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A knot characterization
and 1–connected nonnegatively

curved 4–manifolds with circle symmetry

KARSTEN GROVE

BURKHARD WILKING

We classify nonnegatively curved simply connected 4–manifolds with circle sym-
metry up to equivariant diffeomorphisms. The main problem is to rule out knotted
curves in the singular set of the orbit space. As an extension of this work we classify
all knots in S3 that can be realized as an extremal set with respect to an inner metric
on S3 that has nonnegative curvature in the Alexandrov sense.

53C23; 57M25, 57M60

It is known that the only (closed simply connected) positively curved 4–manifolds with
infinite isometry group (equivalently, having circle symmetry) are S4 and CP2 . In
the case of nonnegative curvature additionally only S2 �S2 and CP2 #˙CP2 will
occur. Topologically this is due, via Freedmann’s work [4], to Hsiang and Kleiner [9]
in positive curvature and to Kleiner [13] and Searle and Yang [19] in nonnegative
curvature; and differentiably it follows via the Poincaré conjecture by their work and
work of Fintushel [2; 3] and Pao [16].

Our main purpose here is to provide a classification of (closed) simply connected
nonnegatively curved 4–manifolds with an isometric circle action up to equivariant
diffeomorphism. In particular, we have:

Theorem A A closed positively curved 4–manifold M with an isometric S1 action is
equivariantly diffeomorphic to a linear action on S4 , RP4 or CP2 .

This actually is a consequence of the following general result.

Theorem B A closed nonnegatively curved simply connected 4–manifold M with
an isometric S1 action is diffeomorphic to S4;CP2;S2 �S2 or one of CP2 #˙CP2 ,
and the action extends to a smooth T2 action.

All such T2 actions have been classified by Orlik and Raymond in [15], and it turns
out that each such action admits an invariant metric of nonnegative curvature. In fact,
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in the cases of Euler characteristic 2 or 3 such an action is linear, and if the Euler
characteristic is 4 any such T2 action can be obtained as the induced quotient action
on a T2 quotient of the standard T4 action of S3 �S3 [6].

Our proof uses Alexandrov geometry and the solution of the Poincaré conjecture in
essential ways (see Remark 5-6(b) though). The point of departure for the latter is
the simple fact that the orbit space M � DM=S1 is a simply connected topological
3–manifold, and is hence S3 , D3 or S2 �D1 . It is intriguing that the presumably
more complicated case of Euler characteristic 4 presents more geometric rigidity and
as a consequence, the Poincaré conjecture is not needed there (see Section 4). In other
words, we offer a purely geometric proof of the equivariant classification when the
Euler characteristic is four.

By work of Pao [16] it is known that there are S1–actions on S4 such that the singular
set of the orbit space S4=S1 is given by a knotted closed curve, and in fact any locally
flat knot can be realized in this way. Hence our equivariant classification relies on
showing that there can be no knotted circles c in the singular set of M � . For this we
consider the canonical two-fold branched cover of M � branched along a circle in the
singular set c , denoted by M �2 .c/. The following characterization is pivotal.

Theorem C Let c be a locally flat embedded S1 in S3 and let S32.c/ denote the
corresponding canonical 2–fold branched cover. Then S32.c/ is the 3–sphere if c is
unknotted, and otherwise �1.S32.c// is infinite or has order at least 3.

The Alexandrov geometry of the orbit space M �DM=S1 is already instrumental for the
topological classification alluded to above. Our use of the above knot characterization
is based on the key observation that M �2 .c/ is also an Alexandrov space with the
same lower curvature bound as that of M � . When M � has no boundary, ie M � is
homeomorphic to the 3–sphere, we prove that any closed curve c �M � consisting
of nonprincipal orbits is unknotted when M � has nonnegative curvature in distance-
comparison sense. A curve c consisting of nonprincipal orbits provides an example of
a so-called extremal set in the Alexandrov space X .

This naturally leads to the following question: Which knots c in S3 can arise as
extremal subsets when S3 is equipped with the structure of an Alexandrov space with
nonnegative curvature? We characterize those knots, which leads to the following result
via the equivariant Poincaré conjecture.

Theorem D A knot c in S3 can be an extremal set relative to a nonnegatively curved
Alexandrov metric on the sphere if and only if it is a so-called spherical Montesinos
knot of cyclic, tetrahedral or icosahedral type. In particular all these knots arise as
singular sets with respect to a constant curvature 1 orbifold metric on S3 .
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1 A knot characterization

In this section we will see that Theorem C in the introduction is a simple consequence
of the solution of the (equivariant) Poincaré conjecture.

If c is a closed embedded smooth circle in S3 , it is well known that the complement
of c admits a canonical 2–fold cover corresponding to the 2–fold cover of the normal
circle to c . By gluing back c we get the 2–fold branched cover S32.c/ alluded to in
the introduction.

If c is the unknot it is clear that S32.c/ is the 3–sphere.

Now suppose c is knotted (the subsequent construction works without this assumption).
Choose an orbifold metric on S3 with normal cone angle � along c . This can be done
by choosing a metric invariant under the antipodal map of the normal bundle in a small
tubular neighborhood of c , taking the quotient by this isometric involution and gluing it
back via a partition of unity. The induced metric g on S32.c/ is Riemannian and c is a
geodesic in S32.c/ fixed by a global isometric involution �, the covering transformation
on S32.c/� c .

The following lemma is crucial.

Lemma 1-1 If �1.S32.c// is finite, then S32.c/ admits a (positive) constant curvature
metric in which � remains an isometry.

