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On the construction problem for Hodge numbers

STEFAN SCHREIEDER

For any symmetric collection .hp;q/pCqDk of natural numbers, we construct a smooth
complex projective variety X whose weight-k Hodge structure has Hodge numbers
hp;q.X / D hp;q ; if k D 2m is even, then we have to impose that hm;m is bigger
than some quadratic bound in m . Combining these results for different weights, we
solve the construction problem for the truncated Hodge diamond under two additional
assumptions. Our results lead to a complete classification of all nontrivial dominations
among Hodge numbers of Kähler manifolds.

32Q15; 14C30, 51M15

1 Introduction

For a Kähler manifold X , Hodge theory yields an isomorphism

(1-1) H k.X;C/Š
M

pCqDk

H q.X; �
p
X
/:

As a refinement of the Betti numbers of X , one therefore defines the .p; q/th Hodge
number hp;q.X / of X to be the dimension of H q.X; �

p
X
/. This way one can associate

to each n–dimensional Kähler manifold X its collection of Hodge numbers hp;q.X /

with 0� p; q � n. Complex conjugation and Serre duality show that such a collection
of Hodge numbers .hp;q/p;q in dimension n needs to satisfy the Hodge symmetries

(1-2) hp;q
D hq;p

D hn�p;n�q:

Moreover, as a consequence of the hard Lefschetz theorem, the Lefschetz conditions

(1-3) hp;q
� hp�1;q�1 for all pC q � n

hold. Given these classical results, the construction problem for Hodge numbers asks
which collections of natural numbers .hp;q/p;q satisfying (1-2) and (1-3) actually arise
as Hodge numbers of some n–dimensional Kähler manifold. In his survey article on
the construction problem in Kähler geometry [20], C Simpson explains our lack of
knowledge on this problem. Indeed, even weak versions where instead of all Hodge
numbers one only considers small subcollections of them are wide open; for some
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partial results in dimensions two and three we refer to Barth, Hulek, Peters and Van de
Ven [3], Chang [5] and Hunt [9].

This paper provides three main results on the above construction problem in the category
of smooth complex projective varieties, which is stronger than allowing arbitrary Kähler
manifolds. We present them in the following three subsections respectively.

1.1 The construction problem for weight-k Hodge structures

It follows from Griffiths transversality that a general integral weight-k (k � 2) Hodge
structure (not of K3 type) cannot be realized by a smooth complex projective variety;
see Voisin [21, Remark 10.20]. This might lead to the expectation that general weight k

Hodge numbers can also not be realized by smooth complex projective varieties. Our
first result shows that this expectation is wrong. This answers a question in [20].

Theorem 1 Fix k � 1 and let .hp;q/pCqDk be a symmetric collection of natural
numbers. If k D 2m is even, we assume

hm;m
�m � b.mC 3/=2cC bm=2c2:

Then in each dimension greater than or equal to kC 1 there exists a smooth complex
projective variety whose Hodge structure of weight k realizes the given Hodge numbers.

The examples which realize given weight-k Hodge numbers in the above theorem have
dimension greater than or equal to kC 1. However, if we assume that the outer Hodge
number hk;0 vanishes and that the remaining Hodge numbers are even, then we can
prove a version of Theorem 1 also in dimension k ; see Corollary 13 in Section 5.

Since any smooth complex projective variety contains a hyperplane class, it is clear
that some kind of bound on hm;m in Theorem 1 is necessary. For mD 1, for instance,
the bound provided by the above theorem is h1;1 � 2. In Section 7 we will show that
in fact the optimal bound h1;1 � 1 can be reached. That is, we will show (Theorem 15)
that any natural numbers h2;0 and h1;1 with h1;1 � 1 can be realised as weight-two
Hodge numbers of some smooth complex projective variety. For m � 2, we do not
know whether the bound on hm;m in Theorem 1 is optimal or not.

1.2 The construction problem for the truncated Hodge diamond

Given Theorem 1 one is tempted to ask for solutions to the construction problem
for collections of Hodge numbers which do not necessarily correspond to a single
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cohomology group. In order to explain our result on this problem, we introduce the
following notion: An n–dimensional formal Hodge diamond is a table

(1-4)

hn;n

hn;n�1 hn�1;n

hn;n�2 hn�1;n�1 hn�2;n

:::
:::

: : :

hn;0 h0;n

: : :
:::

:::

h2;0 h1;1 h0;2

h1;0 h0;1

h0;0

of natural numbers hp;q satisfying the Hodge symmetries (1-2), the Lefschetz condi-
tions (1-3) and the connectivity condition h0;0D hn;nD 1. The hp;q are referred to as
Hodge numbers and the sum over all hp;q with pCq D k as the k th Betti number bk

of this formal diamond; the vector .b0; : : : ; b2n/ is called a vector of formal Betti
numbers. Finally, for pC q � n, the primitive .p; q/th Hodge number of the above
diamond is defined as

lp;q
WD hp;q

� hp�1;q�1:

Definition 2 A truncated n–dimensional formal Hodge diamond is a formal Hodge
diamond (1-4) as above where the horizontal middle axis, ie the row of Hodge num-
bers hp;q with pC q D n, is omitted.

