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Complex hyperbolic geometry of the figure-eight knot

MARTIN DERAUX

ELISHA FALBEL

We show that the figure-eight knot complement admits a uniformizable spherical CR
structure, ie it occurs as the manifold at infinity of a complex hyperbolic orbifold.
The uniformization is unique provided we require the peripheral subgroups to have
unipotent holonomy.

32V05, 57M50; 22E40

1 Introduction

The general framework of this paper is the study of the interplay between topological
properties of 3–manifolds and the existence of geometric structures. The model result
along these lines is of course Thurston’s geometrization conjecture, recently proved
by Perelman, that contains a topological characterization of manifolds that admit a
geometry modeled on real hyperbolic space H 3

R . Beyond an existence result (under
the appropriate topological assumptions), the hyperbolic structures can in fact be
constructed fairly explicitly, as one can easily gather by reading Thurston’s notes [20],
where a couple of explicit examples are worked out.

The idea is to triangulate the manifold, and to try and realize each tetrahedron geomet-
rically in H 3

R . The gluing pattern of the tetrahedra imposes compatibility conditions
on the parameters of the tetrahedra, and it turns out that solving these compatibility
equations is very often equivalent to finding the hyperbolic structure. The piece of
software called SnapPea, originally developed by Jeff Weeks (and under constant
development to this day), provides an extremely efficient way to construct explicit
hyperbolic structures on 3–manifolds.

In this paper, we are interested in using the 3–sphere S3 as the model geometry,
with the natural structure coming from describing it as the boundary of the unit ball
B2 � C2 . Any real hypersurface in C2 inherits what is called a CR structure (the
largest subbundle in the tangent bundle that is invariant under the complex structure),
and such a structure is called spherical when it is locally equivalent to the CR structure
of S3 . Local equivalence to S3 in the sense of CR structures translates into the
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existence of an atlas of charts with values in S3 , and with transition maps given
by restrictions of biholomorphisms of B2 , ie elements of PU .2; 1/; see Burns and
Shnider [3].

In other words, a spherical CR structure is a .G;X /–structure with G D PU .2; 1/,
X D S3 . The central motivating question is to give a characterization of 3–manifolds
that admit a spherical CR structure; the only general result in that direction is given by
Goldman [9], who classifies T 2 –bundles over S1 that admit spherical CR structures
(only those with Nil geometry admit spherical CR structures).

An important class of spherical CR structures is the class of uniformizable spherical
CR structures. These are obtained from discrete subgroups � �PU .2; 1/ by taking
the quotient of the domain of discontinuity � by the action of � (we assume that �
is nonempty, and that � has no fixed point on �, so that the quotient is indeed a
manifold). The structure induced from the standard CR structure on S3 on the quotient
M D � n� is then called a uniformizable spherical CR structure on M .

When a manifold M can be written as above for some group � , we will also simply
say that M admits a spherical CR uniformization. Our terminology differs slightly
from the recent literature on the subject, where uniformizable structures are sometimes
referred to as complete structures (see Schwartz [19] for instance).

Of course one wonders which manifolds admit spherical CR uniformizations, and how
restrictive it is to require the existence of a spherical CR uniformization as opposed
to a general spherical CR structure. For instance, when � is a finite group acting
without fixed points on S3 , �D S3 and � nS3 gives the simplest class of examples
(including lens spaces).

The class of circle bundles over surfaces has been widely explored, and many such
bundles are known to admit uniformizable spherical CR structures; see the introduction
of [19] and the references given there. It is also known that well-chosen deformations
of triangle groups produce spherical CR structures on more complicated 3–manifolds,
including real hyperbolic ones. Indeed, Schwartz showed in [17] that the Whitehead
link complement admits a uniformizable spherical CR structure, and in [18] he found
an example of a closed hyperbolic manifold that arises as the boundary of a complex
hyperbolic surface. Once again, we refer the reader to [19] for a detailed overview of
the history of this problem.

All these examples are obtained by analyzing special classes of discrete groups, and
checking the topological type of their manifold at infinity. In the opposite direction,
given a 3–manifold M , one would like a method to construct (and possibly classify)
all structures on M , in the spirit of the constructive version of hyperbolization alluded
to earlier in this introduction.
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Complex hyperbolic geometry of the figure-eight knot 239

A step in that direction was proposed by Falbel in [5], based on triangulations and
adapting the compatibility equations to the spherical CR setting. Here, a basic difficulty
is that there is no canonical way to associate a tetrahedron to a given quadruple of
points in S3 . Even the 1–skeleton is elusive, since arcs of C–circles (or R–circles)
between two points are not unique (see Section 2.1 for definitions).

A natural way over this difficulty is to formulate compatibility conditions that translate
the possibility of geometric realization in S3 only on the level of the vertices of
the tetrahedra. Indeed, ordered generic quadruples of points are parametrized up to
isometry by appropriate cross ratios, and one can easily write down the corresponding
compatibility conditions explicitly [5].

Given a solution of these compatibility equations, one always gets a representation
�W �1.M /!PU .2; 1/, but it is not clear whether or not the quadruples of points can
be extended to actual tetrahedra in a �–equivariant way (in other words, it is not clear
whether or not � is the holonomy of an actual structure).

There are many solutions to the compatibility equations, so we will impose a restriction
on the representation � , namely that �.�1.T // be unipotent for each torus boundary
component T of M . This is a very stringent condition, but it is natural since it holds
for complete hyperbolic metrics of finite volume.

For the remainder of the paper, we will concentrate on a specific 3–manifold, namely the
figure-eight knot complement, and give encouraging signs for the philosophy outlined
in the preceding paragraphs. Indeed, for that specific example, we will check that
the solutions to the compatibility equations give a spherical CR uniformization of
the figure-eight knot, which is unique provided we require the boundary holonomy to
consist only of unipotent isometries (in fact we get one structure for each orientation
on M ; see Section 9).

We work with the figure-eight knot complement partly because it played an important
motivational role in the eighties for the development of real hyperbolic geometry. It is
well known that this noncompact manifold M admits a unique complete hyperbolic
metric, with one torus end (which one may think of as a tubular neighborhood of the
figure-eight knot). This is originally due to Riley; see [15].

It is also well known that M can be triangulated with just two tetrahedra (this tri-
angulation is far from simplicial, but this is irrelevant in the present context). The
picture in Figure 1 can be found for instance in the first few pages of Thurston’s
notes [20]. The above decomposition can be realized geometrically in H 3

R (and the
corresponding geometric tetrahedra are regular tetrahedra, so the volume of this metric
is 6L.�=3/� 2:029).
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Figure 1: The figure-eight knot complement can be obtained by gluing two
tetrahedra (a face on the left and a face on the right are identified if the
corresponding pattern of arrows agree) and removing the vertices.

For the specific triangulation of the figure-eight knot complement depicted in Figure 1,
all the solutions of the compatibility equations were given in [5], without detailed
justification of the fact that the list of solutions is exhaustive. The explanation of
exhaustivity now appears in various places in the literature (see Bergeron, Falbel and
Guilloux [2] and Garoufalidis, Goerner and Zickert [8], and also Falbel, Koseleff and
Rouiller [6] for more general 3–manifolds). It turns out there are only three solutions to
the compatibility equations (up to complex conjugation of the cross ratios parametrizing
the tetrahedra), yielding three representations �1 , �2 and �3W �1.M /!PU .2; 1/ (in
fact six representations, if we include their complex conjugates). Throughout the paper,
we will denote by �k the image of �k .

It was shown in [5] that �1 is the holonomy of a branched spherical CR structure
(the corresponding developing map is a local diffeomorphism away from a curve), and
that the limit set of �1 is equal to @1H 2

C , hence the quotient �1 nH 2
C has empty

manifold at infinity. In particular, no spherical CR structure with holonomy �1 can
ever be uniformizable. In [7], Falbel and Wang construct a branched structure with
holonomy �2 , which is again not a uniformization.
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The main goal of this paper is to show that �2 and �3 are holonomy representations of
unbranched uniformizable spherical CR structures on the figure-eight knot complement.
These two representations are not conjugate in PU .2; 1/, but it turns out that the
images �2 and �3 are in fact conjugate.

The precise relationship between the two structures corresponding to �2 and �3 will be
explained by the existence of an orientation-reversing diffeomorphism of the figure-eight
knot complement (which follows from the fact that this knot is amphichiral). Indeed,
given a diffeomorphism ˛W M!�2n�2 , and an orientation-reversing diffeomorphism
'W M!M , ˛ı' defines a spherical CR structure on M with the opposite orientation.
We will see that �2 and �3 are obtained from each other by this orientation switch (see
Section 8). For that reason, we will work only with �2 for most of the paper.

We denote by � the group �2 . Our main result is the following.

Theorem 1.1 The domain of discontinuity � of � is nonempty. The action of � has
no fixed points in �, and the quotient � n� is homeomorphic to the figure-eight knot
complement.

In other words, the figure-eight knot admits a spherical CR uniformization, with
uniformization given by � . The uniformization is not quite unique, but we will show
that it is unique provided we require the boundary holonomy to be unipotent (see
Proposition 3.1).

The fact that the ideal boundary of � nH 2
C is indeed a manifold, and not just an

orbifold, follows from the fact that every elliptic element in � has an isolated fixed
point in H 2

C (we will be able to list all conjugacy classes of elliptic elements, by using
the cycles of the fundamental domain; see Proposition 5.6).

The result of Theorem 1.1 is stated in terms of the domain of discontinuity which is
contained in @1H 2

C , so one may expect the arguments to use properties of S3 �C2

or Heisenberg geometry (see Section 2.1). In fact the bulk of the proof is about the
relevant complex hyperbolic orbifold � nH 2

C , and for most of the paper, we will use
geometric properties of H 2

C .

The basis of our study of the manifold at infinity will be the Dirichlet domain for �
centered at a strategic point, namely the isolated fixed point of G2 D �2.g2/ (see
Section 3 for notation). This domain is not a fundamental domain for the action of �
(the center is stabilized by a cyclic group of order 4), but it is convenient because it
has very few faces (in fact all its faces are isometric to each other). In particular, we
get an explicit presentation for � , given by

(1) hG1;G2 jG
4
2 ; .G1G2/

3; .G2G1G2/
3
i
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Note that �2 is of course not a faithful representation of the figure-eight knot group.
In fact from the above presentation, it is easy to determine normal generators for the
kernel of �2 ; see Proposition 5.7.
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2 Basics of complex hyperbolic geometry

2.1 Complex hyperbolic geometry

In this section we briefly review basic facts and notation about the complex hyperbolic
plane. For more information, see [10].

We denote by C2;1 the three-dimensional complex vector space C3 equipped with the
Hermitian form

hZ;W i DZ1
SW3CZ2

SW2CZ3
SW1:

The subgroup of GL.3;C/ preserving the Hermitian form h � ; � i is denoted by U .2; 1/,
and its action preserves each of the three sets

VC D fZ 2C2;1
j hZ;Zi> 0g;

V0 D fZ 2C2;1
�f0g j hZ;Zi D 0g;

V� D fZ 2C2;1
j hZ;Zi< 0g:

Let P W C2;1nf0g!P 2
C be the canonical projection onto complex projective space, and

let PU .2; 1/ denote the quotient of U .2; 1/ by scalar matrices, which acts effectively
on P 2

C . Note that the action of PU .2; 1/ is transitive on P .V˙/ and on P .V0/. Up
to scalar multiples, there is a unique Riemannian metric on P .V�/ invariant under the
action of PU .2; 1/, which turns it into a Hermitian symmetric space often denoted
by H 2

C and called the complex hyperbolic plane. We mention for completeness that
any invariant metric is Kähler, with holomorphic sectional curvature a negative constant
(the real sectional curvatures are 1

4
–pinched). For the purposes of the present paper,

we will need the distance formula

cosh 1
2
d.z; w/D

jhZ;W ijp
hZ;ZihW;W i

;

where z; w 2 P .V�/ denote the complex lines spanned by Z;W 2C3 .
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The full isometry group of H 2
C is given by

3PU .2; 1/ D hPU .2; 1/; �i;

where � is given on the level of homogeneous coordinates by complex conjuga-
tion Z 7! xZ .

Still denoting .Z1;Z2;Z3/ the coordinates of C3 , one easily checks that V� can
contain no vector with Z3 D 0, hence we can describe its image in P 2

C in terms of
nonhomogeneous coordinates w1DZ1=Z3 , w2DZ2=Z3 , where P .V�/ corresponds
to the Siegel half-space

jw1j
2
C 2 Rew2 < 0:

The ideal boundary of complex hyperbolic space is defined as @1H 2
C D P .V0/. It is

described almost entirely in the affine chart Z3¤ 0 used to define the Siegel half-space,
only .1; 0; 0/ is sent off to infinity. We denote by p1 the corresponding point in
@1H 2

C .

The unipotent stabilizer of .1; 0; 0/ acts simply transitively on @1H 2
C n fp1g, which

allows us to identify @1H 2
C with the one-point compactification of the Heisenberg

group N.

Here recall that N is defined as C �R equipped with the group law

.z; t/ � .z0; t 0/D .zC z0; t C t 0C 2 Im.zxz0//:

Any point p D .z; t/ 2N has the following lift to C2;1 :

zp D

24 .�jzj2C i t/=2

z

1

35 ;
while p1 lifts to .1; 0; 0/.

