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Ozsváth–Szabó invariants of contact surgeries

MARCO GOLLA

We give new tightness criteria for positive surgeries along knots in the 3–sphere,
generalising results of Lisca and Stipsicz, and Sahamie. The main tools will be
Honda, Kazez and Matić’s, and Ozsváth and Szabó’s Floer-theoretic contact invariants.
We compute Ozsváth–Szabó contact invariant of positive contact surgeries along
Legendrian knots in the 3–sphere in terms of the classical invariants of the knot. We
also combine a Legendrian cabling construction with contact surgeries to get results
about rational contact surgeries.

57R17; 57R57

1 Introduction

Every contact manifold falls in one of two families: overtwisted or tight. Eliashberg [8]
classified overtwisted contact structures on 3–manifolds according to the homotopy
type of the underlying plane field, showing that overtwisted structures are in some
sense simple. The classification of tight contact structures, on the other hand, provides
us with a much harder task, and many questions remain open: Which 3–manifolds do
support tight contact structures? If they do, how many up to isotopy? And how can we
describe them?

Many tools have been developed to detect tightness; among them, Ozsváth and Szabó’s
Floer-theoretic invariant c , living in the ‘hat’ flavour of Heegaard–Floer (co)homology
of the underlying manifold: the set of contact structures with c ¤ 0 sits in a chain of
inclusions between the set of Stein fillable and the set of tight contact structures [38].

Lisca and Stipsicz [28; 29; 30] extensively used this tool and the surgery exact sequences
in Heegaard–Floer homology to produce examples of tight contact structures on several
manifolds, chiefly obtained by surgery on S3 along a knot. The twisted version of c

has been used, for example, by Ghiggini and Van Horn-Morris [14] to classify tight
contact structures on some Brieskorn spheres. Vanishing results for these invariants
have been given by Sahamie [47].

Recall that for any knot K�S3 , Ozsváth and Szabó defined two concordance invariants
�.K/; �.K/ 2 Z such that �.K/ � �.K/ � �.K/C 1. On the other hand, to any

Published: 27 February 2015 DOI: 10.2140/gt.2015.19.171

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57R17, 57R57
http://dx.doi.org/10.2140/gt.2015.19.171


172 Marco Golla

Legendrian knot L� .S3; �/, we can associate two other integers, tb.L/ and r.L/,
the Thurston–Bennequin and the rotation number respectively: these two and the
topological type of L are collectively called the classical invariants of L.

Finally, recall that there are two possible contact structures that are obtained as contact
n–surgery on a given Legendrian L, and we will denote them with �˙n .L/. We can
now state our main theorem:

Theorem 1.1 Let L be an oriented Legendrian knot in the standard contact struc-
ture �st on S3 and let K be the topological type of L.

For positive n, ��n .L/ has nonvanishing contact invariant if and only if the following
hold:

(SL) tb.L/� r.L/D 2�.K/� 1.

(SC) nC tb.L/� 2�.K/.

(TN) �.K/D �.K/.

Moreover, if L0 is another Legendrian knot with the same classical invariants (whether
or not the three conditions hold), then c.��n .L

0//D c.��n .L//.

Remark 1.2 There is an action of M.Y / WD MCG.Y nB; @B/, the mapping class
group of Y with a ball removed, relative to the boundary, on cHF.�Y /; see Juhász
and Thurston [23]. The contact invariants c.�/ 2 cHF.�Y /, c.� 0/ 2 cHF.�Y 0/ of two
contact manifolds .Y; �/, .Y 0; � 0/, with Y diffeomorphic to Y 0 , can only be compared
using a diffeomorphism Y nB! Y 0 nB0 . Any two such diffeomorphisms differ by an
element of M.Y /.

The equality c.��n .L
0//D c.��n .L// has to be taken as saying that there is a diffeomor-

phism
S3

tb.L/Cn.L/ �! S3
tb.L/Cn.L

0/

that takes c.��n .L
0// to c.��n .L//; this is equivalent to both of them lying in the same

orbit of the action of M.S3
tb.L/Cn

.K// on cHF.�S3
tb.L/Cn

.K//.

Remark 1.3 As a mnemonic trick, the abbreviations SL, SC and TN stand for “self-
linking”, “surgery coefficient” and “tau-nu” respectively.

Since tb.L/� r.L/ is the self-linking number sl.T / of the transverse pushoff T of L,
the first condition can be interpreted as a transverse condition on T .

The second condition is a condition on the pair (Legendrian knot, surgery coefficient)
.L; n/; it can also be read as nC tb.L/� sl.L/C 1 or n� 1� r.L/.
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The third condition could be absorbed in the first one if we just replaced � by � in (SL)
since �.K/ is either �.K/ or �.K/C 1; on the other hand, the first condition is of
contact-geometric nature, while the third is of Floer-theoretical nature, and we will
realise along the proof that they really are two separate conditions rather than one.

In other words, the contact invariant of an integral surgery along L� .S3; �st/ does
not contain more information about L than the classical invariants, and in particular
cannot distinguish surgeries along non-Legendrian isotopic knots that share the same
classical invariants.

Remark 1.4 As we will see in Section 4, the “positive” contact surgery �Cn .L/ is
isotopic to ��n .�L/: the only condition that gets affected by orientation reversal of L

is (SL), so we get an analogous statement about c.�Cn .L// if we replace it with the
condition tb.L/C r.L/D 2�.K/� 1.

Example 1.5 Let us consider the knot 820 . It has genus g.820/D1, but its slice genus
is g�.820/D 0 (which in turn implies also �.820/D �.820/D 0). On the other hand,
its maximal Thurston–Bennequin number is tb.820/D�2 and its maximal self-linking
number is sl.820/D�1. In particular, our Theorem 1.1 applies here, whereas neither
the main result in [28] or [30] does. We can therefore exhibit new examples of tight
contact structures on the manifolds S3

q .820/ for all q � 0 rational (see Corollary 1.6).

The knot m.10125/ has �.m.10125//D�g�.m.10125//D�1 and sl.m.10125//D�3:
the first equality implies that �.m.10125//D 0. In particular, (TN) does not hold for
m.10125/, but it has a Legendrian representative for which (SL) does hold. We are
grateful to Lenny Ng for this example.

As a byproduct of the proof of Theorem 1.1, without much effort, we get:

Corollary 1.6 If �.K/D�.K/�1 (resp. �.K/D�.K/D0) and there is a Legendrian
representative L of K that satisfies (SL), then for all q > 2�.K/� 1 (resp. q � 0) the
manifold S3

q .K/ supports a tight contact structure.

Notice that the hypothesis �.K/ D �.K/ holds, for example, if tb.L/ � r.L/ D

2g�.K/� 1, and more generally it holds whenever �.K/D g�.K/ (see Remark 6.19).

In [30], a new transverse invariant zc was also defined. Given a transverse knot T in
.Y; �/, for sufficiently large f we can define contact surgery along T with framing f ,
and take the inverse limit of the contact invariants of these objects. Since we have
complete control on these contact invariants for T � S3 , we can draw the following
corollary:
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Corollary 1.7 Given T in .S3; �/ of topological type K , the transverse invari-
ant zc.T / is nonzero if and only if � D �st , sl.T / D 2�.K/� 1 and �.K/ D �.K/.
Moreover, if T 0 is another transverse knot of the same topological type of T with
sl.T 0/D sl.T /, then, up to the action of MCG.S3 nK/, zc.T 0/D zc.T /.

The proof of Theorem 1.1 has an algebraic flavour, with a topological input coming
from a Legendrian cabling construction.

Organisation The paper is organised as follows. In Section 2 we introduce some
standard background in Heegaard–Floer homology, sutured Floer homology, contact
invariants and gluing maps. Section 3 is devoted to the study of some sutured Floer
homology groups and some gluing maps between them. In Section 4 we prove some
useful lemmas about contact surgeries and stabilisations; in Section 5 we discuss a
Legendrian cabling construction and its interactions with contact surgeries. Finally,
Section 6 contains the proof of Theorem 1.1 and its corollaries; we defer the proof of
some technical lemmas to Section 7.

Acknowledgments I owe much gratitude to my supervisor, Jake Rasmussen: he
suggested that I could think about this problem and patiently supported me. I would
like to thank Matthew Hedden for pointing out a mistake in an earlier version, and for
some insight on its solution; Lenny Ng for providing me with some numerical data
and some references; Paolo Ghiggini, Jonathan Hales, Robert Lipshitz, Paolo Lisca,
Olga Plamenevskaya, András Stipsicz for interesting conversations; and the anonymous
referee for useful comments.

Most of this work was done while I was visiting the Simons Center for Geometry and
Physics in Stony Brook; I acknowledge their hospitality and support. The author has
been supported by the ERC grant LDTBUD.

2 Sutured Floer homology and gluing maps

2.1 Sutured manifolds

The definition of balanced sutured manifold is due to Juhász [22].

Definition 2.1 A balanced sutured manifold, is a pair .M; �/, where M is an oriented
3–manifold with nonempty boundary @M and � is a family of oriented curves in @M
that satisfies:

�
S
� intersects each component of @M .

�
S
� disconnects @M into RC and R� with ˙�D@R˙ (as oriented manifolds).

� �.RC/D �.R�/.
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Remark 2.2 The condition �.RC/D �.R�/ is called the balancing condition. Since
this is the only kind of sutured manifold we are dealing with, we prefer to just drop the
adjective “balanced”.

Example 2.3 Any oriented 3–manifold M with S2 –boundary can be turned into a
sutured manifold .M; f g/ by choosing any simple closed curve  in @M . We will
often write M D Y .1/, where Y DM [@ D3 is the “simplest” closed 3–manifold
containing M .

For every p=q 2 Q [ f1g, we have a sutured manifold S3
K ;p=q given by pairs

.S3 nN.K/, fp=q;�p=qg/, where p=q is an oriented curve on the boundary torus
@N.K/ of an open small neighbourhood N.K/ of K . The slope of p=q is q�SCp�,
and �p=q is a parallel pushoff of p=q , with the opposite orientation. Here �S denotes
the Seifert longitude of K . We will use the shorthand �p=q for fp=q;�p=qg.

Example 2.4 To any Legendrian knot L� .Y; �/ in an arbitrary 3–manifold Y one can
associate in a natural way a sutured manifold, that we will denote by YL , constructed as
follows: There is a standard (open) Legendrian neighbourhood �.L/ for L, with convex
boundary. The dividing set �L on the boundary consists of two parallel oppositely
oriented curves parallel to the contact framing of L. The manifold YL is then defined
as the pair .Y n �.L/; �L/. In the case we are mainly interested in, where Y D S3

and L is of topological type K , we have S3
L D S3

K ;tb.L/ . More generally, the same
identification, fframingsg$Z, can be made canonical whenever K is nullhomologous
in a rational homology sphere Y (that is H2.Y /D 0), and we then have YLDYK ;tb.L/ .

We will often use YL also to denote the contact manifold with convex boundary
.Y n �.L/; �jY n�.L// without creating any confusion.

There is a decomposition/classification theorem for sutured manifolds, completely
analogous to the Heegaard decomposition/Reidemeister–Singer theorem for closed
3–manifolds. Consider a compact surface † with boundary and a collection of simple
closed curves ˛;ˇ � † such that no two ˛–curves intersect and no two ˇ–curves
intersect; suppose moreover that j˛j D jˇj. We can build a balanced sutured manifold
out of this data as follows: Take † � Œ0; 1�, glue a 2–handle on † � f0g for each
˛–curve and a 2–handle on †� f1g for each ˇ–curve, and let M be the manifold
obtained after smoothing corners; declare �D @†�f1

2
g. The pair .M; �/ is a balanced

sutured manifold, and .†;˛;ˇ/ is called a (sutured) Heegaard diagram of .M; �/.

Theorem 2.5 [22] Every balanced sutured manifold admits a Heegaard diagram, and
every two such diagrams become diffeomorphic after a finite number of isotopies of
the curves, handleslides and stabilisations taking place in the interior of the Heegaard
surface.
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There is one further description of a sutured manifold, relying on arc diagrams: An arc
diagram Ha is a quintuple .†;˛;ˇa;ˇc ;D/, where † is a closed surface, ˛ and ˇc

are sets of simple closed curves in †, with ˛ linearly independent in H1.†/, D is a
closed disc disjoint from .

S
˛/[.

S
ˇ/ and ˇc is a set of pairwise disjoint closed arcs

in † n Int.D/ with endpoints on @D (and elsewhere disjoint from D ), each disjoint
from every ˇ–curve. We ask that j˛j D g D g.†/ and jˇcjC jˇaj D g .

We build a sutured manifold out of Ha in the following way: The set of ˛–curves
determines the attaching circles of g 2–handles on †� f0g �†� Œ0; 1�; we attach a
3–handle (a ball) to fill up the remaining component of the lower boundary; the set ˇc

of ˇ–curves determines the attaching circles of 2–handles on † � f1g. We define
M to be the manifold obtained by smoothing corners after these handle attachments;
notice that D is an embedded disc in @M and ˇc is a set of embedded arcs in @M .
Let RC be a small neighbourhood of D[ˇc that retracts onto it and � D @RC .

Lemma 2.6 (Zarev [50]) Every sutured manifold with connected RC admits an arc
diagram.

Remark 2.7 Our definition of arc diagram is not related to Zarev’s notion of arc
diagrams (that describe surfaces with dividing curves); our arc diagrams are related to
his bordered sutured diagrams.

2.2 The Floer homology packages

This is meant to be just a recollection of facts about the Floer homology theories we
will be working with. The standard references for the material in this subsection are
Ozsváth and Szabó [36; 37] and Lipshitz [25] for the Heegaard–Floer part and [22] for
the sutured Floer part.

In order to avoid sign issues, we will work with F D F2 coefficients.

Consider a pointed Heegaard diagram HD .†g;˛;ˇ; z/ representing a 3–manifold Y ,
and form two Heegaard–Floer complexes cCF.Y / and CF�.Y /: the underlying mod-
ules are freely generated over F and F ŒU � by g–tuples of intersection points inS

i;j .˛i \ ǰ /, so that there is exactly one point on each curve in ˛[ˇ .

The differentials y@; @� are harder to define, and count certain pseudoholomorphic discs
in a symmetric product Symg.†g/, or maps from Riemann surfaces with boundary in
†g � R � Œ0; 1�, with the appropriate boundary conditions. The homology groupscHF.Y / D H�.cCF.Y /; y@/ and HF�.Y / D H�.CF�.Y /; @�/ so defined are called
Heegaard–Floer homologies of Y and are independent of the (many) choices made
along the way [37].
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Sutured Floer homology is a variant of this construction for sutured manifolds .M; �/.
The starting point is a sutured Heegaard diagram H D .†;˛;ˇ/ for .M; �/. We
form a complex SFC.M; �/ in the same way, generated over F by d –tuples of
intersection points as above, where d D j˛j D jˇj. The differential @ is defined by
counting pseudoholomorphic discs in Symd .†/ or maps from Riemann surfaces to
†�R� Œ0; 1�, again with the appropriate boundary conditions.

The homology SFH.M; �/DH�.SFC.M; �/; @/ is called the sutured Floer homology
of .M; �/, and is shown to be independent of all the choices made [22]. It naturally
corresponds to a “hat” theory.

There is one more description of sutured Floer homology, due to Zarev [50], coming
from arc diagram representations: Given a balanced sutured manifold .M; �/ with
RC connected, we can form a Floer complex starting from an arc diagram associated
to it. The underlying module is free over the g–tuples of intersection points between
˛–curves and ˇ–curves and arcs as above; the differential counts holomorphic discs in
the symmetric product with boundary on these curves, such that the multiplicity at the
regions touching the base-disc D are all 0.

If RC is not connected, then .M; �/ is a product disc decomposition of a manifold
.M 0; � 0/ with R0C connected. Juhász showed that SFH.M; �/ D SFH.M 0; � 0/, so
we can compute SFH.M; �/ using an arc diagram for .M 0; � 0/.

Proposition 2.8 [22] For a closed 3–manifold Y , cHF.Y /D SFH.Y .1//.

For a knot K in a closed 3–manifold Y , bHFK .Y;K/ D SFH.YK ;1/ (that is, the
sutures are parallel to the meridian of K in Y ).

One key feature of Heegaard–Floer homology is a TQFT-like behaviour: given a
four-dimensional cobordism W W Y1 Y2 , to each Spinc –structure t 2 Spinc.W / we
associate a map FW ;tW

cHF.Y1/! cHF.Y2/; only a finite number of Spinc –structures
induce a nontrivial map (see Ozsváth and Szabó [39]), so it makes sense to define the
total cobordism map FW D

P
FW ;t . We will be dealing with cobordisms induced by

a single (four-dimensional) 2–handle attachment. In this case, the total cobordism map
can be described explicitly as follows.

In such a cobordism, Y2 is obtained from Y1 as an integral surgery along a knot K ,
and in particular Y1 and Y2 can be represented as two Heegaard diagrams .†;˛;ˇ/
and .†;˛;/ such that the curves 2; : : : ; g in  are obtained from ˇ2; : : : ; ˇg

respectively by a small Hamiltonian perturbation. The two remaining curves ˇ1 and 1

represent a pair (meridian, longitude) on the boundary of a neighbourhood of K , and
in particular they intersect exactly once. There is a canonical intersection point ‚
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in .†;ˇ;/, that corresponds to the top Maslov degree element in cHF.†;ˇ;/DcHF.#g�1
.S1 �S2//.