We note that for a Kähler manifold X its truncated Hodge diamond together with all
holomorphic Euler characteristics �.X; �p

X
/, where pD 0; : : : ; bn=2c, is equivalent to

giving the whole Hodge diamond. It is shown by Kotschick and the author in [13] that
a linear combination of Hodge numbers can be expressed in terms of Chern numbers
if and only if it is a linear combination of these Euler characteristics. Therefore, the
Hodge numbers of the truncated Hodge diamond form a complement to the space of
Hodge numbers which are determined by Chern numbers; cf [13] where the Hodge
numbers in dimension n are regarded as linear forms on the weight-n part of a certain
graded ring.

Our second main result solves the construction problem for the truncated Hodge
diamond under two additional assumptions:
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Theorem 3 Suppose we are given a truncated n–dimensional formal Hodge diamond
whose Hodge numbers hp;q satisfy the following two additional assumptions:

(1) For p < n=2, the primitive Hodge numbers lp;p satisfy

lp;p
� p � .n2

� 2nC 5/=4:

(2) The outer Hodge numbers hk;0 vanish either for all k D 1; : : : ; n� 3, or for all
k ¤ k0 for some k0 2 f1; : : : ; n� 1g.

Then there exists an n–dimensional smooth complex projective variety whose truncated
Hodge diamond coincides with the given one.

Theorem 3 has several important consequences. For instance, for the union of hn�2;0

and hn�1;0 with the collection of all Hodge numbers which neither lie on the boundary,
nor on the horizontal or vertical middle axis of (1-4), the construction problem is
solvable without any additional assumptions. That is, the corresponding subcollection
of any n–dimensional formal Hodge diamond can be realized by a smooth complex
projective variety. The number of Hodge numbers we omit in this statement from the
whole diamond (1-4) grows linearly in n, whereas the number of all entries of (1-4)
grows quadratically in n. In this sense, Theorem 3 yields very good results on the
construction problem in high dimensions.

Theorem 3 deals with Hodge structures of different weights simultaneously. This
enables us to extract from it results on the construction problem for Betti numbers.
Indeed, the following corollary rephrases Theorem 3 in terms of Betti numbers.

Corollary 4 Let .b0; : : : ; b2n/ be a vector of formal Betti numbers with

b2k � b2k�2 � k � .n2
� 2nC 5/=8 for all k < n=2.

Then there exists an n–dimensional smooth complex projective variety X such that
bk.X /D bk for all k ¤ n.

This corollary says for instance that in even dimensions, the construction problem for
the odd Betti numbers is solvable without any additional assumptions.

1.3 Universal inequalities and Kollár–Simpson’s domination relation

Following Kollár and Simpson [20, page 9], we say that a Hodge number hr;s domi-
nates hp;q in dimension n if there exist positive constants c1; c2 2R>0 such that for
all n–dimensional smooth complex projective varieties X , the following holds:

(1-5) c1 � h
r;s.X /C c2 � hp;q.X /:

Geometry & Topology, Volume 19 (2015)



On the construction problem for Hodge numbers 299

Moreover, such a domination is called nontrivial if .0; 0/¤ .p; q/¤ .n; n/, and if (1-5)
does not follow from the Hodge symmetries (1-2) and the Lefschetz conditions (1-3).

In [20] it is speculated that the middle Hodge numbers should probably dominate
the outer ones. In our third main theorem of this paper, we classify all nontrivial
dominations among Hodge numbers in any given dimension. As a result we see that
the above speculation is accurate precisely in dimension two.

Theorem 5 The Hodge number h1;1 dominates h2;0 nontrivially in dimension two
and this is the only nontrivial domination in dimension two. Moreover, there are no
nontrivial dominations among Hodge numbers in any dimension different from two.

Firstly, using the classification of surfaces and the Bogomolov–Miyaoka–Yau inequality,
we will prove in Section 9 (Proposition 22) that

h1;1.X / > h2;0.X /

holds for all Kähler surfaces X . That is, the middle degree Hodge number h1;1 indeed
dominates h2;0 nontrivially in dimension two.

Secondly, in addition to Theorem 3, the proof of Theorem 5 will rely on the following
result; see Theorem 17 in Section 8. For all a > b with aC b � n, there are n–
dimensional smooth complex projective varieties whose primitive Hodge numbers lp;q

satisfy la;b� 0 and lp;q D 0 for all other p > q .