This is a consequence of the “equivariant” Poincaré conjecture due to Dinkelbach
and Leeb [1]. In particular, if �1.S32.c// has order two, S32.c/ must be RP3 and the
involution � is linear. This is already a contradiction, since such an � will have two
circles as fixed point set. This proves Theorem C modulo the following lemma.

Lemma 1-2 (Smoothing) Any locally flat embedded circle c in S3 can be smoothed.
That is, there is a homeomorphism of S3 whose image of c is a smooth submanifold.
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This, however, is an immediate consequence of the fact that any topological 3–manifold
has a unique smooth structure up to diffeomorphism, combined with the theorem proved
in [12] that c has a normal bundle neighborhood which, since S3 is orientable, is
homeomorphic to S1 �D2 . In contrast to the case of locally flat embeddings of S1

in S3 , a nonsmoothable locally flat embedding of S3 in S5 was constructed in [14].

2 Orbit spaces and branched covers

We begin this section with an analysis of the orbit space M �DM=S1 with its induced
orbital metric. We denote by M S1

the fixed-point set of the action. The projection map
M !M � is a submetry and M � is a 3–dimensional Alexandrov space with nonnega-
tive curvature (positive if M has positive curvature). Unless otherwise explicitly stated,
we assume throughout that M is a closed simply connected 4–manifold of nonnegative
sectional curvature. In [13] and [19] it was shown that the Euler characteristic of M ,
�.M/ D �.M S1

/, is at most 4 (3 if M has positive curvature; see [9]). Note that
M S1

is also naturally a subset of M � .

The orbit space has nonempty boundary @M � if and only if M S1

is 2–dimensional.
In this case, a 2–dimensional component of M S1

is also a component of @M � and
M is said to be fixed-point homogeneous. By the soul theorem for orbit spaces, @M �

has at most two components, and in the case of two components, M � is isometric to
the product of an interval and a boundary component. A complete classification of the
possible actions in this fixed-point homogeneous case was done for positive curvature
in [7], and for nonnegative curvature in [5] and [6].

Since the claims in our main theorem have been proved already in the fixed-point
homogeneous case, we assume from now on that M � has no boundary, ie M S1

consists of 2, 3 or 4 isolated points.

The isotropy representation at an isolated fixed point p2M S1

has the form ei�.z1; z2/D

.eik�z1; e
i`�z2/, where TpM has been identified with C2 , and k� `� 1 are relatively

prime. In particular, the action on the unit sphere S3 of TpM is either free, has one
isotropy group Zk , or two isotropy group Zk and Z` . The corresponding orbit space
S3=S1DW Sk;` is isometric to the space of directions at p 2M � , is a (singular) surface
of revolution and is topologically the 2–sphere. At orbits with isotropy group Zk the
space of directions is the suspension of S1=Zk (cf discussion below); in particular
M � is a topological manifold, and since it is clearly simply connected, the Poincaré
conjecture tells us that:

Lemma 2-1 M � is the 3–sphere.
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Metrically it is important to note that

S1;1 D S2.1
2
/

is the standard 2–sphere with radius 1
2

, and

(2-2) S1;1 � Sk;1 � Sk;`

in the sense that there are natural (S1 equivariant) distance-decreasing maps to the
smaller space. We will refer to the geodesics orthogonal to the S1 orbits in each of
these spaces as great circles. The bound 4 (3 in positive curvature) on the number
of fixed points is simply achieved by observing that there can be at most 4 (resp. 3)
points in M � as singular as S2.1

2
/ when the curvature in nonnegative (resp. positive);

see Lemma 2-6 and [21].

A stratum in the orbit space M � corresponding to points with isotropy group Zn forms
a geodesic arc  whose closure joins two different isolated fixed points. The space of
directions at a point of  is isometric to the spherical suspension of a circle of length
2�=n, ie to

S2.1/=Zn DW Sn:

Note that the spaces of directions with two singular points, ie Sk;` and Sn , with
`; n� 2, have natural two-fold branched covers along the two singular points, denoted
by Sk=2;`=2 and Sn=2 respectively.

Also note that at most two geodesic strata corresponding to finite isotropy groups
can end at a given fixed point, there making a right angle. The union of closures of
two, three, or four such geodesic strata may form a closed curve c in M � . Our main
objective is to show that when this happens, such a closed curve in the 3–sphere M �

is not knotted. The following is a key observation towards this.

Lemma 2-3 (Branched cover) Suppose c is a closed curve in M � formed by the
closure of geodesic strata corresponding to finite isotropy groups. Then the two-fold
branched cover M �2 .c/ is an Alexandrov space with the same lower curvature bound as
M � . Moreover, the space of directions at any point p 2 c of M �2 .c/ is the canonical
two-fold branched cover of the corresponding space of directions of M � . In particular,
for any point p 2 c \M S1

the space of directions satisfies †pM �2 .c/� S2.1
2
/.

Proof We let c2 � c denote the closed subset of those orbits whose isotropy group
is not Z2 . Notice that M �2 .c/ is a smooth Riemannian manifold in a neighborhood
of c � c2 . It is well known that the isotropy group at interior points of a minimal
geodesic between two orbits is the same as the isotropy group of the whole geodesic.
In particular, the set of regular points of the orbit space corresponding to principal
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orbits is a convex set. For the same reason, M � � c is convex in our case. Thus it
suffices to see that M �2 .c/� c2 is also convex in M �2 .c/, since any geodesic triangle
in M �2 .c/ is the limit of geodesic triangles in M �2 .c/� c2 .

