P0E˝L��/:

(See Section 6.2.) The Euclidean metric dz dzC dw dw of T �C and the Hermitian
metric h of E induce a metric h1.�/ of Nahm.E;r/� . The multiplication of �w 2
OP1.1/ induces an endomorphism Fw.�/ of Nahm.E;r/� . It is also described as
�P� ıw , where P� denotes the orthogonal projection of the space of L2 sections of
E˝L�� ˝�0;1

T�C onto Nahm.E;r/� . (Note Proposition 6.12.)

Let Ap;q.E˝L��/ denote the space of L2 sections of the bundle E˝L��˝�
p;q
T�C .

Let x@E;� denote the x@–operator of E ˝ L�� and let x@�
E;�

denote its adjoint. Let
D� WD x@E;� C

x@�
E;�

be a closed operator

A0;0.E˝L��/˚A0;2.E˝L��/!A0;1.E˝L��/;

and let D�
�
WD x@E;� C

x@�
E;�

denote its adjoint

A0;1.E˝L��/!A0;0.E˝L��/˚A0;2.E˝L��/:

By the results in Section 6.2, we obtain that D�
�

is surjective. We have

Ker.D�� /D Nahm.E;r/� :

The family
S
� Nahm.E;r/� gives a C1 bundle on C n ˆ�1.D/. Because it is

naturally L_–equivariant, it induces a bundle Nahm.E;r/ on T _ nD . It is equipped
with a C1 metric h1 and a C1 endomorphism Fw . It is also equipped with the
induced unitary connection r1 . The C1 bundle Nahm.E;r/ is also constructed as
the descent of the family of the cohomology of the complexes of the closed operators
.A0;�.E˝L��/; x@E;�/. It induces a holomorphic structure of Nahm.E;r/ as a bundle
on T _ nD , and Fw is holomorphic. We set �1 WD Fw dx� . The .0; 1/–part of r1 is
equal to the x@–operator of Nahm.E;r/.
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Proposition 6.16 .E1; x@E1
; �1; h1/ is a wild harmonic bundle.

Proof Because the argument is rather standard, we give only an indication for the con-
venience of the readers. For I � f1; 2; 3g, let pI denote the projection of T _�T �P1

onto the product of the i th components. By the construction, we have a natural isomor-
phism .E1; x@E1

/'Rp1�.p
�
23
P0E˝p�

12
Poin�1/jT_nD . The endomorphism Fw is

equal to the multiplication of

�wW Rp1�.p
�
23P�1E˝p�12Poin�1/jT_nD !Rp1�.p

�
23P0E˝p�12Poin�1/jT_nD :

Hence, we obtain that � is a wild Higgs field in the sense that, for the local expression
� D f d� around P 2D , the coefficients of the characteristic polynomial det.t id�f /
are meromorphic at P .

Let us prove that .E1; x@E1
; �1; h1/ is a harmonic bundle. We have only to prove that

.E1; x@E1
; �1; h1/jU is a harmonic bundle for any small open subset U � T _ nD . By

fixing a lift of U to C nˆ�1.D/, we use the holomorphic coordinate � on U .

Let �E denote the Laplacian on A0;0.E/, ie �E D
x@�

E
x@E D �

p
�1ƒ@E

x@E . We
have

�E D�2.rzrzCrwrw/ :

On A0;2.E/, the Laplacian is given by x@E
x@�

E
D .�

p
�1/x@Eƒ@E . We have

x@E
x@�E. dz dw/D�2.rzrzCrwrw/ dz dw:

Because Fzz C Fww D 0, it is equal to �E. / dz dw . Hence, under the natural
identification A0;0.E/˚A0;2.E/'A0;0.E/˝hh1; dz dwii, the Laplacian D�D acts
as �E ˝ id, where hha; bii denotes the 2–dimensional vector space generated by a; b .
The Green operator of D�D acts as GE˝ id, where GE denotes the Green operator
for �E on A0;0.E/.

We naturally identify Ap;q.E˝L��/ with Ap;q.E/. For a differential form � , let �.�/
be an endomorphism of

L
Ap;q.E/ given by �.�/.'/D � ^' . We have

x@E;� D
x@E � ��.dz/ and x@�E;� D

x@�E C
p
�1 � x�ƒ ı�.dz/:

Let dU denote the trivial connection of the product vector bundle A0;1.E/�U over
U . For the operators on the space of the sections U !A0;1.E/�U we have

ŒdU ; x@C � dz�D d� �.dz/; ŒdU ; .x@C � dz/��D
p
�1 dx�ƒ ı�.dz/:

We set � WDd� �.dz/Cdx�
p
�1ƒı�.dz/. Let P� denote the orthogonal projection of

A0;1.E/ onto the kernel of D�
�

. Let �� Dx@�E;�
x@E;� denote the Laplacian on A0;0.E/
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for E˝L�� . Let G� denote the Laplacian for �� on A0;0.E/, ie G��� D idA0;0.E/ .
The Green operator G� for D�

�
D� on A0;0˚A0;2 is given by G� ˝ id. We have

P� D 1�D� ıG� ıD�� :

Let G� ˝ id also denote the naturally induced operator on A0;1 'A0;0˝hhdz; dwii.

Let h � ; � i denote the inner product of A0;�.E/ induced by h and dz dzCdw dw . By
a standard computation, the curvature F of the connection r1 is described as follows,
for any sections  i .i D 1; 2/ of Nahm.E;r/:

h 1;F 2iDh 1; dU ıP�.dU 2/i(85)

D�h 1; dU ıD� ıG� ıD�� .dU 2/iDhdU 1;D� ıG� ıD�� .dU 2/i

DhD�� dU 1;G� ıD�� .dU 2/iDh� 1;G�� 2i

Dd� dx�.hdz 1; dz.G� ˝ id/ 2i�hƒ.dz 1/;ƒ.dz.G� ˝ id/ 2/i/:

We have �. /D P�.w /d� and �|. /D P�.w /dx� . We have

(86) h 1; .P�w ıP�w�P�w ıP�w/ 2i dx� d�

D�h 1; .w.P� � 1/w�w.P� � 1/w/ 2id� dx�

D .hw 1;D�G�D��w 2i � hw 1;D�G�D��w 2i/ d� dx�

D .hD�� .w 1/;G�D�� .w 2/i � hD�� .w 1/;G�D�� .w 2/i/d� dx�

D .hŒD�� ; w� 1;G� ŒD�� ; w� 2i � hŒD�� ; w� 1;G� ŒD�� ; w� 2i/d� dx�:

We have ŒD�
�
; w�D �.dw/ and ŒD�

�
; w�D�

p
�1ƒ ı�.dw/. Hence, we obtain

(87) h 1; .P�w ıP�w�P�w ıP�w/ 2 d� dx�i

D .hdw 1; dw.G� ˝ id/ 2i � hƒ.dw 1/;ƒ.dw.G� ˝ id/ 2/i/ d� dx�:

By using hdzdw; dzdwi D hƒ dwdw;ƒ dwdwi D hƒ dzdz; ƒ dzdzi for the metric
on ��

T�C , we get

h 1; .F C .P ıw d�/ ı .P ıwdx�// 2i D 0:

Namely, the Hitchin equation is satisfied. Thus, Proposition 6.16 follows.

Remark 6.17 We obtain a different transformation by replacing L�� with L� , for
which we do not need any essential change.

Remark 6.18 We use the operators that are natural the complex geometry, instead of
the Dirac operator itself.

Geometry & Topology, Volume 18 (2014)



L2 doubly periodic instantons 2923

7 L2 instantons and wild harmonic bundles

7.1 Nahm transform for wild harmonic bundles on T _

7.1.1 Construction Let D be a nonempty finite subset of T _ . We fix a Kähler
metric gT_nD of T _ nD , which is Poincaré-like around D . Let .E; x@E ; �; h/ be a
wild harmonic bundle on .T _;D/. For simplicity, we assume the following:

� .E; x@E ; �; h/ has a singularity at each point P of D , ie P is a pole of � , or the
parabolic structure at P is nontrivial.

� .E; x@E ; �; h/ is irreducible, ie it is not a direct sum of harmonic bundles of
positive ranks.