Theorem 5 deals with universal inequalities of the form (1-5). In Section 10 we
deduce from the main results of this paper some progress on the analogous problem for
inequalities of arbitrary shape (Corollaries 24, 25 and 26). For instance, we will see that
any universal inequality among Hodge numbers of smooth complex projective varieties
which holds in all sufficiently large dimensions at the same time is a consequence of
the Lefschetz conditions.

The problem of determining all universal inequalities among Hodge numbers of smooth
complex projective varieties in a fixed dimension remains open. It is however sur-
prisingly easy to solve the analogous problem for inequalities among Betti numbers.
Indeed, using products of hypersurfaces of high degree, we will prove (Proposition 27)
that in fact any universal inequality among the Betti numbers of n–dimensional smooth
complex projective varieties is a consequence of the Lefschetz conditions.

1.4 Some negative results

Theorem 5 shows that at least in dimension two, the constraints which classical Hodge
theory puts on the Hodge numbers of Kähler manifolds are not complete. Indeed, given
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weight-two Hodge numbers can in general not be realized by a surface; by Theorem 1
(resp. Theorem 15) they can however be realized by higher-dimensional varieties. In
Sections 11 and 12 of this paper we collect some partial results which demonstrate
similar issues in dimensions three and four, respectively. This is one of the reasons
which makes the construction problem for Hodge numbers so delicate.

In Section 11 we prove (Proposition 28) that the Hodge numbers hp;q of any smooth
complex projective threefold with h1;1D 1 and h2;0 > 0 satisfy h1;0D 0, h2;0 < h3;0

and h2;1 < 126 � h3;0 . Moreover, for h3;0 � h2;0 bounded from above, only finitely
many deformation types of such examples exist. In Section 12 we prove similar results
(Proposition 32) for projective fourfolds with h1;1 D 1. (The existence of three- and
fourfolds with h1;1 D 1 and h2;0 > 0 is established by Theorem 15 in Section 7.)

Concerning the Betti numbers, we prove the following in Section 12 (Corollary 33).
Let X be a Kähler fourfold with b2.X / D 1, then b3.X / can be bounded in terms
of b4.X /. Since this phenomenon can neither be explained with the Hodge symmetries,
the Lefschetz conditions nor the Hodge–Riemann bilinear relations, we conclude that
even for the Betti numbers of Kähler manifolds, the known constraints are not complete.

1.5 Organization of the paper

In Section 2 we outline our construction methods. In Section 3 we consider the
hyperelliptic curve Cg given by y2 D x2gC1C 1 and construct useful subgroups of
Aut.C k

g /. In Section 4 we develop the construction method needed for the proofs of
Theorems 1 and 3 in Sections 5 and 6, respectively. In Section 7 we prove Theorem 15,
ie we show that for weight-two Hodge structures the bound on h1;1 in Theorem 1
can be chosen to be optimal. We produce in Section 8 examples whose primitive
Hodge numbers lp;q with p > q are concentrated in a single .p; q/–type, and show
in Section 9 how our results lead to a proof of Theorem 5. In Section 10 we apply
our results to the problem of finding universal inequalities among Hodge and Betti
numbers of smooth complex projective varieties. Finally, we discuss in Sections 11
and 12 the negative results, mentioned in Section 1.4.

1.6 Notation and conventions

The natural numbers N WD Z�0 include zero. All Kähler manifolds are compact and
connected, if not mentioned otherwise. A variety is a separated integral scheme of finite
type over C . Using the GAGA principle (see Serre [17]), we usually identify a smooth
projective variety with its corresponding analytic space, which is a Kähler manifold. If
not mentioned otherwise, cohomology means singular (or de Rham) cohomology with
coefficients in C ; the cup product on cohomology will be denoted by ^.
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By a group action G � Y ! Y on a variety Y , we always mean a group action by
automorphisms from the left. For any finite subgroup � �G , the fixed point set of the
induced � –action on Y will be denoted by

(1-6) FixY .�/ WD fy 2 Y j g.y/D y for all g 2 �g:

This fixed point set has a natural scheme structure. If � D h�i is cyclic, then we will
frequently write FixY .�/D FixY .�/.

2 Outline of our construction methods

The starting point of our constructions is the observation that there are finite group
actions G � T ! T , where T is a product of hyperelliptic curves, such that the
G –invariant cohomology of T is essentially concentrated in a single .p; q/–type; see
Section 3.2. In local holomorphic charts, G acts by linear automorphisms. Thus, by
the Chevalley–Shephard–Todd theorem, T=G is smooth if and only if G is generated
by quasireflections, that is, by elements whose fixed point set is a divisor on T .
Unfortunately, it turns out that in our approach this strong condition can rarely be met.
We therefore face the problem of a possibly highly singular quotient T=G .