It is a standard fact that the above form can be diagonalized, say by using the
change of homogeneous coordinates given by U2 D Z2 , U1 D .Z1 C Z3/=

p
2,

U3 D .Z1�Z3/=
p

2. With these coordinates, the Hermitian form reads

hU;V i D U1
xV1CU2

xV2�U3
xV3;

and in the affine chart U3 ¤ 0, with coordinates u1 D U1=U3 , u2 D U2=U3 , H 2
C

corresponds to the unit ball B2 �C2 , given by

ju1j
2
Cju2j

2 < 1:

Geometry & Topology, Volume 19 (2015)



244 Martin Deraux and Elisha Falbel

In this model the ideal boundary is simply given by the unit sphere S3 � C2 . This
gives @1H 2

C a natural CR structure (see the introduction and the references given
there).

We will use the classification of isometries of negatively curved spaces into elliptic,
parabolic and loxodromic elements, as well as a slight algebraic refinement; an elliptic
isometry is called regular elliptic if its matrix representatives have distinct eigenvalues.

Nonregular elliptic elements in PU .2; 1/ fix a projective line in P 2
C , hence they come

in two classes, depending on the position of that line with respect to H 2
C . If the

projective line intersects H 2
C , the corresponding isometry is called a complex reflection

in a line; if it does not intersect @1H 2
C , then the isometry is called a complex reflection

in a point. Neither regular elliptic elements, nor complex reflections in points, have
any fixed points in the ideal boundary (beware that powers of regular elliptic elements
need not be regular in general).

The only parabolic elements we will use in this paper will be unipotent (ie some matrix
representative in U .2; 1/ has 1 as its only eigenvalue).

Finally, we mention the classification of totally geodesic submanifolds in H 2
C . There are

two kinds of totally geodesic submanifolds of real dimension two, complex geodesics
(which can be thought of copies of H 1

C ), and totally real totally geodesic planes (copies
of H 2

R ).

In terms of the ball model, complex lines correspond to intersections with B2 of affine
lines in C2 . In terms of projective geometry, they are parametrized by their so-called
polar vector, which is the orthogonal complement of the corresponding plane in C3

with respect to the Hermitian form h � ; � i.

The trace on @1H 2
C of a complex geodesic (resp. of a totally real totally geodesic

plane) is called a C–circle (resp. an R–circle).

For completeness, we mention that there exists a unique complex line through any pair
of distinct points p; q 2 @1H 2

C . The corresponding C–circle is split into two arcs,
but there is in general no preferred choice of an arc of C–circle between p and q .
Given p; q as above, there are infinitely many R–circles containing them. The union
of all these R–circles is called a spinal sphere (see Section 2.3 for more on this).

2.2 Generalities on Dirichlet domains

Recall that the Dirichlet domain for � �PU .2; 1/ centered at p0 2H 2
C is defined as

E� D fz 2H 2
C j d.z;p0/6 d.z; p0/ for all  2 �g:
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Although this infinite set of inequalities is in general quite hard to handle, in many
situations there is a finite set of inequalities that suffice to describe the same polytope
(in other words, the polytope has finitely many faces).

Given a (finite) subset S � � , we denote

ES D fz 2H 2
C j d.z;p0/6 d.z; p0/ for all  2 Sg;

and search for a minimal set S such that E� D ES . In particular, we shall always
assume that

� sp0 ¤ p0 for every s 2 S and

� s1p0 ¤ s2p0 for every s1 ¤ s2 2 S .

Indeed, sp0 D p0 would give a vacuous inequality, and s1p0 D s2p0 would give a
repeated face.

Given a finite set S as above and an element  2 S , we refer to the set of points
equidistant from p0 and p0 as the bisector associated to  , ie

B.p0; p0/D fz 2H 2
C j d.z;p0/D d.z; p0/g:

We will say that  defines a face of ES when B.p0; p0/\ES has nonempty interior
in B.p0; p0/. In that case, we refer to B.p0; p0/\ES as the face of ES associated
to  .

We will index the bisectors bounding ES by integers k , and write Bk for the k th

bounding bisector. We will then often write bk for the corresponding face, ie bk D

Bk \ES (this notation only makes sense provided the set S is clear from the context,
which will be the case later in the paper).

The precise determination of all the faces of ES , or equivalently the determination of
a minimal set S with ES DE� is quite difficult in general.

The main tool for proving that E� DES is the Poincaré polyhedron theorem, which
gives sufficient conditions for ES to be a fundamental domain for the group generated
by S . The assumptions are roughly as follows:

(1) S is symmetric (ie �1 2 S whenever  2 S ) and the faces of ES associated
to  and �1 are isometric.

(2) The images of ES under elements of � give a local tiling of H 2
C .

Geometry & Topology, Volume 19 (2015)
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The conclusion of the Poincaré polyhedron theorem is then that the images of ES

under the group generated by S give a global tiling of H 2
C (from this one can deduce

a presentation for the group hSi generated by S ).

The requirement that opposite faces be isometric justifies calling the elements of S

“side pairings”. We shall use a version of the Poincaré polyhedron theorem for coset
decompositions rather than for groups, because we want to allow some elements of �
to fix the center p0 of the Dirichlet domain (the result we have in mind is stated for
the simpler case of H 1

C by Beardon in [1, Section 9.6]).

We assume ES is stabilized by a certain (finite) subgroup H � � , and the goal is to
show that ES is a fundamental domain modulo the action of H , ie if 1ES \ 2ES

has nonempty interior, then 1 D 2h for some h 2H .

The corresponding statement for H 2
C appears in Mostow [12], with a light treatment

of the assumptions that guarantee completeness, so we list the hypotheses roughly as
they appear in Maskit [11] (see also Parker [13] for a proof in the context of complex
hyperbolic space). The local tiling condition will consist of two checks, one for ridges
(faces of codimension two in ES ), and one for boundary vertices. A ridge e is given
by the intersection of two faces of ES , ie two elements s; t 2 S . We will call the
intersection of ES with a small tubular neighborhood of e the wedge of ES near e .

� Given a ridge e defined as the intersection of two faces corresponding to s; t 2S ,
we consider all the other ridges of ES that are images of e under successive
side pairings or elements of H , and check that the corresponding wedges tile a
neighborhood of that ridge.

� Given a boundary vertex p , which is given by (at least) three elements s; t;u2S ,
we need to consider the orbit of p in ES using successive side pairings or
elements of H , check that the corresponding images of ES tile a neighborhood
of that vertex, and that the corresponding cycle transformations are all given by
parabolic isometries.

The conclusion of the Poincaré theorem is that if 1ES \2ES has nonempty interior,
then 1 and 2 differ by right multiplication by an element of H . From this, one easily
deduces a presentation for � , with generators given by S [H (H can of course be
replaced by any generating set for H ) and relations given by ridge cycles (together
with the relations in a presentation of H ).

2.3 Bisector intersections

In this section, we review some properties of bisectors and bisector intersections
(see [10] or Deraux [4] for more information on this).

Geometry & Topology, Volume 19 (2015)



Complex hyperbolic geometry of the figure-eight knot 247

Let p0;p12H 2
C be distinct points given in homogeneous coordinates by vectors zp0 , zp1 ,

chosen so that h zp0; zp0i D h zp1; zp1i. By definition, the bisector B D B.p0;p1/ is
the locus of points equidistant to p0;p1 . It is given in homogeneous coordinates
zD .z0; z1; z2/ by the negative vectors z that satisfy the equation

(2) jhz; zp0ij D jhz; zp1ij:

When z is not assumed to be negative, the same equation defines an extor in projective
space. Note that z is a solution to this equation if and only if it is orthogonal (with
respect to the indefinite Hermitian inner product) to some vector of the form zp0�˛ zp1 ,
with j˛j D 1.

Finally, we mention that the image in projective space of the set of null vectors z , ie
such that hz; zi D 0, and that satisfy (2), is a topological sphere, which we will call
either the boundary at infinity corresponding to the bisector or its spinal sphere.

Restricting to vectors zp0�˛ zp1 which have positive square norm, we get a foliation
of B.p0;p1/ by complex lines given by the set of negative lines in . zp0�˛ zp1/

? for
a fixed value of ˛ . These complex lines are called the complex slices of the bisector.
Negative vectors of the form . zp0�˛ zp1/ (still with j˛jD 1) parametrize a real geodesic,
which is called the real spine of B . The complex geodesic that it spans is called the
complex spine of B . There is a natural extension of the real spine to projective space,
given by the (not necessarily negative) vectors of the form zp0�˛ zp1 ; we call this the
extended real spine (the complex projective line that contains it is called the extended
complex spine).

Geometrically, each complex slice of B is the preimage of a given point of the real
spine under orthogonal projection onto the complex spine, and in particular, the bisector
is uniquely determined by its real spine.

Given two distinct bisectors B1 and B2 , their intersection is to a great extent con-
trolled by the respective positions of their complex spines †1 and †2 . In particular,
if †1 and †2 intersect outside of their respective real spines, the bisectors are called
coequidistant. If †1 D †2 , the bisectors are called cospinal and in that case their
intersection is either empty or a single complex line.

This special case of bisector intersections is important in the context of Dirichlet
domains, since by construction all the faces of a Dirichlet domain are equidistant from
one given point (namely its center). We recall the following, which is an important tool
for studying the combinatorics of polyhedra bounded by bisectors (and also in order to
apply the Poincaré polyhedron theorem; see Section 5).
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Theorem 2.1 Let B1 and B2 be two coequidistant bisectors with nonempty intersec-
tion. Then B1\B2 is a smooth disk, which is totally geodesic if and only if B1 and B2

are cospinal. If B1 and B2 are not cospinal, then there are precisely three bisectors that
contain B1\B2 .

This theorem is due to Giraud (for a detailed proof see [10, Sections 8.3.5 and 9.2.6]),
hence such a disk is often called a Giraud disk (see [4]).

The existence of a third bisector containing B1\B2 may sound mysterious at first, but
it follows at once from the coequidistance condition. Indeed, let x0 be the intersection
point of the complex spines †1 and †2 , and let xj , j D 1; 2, denote its reflection
across the real spine �j . Then Bj D B.x0;xj /, and clearly B1 \B2 is contained in
B.x1;x2/. The content of Giraud’s theorem is that these three bisectors are the only
ones containing B1\B2 .

If the complex spines do not intersect, then they have a unique common perpendicular
complex line T . This complex line is a slice of B1 if and only if the real spine of
†1 goes through †1\ T (and similarly for the real spine of B2 ). This gives a simple
criterion to check whether bisectors with ultraparallel complex spines have a complex
slice in common (this happens if the extended real spines intersect). When this happens,
the bisectors are called cotranchal. One should beware that when this happens, the
intersection can be strictly larger than the common slice (but there can be at most one
complex slice in common).

The slice parameters above allow an easy parametrization of the intersection of the
extors containing the bisectors, provided the bisectors do not share a slice, which we
now assume (this is enough for the purposes of the present paper). In this case, the
intersection in projective space can be parametrized in a natural way by the Clifford
torus S1�S1�C2 . Specifically .z1; z2/2S1�S1 parametrizes the vector orthogonal
to xz1 zp0� zp1 and xz2 zp2� zp3 . This vector can be written as

.xz1 zp0� zp1/� .xz2 zp2� zp3/

in terms of the Hermitian box product; see [10, page 43]. This can be rewritten in the
form

(3) V .˛; ˇ/D c13C z1c31C z2c21C z1z2c02;

where cjk denotes pj �pk .

The intersection of the bisectors (rather than the extors) is given by the set of pairs
.z1; z2/ that satisfy

hV .z1; z2/;V .z1; z2/i< 0:
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The corresponding equation hV .z1; z2/;V .z1; z2/i D 0 is quadratic in each variable.
It is known (see the analysis in [10]) that the intersection has at most two connected
components. This becomes a bit simpler in the coequidistant case (then one can take
p0 D p2 , so that c02 D 0), where the equation is actually quadratic, rather than just
quadratic in each variable.

Note that the intersection of three bisectors also has a simple implicit parametrization,
namely the intersection of B1\B2 with a third bisector B.q1; q2/ has an equation

(4) jhV .z1; z2/; zq1ij
2
D jhV .z1; z2/; zq2ij

2;

where zqj are lifts of qj with the same square norm.

This implicit equation can be used to obtain piecewise parametrizations for the cor-
responding curves, using either z1 or z2 as a parameter. This is explained in detail
in [4]; we briefly review some of this material.

Note that hV .z1; z2/; zq1i is affine in each variable (in the coequidistant case it is
even affine in .z1; z2/). This means that for a given z1 with jz1j D 1, finding the
corresponding values of z2 amounts to finding the intersection of two Euclidean circles.
Specifically, the equation has the form

ja0.z1/C a1.z1/z2j
2
D jb0.z1/C b1.z1/z2j

2;

which can be rewritten as

2 Re
�
.xa0a1�

xb0b1/z2

�
D ja0j

2
Cja1j

2
� jb0j

2
� jb1j

2;

or simply in the form

(5) Re.�z2/D �:

Using the fact that jz1j D 1, we can write �D�.z1/ and �D �.z1/ as affine functions
in .z1;xz1/.