We shall construct an L2 instanton from .E; x@E ; �; h/ with the method in [14; 24].
Let H i

L2.E;
x@E ; �; h/ denote the i th L2 cohomology group of .E; x@E ; �; h/. By

assumption, the associated filtered Higgs bundle .P�E; �/ is stable of degree 0. As
recalled in Lemma 3.1, they are isomorphic to the hypercohomology groups of the
complex C�.P�E˝��; �/. In particular, they are finite-dimensional, and isomorphic to
the space of L2 harmonic i –forms of .E; x@E ; �; h/. We also have H 0

L2.E;
x@E ; �; h/D

H 2
L2.E;

x@E ; �; h/D 0 by the above assumptions.

Remark 7.1 If D is empty, .E; x@E ; �; h/ is isomorphic to .L; x@L; �; h/ such that
rank LD 1. So we exclude the case D D∅.

For any .z; w/ 2C2 , let Lz;w denote the harmonic bundle of rank one on T _ given
by .C; x@C zdx�/ with the trivial metric and the Higgs field w d� . Let .E; x@E;z; �w; h/

denote .E; x@E ; �; h/˝Lz;w . Let Nahm.E; x@E ; �; h/.z;w/ be the space of L2 harmonic
1–forms of .E; x@E;z; �w; h/. It is independent of the choice of the Poincaré-like met-
ric gT_nD . It is finite-dimensional, and naturally isomorphic to Nahm.P�E; �/.z;w/ .
It is naturally equipped with the metric h1 induced by h.

Let Ap;q.E/ denote the space of L2 sections of E˝�
p;q

T_nD
. Let

x@�E;z W A
p;q
!Ap;q�1

denote the adjoint of the closed operator x@E;z W A
p;q!Ap;qC1 . Let

�|
wW A

p;q
!Ap�1;q

denote the adjoint of �wW Ap;q!ApC1;q . We have

x@�E;z WD �
p
�1Œƒ; @E � zd�� and ��w D�

p
�1Œƒ; �|

w �D�
p
�1Œƒ; �|

Cw dx��:
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We set SC WDA0;0.E/˚A1;1.E/ and S� WDA1.E/DA0;1.E/˚A1;0.E/. Let

Dz;w WD
x@E;zC �wCx@

�
E;zC �

�
w

be a closed operator SC! S� , and let

D�z;w WD x@E;zC �wCx@
�
E;zC �

�
w

denote its adjoint S�! SC . We have KerD�z;w D Nahm.E; x@E ; �; h/.z;w/ ; see [36].
By the vanishing of H i

L2.E;
x@E;z; �w; h/ .i D 0; 2/, we obtain that D� is surjective.

Hence, the family
S
.z;w/ Nahm.E; x@E ; �; h/.z;w/ gives a C1 vector bundle on C2 .

(See [14].) It is naturally equivariant with respect to the action of L on C2 by
� � .z; w/D .zC�;w/. Hence, we obtain a bundle on T �C . It is equipped with an
induced C1 metric h1 and an induced unitary connection r1 . Because the C1 bundle
is also constructed as a family of the cohomology of the complexes .A�.E/; x@E;zC�w/,
it is equipped with a naturally induced holomorphic structure, which is equal to the
.0; 1/–part of r1 . By the construction, the holomorphic bundle is naturally isomorphic
to Nahm.P�E; �/jT�C . (See Section 7.2.2 for more details on this isomorphism.) We
shall give the proof of the following theorem in Section 7.1.4 after preliminaries.

Theorem 7.2 .Nahm.E; x@E ; �; h/; h1;r1/ is an L2 instanton.

We give a remark on the proof. It is rather easy and standard to prove that the tuple
.Nahm.E; x@E ; �; h/; h1;r1/ is an instanton by using the twistor property of instantons
and harmonic bundles. But, we do not give such an argument in the following. Instead,
we follow another standard argument to use a description of the curvature F.r1/ in
terms of the Green operator. Because we need an estimate for the decay of F.r1/, we
need the description, anyway.

7.1.2 Preliminaries We give the preliminary for a general situation. Let X be a
torus C�=L. Let D � X be a finite set. Let gA D Ad� dx� be a Kähler metric of
X nD for some positive valued function A, which is Poincaré-like around D . Let
.E; x@E ; �; h/ be a wild harmonic bundle on X nD . We set D WD x@E C � . Let D�

A

(resp D�
1

) denote the formal adjoint of D with respect to h and gA (resp. d� dx� ). We
set �A DD�

A
D and �1 DD�

1
D . We have �A DA�1�1 .

Lemma 7.3 Let ' be any section of E on X nD such thatZ
j'j2hAjd� dx�jC

Z
j�1'j

2
hjd� dx�j<1:
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Then the following integrals are finite:Z
j'j2hjd� dx�jC

Z
j�A'j

2
hAjd� dx�j<1;(88) Z

h.';�1'/jd� dx�j D

Z
h.';�A'/Ajd� dx�j D

Z
jD'j2h <1:(89)

Proof The finiteness (88) is clear. In (89), the first equality is trivial. The second
equality and finiteness can be shown by an argument in the proof of Lemma 6.14.

We set D| WD @EC�
| . Let .D|/�

A
(resp. .D|/�

1
) denote the formal adjoint of D| with

respect to gA (resp. d�dx� ). We have �1 D .D|/�
1
D| and �A D .D|/�

A
D| .

Lemma 7.4 Let ' be as in Lemma 7.3. Then we have

(90)
Z

h.';�1'/jd� dx�j D

Z
h.';�A'/Ajd� dx�j D

Z
jD|'j2h <1:

Proof The first equality is trivial. For the second, we have only to apply Lemma 7.3
to a harmonic bundle .E; @E ; �

|; h/ on X nD .

7.1.3 Estimate Let X be a torus C�=L with a nonempty finite subset D as in
Section 7.1.2. We use the Euclidean metric d� dx� of X . Let dvolX D jd� dx�j denote
the associated volume form. Let .E; x@E ; �; h/ be a wild harmonic bundle on .X;D/.
Assume that the harmonic bundle has a singularity at each point of D .

We set r.z/
h
WD x@EC@EC zdx�� zd� . Let Hz;w be the space of the sections of E on

X nD such thatZ
X

j'j2hdvolX C
Z

X

�
jr
.z/

h
'j2hCj.� Cw d�/'j2h

�
<1:

Proposition 7.5 There exist positive constants R> 0, C > 0 and � > 0 such that if
jwj>R, then for any ' 2Hz;w we haveZ

X

�
jr
.z/

h
'j2hCj.� Cw d�/'j2h

�
� C jwj�

Z
X

j'j2hdvolX

(See also a refined estimate in Proposition 7.9 below.)

Proof We use an argument in [48, Section 2.4] with an adjustment to our situation.
We use the standard distance on X . We take small neighbourhoods BP of P 2 D .
There exist R1> 0 and C1> 0 such that, if jwj �R1 , then we have j.�Cw d�/'j2

h
�
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C1jwj
2j'j2

h
dvolX on X n

S
P2D BP . We have only to prove the estimate on each BP .

We may assume P D 0, and BP is an �–ball B� D fj�j � �g.

We have a ramified covering  W .B0�; 0/! .B�; 0/ given by  .u/ D up such that
 �.E; x@E ; �; h/ is unramified, ie we have a decomposition

 �.E; x@E ; �/D
M

a2u�1CŒu�1�

.Ea; x@Ea
; �a/;

where the Higgs fields �a� da idEa
are tame. Let ` WDmaxfdegu�1 a jEa ¤ 0g.

Lemma 7.6 There exist R0 > 0 and C 0i > 0 .i D 1; 2/ such that

j�'jh � C 01jwjjd�jj'jh

on B� n fj�j< C 0
2
jwj�p=.`Cp/g if jwj �R0 .

Proof We have only to estimate each �a on B0� . Let us consider the case a¤ 0. We
set n WD degu�1 a. For each w , we have the solutions bi.w/ .i D 0; : : : ; nCp� 1/

of the equation
@ua.u/Cpwup�1

D 0:

We have the equality u�pC1@ua.u/C pw D ˛
QnCp�1

iD0
.u�1 � bi.w/

�1/ for some
˛ 2C n f0g. We have

�a D @ua idEa
duCga du;

where jgajh � C1juj
�1 . We have R2 > 0 and C2 > 0 such that if jwj>R2 , then

C�1
2 � jbi.w/jjwj

1=.nCp/
� C2:

We take C3� C2 . We set W1 WD fjuj � C3jwj
�1=.nCp/g.