The map CF.Y1/! CF.Y2/ associated to this handle attachment counts pseudoholo-
morphic triangles in Symg.†/ or maps from Riemann surfaces to †�� (� being
a standard triangle), again, with appropriate boundary conditions and involving the
point ‚ .

One can also compute every single FW ;t : the domain associated to each holomorphic
triangle has a well-defined Spinc –structure, and we restrict our sum to the triangles
whose structure is t.

Arguably, one of the most useful features of Heegaard–Floer homology is the surgery
exact triangle:

Theorem 2.9 [36] Given a knot K in a 3–manifold Y and three slopes f;g; h 2
H1.@N.K// such that f � g D g � h D h � f D 1, there are three maps induced by
appropriate integral surgeries, such that the triangle

cHF.Yf .K// // cHF.Yg.K//

wwcHF.Yh.K//

gg

is exact. In particular, this holds when K is nullhomologous, f D1, g is integral
and hD gC 1.

2.3 Floer-theoretic contact invariants

The first contact invariant to be defined in Heegaard–Floer homology was Ozsváth
and Szabó’s c [38]. The definition that we give here was given by Honda, Kazez and
Matić [21], and lead to the fruitful extension to invariants for manifolds with convex
boundary, called EH , living in sutured Floer homology.

Since the latter is a strict generalisation of the former, we just give the definition of
EH : if � is a contact structure on Y , c.�/ is equivalent to EH.� 0/, where � 0 is the
restriction of � to Y nB and B is a small Darboux ball.

Definition 2.10 A partial open book is a triple .S;P; h/ where S is a compact open
surface, P is a proper subsurface of S which is a union of 1–handles attached to S nP

and hW P ! S is an embedding that pointwise fixes a neighbourhood of @P \ @S .
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We can build a contact manifold with convex boundary out of these data in a fashion
similar to the usual open books: instead of considering a mapping torus, though, we
glue two asymmetric halves, quotienting the disjoint union S � Œ0; 1

2
�qP � Œ1

2
; 1� by

the relations .x; t/� .x; t 0/ for x 2 @S , .y; 1
2
/� .y; 1

2
/, .h.y/; 1

2
/� .y; 1/ for y 2P .

The contact structure is uniquely determined if we require — as we do — tightness and
prescribed sutures on each half S � Œ0; 1

2
�=� and P � Œ1

2
; 1�=� (see Honda [19] for

details). Moreover, to any contact manifold with convex boundary we can associate a
partial open book, unique up to Giroux stabilisations.

We can build a balanced diagram out of a partial open book. The Heegaard surface †
is obtained by gluing P to �S along the common boundary.

Definition 2.11 A basis for .S;P / is a set aD fa1; : : : ; akg of arcs properly embed-
ded in .P; @P \ @S/ whose homology classes generate H1.P; @P \ @S/.

Given a basis as above, we produce a set bDfb1; : : : ; bkg of curves using a Hamiltonian
vector field on P . We require that under this perturbation the endpoints of ai move in
the direction of @P , that each ai intersects bi in a single point xi and is disjoint from
all the other bj .

Finally define two sets of attaching curves, ˛Df˛ig and ˇDfˇig, where ˛iDai[�ai

and ˇi D h.bi/[�bi . The sutured manifold associated to .†;˛;ˇ/ is .M; �/. We
call x.S;P; h/ the generator fx1; : : : ;xkg in SFC.†;ˇ;˛/ supported inside P .

Proposition 2.12 [21] The chain x.S;P; h/ 2 SFC.†;ˇ;˛/ is a cycle and its class
in SFH.�M;��/ is an invariant of the contact manifold .M; �/ defined by the partial
open book .S;P; h/.

Definition 2.13 EH.M; �/ is the class Œx.S;P; h/�2 SFH.�M;��/ for some partial
open book .S;P; h/ supporting .M; �/.

The type of invariants that we are going to deal with are either invariants of (comple-
ments of) Legendrian knots or invariants coming from contact structures on closed
manifolds. This allows us to consider (except for Section 7) only sutured manifolds
with sphere/torus boundary and one/two sutures, as described in Examples 2.3 and 2.4.

Consider a closed contact manifold .Y; �/, and let B � Y be a small, closed Darboux
ball with convex boundary. Then consider the manifold .Y .1/; �.1//, where Y .1/ is
obtained from Y by removing the interior of B , and �.1/ is �jY .1/ . We can now
state the following proposition, that will be our definition of the contact invariant c in
Heegaard–Floer homology.
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Proposition 2.14 [21] The Ozsváth–Szabó class c.Y; �/ is mapped to the Honda–
Kazez–Matić class EH.Y .1/; �.1// under the isomorphism of Proposition 2.8.

As a corollary, all properties of c are inherited by EH , and in particular we recall the
following:

Corollary 2.15 If .Y; �/ is Stein fillable (resp. overtwisted) then the contact invariant
EH.Y .1/; �.1// does not vanish (resp. vanishes).

The second type of invariants comes from Legendrian knots. Let us suppose that L�Y

is a Legendrian knot with respect to a contact structure � , then the contact manifold YL

defined in Example 2.4 has a contact invariant EH.YL/ 2 SFH.�YL/. We will denote
this invariant by EH.L/, considering it as an invariant of the Legendrian isotopy class
of L rather than of its complement.

2.4 Gluing maps

In their paper [20], Honda, Kazez and Matić define maps associated to the gluing
of a contact manifold to another one along some of the boundary components, and
show that these maps preserve their EH invariant. Consider two sutured manifolds
.M; �/� .M 0; � 0/, where M is embedded in Int.M 0/. Let � be a contact structure
on N WDM 0 n Int.M / such that @N is � –convex and has dividing curves � [� 0 . For
simplicity, and since this will be the only case we need, we will restrict to the case
when each connected component of N intersects @M 0 (ie gluing N to M does not
kill any boundary component).

Theorem 2.16 The contact structure � on N induces a gluing map ˆ� , that is a
linear map ˆ� W SFH.�M;��/ ! SFH.�M 0;�� 0/. If �M is a contact structure
on M such that @M is �M –convex with dividing curves � , then ˆ�.EH.M; �M //D

EH.M 0; �M [ �/.

This theorem has interesting consequences, even in simple cases:

Corollary 2.17 If .M; �/ embeds in a Stein fillable contact manifold .Y; �/, and @M
is �–convex, divided by � , then EH.M; �jM / is not trivial.

Proof We know that c.Y; �/ does not vanish, and neither does EH.Y .1/; �.1//. Since
we allowed ourselves much freedom in the choice of the ball to remove to get Y .1/,
we can suppose that M � Int.Y .1//. Call N D Y .1/ n Int.M / the closure of the
complement of M . The map ˆ�jN carries EH.M; �jM / to EH.Y .1/; �.1// and since
the latter is nonzero, so is the former.
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Remark 2.18 In the proof we have been using something less than being Stein fillable,
but just that c.Y; �/ ¤ 0. This is equivalent to being Stein fillable for the 3–sphere
and for lens spaces (by results of Eliashberg [9] and Honda [19] respectively), but in
general the second condition is weaker (as shown, for example, by Lisca and Stipsicz
in [28]).

There is also a naturality statement, concerning the composition of two gluing maps:
Suppose that we have three sutured manifolds .M; �/ � .M 0; � 0/ � .M 00; � 00/ as
at the beginning of the section and suppose that � and � 0 are contact structures on
M 0 n Int.M / and M 00 n Int.M 0/ respectively, that induce sutures � , � 0 and � 00

on @M , @M 0 and @M 00 respectively.

Theorem 2.19 If � and � 0 are as above, then ˆ�[�0 Dˆ�0 ıˆ� .

Much of our interest will be devoted to stabilisations of Legendrian knots and associated
maps, whose discussion will occupy Section 3.3. We give a brief summary of the
contact side of their story here.

Let us start with a definition due to Honda [19].

Definition 2.20 Let � be a tight contact structure on T 2�I with two dividing curves
on each boundary component: call i , �i the homology class of the two dividing
curves on T 2 � fig, and let si 2 Q[ f1g be their slope. The pair .T 2 � I; �/ is a
basic slice if it is of the form above and also satisfies the following conditions:

� f0; 1g is a basis for H1.T
2/.

� � is minimally twisting, ie if Tt D T � ftg is convex, the slope of the dividing
curves on Tt belongs to Œs0; s1� (where we assume that if s0 > s1 the interval
Œs0; s1� is Œ�1; s1�[ Œs0;1�).

Honda and Etnyre proved the following:

Proposition 2.21 (Etnyre and Honda [11] and Honda [19]) For every integer t there
exist exactly two basic slices .T 2�I; �j / (for j D 1; 2) with boundary slopes .t; 1/ and
.t�1; 1/. The sutured complement of a stabilisation L0 of L is gotten by attaching one
of the two basic slices to YL , where the trivialization of T 2 is given by .0; 1/D � and
.t; 1/D c , where � and c are a meridian and the contact framing for L respectively.

These two different layers correspond to the positive and negative stabilisation of L,
once we have chosen an orientation for the knot; reversing the orientation swaps the
labelling signs. Since we will be considering oriented Legendrian knots, we can label
the two slices with a sign.
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Definition 2.22 We call stabilisation maps the gluing maps associated to the attach-
ment of a stabilisation basic slice. These will be denoted with �˙ .

Remark 2.23 As happens for the Stipsicz–Vértesi map [49], this basic slice attachment
also corresponds to a single bypass attachment.

We also collect here the definition of some gluing maps that we will be considering
later. The letter  will be used to denote gluing maps associated to contact surgeries.

Definition 2.24 Let L� �.L/� .Y; �/ be a Legendrian knot and �.L/ be its standard
neighbourhood. Let B � �.L/ be a ball with convex boundary. The map  1 is
associated to the layer .�.L/ nB; �j�.L/nB/. This map is a homomorphism

 1W SFH.�YK ;n/ �! SFH.�Y .1//D cHF.�Y /

for every nullhomologous knot K � Y .

More generally, contact p=q–surgery is an operation that, given an oriented Legendrian
knot L� .Y; �/, removes the standard neighbourhood �.L/ of L and replaces it with
a tight solid torus .Tp=q; �p=q/. When p=qD 1 there is only one such torus, and when
p=q D n> 1 is an integer, there are two such choices, called .T ˙n ; �

˙
n /. When q > 1

there are many choices for the contact structure on Tp=q ; we still have two “preferred”
choices, that we denote with .T ˙p=q; �

˙
p=q/. Notice that, regardless of the value of p=q ,

the manifold Tp=q is simply a solid torus S1 �D2 ; on the other hand, the resulting
sutures do change with p=q . We refer the reader to Section 4 for further details.

Definition 2.25 Let B�Tp=q be a closed ball with convex boundary and define Tp=q.1/

to be Tp=q n Int.B/.

� For a positive integer n, we define  ˙n as the gluing map associated to the layer
.T ˙n .1/; �njT˙n .1/

/.

� We define  C1 D  
˙
C1

as the gluing map associated to .T1.1/; �1jT1.1//.

� For a positive rational p=q , we define  ˙
p=q

as the gluing map associated to the
layer .T ˙

p=q
.1/; �p=qjT˙

p=q
.1/
/.

Fix a knot K�Y , together with an open tubular neighbourhood N.K/ and a framing f ,
that we look at as a curve in @N.K/; as before, denote with YK ;f the sutured manifold
.Y nN.K/; �f D ff;�f g/. The map  ˙

p=q
is a homomorphism

 ˙p=qW SFH.�YK ;f / �! SFH.�Yp=q.K; f /.1//D cHF.�Yp=q.K; f //;
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where the notation Yp=q.K; f / stands for the manifold that we obtain by topological
p=q–surgery along K with respect to the framing given by a meridian for K in Y and
the longitude f . If K� Y is nullhomologous and Y is a rational homology sphere, K

has a canonical framing, the Seifert framing fS . In this case, we are going to write
Yp=q.K/ for Yp=q.K; fS /.

3 A few facts on SFH.S 3
K;n
/ and �˙

Given a topological knot K in S3 , denote with S3
m.K/ the manifold obtained by

(topological) m–surgery along K , and let zK be the dual knot in S3
m.K/, that is the

core of the solid torus we glue back in. Notice that an orientation on K induces an
orientation of zK , by imposing that the intersection of the meridian �K of K on the
boundary of the knot complement has intersection number C1 with the meridian � zK
of zK on the same surface.

Fix a contact structure � on S3 and a Legendrian representative L of K : we will
write t for tb.L/. Since t measures the difference between the contact and the Seifert
framings of L, S3

t .K/ zK ;1 and S3
L

are sutured diffeomorphic: in particular, EH.L/
lives in

SFH.�S3
t .K/ zK ;1/D bHFK .�S3

t .K/;
zK/;

the identification depending on the choice of an orientation for K (or zK ).

We will often write bCFK .Y;K/ to denote any chain complex computing bHFK .Y;K/
that comes from a Heegaard diagram, even though the complex itself depends on the
choice of the diagram.

3.1 Gradings and concordance invariants

The groups bHFK .S3;K/ and bHFK .�S3
m.K/;

zK/ come with a grading that we call
the Alexander grading. A Seifert surface F � S3 for K gives a relative homology
class

ŒF; @F � 2H2

�
S3
nN.K/; @N.K/

�
DH2

�
S3

m.K/ nN. zK/; @N. zK/
�
:

Given a generator x 2 bCFK .S3;K/, there is an induced relative Spinc structure s.x/

in Spinc.S3;K/ (see Ozsváth and Szabó [41, Section 2]) and the Alexander grading
of x is defined as

A.x/D 1
2
hc1.s.x//; ŒF; @F �i:
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On the other hand, given a generator x 2 bCFK .�S3
m.K/;

zK/, there is an induced
relative Spinc structure s.x/ 2 Spinc.S3

m.K/;
zK/ and we can define A.x/ as

(3-1) A.x/D 1
2
hc1.s.x//; ŒF; @F �i �

1
2
m:

We recall the definition of �.K/ and �.K/, due to Ozsváth and Szabó [35; 41], and of
a third concordance invariant ".K/, defined by Hom [18].

Recall that the Alexander grading induces a filtration on the knot Floer chain complex
. bCFK .S3;K/; @/, where the differential @ ignores the presence of the second basepoint,
that is H�. bCFK .S3;K/; @/D cHF.S3/. In particular, every sublevel bCFK .S3;K/A�s

is preserved by @ and we can take its homology.

Definition 3.1 We denote by �.K/ the smallest integer s such that the inclusion of
the sth filtration sublevel induces a nontrivial map

H�. bCFK .S3;K/A�s; @/ �! cHF.S3/D F :

This invariant turns out to provide a powerful lower bound for the slice genus of K , in
the sense that j�.K/j � g�.K/ [35]. One of the properties it enjoys, and that we will
need, is that �. xK/D��.K/ for every K .

The definition of � is somewhat more involved. It comes from the mapping cone
construction [40; 41] that Ozsváth and Szabó used to compute the rank of the Heegaard–
Floer homology of integer and rational surgeries along K . We just recall the parts of
the construction that we need to get to the definition, without giving any motivation or
complete explanation of the mapping cone, following Rasmussen [44].

We define a new complex .As; @s/ for each integer s as follows: The underlying
module As is just C D bCFK .S3;K/. The differential @s takes into account both the
differential @ and the differential @0 , for which the role of the basepoints is reversed (ie @
counts differentials whose domains pass through the basepoint z but not through w ,
while @0 counts differential whose domains pass through w but not through z ); in the
next formula, @K is just the “graded” differential that counts only discs whose domains
avoid both basepoints:

@sx D

8<:
@x if A.x/ < s;

@xC @0xC @K x if A.x/D s;

@0x if A.x/ > s:

The quotient complexes As=C>s and As=C<s come with natural chain maps into .C; @/
and .C; @0/ respectively; the composition of the projection with these chain maps gives
two maps vs; hsW H�.As; @s/! cHF.S3/D F .

In analogy with the definition of � , we have the following:
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Definition 3.2 We denote by �.K/ the smallest integer s such that the map vs is
nontrivial.

Ozsváth and Szabó proved that � is a concordance invariant and that the inequalities
�.K/��.K/� �.K/C1 hold for all knots K . We remarked earlier that � changes sign
when taking the mirror of the knot: � does not have this property and the discrepancy
between �.K/ and ��. xK/ is measured by Hom’s invariant ":

Definition 3.3 We define ".K/ to be .�.K/� �.K//� .�. xK/� �. xK//.

The value of " can only be in f�1; 0; 1g, and manifestly changes sign when we take
the mirror of the knot. Hom also proves that:

Proposition 3.4 [18] The value of ".K/ controls the relationship between �.K/
and �.K/ as follows:

� If ".K/D 0, then �.K/D �.K/D �. xK/D 0.
� If ".K/D 1 then �.K/D �.K/.
� If ".K/D�1 then �.K/D �.K/C 1.

3.2 Modules

We now turn our attention back to bHFK .�S3
t .K/;

zK/ ' SFH.�S3
K ;t
/. Recall that

this is a graded F –vector space and that we call its grading A.