It follows from elementary Euclidean geometry (simply intersect the circle of radius
j�j centered at the origin with the line Re.z/ D � ) that (5) has a solution z2 with
jz2j D 1 if and only if

(6) j�j2 � �2:

If there is a z1 such that �D � D 0, then z2 can of course be chosen to be arbitrary
(this happens when two of the three bisectors share a slice). Otherwise, there is a single
value of z2 satisfying (5) if and only if equality holds in (6).
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Of course the inequality j�j2 � �2 can also be reinterpreted in terms of the sign of the
discriminant of a quadratic equation, since when jzjD 1, �zCx�xzD 2� is equivalent to

�z2
� 2�zC x�D 0:

The determination of the projection of the curve (4) onto the z1 –axis of the Giraud
torus amounts to the determination the values of z1 , jz1j D 1 where there exists a z2

satisfying (4) and jz2j D 1. According to the previous discussion, this amounts to
finding where equality holds in (6), which yields a polynomial equation in z1 . This
can be somewhat complicated, especially because polynomials can have multiple roots.

On the intervals of the argument of z1 corresponding to the projection onto the z1 –axis
of the curve defined by (4) (we remove the points where �D � D 0 is arbitrary), we
obtain a nice piecewise parametrization for the curve, namely

(7) z2 D
�˙ i

p
j�j2� �2

�
:

This equation is problematic for numerical computations mainly when j�j is close
to � . In that case, one can switch variables and use z2 rather than z1 as the parameter.

All the above computations are fairly simple, but some care is needed when performing
them in floating point arithmetic. The main point that allows us to perform somewhat
sophisticated computations in our proofs is the polynomial character of all equations,
and the following.

Proposition 2.2 The group � consists of matrices in GL3.K/, where K DQ.i
p

7/.

Our fundamental domain is defined using fixed points of certain elliptic or parabolic
elements in the group, whose coordinates can be chosen to lie in K , so we will be
able to choose the coefficients of all the above polynomial parametrizations to lie in K .
This allows us to compute all relevant quantities to arbitrary precision; we will treat
some explicit sample computations in the appendix.

Note that when the solution set of an equation of the form (4) is nonempty, its dimension
could in general be 0; 1 or 2. Giraud’s theorem (see Theorem 2.1) gives a fairly general
characterization of which bisectors can give a set of dimension 2.

In the bisector intersections that appear in the present paper, we will encounter situations
where the solution set of (4) is a curve in the Clifford torus, but that intersects the
closure in xH 2

C of the Giraud disk only in a point at infinity. Among other situations,
this happens when the spinal spheres at infinity of certain pairs of bisectors are tangent.
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Clearly floating point arithmetic will give absolutely no insight about such situations,
so we will use geometric arguments instead. An important geometric argument is the
following result, proved by Phillips in [14]:

Proposition 2.3 Let A be a unipotent isometry, and let p0 2H 2
C . Then B.p0;Ap0/\

B.p0;A
�1p0/ is empty. The extension to @1H 2

C of these bisectors intersect precisely
in the fixed point of A; in other words, the spinal spheres for the above two bisectors
are tangent at that fixed point.

As we will see in the appendix, Phillips’ result allows to take care of most, but not all
tangencies.

3 Boundary unipotent representations

We recall part of the results from [5], using the notation and terminology from Section 1,
so that M denotes the figure-eight knot complement. We will interchangeably use the
following two presentations for �1.M /:

hg1;g2;g3 j g2 D Œg3;g
�1
1 �; g1g2 D g2g3i;(8)

ha; b; t j tat�1
D aba; tbt�1

D abi:

The second presentation can be obtained from the first by setting aD g2 , bD Œg2;g
�1
3
�

and t D g3 . Note that a and b generate a free group F2 , and the second presentation
exhibits �1.M / as the mapping torus of a pseudo-Anosov element of the mapping
class group of F2 ; this comes from the fact that the figure-eight knot complement
fibers over the circle, with once punctured tori as fibers.

Representatives of the three conjugacy classes of representations of �1.M / with
unipotent boundary holonomy are the following (see [5, pages 102–105]). We only
give the images of g1 and g3 , since they clearly generate the group:

�1.g1/D

0B@1 1 �1
2
�

p
3

2
i

0 1 �1

0 0 1

1CA ; �1.g3/D

0B@ 1 0 0

1 1 0

�
1
2
�

p
3

2
i �1 1

1CA ;
�2.g1/D

0B@1 1 �1
2
�

p
7

2
i

0 1 �1

0 0 1

1CA ; �2.g3/D

0B@ 1 0 0

�1 1 0

�
1
2
C

p
7

2
i 1 1

1CA ;

�3.g1/D

0@1 1 �1
2

0 1 �1

0 0 1

1A ; �3.g3/D

0B@ 1 0 0
5
4
�

p
7

4
i 1 0

�1 �
5
4
�

p
7

4
i 1

1CA :
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For completeness, we state the following result (the main part of which was already
proved in [5]).

Proposition 3.1 For any irreducible representation �W �1.M / ! PU .2; 1/ with
unipotent boundary holonomy, � (or x�) is conjugate to �1 , �2 or �3 .

Proof We follow the beginning of [5, Section 5.4]. To prove this statement, we mainly
need to complete the argument there to exclude nongeneric cases.

Let � be as in the statement of the proposition. In order to avoid cumbersome notation,
we will use the same notation as in the introduction for the images of g1 , g2 and g3

under � , and write Gk D �.gk/.

We first observe that one of the peripheral holonomy elements is given by g1
�1g2 D

g1
�1g3g1

�1g3
�1g1 . This is conjugate to g1

�1 so G1 D �.g1/ is unipotent by
assumption. Moreover, g1 is conjugate to g3 , which implies that G3 D �.g3/ is
unipotent as well.

Let p1 and p2 be the parabolic fixed points of G1 D �.g1/ and G3 D �.g3/, respec-
tively. We may assume that p1¤ p2 otherwise the representation would be elementary
(hence not irreducible).

Define q1 D G1
�1.p2/ and q3 D G3.p1/. By [5, Lemma 5.3] (which uses only the

presentation for �1.M /; see (8)),

G3G1
�1.p2/DG1

�1G3.p1/:

We define q2 as the point on both sides of the above equality.

If p1;p2; q1; q2 and p1;p2; q2; q3 are in general position (that is, no three points
belong to the same complex line) these quadruples are indeed parametrized by the
coordinates from [5], and these coordinates must be solutions of the compatibility
equations, so � must be conjugate to some �j (or its complex conjugate).

If the points are not in general position we analyze the representation case by case.

The first case is when q1 D G1
�1.p2/ belongs to the boundary of the complex line

through p1 and p2 . Without loss of generality, we may assume p1D1 and p2D .0; 0/

in Heisenberg coordinates. As G1 preserves the complex line between p1 and p2 it
has the form

G1 D

0@1 0 it
2

0 1 0

0 0 1

1A :
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We then write

G3 D

0B@ 1 0 0

z 1 0

�
jzj2

2
C

is
2
�xz 1

1CA
with z ¤ 0 (otherwise the representation would be reducible). Now, the equation

G3
�1G1

�1.p2/DG1
�1G3.p1/

gives 0BB@
�

it
2

�
izt
2

it jzj2

4
C

ts
4
C 1

1CCAD �
0B@ it jzj2

4
C

ts
4
C 1

z

�
jzj2

2
C

is
4

1CA :
One easily checks that this equation has no solutions with z ¤ 0. Therefore q1 is not
in the complex line defined by p1 and p2 .

Analogously, q3DG3.p1/ cannot be in that complex line either. Now, from the gluing
pattern in Figure 1, we obtain that p1; q1; q2 and p2; q2; q3 are in general position. It
remains to verify that p2; q1; q2 are in general position. We write

.p2; q1; q2/D .p2;G1
�1.p2/;G1

�1G3.p1//DG1
�1G3.G3

�1G1.p2/;p2;p1/:

But if .G3
�1G1.p2/;p2;p1/ are on the same complex line then, again, we obtain

equations which force p1;p2; q1 to be in the same line.

In fact it is not hard to show that there are no reducible representations apart from
elementary ones (still assuming the boundary holonomy to be unipotent). The relator
relation then implies that these elementary representations must satisfy �.g1/D �.g3/,
hence the image of the representation is in fact a cyclic group.

4 A Dirichlet domain for �

From this point on, we focus on the representation �2 (see the discussion in the
introduction, and Section 9). We write � D �2 and

G1 D �2.g1/; G2 D �2.g2/; G3 D �2.g3/:

The combinatorics of Dirichlet domains depend significantly on their center p0 , and
there is of course no canonical way to choose this center. We will choose a center that
produces a Dirichlet domain with very few faces, and that has a lot of symmetry (see
Section 4.1), namely the fixed point of G2 .
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Recall that G2 D ŒG3;G
�1
1
�, and this can easily be computed to be

G2 D

0B@ 2 3
2
� i
p

7
2
�1

�
3
2
� i
p

7
2

�1 0

�1 0 0

1CA :
It is easy to check that G2 is a regular elliptic element of order 4, whose isolated fixed
point is given in homogeneous coordinates by

zp0 D .1;�.3C i
p

7/=4;�1/:

Note that no nontrivial power of G2 fixes any point in @1H 2
C (G2 and G�1

2
are

regular elliptic and G2
2

is a complex reflection in a point).

Recall from Section 2.2 that, for any subset S � � , ES denotes the Dirichlet domain
centered at p0 ; the faces of ES are given by intersections of the form

ES \B.p0; p0/

that have nonempty interior in B.p0; p0/ (we refer to such a face as being associated
to the element  ).

As a special case, E� denotes the Dirichlet domain for � centered at p0 , and ES

denotes an a priori larger domain taking into account only the faces coming from S

rather than all of � .

From this point on, we will always fix the set S to be the following set of eight group
elements:

(9) S D
˚
Gk

2 G1G�k
2 ;Gk

2 G�1
3 G�k

2

ˇ̌
k D 0; 1; 2; 3

	
:

Since for the remainder of the paper we always use the same set S , we simply write

E DES :

Note also that it follows from simple relations in the group that S is a symmetric
generating set (in the sense that it is closed under the operation of taking inverses in
the group), even though this may not be obvious from the above description. For now
we simply refer to the second column of Table 1, where the relevant relations in the
group are listed.

With this notation, what we intend to prove is the following (which will be key to the
proof of Theorem 1.1).

Theorem 4.1 The Dirichlet domain E� centered at p0 is equal to E . In particu-
lar, E� has precisely eight faces, namely the faces of E� associated to the elements
of S , which are listed in (9).
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As outlined in Section 2.2, in order to prove E� DE , we will start by determining the
precise combinatorics of E , then apply the Poincaré polyhedron theorem in order to
prove that E is a fundamental domain for � modulo the action of the finite group H .

Note that E is indeed not a fundamental domain for � , since by construction it has a
nontrivial stabilizer (powers of G2 fix the center of E , hence they must preserve E ).
It is a fundamental domain for the coset decomposition of � into left cosets of the
group H of order 4 generated by G2 (see Section 2.2), and this suffices to produce a
presentation for � ; see Section 5.4. One can deduce from E a fundamental domain
for � , by taking E \F , where F is any fundamental domain for H . We omit the
details of that construction, since they will not be needed in what follows.

Definition 4.2 We write B1; : : : ;B8 for the bisectors bounding E , numbered as in
Table 1. For each k , we denote by xBk the closure of Bk in xH 2

C DH 2
C [ @1H 2

C . We
write bk for the intersection Bk \E and xbk for the closure of that face in xH 2

C .

We will sometimes refer to the bisectors Bj as the bounding bisectors.

Element of S Bisector Face Vertices

G1 B1 b1 p1;p2; q3; q4

G�1
3

B2 b2 p2; q4; q1;p1

G2G1G�1
2

G2B1 D B3 b3 p4;p1; q4; q1

G2G�1
3

G�1
2
DG�1

1
G2B2 D B4 b4 p1; q1; q2;p4

G2
2
G1G2

2
DG�1

2
G3G2 G2

2
B1 D B5 b5 p3;p4; q1; q2

G2
2
G�1

3
G2

2
DG2G�1

1
G�1

2
G2

2
B2 D B6 b6 p4; q2; q3;p3

G�1
2

G1G2 DG3 G�1
2

B1 D B7 b7 p2;p3; q2; q3

G�1
2

G�1
3

G2 G�1
2

B2 D B8 b8 p3; q3; q4;p2

Table 1: Notation for the eight faces of the Dirichlet domain; the face associ-
ated to an element  2 S is contained in B.p0; p0/; see Section 2.2. The
equalities in the first column follow from the relation G1G2 D G2G3 . The
notation for vertices will be explained in Section 4.2.

4.1 Symmetry

Note that S is by construction invariant under conjugation by G2 , which fixes p0 ,
so E is of course G2 –invariant. In particular, it has at most 2 isometry types of faces;
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in fact all its faces are isometric, as can be seen using the involution

I D

0@0 0 1

0 �1 0

1 0 0

1A :
This is not an element of � , but it can easily be checked that it normalizes � by using
the conjugacy information given in Proposition 4.3.

Proposition 4.3 We have

IG1I DG�1
3 ; IG2I DG�1

2 :

This proposition shows that the group generated by I and G2 has order 8, and this
group of order 8 stabilizes E (the formula given above for p0 makes it clear that it
is fixed by I ). Finally, note that Proposition 4.3 makes it clear that I exchanges the
faces b1 and b2 (see Table 1 for notation).