On B0� nW1 , we have jgajh � .C1=C3/jwj
1=.nCp/ . We also have

ju�1
� bi.w/

�1
j � jbi.w/

�1
j � ju�1

j � .C�1
2 �C�1

3 /jwj1=.nCp/

for any i , and hence ju�pC1@uaCpwj � j˛j.C�1
2
�C�1

3
/nCpjwj. Hence, if C3 is

sufficiently larger than C2 , there exist R4 > 0 and C4 > 0 such that if jwj>R4 then

j.@uaCpwup�1/ idEa
Cgajh � C4jwjjuj

p�1

Hence, we obtain the desired inequality for the integral over B0� nW1 in the case a¤ 0.

Let us consider the case a D 0. We have the expression �0 D g0 du, and jg0jh �

C10juj
�1 for some C10 > 0. We take C11 > C10 , and we consider W WD fjuj �

C11jwj
�1=pg. On B0� nW , we have jwup�1j � C

p�1
11
jwj1=p . We also have jg0jh �
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.C10=C11/jwj
1=p . Hence, if C11 is sufficiently larger than C10 , then for some C12> 0

we get
jpwup�1 idE0

Cg0jh � C12jwup�1
j:

Hence, we obtain the desired inequality in the case aD 0.

Let ' be any L2 section of E on B� with respect to dvolX , such thatZ
B�

�
jr
.z/

h
'j2hCj.� Cwd�/'j2h

�
<1:

We set W1 WD fj�j< 2C 0
2
jwj�p=.`Cp/g and W2 WD fj�j< C 0

2
jwj�p=.`Cp/g. We have

a kind of Poincaré inequality, ie there exist C 00 > 0 and R00 > 0 such that if jwj>R00 ,
then (see [7; 48, (2.12)])

jwj2p=.`Cp/

Z
W1

j'j2hjd�d
x�j

� C 00
�Z

W1

jd j'jhj
2
Cjwj2p=.nCp/

Z
W1nW2

j'j2hjd� dx�j

�
:

There exists C 000 such that the right-hand side is dominated by

C 000
�Z

W1

jr
.z/

h
'j2hC

Z
W1nW2

j.� Cwd�/'j2h

�
:

Thus, the proof of Proposition 7.5 is finished.

Let D.z; w/ WD x@E C zdx�C � Cwd� . Let D�
1
.z; w/ denote the adjoint with respect

to the Euclidean metric d� dx� . Let �1.z; w/ WDD�
1
.z; w/ ıD.z; w/. Let gX nD be a

Kähler metric of X nD which is Poincaré-like around D . Let dvolX nD be the volume
form associated to gX nD .

Corollary 7.7 There exist � > 0, C > 0 and R > 0 such that if jwj > R, then for
any section ' of E such that

(91)
Z
j'j2hdvolX nD C

Z
j�1.z; w/'j

2
hdvolX <1

we have

(92) C jwj�
�Z
j'j2hdvolX

�1=2

�

�Z
j�1.z; w/'j

2
hdvolX

�1=2

:

(See Corollary 7.11 for a refinement.)
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Proof Let D|.z; w/D @E � zd�C .�|Cwdx�/. From (91) and Lemmas 7.3 and 7.4,
we obtain

R
jD.z; w/'j2

h
<1 and

R
jD|.z; w/'j2

h
<1. By using the same lemmas

and Proposition 7.5, there exist C1 > 0 and �1 > 0 such that

C1jwj
�1

Z
j'j2hdvolX �

Z
jD.z; w/'j2hC

Z
jD|.z; w/'j2h(93)

D 2

Z
h.';�1.z; w/'/dvolX :

Then the claim of the corollary follows.

7.1.4 Proof of Theorem 7.2 We return to the situation in Section 7.1.1. Let !T_nD

be the Kähler form associated to the metric gT_nD . The multiplication of !T_nD in-
duces an isomorphism A0;0.E/'A1;1.E/. It gives an identification SC'A0;0.E/˝

hh1; !T_nDii, where hh1; !T_nDii denotes the 2–dimensional vector space gener-
ated by 1 and !T_nD . By the general theory of harmonic bundles, the Laplacian
D�zwDzw on SC is identified with �zw ˝ id on A0;0.E/ ˝ hh1; !T_nDii, where
�zw WD .x@

�
E;z
C ��w/ ı .

x@E;z C �w/ on A0;0.E/. (See Simpson [46]. In this case, it
can be easily checked directly.) The Green operator Gzw for D�zwDzw is identified
with Gzw˝ id, where Gzw is the Green operator of �zw on A0;0.E/.

For any simply connected open subset U1 of T , we fix its lift U in Cz with respect to
a universal covering Cz! T . We have only to check the decay condition on U �Cw .

For a differential form � on T _ , let �.�/ be an endomorphism of
L

Ap;q.E/ given
by �.�/.'/ D � ^ ' . Let dU�C denote the trivial connection of the product vector
bundle S� � .U �C/ over U �C . We have the following relation for the operators
on the space of the sections U �C! S� � .U �C/:

ŒdU�C; x@C z dx��D dz �.dx�/;

ŒdU�C; .x@C z dx�/��D dz.
p
�1ƒ ı�.d�//;

ŒdU�C; � Cw d��D dw�.d�/;

ŒdU�C; .� Cw d�/��D dw.�
p
�1ƒ�.dx�//:

We set � WD dz �.dx�/C dw�.d�/C dz.
p
�1ƒ�.d�//C dw.�

p
�1ƒ�.dx�//.

Let F.r1/ be the curvature of the transformed bundle Nahm.E; x@E ; �; h/ with the
metric and the unitary connection. Let Pzw denote the orthogonal projection of S�

onto Nahm.E; x@E ; �; h/.z;w/ . Let  i be sections of Nahm.E; x@E ; �; h/. Let h � ; � i
denote the Hermitian pairing on Ap;q.E/ induced by h and !T_nD . The following is
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a standard computation:

h 1;F.r1/ 2i D h 1;Pzw ı d ıPzwd 2i D h 1; d ıPzw ı d 2i(94)

D h 1; d ı .Pzw � 1/ ı d 2i D �hd 1; .Pzw � 1/ ı d 2i

D hd 1;Dzw ıGzw ıD�zwd 2i D hD�zwd 1;Gz;wD�zwd 2i

D hŒd;D�zw � 1;Gzw Œd;D�zw � 2i D h� 1;Gzw� 2i:

We have the expression  i D  i1 d�C i2 dx� and

� 1 D dz 11 dx� d�C dw 12 d� dx� �
p
�1dw 11ƒ.dx� d�/

C
p
�1 dz 12ƒ.dx� d�/:

Let A be determined by gT_nD DA d�dx� . Then

(95) Gzw� 2 D dzGzw.A
�1 21/Adx�d�C dwGzw.A

�1 22/Ad�dx�

�
p
�1dwGzw. 21ƒ.dx�d�//C

p
�1dzGzw. 22ƒ.dx�d�//:

We also have

h 11dx�d�;AGzw.A
�1 21/dx�d�i D h 11ƒ.dx�d�/;Gzw. 21ƒ.dx�d�//i(96)

D 4

Z
. 11;Gzw.A

�1 21//dvolT_ ;

h 12dx�d�;AGzw.A
�1 22/dx�d�i D h 12ƒ.dx�d�/;Gzw. 22ƒ.dx�d�//i(97)

D 4

Z
. 12;Gzw.A

�1 22//dvolT_ :

From these equalities, we obtain .dz dzCdw dw/^h 1;F.r1/ 2iD 0, which means
that Nahm.E; x@E ; �; h/ with the induced metric h1 and connection r1 is an instanton.

Let us prove that it is an L2 instanton. Let .x@E;zC �w/
�
1

denote the formal adjoint of
x@E;zC �w with respect to h and d� dx� . We set �zw;1 WD .x@E;zC �w/

�
1
.x@E;zC �w/.