The group bCFK .S3;K/ is a graded vector space that comes with two differentials @K

and @ such that the complex . bCFK .S3;K/; @/ has homology cHF.S3/ D F , while
the complex . bCFK .S3;K/; @K / has homology bHFK .S3;K/. We call the Alexander
grading on this group A as well.

Let us set dDdim bHFK .S3;K/ and fix a basis BDf�i ; �
0
j j0� i<dg of bCFK.S3;K/

such that the set f�top
i ; .�0j /

topg of the highest nontrivial Alexander-homogeneous com-
ponents of the �i and �0j is still a basis for bCFK.S3;K/, and the following relations
hold (see Lipshitz, Ozsváth and Thurston [26, Section 11.5]):

@�0 D 0; @K�0 D 0;

@�2i�1 D �2i ; @K�i D 0;

@�02j�1 D �
0
2j ; @K�

0
2j�1 D �

0
2j :

Observe that the set of homology classes of the �i is a basis for bHFK .S3;K/ D

H�. bCFK .S3;K/; @K /. Finally, call ı.i/DA.�2i/�A.�2i�1/. Let us remark that by
definition A.�0/D � WD �.K/.
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Theorem 3.5 [26] The homology group bHFK .�S3
m.K/;

zK/ is an F –vector space
with basis fdi;j ; d

�
i;j ;u` j 1 � i � k; 1 � j � ı.i/; 1 � ` � j2� �mjg, where the

generators satisfy

A.di;j /DA.�2i/� .j � 1/� .m� 1/=2D�A.d�i;j /;

A.u`/D � � .`� 1/� .m� 1/=2:

Generators with a � are to be thought of as symmetric to the generators without it,
and each family fdi;j gj can be interpreted as representing the arrow @W �2i�1! �2i

(notice that i varies among positive integers), counted with a multiplicity equalling its
length (ie the distance it covers in Alexander grading).

Remark 3.6 Not any basis of bHFK .�S3
m.K/;

zK/ with the same degree properties
works for our purposes: we are actually choosing a basis that is compatible with
stabilisation maps, as we are going to see in Theorem 3.11 (see also Remark 3.13).

Definition 3.7 Call SC the subspace of bHFK .�S3
m.K/;

zK/ generated by fdi;j g,
and S� the one generated by fd�i;j g: the subspace S DSC˚S� is the stable complex,
and elements of S are called stable elements. The subspace spanned by fu`g is called
the unstable complex and will be denoted by Um (although the subscript will be often
dropped), so that bHFK .�S3

m.K/;
zK/ decomposes as SC˚Um˚S� .

It is worth remarking that the decomposition given in the definition above is not
canonical: the three stable subspaces S˙ and S are canonically defined, but the
unstable complex is not. This issue will be addressed at the end of the next section.

There is a handy pictorial description when jmj is sufficiently large; we will be mostly
dealing with negative values of m, so let us call m0 D�m� 0. Consider a direct sum
zC D

Lm0

iD1 Ci of m0 copies of C D bCFK .S3;K/ and (temporarily) denote by xi the
copy of the element x 2 C in Ci . Endow zC with a shifted Alexander grading

zA.xi/D

�
A.x/� .i � 1/� .m� 1/=2 for i �m0=2;

�A.x/� .i � 1/� .m� 1/=2 for i >m0=2;

for each homogeneous x in bCFK .S3;K/. We picture this situation by considering
each copy of C as a vertical tile of 2g.K/C 1 boxes — each corresponding to a value
for the Alexander grading, possibly containing no generators at all or more than one
generator — and stacking the m0 copies of C in staircase fashion, with C1 as the top
block and Cm0 as the bottom block. Notice that, by our grading convention, the copies
in the bottom part of the picture are turned upside down: for example, if xmax 2 C

has maximal Alexander degree A.x/ D g.K/, then xmax
1

lies in the top box of C1 ,
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while xmax
m0 lies in the bottom box of Cm0 . Likewise, an element x� 2C has Alexander

degree A.x/D � , then x�
1

lies in the .g.K/��C1/th box from the top in C1 and x�m0

lies in the .g.K/� � C 1/th box from the bottom in Cm0 .

Our construction is slightly different from the construction described by Hedden [16, Sec-
tion 4], and in general it gives a different chain complex for bHFK .S3

m.K/;
zK/, but

their homologies agree.

The situation is depicted in Figure 3.1. In this concrete example we have g.K/D 2

and �.K/D�1; accordingly, there are 2g.K/C 1D 5 boxes in each vertical column
and x�

1
lies in the fourth box from the top in C1 .

...
...

A
~
zA

x�
1

xmax
1

x�
m0

xmax
m0

Figure 3.1: We represent here the top (on the right) and bottom (on the
left) parts of bHFK.S3

m.K/;
zK/ for m� 0 . Each vertical tile is a copy of

bCFK.S3;K/ and the arrows show the direction of the differentials.

Now define a differential z@ on zC by

z@ W

8̂̂̂<̂
ˆ̂:
.�0/i 7! 0 for small and large i;

.�2j�1/i 7! .�2j /iCı.j/ 7! 0 for small i;

.�2j�1/i 7! .�2j /i�ı.j/ 7! 0 for large i;

.�0
2j�1

/i 7! .�0
2j
/i 7! 0 for every i:

We have not yet defined what the differential does to nonprimed generators for inter-
mediate values of i : in the picture we have, the differentials are horizontal and point
“inwards” (see Figure 3.1); in particular, every horizontal (ie Alexander-homogeneous)
block of boxes is a subcomplex. We extend the differential to be any map z@ such
that the level f zA D j g is a subcomplex for every j , with homology cHF.S3/ D F
for intermediate values of the j (we can do this as f zAD j g has odd rank for every
intermediate value of j ).

We are now going to analyse what happens on the top and bottom part of the complex
(ie when i is small or large, in what follows), when we take the homology.
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Pairs .�0
2j�1

/i ; .�
0
2j
/i cancel out in homology. The element .�2j /i is a cycle for

each i; j , and it is a boundary only when j > 0 and either i > ı.j / or i <m0� ı.j /:
so there are 2ı.j / surviving copies of �2j , in degrees A.�2j /� k � .m� 1/=2 and
�A.�2j /C k C .m� 1/=2 for k D 0; : : : ; ı.j /� 1. We can declare di;j D Œ.�2j /i �

and d�i;j D Œ.�2j /m0�i �.

The element .�0/i is a cycle for every i , and it is never cancelled out, so it survives when
taking homology. Given our grading convention, for small values of i , zA..�0/i/ D

A.�0/� .i �1/� .m�1/=2D �.K/� .i �1/� .m�1/=2, and in particular we have a
nonvanishing class Œ.�0/i �Dui in degrees �.K/�.m�1/=2; �.K/�.m�1/=2�1; : : :.
On the other hand, when i is large, Œ.�0/i � lies in degree ��.K/� .i �1/� .m�1/=2,
and we get a nonvanishing class Œ.�0/i � D u2�.K /CiC.m�1/=2 in degrees ��.K/C
.m� 1/=2;��.K/C .m� 1/=2C 1; : : :.

We also have a string of F summands in between, giving us a strip of unstable elements
of length 2�.K/�m as in Theorem 3.5.

Remark 3.8 Something more can be said about Spinc structures: when m ¤ 0,
bHFK.S3

m.K/;
zK/ splits as a sum of subcomplexes bHFK.S3

m.K/;
zKI si/ corresponding

to the jmj different Spinc structures on S3
m.K/. The Alexander grading zA tells

us when two horizontal subcomplexes fall into the same Spinc structure: as one
could expect, if zA.x/� zA.y/ .mod m/, then x and y belong to the same summand
bHFK .S3

m.K/;
zKI s/.

3.3 Stabilisation maps

We are going to study the action of the two stabilisation maps �˙ of Definition 2.22 on
the sutured Floer homology groups SFH.�S3

L
/. It is worth stressing that these maps

do not depend on the contact structure on the knot complement or on the particular Leg-
endrian representative, but just on its Thurston–Bennequin number (which determines
domain and codomain).

Notice that if L is a Legendrian knot in S3 with tb.L/ D n, then, as a sutured
manifold, S3

L
is just S3

K;n
. Moreover, if L0 is a stabilisation of L, then S3

L0
is

isomorphic to S3
K;n�1

as a sutured manifold.

Recall that we have two families (indexed by the integer n) of stabilisation maps,
�˙W SFH.�S3

K;n
/! SFH.�S3

K;n�1
/, corresponding to the gluing of the negative and

positive stabilisation layer: if the knot K is oriented, these maps can be labelled as ��
or �C . With a slight abuse of notation, we are going to ignore the dependence of these
maps on the framing.
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Remark 3.9 Notice that orientation reversal of L or K is not seen by the sutured
groups nor by EH.L/, but it swaps the roles of �� and �C .

Remark 3.10 Let us recall that for an oriented Legendrian knot L of topological
type K in S3 the Bennequin inequality holds:

tb.L/C r.L/� 2g.K/� 1:

In [43], Plamenevskaya proved a sharper result:

(3-2) tb.L/C r.L/� 2�.K/� 1:

This last form of the Bennequin inequality, together with Theorem 3.5, tells us that
whenever we are considering knots in the standard S3 , the unstable complex is never
trivial in SFH.�S3

K;n
/. More precisely we are always (strictly) below the threshold

2� WD 2�.K/, so that 2� �m is always positive; in particular, the dimension of the
unstable complex is always positive and increases under stabilisations. We will state
the theorem in its full generality anyway, even though this remark tells us we need just
half of it when working in .S3; �st/.

We are going to prove the following result:

Theorem 3.11 The maps ��; �CW SFH.�S3
K ;n

/! SFH.�S3
K ;n�1

/ act as follows:

��W

8<:
di;j 7! di;j ;

u` 7! u`;

d�i;j 7! d�
i;jC1

;

�CW

8<:
di;j 7! di;jC1;

u` 7! u`C1;

d�i;j 7! d�i;j ;

for n� 2� I

��W

8̂̂̂<̂
ˆ̂:

di;j 7! di;j ;

u` 7! u`;

un�2� 7! 0;

d�i;j 7! d�
i;jC1

;

�CW

8̂̂̂<̂
ˆ̂:

di;j 7! di;jC1;

u` 7! u`�1;

u1 7! 0;

d�i;j 7! d�i;j ;

for n> 2�:

Notice that we are implicitly choosing an appropriate isomorphism between the group
SFH.�S3

K;n
/ and the vector space generated by the di;j and the ui (see Theorem 3.5

and Remark 3.13).

There is an interpretation of the maps

�˙W SFH.�S3
K ;n/ �! SFH.�S3

K ;n�1/

in terms of Figure 3.1 when n� 0: Fix a chain complex C computing bHFK .S3;K/

and call . zCn; z@/ and . zCn�1; z@/ the two complexes defined in the previous section,
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computing SFH.�S3
K;n/ and SFH.�S3

K;n�1/ starting from C . We have two “obvious”
chain maps s˙W zCn !

zCn�1 : s� sends xi 2
zCn to xi 2

zCn�1 , while sC sends
xi 2

zCn to xiC1 2
zCn�1 . The maps s˙ induce the two stabilisation maps �˙ at the

homology level.

The map s� is the inclusion zCn ,! zCn�1 that misses the leftmost vertical tile (that is,
the copy C1�n of C that is in lowest Alexander degree), while sC is the inclusion
that misses the rightmost vertical tile (the copy C1 of C that lies in highest Alexander
degree).

As a corollary (of the proof), we obtain a graded version of the result:

Corollary 3.12 The maps �˙ are Alexander-homogeneous of degree �1
2

.

Remark 3.13 Let us first consider the case n � 2�.K/: notice that Theorem 3.11
shows that S˙ is

S
n ker �n

˙
, and we immediately obtain that S˙ is independent of

the basis we have chosen in Theorem 3.5.

The situation for the unstable complex, on the other hand, is completely different: We
have a well-defined unstable quotient (see Remark 6.9 below) SFH.�S3

K;n
/=S . The

unstable complex, as we defined it, is the image of a homogeneous section of the quotient
map SFH.�S3

K;n
/! SFH.�S3

K;n
/=S with some additional requirements. Namely, we

need to choose any homogeneous section of the quotient map for nD 2�.K/� 1 and
then we take the subcomplexes generated by compositions of �C and �� to generate
the unstable complexes in SFH.�S3

K;n
/ for smaller values of n. We give below an

example to show that there are actually instances where the choice of the section
matters.

Notice that �˙ act on the unstable quotients as well, and the action for n� 2� is given
by the unique homogeneous injection of degree �1

2
.

Finally, let us consider the case n> 2�.K/. Here the situation is reversed: The unstable
complex is the intersection U D

S
n ker �n

�\
S

n ker �n
C , and is therefore well defined

and independent of the isomorphism. The two unstable complexes, on the other hand,
depend on the choice of suitable sections of the quotient maps

S
n ker �n

˙
! U .

Example 3.14 We can give a concrete example to show that the choice of the unstable
complex is not unique. There is a recent result of Baldwin, Vela-Vick and Vértesi [2]
that relates the combinatorial Legendrian invariants y�˙.L/; ��˙.L/ of Ozsváth, Szabó
and Thurston [42] and the invariants bL.˙L/;L�.L/ of Lisca, Ozsváth, Stipsicz and
Szabó [27]: there are two Legendrian representatives L1;L2 of the pretzel knot
K D P .�4;�3; 3/ D m.10140/ in .S3; �st/ that have tb.Li/ D �1, r.Li/ D 0, but
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bL.L1/D 0¤ bL.L2/ (the example is found in Ng, Ozsváth and Thurston [31], where
they are distinguished by the combinatorial invariants). Notice that �.K/ D 0 (see
Cha and Livingston [3]), therefore the unstable complex in SFH.�S3

Li
/ has length

jtb.Li/ � 2�.K/j D 1 and EH.Li/ has the same degree as the degree of the only
nonzero element of the unstable complex (see Proposition 3.20 below).

Since the mapping class group of S3 nN.K/ relative to the boundary is trivial (see
Kodama and Sakuma [24]), the fact that bL distinguishes these two knots for some
parametrisation implies that it distinguishes them for all parametrisations (see the
discussion preceding Lemma 6.11 below).

Neither EH.L1/ nor EH.L2/ gets killed by �n
C ı �

n
� , since the trivial filling (ie con-

tact 1–surgery) yields back the standard contact structure on S3 (compare with
Lemma 3.18 below). In particular, we can define the generator of the unstable complex
to be either of EH.L1/ or EH.L2/, and these two elements are distinct by [49].
Here we are using the fact that tb.Li/ D 2�.K/� 1: if this were not the case, and
tb.Li/ < 2�.K/� 1, we would need to check that an element that does not vanish
under �n

Cı�
n
� is in fact the stabilisation of at least one element in SFH.�S3

K;tb.Li /C1
/,

because of Theorem 3.11.

3.4 The proof of Theorem 3.11

In this section we are going to give a proof of Theorem 3.11. The main point is the
interaction of stabilisation maps with bordered Floer homology. The reader is referred
to [26, Chapter 11 and Appendix A] for definitions and properties.

Let HD .† n fpg; fˇa
1
; ˇa

2
g;ˇc ;˛/ be a bordered diagram for S3 nN.K/ such that

the closures of ˇa
1
; ˇa

2
represent the curves �� .nC 1/� and �� n� respectively,

where �� @N.K/ is the Seifert longitude for K , and �� @N.K/ is the meridian.

Let us call W D bCFD.H/ and V D bCFD.H0/, where H0 is the bordered diagram
.†; f�; ˇa

2
g;ˇc ;˛/. As in [26], we will use the notation V j , W j to denote the

submodules �j V , �j W of V and W in the idempotent �j for j D 0; 1. When talking
about coefficient maps, we will use the superscripts V , W to distinguish between the
maps acting on V and the ones acting on W .

Finally, recall that we have four isomorphisms

H�.V
0;DV /' bHFK.S3;K/; H�.V

1;DV / ' SFH.S3
K ;�n/;

H�.W
0;DW /' SFH.S3

K ;�n�1/; H�.W
1;DW /' SFH.S3

K ;�n/:
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We denote bCFK .S3;K/ by V 0 and we can write down explicitly a chain homotopy
equivalence between the model for V 1 found in [26] and the model zC for Theorem 3.5.

Since zC computes the sutured Floer group SFH.�S3
K;n/, which is in turn the coho-

mology group SFH.S3
K;n/, we expect V 1 to be chain homotopic equivalent to the

dual complex of zC : in fact, V 1 is the dual to zC at the top and at the bottom and is a
sum of copies of F D cHF.S3/ for intermediate values of the Alexander grading. The
differential DV is the knot Floer differential @K on V 0 and it is the adjoint of z@
on V 1 . The maps DV

1
and DV

3
are adjoint to the projections

zC ! Cn ' bCFK .S3;K/ and zC ! C1 '
bCFK .S3;K/

respectively. The map DV
2

is adjoint to the inclusion C ' C1 ,! zC and the map DV
23

is adjoint to the shift map xi 7! xi�1 .

Legendrian stabilisations are induced by a single bypass attachment; specialising
general results of Zarev [51] to this case, one gets the following proposition.