4.2 Vertices of E

In this section we describe certain fixed points of unipotent elements in the group, which
will turn out to give the list of all vertices of E (this claim will be justified in the end of
Section 4.3; see Proposition 4.8). We use the numbering of faces (as well as bisectors
that contain these faces) given in Table 1. We start by mentioning that G1 clearly maps
B4 D B.p0;G

�1
1

p0/ to B1 D B.p0;G1p0/. Since G1 is unipotent, Proposition 2.3
shows that the corresponding bisectors have empty intersection, and their spinal spheres
are tangent at the fixed point of G1 .

The latter is clearly given by
p1 D .1; 0; 0/;

and it is easy to check that this point is on the closure of precisely four of the bisectors
that bound the Dirichlet domain, namely xB1 , xB2 , xB3 and xB4 . The fact that it is in xB1

and xB4 is obvious, the other ones can be checked by explicit computation. Indeed,

G3 p1 D

�
1;�1;

�1Ci
p

7

2

�
;

G�1
1 G�1

2 p1 D

�
1�i
p

7

2
;�1;�1

�
I

hence
jhp1;G

�1
3 p0ij D jhG3 p1;p0ij D 1D jhp1;p0ij;

jhp1;G2G1G�1
2 p0ij D jhG

�1
1 G�1

2 p1;p0ij D 1D jhp1;p0ij:
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Similarly, the bisectors B2 and B5 have tangent spinal spheres, and this comes
from the fact that G�1

2
G3 is unipotent (which can be checked by direct calcula-

tion). Indeed, this isometry sends B2 D B.p0;G
�1
3

p0/ to B.G�1
2

G3p0;G
�1
2

p0/ D

B.G�1
2

G3G2p0;p0/D B5 .

We call q1 the fixed point of G�1
2

G3 , which can easily be computed to be given by

q1 D

�
�1Ci

p
7

2
; 1; 1

�
:

One verifies directly that this point is on the closure of precisely four bounding bisectors,
namely xB2 , xB3 , xB4 and xB5 .

Now applying G2 to p1 and q1 , we get eight specific fixed points of unipotent elements
in the group which are all tangency points of certain spinal spheres. We define points
pk , qk for k D 1; : : : ; 4 by

pk DG2pkC1; qkC1 DG2qk :

Beware that G2 raises the indices of q–vertices, whereas it lowers the indices of the
p–vertices; this somewhat strange convention is used for coherence with the notation
of Falbel and Wang in [7].

Perhaps surprisingly, the eight tangency points will turn out to give all the vertices of
the Dirichlet domain. We summarize the results in the following.

Proposition 4.4 There are precisely eight pairs of tangent spinal spheres among the
boundary at infinity of the bisectors bounding the Dirichlet domain. The list of points
of tangency is given in Table 2.

Proof The claim about tangency has already been proved, we only justify the fact that
the points in the G2 –orbit of p1 and q1 are indeed stabilized by the unipotent element
given in Table 2. This amounts to checking that the unipotent elements claimed to fix
the points pj (resp. those claimed to fix the points qj ) are indeed conjugates of each
other under powers of G2 .

This can easily be seen from the presentation of the group (in fact the relations G1G2D

G2G3 and .G1G2/
3 D 1 suffice to check this). For instance, G2.p4/D p3 because,

using standard word notation in the generators where 1DG1 , x1DG�1
1

, we have

2 � 2x1x2 � x2D x2x2 � x1 � 22D x2 � x2x1 � 22D x2 � x3x2 � 22D x2x32:

Similarly, G2.q3/D q4 because

2 � 2x1 � x2D 22 � x1x2D 22 � 2121D x2 � 12 � 1D x2 � 23 � 1D 31:

The other conjugacy relations are handled in a similar fashion.
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Vertex Fixed by tangent spinal spheres Other faces

p1 G1 B1, B4 B2, B3

p2 G3 B7, B2 B8, B1

p3 G�1
2

G3G2 B5, B8 B6, B7

p4 G2G1G�1
2

B3, B6 B4, B5

q1 G�1
3

G2 B2, B5 B3, B4

q2 G�1
1

G2 B4, B7 B5, B6

q3 G2G�1
1

B6, B1 B7, B8

q4 G3G1 B8, B3 B1, B2

Table 2: The vertices of E at infinity, given by a unipotent element that fixes
them; see also the list of vertices that lie on each face given in Table 1.

4.3 Combinatorics of E

We now go into the detailed study of the combinatorics of E .

The results of Section 4.1 show that it is enough to determine the combinatorics of a
single face of E , say b1 DE \B1 , and its incidence relation to all other faces.

Proposition 4.5 The closure xb1 of b1 in xH 2
C has precisely three 2–faces, two finite

ones and one on the spinal sphere @1B1 .

(1) The finite 2–faces are given by the (closure of the) Giraud disks xB1\xB2 , xB1\xB8 .

(2) The 2–face on the spinal sphere @1B1 is an annulus, pinched at two pairs of
points on its boundary. The pinch points correspond to the fixed points of G3

and G3G1 .

In particular, xb1 intersects all faces xBk , k ¤ 2; 8, in lower-dimensional faces.

A schematic picture of the combinatorics of xb1 is given in Figure 2, where the shaded
region corresponds to the 2–face of xb1 at infinity (part (2) of the proposition). The
Giraud disks mentioned in part (1) of the proposition intersect only in two points in
@1H 2

C , not inside H 2
C (see Proposition 4.8).

The intersection pattern of the boundary at infinity of the eight faces B1; : : : ;B8 is
somewhat intricate. Eight isometric copies of the shaded region in Figure 2 are glued
according to the pattern illustrated in Figure 4 (Section 6).

The general remark is that the claims in Proposition 4.5 can be proved using the
techniques of Section 2.3. In this section, we break up the proof of Proposition 4.5 into
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p2

q4

q3

p1

Figure 2: A schematic picture of @1b1 : the face xb1 also has two finite 2–
faces, given by the Giraud disks xB8\ xB1 and xB1\ xB2 (only their boundary
circle is draw in the picture). The face xb1 has precisely four vertices, all in
the ideal boundary (they are the fixed points of G1 , G3 , G3G1 , and G1G�1

2 ;
see Tables 1 and 2).

several lemmas (Lemmas 4.6 and 4.7), and make these lemmas plausible by drawing
pictures that can easily be reproduced using the computer (and the parametrizations
explained in Section 2.3). The detailed proof will be postponed until the Appendix,
since it relies on somewhat delicate computations.

Since any two of the eight bisectors bounding E are coequidistant, their pairwise
intersections are either empty, or diffeomorphic to a disk (see Section 2.3). Recall that
such disks are either complex lines or Giraud disks. Lemma 4.6 details the intersections
of B1 with the seven bisectors Bk , k ¤ 1. It can easily be translated into a statement
about B2 by using the involution I (see Section 4.1), hence also about any Bj by using
powers of G2 .

Lemma 4.6 B1 intersects exactly four of the seven other bisectors bounding E ,
namely B7 , B8 , B2 and B3 . The corresponding intersections are Giraud disks.

Proof The fact that B1\B4 and B1\B6 are empty follows from Proposition 4.4. The
fact that B1\B5D∅ can be shown with direct computation, using the parametrization
of the corresponding Giraud torus explained in Section 2.3. The fact that the intersection
of B1 with the four bisectors in the statement is indeed a Giraud disk can be proved
simply by exhibiting a point in that Giraud disk. Details will be given in Section A.1.

The following statement is the analogue of Lemma 4.6, pertaining to face (rather than
bisector) intersections.
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Lemma 4.7 (1) B1\B7\E and B1\B3\E are empty.
(2) B1\B2\E D B1\B2 and B1\B8\E D B1\B8 , and both are Giraud disks.

The proof of this statement will be given in Section A.2. For now, we only show
some pictures drawn in spinal coordinates on the relevant Giraud disks; see Figure 3.
For each of them we plot the trace of the other six bisectors on that Giraud disk (see
Section 2.3 for a description of how this can be done). In the picture, we label each arc
with the index of the corresponding bisector (see the numbering in Table 1).

3 8

3

8
q4

7

8

7

8

p2

p1

3 4

(a) B1 \B2

6 8
6

8

q3

2

8

2 8

p2

(b) B1 \B7

Figure 3: Typical Giraud disk corresponding to the intersection of two bound-
ing bisectors; the other curves are traces of the other 6 bisectors.

The fact that these pictures can indeed be trusted depends on the fact that the curves
have polynomial equations with entries in an explicit number field (namely Q.i

p
7/),

as will be explained in detail in Section A.2.

It follows from the previous analysis that the face b1 has no vertex in H 2
C , and that it

has exactly four ideal vertices, or in other words the closure xb1 has four vertices. We
summarize this in the following proposition:

Proposition 4.8 The closure xb1 has precisely four vertices, all at infinity. They are
given by p1 , p2 , q3 , q4 .

Proof We obtain p2 and q3 as the only two points in the intersection xB1 \ xB7 (as
before, bars denote the closures in H 2

C [ @1H 2
C ); see Figure 3. Similarly, p1 and q4

are the two points in xB1\ xB3 .

One can easily use symmetry to give the list of vertices of every face. Each face has
precisely four (ideal) vertices; see the last column of Table 1.
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5 The Poincaré polyhedron theorem for E

This section is devoted to proving the hypotheses of the Poincaré polyhedron theorem for
the Dirichlet polyhedron E (Sections 5.1, 5.2 and 5.3), and to state some straightforward
applications (Section 5.4).

5.1 Side pairings

We now check that opposite faces of E (ie faces that correspond to  and �1 , for
 2 S ) are paired by the isometry  . It is enough to check this for  D G1 , since
all others are obtained from this one by symmetry. More concretely, we will check
that G1 maps b4 to b1 ; see Table 1 for notation.

Recall that xb4 has three facets, one on the ideal boundary @1H 2
C and two given by

the Giraud disks B4\B3 and B4\B5 .

Proposition 5.1 The isometry G1 maps B4\B3 to B1\B2 and B4\B5 to B1\B8 .

Proof The Giraud disk B4\B3 is equidistant from p0 , G�1
1

p0 and G2G1G�1
2

p0D

G2G1p0 , whereas B1\B2 is equidistant from p0 , G1p0 and G�1
3

p0 .

Now G1.B4\B3/D B1\B2 is equivalent to

G1G2G1p0 DG�1
3 p0;

which can easily be checked by direct computation. Equivalently, one may check that
G3G1G2G1 DG2

2
.

The fact that G1.B4\B5/D B1\B8 follows similarly from

G1G�1
2 G3p0 DG�1

2 G�1
3 p0;

or equivalently G3G2G1G�1
2

G3 DG2
2

.

These relations in the group are easily obtained from the group presentation, but they
can also be checked directly from the explicit matrices that appear in Section 3.

Proposition 5.1 implies that G1 maps b4 isometrically to b1 . We will need more
specific information about the image of vertices under the side pairings (see the last
column of Table 1 for the list of vertices on each face, where the quadruples of vertices
are ordered in a consistent manner, ie the side pairing maps the j th vertex to the j th

vertex).
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Proposition 5.2 The isometry G1 maps the vertices of b4 to vertices of face b1 . More
specifically, G1.p1/D p1 , G1.p4/D q4 , G1.q1/D p2 and G1.q2/D q3 .

Proof The fact that G1.p1/ D p1 is obvious. The point q2 D G2.q1/ is the fixed
point of G�1

1
G2 , so G1.q2/ is fixed by G2G�1

1
, hence the latter point must be q3 (see

the second column in Table 2).

The fact that G1.q1/D p2 follows from the fact that g2 D Œg3;g
�1
1
�, since

1 � x32 � x1D 1x3 � Œ3;x1� � x1D x3:

Finally, the fact that G1.p4/D q4 is equivalent to showing that 121x2x1 and 31 have
the same fixed point. This follows from .12/2 D .121/3 D id and 12D 23, since

121x2x1D 121 � 1212D .x1x2x1/2 � 1212D x1x2x12D x1x3x22D x1x3:

5.2 Cycles of ridges

It follows from Giraud’s theorem (Theorem 2.1) that the ridges of E are on precisely
three bisectors, hence there are three copies of E tiling its neighborhood. We only
need to consider the ridges b1\ b2 and b1\ b8 , since the other ones are all images of
these two under the appropriate power of G2 .

The Giraud disk B1 \ B2 is equidistant from p0 , G1.p0/ and G�1
3
.p0/, and we

apply G�1
1

to this triple of points, getting G�1
1

p0;p0;G
�1
1

G�1
3

p0 D G2G1p0 , and
bring it back to B1\B2 by applying G�1

2
. This does not yield the identity, but results

in a cyclic permutation of the above three points:

p0;G1p0;G
�1
3

p0

G2��

G�1p0;p0;G
�1
1

G�1
3

p0

G1��

G�1
3

p0;p0;G1p0

In other words, the corresponding cycle transformation is G1G2 , and the corresponding
relation is

.G1G2/
3
D id :

Another geometric interpretation of this the following.

Proposition 5.3 A neighborhood of a generic point of b1 \ b2 is tiled by E and
G1G2.E/DG1.E/, .G1G2/

�1.E/DG�1
3
.E/.