One way to deal with this problem is to pass to a smooth model X of T=G . However,
only the outer Hodge numbers hk;0 are birational invariants [13]. Therefore, there will
be in general only very little relation between the cohomology of X and the G –invariant
cohomology of T . Nevertheless, we will find in Section 8 examples T=G which admit
smooth models whose cohomology is, apart from (a lot of) additional .p;p/–type
classes, indeed given by the G –invariants of T . We will overcome technical difficulties
by a general inductive approach which is inspired by work of Cynk and Hulek [7]; see
Proposition 19.

In Theorems 1 and 3 we need to construct examples with bounded hp;p and so the
above method does not work anymore. Instead, we will use the following lemma, known
as the Godeaux–Serre construction; see Atiyah and Hirzebruch [2] and Serre [18].

Lemma 6 Let G be a finite group whose action on a smooth complex projective
variety Y is free outside a subset of codimension greater than n. Then Y=G contains
an n–dimensional smooth complex projective subvariety whose cohomology below
degree n is given by the G –invariant classes of Y .

Proof A general n–dimensional G –invariant complete intersection subvariety Z � Y

is smooth by Bertini’s theorem. For a general choice of Z , the G–action on Z is
free and so Z=G is a smooth subvariety of Y=G which, by the Lefschetz hyperplane
theorem applied to Z � Y , has the property we want in the lemma.
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The construction method which we develop in Section 4 (Proposition 12) and which
is needed in Theorems 1 and 3 works roughly as follows. Instead of a single group
action, we will consider a finite number of finite group actions Gi �Ti ! Ti indexed
by i 2 I . Blowing up all Ti simultaneously in a large ambient space Y , we are able to
construct a smooth complex projective variety zY which admits an action of the product
G D

Q
i2I Gi that is free outside a subset of large codimension and so Lemma 6

applies. Moreover, the G–invariant cohomology of zY will be given in terms of the
Gi –invariant cohomology of the Ti . This is a quite powerful method since it allows us
to apply Lemma 6 to a finite number of group actions simultaneously, even without
assuming that the group actions we started with are free away from subspaces of large
codimension.

3 Hyperelliptic curves and group actions

3.1 Basics on hyperelliptic curves

In this section, following mostly Shafarevich [19, page 214], we recall some basic
properties of hyperelliptic curves. In order to unify our discussion, hyperelliptic curves
of genus 0 and 1 will be P1 and elliptic curves, respectively.

For g � 0, let f 2 CŒx� be a degree 2gC 1 polynomial with distinct roots. Then a
smooth projective model X of the affine curve Y given by

fy2
D f .x/g �C2

is a hyperelliptic curve of genus g . Although Y is smooth, its projective closure has a
singularity at 1 for g > 1. The hyperelliptic curve X is therefore explicitly given by
the normalization of this projective closure. It turns out that X is obtained from Y by
adding one additional point at 1. This additional point is covered by an affine piece,
given by

fv2
D u2gC2

�f .u�1/g where x D u�1 and y D v �u�g�1:

On an appropriate open cover of X , local holomorphic coordinates are given by x;y;u

and v respectively. Moreover, the smooth curve X has genus g and a basis of H 1;0.X /

is given by the differential forms

!i WD
xi�1

y
� dx;

where i D 1; : : : ;g .
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Let us now specialize to the situation where f equals the polynomial x2gC1 C 1

and denote the corresponding hyperelliptic curve of genus g by Cg . It follows
from the explicit description of the two affine pieces of Cg that this curve carries
an automorphism  g of order 2gC 1 given by

.x;y/ 7! .� �x;y/; .u; v/ 7! .��1
�u; �g

� v/;

where � denotes a primitive .2gC 1/th root of unity. Similarly,

.x;y/ 7! .x;�y/; .u; v/ 7! .u;�v/

defines an involution which we denote by multiplication by �1. Moreover, it follows
from the above description of H 1;0.Cg/ that the  g –action on H 1;0.Cg/ has eigen-
values �; : : : ; �g , whereas the involution acts by multiplication with �1 on H 1;0.Cg/.

Any smooth curve can be embedded into P3 . For the curve Cg , we fix the explicit
embedding given by

Œ1 W x W y W xgC1�D ŒugC1
W ug
W v W 1�:

Obviously, the involution as well as the order .2gC1/–automorphism  g of Cg � P3

extend to P3 via
Œ1 W 1 W �1 W 1� and Œ1 W � W 1 W �gC1�;

respectively.