Proposition 3.15 [51] The adjoints of the coefficient maps DW
1

and DW
3

induce
the two stabilisation maps

SFH.�S3
K ;�n/'H�.W 1;DW /

�˙
�!H�.W 0;DW /' SFH.�S3

K ;�n�1/:

Remark 3.16 For convenience, we sketch how Proposition 3.15 follows from Zarev’s
results. Zarev proves that the bordered algebra associated to a surface decomposes as a
direct sum of certain sutured Floer homology groups and that the action of the bordered
algebra on bordered Floer homology (more specifically, on bCFA ) can be interpreted
via Honda–Kazez–Matić gluing maps.

In our case, we are interested in the sutured Floer group associated to the compo-
nent �0A�1 of the bordered algebra of the torus, that is, h�1; �3; �123iF . By tensoring
with the bimodule 1CFDD.id/ we reduce to studying the action of the coefficient
maps D1;D3;D123 on bCFD . We now know that �˙ is a linear combination of the
adjoints of these three maps.

To see D1;D3 are the right ones, first observe that the coefficient maps D1;D3;D123

and stabilisation maps �˙ are homogeneous, but that D1;D3;D123 in general have
different degrees. Thus the stabilisation maps �˙ are adjoint to D1 , D3 or D123 (as
opposed to a linear combination thereof).

We can rule out D123 because it vanishes on any framed unknot (this follows from a
small extension of the computations below).
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We are now able to prove Theorem 3.11, which is just a computation in light of the
previous proposition.

Proof In [26, Appendix A], Lipshitz, Oszváth and Thurston explicitly describe an
A.T 2/–bimodule 1CFDA.��/ such that W D 1CFDA.��/�V . We describe here its
structure.

The bimodule 1CFDA.��/ is generated over F by three vectors p; q; s . The idempotents
act on 1CFDA.��/ as follows

W 0
D p�V 0

˚ s�V 1; W 1
D q�V 1:

We also have the relations

m0;1;1.p; �3/D �3˝ q; m0;1;0.s/D �1˝ q;

m0;1;1.s; �2/D p; m0;1;1.s; �23/D �3˝ q:

We can now compute the action of the coefficient maps DW ;DW
1
;DW

3
on W : for all

x 2 V 0 , y 2 V 1 we have

(3-3)

DW
W p�xC s�y 7! p� .DV xCDV

2 y/C s�DV y ;

DW
W q�y 7! q�Dy ;

DW
1 W p�xC s�y 7! q�y ;

DW
3 W p�xC s�y 7! q� .DV

3 xCDV
23y/:

The model for SFH.�S3
K ;�n�1

/ given by the dual of W 0 agrees with the model of
Theorem 3.5 under the linear isomorphism that identifies the subspace p�V 0 with
the dual of C1 , sitting as the leftmost column in Figure 3.1, and the subspace s�V 1

with the dual to
L

k�2 Ck , consisting of the n rightmost columns.

The adjoint of DW acts on the dual of W 0 so that the dual of s�V 1 is a subcomplex.
By (3-3), DW

1
.p�xC s�y/D q�x : in other words, p�V 0 � ker DW

1
and DW

1

is the isomorphism s�V 1 onto W 1 ' V 1 that is the identity on the second factor. In
particular, the adjoint of DW

1
is the inclusion of the dual of W 1 into the dual of W 0

as the subcomplex dual to s�V 1 , that is the subcomplex generated by the Ck with
k � 2.

Similarly, the adjoint of DW
3

is seen to act as the inclusion of the dual of W 1 into the
dual of W 1 as the subcomplex generated by the Ck with k � n.

We have given a concrete identification of H�. zC / with the model of Definition 3.7,
where the class of .�2j /i is identified with di;j for i � ı.j / and with dm0�i;j for
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i �m0� ı.j /, and .�0/i is identified with ui . The adjoint of DW
1

is just the inclusion
map xi 7! xi , whereas the adjoint of DW

3
is the inclusion xi 7! xiC1 for all i . In

particular, the induced maps act on homology as claimed.

The result for arbitrary framing parameter n follows from [26, Theorem A.11]: they
prove that V 1D �1CFD.S3nK/ decomposes of the sum of a stable complex (containing
the dual to SC˚ S� ) and an unstable chain (containing the dual to U ) as follows.
We can pick bases f�ig; f�ig for bCFK .S3;K/ playing the roles of the basis B used
in Theorem 3.5,1 one with respect to the basepoint z and the other with respect to
the basepoint w . We also introduce strings of elements f�k

i g; f�
k
i g of length ı.i/

associated to each arrow

�i
@z
�! �iC1; �i

@w
�! �iC1

respectively, both of length ı.i/.

The stable complex in V 1 looks like

�i
DV

1
��! �i

1

DV
23
 ��� �i

2

DV
23
 ��� � � �

DV
23
 ��� �i

ı.i/

DV
123
 ��� �iC1;

�i

DV
3
��! �i

1

DV
23
���! �i

2

DV
23
���! � � �

DV
23
���! �i

ı.i/

DV
2
��! �iC1;

and it is immediate to find an identification of the �1 part of the stable complex with
the dual of SC˚S� in Theorem 3.5, di;j with the dual of �2i�1

j and d�i;j with the
dual of �2i�1

j .

The unstable chain, on the other hand, depends on the framing as follows:

�0
DV

1
��! �1

DV
23
 ��� �2

DV
23
 ��� � � �

DV
23
 ��� �2�.K /�n

DV
3
 �� �0; for n< 2�.K/;

�0
DV

12
���! �0; for nD 2�.K/;

�0
DV

123
���! �1

DV
23
���! �2

DV
23
���! � � �

DV
23
���! �n�2�.K /

DV
2
��! �0; for n> 2�.K/;

and we can identify uk in the unstable complex of SFH.�S3
K ;n

/ with the dual of �k .

Let us call W WD 1CFDA.��/�V . Then, as above,

W 0
D p�V 0

˚ s�V 1; W 1
D q�V 1;

and the action of the maps DW ;DW
1

and DW
3

is controlled by (3-3). We have an
obvious identification of the dual of W 1 with SFH.�S3

K ;n
/ that respects the stable-

unstable decomposition.

1We are going to forget about primed elements as they do not play any role in homology.
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We identify the stable complex SC � SFH.�S3
K ;n�1/ with the cohomology of the

subcomplex of W 0 spanned by s� �j
i via the map di;j $ .s� �2i�1

j /� . We identify
S� � SFH.�S3

K ;n�1/ with the cohomology of the subcomplex of W 0 spanned by
s� �j

i and p� �i via the map d�
i;1
$ .p� �2i�1/

�; d�i;j $ .p� �2i�1
j�1

/� . Notice
that (3-3) imply that for every odd i there is an arrow

s��i
ı.i/

DW

���! p� �iC1;

so that the homology of the stable complex in V has constant rank.

The unstable complex of SFH.�S3
K;n
/ is identified with the cohomology of the subspace

of W 0 spanned by s � �` and p� �0 via one of these two maps: if n � 2�.K/,
we identify uk with the dual of s��k and u2�.K /�nC1 with the dual of p� �0 ; if
n> 2�.K/, we just identify uk with the dual of s��k . Notice that in the latter case
there is an arrow

s��n�2�.K /

DW

���! p� �0

that cancels out the two generators involved, in cohomology, so that both maps are
isomorphisms.

Now, the maps DW
1
;DW

3
act on the stable complex as follows:

s� �i
1

DW
3

||
DW

1 ��

s� �i
2

DW
3

zz
DW

1 ��

� � � s� �i
ı.i/

DW
3

xx
DW

1 ��
0 q� �i

1
q� �i

2
� � � q� �i

ı.i/�1
q� �i

ı.i/

p� �i
DW

3

$$

s��i
1

DW
1��

DW
3

%%

� � � s��i
ı.i/

DW
1��

DW
// p� �iC1

q��i
1

q��i
2

� � � q� �i
ı.i/

Finally, the action of the maps on the unstable complex depends on the framing: if
n D 2�.K/ or n D 2�.K/C 1 there is nothing to prove, since either the unstable
complex in the domain or the unstable complex in the range of DW

1
;DW

3
is trivial for

these framings.

Let mD j2�.K/� nj. If n< 2�.K/, the action is as follows:

s��1
DW

3

zz
DW

1 ��

s��2
DW

3

xx
DW

1 ��

� � � s��m

DW
1 ��

p� �0
DW

3

xx
0 q��1 q��2 � � � q��m
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If n> 2�.K/C 1, the action is:

s��1

DW
1��

DW
3

&&

s��2

DW
1��

� � � s��m�1

DW
1��

DW
3

''

s��m

DW
1��

DW
// p� �0

q��1 q��2 � � � q��m�1 q��m

Using the identification discussed above, Theorem 3.5 follows.

Proof of Corollary 3.12 According to the computations above, DW
1

shifts the de-
gree by C1

2
and DW

3
shifts the degree by �1

2
. Their adjoints, �� and �C , shift the

degrees by �1
2

and C1
2

respectively.

3.5 Sutured Legendrian invariants

Let L be a Legendrian knot in .S3; �/ of topological type K . Recall that in [15], the
author proved the following two facts:

Proposition 3.17 The contact structure � is overtwisted if and only if

�N
C

�
�N
� .EH.L//

�
D 0

for sufficiently large N , that is, if and only if EH.L/ is stable.

Sketch of proof The “if” direction is easy, since the union of a stabilisation basic
slice and the 1–surgery layer is still an 1–surgery layer.

The “only if” direction follows from the remark that, in the relevant Alexander grading
component, there is only one nonvanishing element x0 : for sufficiently large N , x0 is
the contact element of a Legendrian representative of K in the standard S3 . We can
now argue by contradiction.

The following lemma is a part of the proof of the proposition above and turns out to be
useful below.

Lemma 3.18 A homogeneous element x 2 SFH.�S3
K ;n

/ is stable if and only if
 1.x/D 0.

Remark 3.19 If tb.L/ > 2�.K/� 1, then L violates Plamenevskaya’s inequality,
automatically implying that � is overtwisted. On the other hand, if tb.L/� 2�.K/�1,
the proposition can be rephrased as follows: EH.L/ is stable in SFH.�S3

L
/ if and

only if � is overtwisted.
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This is basically a rephrasing of [27, Theorem 1.2] telling us that L�.L/ is mapped
to c.�/ if we set U D 1.

Proposition 3.20 Making the identification SFH.�S3
L
/D bHFK .S3

tb.L/.K/;
zK/ as in

Proposition 2.8, we have that EH.L/ is homogenous of Alexander degree �r.L/=2.

This is a reinterpretation of the fact that L�.L/ 2 HFK�.�S3;K/ has Alexander
degree 2A.L�.L//D tb.L/� r.L/C 1.

4 Contact surgeries

Suppose now that L is a Legendrian knot in .Y; �/ of topological type K : contact
surgery on L is an operation on YL D Y n Int.�.L// that consists of gluing a solid
torus S1 �D2 with a tight contact structure � such that the boundary of the torus is
�–convex.

Such a tight � exists on S1 �D2 as long as the �–dividing curves on the boundary
are not parallel to S1 � f�g (see [19]).

We want the gluing to respect the dividing curves on the boundary of YL and S1�D2 ,
so that we can glue � and � to get a contact structure on the surgered manifold Y 0 . In
particular, this can be done whenever we do not fill in the meridional slope for L.

We have a natural basis for @YL D T 2 , given by the meridian � for L� Y and the
dividing curve  that is homologous to L in �.L/. The slope of the curve f�g� @D2

in @YL is measured with respect to this natural basis, and we will refer to contact
p=q–surgery along L to indicate any contact structure obtained with this process on
Yp�Cq .L/.

Remark 4.1 Up to isotopy, there is only one contact structure � on S1�D2 that gives
contact ˙1–surgery along L. We denote the resulting contact structure on the surgered
manifold with �C1.L/, or simply �C1 if L is clear from the context. Similarly, there
is only one � that gives contact 1=m–surgery, that we will denote with �1=m.L/.

Remark 4.2 Whenever K is nullhomologous in Y , eg when Y DS3 , there is another
natural framing for K , the Seifert framing. One easily checks that doing contact p=q–
surgery on a Legendrian knot L with tb.L/ D t produces a contact structure on
YtCp=q.K/, where the surgery coefficient here is measured with respect to the Seifert
framing, so that the difference between the contact and the topological surgery framings
is just a global shift.
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Let us recall here Ding and Geiges’s algorithm to identify contact p=q–surgery along
a Legendrian knot L in .Y; �/ as a sequence of contact ˙1–surgeries when p=q is
positive. Pick the minimal integer k such that q�kp is negative and call r the number
1Cp=.kp� q/. Now consider the negative continued fraction expansion Œa0; : : : ; a`�

of r : Inductively, a0Ddre is the smallest integer a0 � r , and r D a0�1=Œa1; : : : ; a`�.
Notice that ai � 2 for each i , by construction.

Define the link LD LC[L� . Here LC is the union of k Legendrian pushoffs of L

and L�DL0[L1[� � �[L` � Y nLC is constructed as follows: L0 is any .a0�2/th

stabilisation of a pushoff of L, LjC1 is any .ajC1� 2/th stabilisation of a pushoff of
Lj for 0� j � `� 1. If we have more fractions floating around, we will denote the
link associated to p=q as L.p=q/, and the two sublinks as L˙.p=q/.

Notice that L� depends on the choice of the signs of the stabilisations along the way.
We suppress this dependence from the notation.

Theorem 4.3 (Ding and Geiges [5]) Contact p=q–surgery is obtained from Y as
contact C1–surgery along the link LC and Legendrian surgery along the link L� .

Example 4.4 For n > 1, the algorithm gives us k D 1, and the continued fraction
expansion Œ3; 2; : : : ; 2�, where 2 appears n � 2 times. Thus there are exactly two
isotopy classes of contact Cn–surgeries depending on the choice of a positive or
negative stabilisation of L. We will denote them by �˙n .L/ or �˙n , sticking to Lisca
and Stipsicz’s convention [30].

Remark 4.5 When nD 1, �Cn D �
�
n D �C1 , so the distinction between the choice of

the two signs disappears.

Remark 4.6 Let us observe here that since �L˙D .�L/� , positive contact surgeries
on L are dual to contact surgeries on �L: doing p=q surgery on L for a given choice
of signs and doing p=q surgery on �L with the opposite choice of signs gives isotopic
contact structures, since the two links LC and L� are isotopic.

In particular, as noted in the introduction, ��n .L/ is isotopic to �Cn .�L/.

We will denote with �p=q.L/ any of the contact structures constructed using the
algorithm above.

We want to find an open book decomposition compatible with �p=q.L/, following
Ozbagci [32]: Fix an open book .F; h/ for .Y; �/ compatible with L in the sense
that L lives in a page F of the open book and is nontrivial in H1.F /. The sequence of
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stabilisations prescribes a sequence of stabilisations of the open book and a sequence
of curves L;L0; : : : ;L` in the resulting page F 0 . Call h0 the monodromy given by
the sequence of stabilisations on .F; h/.

An open book for �p=q.L/ is given by composing h0 with k negative Dehn twists
along L and a positive Dehn twist along Li for each i .

Proposition 4.7 Let m� 1; n� 0 be integers and let p=q be a rational number such
that2 nC 1=m � p=q < nC 1=.m� 1/. Then �p=q.L/ is obtained from �nC1=m.L/

through Legendrian surgeries, if the first m stabilisation choices for p=q–surgery
coincide with the choices for nC 1=m.

Proof Let us apply the Ding–Geiges algorithm to ˛ WD p=q and ˇ WD nC 1=m. If
nD 0, the number k given by the algorithm is m for both coefficients and the continued
fraction expansion for p=q has the continued fraction expansion for 1=m (which is the
empty expansion) as an initial segment. If n� 1, the number k is 1 for both fractions
and the algorithm tells us to expand the two fractions rˇ D 1� .mnC1/=.m�mn�1/

and r˛ D 1�p=.q�p/.

Lemma 4.8 The continued fraction expansion for r˛ contains the expansion for rˇ as
an initial segment also when n� 1.

Once we have the lemma, together with the previous considerations, we see that the
two links LC associated to �˛.L/ and �ˇ.L/ are equal; if we choose stabilisations
carefully, the link L�.˛/ associated to p=q and L contains the link L�.ˇ/ associated
to mC1=n and L, so that �˛.L/ is obtained from �ˇ.L/ through Legendrian surgery
on L�.˛/ nLC.ˇ/.

Before proving Lemma 4.8, let us analyse what happens with contact .nC1=m/–surgery
via the Ding–Geiges algorithm.

Remark 4.9 Contact .1=m/–surgery is just a sequence of C1–surgeries. On the other
hand, when n� 1, the link LC consists of L only and L� is nonempty. Let us now
distinguish between nD 1 and n� 2.

The fraction to expand when nD 1 is just 1C .mC 1/, so the expansion is ŒmC 2�.
In this case, L� consists of an mth stabilisation of a pushoff of L.

For larger values of n, the fraction to expand is 1C .mnC 1/=.m�mn� 1/. By
induction on n, its continued fraction expansion is Œ3; 2; : : : ; 2;mC 1�, where the
sequence of 2 has length n� 2 (but if mD 1 then 2 appears a total of n� 1 times).