Geometry & Topology, Volume 19 (2015)



Complex hyperbolic geometry of the figure-eight knot 263

The Giraud disk B1\B8 is equidistant from p0 , G1.p0/ and G3G1.p0/. Again, we
get an isometry in the group that permutes these points cyclically:

p0;G1p0;G3G1p0

G2
2��

G�1
1

p0;p0;G
�1
1

G3G1p0

G1��
G3G1p0;p0;G1p0

This gives the relation
.G1G2

2/
3
D id :

The statement analogous to Proposition 5.3 is the following:

Proposition 5.4 A neighborhood of a generic point of b1\b8 is tiled by E , G2
2
G1.E/

and .G2
2
G1/
�1.E/DG�1

1
.E/.

5.3 Cycles of boundary vertices

As explained in Section 2.2, we need to check the cycle transformations for all boundary
vertices are parabolic. There is only one cycle of vertices, since G2.qk/ D qkC1 ,
G2.pk/D pk�1 (indices mod 4), and we have

G3.p1/D q3:

We check the geometry of the tiling of H 2
C near p1 , which can be deduced from

the structure of ridges through that point (see Section 5.2). Recall that p1 is on four
faces: b1 , b2 , b3 and b4 (see Section 4.3). The local tiling near the ridges b1 \ b2 ,
b2\b3 and b3\b4 imply that the region between the bisectors B.p0;G

˙1
1

p0/ is tiled
by E , G2G1G2.E/DG2G1.E/ and .G2G1G2/

�1.E/DG�1
3
.E/.

Note that none of the isometries mapping these three copies of E fixes p1 , hence the
only vertex cycle transformation for p1 is G1 , which is parabolic.

Now that we have checked cycles of ridges and boundary vertices, the Poincaré poly-
hedron theorem shows that E is a fundamental domain for the action of � modulo the
action of G2 (the latter isometry generates the stabilizer of the center p0 in � ). The
main consequences will be drawn in Section 5.4.

We state the above result about cycles of boundary vertices in a slightly stronger form.

Proposition 5.5 The stabilizer of p1 in � is the cyclic group generated by G1 . The
stabilizer of q1 is generated by G�1

2
G3 .
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5.4 Presentation

The Poincaré polyhedron theorem (see Section 2.2) gives the presentation

hG1;G2 jG
4
2 ; .G1G2/

3; .G1G2
2/

3
i;

or in other words, since G1G2 DG2G3 ,

hG2;G3 jG
4
2 ; .G2G3/

3; .G2G3G2/
3
i:

It also gives precise information about the elliptic elements in the group.

Proposition 5.6 Let  2 � be a nontrivial torsion element. Then  has no fixed point
in @1H 2

C .

Proof It follows from the Poincaré polyhedron theorem that any elliptic element in �
must be conjugate to some power of a cycle transformation of some cell in the skeleton
of the fundamental domain. This says that any elliptic element in the group must be
conjugate to a power of G2 (which fixes the center of the Dirichlet domain), a power
of G1G2 (which preserves the ridge b1\ b2 ) or a power of G1G2

2
(which preserves

the ridge b8\ b1 ); see Section 5.2.

G1G2 and G1G2
2

are regular elliptic elements of order three, so they do not fix any
point in @1H 2

C (nor do their inverses). As for G2 , the only nontrivial, nonregular
elliptic power is G2

2
, but this can easily be checked to be a reflection in a point, so it is

conjugate in Bihol.B2/ to .z1; z2/ 7! .�z1;�z2/, which has no fixed point in the unit
sphere.

Proposition 5.7 The kernel of �2 is generated as a normal subgroup by a4 , .at/3

and .ata/3 .

Proof The fact that the three elements in the statement of the proposition are indeed
in the kernel follows from the presentation and the fact that

�2.a/DG2; �2.b/DG�1
1 G3; �2.t/DG3:

We now consider the presentation

ha; b; t j tat�1
D aba; tbt�1

D ab; a4; .at/3; .ata/3i:

One can easily get rid of the generator b , since

b D a�1tat�1a�1;
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and the other relation involving b then follows from the other three relations. Indeed,
one easily sees that .at/3 D .ata/3 D 1 implies .tat/3 D 1, and then

t.a�1tat�1a�1/t�1
D ta�1ta.tat/2 D ta�1.ta/2t2at

D ta�1
� a�1t�1

� t2at

D ta2tat D tat�1a�1
D a.a�1tat�1a�1/:

In other words, the quotient group is precisely

ha; t j a4; .at/3; .ata/3i;

which is the same as the image of �2 .

6 Combinatorics at infinity of the Dirichlet domain

The next goal is to study the manifold at infinity, ie the quotient of the domain of
discontinuity under the action of the group. The idea is to consider the intersection
with @H 2

C of a fundamental domain for the action on H 2
C . Recall that we did not quite

construct a fundamental domain in H 2
C , but a fundamental domain modulo the action

of a cyclic group of order 4 (generated by G2 ).

We start by describing the combinatorial structure of U D @1E , which is bounded
by eight (pairwise isometric) pieces of spinal spheres. A schematic picture of the
boundary @U of U in @1H 2

C is given in Figure 4. The picture is obtained by putting
together the incidence information for each face, following the results in Section 4.3;
we will use it as a bookkeeping tool for the gluing of the eight faces. The picture is
by no means a realistic picture in complex hyperbolic space (a more realistic view is
given in Figure 5).

Note that it is clear from this picture that @U is a torus, and the fact that it is embedded
in @H 2

C follows from the analysis of the combinatorics of E given in the previous
sections.

Figure 5 makes it plausible that U is a solid torus. In fact a priori only one of the two
connected components of S3 n @U is a solid torus, the other may only be a tubular
neighborhood of a knot; in fact both sides are tori, because one can produce two
explicit simple closed curves with intersection number one on @U , both trivial in S3 .
An alternative argument for the fact that U is a solid torus will be given below (see
Corollary 6.4).

Remark 6.1 From the fact that U is a solid torus, one can give a more direct proof of
the fact that the manifold at infinity of � is the figure-eight knot complement. Indeed,
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G2

p2 p1 p4 p3 p2

q1 q2 q3 q4 q1 q2

p2 p1 p4 p3 p2
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Figure 4: The combinatorics of @1E , which is a torus. We have split each
quadrilateral components of the boundary faces into two triangles along an
arc of C–circle. Note that the polygons labeled 1 in this picture correspond
to the 2–face illustrated in Figure 2.

Figure 4 then exhibits U (with identifications on @U ) as a 4–fold covering of the
figure-eight knot. Rather than using this 4–fold cover argument, we will divide U into
four explicit isometric regions, and modify the corresponding cell decomposition so
that it is combinatorially the same as the standard triangulation of the figure-eight knot
complement.

The next goal in our construction is to produce an explicit essential disk in U whose
boundary is the curve on the left and right side of Figure 4. Note that U is G2 –invariant
simply because E is so; the action of G2 on @U is suggested on Figure 4 by the
horizontal arrow. The rough idea is to use a fundamental domain for the action of G2

on U ; the desired meridian would then be obtained as one of the boundary components
of this fundamental domain.

The Dirichlet domain has an arc in the boundary of a Giraud disk between q1 and q2 ,
which is in the intersection of the faces b4 and b5 . By Giraud’s theorem [10, page 264],
there are precisely three bisectors containing that Giraud disk, namely B4 , B5 and

C D B.G�1
1 p0;G

�1
2 G3p0/:

One way to get a fundamental domain for the action of G2 on U is to intersect U

with the appropriate region between C and G2C , namely

D D
˚
z 2C3

ˇ̌
jhz;G�1

1 p0ij6 jhz;G�1
2 G3p0ij; jhz;G3p0ij6 jhz;G2G�1

1 p0ij
	
:

This turns out to give a slightly complicated fundamental domain (in particular it is not
connected). We only use C as a guide in order to get a simpler fundamental domain.
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p4

q2 p3

p1

q1

q3

q4

p0

Figure 5: The solid torus U : on top, we have drawn all its 2–faces, as well
as its 1–skeleton; on the bottom, only the 1–skeleton with vertices labeled.
These pictures are included only for motivational purposes, they are not
needed in the proofs.

By construction, C contains q1 and q2 . One easily checks by direct computation that
it also contains p2 , which is given in homogeneous coordinates by .0; 0; 1/. To that
end, one computes

hp2;G
�1
1 p0i D hp2;G

�1
2 G3p0i D

9Ci
p

7

4
:

One then studies the intersection of C with each face of U by using the techniques of
Section 2.3. The only difficulty is that the relevant bisectors are not all coequidistant
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but their intersections turn out to be disks (this will be proved in Section A.4). The
combinatorics of C \E is illustrated in Figure 6.

4:5

8 1

2 1 8 7

q1

p2

q22

7
4:5

Figure 6: Combinatorics of the intersection of the spinal sphere @1C with
the solid torus U : the interior of this intersection has two components, one is
a topological triangle with vertices p2 , q1 and q2 .

The picture suggests a natural way to choose an explicit parametrized triangle T , with
vertices p2 , q1 and q2 (and sides on the appropriate bisector intersections, as indicated
by labels in Figure 6).

Propositions 6.2 and 6.3 give a precise definition of T (their proof is quite computational,
so we will give them in Sections A.4–A.7).

Proposition 6.2 (1) @1.B4\B5/ is a topological circle containing q1 , q2 and p4 .
We denote by �0 the arc from q1 to q2 not going through p4 .

(2) @1.C \B7/ is a topological circle containing q2 and p2 , and only one of the
two arcs of that circle from q2 to p2 is entirely contained in U ; we write �1 for
that arc.

(3) @1.C \B2/ is a topological circle containing q1 and p2 , and only one of the
two arcs of that circle from p2 to q1 is entirely contained in U ; we write �2 for
that arc.

(4) The curve � obtained by concatenating the arcs �0 , �1 then �2 from items (1),
(2) and (3) is an embedded topological circle in @1C .
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Item (1) is obvious, since B4\B5 is a Giraud disk, and we know which vertices lie on
it (see Section 4.3). Items (2) and (3) follow from each other by symmetry, we will
only justify (3). The latter is made plausible by Figure 7, which can be obtained using
the parametrizations explained in Section 2.3.

0:15

0:10

0:5

0

�0:05

�0:14 �0:10 �0:06 �0:02 0 0:02 0:04

1 8

4:5

q1

3

p2

7 7

Figure 7: Combinatorics of the intersection of C \B2\E

Proposition 6.3 The curve � defined in Proposition 6.2 bounds a unique triangle T

in @1C that is properly embedded in U . Moreover, T and G2
2
T are disjoint.

An important consequence of Proposition 6.3 is the following.

Corollary 6.4 U is an embedded solid torus in @1H 2
C .

Proof The triangles T and G2
2
.T / split U into two balls (they are indeed balls

because they are bounded by topological embedded 2–spheres), glued along two
disjoint disks. From this it follows that U is a solid torus.

To get a simple fundamental domain, we will modify the meridian of Proposition 6.3
slightly.
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Proposition 6.5 The side �1 (resp. �2 ) of T is isotopic in the boundary to the arc of
C–circle joining these two points on the face b7 (resp. b2 ). Moreover, this isotopy
can be performed so that the corresponding sides of the triangle G2.T / intersect the
boundary of T precisely in q2 .

Proof The combinatorics of the face b2 are combinatorially the same as Figure 2,
but the pinch points are p1 and q4 , and the other two vertices are p2 and q1 (see
Figure 4). Since �2 is contained in the face b2 and contains no other vertex than q1

and p2 , it remains in the interior of the quadrilateral component of b2 . In that disk
component, any two paths from q1 to p2 are isotopic, hence all of them are isotopic
to the path that follows the (appropriate) arc of the C–circle between these two points.

The argument for �1 is similar. The fact that the isotopies for T and G2.T / are
compatible (in the sense that one can keep their sides disjoint throughout the isotopy)
is obvious from the description of the combinatorics of @U ; see Figure 8.

p2 p1 p4

q1 q2 q3

p3 p2 p1

2
3

4

4
5

6

5
6

7

7
8

1

Figure 8: Isotopy of part of the boundary of T and G2.T / towards an arc of
a C–circle

The upshot of the above discussion is that we have a convenient choice of a meridian
for the solid torus U , given by the concatenation of the following three arcs:
� The arc of C–circle from p2 to q1 which is the boundary of a slice of the

face b2 (only one such arc is contained in the Dirichlet domain).
� The arc of the boundary of the Giraud disk given by the intersection of the two

bisectors B4 and B5 , from q1 to q2 (there are two arcs on the boundary of this
Giraud disk, we choose the one that does not contain p4 ).

� The arc of C–circle from q2 to p2 which is the boundary of a slice of the
bisector B7 (only one such arc is contained in the Dirichlet domain).

We denote this curve by � .
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Proposition 6.6 The curve � bounds a topological triangle zT which is properly
contained in U . This triangle can be chosen so that zT \G2

zT consists of a single point,
namely q2 .

Proof This follows from the properties of T and the isotopy of Proposition 6.5.

7 The manifold at infinity

The results from Section 6 give a simple fundamental domain for the action of � in
the domain of discontinuity. For ease of notation, we denote zT simply by T . See
Section 6 for how to obtain this modified meridian for the solid torus U ; recall that U

is by definition the boundary at infinity @1E of the Dirichlet domain E .

Definition 7.1 Let D be obtained from the portion of U that is between T and G2.T /.