To prove the convexity claim above it suffices to see what the geodesics in M �2 .c/ are.
Here only those emanating at points in c are an issue. By construction, however, it
is clear that for each geodesic emanating at points of c in M � there are exactly two
emanating from the same point in M �2 .c/. This shows that the spaces of directions at
points along c are as claimed in the lemma, and also shows that minimal geodesics
between points of M �2 .c/�c can cross c only at points with isotropy Z2 when viewed
in M � .

Finally, if k; `� 2 are relatively prime, then it is easy to see that

Sk=2;`=2 � S1;1 D S2.1
2
/:

To use Theorem C we also need the following lemma.

Lemma 2-4 (Local flatness) A closed curve c consisting of singular points of M �

is a locally flat 1–dimensional submanifold of M � .

Proof We will denote the orbit of a point p by p�2M � . It is immediate from the slice
theorem that the exponential map at any p 2M with p� 2 c induces a homeomorphism
from a sufficiently small ball in the tangent cone at p� onto the corresponding ball
centered at p� . Since both Sk;` and Sn with `; n � 2 admit homeomorphisms to
S2.1/ taking the pair singular points to a pair of antipodal points the claim follows.

We are now in position to prove our key result.

Theorem 2-5 (Unknot) Let M be a simply connected nonnegatively curved 4–
manifold with an isometric S1 action with isolated fixed points only. If c is a circle
in M � consisting of nonregular points, then c is unknotted, there is at most one such
curve, and all fixed points are on the curve forming a biangle, triangle, or quadrangle
corresponding to 2, 3 or 4 fixed points.

We recall the following (see also [21]).

Lemma 2-6 A three-dimensional nonnegatively curved Alexandrov space A has at
most four points for which the space of directions is not larger than S2.1

2
/.

Proof Suppose, to the contrary, that we can find 5 distinct points p1; : : : ; p5 with
†pi

A � S2.1
2
/. For any pair of points fpi ; pj g in fp1; : : : ; p5g, choose a minimal
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geodesic cij and consider the corresponding 10 geodesic triangles. The sum of the 30
angles adds up to at least 10� .

We may assume after reordering that the sum of the 6 angles based at p1 is at least
2� . Next consider the initial directions of the chosen minimal geodesics based at p1 .
They are four distinct points v1; : : : ; v4 in the space of directions †p1

A. We will refer
to the distances in the space of directions as angles, and denote them by †.

Using that †p1
A � S2.1

2
/ it is clear that the angles between any three points in

fv1; : : : ; v4g add up to at most � . This of course shows that the sum of the 6 angles is
indeed equal to 2� . From the equality discussion it is now easy to deduce that after
possibly renumbering v1; : : : ; v4 we can assume that †.v1; v2/D†.v3; v4/D �=2.
Moreover, it is now clear that the point p1 was arbitrary. Thus there are exactly 10
right angles, and in each of the 10 triangles in A exactly one angle equals �=2.

We may assume now that d.p1; p2/D mini¤j fd.pi ; pj /g. We choose a point pi 2
fp3; p4; p5g such that neither the angle between c12 and c1i nor angle between c12
and ci2 is equal to �=2. This implies that the angle between c1i and c2i based
at pi equals �=2. Because of the equality in Toponogov’s theorem, d.p1; p2/2 D
d.p1; pi /

2C d.p2; pi /
2 , which contradicts our choice above.

Proof of the unknot theorem As we know M has Euler characteristic 2, 3 or 4
corresponding to 2, 3 or 4 isolated fixed points of S1 . Since the points of c that
correspond to fixed points of S1 remain more singular than S2.1

2
/ according to our

description above, and those possibly outside c keep their size but double in numbers
when we pass to the two-fold branched cover M �2 .c/, we know that there are at most 4
(resp. 3 in positive curvature) such points also in M �2 .c/ as well as in the universal
cover of M �2 .c/. If c were knotted we could use Theorem C to see that the number of
singular points would at least triple when we passed to the universal cover.

Thus c is unknotted. Moreover, applying Lemma 2-6 to M �2 .c/ we deduce that there
is at most one such curve c , and all the fixed points are on this curve c , except possibly
when there are three fixed points, the curvature is only nonnegative and the singularities
of M � are given by one isolated fixed point and two fixed points contained in a singular
(unknotted) biangle c . It is a simple consequence of [2, Lemma 5.1] that no circle
action on CP2 has an orbit space of this type.

By Fintushel [2, Theorem 7.1], Theorem B, and hence also Theorem A when M is
simply connected, follow.

In the next section we will give a direct geometric proof adapted to our assumptions,
which also yields the extension to a T2 action (independent of [2]) when the Euler
characteristic is four.
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3 Double disc bundle decomposition

In this section we will use the Poincaré conjecture to analyze M with its circle action
further. Specifically we will use the fact that M � is the 3–sphere, and the unknot
theorem of the previous section to decompose M � in a specific way into two 3–discs
respecting the strata, which in turn will yield a decomposition of M into two invariant
disc bundles over points and or 2–spheres. We assume that M and hence M �DM=S1

is simply connected and nonnegatively curved, but see Remark 3-1 below.

Consider the orbit space M � . By the unknot theorem, the singular set in M � either
forms a closed unknotted curve c , or we can extend the singular set to a closed
embedded unknotted curve also denoted by c , such that any two arcs of c make the
maximal angle �=2 at each fixed point and are geodesics near each fixed point. (We
chose such a extension only to make all arguments uniform). Note that the inverse
image of each arc � of c joining two fixed points form a smooth invariant 2–sphere †
in M , actually the fixed-point set of a finite isotropy group (or a component thereof)
if the arc is a geodesic strata. To make it clear, c is a right angled biangle, triangle
or quadrilangle/rectangle corresponding to the action having 2, 3 or 4 fixed points
respectively.