In any case, there are m stabilisations to be chosen if n� 1.

2Here we adopt the convention that 1=0DC1 .
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Proof of Lemma 4.8 As before, we let ˛ WD p=q .

The statement is trivial if ˛Dp=qD nC1=m, so we can assume that both inequalities
in the statement of the proposition are strict.

We will prove the nontrivial case by induction on n. When nD1, the fraction associated
to 1C 1=m is 1C .1Cm/=1, whose continued fraction expansion is ŒmC 2�. We
need to expand the fraction 1Cp=.p � q/D .2p � q/=.p � q/D .2˛ � 1/=.˛ � 1/:
the inequality 1C1=m<˛ < 1C1=.m�1/ can be read as 1=m<˛�1< 1=.m�1/,
so that

2Cm� 1< 2C
1

˛�1
D

2˛�1

˛�1
< 2Cm:

In particular, the first element of the continued fraction expansion we are looking at is
d.2˛� 1/=.˛� 1/e DmC 2 as we wanted.

Let us suppose the statement holds for n� 1 and prove it holds for nC1. The fraction
associated to nC1C1=m is .2mnCmC2/=.mnC1/D3�..mn�mC1/=.mnC1//�1

and the one associated to p=qC1 is .2p�q/=.p�q/D 3� ..p�2q/=.p�q//�1 . In
particular, both expansions start with a 3 and the first one continues with the expansion
of .mnC 1/=.mn�mC 1/. In order to prove the statement, it is enough to show that
the continued fraction expansion of .mn�mC 1/=.mnC 1/ is an initial segment of
the expansion of .p� 2q/=.p� q/.

Now, the algorithm for nC 1=m and p=q � 1 tells us to expand the two fractions
1C.mnC1/=.mn�m�1/ and 1C.p�q/=.2p�q/, and by the inductive hypothesis
the expansion of the first one is the initial segment of the expansion of the second one.
The result follows.

We can immediately draw two corollaries:

Corollary 4.10 If n is a positive integer and c.��n .L//¤ 0, then for every p=q � n,
c.�p=q.L//¤ 0 whenever the first stabilisation for p=q–surgery is a negative.

Corollary 4.11 If c.�nC1=m.L// ¤ 0 for a positive integer n and all positive inte-
gers m, then for all p=q > n there is a sign choice for the Ding–Geiges algorithm such
that c.�p=q.L//¤ 0.

For the following proposition, let us some notation. For integers n�0;m�1, we denote
by ��

nC1=m
.L/ any contact .nC1=m/–surgery on L such that all the m stabilisations

are chosen to be negative. In particular, when mD 1, this is consistent with Lisca and
Stipsicz’s notation for integral surgeries; it is understood that ��

1=m
.L/ is just �1=m.L/

since there are no stabilisations involved.
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Proposition 4.12 For n � 0;m � 1 integers, the two contact structures ��
nC1=m

.L/

and ��
nC1C1=m

.L�/ are isotopic.

Remark 4.13 The case mD 1 in the proposition is proved by Lisca and Stipsicz [30].
The proof we present here is a refinement of their first proof.

Proof We will prove the result by induction on n.

When n D 0, we are comparing �1=m.L/ with �1C1=m.L
�/. Suppose we have an

open book .F; h;L/ for .Y; �/ compatible with L. According to Ozbagci [32], the
open book .F;D�m

L
ı h/ supports the contact structure �1=m.L/.

We can construct an open book supporting ��
1C1=m

as follows. The Ding–Geiges
algorithm tells us that we need to pushoff and stabilise (negatively, according to our
choice) L m times and do C1–surgery on L and �1 on the pushoff. We can realise L

and the pushoff on the page of the same open book by doing m positive stabilisations
(using boundary-parallel arcs for the Murasugi sum inside F ); the pushoff is represented
by a curve L1 on the page, parallel to L except that it runs once along each of the m

handles (see Figure 4.1). Call .F 0; h0/ the monodromy for ��
1C1=m

.L�/, as shown in
Figure 4.1.

Claim 4.14 The contact structure ��
1C1=m

.L�/ is isotopic to �1=m.L/.

Proof We now apply the lantern relation to the monodromy h0 , where we insert a
pair of canceling Dehn twists along the curve labelled with a ˙1 in Figure 4.1. After
applying the relation, we see a destabilisation arc (dashed in the figure). After Giroux
destabilising, we decrease the number of boundary components and we obtain the
monodromy at the bottom right of the figure. If we insert another pair of opposite
Dehn twist along the ˙1 curve, we can apply the lantern relation once again and we
see another destabilisation arc. The resulting open book looks now exactly like the
one we had in the previous step (bottom right in the figure), with one less boundary
component. After m� 1 application of the lantern relation-destabilisation process, we
end up with the open book we described for �1=m.L/.

Notice how in this process, we always destabilised without any need for conjugation, so
we actually proved that the two contact structures are isotopic rather than isomorphic.
On the contrary, for the inductive step we will first show:

Claim 4.15 The contact structure ��
nC1C1=m

.L�/ is contactomorphic to ��
nC1=m

.L/.
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... ...
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�1

˙1 LR

�1

�1

GD

�2

�1

LR

�1

�1

˙1

Figure 4.1: The sequence of moves in Claim 4.14: each curve labelled with
a ˙1 represents a pair of canceling Dehn twists; curves labelled with �1

represent negative (left-handed) Dehn twists; unlabelled curves represent
positive (right-handed) Dehn twists.

Proof We now refer to Figure 4.2. The open book at the top left corresponds to the
surgery ��nC1C1=m.L

�/. After applying the lantern relation once and conjugating, we
find the destabilisation arc (dashed in the figure). The destabilisation arc intersects
a single curve d such that the monodromy factorises as h1 ı Dd ı h2 . In order
to destabilise, we need to have a monodromy of the form Dd ı h3 , so we need
to conjugate h with h1 . By conjugating we lose the isotopy result. After Giroux
destabilising, we obtain the open book at the bottom that represents ��

nC1=m
.L/.

Remark 4.16 In the proof of the inductive step, we never used the fact that all the
last m � 1 stabilisations are negative but just that the first one is. In other words,
�nC1C1=m.L

�/ is isomorphic to �nC1=m.L/ if the first stabilisation is negative for
both surgeries and the number of positive stabilisations on the last pushoff is the same.
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... ...

...

Cn

�1

LR
Cn� 1

�1

GD

Cn� 1

�1

Figure 4.2: The sequence of moves in Claim 4.15. Each curve represents
a composition of Dehn twists. The ones that are unlabelled represent a
single positive (right-handed) Dehn twists, while the ones labelled with an
integer m represent the mth power of a positive Dehn twist. For example,
curves labelled with �1 represent a single negative (left-handed) Dehn twist.

Moreover, using Lisca and Stipsicz’s trick (see [30, Lemma 2.3]), one proves that
�nC1C1=m.L

�/ is overtwisted if the first (resp. any) stabilisation is positive for all
n� 1 (resp. for nD 0). They prove the result by exhibiting an overtwisted disc in the
surgered manifold, which is isotopic to the core of the first surgery handle relative to L

(not relative to L� ).

Using the remark, we can now complete the proof.

Claim 4.17 The contact structure ��
nC1C1=m

.L�/ is isotopic to ��
nC1=m

.L/.

Proof We first argue that ��nC1C1=m.L
�/ is isotopic to one of the contact .nC1=m/–

surgeries on L by showing that the relevant solid torus is tight. If L0 is the Legendrian
representative of the positive trefoil with tb.L0/ D 1, by the main result of [28]3

we know that ��
nC1C1=m

.L�
0
/ is tight. This implies that the solid torus we attach to

3It also follows from Theorem 1.1 of this paper, and precisely from the implication whose proof is
independent of this discussion.
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S3
L

(not to S3
L�

) to obtain ��
nC1C1=m

.L�/ is tight. This solid torus is the union of a
negative stabilisation layer and a surgery layer and, since it is tight, it is one of the
solid tori that we glue in to S3

L
to get one of the contact .nC 1=m/–surgeries. Let us

call this surgery x�nC1=m.L/.

The argument above also shows that the choice of the signs of the stabilisations in the
algorithm is independent of the Legendrian knot L. To get the claim, it suffices to
prove the result in a particular case.

Consider the case LDL1 , where L1 is the nth negative stabilisation of a Legendrian
positive torus knot L0 with maximal Thurston–Bennequin number. By induction,
x�nC1=m.L1/ is contactomorphic to �1=m.L0/, which in turn has nonvanishing contact
invariant, so c.x�nC1=m.L1//¤ 0. Using the Lisca–Stipsicz trick mentioned above, we
immediately see that the first pushoff of L1 has to be negatively stabilised, and this
already concludes the proof in the case mD 1 (since there are no more stabilisation
choices).

If m > 1, the algorithm tells us that there are m� 1 further stabilisations to do, and
these latter stabilisations commute. Let us suppose that p � 0 of them are positive.

Thanks to Remark 4.16 above, x�nC1=m.L1/ is contactomorphic to the 1C 1=m–surgery
on L�

0
where the first (only) pushoff of L�

0
has been positively stabilised p times and

negatively stabilised m�p times. By the second part of the remark, this latter contact
structure is overtwisted if p > 0. Since x�nC1=m.L1/ is isotopic to x�nC1C1=m.L

�
1
/,

which in turn is contactomorphic to �1=m.L0/, and the latter is tight, we get p D 0, ie
x�nC1=m.L1/ is isotopic to ��nC 1=m.L1/ and is not isotopic to any other .nC1=m/–
surgery on L1 .

This also concludes the proof of the proposition.

Remark 4.18 Doing contact surgery along L corresponds to gluing a solid torus with
a tight contact structure to S3

L
. In particular, every contact p=q–surgery induces a map

 p=q between SFH.�S3
K;t
/ and SFH.�S3

tCp=q.K//. When p=qD nC1=m, we will
denote the map corresponding to ��

nC1=m
as  �

nC1=m
.

Notice that when n D 0, the sign choice is immaterial and the map corresponds to
1=m–surgery on L.

5 Cables

5.1 Topological cabling

Let K be a nullhomologous knot in a 3–manifold Y . Take a tubular neighbourhood
K �N.K/� Y , where we identify N.K/ with fz 2C j jzj � 1g �S1 in such a way
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that K D f0g � S1 and � D f1g � S1 is nullhomologous in Y . Together with the
meridian �D fjzj D 1g � f�g, � gives a parametrisation of @N.K/.

Definition 5.1 Given p > 0 and q relatively prime integers, we define the .p; q/–
cable Kp;q of K to be any simple closed curve in @N.K/, homologous to p�C q�.

Remark 5.2 Here we adopt the standard convention for the labelling of p and q ;
this is the convention adopted by Hom and Hedden, while Etnyre and Honda use the
opposite convention.

Let us recall the following classical result:

Proposition 5.3 The manifold S3
pq.Kp;q/ obtained by pq surgery on S3 along Kp;q

is diffeomorphic to the connected sum S3
q=p

.K/ # L.p;�q/.

Remark 5.4 Here we adopt the convention that the lens space L.p;�q/ is obtained
by Cp=q surgery on the unknot. This choice is quite common, but it is opposite to
Ozsváth and Szabó’s and Hom’s, for which L.p;�q/ is obtained by .�p=q/– surgery
on the unknot.

We are interested in the behaviour of � and " under cabling. Hom answered precisely
this question:

Theorem 5.5 [18] The concordance invariants �.Kp;q/ and ".Kp;q/ are determined
by p , q , �.K/ and ".K/ in the following way:

(1) If ".K/ D 0, then �.Kp;q/ D
1
2
.p � 1/.q � sgn.q//; if jqj � 1, ".Kp;q/ D 0,

and ".Kp;q/D sgn.q/ otherwise.

(2) If ".K/¤ 0, then �.Kp;q/Dp�.K/C 1
2
.p�1/.q�".K// and ".Kp;q/D ".K/.

5.2 Legendrian cabling

We want to construct Legendrian cables of Legendrian knots through a “standard”
construction. Similar ideas appeared in Rudolph [46] (for Whitehead doubles), Etnyre
and Honda [11], Ding and Geiges [6] and more recently in Cochran, Franklin, Hedden
and Horn [4].

Consider an oriented Legendrian knot L� .S3; �st/ and its front projection. Take m

pushoffs of L under the flow of @=@z , and twist them away from cusps, as in Figure 5.1.
Notice that the twists are performed on strands that point to the right. When n� 0 is
coprime with m, this is still the front projection of an oriented Legendrian knot so the
following definition makes sense:
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=

m

�
n

1

Figure 5.1: A Legendrian cable (in black) of L (in red)

Definition 5.6 We will call the Legendrian knot Lm;n obtained by the procedure we
just described a Legendrian .m; n/–cable.

Remark 5.7 We defined Lm;n starting from the front projection of L, so a priori Lm;n

depends on the diagram and on the position of the twists. On the other hand, this is a
local construction, taking place in a standard neighbourhood of L, ie Lm;n is obtained
by attaching a cabling layer to S3

L
. In particular, the main theorem in [6] shows the

well definedness of Lm;n .

Legendrian representatives of cables have proven to be a remarkable source of examples.
For example, some (3,2)-cables of the trefoil (and more generally, cables of positive
torus knots) are not Legendrian or transversely simple (see Etnyre and Honda [12] and
Etnyre, LaFountain and Tosun [13]).

We want to compute the classical invariants of Lm;n , given the classical invariants of L.
Say that L is of topological type K and has Thurston–Bennequin and rotation numbers
t D tb.L/ and r D r.L/ respectively. From now on, we denote by L and Lm;n both
the knots and their front projections.

One can easily show the following two propositions.

Proposition 5.8 The Legendrian knot Lm;n is of topological type Km;mtCn .

The cable Lm;n is clearly an .m; q/–cable of L for some q . This is pinned down by
counting the linking number of L and Lm;n (see Figure 5.1).
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Proposition 5.9 The classical invariants for Lm;n are

tb.Lm;n/Dm2t C .m� 1/n;

r.Lm;n/Dmr;

sl.Lm;n/Dm2t �mr C .m� 1/n:

This is obtained by computing the writhe and the number of cusps of the front projection
of Lm;n (Figure 5.1).

One can now compare Hom’s formulae for � and " with the proposition above. Using
Plamenevskaya’s inequality (3-2), one checks the following.

Proposition 5.10 Let L be a Legendrian knot in .S3; �st/ of topological type K such
that ".K/¤ 0. Then:

(i) (SL) holds for Lm;n if and only if (SL) and (TN) hold for L.

(ii) Suppose that (SL) holds for Lm;n . Then (SC) holds for the pair .Lm;n;p/ if and
only if p � 1�m � r.L/.

(iii) (TN) holds for Lm;n if and only if (TN) holds for L.

On the other hand, if ".K/D 0 (and therefore �.K/D �.K/D 0):

(i 0 ) (SL) holds for Lm;n if and only if (SL) holds for L and n� 1�m � tb.L/.

(ii 0 ) Suppose that (SL) holds for Lm;n : Then (SC) holds for the pair .Lm;n;p/ if
and only if p � 1�m � r.L/.

(iii 0 ) (TN) holds for Lm;n if and only if n� �1�m � tb.L/.

Before stating the following lemma, let us introduce some notation. Given a Legendrian
knot L, we denote by L.1/DL� its negative stabilisation and recursively set L.nC1/D

.L.n//� . For small values of n, we may use the “differential” notation L.1/ D L0 ,
L.2/ DL00; : : :.

Lemma 5.11 The two Legendrian knots .L.k//m;kmCn and .Lm;n/
.km/ are isotopic.

Remark 5.12 Note that if such an identity exists, then the triple of numbers .m; n; km/

defining the second knot is uniquely identified by the classical invariants of the first
knot. Also, since the cabling operation commutes with orientation-reversal, the same
result holds for positive stabilisations (on both knots).
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Proof It is enough to prove the result for k D 1, which is an easy induction on m.
For mD 2, we can apply the second Legendrian Reidemeister (LR2; see Etnyre [10]
for details) move twice as in Figure 5.2.

Let us now suppose we want to prove the result for mC 1. We can apply LR2 2m

times as in the base case and reduce to the inductive assumption.

Figure 5.2: A Legendrian isotopy from .L0/2;3 (top left) to .L2;1/
00 (bottom)

Remark 5.13 The cabling construction, stabilisations and the proof of the lemma
above are all local, in the sense that they all take place in a neighbourhood of L.

In particular, there exists a cabling layer .Tm;n; �m;n/ that is topologically a difference
of solid tori. The core of the inner torus winds m times around the outer solid torus, and
there are two �m;n –dividing curves on the “outer” (resp. “inner”) boundary component
that are homologous to the longitude of the bigger (resp. smaller) solid torus.

What the previous lemma says at the level of contact layers is that we have two isotopic
layers. One is obtained by gluing a stabilisation layer .T2 � I; ��/ (ie a specific basic
slice) from the back to the outer boundary of Tm;n ; the other is obtained by gluing m

stabilisation layers .T2 � I; ��/ from the front to the inner boundary of Tm;mCn .

This also allows us to generalise the notion of Legendrian cabling to Legendrian knots
in any contact manifold.