By construction, this region has ten faces, eight coming from the faces of the Dirichlet
domain, and two given by T and G2.T /. For each k D 1; : : : ; 8, we denote by

fk DD\ bk

the portion of bk that is inside D .

p1

q3

q2

q1

p2

Figure 9: A Heisenberg view of the 1–skeleton of the fundamental domain D

By construction, D [G2D [G2
2
D [G�1

2
D is equal to the solid torus U D @1E .

Since we have proved that E tiles H 2
C , U tiles @1H 2

C (in the sense that either U
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and U coincide or U \U has empty interior). A Heisenberg view of the 1–skeleton
of D is illustrated in Figure 9, and a more combinatorial one, which we will use later,
is given in Figure 10.

The pictures we get are not quite the same as Figure 1 (which is the one that usually
appears in the literature on the figure-eight knot), but they are obtained from it by
taking the mirror image.

Note however that both oriented manifolds given by the usual or the opposite ori-
entation of the figure-eight knot complement admit a uniformizable spherical CR
structure. Indeed, one can precompose the developing map by an orientation-reversing
automorphism of the figure-eight knot (hence the holonomy gets precomposed by the
corresponding automorphism of the fundamental group); see also Section 9.

p1

q3

q2

q1

p2

G2T
4

3

7 T

1 2

8

Figure 10: The quotient manifold is homeomorphic to a ball with identifica-
tions on the boundary (one glues pairs of faces with matching arrows).

Setting V D fp1; : : : ;p4; q1; : : : ; q4g, we also have that U 0 D U nV tiles the set of
discontinuity � (indeed, it follows from the Poincaré polyhedron theorem that the
only fixed points of parabolic elements in the group are conjugate to either p1 or q1 ;
see Section 5). We analyze the quotient of � using the side pairings, which are given
either by the action of G2 or by the side pairings coming from the Dirichlet domain.

There are four side pairings, given in Table 3, three coming from the Dirichlet domain,
and one given by G2 .
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f4

G1
�! f1

p1; q2; q1 7�! p1; q3;p2

f2

G3
��! f7

p1;p2; q1 7�! q3;p2; q2

f3

G3G1
����! f8

p1; q1 7����! q3;p2

T
G2
��!G2T

p2; q1; q2 7�! p1; q2; q3

Table 3: The four side pairings, with their action on vertices: we denote
by fk the part of @1bk that is contained in D .

Proposition 7.2 The maps G1 , G2 , G3 and G3G1 give side pairings of the faces
of D , and map the vertices according to Table 3.

Proof The claim about G2 holds by construction (see also Proposition 4.4). The ones
about the other side pairings come from the Dirichlet domain (where an element 
maps the face associated to �1 to the face associated to  ); see Section 5.1.

The claims about G3G1 follow from the previous ones, since

G3G1.p1/DG3.p1/D q3; G3G1.q1/DG3.p2/D p2:

This completes the proof.

We give a simple cut and paste procedure that allows us to identify the quotient as the
figure-eight knot complement, and this will conclude the proof of Theorem 1.1.

The procedure is illustrated in Figure 11. We slice off a ball bounded by f7 , f8 as well
as a triangle contained in the interior of D , and move it in order to glue it to face f2

according to the side pairing given by G�1
3

. Now we group faces f1 and f8 on the
one hand, and faces f4 and f3 on the other hand, and observe that their side pairings
agree to give the identifications on the last domain in Figure 11. This is the same as
Figure 1 (with the orientation reversed).

8 Relationship between �2 and �3

The goal of this section is to show that the groups �2 and �3 are conjugate subgroups
of PU .2; 1/.

We write
G1 D �2.g1/; G2 D �2.g2/; G3 D �2.g3/;

A1 D �3.g1/; A2 D �3.g2/; A3 D �3.g3/:
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p1

q3

q2

q1

p2

G2T 4
3

T

1 2
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8

p1

q3

q2

q1

p2

G2T
4

3

T

1 8

p1

q3

q2

q1

p2

G2T

T

Figure 11: Cut and paste instructions for recovering the usual two-tetrahedra
decomposition of the figure-eight knot complement

One can easily check that A1A�1
3

is a regular elliptic element of order 4, hence it is
tempting to take its isolated fixed point as the center of a Dirichlet domain for �3 (just
like we did for �2 , using the fixed point of G2 ).

In fact it is easy to see that the corresponding Dirichlet domain is isometric to that
of �2 , and to deduce a presentation for �3 , say in terms of the generators M DA1A�1

3

and N DA1 :
hM;N jM 4; .MN /3; .MNM /3i:

With a little effort, these observations also produce an explicit conjugacy relation
between both groups. Denote by P the following matrix:

P D

2664
1 0 0

�3�i
p

7
4

�5Ci
p

7
4

0

�1Ci
p

7
2

�1Ci
p

7
2

2

3775
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Then one easily checks (most comfortably with symbolic computation software!) that

P�1A1P DG�1
1 G3G1;

P�1A3P DG3:

Note that the above two matrices generate �2 . We will explain the precise relationship
between the two representations �2 and �3 in Section 9.

9 Action of Out.�1.M //

The main goal of this section is to explain the relationship between the two representa-
tions �2 and �3 , which turn out to differ by precomposition with an outer automorphism
of �1.M /. This is contained in the statement of Proposition 9.2, where we analyze
the action of the whole outer automorphism group of �1.M /.

We start by describing the outer automorphism group of �1.M / in terms of explicit
generators (it is well known that this group is a dihedral group D4 of order 8). In
fact, Out.�1.M // can be visualized purely topologically in a suitable projection of
the figure-eight knot, for instance the one given in Figure 12.

x1

x2

x3

x4

Figure 12: A symmetric diagram for the figure-eight knot: there are three
planes of symmetry, one being the plane containing the projection.

The Wirtinger presentation (see Rolfsen [16] for instance) is given by

hx1; : : : ;x4 j x4x1 D x3x4; x2x3 D x3x1; x3x2 D x2x4; x2x1 D x1x4i:

We eliminate x2 , then x3 using

(10) x2 D x1x4x�1
1 ; x3 D x2x4x�1

2 ;
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and get
hx1;x4 j x4Œx

�1
1 ;x4�D Œx

�1
1 ;x4�x1i:

It will be useful to observe that with this presentation, we can express

x3 D x1x4Œx
�1
1 ;x4�x

�1
1 D x1Œx

�1
1 ;x4�D x4x1x�1

4 :

Of course the above presentation is the same as the one given in Section 3 if we set

x1 D g�1
3 ; x4 D g�1

1 :

Using the Wirtinger presentation and an isotopy between the figure-eight knot and
its mirror image, for instance as suggested in Figure 13, one can check that the
automorphisms described in Table 4 generate Out.�1.M //.

x1

x2

x3

x4

x1

x3

x4

x1

x3

x3

x4

x1

Figure 13: An isotopy from the figure-eight knot to its mirror image

Note that � and � correspond to orientation-preserving diffeomorphisms (and they
generate a group of order 4), whereas � reverses the orientation.
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� W

�
g1 7! g3;

g3 7! g1;
� W

�
g1 7! g�1

1
;

g3 7! g�1
3
;

� W

�
g1 7! g�1

1
g3g1;

g3 7! g3:

Table 4: The three automorphisms � , � , � generate Out.�1.M // .

In what follows, for two representations � and �0 , we write � � �0 when the two
representations are conjugate. We start with a very basic observation, valid for any
unitary representation (not necessarily with Lorentz signature).

Proposition 9.1 Let �W �1.M /!U .2; 1/. Then � ı �� x�T .

Proof For any element A of U .2; 1/,

xA T JAD J;

hence A�1 D J�1 xA T J is conjugate to xA T .

The precise relationship between �2 and �3 is as follows (we only give the action of
Out.�1.M // on �2 , since the action on �3 can easily be deduced from it).

Proposition 9.2 Let ' 2 Out.�1.M //. Then:

� �2 ı' � �2 if and only if ' is trivial or ' D ��.

� �2 ı' � x�2 if and only if ' D � or �.

� �2 ı' � �3 if and only if ' D � or �� .

� �2 ı' � x�3 if and only if ' D ��� or �� .

Proof The fact that �2ı����2 follows from the fact that IG1IDG�1
3

, IG3IDG�1
1

(see Section 4.1).

One easily checks that

(11) GT
1 DG�1

3 ; GT
3 DG�1

1 :

The pair G�1
1
;G�1

3
is conjugate to xGT

1
; xGT

3
(because the matrices preserve J ), which is

conjugate to xG�1
3
; xG�1

1
(by (11)), which is conjugate to xG1; xG3 (by conjugation by

I ). This shows that �2 ı �� x�2 .

All that is left to prove is that �2 ı � � �3 , and this was proved in Section 8.

Geometry & Topology, Volume 19 (2015)



278 Martin Deraux and Elisha Falbel

Appendix: Sample calculations

In this section we detail some of the computations that were mentioned in previous sec-
tions of the paper (the general computational strategy, and the geometric preliminaries
are explained in Section 2.3). Throughout the appendix, we denote by yBj the extor in
projective space extending Bj (see [10] for a definition and many properties of extors),
and by xBj the closure of Bj in xH 2

C . In other words, xBj DBj [@1Bj . More generally,
yO denotes the extension to projective space of O , and xO denotes its closure in xH 2

C .

A.1 Pairs of bounding bisectors: Proof of Lemma 4.6

The center of the Dirichlet domain is given by

p0 D

�
1;�

3Ci
p

7

4
;�1

�
:

Its relevant orbit points are given by

r1DG1p0D

�
3Ci
p

7

4
;
1�i
p

7

4
;�1

�
; r2DG�1

3 p0D

�
1;

1�i
p

7

4
;
�3�i

p
7

4

�
;

r3DG2r1D

�
2;
�1�i

p
7

2
;
�3�i

p
7

4

�
; r4DG2r2D

�
9�i
p

7

4
;
�7�i

p
7

4
;�1

�
;

r5DG2
2r1D

�
9�i
p

7

4
;
�5�i

p
7

2
;�2

�
; r6DG2

2r2D

�
2;
�5�i

p
7

2
;
�9Ci

p
7

4

�
;

r7DG�1
2 r1D

�
1;
�7�i

p
7

4
;
�9Ci

p
7

4

�
; r8DG�1

2 r2D

�
3Ci
p

7

4
;
�1�i

p
7

2
;�2

�
:

The Giraud torus yBj \ xBk can be parametrized by using the techniques of Section 2.3.
In order to show that B1\B2 is a disk, it is enough to exhibit a single point inside it,
for instance

(1) X12 D .p0� r1/� .p0� r2/D
�

1Ci
p

7

4
;
3� i
p

7

8
;�

1C i
p

7

4

�
does the job, since hX12;X12i D �

3
4

. Similarly, B1\B3 is a disk, because

X13 D .p0� r1/� .p0� r3/D
�

5Ci
p

7

8
;

3�i
p

7

8
;�

1Ci
p

7

4

�
satisfies hX13;X13i D �

1
2

.

In order to show that B1 \ B5 is empty, we parametrize the Giraud torus xB1 \ xB5

by vectors of the form .xz1p0 � r1/ � .xz2p0 � r5/; so that V .z1; z2/ is given by
v0C z1v1C z2v2 , where

v0 D

�
9�3i

p
7

8
;

3C3i
p

7

4
; 3
�
; v1 D v2 D

�
3�i
p

7

8
;�

1Ci
p

7

4
;�1

�
I
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see (3). We then write out

hV .z1; z2/;V .z1; z2/i D Re.�.z1/z2/� �.z1/;

where
�.z1/D

5
2
.xz1� 3/; �.z1/D�

55
4
C

15
2

Re.z1/:

It is easy to verify that �2�j�j2 is always positive for jz1j D 1, for instance by writing
z1 D xC iy , and computing

�.z1/
2
� j�j2 D 225.2x� 3/2=16:

Note that in order to get the previous formula, we have used the fact that jz1j
2 D

x2Cy2 D 1.

A.2 Proof of Lemma 4.7

We first treat the proof of part (1) of Lemma 4.7; even though, strictly speaking, it will
not be needed in the proof, we strongly suggest that the reader keep Figure 3 in mind.
We work only with B1\B7 , since B1\B3 can be deduced from it by symmetry.

The Giraud torus yB1\ yB7 can be parametrized by vectors of the form .xz1p0� r1/�
.xz2p0� r7/, with jz1j D jz2j D 1. In other words, we normalize it to be the Clifford
torus.

Explicitly, this can be written as V .z1; z2/D v0C z1v1C z2v2 , where

v0 D

�
9�3i

p
7

8
;
�9C3i

p
7

8
;
15C3i

p
7

8

�
;

v1 D

�
�1;

5Ci
p

7

4
;
3�i
p

7

8

�
;

v2 D

�
�3Ci

p
7

8
;
�1�i

p
7

4
;�1

�
:

The Giraud disk inside the Clifford torus is described by imposing that the above vector
V D V .z1; z2/ be negative, ie hV;V i< 0 which can be written as

(2) Re
�
7C
�15� 3i

p
7

4
z1C

�15C 3i
p

7

4
z2C

i
p

7

2
z1xz2

�
< 0:

The equations of the intersection with yBj , j D 1; : : : ; 8 are given by

(3) jhV .z1; z2/;p0ij
2
D jhV .z1; z2/; rj ij

2;

and we write them in simplified form in Table 5 (by simplified, we mean that we use
jz1j D jz2j D 1).