3.2 Group actions on products of hyperelliptic curves

Let
T WD C k

g

be the k –fold product of the hyperelliptic curve Cg with automorphism  g defined
in Section 3.1. For a� b with aC b D k , we define for each i D 1; 2; 3 a subgroup
Gi.a; b;g/ of Aut.T / whose elements are called automorphisms of the i th kind. The
subgroup of automorphisms of the first kind is given by

G1.a; b;g/ WDf j1
g �� � �� 

jaCb
g j j1C� � �Cja�jaC1�� � ��jaCb�0 mod .2gC1/g:

In order to define the automorphisms of the second kind, let us consider the group
Sym.a/ � Sym.b/ � �aCb

2
, where �2 D f1;�1g is the multiplicative group on two

elements. An element .�; �; �/, where � 2Sym.a/, � 2Sym.b/ and �D .�1; : : : ; �aCb/

is a vector of signs �i 2 f1;�1g, acts on T via

.x1; : : : ;xa;y1; : : : ;yb/ 7! .�1 �x�.1/; : : : ; �a �x�.a/; �aC1 �y�.1/; : : : ; �aCb �y�.b//:
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Here, multiplication with �1 means that we apply the involution .�1/ 2Aut.Cg/. We
define

G2.a; b;g/� Sym.a/�Sym.b/��aCb
2

to be the index-four subgroup consisting of those elements .�; �; �/ which satisfy

sign.�/ � �1 � � � �a D 1 and sign.�/ � �aC1 � � � �aCb D 1;

where sign denotes the signum of the corresponding permutation. Via the above
action of Sym.a/�Sym.b/��aCb

2
on T , the group G2.a; b;g/ is a finite subgroup

of Aut.T /.

Finally, G3.a; b;g/ is trivial if a ¤ b and if a D b , then it is generated by the
automorphism which interchanges the two factors of T D Cg

a
�Cg

a .

Definition 7 The group G.a; b;g/ is the subgroup of Aut.T / which is generated by
the union of Gi.a; b;g/ for i D 1; 2; 3.

Automorphisms of different kinds do in general not commute with each other. However,
it is easy to see that each element in G.a; b;g/ can be written as a product �1 ı�2 ı�3

such that �i lies in Gi.a; b;g/. Therefore, G.a; b;g/ is a finite group which naturally
acts on the cohomology of T .

Lemma 8 If a> b , then the G.a; b;g/–invariant cohomology of T is a direct sum

V a;b
˚V b;a

˚

� kM
pD0

V p;p

�
;

where V a;bDV b;a is a g–dimensional space of .a; b/–classes and V p;pŠV k�p;k�p

is a space of .p;p/–classes of dimension min.pC1; bC1/, where p�k=2 is assumed.

Proof We denote the fundamental class of the j th factor of T by �j 2 H 1;1.T /.
Moreover, we pick for j D 1; : : : ; k a basis !j1; : : : ; !jg of .1; 0/–classes of the j th

factor of T in such a way that

 �g!jl D �
l!jl

for a fixed .2gC 1/th root of unity � . Then the cohomology ring of T is generated by
the �j , !jl and their conjugates. Moreover, the involution on the j th curve factor of
T acts on !jl and !jl by multiplication by �1 and leaves �j invariant.

Suppose that we are given a G.a; b;g/–invariant class which contains the monomial

(3-1) �i1
^ � � � ^�is

^!j1l1
^ � � � ^!jr lr

^!jrC1lrC1
^ � � � ^!jt lt
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nontrivially. Since the product of a .1; 0/– and a .0; 1/–class of the i th curve factor is
a multiple of �i , and since classes of degree 3 vanish on curves, we may assume the
indices i1; : : : ; is; j1; : : : ; jt are pairwise distinct. Therefore, application of a suitable
automorphism of the first kind shows t D 0 if s � 1 and t D aC b if s D 0. In the
latter case, suppose there are indices i1 and i2 with either i1; i2 � r or i1; i2 > r , such
that ji1

� a and ji2
> a. Then, application of a suitable automorphism of the first kind

yields li1
C li2

D 0 in Z=.2gC 1/Z, which contradicts 1� li � g . This shows

fj1; : : : ; jr g D f1; : : : ; ag or fj1; : : : ; jr g D faC 1; : : : ; aC bg:

By applying suitable automorphisms of the first kind once more, one obtains l1 D

� � � D lt . Thus, we have just shown that a G.a; b;g/–invariant class of T is either a
polynomial in the �j , or a linear combination of

(3-2) !l WD !1l ^ � � � ^!al ^!aC1l ^ � � � ^!aCbl

or their conjugates, where l D 1; : : : ;g . Note that !l is of .a; b/–type whereas any
polynomial in the �j is a sum of .p;p/–type classes. Moreover, by the definition
of G1.a; b;g/ and G2.a; b;g/, both groups act trivially on !l and x!l . Since a> b ,
the group G3.a; b;g/ is trivial and so it follows that each !l and x!l is G.a; b;g/–
invariant. Therefore, the span of !1; : : : ; !g yields a g–dimensional space V a;b of
G.a; b;g/–invariant .a; b/–classes. Its conjugate V b;a WD V a;b is spanned by the
G.a; b;g/–invariant .b; a/–classes x!1; : : : ; x!g .