This cabling layer induces a gluing map

�m;n WD‰�m;n
W SFH.�YK ;t / �! SFH.�Y 3

Km;mtCn;m2tCn
/:

Thanks to the remark, the lemma above can be translated to the sutured world as
follows:
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Corollary 5.14 We have �m;kmCn ı �
k
˙
D �km
˙
ı �m;n .

Remark 5.15 It is clear that  1 ı �m;n D  1 , since the corresponding layers are
both 1–surgery layers, so they are isotopic.

We conclude the subsection with a remark on the action of �m;n on sutured Floer
homology, when K � S3 .

Proposition 5.16 The map �m;n sends stable elements to stable elements and therefore
descends to a map of unstable complexes, still denoted with �m;n ,

�m;nW SFH.�S3
K ;t /=S ! SFH.�S3

Km;mtCn;m2tCn
/=S:

Proof Recall from Section 3 that the set of stable elements is ker.�N
C ı �

N
� / for

some sufficiently large N , and by Theorem 3.11 it is also spanned by ker.�N
� / and

ker.�N
C /. It therefore suffices to show that the proposition holds for an element

x 2 SFH.�S3
K ;t
/ such that �k

˙
.x/D 0 for some k . It follows from Corollary 5.14

that �km
˙
.�m;n.x//D �m;mkCn.�

k
˙
.x//D 0.

5.3 Contact surgeries and cabling

Let us start with an easy, general observation.

Remark 5.17 Let L be a nullhomologous Legendrian knot in .Y; �/ of topological
type K . The Legendrian knot Lm;n is of topological type Km;m�tb.L/Cn . If we do
contact .Cn/–surgery on Lm;n , the topological surgery coefficient is tb.Lm;n/C nD

m.m � tb.L/C n/ so the underlying manifold is reducible, more precisely it splits as
Ytb.L/Cn=m.K/ # L.m;�n/.

It is natural to ask whether there are natural contact structures on the two factors that
realise this topological decomposition as a contact connected sum. In fact, this happens
to be true (regardless of the homological assumption ŒK�D 0 2H1.Y /) when nD 1.

Proposition 5.18 Contact C1–surgery on Lm;1 is isotopic to a contact connected
sum of a contact 1=m–surgery and a tight contact structure on L.m;�1/.

Before getting to the proof, let us find an open book for .S3; �st/ compatible with Lm;1 .
Start off with an open book .F; h/ for .S3; �st/ for which L sits on a page and is
not nullhomologous in that page. We can assume that L� F is a simple closed, not
nullhomologous curve. Consider a properly embedded arc c 2 F that intersect L in a
single point and consider the positive (Giroux) stabilisation .F 0; h0/ of .F; h/ along c .
The situation is depicted in Figure 5.3.

Geometry & Topology, Volume 19 (2015)



210 Marco Golla

Lemma 5.19 The curve depicted on the right-hand side of Figure 5.3 represents Lm;1 .

Before giving the proof of the lemma, let us recall a result of Ozsváth and Stipsicz
(see [34, Section 4]).

Proposition 5.20 If .F; h;L/ is an open book decomposition with connected binding
for .Y; �/ compatible with the nullhomologous Legendrian knot L, then:

(i) There exists ŒZ�D � 2H1.F / such that ŒL�D h�.�/� � .

(ii) r.L/ is the Euler class of a 2–chain P such that @P DLCZ � h.Z/.

(iii) tb.L/ is Z �L.

This has some very interesting consequences, whose proofs are straightforward.

Corollary 5.21 If L;L1;L2 are three embedded, homologically nontrivial curves
in F such that ŒL� D ŒL1�C ŒL2� and Zi is associated to Li as in the proposition
above, then:

� tb.L/D tb.L1/C tb.L2/CZ1 �L2CZ2 �L1 .
� r.L/D r.L1/C r.L2/.

Proof of Lemma 5.19 Let us remark that Lm;n is Legendrian isotopic to a torus knot
in a standard Legendrian neighbourhood �.L/ of L.

Call L0 the Legendrian knot represented by the curve on the right-hand side of Figure 5.3
and suppose that @F 0 is connected. In particular, @F has two connected components.

Stabilising along c corresponds to a connected sum of .Y; �/ with .S3; �st/. In par-
ticular, we can suppose that a neighbourhood of c in Y is contained in �.L/. Call b

the core of the annulus we do Murasugi sum with (which is the union of c and a
core of the new 1–handle of F 0 ). In this case, the connected sum can be performed
inside �.L/. In particular, b is nullhomologous in S3 . Observe now that the curve L0

is isotopic in S3 to a curve on the boundary of �.L/; L0 is homologous to m�� C b ,
where b is given the orientation such that b �LD 1, and in particular L0 represents a
.m;m � tb.L/C 1/–cable of K .

Since L0 and Lm;1 are both local modifications of L and torus knots in the standard
solid torus are Legendrian simple [11], the knot represented by L0 is isotopic to Lm;1

provided they have the same classical invariants.

But the corollary above provides us the tools we need to compute tb.L0/ and r.L0/. We
know that ŒL0�DmŒL�C Œb� and we know that for some Z0�F , Œh.Z0/�� ŒZ0�D ŒL�.
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Claim 5.22 If Zb is parallel to a boundary component of F � F 0 , oriented so that
b �Zb D 1, then Œh0.Zb/�� ŒZb �D Œb�.

Proof The action of Db on homology is given by ŒDb. /�D Œ �C .b �  /Œb�. Since
Œh.Zb/�D ŒZb � and h0 DDb ı h, it follows that Œh0.Zb/�D ŒZb �C .b �Zb/Œb�.

Claim 5.23 We have Œh0.Z0/�� ŒZ0�D ŒL�C .b �Z0C 1/Œb�.

Proof We know that Œh.Z0/�D ŒZ0�C ŒL� and that ŒDb.c/�D Œc�C .b � c/Œb�, so

Œh0.Z0/�D ŒDb.h.Z0//�D ŒDb.Z0/�C ŒDb.L/�D ŒZ0�C ŒL�C .b �Z0C b �L/Œb�:

That is what we wanted since, by assumption, b �LD 1.

In particular, if we let Z be any curve in the homology class ŒZ0�� .b �Z0C 1/ŒZb �,
then Œh.Z/�� ŒZ�D ŒL�.

We can now compute tb.L0/. We get

tb.L0/Dm2tb.L/C tb.b/Cm.Z � bCZb �L/Dm2tb.L/� 1Cm;

where we used that b �Z D b �Z0 , Zb �L D 0 and tb.b/ D �1. This last identity
comes from the fact that b represents a Legendrian unknot with Thurston–Bennequin
number �1 in the .S3; �st/ connected summand, corresponding to the stabilisation
made on F to get F 0 .

As we said, the rotation number is linear, so r.L0/ D mr.L/C r.b/ D mr.L/ and
in particular L0 and Lm;1 have the same classical invariants, and Ding and Geiges’
results [6] (see Remark 5.7 above) imply that they are isotopic.

Recall that b is the core of the annulus we do the Murasugi sum with. Let us also denote
by ˇ the positive Dehn twist along b and by � the positive Dehn twist along L� F 0 .

Proof of Proposition 5.18 An open book for C1 surgery on Lm;1 has F 0 as a page
and the monodromy is the composition of h0 with a negative Dehn twist along the
curve representing Lm;1 . This last curve is isotopic to ��m.b/, so the monodromy
can be written as .��mˇ�m/�1h0 D ��mˇ�1�mˇh.

Fix a contact structure �m on L.m;�1/ supported by an open book with an annular
page A, and monodromy given by m positive twists along the core of the annulus.
Fix also a properly embedded arc d connecting the two boundary components of the
annulus.
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...

c

L
L0

Figure 5.3: The figure on the left shows the open book .F; �;L/ and the
stabilisation arc c . The figure on the right represents .F 0; �0;Lm;1/: Lm;1

runs m times along L and once along the new 1–handle.

Similarly, an open book for C1=m–surgery along L is given by .F; ��mh/. An open
book for the connected sum of this with �m can be realised via a Murasugi sum of F

and A along the arcs d �A and an arc c0 � F . Instead of using c0 D c , though, we
will use the arc c0 D �1�m.c/ to simplify the proof.

The new surface is diffeomorphic to F 0 and the monodromy, under the obvious identi-
fication, is �1�mˇm��.1�m/ ��m � hD �1�mˇm��1h.

Notice that b and L intersect exactly once by assumption.

To prove isotopy of the two contact structures, we prove that the two monodromies are
isotopic and this is an easy computation in the mapping class group of F 0 :

��mˇ�1�mˇhD �1�mˇm��1h” ˇ�1�mˇ D �ˇm��1:

This last equation follows from taking the mth power of the braid relation ˇ�1�ˇ D

�ˇ��1 .

Remark 5.24 There is also a less direct proof of Proposition 5.18. The idea is that for
some L, eg the right-handed trefoil with maximal Thurston–Bennequin, every Legen-
drian cable has tb.Lm;1/D2g.Lm;1/�1 and therefore the contact structure �C1.Lm;1/

has nonvanishing contact invariant [28]. This implies that the layer �m;1 [ T �n has
nonvanishing contact invariant and in particular is tight. But �m;1[T �n topologically
decomposes as T1=m # L.m;�1/ and the contact structure on the T1=m factor has to
be tight, and is the only tight solid torus that gives contact 1=m–surgery.

Notice that if m� 4, this does not immediately say anything about the contact structure
on the lens space factor. It is not unreasonable that one can extract this information
from the Spinc –structures of the contact invariants c.�1=m.L// and c.�C1.Lm;1//.
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We now want to turn to the case of Lm;n with n� 1 .mod m/. We start off with an
example.

Example 5.25 Let us consider the case of the Legendrian positive trefoil L0� .S
3; �st/

with tb.L0/ D 1 and r.L0/ D 0. L0 satisfies all three conditions in Theorem 1.1.
More precisely, since ".T3;2/D 1, Proposition 5.10 tells us that all of its Legendrian
cables .L0/m;n satisfy the three hypotheses in Theorem 1.1 for any positive surgery
coefficient.

Therefore, if we accept the “if” direction of our main theorem (whose proof will not
rely on these facts), we know that ��n ..L0/m;n/ has nonvanishing contact invariant4

(in fact, �Cn ..L0/m;n/ does also).

Thanks to the example, we know that c.��n .Lm;n//¤ 0 for some Legendrian L. In
particular, the contact invariant EH.Tm;n[T �n ; �m;n[ �

�
n / of the union of the cabling

layer and the surgery layer has nonvanishing contact invariant (see Corollary 2.17) and
therefore is tight.

The layer Tm;n[T ˙n splits as a connected sum Tn=m # L.m;�n/ of tight manifolds,
therefore we proved the following.

Proposition 5.26 The contact structure ��n .Lm;n/ splits as the connected sum
�n=m.L/ # �m;n for some choice of n=m surgery along L and a contact structure �m;n

on L.m;�n/. Both the surgery layer and the contact structure on the lens space are
independent of L.

We want to pin down the choice of the contact structures �n=m and �m;n in the statement
above when n� 1 .mod m/.

Proposition 5.27 Suppose m� 1. Contact n–surgery on Lm;n yields the connected
sum ��

n=m
.L/ # �m , where �m is obtained by �1–surgery on the Legendrian unknot

with .tb; r/D .1�m; 2�m/.

This proof is similar in spirit to the proof of Proposition 4.12. The key point of the
proof is Remark 4.16. Recall that when n� 1 .mod m/ is larger than 1, we have m

stabilisations to choose, and the last m�1 choices commute (and all choices commute
if nDmC 1). In the following, L0 will be the Legendrian right-handed trefoil with
tb.L0/D 0.

Proof We first take care of the lens space summand.

Claim 5.28 The contact structure on the lens space is �m .

4This follows also from Lisca and Stipsicz’s main theorem in [28], since positive cables of the trefoil
have � D g .
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Proof Let k D bn=mc D .n� 1/=m; in particular, mk D n� 1.

Since the contact structure on L.m;�1/ does not depend on the particular Legendrian
knot, we can pick any L. Let LDL

.k/
0

be a k th negative stabilisation of the trefoil L0 .
Then

��n .Lm;n/D �
�
n ..L0/

.mk/
m;1

/D �C1..L0/m;1/D �1=m.L0/ # �m;

where the first equality follows from Corollary 5.14, the second from Proposition 4.12
and the third from Proposition 5.18.

Remark 5.29 In the proof of the previous claim, we need to use a knot L0 such that
�C1.L0/m;1 is tight in order to have uniqueness (up to isomorphism) of the connected
sum decomposition (see Ding and Geiges [7]). As a byproduct of the proof, we obtain
that �n=m.L/ has to be tight for a k th stabilisation of L0 .

As in the proof of Proposition 4.12, we now rule out all other possibilities for �n=m.L/.

Claim 5.30 We have ��
mC1

.Lm;mC1/D �
�
1C1=m

.L/ # �m .

Proof Suppose that the contact structure on ��
1C1=m

.L/ was obtained by doing at least
one positive stabilisation on the (only) pushoff of L, as dictated by the Ding–Geiges
algorithm.

Suppose that L D L0
0

. By the remark above we know that the contact structure
�1C1=m.L/ is tight and by Remark 4.16 we have that if there is one positive stabilisation,
then �1C1=m is overtwisted. Therefore, in this particular case, the surgery layer
is T �

1C1=m
.

But this layer is independent of L, concluding the proof.

Claim 5.31 We have ��
kmC1

.Lm;kmC1/D �
�
kC1=m

.L/ # �m .

Proof As above, let L D L
.k/
0

. On one hand, we know that �kC1=m.L/ is tight,
and on the other hand (see Remark 4.16, and the proof of the claim above) every
�kC1=m.L/ that involves a positive stabilisation in the algorithm is overtwisted.

Again, the surgery layer is independent of the particular choice of L.

Since we had proved the statement for n D 1=m in the previous section, we have
exhausted all cases.
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6 The main theorem

6.1 Technical lemmas

We introduce here three technical lemmas, whose proofs will be given in the next
section. The first one is due to Honda (unpublished) and is implicit in [20]. We will
give our own proof for convenience.

Proposition 6.1 The gluing map ‰� W SFH.�M;��/! SFH.�M 0;�� 0/ associated
to an overtwisted contact structure � on N DM 0 n Int.M / is trivial.

Remark 6.2 Proposition 6.1 is easily seen to be true if we restrict ‰� to the subspace
EH.M; �/ of SFH.�M;��/ generated by contact invariants EH.M; � 0/ such that @M
is � 0–convex and is divided by � .

In general EH.M; �/ is a proper subset of SFH.�M;��/. Whenever the maximal
Thurston–Bennequin number tb.K/ of a knot K2S3 is strictly smaller than 2�.K/�1,
no unstable element in SFH.�S3

K ;2�.K /�1
/ can belong to EH.S3

K ;2�.K /�1
/.

Recall that a framed knot .K; f / gives a surgery cobordism Wf and the latter induces a
map F�Wf W

cHF.�S3/! cHF.�S3
f
.K//. In Definitions 2.24 and 2.25 we introduced

the maps  1 and  C1 associated to contact1– and .C1/–surgery. In the last section
we will prove the following.

Proposition 6.3 The following diagram commutes:

SFH.�S3
K ;f

/
 C1 //

 1 **

SFH.�S3
fC1

.K/.1//
� // cHF.�S3

fC1
.K//

SFH.�S3.1//
� // cHF.�S3/

F�WfC1

OO

Remark 6.4 As it happens for Proposition 6.1, it is easy to see that this triangle has
to be commutative whenever we restrict the domain of  C1 and  1 to the subspace
EH.S3

K ;f
/� SFH.�S3

K ;f
/.

There is one more lemma, which is implicit in [41].

Proposition 6.5 [41] The surgery cobordism map

F�Wf W
cHF.�S3/ �! cHF.�S3

f .K//

is injective for f D 2�.K/ and is zero for f D 2�.K/� 2.
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6.2 Algebraic identities

Recall that in Definition 2.22 we introduced the notation �˙ to denote the two glu-
ing maps associated to the two types of stabilisation of an oriented knot K . In
Definition 2.25 we introduced the notation  ˙n for gluing maps associated to contact
n–surgery. Proposition 4.12 (or rather, its proof) has a translation to the sutured world:

Proposition 6.6 We have the following identities:

(i)  ˙
nC1
ı �˙ D  

˙
n .

(ii)  ˙n ı �� D 0.

These properties will be used throughout the proof, and will be the tools that allow us
to switch from small to very large surgery coefficients and back.

Proof The first part follows directly from Proposition 4.12. The second part is
Lisca and Stipsicz’s trick of opposite stabilisations (see Remark 4.16) coupled with
Proposition 6.1.

The following two propositions allow us to simplify the proof.

Proposition 6.7 If x is stable in SFH.S3
K ;f

/ then  ˙n .x/D 0 for any n� 1.

Proof Suppose first that x 2 S� D ker �N
� . As a warm up, let us prove the theorem

in the case nD 1. For some sufficiently large N , we have

 1.x/D . 
�
NC1 ı �

N
� /.x/D  

�
NC1.0/D 0:

Theorem 3.11 tells us that �˙ is an isomorphism on S� , so each x 2S�� SFH.S3
K ;f

/

is the image of an element x0 2 S� � SFH.S3
K ;f�nC1

/, in the sense that we have
x D �n�1

C .x0/.