Proposition A.1 For j D 3; 4 and 5, Bj does not intersect B1\B7 .
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B1 0

B2 Re
�
�43C .�12C 12i

p
7/z1C .33� 3i

p
7/z2C .9� 5i

p
7/z1xz2

�
=8

B3 Re
�
�81C 54z2

�
=8

B4 Re
�
�151C .60C 12i

p
7/z1C .60� 12i

p
7/z2� .9C 5i

p
7/z1xz2

�
=8

B5 Re
�
�81C 54z1

�
=8

B6 Re
�
�43C .33C 3i

p
7/z1� .12C 12i

p
7/z2C .9� 5i

p
7/z1xz2

�
=8

B7 0

B8 Re
�
�16C .15C 3i

p
7/z1C .15� 3i

p
7/z2� .9C 5i

p
7/z1xz2

�
=8

Table 5: The equations of the intersection of each yBj with the Giraud torus
yB1\ yB7 (the Giraud torus is given by the Clifford torus jz1j D jz2j D 1)

Proof This was already proved for yB3 and yB5 , since we proved Lemma 4.6 in
Section A.1 (is says that B1\B3 and B1\B5 are empty). Alternatively, this can also
be recovered from the equations given in Table 5. For instance, the equation

�81C 27.z2Cxz2/D 0

has only one solution given by z2 D
3
2

, which is not on the unit circle.

We claim that the intersection with yB4 is empty as well. One way to see this is to write
the equation in the form

Re.�.z1/z2/D �.z1/;

which has a solution z2 with jz2j D 1 if and only if j�.z1/j � j�.z1/j.

In the case at hand,

�.z1/D
15�3i

p
7

2
C
�9C5i

p
7

8
xz1; �.z1/D

151

8
�Re

�
15C3i

p
7

2
z1

�
:

One computes

�2
� j�j2 D 18193=64� 2025x=8C 405

p
7y=8� 42xy

p
7=2C .209x2

C 47y2/=4;

where we have written z1 D xC iy . It is now standard 2–variable calculus to prove
that this function is strictly positive on the unit disk.

The extors yB2 , yB6 and yB8 have 1–dimensional intersection with the Giraud torus
yB1\ yB7 . For the general description of their (piecewise) parametrization by one spinal
coordinate; see Section 2.3. We make explicit the parametrization for yB8 , since this
will be needed in later calculations.

The equation for the trace on the Clifford torus of yB8 can be written as

Re.�.z1/z2/D �.z1/;
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where

�.z1/D
15�3i

p
7

8
C
�9C5i

p
7

8
xz1; �.z1/D 2�Re

�
15C3i

p
7

8
z1

�
:

Endpoints of the set of valid parameters are solutions of j�j2 D �2 , which is a real
expression involving z1 , xz1 . Writing z1 D xC iy , we can write �2� j�j2 D h.x;y/,
where

h.x;y/D�1=2� 45xy
p

7=32� .31x2
C 193y2/=64:

The endpoints of the parametrization are solutions of h.x;y/D 0 that satisfy x2C

y2 D 1. The corresponding system has two solutions given by z1 D x C iy D

˙.5� i
p

7/=4
p

2, which have arg.z1/=.2�/ approximately equal to �0:07745991

and 0:42254009 (compare with the abscissas of the double points in Figure 14).

Between these two values of the arguments, the sign of the discriminant �2 � j�j2

does not change, and it can easily be checked that it is in fact nonpositive everywhere.
In other words, the formulae given in (7) parameterize the entire trace of yB8 on the
Clifford torus. The corresponding curve is depicted in Figure 14 (the figure is given
only as a guide, it is not needed in the proof).

0:4

0:2

0

0:2

0:4

�0:4 �0:2 0 �0:2 0:4

Figure 14: The trace of B8 on the Giraud torus B1\B7 , in terms of the log
of the spinal coordinates (the bold oval is the boundary at infinity of the
Giraud disk)

Note that the curve seems to contain a straight line of slope one. This is indeed the
case, and it corresponds to a curve of the form z2 D �z1 , for some complex number �
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with j� j D 1. This straight line is actually contained in a complex slice of the third
bisector in Giraud’s theorem, namely B.r1; r7/. Using the explicit form of the equation,
plugging z2 D �z1 , one finds a unique value of � such that the equation becomes
trivial, namely

(4) � D�.9C 5i
p

7/=16:

It is easy to see that this curve lies entirely outside complex hyperbolic space. In fact
substituting z2D �z1 in (2) (and using jz1j D 1) yields a constant, namely 189

32
, which

is positive.

Proposition A.2 For j D 2, 6 and 8, Bj does not intersect D D B1 \B7 . In terms
of their closures in xH 2

C , we have the following:

� xB2\
xD D fp2g, which is the fixed point of G3 .

� xB6\
xD D fq3g, which is the fixed point of G1G�1

2
.

� xB8\
xD D fp2; q3g.

Moreover, (the extensions to projective space of) the curves yBj \ yB1\ yB7 , j D 2; 6; 8

are tangent to @1D at every intersection point.

Proof For j D 6 and 7, this follows from Propositions 4.4 and 2.3 (since B1 , B6 ,
resp. B2 , B7 , have tangent spinal spheres).

The statement about j D 8 is a bit more difficult. We work in the Giraud torus
normalized as the Clifford torus, which we write as yD . We prove that the curves
defined on yD by the equations for yB2 and yB8 are tangent at p2 (a similar argument
shows that the curves defined yB6 and yB8 are tangent at q3 ).

Recall that p2D .0; 0; 1/, which we now need to write in the spinal coordinates .z1; z2/

for yD . This is done by solving hp2;xz1p0� r1i D 0 for z1 , and hp2;xz2p0� r2i D 0

for z2 . Explicit calculation shows p2 is given in spinal coordinates by

.z1; z2/D
�

3�i
p

7

4
; 1
�
:

All equations in Table 5 have the form f D 0, where

f .z1; z2/D 2 Re.a0C a1z1C a2z2C a12z1xz2/:

Since we are interested in the solution set only on the Clifford torus, we write z1D eit1

and z2 D eit2 for real tj . The gradient of f , seen as a function of .t1; t2/, is then
given by

@f

@t1
D�2 Im.a2z2Cxa12xz1z2/;

@f

@t2
D�2 Im.a2z2Cxa12xz1z2/:
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This gives

rf2

�
3�i
p

7

4
; 1
�
D

�
�

3
p

7

4
;�

3
p

7

8

�
; rf8

�
3�i
p

7

4
; 1
�
D

�
3
p

7

8
;
3
p

7

16

�
;

where fj denotes the equation of Bj \
yD ; see Table 5. This shows the needed tangency.

It follows from Proposition 2.3 that yB2 \
yD is tangent to @1D at p2 . From the

previous computation, we see that yB2\
yD is also tangent to @1D at p2 .

We now argue that yB8\
yDD fp2; q3g. Even though this is quite clear from the picture

of the parametrized curve, we give a computational argument that does not rely on
visual aids.

We have explicit equations for @1D and yB8 , namely (2) (with the inequality replaced
by an equality) and (3). Writing out zj D xj C iyj for real xj ;yj , the intersection
@1D\ yB8 is described by the solutions of the system8̂̂̂̂
<̂
ˆ̂̂:

15.x1Cx2/C 3
p

7.y2�y1/C 2
p

7.x2y1�y2x1/D 28;

15.x1Cx2/C 3
p

7.y2�y1/� 9.x1x2Cy1y2/C 5
p

7.x2y1�y2x1/D 16;

x2
1
Cy2

1
D 1;

x2
2
Cy2

2
D 1:

One checks that this has exactly two solutions, given by .z1; z2/D .1; .3C i
p

7=4//

(this corresponds to q3 ) and .z1; z2/D ..3� i
p

7=4/; 1/ (this corresponds to p2 ).

Recall that yD\ yB8 contains a diagonal component, given by z2D �z1 with � as in (4).
Recall that yD\ yB8 has two double points, which were computed on page 281. Away
from these two endpoints, for a given z1 2 S1 , there is precisely one point .z1; z2/ in
yD\ yB8 that is not in the diagonal component. The closure of that component (obtained

by adding the two double points), gives an embedded topological circle in yD . Since
its only contact points with @1D are the two tangency points, we know this circle lies
entirely outside D .

This finishes the proof of part (1) of Lemma 4.7. Part (2) is very similar; by symmetry,
it is enough to consider B1\B2 .

As in the case of B2\B7 , one finds all the intersections of the Giraud torus xB1\ xB2

with every xBk (k ¤ 1; 2), and checks that the only ones are given by p1 , p2 and q4 .
This shows that B1\B2\E is either empty or all of B1\B2 . One shows that it is a
disk simply by finding one point in it, for instance the point in (1) is easily seen to be
inside E by computing six inequalities.

This finishes the proof of Lemma 4.7, hence also of part (1) of Proposition 4.5. Part (2)
will be proved in Section A.3.
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A.3 Spinal sphere of B1 : Proof of Proposition 4.5(2)

In this section, we justify Proposition 4.5(2); in other words, we justify the picture
given in Figure 2.

We start by giving explicit coordinates on B1 D B.p0;G1p0/. We choose coordinates
for H 2

C , seen as the unit ball B2 � C2 , where the midpoint of the segment Œp0; r1�

is taken to be at the origin of the ball (as in Section A.1, we write r1 D G1p0 ).
Since hp0; r1i is real (and hp0;p0i D hr1; r1i), the midpoint is given by p0C r1 , and
an orthogonal vector spanning the complex spine is given by p0� r1 .

We normalize these vectors to have unit norm, so we take

v0 D
p0Cr1p

5
D

�
7Ci
p

7

4
p

5
;
�1�i

p
7

2
p

5
;�

2
p

5

�
;

v1 D p0� r1 D

�
1�i
p

7

4
;�1; 0

�
;

v2 D

�
�3Ci

p
7

4
p

5
;�

1Ci
p

7

2
p

5
;�

2
p

5

�
:

The last vector is chosen so that v0; v1; v2 is a standard Lorentz basis, ie if P denotes
the corresponding base change matrix, then

P�JP D

0@�1 0 0

0 1 0

0 0 1

1A :
We now work in C2 , with affine coordinates u1 D z1=z0 , u2 D z2=z0 , where the zj

denote coordinates in the basis v0; v1; v2 ; the complex hyperbolic plane H 2
C is then

simply given by the unit ball ju1j
2Cju2j

2 < 1.

The ball coordinates for p0 and r1 are given by .˙1=
p

5; 0/, and the bisector B1 has
a very simple equation, namely

Re.u1/D 0;

so the bisector can simply be thought of as the unit ball in R3 , when using coordinates
.t1; t2; t3/ for a point in B2 of the form

.i t3; t1C i t2/:

Here we have chosen the real spine of B1 to be given by the last coordinate axis.

The equation of the intersection of a bisector Bj DB.p0; rj / for some j > 1 is obtained
simply by writing rj in the new basis. In fact the equation has the form

(5) jhZ;P�1p0ij
2
D jhZ;P�1rj ij

2;
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where one takes Z D .1; i t3; t1C i t2/.

We write gj for the equation of yB2\ @1B1 in the coordinates tj for @1B1 described
above. According to previous discussions (see Section 4.3), we only need to consider
the bisectors yB2 and yB8 . The affine coordinates of r2 and r8 are given by�

0;
�9C5i

p
7

24

�
;

�
0;

2

3

�
;

respectively.

We consider the intersection of yBj with @1B1 , the latter being given by the unit sphere
t2
1
C t2

2
C t2

3
D 1. Computationally, we take the resultant hj of gj and t2

1
C t2

2
C t2

3
�1

with respect to t3 . For j D 2 and 8 we get

h2.t1; t2/D
21
20

˚�
t1C

9
14

�2
C
�
t2�

5

2
p

7

�2
�

50
49

	
; h8.t1; t2/D

21
20

˚�
t1�

8
7

�2
�t2

2�
50
49

	
:

The equations h2 D 0 and h8 D 0 define two cylinders in R3 , that project to a pair of
tangent circles. The point of tangency of the projections is given by .1=4; 5

p
7=28/,

as illustrated in Figure 15.
1:5

1

0:5

0

�0:5

�1
�1:5 �1 �0:5 0 0:5 1 1:5

Figure 15: When B1 is normalized to be the unit ball with real spine given
by the t3 –axis, B1\B2 and B1\B8 project to circles in the .t1; t2/–plane.

The inequalities defining the Dirichlet domain correspond to gj being negative. In
particular, points in the interior of the Dirichlet domain are the points in the unit ball
that project outside both these circles.

It follows from the analysis in Section 4.3 and the results in Section A.2 that @1b1 is
bounded only by the two curves corresponding to the intersections with B2 and B8

(both of these curves are traces on the @1H 2
C of Giraud disks). This finishes the proof

of Proposition 4.5.
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A.4 The intersection C \B2 is a disk

In this section we consider C \ B2 , where C D B.G�1
1

p0;G
�1
2

G3p0/ D B.r4; r5/.
We will show that it is a disk.

Note that these the bisectors C and B2 do not share any complex slice, ie their extended
real spines do not intersect. This amounts to saying that the circles xz1r4� r5 , jz1j D 1

and xz1p0� r2 , jz2j D 1 do not intersect.