Because �zw;1 DA�zw , we have �zw;1.Gzw.A
�1 21//D  21 . We haveZ

jGzw.A
�1 21/j

2
hdvolT_nD C

Z
j 21j

2
hdvolT_ <1:

By Corollary 7.7, we have the following for some � > 0 and C > 0:

C jwj2�
Z

T_
jGzw.A

�1 21/j
2
hdvolT_ <

Z
T_
j 21j

2dvolT_ :
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Hence, we obtain

(98)
ˇ̌
h 11dx�d�;AGzw.A

�1 21/ dx� d�i
ˇ̌

D
ˇ̌
h 11ƒ.dx�d�/;Gzw. 21ƒ.dx�d�//i

ˇ̌
< C jwj��

�Z
j 11 d�j2h

�1=2�Z
j 21 d�j2h

�1=2

:

We have a similar estimate for

jh 12dx�d�;Gzw. 22/dx�d�ij D jh 12ƒ.dx�d�/;Gzw. 22ƒ.dx�d�//ij:

From those estimates, we obtain jF.r1/j D O.jwj��/ for some � > 0. Because
Nahm.E; x@E ; �; h/ ' Nahm.P�E; �/jU�C , we can apply Theorem 5.17, and hence
we obtain that F.r1/ is L2 . Thus, the proof of Theorem 7.2 is finished.

Remark 7.8 Using Corollary 7.11, we can directly prove the curvature is L2 .

7.1.5 Refined estimates (appendix) We refine the estimates in Section 7.1.3, ie we
prove that � can be replaced with 1C � . Although we do not use it in this paper, this
type of argument seems useful in the study of a different type of Nahm transform, and
so we would like to keep it.

Proposition 7.9 There exist positive constants R> 0, C > 0 and � > 0 such that, if
jwj>R, the following holds for any ' 2Hw :Z

X

.jr
.z/

h
'j2hCj.� Cw d�/'j2h/� C jwj1C�

Z
X

j'j2hdvolX :

Proof We again use the argument in [48, Section 2.4] with an adjustment to our
case of wild harmonic bundles. We use the standard distance on X . We take small
neighbourhoods BP of P 2D . There exists R1> 0 and C1> 0 such that, if jwj �R1 ,
then we have j.� Cw d�/'j2

h
� C1jwj

2j'j2
h
dvolX on X n

S
P2D BP . We have only

to prove the estimate on each BP . We may assume P D 0, and BP is an �–ball
B� D fj�j � �g.

We have a ramified covering  W .B0�; 0/! .B�; 0/ given by  .u/ D up such that
 �.E; x@E ; �; h/ is unramified, ie we have the decomposition

(99)  �.E; x@E ; �/D
M

a2u�1CŒu�1�

.Ea; x@Ea
; �a/;
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where the Higgs field �a�da idEa are tame. Let h0D
L

hjEa , and let r.z/
h0

denote the
unitary connection associated to  �.E; x@E/ with h0 . By the asymptotic orthogonality
of the decomposition (99) with respect to h (see [36]), we have the inequalitiesZ

B0�

�ˇ̌
r
.z/

h
'
ˇ̌2
h
Cj.� Cw d�/'j2h

�
� C2

Z
B0�

�ˇ̌
r
.z/

h0
'
ˇ̌2
h0
Cj.� Cw d�/'j2h0

�
;Z

B0�

j'j2h 
�dvolX � C3

Z
B0�

j'j2h0 
�dvolX :

Hence, we need only the estimate with respect to the metric h0 .

Let us begin with the estimate for sections of Ea with a¤ 0. We set n WD degu�1 a.

Lemma 7.10 There exist constants R0 > 0 and C 0 > 0 such that if jwj �R0 , then for
any L2 section ' of Ea on B0� with respect to  �dvolX such thatZ

B0�

�ˇ̌
r
.z/

h0
'
ˇ̌2
h0
Cj.�aCwd�/'j2h0

�
<1

we have

jwje
Z

B0�

j'j2h0 
�dvolX < C 0

Z
B0�

�ˇ̌
r
.z/

h0
'
ˇ̌2
h0
Cj.�aCwd�/'j2h0

�
Here, e D 1Cp=.nCp/ > 1.

Proof For each w , we have solutions bi.w/ .i D 0; : : : ; nCp� 1/ of the equation

@ua.u/Cpwup�1
D 0:

We have the equality u�pC1@ua.u/C pw D ˛
QnCp�1

iD0
.u�1 � bi.w/

�1/ for some
˛ 2C n f0g. We have

�a D @ua idEa
duCga du;

where jgajh0 � C1juj
�1 . We have R2 > 0 and C2 > 0 such that if jwj>R2 , then

C�1
2 � jbi.w/j jwj

1=.nCp/
� C2:

We take C3 � C2 . We set U1 WD fjuj � C�1
3
jwj�1=.nCp/g and U2 WD fjuj �

C3jwj
�1=.nCp/g.

Let us consider the estimate on B0� nU2 . We have jgajh0 � .C1=C3/jwj
1=.nCp/ . We

also have

ju�1
� bi.w/

�1
j � jbi.w/

�1
j � ju�1

j � .C�1
2 �C�1

3 /jwj1=.nCp/
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for any i , and hence ju�pC1@uaCpwj � j˛j.C�1
2
�C�1

3
/nCpjwj. Hence, if C3 is

sufficiently larger than C2 , we have

j.@uaCpwup�1/'Cga.'/jh0 � C4jwj j'jh0 juj
p�1

for some C4 > 0. Hence, we obtain the inequality for the integral over B0� nU2 .

Let us consider the estimate on U1 . There exist C5 > 0 and R5 > 0 such that

j.@uaCpwup�1/' dujh0 � C5juj
�n�1
j'jh0 jduj:

We also have jga' dujh0 � C1ju
�1j j'jh0 jduj. Hence, there exists C6 > 0 such that

j.�aCwpup�1 du/'j2h0 � C6j'j
2
h0 juj

�2.nCp/
juj2.p�1/

jdu dxuj(100)

� C6C3j'j
2
h0 jwj

2
juj2.p�1/

jdu dxuj:

Therefore, we have the desired inequality for the integral over U1 .

We consider the estimate on U2 n U1 . For each i D 0; : : : ; nC p � 1, we set zVi WD

fju� bi.w/j � �1jwj
�1=.nCp/g for some �1 > 0. Let u 2 U2 n .U1[

S
i
zVi/. We have

ju�pC1@uaCpwj D jpwjjuj�p�n

nCp�1Y
iD0

ju� bi.w/j(101)

� pC�1
3 jwj

2

nCp�1Y
iD0

ju� bi.w/j � pC�1
3 �

pCn
1
jwj:

We also have

jga'jh0 � C1juj
p�1
j'jh0 � juj

�p
� C1juj

p�1
j'jh0 �C3jwj

p=.nCp/(102)

D C1juj
p�1
j'jh0 jwj �C3jwj

�n=.nCp/:

Hence, there exists C7>0 and R7>0 such that the following holds on U2n.U1[
S

i
zVi/

if jwj �R7 :

j.@uaCpwup�1/' duCga' dujh0 � C7jwjj'jh0 juj
p�1
jduj:

We set a WD .nC 2/=2.nC p/. We put Vi WD fju� bi.w/j � �1jwj
�ag and V 0i WD

fju� bi.w/j � �1jwj
�a=2g. On zVi nV 0i , we have
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ju�pC1@uaCpwj D pC�1
3 jwj

2

nCp�1Y
iD0

ju� bi.w/j(103)

� pC�1
3 jwj

2.�1jwj
�1=.nCp//nCp�1

� .�1jwj
�a=2/

� pC�1
3 �

pCn
1
jwj1C1=.nCp/�a:

We also have jgaj�C1C3jwj
1=.nCp/ . Because �.p�1/=.nCp/C1C1=.nCp/�a>

1=.nCp/, there exist C8 > 0 and R8 > 0 such that if jwj �R8 , then on zVi nV 0i we
have

j.�aCpwup�1du/'jh0 � C8jwj
1C1=.nCp/�a

jujp�1
jdujj'jh0(104)

D C8jwj
.nC2p/=2.nCp/

jujp�1
jdujj'jh0 :

We have the following kind of Poincaré inequality, ie there exist C9 > 0 and R9 > 0

such that if jwj>R9 , then the following holds on Vi (see [7; 48, (2.12)]):

jwj.nC2/=.nCp/

Z
Vi

j'j2h0 jdu dxuj

� C9

�Z
Vi

jd j'jh0 j
2
Cjwj.nC2/=.nCp/

Z
VinV 0i

j'j2h0 jdu dxuj

�
:

We also have

jwj.nC2p/=.nCp/

Z
Vi

j'j2h0 juj
2.p�1/

jdu dxuj(105)

� C
2.p�1/
3

jwj.nC2/=.nCp/

Z
Vi

j'j2h0 jdu dxuj;

jwj.nC2/=.nCp/

Z
VinV 0i

j'j2h0 jdu dxuj(106)

� C
2.p�1/
3

jwj.nC2p/=.nCp/

Z
VinV 0i

j'j2h0 juj
2.p�1/

jdu dxuj

� C8C
2.p�1/
3

Z
VinV 0i

j.�aCpwup�1du/'j2h0 :

Then we obtain the desired inequality for the integral over Vi . Thus, the proof of
Lemma 7.10 is finished.