Next, we define V p;p to consist of all G.a; b;g/–invariant homogeneous degree-p
polynomials in �1; : : : ; �aCb . Application of a suitable automorphism of the second
kind shows that any element ‚ in V p;p is a polynomial in the elementary symmetric
polynomials in �1; : : : ; �a and �aC1; : : : ; �aCb . By standard facts about symmetric
polynomials, it follows that ‚ can be written as a polynomial in

aX
jD1

�j
i and

aCbX
jDaC1

�j
i

for i � 0. Since �2
j vanishes for all j , we see that a basis of V p;p is given by the

elements
.�1C � � �C�a/

p�i
^ .�aC1C � � �C�aCb/

i ;

where 0� p� i � a and 0� i � b . Using a> b , this concludes the lemma by an easy
counting argument.

Lemma 9 If aD b , then the G.a; b;g/–invariant cohomology of T is a direct sumLk
pD0 V p;p , where V p;p Š V k�p;k�p is a space of .p;p/–classes whose dimension

is given by bp=2cC 1 if p < a, and by bp=2cCgC 1 if p D a.
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Proof We use the same notation as in the proof of Lemma 8 and put b WD a. Suppose
that we are given a G.a; a;g/–invariant cohomology class on T which contains the
monomial (3-1) nontrivially. This monomial is then necessarily G1.a; a;g/–invariant
and the same arguments as in Lemma 8 show that it is either a monomial in the �j , or
it coincides with one of the !l and their conjugates, defined in (3-2).

For each l D 1; : : : ;g , the classes !l and !l are invariant under the action of
G1.a; a;g/ and G2.a; a;g/. Moreover, the generator of G3.a; a;g/ interchanges
the two factors of T D Cg

a
�Cg

a . Its action on cohomology therefore maps !l to
.�1/a � !l . This shows that a linear combination of the !l and their conjugates is
G.a; a;g/–invariant if and only if it is a linear combination of the classes

(3-3) !l C .�1/a �!l ;

where l D 1; : : : ;g . This yields a g–dimensional space of G.a; a;g/–invariant .a; a/–
classes.

It remains to study which homogeneous polynomials in the �j are G.a; a;g/–invariant.
As in the proof of Lemma 8, one shows that any such polynomial of degree p is
necessarily a linear combination of

�.p� i; i/ WD .�1C � � �C�a/
p�i
^ .�aC1C � � �C�2a/

i ;

where 0� p� i � a and 0� i � a. The above monomials are clearly invariant under
the action of G1.a; a;g/ and G2.a; a;g/. Moreover, the generator of G3.a; a;g/

interchanges the two factors of T and hence its action on cohomology maps �.p�i; i/

to �.i;p� i/. We are therefore reduced to linear combinations of

�.i;p� i/C�.p� i; i/;

where 0� i �p�i �a. Such linear combinations are certainly G.a; a;g/–invariant. If
p � a, then the condition on the index i means 0� i � p=2. It follows that for p � a,
the space of those G.a; a;g/–invariant .p;p/–classes which are given by polynomials
in the �j has dimension bp=2cC1. Combining this with our previous observation that
the classes in (3-3) span a g–dimensional space of G.a; a;g/–invariant .a; a/–classes,
this concludes the lemma.

For later applications, we will also need the following:

Lemma 10 For all a � b there exists some N > 0 and an embedding of G.a; b;g/

into GL.N C 1/ such that a G.a; b;g/–equivariant embedding of Cg
aCb into PN

exists. Moreover, Cg
aCb contains a point which is fixed by G.a; b;g/.
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Proof For the first statement, we use the embedding of Cg into P3 , constructed
in Section 3.1. This yields an embedding of C aCb

g into .P3/aCb . From the explicit
description of that embedding, it follows that the action of G.a; b;g/ on C aCb

g extends
to an action on .P3/aCb which is given by first multiplying homogeneous coordinates
with some roots of unity and then permuting these in some way. Using the Segre map,
we obtain for some large N an embedding of G.a; b;g/ into GL.N C 1/ together
with a G.a; b;g/–equivariant embedding

Cg
aCb ,! PN :

This proves the first statement in the lemma.

For the second statement, note that the point 1 of Cg is fixed by both  g as well
as the involution. Thus 1 yields a point on the diagonal of C aCb

g which is fixed by
G.a; b;g/.

4 Group actions on blown-up spaces

4.1 Cohomology of blow-ups

Let Y be a Kähler manifold, T a submanifold of codimension r and let � W zY ! Y be
the blow-up of Y along T . Then the exceptional divisor j W E ,! zY of this blow-up
is a projective bundle of rank r � 1 over T and we denote the dual of the tautological
line bundle on E by OE.1/. Then the Hodge structure on zY is given by the following
theorem; see [21, page 180].