One way to see this is to compute the intersection of their extended complex spine,
which can be represented by

s D .�3
p

7� 5i; 4
p

7C 10i; 4
p

7/;

and to note that this vector satisfies hs; si D 44 > 0. This point is on the real spine
of C if and only if there exists a z1 2 S1 such that hs;xz1r4� r5i D 0. The latter can
only happen if z1 D .9C 15i

p
7/=46, but this does not have modulus one. Similarly

one checks that s is not on the real spine of B2 .

Now the intersection C \B2 can be parametrized by vectors of the form .xz1r4� r5/�
.xz2p0� r2/. Such vectors have negative norm if and only if

(6) Re.�.z1/z2/ < �.z1/;

where

�.z1/D
�39� 3i

p
7C .9C 3i

p
7/z1C 18xz1

4
; �.z1/D�15C

Re..24C 3i
p

7/z1/

2
:

In order to analyze the number of connected components of the intersection, we search
for values of z1 where the discriminant vanishes. Writing z1DxCiy , the discriminant
�.z1/

2� j�.z1/j
2 becomes

ı.x;y/D 1
8
.1413� 1764xC 216

p
7yC 351.x2

�y2/� 180
p

7xy/:

The system ı.x;y/ D x2 C y2 � 1 D 0 has exactly two solutions, one given by
.x;y/D .1; 0/, and the other one given by the single real root of each of the polynomials
2221x3 � 7103x2 C 7411x � 2473, 392

p
7C 2268y C 1024

p
7y2 C 2221y2 . An

approximate value of .x;y/ is .0:70552301;�0:70868701/.

In fact only the number of solutions interests us; z1 D e2�it1 give nontrivial intervals
of values of z2 when tmin

1
< t1 < 0, where tmin

1
D�0:12535607 : : :. For each such z1 ,

there is only an interval of values of z2 satisfying (6), hence C \B2 is a disk.
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A.5 Proof of Proposition 6.2(3)

We consider the segment �2 , which corresponds to the bottom segment from q1 to p2

shown on Figure 7. We prove that it is contained in the (boundary at infinity of the)
Dirichlet domain; this will prove Proposition 6.2, since one easily shows that the top
arc of Figure 7 is not contained in U , simply by picking one point just above p2 .

It is enough to find all intersection points of C \B2\Bj for j ¤ 2, and to show that
none of them is in (the interior of) the bottom segment; note that, in our coordinates,
the bottom segment is characterized by the fact that arg.z2/ < 0.

The (finite) list of points in C \B2\Bj can be obtained by using Groebner bases. For
instance, for j D 1, the intersection points are given by the solutions of the system8̂̂̂̂
<̂̂
ˆ̂̂̂:

�
99
8
�

3
p

7
2

y1C
21
2

x1�
3
2
x1C

15
p

7
8
.x1y2Cy1x2/C

27
8
.x1x2�y1y2/D0;

15� 12x1C
3
p

7
2

y1�
39
4

x2C
3
p

7
4

y2C
27
4

x1x2C
9
4
y1y2�

3
p

7
4
.x1y2Cx2y1/D0;

x2
1
Cy2

1
D1;

x2
1
Cy2

2
D1;

where we have split z1 D x1C iy1 and z2 D x2C iy2 into their real and imaginary
parts. This system has precisely two solutions, one given by .z1; z2/D .1; 0/, and the
other one by

arg.z1/=.2�/��0:06508170; arg.z2/=.2�/� 0:13166662:

For j D 3, the result follows from direct calculations in a similar vein (using Groebner
bases in order to solve the system). The intersection of B3 is tangent to @1.C \B2/,
so one gets a single intersection point, corresponding to q1 .

For j D 5 or 7, no computation is needed; we already know that B2\B5 D fq1g and
B2 \B7 D fp2g, since the corresponding bisectors have tangent spinal spheres (see
Section 4).

Remark A.3 The intersections C\B2\Bj can also be handled by using coequidistant
pairs of bisectors, by writing the equation of the trace of C on B2\Bj .

A.6 Proof of Proposition 6.2(4)

In this section, we prove that the curve � from Proposition 6.2 is an embedded topo-
logical circle in @1C . We also give explicit parametrizations of its sides �0 , �1 , �2 ,
which are used to draw the pictures in Section A.7.
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We start by parametrizing @1C ; we choose coordinates for H 2
C (seen as the unit

ball B2 ) where the midpoint of Œr4; r5� is at the origin (such a normalization was
already discussed in Section A.3). A possible base change matrix is given by

(7) P D

0BBB@
9�i
p

7

2
p

5
0 �17C3i

p
7

4
p

5

�17�3i
p

7

4
p

5

3Ci
p

7
4

9Ci
p

7

2
p

5

�
3p
5

1 2p
5

1CCCA :
As in Section A.3, we parametrize the spinal sphere @1C as the unit sphere in R3

with coordinates tj 2 R, where .t1; t2; t3/ corresponds to .1; i t3; t1C i t2/: In these
coordinates, the equations for the intersection of the yBj with @1C are then computed
explicitly to be those in Table 6 (we obtain them by simplifying (5), using the equation
t2
1
C t2

2
C t2

3
D 1).

The vertices of the triangle T are given in Table 7.

B1 �69=10� 6t2t3=
p

5C 66t1=5� 123.t2
1
C t2

2
/=20

B2 �24=5� 39t2t3=8
p

5C 261t1=40C 3
p

7t2=8� 3t3
p

7=
p

5

� 9.t2
1 C t2

2 /=5C 21t1t3
p

7=8
p

5

B3 �21=10� 33t2t3=8
p

5C 27t1=40� 3
p

7t2=8� 3t3
p

7=2
p

5

C 9.t2
1 C t2

2 /=10C 3t1t3
p

7=8
p

5

B4 3=10� 12t1=5C 21.t2
1
C t2

2
/=20

B5 3=10� 12t1=5C 21.t2
1
C t2

2
/=20

B6 �21=10C 33t2t3=8
p

5C 27t1=40� 3
p

7t2=8C 3t3
p

7=2
p

5

C 9.t2
1 C t2

2 /=10� 3t1t3
p

7=8
p

5

B7 �24=5C 39t2t3=8
p

5C 261t1=40C 3
p

7t2=8C 3t3
p

7=
p

5

� 9.t2
1 C t2

2 /=5� 21t1t3
p

7=8
p

5

B8 �69=10C 6t2t3=
p

5C 66t1=5� 123.t2
1
C t2

2
/=20

Table 6: The equations of yBj in @1C , for j D 1; : : : ; 8

The claims in the last column of the table follow from the results in Section 4.3, but
they can also be checked directly from their t –coordinates and the explicit expressions
for fj ; see Table 6.
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Vertex .t1; t2; t3/ j such that fj D 0

p2

�
87
88
; 5
p

7
88
; 0
�

1, 2, 7, 8

q1

�
1
4
; 5
p

7
28
;�

q
5
7

�
2, 3, 4, 5

q2

�
1
4
; 5
p

7
28
;

q
5
7

�
4, 5, 6, 7

Table 7: Coordinates for vertices of T in @1C

From the equations for yB2 , yB4 and yB7 , one deduces explicit parametrizations for the
three sides of T . For yB4 (and yB5 ), we get

(8)
�

1

16
.9� 7t2

3 /;
1

16

q
175� 130t2

3
� 49t4

3
; t3

�
;

for t3 between �
p

5=7 and
p

5=7. This gives a parametrization for �0 .

Here and in what follows, we write fj , j D 1; : : : ; 8 for the equation for yBj \C1
given in Table 6. The parametrization for yB2 can be obtained by writing out the
resultant of f2 and t2

1
C t2

2
C t2

3
�1 with respect to t1 , which has degree 2 in t2 . Using

the quadratic formula, we get

t2 D �.t3/D
b.t3/� .245t3C 87

p
5
p

7/
p

d.t/=35

a.t3/
;

where

a.t/D 968C 136
p

5
p

7t3C 320t2
3 ;

b.t/D�39
p

5t3
3 C 80

p
7t2

3 C 108
p

5t3� 55
p

7;

d.t/D�.1715t4
3 C 385

p
5
p

7t3
3 C 1750t2

3 C 175
p

5
p

7t3/:

One then takes
t1 D

q
1��.t3/2� t2

3
;

and one checks that this parametrization is well defined for t3 in the interval Œ�
p

5=7;0�,
which corresponds to the arc between q1 and p2 of the triangle T . This gives a
parametrization for �2 .

We give the above explicit formulas mainly because there are two solutions to the
quadratic equation, so we need to select one. The parametrization for yB7 is obtained
from the one for yB2 simply by changing t3 into �t3 . The latter property and the fact
that the two paths on yB2 and yB7 are parametrized by t3 implies that these arc only
intersect along t3 D 0, which corresponds to their common endpoint p2 .
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In order to prove that � is embedded, it is enough to check that the image of �0

and �2 intersect only in q1 (the corresponding property for �0 and �1 follows by
symmetry). The quickest way to show this is to compute a Groebner basis for the
ideal generated by f2 , f4 and g.t1; t2/ D t2

1
C t2

2
C t2

3
� 1, and to check that the

corresponding system has a unique solution, corresponding to q1 , or in other words,
.t1; t2; t3/D .1=4; 5

p
7=28;�

p
5=7/.

Remark A.4 The path � bounds two disks in @1C ' S2 , only one of which is con-
tained in the first quadrant t1; t2 > 0 (this is the triangle T that appears in Section 4.3).

A.7 Proof of Proposition 6.3

We denote by T the (closure of) the component of the complement of � in @1C that is
contained in the quadrant t1; t2 > 0 in the coordinates of Section A.6 (see Remark A.4).
It is easy to see that the other component of its complement is not contained in U , the
difficult part is to show:

Proposition A.5 T is properly contained in U .

Proof We first check that points on the boundary of T are precisely on the bisectors we
think they are on (according to the incidence pattern already mentioned in Section 4.3).
This can be done by finding intersection points of pairs of curves corresponding to
the intersection of @1C with yBj , yBk , j ¤ k , which amounts to solving a system of
equations, for instance by using Groebner bases.

As an example, yB1\ yB2\@1C has precisely two points. One is q1 , and the other one
is given approximately by

.0:88541680; 0:03241871; �0:46366596/:

It is easy to check that this point is not in T .

With such verifications, one checks that the yBj intersect T only on its boundary, and
only in a predicted fashion: the vertices are on four bisectors, points in �p2; q1Œ lie only
in yB2 and no other yBk , points in �p2; q2Œ lie only in yB7 and in no other yBk , points in
�p1;p2Œ lie on yB4 and yB5 and no other yBk .

We now rule out the possibility that some yBj may have a connected component
contained in the interior of T . If that were the case, then (the restriction to @1C of) fj

would have a critical point in the interior of T .

Claim No fj has a critical point in the interior of T .
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A definite list of the critical points of fj can be obtained by using Lagrange multipliers;
the critical points for fj are the solutions of the system

(9)
�
rfj D �rg;

g D 0;

where g.t/D t2
1
Ct2

2
Ct2

3
�1. We only treat an example representative of the difficulties,

namely f2 . In that case, the system (9) reads8̂̂̂̂
<̂
ˆ̂̂:

27=40C 3
p

7t3=8
p

5C .9=5� 2�/t1 D 0;

�33t3=8
p

5� .3=8/
p

7C .9=5� 2�/t2 D 0;

�33t2=8
p

5C 3
p

7t1=8
p

5� 3
p

7=2
p

5� 2�t3 D 0;

t2
1
C t2

2
C t2

3
D 1:

This system can easily be solved using standard Groebner basis techniques.

It has precisely four real solutions, for which t3 is equal to 0, �
p

5=7, or one of the
two real roots of the polynomial

140t4
3 C 28

p
5
p

7t3
3 � 49t2

3 � 20
p

5
p

7t3� 35;

which are given approximately by �0:50306965 and 0:84223313. Only one of the
corresponding critical points lies in the first quadrant t1; t2 > 0, and it corresponds
precisely to q1 , which is not in the interior of T .

For concreteness, we draw two projections of the 2–sphere @1C , the triangle T and
the critical points of the equations on Figure 16. No critical points lies in the interior
of T , and the only critical points on the boundary are q1 (which is critical for f3 )
and q2 which is critical for f6 ). A couple of critical points may appear dubious on the
picture. One of them is .x;y; t/D .1; 0; 0/, which is critical for f1 and f8 ; one can
easily check that it is not in E by checking a few inequalities (it is in fact only close
to p2 , which has approximate coordinates .0:98863636; 0:15032678; 0/; see Table 7).

Another pair of critical points are dubious only in .x; t/–projection; on part (b) of
Figure 16, they clearly appear outside the triangular region corresponding to T .

Proposition A.6 The intersection T \G2
2
T is empty.

Proof We show a stronger statement, namely we show that @1C \G2
2
@1C consists

of precisely two points that are not in T . We use the same coordinates for C (and @1C )
as above, write G2

2
G�1

1
p0 and G2

2
G�1

2
G3p0 in terms of the basis given by the columns

of (7), and write the equation of the intersection of C with G2
2
C , which is simply

�12t2t3=
p

5:
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q1, q2

p2

(a) .x;y/–projection

q2

p2

q1

(b) .x; t/–projection

Figure 16: The critical points of the equations are outside T , in projection
onto two coordinate planes

This gives .1; 0; 0/ and .�1; 0; 0/ as the only intersection points on @1 . None of these
two points is in the Dirichlet domain, a fortiori they are not in T .
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