Let us consider the case aD0. Because this part is essentially contained in [48], we give
just an indication. We take a positive number C10 which is sufficiently larger than j˛j
for any eigenvalues ˛ of the residue of �0 . We may assume jg0j � .C10=10/j�j�1
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on B� . Take R10 > 0 sufficiently larger than C10 . For jwj � R10 , let U WD fj�j �
C10jwj

�1g and U 0 WD fj�j � C10jwj
�1=2g. On B� nU 0 , we have

(107) j.�0Cw d�/'jh0 � jwjj'jh0 jd�j � jg0jh0 j'jh0 jd�j �
4
5
jwjj'jh0 jd�j:

There exist C11 > 0 and R11 > 0 such that if jwj �R11 , then on U we have

jwj2
Z
U
j'j2h0 jd� dx�j � C11

Z
U
jd j'jh0 j

2
Cjwj2

Z
UnU 0
j'j2h0 jd� dx�j(108)

�

Z
U

�
C11

ˇ̌
r
.z/

h0
'
ˇ̌2
h0
C 4j.�0Cwd�/'j2h0

�
:

We obtain the desired inequality for sections of E0 from (107) and (108). Thus, the
proof of Proposition 7.9 is finished.

The following is a refinement of Corollary 7.7.

Corollary 7.11 There exist � > 0, C > 0 and R > 0 such that if jwj �R, then for
any section ' of E such that

(109)
Z
j'j2hdvolX nD C

Z
j�1.z; w/'j

2
hdvolX <1;

we have

(110) C jwj1C�
�Z
j'j2hdvolX

�1=2

�

�Z
j�1.z; w/'j

2
hdvolX

�1=2

:

Proof This is proved by the argument in Corollary 7.7, by using Proposition 7.9,
instead of Proposition 7.5.

7.2 Comparison with the algebraic Nahm transform

7.2.1 Statements Let .E; x@E ; �; h/ be a wild harmonic bundle on .T _;D/. Let
P�E be the associated filtered bundle on .T _;D/. Let .E1; h1;r1/ be the L2 in-
stanton on T �C obtained as the Nahm transform of .E; x@E ; �; h/ (see Section 7.1).
Let P�E1 be the associated filtered bundle on .T �P1;T � f1g/.

Theorem 7.12 P�E1 is naturally isomorphic to Nahm�.P�E; �/.

Conversely, let .E1;r1; h1/ be an L2 instanton on T �C . Let P�E1 be the associated
filtered bundle on .T �P1;T �f1g/. Let .E; x@E ; �; h/ be the wild harmonic bundle
on .T _;D/ obtained as the Nahm transform of .E1;r1; h1/ (see Section 6.4). Let
.P�E; �/ be the associated filtered Higgs bundle.
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Theorem 7.13 .P�E; �/ is naturally isomorphic to Nahm�.P�E1/.

We obtain the involutivity of the Nahm transform in the following sense.

Corollary 7.14 For an L2 instanton .E1;r1; h1/ on T �C , we have an isomorphism

Nahm.Nahm.E1;r1; h1//' .E1;r1; h1/:

For a wild harmonic bundle .E; x@E ; �; h/ on T _ , we have an isomorphism

Nahm.Nahm.E; x@E ; �; h//' .E; x@E ; �; h/:

Proof It follows from Proposition 3.25, Theorems 7.12 and 7.13, and the uniqueness
of the harmonic metric or Hermitian–Einstein metric adapted to the filtered bundle.
(See Proposition 6.5 for the uniqueness of Hermitian–Einstein metric; see [7] for the
uniqueness of the harmonic metric; see also [36]; see Section 2.2.5 for adaptedness of
metrics and filtered bundles.)

7.2.2 Proof of Theorem 7.12 We begin by constructing an isomorphism .E1; x@E1
/'

Nahm.P�E; �/jT�C . We recall the monad construction of E1 D Nahm.E; x@E ; �; h/;
see [14]. We use the notation in Section 7.1.1. Let gT_nD be a Poincaré-like Kähler
metric of T _ nD . Let Ai.E; x@E ; �; h/ denote the space of sections ' of E ˝�i

on T _ nD such that ' and .x@E C �/' are L2 with respect to h and gT_nD . Note
that the conditions also imply .x@E;z C �w/' are L2 for any .z; w/ 2 C2 . Let Ai

denote the sheaf of holomorphic sections of the product bundle Ai.E; x@E ; �; h/�C2

over C2 . We have the morphisms ıi W Ai
! AiC1 induced by x@E;z C �w . They

are naturally equivariant with respect to the action of the lattice L on C2 given by
�.z; w/ D .z C �;w/, as in the construction of the Poincaré bundle. The induced
bundles with operators on T �C are denoted by the same notation. The sheaf of
holomorphic sections of E1 is isomorphic to Ker ı1= Im ı0 .

Applying the construction in the proof of Lemma 3.1 around each point of D , we extend
E and E˝�1 to C0

L2.P�E; �/ and C1
L2.P�E; �/. We let Ci;�

L2.P�E; �/ denote the
Dolbeault resolution of Ci

L2.P�E; �/.

For I � f1; 2; 3g, let pI denote the projection of T _ �T �C onto the product of the
i th components .i 2 I/. On T _ �T �C , we set

zC i
L2 WD

M
kC`Di

p�1
1 Ck;`

L2 .P�E; �/ p̋�1
1

OT_
p�12Poin:
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We have ıi W zCi
L2 !

zCiC1
L2 induced by x@E;z C �w . We have a natural inclusion of

complexes
ˆW p23�

zC �
L2 !A�

on T �C . According to [36, Section 5.1], ˆ is a quasi-isomorphism. We also have
the following natural isomorphisms in Db.OT�C/:

p23�
zC �
L2 'Rp23�.p

�
1 .C
�

L2.P�E; �//˝p�12Poin/(111)
‰
'Rp23�.p

�
1 .C
�.P�E; �//˝p�12Poin/

' Nahm.P�E; �/jT�C Œ�1�:

(See Lemma 3.1 for ‰ .) We obtain the desired isomorphism E1'Nahm.P�E; �/jT�C ,
by which we shall identity the two.

Lemma 7.15 To prove Theorem 7.12, we have only to prove Nahma.P�E; �/�PaE1

for any a.

Proof By Proposition 3.17, we have deg.Nahm�.P�E; �//D deg.P�E; �/D 0. By
Proposition 6.4, we also have deg.P�E1/ D 0. Hence, Nahma.P�E; �/ � PaE1

implies Nahma.P�E; �/D PaE1 .

To prove Nahma.P�E; �/ � PaE1 , we need an estimate of the upper bound of the
norms of sections of Nahma.P�E; �/. We use an argument of scaling in [48]. Because
we need only the upper bound, we will not consider more precise estimates for harmonic
representatives or their approximation.

Let U� � P1 be a neighbourhood of 1 with the coordinate � D w�1 . If U� is suffi-
ciently small, we have the decomposition Nahm�.P�E;�/D

L
P2D Nahm�.P�E;�/P

by the spectrum on T �U� . We have the refined decomposition

Nahm�.P�E; �/P D
M

ooo2Irr.�;P/

M
˛2C

Nahm�.P�E; �/P;ooo;˛;

according to the decomposition .P�E; �/ D
L

ooo2Irr.�;P/
L
˛2C.P�EP;ooo;˛; �P;ooo;˛/

near each P 2D . We have only to prove that Nahma.P�E; �/P;ooo;˛ �PaE1 . We shall
argue the case P D f0g in the following. The other case can be established similarly.
We omit the subscript P . We take a small neighbourhood U� � T _ of f0g.