Theorem 11 We have an isomorphism of Hodge structures

H k.Y;Z/˚

� r�2M
iD0

H k�2i�2.T;Z/

�
!H k. zY ;Z/;

where on H k�2i�2.T;Z/, the natural Hodge structure is shifted by .i C 1; i C 1/. On
H k.Y;Z/, the above morphism is given by �� whereas on H k�2i�2.T;Z/ it is given
by j�ıh

i ı�j�
E

, where h denotes the cup product with c1.OE.1//2H 2.E;Z/ and j�
is the Gysin morphism of the inclusion j W E ,! zY .

We will need the following property of the ring structure of H�. zY ;Z/. Note that the
first Chern class of OE.1/ coincides with the pullback of �ŒE� 2H 2. zY ;Z/ to E . For
a class ˛ 2H k�2i�2.T;Z/, this implies

(4-1) .j� ı hi
ı�j�E/.˛/D j�

�
j �.�ŒE�/i ^�j�E.˛/

�
D .�ŒE�/i ^ j�.�j

�
E.˛//;

where we used the projection formula.
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4.2 Key construction

Let I be a finite nonempty set and let i0 2 I . Suppose that for each i 2 I , we are
given a representation

Gi! GL.Vi/

of a finite group Gi on a finite-dimensional complex vector space Vi . Further, assume
that the induced Gi –action on P .Vi/ restricts to an action on a smooth subvariety
Ti � P .Vi/ and that there is a point pi0

2 Ti0
which is fixed by Gi0

. Then we have
the following key result.

Proposition 12 For any n>0, there exists some complex vector space V and pairwise
disjoint embeddings of Ti into Y WD Ti0

�P .V / such that the blow-up zY of Y along
all Ti with i ¤ i0 inherits an action of G WD

Q
i2I Gi which is free outside a subset

of codimension greater than n. Moreover, zY =G contains an n–dimensional smooth
complex projective subvariety X whose primitive Hodge numbers are, for all pCq<n,
given by

lp;q.X /D dim
�
H p;q.Ti0

/Gi0

�
C

X
i¤i0

dim
�
H p�1;q�1.Ti/

Gi
�
:

Proof The product
G WD

Y
i2I

Gi

acts naturally on the direct sum
L

i2I Vi . We pick some k� 0. Then

V WD

�M
i2I

Vi

�
˚

�M
g2G

g �Ck

�
inherits a linear G–action where h 2 G acts on the second factor by sending g �Ck

canonically to .h �g/ �Ck . Then we obtain G –equivariant inclusions

Ti ,! P .Vi/ ,! P .V /;

where for j ¤ i , the group Gj acts via the identity on Ti and P .Vi/. The product

Y WD Ti0
�P .V /

inherits a G–action via the diagonal, where for i ¤ i0 elements of Gi act trivially
on Ti0

.

Using the base point pi0
2 Ti0

, we obtain for all i 2 I disjoint inclusions

Ti ,! Y;

Geometry & Topology, Volume 19 (2015)



On the construction problem for Hodge numbers 309

and we denote the blow-up of Y along the union of all Ti with i ¤ i0 by zY . Since
pi0
2 Ti0

is fixed by G , the G –action maps each Ti to itself and hence lifts to zY .

We want to prove that the G–action on zY is free outside a subset of codimension
greater than n. For k large enough, the G–action on Y certainly has this property.
Hence, it suffices to check that the induced G–action on the exceptional divisor Ej

above Tj � Y is free outside a subset of codimension greater than n.

For jI j D 1, this condition is empty. For jI j � 2, we fix an index j 2 I with j ¤ i0 .
Then it suffices to show that for a given nontrivial element � 2G the fixed point set
FixEj

.�/ has codimension greater than n in Ej . If tj 2 Tj is not fixed by � , then
the fiber of Ej ! Tj above tj is moved by � and hence disjoint from FixEj

.�/.
Conversely, if tj is fixed by � , then � acts on the normal space

NTj ;tj D TY;tj =TTj ;tj

via a linear automorphism and the projectivization of this vector space is the fiber of
Ej ! Tj above tj . The tangent space TY;tj equals

TTi0
;pi0
˚ .L�˝ .V =L//;

where L is the line in V which corresponds to the image of tj under the projection
Y !P .V /. Since �¤ id, it follows for large k that the fixed point set of � on the fiber
of Ej above tj has codimension greater than n. Hence, FixEj

.�/ has codimension
greater than n in Ej , as we want.