The decomposition is now achieved as follows. Let A and B be invariant smooth “dual”
submanifolds of M corresponding either to the two fixed points when c is a biangle,
one fixed point and the inverse image of the opposite edge when c is a triangle, and the
inverse image of two opposite edges when c is a rectangle. In a small � neighborhood
U of the inverse image C of c we construct a smooth S1–invariant horizontal vector
field V which is “normally radial” near A and B and tangential to the inverse image
of the remaining two edges of c . This descends to a “smooth” vector field V in the �
neighborhood U � of c in M � which is “normal” near the image of the boundaries of
the tubular neighborhoods of A and B and for which the remaining two edges of c
are integral curves. Using the fact that the � neighborhoods of the images of A and B
are 3–balls as are their complements, and the fact that c is unknotted, it follows that
V can be extended to a smooth nonvanishing vector field on the complement of U �

respecting this ball decomposition of M � . The extension of V obviously uniquely
lifts to an invariant extension of V providing the desired decomposition of M into
tubular neighborhoods of A and of B .

When A is a point this immediately yields a proof of Theorem A.

In the remaining cases, �.M/ D 4, c is a “rectangle” and A and B are 2–spheres.
It is easy to see that the vector field V on M � can be chosen so that the flow lines
emanating from each point of one edge will meet at a point of the other edge to form
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a 2–sphere unless the points are vertices of the rectangle, in which case there is only
one flow line. There is an S1 action on M � preserving these spheres with orbit space
a 2–dimensional rectangle. This action clearly lifts to an action on M whose orbits
near A and B are the normal circles in a tubular neighborhood. It follows that this lift
commutes with the given isometric S1 action on M .

Remark 3-1 Note that if M in Theorem A is not simply connected it has fundamental
group Z2 by the Synge theorem. Consider the lifted S1 action on the universal cover zM .
It follows that M has Euler characteristic 1, and we conclude that this action on zM is
either the linear action on S2 �S1 with fixed-point set S2 (fixed-point homogeneous),
or the suspension of a linear almost free action on S3 (as above). In the first case our
claim follows directly as in [7]. In the second case, the covering group Z2 interchanges
the two fixed points and preserves a 3–sphere in zM DS4 invariant under the S1 action
as well. From the equivariant Poincaré conjecture it follows that indeed Z2 acts as the
antipodal map and we are done.

4 Rigidity for Euler characteristic four

The main aim of this section is to prove the following equality discussion in Kleiner’s
estimate of the Euler characteristic of a nonnegatively curved 4–manifold with circle
symmetry.

Theorem 4-1 Let .M; g/ be a nonnegatively curved 4–manifold of Euler character-
istic four endowed with an isometric S1 action which has only isolated fixed points.
Then one of the following holds:

(a) There is a totally geodesic immersed compact flat surface F which is horizontal
with respect to the S1–action and projects to an embedded 2–sphere S2 �M �

endowed with a flat orbifold metric.

(b) There are two closed intervals I; J �R and a submetry � WM 4! I �J . The
fibers of � are given by the orbits of a (not necessarily isometric) T 2 action that
extends the given S1–action.

Moreover (b) holds if one of the following is true:

(i) In M � there are two fixed points which can be connected by more than one
minimal geodesic.

(ii) There is a fixed point whose space of directions in M � has two orbifold singu-
larities.

For the proof we need a lemma.
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Lemma 4-2 Let p1; p2; p3; p4 be the four isolated fixed points and let cij be a
minimal geodesic between pi and pj .

(a) If the minimal geodesic in M � between p1; p3 is not unique then the minimal
geodesics c12 , c14 c23 , c34 are unique and †.c12; c14/D†.c34; c23/D �=2.

(b) If †.c12; c14/D �=2 then c24 is not unique. In fact the initial directions of all
minimal geodesics from p2 to p4 form a circle.

It will be clear from the proof of (b) that the number †.c23; c24/ is independent of
the choice of c24 . The fact that the initial directions form a circle implies that this is
indeed the only constraint for initial directions of minimal geodesics from p2 to p3 .

Proof of Lemma 4-2 (a) The sum of the angles between any three of the points is
at least � . Thus the 12 angles add up to at least 4� . For each fixed point pi , the
three angles based at pi form a triangle in †pi

M � � S2.1
2
/. Thus the three angles

can add to up to at most � . Clearly equality must hold everywhere. Let v2 , v3 , v4 be
the initial vectors of c12 , c13 , c14 and let zv3 denote the initial direction of a different
minimal from p1 to p3 . The sum of the angles is in each case � .

The distances between three points in S2.1
2
/ only add up to � if the three points are on

a great circle but not on an open semicircle. Moreover †.v2; v3/D†.v2; zv3/ because
both numbers are equal to the angle in the comparison triangle of p1; p2; p3 . Using
that †pi

M � � S2.1
2
/ this readily implies †.v2; v4/ D �=2. If v2 were not unique

one could prove similarly that †.v3; v4/D �=2, which is clearly impossible.

(b) Let ch12 and ch14 be arbitrary lifts of c12 and c14 . Using †.c12; c14/D �=2 we
deduce that the initial directions of ch12 and ch14 can be chosen arbitrarily in two two-
dimensional orthogonal subspaces. In particular, for any choice, †.ch12; c

h
14/D �=2.

By the equality discussion in Toponogov’s theorem there is a flat triangle in M which
has ch12 and ch14 in its boundary. The remaining side is a minimal geodesic c24 from
p2 to p4 in M . Moreover the triangle must be horizontal. It is clear that this gives a
two-dimensional (T2 ) family of minimal geodesics from p2 to p4 and thus c24 is
not unique in M � .