Let us consider the case .ooo; ˛/ ¤ .0; 0/. Take a 2 ooo. For each c 2 R, we have the
frame of Nahmc.P�E; �/P;ooo;˛ in Lemma 3.29. We have only to prove that

(112)
ˇ̌
Œ�

j
ooo vooo;id�ooo=�ooo�

ˇ̌
h1
DO.jwj.b�j�mooo=2/.poooCmooo/

�1

/:

Here, b is the parabolic degree of vooo;i .
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We give a preliminary. We have the expression �ooo@�oooaCpooo˛D
Pmooo

jD0 j̨�
�j
ooo DWG.�ooo/.

We fix a complex number 
 such that ˛moooCpooo

poooCmoooD 0. Take a covering U�!U�

given by � 7! �poooCmooo . If U� is sufficiently small, we can take holomorphic functions
u
.i/
0
.�/ .i D 1; : : : ;poooCmooo/ satisfying

G
�
u
.i/
0
.�/
�
Cpooou

.i/
0
.�/pooo��pooo�moooD0; lim

�!0
u
.i/
0
.�/=�D
 exp

�
2�
p
�1i=.moooCpooo/

�
:

There exist C1 > 0 and �1 > 0 such thatˇ̌
��1u

.i/
0
.�/� 
 exp

�
2�
p
�1i=.moooCpooo/

�ˇ̌
� C1j�j

�1 :

Lemma 7.16 Let Z� denote the support of Cok.�poooCmooo�
mooo
o �oooa;˛Cpooo�

poooCmooo
ooo d�ooo=�ooo/

on U�ooo . If U� and U� are sufficiently small, then there exists a decomposition

Z� D

poooCmoooa
iD1

Z.i/
�

such that for any u 2Z
.i/
� , we have

ju
.i/
0
.�/�uj � C j�j1CmoooC�:

Here C and � are positive constants which are independent of �.

Proof Take u1 2 Z� . There exists a possibly multivalued holomorphic 1–form
�.�ooo/ d�ooo=�ooo obtained as the eigenvalue of �oooa , such that �.u1/C �

�pooo�mooopooou
pooo

1
D 0.

Because �.�ooo/�G.�ooo/DO.��ooo /, there exist C2 > 0 and �2 > 0, independently from �,
such that the for some unique i we have

(113)
ˇ̌
��1u1� 
 exp

�
2�
p
�1i=.poooCmooo/

�ˇ̌
� C2j�j

�2 :

We obtain a decomposition of Z� D
`

Z
.i/
� by condition (113).

Let u1 2Z
.i/
� . We set Qq.x;y/ WD

P
iCjDq xiyj and have

(114)
�
.u
.i/
0
.�/=�/�1

� .u1=�/
�1
�

�

� moooX
jD1

j̨�
mooo�j Qj�1

�
.u
.i/
0
=�/�1; .u1=�/

�1
�

� .u
.i/
0
=�/.u1=�/poooQpooo�1.u

.i/
0
=�;u1=�/

�
DO.ju1=�j

�
j�jmoooC�/

We obtain j.u.i/
0
.�/=�/�1 � .u1=�/

�1j D O.j�jmoooC�/. Then we obtain the desired
estimate.

Geometry & Topology, Volume 18 (2014)



2938 Takuro Mochizuki

Let � be an R�0 –valued function on C� such that �.�/D 1 for j�j< 1
2

and �.�/D 0

for j�j>1. We set u0 WDu
.0/
0

. We consider the following C1 sections of Eooo
a;˛˝�

1
X ooo :

�1.vooo;i ; �/ WD �.j�j
1Cmooo=2.�ooo�u0.�///vooo;i d�ooo=�ooo;

�2.vooo;i ; �/ WD .�
ooo
a C �

poooCmoood�
pooo
ooo /�1.x@E�1.vooo;i ; �//:

By Lemma 7.16, if j�j is sufficiently large, �.j�j1Cmooo=2.�ooo�u0.�/// is constantly 1

around Z� . Hence, the tuple �.vooo;i ; �/D .�1.vooo;i ; �/; �2.vooo;i ; �// gives a representa-
tive of Œvooo;id�ooo=�ooo�.

By an elementary change of variables, for any ı > 0 we getZ
j�1.vooo;i ; �/j

2
h � C1ı

Z
�.j�j1Cmooo=2.�ooo�u0.�///

2
j�oooj
�2.bCı/�2

jd�ooo dx�oooj(115)

� C 01ıj�j
2.bCı/�mooo :

Note that j�ooo�u0.�/j � j�j
�1�mooo=2 for �ooo such that x@�.j�j1Cmooo=2.�ooo�u0.�///¤ 0.

Hence, we also haveZ
j�2.vooo;i ; �/j

2
h � C2ı

Z
jx@�.j�j1Cmooo=2.�ooo�u0.�///j

2(116)

� j�oooj
�2.bCı/ 1

j�ooo@�oooaCpooo˛Cpooo�poooCmooo�
pooo
ooo j

2

� C 02ıj�j
2.bCı/�2.moooC1/C2.1Cmooo=2/ D C 02ıj�j

2.bCı/�mooo

By the construction of h1 , we haveˇ̌
Œvooo;id�ooo=�ooo�

ˇ̌2
h1
�

Z �
j�1.vooo;i ; �/j

2
hCj�2.vooo;i ; �/j

2
h

�
:

Hence, we obtain the desired estimate (112) for Œvooo;id�ooo=�ooo�. We obtain the estimate
for Œvooo;i�

j
ooo d�ooo=�ooo� similarly.

Let us consider the case .ooo; ˛/D .f0g; 0/. The following lemma is easy to see.

Lemma 7.17 Let Zw denote the support of Cok.�0;0Cwd�/. There exist C > 0

and � > 0 such that juj � C jwj�1�� holds for any u 2Zw .

For a holomorphic section s of C1.P�EP;f0g;0˝�
�; �/ (see Section 3.1.1), we consider

the following C1 sections of EP;f0g;0˝�
1 :

�1.s; w/ WD .�.�/� �.w�//s d�=�; �2.s; w/ WD .�P;f0g;0Cw d�/�1.x@�1.s//;

�01.s; w/ WD �.�/s d�=�; �02.s; w/ WD .�P;f0g;0Cw d�/�1.x@�01.s//:
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By Lemma 7.17, �2; �
0
2

are well defined. The tuples �.s; w/D .�1.s; w/; �2.s; w//

and �0.s; w/D .�0
1
.s; w/; �0

2
.s; w// naturally induce the same holomorphic section

of Nahm.P�E/P . If s is a section of PcEf0g;0 , then it is elementary to prove that for
any ı > 0 we have Z

j�i.s; w/j
2
h � Cıjwj

2.cCı/:

We obtain j�.s; w/jh1
�C 0

ı
jwjcCı for any ı > 0. Then Nahm�.P�E/P;f0g;0�P�E1 .

Thus, the proof of Theorem 7.12 is finished.

7.2.3 Proof of Theorem 7.13 Let us construct an isomorphism of the Higgs bun-
dles .E; x@E ; �/ ' Nahm.P�E1/jT_nD . Let us recall the monad construction of
Nahm.E1;r1/. Let A0;i denote the space of sections ' of E1˝�

0;i on T �C , such
that ' and x@E1

' are L2 with respect to h1 and the Euclidean metric. Let ˆW C!T _

denote a universal covering. Let A0;i denote the sheaf of holomorphic sections of the
product bundle A0;i � .C nˆ�1.D// over C nˆ�1.D/. We have a morphism

ıi
W A0;i

!A0;iC1

induced by x@E1
�� dz . They are naturally equivariant with respect to the action of L_

on C by the translation, as in the construction of the Poincaré bundle. The induced
bundles and the operators are denoted by the same notation. The sheaf of holomorphic
sections of .E; x@E/ is isomorphic to Ker ı1= Im ı0 .

For I � f1; 2; 3g, let pI denote the projection of T _ � T �C onto the product of
the i th components. By construction, we have a natural morphism

Rp1�.p
�
23P<�1E˝p�12Poin/!A0;�:

By the results in Section 6.2, it is a quasi-isomorphism. Hence, we obtain a holomorphic
isomorphism E ' Nahm.P�E1/jT_nD , by which we identify them. The Higgs fields
are equal, because they are induced by the multiplication of �w .