Using this and the warm-up, we have that for all x 2 S� we can write

 Cn .x/D . 
C
n ı �

n�1
C /.x0/D  1.x

0/;

and the latter vanishes thanks to the warm up.

On the other hand,
 �n .x/D . 

�
nCN ı �

N
� /.x/D 0;

so we have proven that S� � ker ˙n .

We can now exchange the roles of C and � signs in the proof and obtain that the
results holds also for x 2 SC , which concludes the proof.
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Recall that in Lemma 3.18 we proved an analogous result for  1 . We can therefore
draw the following corollary.

Corollary 6.8 Positive and 1–surgery maps factor through the unstable complex.

Remark 6.9 In the following we will often implicitly replace SFH.�S3
K ;f

/ with the
unstable quotient SFH.�S3

K ;f
/=.SCCS�/ (see Remark 3.13). This latter group, as

said, is a direct sum of copies of F sitting in different Alexander gradings.

In particular, we will replace the maps  �n and  1 with their compositions with
the projection SFH.�S3

L
/! SFH.�S3

L
/=.SCCS�/. We will continue to call these

maps  �n and  1 , keeping in mind the domain change. The maps �˙ will be
considered as maps between unstable complexes, too. In what follows, this will be
used without further mention.

We find it very convenient to organise all the unstable complexes (as f varies among
integers smaller than 2�.K/) in a picture like in Figure 6.1.

...
��

��

�C

�C

A

t

Figure 6.1: Every dot in the picture represents a generator in the unstable
complex of some SFH.�S3

K ;f
/ . Each column is a (Alexander-)homogenous

spanning set for the unstable complex for SFH.�S3
K ;f

/ for a fixed slope f ;
this slope decreases when moving to the right. The vertex represents the
generator of SFH.�S3

K ;2�.K /�1
/ . The vertical direction gives the Alexander

grading induced by the identification with 1HFK.S3
f
.K/; zK/ . The arrows

represent the action of �˙ on the unstable complexes. The (unstable projec-
tion of the) invariant EH.L/ lands inside this triangle by Plamenevskaya’s
inequality (3-2) and Proposition 3.20.
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6.3 The proof: Independence and sufficiency

We start by proving the last statement in the theorem.

Proposition 6.10 The contact invariant c.�˙n .L// is independent of the Legendrian
isotopy class of L when the classical invariants are fixed.

Recall (see Remark 1.2) that what we mean by the statement above is that the orbit of
the contact invariant c.�˙n .L// is independent of the Legendrian isotopy class.

We need to make a small digression about a similar issue affecting the EH invariants.
Suppose that L1 and L2 are two Legendrian representatives of K in .S3; �st/. Then
EH.Li/ is an element in SFH.S3

Li
/, and if we want to compare EH.L1/ with EH.L2/

we need to give an identification ˛ of the two knot complements. Any two such
identifications differ by an element of MCG.S3

Li
; @S3

Li
/, and this mapping class group

acts on SFH.�S3
Li
/ [23].

We start with a lemma to say how much this identification matters, if L1 and L2 also
have the same rotation number. Whenever possible, we will implicitly assume that a
specific identification has been made without keeping track of it in the notation.

Lemma 6.11 Regardless of the identification of S3
L1

with S3
L2

, EH.L1/�EH.L2/

is stable.

Proof Fix a diffeomorphism ˛W S3
L1
! S3

L2
. As a notational shorthand, call �2 the

restriction of �st to S3
L2

.

The diffeomorphism ˛ induces a map ˛�W SFH.�S3
L2
/! SFH.�S3

L1
/ that preserves

the Alexander grading and carries EH.L2/ to EH.˛��2/. Since L1 and L2 also have
the same rotation number, EH.L1/ and EH.L2/ have the same degree, and so does
EH.˛��2/. To prove the lemma, it is enough to show that EH.˛��2/ is not stable. If
so, it has the same degree as EH.L1/, and  1.EH.˛��2//D 1.EH.L1//, and their
difference is stable by Lemma 3.18.

Consider any extension z̨W S3
1
!S3

2
of ˛ from S3

1
DS3

L1
[�.L1/ to S3

2
DS3

L2
[�.L2/.

Both S3
1

and S3
2

are diffeomorphic to S3 , but we keep the indices to keep them distinct.

If we do 1–surgery on L2 , we get the standard contact structure �stI2 on S3
2

. When
we pull back using z̨ we get a tight contact structure ˛��stI2 on S3

1
.

Since z̨ maps �.L1/ diffeomorphically to �.L2/, the pull back of the contact structure
on �.L2/ is a tight contact structure on �.L1/. Since such a contact structure is unique
up to isotopy [19], it means that z̨��stI2 is obtained from ˛��2 by contact 1–surgery.

In other words,  1.EH.˛��2//D z̨�.c.�stI2//¤ 0, and by Lemma 3.18 EH.˛��2/
is not stable.
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We now turn back to the independence statement.

Proof of Proposition 6.10 If L1 and L2 have the same classical invariants, EH.L1/

and EH.L2/ both belong to SFH.�S3
L1
/ and are homogeneous of the same de-

gree r.L1/. Moreover, since both knots are Legendrian in the standard contact S3 , we
have that  1.EH.L1//D 1.EH.L2//D c.�st/. In particular EH.L1/�EH.L2/ 2

ker 1 and since this difference is homogeneous, it is stable by Lemma 3.18.

The statement now is a straightforward consequence of Proposition 6.7. Since  ˙n
kills the stable subspace,

c.�˙n .L1//� c.�˙n .L2//D  
˙
n .EH.L1/�EH.L2//D 0:

Remark 6.12 Notice that the previous statement, together with Proposition 3.17, also
proves that if .S3; �/ is overtwisted and L is �–Legendrian, then c.��n .L//D 0 for
all n� 0. In particular, this justifies our focus on surgeries on the standard contact S3 .

We now prove the sufficiency of the three conditions.

Proposition 6.13 If (SL), (SC) and (TN) hold, c.��n .L//¤ 0.

Proof Call E WD EH.L/, � WD �.K/D �.K/, t WD tb.L/ and c WD c.��n .L//.

Recall that ��
nC1

.L/ is obtained from ��n .L/ through a Legendrian surgery, and if the
latter has nonvanishing contact invariant, so does the former. Therefore, it is enough to
prove the result when we have equality in (SC), that is, when nD 2� � t .

Graphically, the condition (SL) means that EH.L/ lands on the top edge of the in-
finite triangle of Figure 6.1. In particular we can find x in SFH.S3

K ;2��1
/=S such

that �n�1
� .x/ D E , and Proposition 6.6 tells us that c D  �n .E/ D  1.x/. By

Proposition 6.3,  1.x/ D F�W2�
. 1.x//, and the latter is nonzero by the injec-

tivity of F�W2�.K/
(Proposition 6.5), the condition (TN) and the nonvanishing of

c.�st/D  1.x/.

6.4 The proof: Necessity

We now turn to the necessity of the three conditions: first we are going to prove that
(SL) is necessary, then we are going to prove that if (SL) holds then (SC) is necessary,
and finally we are going to prove that if both (SL) and (SC) hold, then (TN) is also
necessary.

In the following, we will call E WD EH.L/, � WD �.K/, � WD �.K/, t WD tb.L/
and c WD c.��n .L//.

Proposition 6.14 If (SL) does not hold, then c.��n .L//D 0.
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Proof Suppose that (SL) does not hold. In this case, A.E/D�r.L/ is not maximal in
the unstable complex, since the top generator in the unstable complex for SFH.�S3

K ;t
/

has Alexander degree t � 2� C 1. Pictorially, the unstable component of E is not the
top generator in the relevant column on the left-hand side of Figure 6.2. This implies
that E is in the image of �C , and we can write E D �C.x/. So by Proposition 6.6,

c D  �n .E/D  
�
n .�C.x//D 0:

Proposition 6.15 If (SL) holds but (SC) does not, then c.��n .L//D 0.

Proof Call s the surgery index s D t C n< 2� .

Claim 6.16 We can assume nD 1.

Proof Since (SL) holds but (SC) does not, the unstable part of E lies in the top
(slanted) row of Figure 6.1, and E D �n�1

� .y/ for some y in the unstable part of
SFH.S3

K ;s�1
/. By Proposition 6.6,  �n .E/ D  

�
n .�

n�1
� .y// D  1.y/, and y also

fails to satisfy the condition (SC) in the sense that the slope s � 1 of the sutures
(that is, the algebraic counterpart of the Thurston–Bennequin number for L) satisfies
s� 1C 1D s < 2� .

So let us assume nD 1, that is E D y in the proof of the claim. Since s D 1C t < 2� ,
the unstable part of E is not the left vertex of the triangle of the right-hand side of
Figure 6.2. In particular, �C.E/ is in the image of �� , so we can write �C.E/D��.x/
for some x in the unstable part of SFH.S3

K ;t
/.

By Proposition 6.6, c D  1.E/D  
C

2
.�C.E//D  

C

2
.��.x//D 0.

For the last part we call into play the Legendrian cabling and surgeries along them.

Proposition 6.17 Suppose (SL) and (SC) hold but (TN) does not. Then c.��n .L//D 0.

Proof By Corollary 4.10, it is enough to show that c.��
nC1=2

.L//D 0.

By Proposition 5.27, c.��
nC1=2

.L//˝ c.�2/D c.��
2nC1

.L2;2nC1//. Since (TN) does
not hold, ".K/D�1 and Proposition 5.10 tells us that L2;2nC1 fails to satisfy (SL),
so the right-hand side vanishes by Proposition 6.14. Since �2 is obtained from �st

through Legendrian surgery, c.�2/ is nonvanishing, and therefore c.��
nC1=2

.L//D 0,
concluding the proof.
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Figure 6.2: The figure on the left represent the situation when (SL) does
not hold. The hollow circle is (the stable part of) EH.L/ and the � is the
element x in the proof. The figure on the right represent the situation when
(SL) holds but (SC) does not. The hollow circle represents the element y and
the � represents the element x in the proof.

6.5 Corollaries

We will prove the following statement, which is slightly stronger than Corollary 1.6.

Proposition 6.18 If ".K/ D 1 (resp. ".K/ D 0) and there is a Legendrian repre-
sentative L of K that satisfies (SL), then for all q > 2�.K/ � 1 (resp. q � 0) the
manifold S3

q .K/ supports a tight contact structure.

Remark 6.19 This is in fact stronger than Corollary 1.6, since Hom [18] proved that
".K/ D 0 implies �.K/ D �.K/ D 0. Observe also that if �.K/ D �.K/ > 0, then
".K/ D 1. Hom also proved that �.K/ D g.K/ implies that �.K/ D �.K/, and in
fact this holds true under the weaker hypothesis �.K/D g�.K/ > 0. This is obtained
as a combination of [28, Proposition 2.1] and Proposition 6.5. In particular, if K is not
slice and its maximal self-linking number sl.K/ is 2g�.K/�1, every manifold S3

q .K/

with q > 2g�.K/� 1 supports a tight contact structure (compare with the main results
in [28; 30]).

Proof Suppose that L and K are as in the statement, with L satisfying (SL) and K

satisfying (TN). Theorem 1.1 tells us that for all integers m� 2�.K/, we have a contact
structure on S3

m.K/ with nonvanishing contact invariant, and therefore tight.

Using Corollary 4.10, we obtain contact structures on S3
q .K/ with nonvanishing contact

invariants for all q � 2� .

Now, let us call t D tb.L/; r D r.L/, and recall that (SL) implies r � 0. There is
nothing left to prove when ".K/D 0, so we can suppose that ".K/D 1.
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Proposition 5.10 tells us that for every n� 1�mr � 1 the Legendrian cable Lm;n sat-
isfies the three hypotheses in our main theorem, so that c.��1�mr .Lm;1�mr //¤ 0. But,
by Proposition 5.27, ��1�mr .Lm;1�mr / splits as a connected sum ���rC1=m.L/ # �m ,
and in particular c.��1=m�r .L//¤ 0. This is a contact structure on S3

t�rC1=m
.K/D

S3
2�.K /�1C1=m

.K/.

Appealing to Corollary 4.11 concludes the proof in the case ".K/D 1.

Remark 6.20 Notice that the same trick does not work if ".K/D 0 because of the
odd behaviour of � and " for cables when the cabling coefficient q in Theorem 5.5
goes from positive to negative. These values are the “critical” values that allow us to
reach slopes below 2�.K/ when ".K/D 1.

Let us recall now the definition of the transverse invariant zc [30]. Fix a topological
knot K � S3 . The sequence of groups .cHF.�S3

n .K/// comes with a collection of
maps F SWn

W cHF.�S3
n .K//!

cHF.�S3
n�1

.K// and together they give rise to an inverse
system fcHF.�S3

n .K//; �f;ggg<f , where �f;g is the composition F SWf ı � � � ıF SWgC1
.

Lisca and Stipsicz call this inverse limit H.S3;K/.

Definition 6.21 Given a transverse knot T , the invariant zc.T / is the class of the
sequence .c.��n .L///n2N in H.S3;K/, where L is a Legendrian approximation
of T .

There is an ambiguity in the definition of zc , coming from the ambiguity in the definition
of c . Once we fix a Legendrian approximation L of T and an identification of S3

L

with the “abstract” sutured manifold S3
K;tb.L/ , though, zc is well defined. The equality

in the statement of Corollary 1.7 has to be understood in the sense that the two elements
are the same up to fixing the two identifications.

It is proved in [30] that the invariant above is nontrivial (in the sense that it is not
identically zero). On the other hand, we prove here that it does not detect more than
the classical invariants.

Proof of Corollary 1.7 We know that c.��n .L//D 0 if c.�/D 0 since S˙ � ker ˙n ,
and we know that if �D �st , c.��n .L//D0 unless sl.T /D2�.K/�1 and �.K/D�.K/.

Suppose therefore that sl.T /D 2�.K/�1D 2�.K/�1, and let L0 be any Legendrian
knot of topological type K such that tb.L0/� r.L0/D 2�.K/�1 (L0 does not need to
be a Legendrian approximation of T ). Call d the difference d D tb.L/� tb.L0/, and
suppose that d > 0. Then for every n> jd j, and for every two identifications of S3

L.d/

and S3
L0

with S3
K;tb.L/ we have

c.��n .L//D c.��nCd .L
0//
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by Theorem 1.1. As a consequence, the classes of the two sequences in H.S3;K/

coincide.

Thus, zc can only see whether the two equalities sl.T /D 2�.K/�1 and �.K/D �.K/
hold, and these are equalities in the classical invariants for T .

7 Proofs of technical lemmas

This section will be rather dry, and is a detailed account of the various technical
ingredients used in the proof.

7.1 The Heegaard–Floer lemma

Recall that we want to prove that the surgery cobordism map F�Wf induced by the
surgery cobordism from �S3 to �S3

f
.K/ is injective for f D 2�.K/ and vanishes

for f D 2�.K/� 2.

Similar results appeared in [37, Proposition 3.1] and Hedden [17, Proposition 3.1]; this
refined result follows from a computation in [41].

Proof of Proposition 6.5 The map F�Wf fits into an surgery exact triangle:

cHF.�S3
f
/ // cHF.�S3

f�1
/

xxcHF.�S3/

ee

Recall that if in an exact triangle of vector spaces .U;V;W / we have dim UCdim V D

dim W , then the map between U and V is the zero map.

Having this in mind, we can prove by direct computation, using the “mapping cone”
construction of [40] (see also [44]), that

dim cHF.�S3
f .K//� dim cHF.�S3

f�1.K//D˙ dim cHF.�S3/;

where the sign is a plus if f D 2�.K/ and is a minus if f D 2�.K/ � 2. In fact,
in [41, Proposition 9.1], Ozsváth and Szabó compute the ranks of the two groups on
the left-hand side when �.K/� 0:

dim cHF.�S3
f .K//D jf jC 2 maxf0; 2�.K/� 1�f gCD;

where D is a constant depending only on K .

Geometry & Topology, Volume 19 (2015)



224 Marco Golla

The condition �.K/ � 0 can be always achieved by taking the mirror of the knot if
needed. If �.K/D �.K/D 0, this dimension has two minima at f D˙1, therefore
the map F�Wf is injective if f D 0 or f � 2 and zero otherwise. If �.K/� 1, on the
other hand, the dimension has a single minimum at f D 2�.K/� 1 (in fact, the graph
of the dimension is a translation of the graph of the absolute value), therefore F�Wf is
injective if and only if f � 2�.K/.

We can now use Hom’s results [18] to recover what happens when �.K/ < 0. In that
case, �. xK/ > 0, and in particular ". xK/D�".K/¤ 0. If ".K/D 1 then ". xK/D�1

and �.K/D �.K/, while �. xK/D �. xK/C 1 and

dim cHF.�S3
f .
xK//D dim cHF.S3

�f .K//

has a single minimum at �f D 2�. xK/�1 that is exactly f D 2�.K/�1. Similarly, if
".K/D�1, �.K/D �.K/C 1 and �. xK/D �. xK/, and again dim cHF.�S3

f
. xK// has

a single minimum at f D 2�. xK/� 1,

The same argument used in the case �.K/ � 0 shows that in either case F�Wf is
injective if and only if f � 2�.K/.