Proof of Theorem 4-1 The lemma implies in particular that if there is one right angle
then there are exactly four and the configurations form a unique rectangle with many
choices for the diagonals. From the proof it is then easy to see that any geodesic leaving
perpendicular to one side of the rectangle meets the opposite side of the rectangle after
the exact same time. Therefore, if E1 and E2 are two sides of the triangle meeting in
p1 , then M �!R2 , p 7! .d.E1; p/; d.E2; p// is a submetry onto its image.
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If there is one fixed point p for which the space of direction †p.M �/ is given by
Sk;` with k; `� 2, then we consider the three initial directions v1 , v2 , v3 of minimal
geodesics to the other fixed points. Using that

P
i<j †.vi ; vj /D � we then deduce

that the two orbifold singularities in †pX D Sk;` must be contained in fv1; v2; v3g
and thus a right angle occurs.

This proves the theorem as long as one of the geodesics is not unique. In the remaining
case all geodesics are unique and there are no right angles. Then each of the four
triangles can be filled uniquely with a flat convex set which forms a totally geodesic
S2 in M � .

It remains to show that a horizontal lift of S2 “closes up” to a compact immersed flat
surface. We look at a fixed point p1 2M � . Let v1 be the initial direction to another
fixed point and v2 and v3 the other two. In case that †p1

M � has one singular point it
must be an initial direction and we assume it to be v1 . From the equality discussion it is
clear that the initial directions of geodesics in S2 can be parametrized by a geodesic loop
cW Œ0; ��!†p1

M � of length � with c.0/D v1 (a great circle). We can assume that
c.†.v1; v2//D v2 and c.� �†.v1; v3//D v3 . We now look at the unit sphere T 1p1

M

and the natural (orbifold) Riemannian submersion T 1p1
M!†p1

M � . We let  denote a
horizontal lift of c . Clearly  is a semicircle and .0/; .†.v1; v2//; .��†.v1; v3//
as well as .�/D�.0/ are initial directions of minimal geodesics to the other fixed
points. We must have equality in Toponogov’s theorem and thus the two-dimensional
half plane �C containing the semicircle  is tangent to a flat surface with boundary.
Moreover the element �1 2 S1 maps the half plane �C to �� D f�w j w 2 �Cg.
Therefore it is clear that � D �C [ �� is tangent to a totally geodesic flat surface.
The action of �1 on � is either given by � idj� or by a reflection at the line R.0/,
depending on whether v1D˛..0// corresponds in †p1

M � to an odd or even orbifold
singularity.

Since we can do this at each fixed point it is clear that we get a totally geodesic immersion
of R2 into M . If we keep track of the (unoriented) tangent space at each point, the
immersion induces an immersion of R2 into the Grassmannian of planes Gr2 TM of
M whose image is given by an injectively immersed flat manifold F � Gr2 TM . We
want to show that F is compact. The group S1 acts via the differentials of isometries
on Gr2 TM and from the above discussion it is clear that �1 2 S1 leaves F invariant.
Furthermore, if � is a plane in F based at one of the fixed points pi then � is fixed
by �1. If †pi

M � has no or only an odd orbifold singularity then the fixed point � is
isolated in F . Otherwise the fixed-point component is 1–dimensional.

It is clear that the number l of points in p1; : : : ; p4 whose space of direction in M �

has an even orbifold singularity is even. If l D 0, then F=˙ 1 is a two-dimensional
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flat orbifold with at least four isolated singularities, since F intersects each of the
four submanifolds Gr2 Tpi

M at least once. It is elementary (and also follows from
the above discussion) that there can only be four such singularities and equality can
only occur in the compact case. Thus F is compact and the projection map F !M

is injective.

If lD2, then F=˙�1 is a two-dimensional flat orbifold with nontrivial totally geodesic
boundary and at least two orbifold singularities in the interior. It is again clear (by
doubling) that no additional singularties can occur and F=˙ 1 hence F has to be
compact.

If l D 4 then F=˙ 1 corresponds to smooth flat surface with two totally geodesic
boundary components, such a manifold is isometric to I �S1 or I �R, where I is
a compact interval. We have to show that the latter cannot occur. Going back to the
above notation this case corresponds to the case that .0/ is fixed by �1. Thus .0/ is
tangent to the fixed-point set �1 which is a totally geodesic 2–sphere endowed with a
cohomogeneity-one metric (coming from the S1 action). This implies that the geodesic
h.s/D exp.s.0// closes up, h0.l/D .0/ for some l .

The parallel transport along hŒ0;l� maps the plane � to another plane z� , that like �
has to be spanned by two minimal geodesics to other fixed points which are tangent
to a horizontal flat hinge. If we have .0/ D h0.l/ as one initial vector, the choice
of such a hinge amounts to choosing the different possible lifts of the geodesic loop
c 2†p1

M � with initial point .0/. Since an orbifold singularity is present, there is
more than one choice but there are clearly only finitely many. This shows that for some
positive integer k the parallel transport of hjŒ0;kl� maps  0.0/ to itself. Therefore the
lift of ˛ to the Grassmannian Gr2M also closes. Hence the fixed-point set of �1 in
F contains a circle and we can not have F=˙ 1Š I �R.

Remark 4-3 (a) In the situation of Theorem 4-1(a) one can use the soul theorem to
see (without using the Poincaré conjecture) that either side of the S2 is given by a
3–disc, see also Remark 5-6(b).

(b) There are nonnegatively curved metrics (Müter metrics) on S2 �S2 with an S1–
symmetry for which S2�S2=S1 has positive curvature outside a set of codimension 1.