We give a preliminary. Let U � P1 be a small neighbourhood of 1. On T �U , we
have a decomposition

(117) P�E1 D

M
P2Sp1.E1/

M
ooo;˛

P�.E1/P;ooo;˛:

Fix a lift of Sp1.E1/ � T _ to fSp1.E1/ � C . We have the filtered bundles with
an endomorphism .P�V;g/ on U , corresponding to P�E1 . It has a decomposition
.P�V;g/D

L
.P�VP;ooo;˛;gP;ooo;˛/.
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Let U � P�1.E1/ be the subsheaf such that UjT�C D P�1.E1/jT�C and

(118) U D
M
P

�
P�1.E1/P;f0g;0˚

M
.ooo;˛/¤.f0g;0/

P<�1.E1/P;ooo;˛

�

around T � f1g. We use the notation from Section 3.3.1.

Lemma 7.18 We have N.U/� P0E .

Proof We give an argument around 0 2 T _ , by supposing 0 2 D . The other case
can be proved similarly. We may suppose the lift of 0 2 D is 0 2 C . Let t be a
holomorphic section of N.U/ around 0 2 T _ . We have to prove jt jh DO.j�j�ı/ for
any ı > 0. It is represented by a family of C1 sections �.�/D �1.�/ dzC �2.�/ dw

of P�1E1˝�
0;1

T�P1 ˝L�1
�

. According to the decomposition (118), we have

�i.�/D
X

P;ooo;˛

�i.�/P;ooo;˛:

If P ¤ 0, we may assume �i.�/P;ooo;˛ D 0 on U . (See the proof of Proposition 6.7.)
Let dvol WD jdz dz dw dwj.

We take a C1 metric h2 of U . Note h1 D O.h2jwj
�2Cı/ for any ı > 0 on

P�1.E1/P;f0g;0 , and h1 D O.h2jwj
�2��/ for some � > 0 on P<�1.E1/P;ooo;˛ for

.ooo; ˛/¤ .f0g; 0/.

If P D 0 and .ooo; ˛/¤ .f0g; 0/, we have the following finiteness uniformly for � :Z
T�U

j�i.�/0;ooo;˛j
2
h1

dvol� C0

Z
T�U

j�i.�/0;ooo;˛j
2
h2
jwj�2��dvol<1:

We consider the contribution from P D 0 and .ooo; ˛/D .f0g; 0/. We have jg0;f0g;0jh1
�

C1jwj
�1 for some C1 . We take a sufficiently small C2 > 0, and we put H� WD fw j

jwj�1 < C2j�jg. We can find a unique family of C1 sections �.�/ of P�1E˝L�1
�

on H� such that

.x@E C � dz/�.�/D .�1.�/0;f0g;0dzC �2.�/0;f0g;0dw/jH�
:

There exists C3 > 0 such thatZ
T�fwg

j�.�/j2h2
jdz dzj � C3j�j

�2

Z
T�fwg

j�1.�/0;f0g;0j
2
h2
jdz dzj:
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Let �.w/ be an R�0 –valued C1 function such that �.w/D 1 if jwj�1 � C2=4 and
�.w/D 0 if jwj�1 � C2=2. We set

z�1.�/D �1.�/0;f0g;0� @z.�.w�/�.�//D .1��.w�//�
1.�/0;f0g;0;

z�2.�/D �2.�/0;f0g;0� @w.�.w�/�.�//

D .1��.w�//�2.�/0;f0g;0� .@w�/.w�/ � � ��.�/:

For any ı > 0, we have the following finiteness, which is uniform for � :Z
T�U

�
jz�1.�/j2h2

Cjz�2.�/j2h2

�
jdz dzj

jdw dwj

jwj2Cı
� C1;ı:

For any ı > 0, we have

(119)
Z

T�U

�
jz�1.�/j2h1

Cjz�2.�/j2h1

�
jdz dz dw dwj

� C2;ı

Z
T�U

�
jz�1.�/j2h2

Cjz�2.�/j2h2

�
jdzdzj

jdw dwj

jwj2Cı
j�j�2ı

� C3;ıj�j
�2ı

Hence, we obtain jt.�/jh � C4�j�j
�ı for any ı > 0. Thus, the proof of Lemma 7.18 is

finished.

Let us prove Nahm�.P�E1/D P�E . The following lemma is similar to Lemma 7.15.

Lemma 7.19 We have only to prove Nahma.P�E1/� PaE for any a.

Around each P 2D , we have the decomposition

(120) Nahm�.P�E1/D
M
ooo;˛

Nahm�.P�E1/P;ooo;˛;

according to the decomposition (117). We have only to prove Nahma.P�E1/P;ooo;˛ �

Pa.E/. We shall argue the case P D 0 in the following. The other case can be proved
similarly. We shall omit the subscript P . We take a small neighbourhood U� of P .

Let us consider the case .ooo; ˛/¤ .0; 0/. Let U� � P1 be a small neighbourhood of 1
with the coordinate � D w�1 . Take a 2 ooo. For each c 2 R, we have the frame of
Lemma 3.30. We only have to prove that

(121)
ˇ̌
Œ�

j
ooo vooo;i �

ˇ̌
h
DO.j�j�.b�jCpooo�mooo=2/.pooo�mooo/

�1

/:

Here, b is the parabolic degree of vooo;i .
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We give a preliminary. We take a ramified covering Uu! U� given by � D upooo�mooo .
We put

G.�ooo/ WD @wa.�ooo/�˛pooo�
pooo
ooo D

moooX
jD0

ǰ�
pooo�j
ooo :

Let 
 be a complex number such that ˇmooo

pooo�mooo �1D 0. If U� is sufficiently small,

there are holomorphic functions �.i/
0
.u/ .i D 1; : : : ;pooo�mooo/ on U� satisfying

G
�
�
.i/
0
.u/
�
�upooo�mooo D 0; lim

u!0
u�1�

.i/
0
.u/D 
 exp

�
2�
p
�1i=.pooo�mooo/

�
:

There exist C1 > 0 and �1 > 0 such thatˇ̌
u�1�

.i/
0
.u/� 
 exp

�
2�
p
�1i=.pooo�mooo/

�ˇ̌
� C1juj

�1 :

The following lemma is similar to Lemma 7.16.

Lemma 7.20 Let Zu denote the support of Cok.ga;˛ � upooo�mooo/ on U�ooo . If U�
and U� are sufficiently small, then we have a decomposition

Zu D

pooo�moooa
iD1

Z.i/
u

and we have positive constants C and � such thatˇ̌
�
.i/
0
.u/� �1

ˇ̌
� C juj1CmoooC�

for any �1 2Z
.i/
u .

We set d WD 1Cmooo=2. We consider the following sections of Eooo
a ˝�

0;1 :

�1.vooo;i ;u/ WD �.juj
�d .�ooo� �0.u///vooo;i dz;

�2.vooo;i ;u/ WD .ga;˛ �upooo�mooo/�1.x@�.juj�d .�ooo� �0.u////vooo;i :

The tuple �.vooo;i;u/ WD .�1.vooo;i;u/;�2.vooo;i;u// induces a section of Nahm.P�E1/P;ooo;˛ .
By Lemma 7.20, �.juj�d .�ooo� �0.u/// is constantly 1 around Zu . Hence, �.vooo;i ;u/
induces Œvooo;i �.

By an elementary change of variables, for any ı > 0 we get

(122)
Z
j�1.vooo;i ;u/j

2
h � C1ı

Z
j�.juj�d .�ooo��0.u///j

2
j�oooj
�2.bCı/

jdz dzjjdw dwj

� C 01ıjuj
�2.bCı/�2pooo�2C2d

DC 01ıjuj
�2.bCıCpooo�mooo=2/:
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We also haveZ
j�2.vooo;i ;u/j

2
h � C2ı

ZZ
jx@�.juj�d .�ooo� �0.u///j

2
j�oooj
�2.bCı/(123)

�
1

j@wa.�ooo/�˛pooo�
pooo
ooo �upooo�mooo j2

� C 02ıjuj
�2.bCı/�2.pooo�mooo�1/�2d

D C 02ıjuj
�2.bCıCpooo�mooo=2/

Hence, we obtain the estimate (121).