7.2 Sutured Floer lemmas

One of the two key ingredients in the proofs of Propositions 6.1 and 6.3 is the associa-
tivity of maps in triple Heegaard diagrams. Recall the following result of Ozsváth and
Szabó.

Suppose that we have a quadruple Heegaard diagram .†;˛;ˇ;; ı; z/, satisfying some
additional admissibility assumption [36]. There are triangle count maps associated to
the triple Heegaard diagram. Call them f˛ˇ , f˛ˇı , f˛ı , fˇı so that, for example
f˛ˇ W cCF.†;˛;ˇ; z/! cCF.†;˛;; z/, and label with the capitalized letters F the
induced maps on the homology level.

Proposition 7.1 [39] These maps satisfy the identity

F˛ı.F˛ˇ .x˝y/˝ v/D F˛ˇı.x˝Fˇı.y˝ v//

for all x 2 cHF.Y˛ˇ/, y 2 cHF.Yˇ / and v 2 cHF.Yı/.

The other key ingredient is given in Rasmussen’s paper [45]. The philosophy is that
gluing maps can be computed via triangle counts given a handle decomposition of
the gluing layer. In this paper, we need three instances of this general fact: bypass
attachments (Proposition 7.3 below), 1– and .C1/–surgery maps (Proposition 7.7
below).
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When we attach a bypass to a sutured manifold .M; �/ to obtain .M; � 0/, we change
the sutures as in Figure 7.1. Up to a 1–handle attachment (see below), we can assume
that both RC and R0C are connected, so that both .M; �/ and .M; � 0/ are represented
by an arc diagram. We can also suppose (see the rightmost picture in Figure 7.1) that
the two arc diagrams live on the same Heegaard surface, that they share the ˛–curves,
all ˇ–curves and all but one ˇ–arc. Finally, we can assume that the two ˇ–arcs where
they differ intersect at exactly one point. Arguing as in the closed case, this determines
a preferred ‚–element in a triple arc diagram, which in turn allows us to define a
triangle count. This triangle count is chain-homotopic to the bypass attachment map.

If we have a sutured manifold .M; �/ with torus boundary and j�j D 2, we can attach
a .C1/–surgery layer to get .M 0; f g/ with sphere boundary. As before, we construct
an arc diagram for .M; �/ and an arc diagram for M 0 on the same Heegaard surface.
All ˛– and ˇ–curves can be chosen to coincide and the new ˇ–curve can be chosen to
intersect the ˇ–arc exactly once. This determines a ‚–element in a triple arc diagram,
and the resulting triangle count induces  C1 in homology.

7.2.1 The proof of Proposition 6.1 Recall that we want to prove that gluing maps
associated to overtwisted contact structures vanish.

Proof of Proposition 6.1 Suppose that there is an overtwisted disc D �N and con-
sider a small neighbourhood B of it with convex boundary. Then join B to a boundary
component of N that is going to be glued to M , using a small neighbourhood A of
an arc. Call N 0 the union of A, B and a neighbourhood of the component of the
boundary we have joined B to, and suppose that the boundary of N 0 is convex with
respect to � . Call N 00 the closure of the complement of N 0 in N . Finally, let � 0; � 00

be the restrictions of � to N 0 and N 00 respectively.

Claim 7.2 We can suppose N DN 0 .

Proof By naturality of gluing maps, ‰� D‰�00 ı‰�0 and if ‰�0 D 0, then in particular
‰� D 0.

Following Ozbagci [33] (see also Giroux’s criterion for overtwistedness of contact
structures near a convex surface), we can write the gluing of the overtwisted disc as a
double bypass attachment along a curve that makes a small dollar symbol $ across a
single suture as in the top left of Figure 7.2. Unfortunately, there is a small technical
detail we need to face: attaching the second bypass disconnects RC . To overcome this
obstacle, we first attach a contact 1–handle H — and this does not affect the sutured
Floer homology groups since it is the inverse of a product disc decomposition — and
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then attach the two bypasses to the new manifold as shown in the second left figure in
Figure 7.2.

Suppose that we start off with an arc diagram H0 D .†0;˛0;ˇ
a
0
;ˇc

0
;D0/ for .M; �/

as in the top left of Figure 7.2. We obtain an arc diagram for .M [H; �/ by adding a
1–handle to †0 , obtaining a surface †D†0 # T 2 . The set of ˛–curves is the same
as before, plus a single ˛–curve ˛0 that is the belt of the (3–dimensional) handle H .
The set of ˇ–curves is ˇc

0
, and we add a single ˇ–arc ˇ0 that runs once through the

handle as in the top right corner of Figure 7.2. Call this new diagram Hˇ .

Attaching the first bypass we obtain an arc diagram H . After attaching the sec-
ond bypass in the same region, we obtain a third diagram Hı that looks like the
bottom right picture in Figure 7.2. Call the four triple Heegaard diagrams we ob-
tain H˛ˇ , H˛ˇı , H˛ı and Hˇı .

It is straightforward to check that the admissibility conditions of [36] are satisfied by
the arc diagram .†;˛;ˇ;; ı;D/.

As for the proof of Proposition 3.20, in order to obtain the bypass attachment maps
we need to count triangles in the triple Heegaard diagrams H˛ˇ and H˛ı and then
take the associated cohomological maps. More precisely, to the first bypass attachment
on Hˇ we can associate a ‚–element ‚ˇ constructed as follows. The point on the
arc ˇ0 is the only intersection point of ˇ0 with the arc 0 . Every other  –curve in H
is a small perturbation of a ˇ–curve in Hˇ , and therefore there is a preferred choice
among the two intersection points as in [37]. We then have the following.

Proposition 7.3 [45] The map induced in cohomology by the triangle count map
f˛ˇ. � ˝‚ˇ / is the gluing map associated to the bypass attachment.

Similarly, there is a ‚–element ‚ı in H˛ı , and the associated triangle count map
f˛ı . � ˝‚ı/ induces the gluing map associated to the second bypass attachment.

Since we are working over the field F2 , studying the maps induced in cohomology is
the same as studying the maps associated in homology, which is what we are going to
do from now on.

Call .M 0; � 0/ the sutured manifold defined by Hı so that, at the 3–manifold level,
M 0DM [H[N and let ‚ˇı be the ‚–element in the triple Heegaard diagram H˛ıˇ .
The following claim is a triangle count in Hıˇ .

Claim 7.4 We have fıˇ.‚ˇ ˝‚ı/D‚ˇı .
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Figure 7.1: The three circles on the left show the (local) effect of a double
bypass attachment to the dividing curves of a convex boundary. The figure
on the right shows what happens locally to the ˇ–curves of the three arc
diagrams coming from the figure on the left: the blue curve is a ˇ–arc for
the first diagram, the green curve is a  –arc for the second diagram, and the
purple one is a ı–arc for the third diagram. The two intersection points in
evidence are the points in ‚ˇ and ‚ı on the arcs shown.

RC

RC

RC

RC

Figure 7.2: On the left column we show @M , sutures, bypasses and their
effect on the sutures. On the right, we show associated arc diagrams.

Geometry & Topology, Volume 19 (2015)



228 Marco Golla

T

x

z

Figure 7.3: The interesting portion of the triple arc diagram of Claim 7.4

Proof We want to count all possible triangular domains D in Hıˇ .

For each index i , ˇi intersects i , ıi and no other curve. Moreover, for i > 0, both ˇi

and ıi are adjacent to a region touching the base disc D on both sides, so D can have
positive multiplicities in this area only. In particular, DD

P
Di , with Di supported in

the spanning region for all i > 0, and D0 supported near ˇ0 .

There is a domain xD 2 �2.‚ˇ ;‚ı;‚ˇı/ which is easy to spot: it is the sum of the
small triangle T in Figure 7.3 and the small triangles shaded in Figure 7.4. It is well
known (see [39]) that this domain has Maslov index 0 and that the associated moduli
space of triangles contains one element, thus providing us with a ‚ˇı summand. We
want to show that this is the only positive domain of Maslov index 0 in the triple
Heegaard diagram.

Let us suppose that DD
P

Di as before is a positive triangular domain with multiplicity
zero at every region touching the base disc.

In what follows, we will call zi WD .‚ˇ /i , xi WD .‚ı/i , yi WD .‚ˇı/i and, when
i > 0, y0i the other intersection point of ˇi and ıi .

Let us first consider what happens in the region containing ˇ0; 0 and ı0 . Here all
pairwise intersections are fixed, and are x0 , y0 and z0 . The base disc D lies on all
three arcs; only one of the two segments into which the three intersection points divide
the arcs can be part of @D0 . In particular, @D0 has to coincide with @xD . Also, at every
intersection, three of the four angles are contained in regions touching the base disc,
therefore multiplicities have to be zero outside T and in particular D0 D T .

zi

xi

yi y0i

ˇi

i

ıi

Figure 7.4: The triple Heegaard diagram near ˇi for i > 0
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Suppose Di 2 �2.zi ;xi ;yi/ when i > 0 (see Figure 7.4). Let us follow @D from zi

with the orientation given by Di . We have to stop at xi without winding multiple
times, because there is a region that touches both sides of ˇi (and also of ıi ) and the
base disc D , so the multiplicity of Di in that region has to be 0.

There are two possible segments: one is contained in the plane in Figure 7.4, the other
one runs inside the handle. In the first case, when we arrive at xi we have to turn left
(because of orientations) and we have to stop at yi without running around ıi multiple
times (because now ıi touches a region containing the basepoint from both sides), and
in particular Di is the small triangle shaded in Figure 7.4.

In the second case, the domain is an immersed triangle that has multiplicity two on the
small triangle region shaded. Using Sarkar’s computation [48], we see that this domain
gives a contribution to �.D/ which is strictly bigger than 1

2
.

Suppose now Di 2 �2.zi ;xi ;y
0
i/. Reasoning as above, we see that there are only two

choices for Di , each obtained by adding one of the bigons in �2.yi ;y
0
i/ to the small

shaded triangle. Again, using Sarkar’s computation, we see that these domains give a
contribution bigger than 1

2
to �.D/.

Summing up, if D¤ xD , �.D/ is strictly bigger than �.xD/D 0 and therefore D is not
involved in the triangle count.

Thanks to the claim and Proposition 7.1, we can consider the single triangle count
f˛ıˇ. � ˝‚ˇı/. In order to achieve admissibility for H˛ıˇ , we need to perturb the new
˛–curve so that it intersects the new ı–arc in a pair of canceling points as in Figure 7.5.

‚0 x0

Figure 7.5: The portion of H˛ıˇ considered in Claim 7.5

Claim 7.5 There are no positive triangular domains in H˛ıˇ that appear in the triangle
count for f˛ıˇ .

Proof Consider Figure 7.5. This is the same part of the diagram of Figure 7.4, but
we are now drawing the ˛–curve instead of the  –arc. We will argue by contradiction:
let D be such a domain.
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The two points ‚0 and x0 are the only two intersection points on the arc ˇ0 . Reasoning
as in Claim 7.4, the boundary @D\ˇ0 is the segment between these two points, oriented
from ‚0 to x0 . But the region above the segment in Figure 7.5 touches the base disc D ,
therefore the multiplicity there has to be zero, showing that @D\ˇ0 D¿.

In particular, �2. � ; � ;‚ˇı/D¿.

This immediately shows that f˛ˇı. � ˝‚ˇı/D 0, which in turn implies ‰� D 0.

There is an alternative proof of Proposition 6.1, suggested by the referee. More
generally, this proves that whenever EH.�/ 2 SFH.�N;��N / vanishes (where we set
�N D � [�

0 ) the induced gluing map ‰� is trivial.

Sketch of an alternative proof of Proposition 6.1 We can look at the gluing map ‰�
as the composition of two gluing maps, ‰� ı‰� , where � is an I –invariant contact
structure on @M � I such that M � fig is convex with dividing curves ˙� � fig for
i D 0; 1. By naturality, ‰� ı‰� D‰� .

We can also look at the map ‰� as a gluing map

‰�W SFH.�M q�N;��q��N / �! SFH.�M 0;�� 0/

and by naturality we have that ‰�. � ˝EH.�//D‰� .

In particular, if EH.�/D 0, then ‰� D 0.

7.2.2 The proof of Proposition 6.3 Recall that Proposition 6.3 says that the diagram

SFH.�S3
K ;f

/
 C1 //

 1 **

SFH.�S3
fC1

.K/.1//
� // cHF.�S3

fC1
.K//

SFH.�S3.1//
� // cHF.�S3/

F�WfC1

OO

commutes. Notice that each of the three maps involved is computed by a triangle count
in some triple Heegaard diagram.

Remark 7.6 Ozváth and Szabó [38] proved that the total cobordism map associated
to a contact .C1/–surgery cobordism W carries c.�/ to c.�C1/. More recently,
Baldwin [1] proved that there exists a Spinc –structure t0 on W such that FW ;t0

carries c.�/ to c.�C1/. In Proposition 6.3 we do not worry about Spinc –structures
and consider the total map only.
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Proof of Proposition 6.3 Let us fix any Heegaard diagram H0 for �.S3;K/, attach
a 1–handle with feet next to the two basepoints z; w and build the three Heegaard
diagrams involved in the statement in the usual way. All curves except the ones
intersecting the core ˛0 of the 1–handle are small Hamiltonian perturbations one of
the other, and 0 and ˇ0 are parallel outside a small neighbourhood of ˇ0 . Moreover,
any two among ˇ0 , 0 and ı0 intersect in one single point. As for the proof of
Proposition 6.1, we can associate a ‚–element ‚ˇ , ‚ı , ‚ˇı to each of the three
triple diagrams.

It is also easy to check that all three triple diagrams are compatible [36].

The map F�Wf is the map induced in cohomology by the triangle count f˛ı . � ˝‚ı/;
see [39].

Proposition 7.7 [45] The map  1 is the map induced in cohomology by the triangle
count f˛ˇ. � ˝‚ˇ /. The map  C1 is the map induced in cohomology by the triangle
count f˛ıˇ. � ˝‚ˇı/.

Since we are working with F coefficients, proving the cohomological statement is
equivalent to proving the dual homological statement. Proposition 6.3 can now be
rephrased as

F˛ıˇ. � ˝‚ˇı/D F˛ˇ.F˛ı . � ˝‚ı/˝‚ˇ /:

Let us call �ˇ , �ıˇ , �ı the three triangle counts; namely �ˇ D f˛ˇ. � ˝‚ˇ /,
and similarly for the other �–maps.

Lemma 7.8 We have fıˇ.‚ı˝‚ˇ /D‚ˇı .

Proof Let us consider Figure 7.6. There are small triangles in the region spanned
by ˇi during the Hamiltonian isotopy that brings ˇi to i and ıi , as shown in the top
part of the figure. There is also a “bigger” triangle, shown in the bottom part of the
figure, around the three curves ˇ0 , 0 , ı0 involved in the surgeries. As before, the
domain xD obtained by summing these triangular regions gives the summand ‚ˇı .

We claim that there are no other positive domains of Maslov index 0 in the sum
fˇı.‚ˇ ˝‚ı/. Suppose that D is one of these triangular domains.

Claim 7.9 If D is as above, DD xD .

As before, we will call zi WD .‚ˇ /i ;xi WD .‚ı/i ;yi WD .‚ˇı/i and when i > 0

let y0i be the other intersection point of ˇi and ıi .
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zi

xi

yi y0i

ˇi

i

ıi

0

ˇ0 z0

x0

y0

ı0

Figure 7.6: The triple arc diagram .†; ı;;ˇ/ of Lemma 7.8

Proof The situation is very similar to the situation in the proof of Claim 7.4. For each
index i , ˇi intersects i , ıi and no other curve. Moreover, for i > 0, the boundary
of every neighbourhood of the area spanned by ˇi under the isotopy lies in a region
that touches the base disc D , so D can have positive multiplicities in this area only. In
particular, DD

P
Di , with Di supported in the spanning region for all i > 0, and D0

supported near ˇ0 .

Let us consider what happens in the region containing ˇ0; 0 and ı0 . Here all pairwise
intersections are fixed and are x0 , y0 and z0 . The base disc D lies on ˇ0 , so one
of the two arcs into which z0 and y0 divide ˇ0 cannot be part of @D0 . In particular,
@D0 \ ˇ0 has to coincide with @xD\ ˇ0 . Also, the big region (below this arc in the
figure) touches the basepoint, so the multiplicity here has to be 0 and the multiplicity
above it has to be 1 (we are crossing an arc in @D0 ), therefore D0 coincides with xD
near ˇ0 .

The situation around ˇi is exactly the same as in Claim 7.4 and the same argument
applies verbatim, showing that DD xD .

In particular, we have that the only summand in the triangle count is #M.xD/ �‚ˇı ,
concluding the proof of the lemma.

Let us now get back to the proposition. We have

F˛ıˇ. � ˝‚ıˇ/D F˛ıˇ. � ˝Fıˇ.‚ı˝‚ˇ //D F˛ı .F˛ı. � ˝‚ı/˝‚ı/;

which is exactly what we wanted to prove.
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