(c) Theorem 4-1 remains valid if M is replaced by a nonnegatively curved 4–dimen-
sional orbifold with Euler characteristic four. Recall that by a result of Martin Kerin [11,
Theorem 2.4] there are a lot of 4–dimensional orbifolds of Euler characteristic four
which have positive sectional curvature on an open dense set. These orbifolds have an
S1 symmetry with four isolated fixed points.

Geometry & Topology, Volume 18 (2014)



A knot characterization and 4–manifolds 3103

5 Knots arising as extremal subsets in 3–dimensional
Alexandrov spaces

Throughout this section we let X denote the 3–sphere endowed with an arbitrary Alex-
androv metric of nonnegative curvature, and c �X an extremal subset homeomorphic
to S1 . Recall that c being extremal means that for any point p 2 X n c , any point
q 2 c with d.p; q/D d.p; c/ is a critical point of the distance function d.p; � /. Such
sets play an important role in Alexandrov geometry; see [17] for further information.

The question we answer in this section is: Which knots can arise in this way? We
will first show that the question is equivalent to asking for which knots c in X is the
two-fold branched cover X2.c/ a spherical space form.

To see this we need generalizations of Lemmas 2-3 and 2-4.

Lemma 5-1 An extremal closed curve c �X is a locally flat 1–dimensional subman-
ifold.

Proof As in the proof of Lemma 2-4 it suffices to see that for each point of c , a
sufficiently small ball is homeomorphic to the corresponding ball in its tangent cone
by a homeomorphism taking the intersection of c with the ball to the corresponding
extremal curve in the tangent cone. The latter is of course the intersection of the ball
with the cone of the space of directions of c , which is a pair of extremal points in the
space of directions of X at the point. The claim is a direct consequence of the relative
stability theorem due to Kapovitch [10, Theorem 9.2] via scaling.

Lemma 5-2 X2.c/ is an Alexandrov space with nonnegative curvature.

Proof For a 2 c , the tangent cone TaX2.c/ exists and is a two-fold branched cover
of TaX . It is easy to see that the space of directions †aX2.c/ of X2.c/ at a is an
Alexandrov space of curvature � 1 whose projection to the space of directions of X at
a is a two-fold branched cover. The branching locus of the cover in †aX2.c/ is given
by two points corresponding to the two directions in Tac .

Clearly geodesics in the two-fold branched cover � WX2.c/!X are nonbranching and
even more two minimal geodesics c1; c2W Œ0; 1�!X2.c/ with the same initial direction
coincide.

Step 1 Toponogov’s theorem holds for any hinge in X2.c/ based at a point a 2 c .

We consider the gradient exponential map gexpaWTaX !X due to Petrunin [17]. It
is 1–Lipschitz and equal to the usual exponential map at all points where the latter is
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defined. Since the gradient of the distance function d.q; � / is tangential to c along cnq ,
it follows that if v 2†aX satisfies gexp.t0v/ 2 c for some t0 > 0 then gexp.tv/ 2 c
for all t > t0 . This in turn shows that for any lift yv 2 †aX2.c/ of v we can find a
unique continuous lift of gexp.tv/ (t � 0) to a continuous curve bgexp.tv/. It is then
easy to see that bgexpaWTaX2.c/!X2.c/ is 1–Lipschitz. In fact one can distinguish
between two cases. If w 2 TaX2.c/ with bgexp.w/ … c then bgexp is 1–Lipschitz in a
neighborhood of w since it is a lift of gexp. If w 2 TaX2.c/ with bgexp.w/ 2 c then

d
� bgexp.w/; bgexp.v/

�
D d

�
gexp.��w/; gexp.��v/

�
� d

�
��v; ��w

�
� d.v;w/:

Clearly bgexpa coincides with the usual exponential map for all points where the latter
is defined. If v;w 2 TaX2.c/ are the initial vectors of a hinge in X2.c/, then the
Euclidean comparison hinge is isometric to the hinge spanned by v and w in TaX2.c/
(based at the cone point). Since bgexpa is 1–Lipschitz it maps the opposite side of the
hinge to a shorter curve and the comparison follows.

Step 2 Let q 2X2.c/ n c and S the set of all points s 2X2.c/ for which a minimal
geodesic from q to s passes through c . Then S has measure zero.

We let ch denote the subset of all points s 2 c such that the minimal geodesic qs
from q to s continues to be minimal if we extend it by h > 0.

There is a map fhW ch! S that sends s D qs.d.q; s// to the point qs.d.q; s/Ch/.

We finish by showing this map is locally Lipschitz. Put "0 D 1
3

minf1; h; d.q; c/g.
More precisely we plan to show that for two points s; s0 2 ch with d.s; s0/ � "0 we
have d.fh.s/; fh.s0//� 4h

"0
d.s; s0/.

Let v 2 TsX2.c/ be the initial vector of the minimal geodesic to fh.s/, u 2 TsX2.c/
the initial vector of the minimal geodesic to q and x 2 TsX2.c/ the initial vector of a
minimal geodesic from s to s0 . Of course the minimal geodesic in TsX2.c/ passes
through the cone point and therefore the triangle spanned by u; v and x is Euclidean.
By assumption we know that jxj D d.s; s0/� "0� 1

3
minfjuj; jvjg. This in turn implies

that we can estimate the defect in the triangle inequality

d.u; x/C d.v; x/� .jujC jvj/�
jxj2

"0
:

Since the g exponential map bgexps is 1–Lipschitz, we obtain

d.s0; fh.s//C d.s
0; q/� d.q; fh.s//�

d.s; s0/2

"0
:

By Step 1, we can apply the hinge version of Toponogov’s theorem to the triangle
.fs.h/; q; s

0/ to see that the angle between the minimal geodesic from s0 to fs.h/ and
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the minimal geodesic from s0 to q is given by � �' with

' �
2d.s; s0/

"0
:

Next notice that ' is the angle between the minimal geodesic from s0 to fh.s/ and
the minimal geodesic from s0 to fh.s0/. Using Step 1 once more and d.s0; fh.s//�
hC d.s; s0/ we see that

d.fh.s/; fh.s
0//�

2d.s; s0/h

"0
C d.s; s0/� 4

d.s; s0/h

"0
:

Step 3 Toponogov’s theorem holds in X2.c/.