Let us consider the case .o; ˛/D .f0g; 0/. Note that N.P�1E1/0;f0g;0DN.U/0;f0g;0�
Nahm0.P�E1/. Let � 2 Nahm1Cc.P�E1/0;f0g;0=N.P�1E1/0;f0g;0 for �1 < c � 0.
We take v 2 PcV0;f0g;0 which represents � . We naturally regard v as a C1 section
of Pc.E1/0 . Fix a sufficiently small number b > 0, and let � be a R�0 –valued
C1 function on C� such that �.�/D 1 if j� j� b=2 and �.�/D 0 if j� j� b . We obtain
a C1 section x@.�.�/v dz/ of P�1.E1/0˝�

0;2 . By using H 2.T �P1;U˝L��/D

0 for any � , we can take a holomorphic family of C1 forms �.�/ D �1.�/ dz C

�2.�/ dw of U ˝�0;1 such that x@E˝L���.�/D
x@.�.�/v dz/. Then �.�/v dz� �.�/

induces a holomorphic section z� of Nahm1Cc.P�E1/ around P which induces � in
Nahm1Cc.P�E1/=N.U/.

We consider the following sections:

�1.v; �/ WD .�.�/� �.�
�1�//v dz;

�2.v; �/ WD x@.�.�/� �.�
�1�//.g0;f0g;0� �/

�1.v/:

Then �1.v; �/C�2.v; �/� �.�/ induces the same section z� .

For any ı > 0, we haveZ
j�1j

2
h1
jdw dwj � Cı

Z
j� j�Aj�j

j� j�2.cCı/�4
jd� dx� j � Cıj�j

�2.cC1Cı/:

We also haveZ
j�2j

2
h1
jdz dzj � Cı

Z
jx@�.��1�/j2j�j�2

j� j�2.cCı/
� Cıj�j

�2.cC1Cı/:

Because the support of x@.�.�/v dz/ is compact, we obtainZ
j�j2h1

dvolDO.j�j�ı/
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for any ı > 0, by the argument in the proof of Lemma 7.18. We obtain jz�jh �
Cıj�j

�.cC1Cı/ for any ı > 0. Thus, we obtain Nahm1Cc.P�E1/0;f0g;0 � P1CcE ,
and the proof of Theorem 7.13 is finished.

7.3 Kobayashi–Hitchin correspondence for L2 instantons

7.3.1 Statements Let P�E1 be a good filtered bundle on .T � P1;T � f1g/ of
degree 0 satisfying condition (A3). (See Section 2.4.1 for good filtered bundles.)

Proposition 7.21 P�E1 is stable if and only if Nahm�.P�E1/ is a stable filtered
Higgs bundle. (See Section 2.4.4 for the stability condition of P�E1 .)

Before going to the proof, we give a consequence.

Theorem 7.22 Let P�E2 be a stable good filtered bundle on .T �P1;T �f1g/ with
deg.P�E2/D 0. We set E2 WD .PaE2/jT�C which is independent of a. Then there
exists a Hermitian–Einstein metric h of E2 on T �C such that its curvature is L2 with
respect to h and the Euclidean metric, and it is adapted to the filtered bundle P�E2 .
(See Section 2.2.5 for adaptedness.) Such a metric is unique up to the multiplication of
positive constants.

Proof If rank E2 D 1, then E2 is the pullback of a line bundle L of degree 0 on T

by the projection T �C ! T , and the parabolic structure is the natural one, as in
Remark 2.19. A flat metric of L induces a Hermitian–Einstein metric of E2 adapted
to P�E2 .

Suppose rank E2>1. By Proposition 7.21, Nahm�.P�E2/ is stable. By Corollary 3.26,
we have

deg Nahm�.P�E2/D deg.P�E2/D 0:

By Corollary 3.28, we have that Nahm�.P�E1/ is a good filtered Higgs bundle. Hence,
by the Kobayashi–Hitchin correspondence for wild harmonic bundles on curves [7], we
obtain an adapted harmonic metric for Nahm.P�E1/. Its Nahm transform induces a
Hermitian–Einstein metric of E1 adapted to the filtered bundle P�E1 , by Theorem 7.12
and Proposition 3.25.

Note that the converse is given in Proposition 6.4.

Remark 7.23 This proof of Theorem 7.22 is based on the idea mentioned in [8, Re-
mark 5.13].
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7.3.2 Proof of Proposition 7.21 Let us prove the “if” part in Proposition 7.21. Sup-
pose Nahm�.P�E1/ is stable. By the Kobayashi–Hitchin correspondence for wild
harmonic bundles on curves [7] (see also [36] for the case of good filtered flat bundles),
we have an adapted harmonic metric for Nahm�.P�E1/. By Theorem 7.12, its Nahm
transform gives an adapted Hermitian–Einstein metric for P�E1 . By Proposition 6.4,
P�E1 is polystable. If it is not stable, the decomposition into the stable components
induces a decomposition of Nahm�.P�E1/, which contradicts with the stability of
Nahm�.P�E1/. Hence, P�E1 is stable.

Let us prove the “only if” part in Proposition 7.21. Let .P�E; �/ WD Nahm�.P�E1/.
Let .P�E0; � 0/ � .P�E; �/ be a strict filtered Higgs subbundle with 0 < rank E0 <

rank E . We obtain a subcomplex zC �.P�E0; � 0/� zC �.P�E; �/ on T _ �T �P1 . Let
zY� D . zY0! zY1/ be the quotient complex.

Lemma 7.24 The induced morphism R1p23�.zC �.P�E0;� 0//!R1p23�.zC �.P�E;�//
is injective.

Proof By the construction, zY0 is locally free. Hence, we obtain that R0p23�
zY0

is torsion-free. Because R0p23�. zY�/ ! R0p23�
zY0 is injective, we obtain that

R0p23�
zY� is torsion-free.

We take a small neighbourhood U of 1 in P1 on which we have the vanishing
Rip23�. zC �.P�E0; � 0//DRip23�. zC �.P�E; �//D 0 unless i D 1. It is easy to check
that

R1p23�. zC �.P�E0; � 0//jT�f1g!R1p23�. zC �.P�E; �//jT�f1g

is injective. Hence,

R1p23�. zC �.P�E0; � 0//jT�U !R1p23�. zC �.P�E; �//jT�U

is injective. Because

0!R0p23�
zY�!R1p23�. zC �.P�E0; � 0//!R1p23�. zC �.P�E; �//

is exact, R0p23�
zY� D 0, and

R1p23�. zC �.P�E0; � 0//!R1p23�. zC �.P�E; �//

is injective.

We define the parabolic structure of R1p23�. zC �.P�E0; � 0// as in Section 3.2.1. The
filtered sheaf is denoted by P�V1 . We have a naturally defined injective morphism
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P�V1! P�E1 . Hence, we have deg.P�V1/ � 0. By the argument in Section 3.2.3,
we obtainZ

T�P1

c1.P�V1/!T �

Z
T�P1

c1.R
2p23�

zC �.P�E0; � 0//!T D deg.P�E0/:

Since R2p23�
zC �.P�E0; � 0/ is a torsion sheaf,Z

T�P1

c1.R
2p23�

zC �.P�E0; � 0//!T � 0:

Hence, deg.P�E0/� 0, ie .P�E; �/ is semistable.

We have .P�E0; � 0/ � .P�E; �/ such that .P�E0; � 0/ is stable of degree 0. If
.P�E0; � 0/ has no singularity, it is isomorphic to a line bundle on T _ with a Higgs field
˛d� .˛2C/, and so R1p23�

zC �.P�E0; � 0/ is a nonzero torsion subsheaf of E1 , contra-
dicting Lemma 7.24. Thus, .P�E0; � 0/ has a singularity, and Nahm�.P�E0; � 0/¤ 0 is
a good filtered subbundle of P�E1 . By the stability of P�E1 , we have that the rank of
Nahm�.P�E0; � 0/ is equal to rank E1 . Because deg Nahm�.P�E0; � 0/D deg.P�E/,
we have Nahm�.P�E0; � 0/D P�E1 in codimension one. Because both of them are
filtered bundles, we have Nahm�.P�E0; � 0/ D P�E1 on T � P1 . Then we obtain
.P�E0; � 0/D .P�E; �/ by the involutivity of the algebraic Nahm transforms.
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