Notice that any geodesic in X2.c/ is the limit of geodesics which do not meet c . It is
well known that Toponogov’s theorem is equivalent to saying that for all q in X2.c/
the function f .p/D d.p; q/2 satisfies Hess.f /� 2 in the sense of support functions,
ie f ı .t/� t2 is concave for any unit speed geodesic  W Œa; b�!X2.c/.

Clearly we may assume that  and q are generic. Thus we may assume that .t/ does
not meet the branching locus and (by Step 2) that the set of parameters t for which a
minimal geodesic from q to .t/ intersects c forms a set of measure zero.

Since X2.c/ is in a neighborhood of the image of c an Alexandrov space it follows
that Hess.f /..t//� C for all t 2 Œa; b� for some large C . Thus it suffices to prove
that Hess.f /..t//� 2 for all t for which a minimal geodesic ˛ from q to .t/ does
not meet the branching locus c �X2.c/. This in turn one can establish analogous to
the usual globalization theorem of Toponogov’s comparison statement.

We are now ready to analyze our question. As mentioned above our point of departure
is the following lemma.

Lemma 5-3 The two-fold branched cover X2.c/ of X has finite fundamental group
and H1.X2.c/;Z2/D 0.

Proof We view H1.X2.c/;Z2/ as vector space over Z2 . Suppose for the moment it
is not 0–dimensional.

Let � denote the involutive isometry of X2.c/ given by the nontrivial deck transforma-
tion of the branched cover. The automorphism H1.�/ of H1.X2.c/;Z2/ induced by
� then leaves some subspace V �H1.X2.c/;Z2/ of codimension 1 invariant. Since
H1.X2.c/;Z2/ Š …=hfg2 j g 2 …gi is a quotient of … WD �1.X2.c//, this in turn
shows that … contains a subgroup …0 of index 2 which is invariant under the natural
action of �1.�/.
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Consider next the action of … on the universal cover AX2.c/. We can also lift � to an
isometry z� of the universal cover with a nontrivial fixed-point set.

Let � be the group generated by z� and …. By construction �=…Š Z2 acts as � on
X2.c/. Let g 2� be an element with a nontrivial fixed-point component L. The image
of L in X2.c/ must coincide with the image of the fixed-point set of �. This shows
that there must be a deck transformation h 2… which maps L to the fixed-point set
of z�. In other words h�1z�h fixes L. But then the differential of g and h�1z�h must
coincide along L, namely they are given by the identity on TpL and by � id on the
normal bundle of L. Thus g D h�1z�h is in the same conjugacy class as z�.

Let y� be the normal subgroup generated by the conjugacy class of z� in � . Finally let
� 0 be the group generated by z� and the subgroup …0 which is normalized by z�. Since
� 0 has index two in � it is normal and thus y� � � 0 ¤ � .

As shown above any element in � with a nontrivial fixed-point set is in the conjugacy
class of z� and hence in y� . Thus the group �=y� acts freely on AX2.c/=y� and X D
AX2.c/=� is not simply connected; a contradiction.

Hence H1.X2.c/;Z2/D 0. Using that X2.c/ is a topological manifold with a non-
negatively curved Alexandrov metric we see that either �1.X2.c// is finite, X2.c/
is two-fold covered by S1 � S2 or X2.c/ is a flat Riemannian manifold. Since
H1.X2.c/;Z2/ is nontrivial for the latter two cases (see [22, Theorem 3.5.5]) we
conclude that �1.X2.c// is finite.

Using the equivariant elliptization conjecture we know that X2.c/ is a spherical space
form endowed with a linear involution whose fixed-point set is a circle. In addition
X2.c/ is a Z2–homology 3–sphere.

Lemma 5-4 Let S3=… be a spherical space form which is also a Z2 homology sphere.
Then there is a linear involution � (unique up to conjugation) whose fixed-point set is
a circle. Moreover the underlying topological space of the quotient S3=h…; �i is the
3–sphere.

Proof By assumption the abelianization …=Œ…;…� has no two torsion. Recall that
the finite groups …� SO.4/ that act freely on S3 are conjugate to subgroups of U.2/.
If we divide out the center of U.2/ we get a homomorphism …! SO.3/ whose kernel
is central in …. By the classification of finite subgroups of SO.3/ the image is either
cyclic, dihedral or given as the orientation-preserving symmetries of one of the platonic
solids.

If the image is cyclic then … is abelian (as a central extension of a cyclic group), and
since … acts freely this in turn implies that … itself is cyclic. Since …=Œ…;…� has no
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two-torsion, the image of … in SO.3/ can not be dihedral and it can neither be given
as the orientation-preserving symmetries of a octagon (or the dual cube).

This leaves us with three cases, … is either cyclic (Case 1), of tetrahedral type (Case 2)
or of icosahedral type (Case 3). In the last two cases we will also use that the greatest
common divisor of the orders of the subgroups …\SU.2/ and …\Center.U.2// is
at most 2, as otherwise the action would not be free.

In all cases we establish first the existence of � and it will be clear from the construction
that � fixes at least one circle. In all cases this implies that the fixed-point set in S3=…
is equal to a circle because by a theorem of Floyd the total Z2–Betti number of the
fixed-point set of � is bounded by the Z2–Betti number of S3=…, which is 2 by
assumption.

Case 1 (Cyclic case) Here … is a cyclic group of odd order m. Let � 2 S1 be
a primitive m–root of unity We may assume that for some integer p (prime to m)
the action of … is generated by � ? .z1; z2/ D .�z1; �pz2/, where z1; z2 2 C with
jz1j

2Cjz2j
2 D 1.

We let z� denote complex conjugation. Clearly z� normalizes the action of …. The group
generated by … and z� is a dihedral group which is generated by elements which are
conjugate to z�.

Since … is generated by elements with a nontrivial fixed-point set the underlying
topological space of S3=hz�;…i is simply connected and hence a 3–sphere. The
involution �WS3=… ! S3=… induced by z� fixes at least one circle. As explained
above this implies that the fixed-point set is given by a circle. The uniqueness of �
follows from the fact that � has to anticommute with the action of ….

Case 2 (Tetrahedral case) We can assume …�U.2/�SO.4/. We let y…� S3�S1�

S3 � S3 D Spin.4/ denote the inverse image. We assume that S1 � S3 is the image of
the one-parameter group ei' .

Then we can find a number m coprime to 6 and an integer k � 0 with k ¤ 1 such that
y… is the smallest group satisfying the following:

(i) y… contains the cyclic subgroup of order 2m in 1� S1 .

(ii) For one primitive .3k/th root of unity � 2 S1 (if k D 0 this means � D 1), …
contains the element .1

2
.1C i C j C k/; �/ 2 S3 � S1 .

(iii) … contains the group f˙1;˙i;˙j;˙kg � f1g � S3 � S1 .
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We put y� WD ..iCj /=
p
2; j / 2 S3�S3 . It is straightforward to check that y� normalizes

y…. Clearly the image z� of y� in SO.4/ and corresponds again to a complex conjugation
and thus fixes a circle in S3 . It is easy to see that the group � WD h…;z�i is generated
by the conjugacy class of z�.

Thus S3=h…;z�i is again a sphere.

As before the map �WS3=…! S3=… has the desired properties.

The uniqueness follows from the fact that z� normalizes … and that the conjugacy class
of z� generates h…;z�i.

Case 3 (Icosahedral case) We can assume …�U.2/�SO.4/. We let y…� S3�S1�

S3�S3DSpin.4/ denote the inverse image. We assume that S1�S3 is the image of the
one-parameter group ei' . In this case y… is a product subgroup y…D…1�…2�S3�S1 ,
where …1 is the binary icosahedral group and …2 is a cyclic subgroup of order 2m
with m being an integer coprime to 30. The binary icosahedral group …1 is the group
generated by

˙i; ˙j; ˙k; ˙1; i C j
p
2; 1

2
.1CiCjCk/; iC 1

2
.1C
p
5/jC 2

1C
p
5
k:

It has order 120 and its only normal subgroup is given by ˙1.

We put y� WD .j; j /. Clearly y� normalizes y…. We consider in h y…;y�i the subgroup y�
generated by the conjugacy class of y�. The projection of y� to S3 � f1g is given by
a normal subgroup of …1 generated by the conjugacy class of j in …1 . Since …1
has no nontrivial normal subgroups of order larger than 2 we deduce that y� projects
surjectively to …1 . Using that the commutator group of …1 is equal to …1 and that the
second commutator group of y� is contained in S3�1 we see that y� contains …1�f1g.
Moreover it is clear the projection of y� to f1g � S3 contains …2 . In summary this
proves y� D h y…;y�i. The image z� of y� in SO.4/ is again a complex conjugation and one
can finish the argument as before.

Corollary 5-5 If c is a closed embedded curve in AD S3 which is an extremal set
with respect to a nonnegatively curved Alexandrov metric then we can find an orbifold
metric S3 of constant curvature 1 such that the only orbifold singularity is of Z2 type
and the singular locus is given by c . Moreover these orbifolds are classified in the proof
of Lemma 5-4.

Remark 5-6 (a) In the special case that � is a cyclic group of odd order, the cor-
responding knots arising are, by work of Seifert, the so called two bridge knots. By
Milnor, two bridge knots in R3 are exactly those knots which for any "> 0 are isotopic
to knots with total curvature � 4� C ". In all cases, the Hopf S1 action gives rise to a
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Seifert fibered structure on the space form S3=…DX2.c/ preserved by the involution
� induced from complex conjugation whose fixed-point set is c . The knot c in the
3–sphere X2.c/=� is explicitly described by Montesinos via the Seifert invariants of
the fibration (see [18]). In particular we mention that c is the .3; 5/–torus knot in the
special case where X2.c/D S3=… is the Poincaré homology sphere.

(b) In his PhD thesis, Wolfgang Spindeler [20] showed that a quotient X of a simply
connected nonnegatively curved 4–manifold by an isometric S1 action is the Gromov–
Haussdorff limit of positively curved three manifolds. If X contains a closed curve
c in its singular set then one can also find a sequence of smooth positively curved
orbifold structures on X (Gromov–Hausdorff converging to the quotient metric) such
that the only orbifold singularity is a Z2 singularity along c . In particular each of
these metrics induces a smooth Riemannian metric on X2.c/. This in turn allows that
the equivariant classification of the corresponding 4–manifolds can also be proved
without using Perelman’s solution of the Poincaré conjecture and the Z2–equivariant
version. Instead one can then just refer to Hamilton’s classification [8] of positively
curved 3–manifolds.
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