As we have just shown, the G–action on zY is free outside a subset of codimension
greater than n. Hence, by Lemma 6, the quotient zY =G contains an n–dimensional
smooth complex projective subvariety X whose cohomology below the middle degree
is given by the G –invariants of zY . In order to calculate the dimension of the latter, we
first note that for all i 2 I , the divisor Ei on zY is preserved by G . Since OEi

.�1/ is
given by the restriction of O zY .Ei/ to Ei , it follows that c1.OEi

.1// is G –invariant.
For pCq < n, the primitive .p; q/th Hodge number of X is, by Theorem 11, therefore
given by

lp;q.X /D dim
�
H p;q.Y /G

�
� dim

�
H p�1;q�1.Y /G

�
C

X
i¤i0

dim
�
H p�1;q�1.Ti/

Gi
�
;

where H�.�/G denotes G –invariant cohomology. Since any automorphism of projec-
tive space acts trivially on its cohomology, the Künneth formula implies

dim
�
H p;q.Y /G

�
� dim

�
H p�1;q�1.Y /G

�
D dim

�
H p;q.Ti0

/Gi0

�
:

This finishes the proof of Proposition 12.
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5 Proof of Theorem 1

Fix k � 1 and let .hp;q/pCqDk be a symmetric collection of natural numbers. In the
case where k D 2m is even, we additionally assume

hm;m
�m �

�
m�

�
m
2

˘
C 1

�
C
�

m
2

˘2
:

Then we want to construct for n > k an n–dimensional smooth complex projective
variety X with the above Hodge numbers on H k.X;C/.

Let us consider the index set I WD f0; : : : ; b.k � 1/=2cg and put i0 WD 0. Then, for all
i 2 I , we consider the .k � 2i/–fold product

Ti WD .Chk�i;i /k�2i ;

where Chk�i;i denotes the hyperelliptic curve of genus hk�i;i , defined in Section 3.1.
On Ti we consider the action of

Gi WDG.k � 2i; 0; hk�i;i/;

defined in Section 3.2.

By Lemma 10, we may apply the construction method of Section 4.2 to the set of
data .Ti ;Gi ; I; i0/. Thus, by Proposition 12, there exists an n–dimensional smooth
complex projective variety X whose primitive Hodge numbers are for p C q < n

given by

lp;q.X /D dim
�
H p;q.Ti0

/Gi0

�
C

X
i¤i0

dim
�
H p�1;q�1.Ti/

Gi
�
:

Lemma 8 says that for p > q , the only Gi –invariant .p; q/–classes on Ti are of type
.k � 2i; 0/. Therefore, lp;q.X / vanishes for p > q and pC q < n in all but the cases

lk;0.X /D dim
�
H k;0.Ti0

/Gi0

�
D hk;0;

lk�2iC1;1.X /D dim
�
H k�2i;0.Ti/

Gi
�
D hk�i;i

for all 1� i < k=2. Using the formula

hk�i;i.X /D

iX
sD0

lk�i�s;i�s.X /;

we deduce, for 0� i < k=2,

hk�i;i.X /D hk�i;i :
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Thus, if k is odd, then the Hodge symmetries imply that the Hodge structure on
H k.X;C/ has Hodge numbers .hk;0; : : : ; h0;k/.

We are left with the case where k D 2m is even. Since blowing-up a point in-
creases hm;m by one and leaves hp;q with p ¤ q unchanged, it suffices to prove that

hm;m.X /Dm �
�
m�

�
m
2

˘
C 1

�
C
�

m
2

˘2
:

As we have seen,

hm;m.X /D

mX
sD0

ls;s.X /D

mX
sD0

�
dim

�
H s;s.T0/

G0
�
C

X
0<i<k=2

dim
�
H s�1;s�1.Ti/

Gi
��
:

By Lemma 8, we have dim.H s;s.Ti/
Gi /D 1 for all 0� s � 2 � dim.Ti/ and so

hm;m.X /DmC 1C

m�1X
sD0

X
0<i<k=2

dim
�
H s;s.Ti/

Gi
�
:

Since Ti has dimension 2.m� i/, we see that

m�1X
sD0

dim
�
H s;s.Ti/

Gi
�
D

�
m if 2.m� i/ >m� 1;

2.m� i/C 1 if 2.m� i/�m� 1:

Hence

hm;m.X /DmC 1C

bm=2cX
iD1

mC

m�1X
iDbm=2cC1

.2.m� i/C 1/;

and it is straightforward to check that this simplifies to

hm;m.X /Dm � b.mC 3/=2cC bm=2c2:

This finishes the proof of Theorem 1.

In Theorem 1 we have only dealt with Hodge structures below the middle degree.
Under stronger assumptions, the following corollary of Theorem 1 deals with Hodge
structures in the middle degree. We will use this corollary in the proof of Theorem 5 in
Section 9.

Corollary 13 Let .hn;0; : : : ; h0;n/ be a symmetric collection of even natural numbers
such that hn;0 D 0. If nD 2m is even, then we additionally assume that

hm;m
� 2 � .m� 1/ � b.mC 2/=2cC 2 � b.m� 1/=2c2:

Then there exists an n–dimensional smooth complex projective variety X whose Hodge
structure of weight n realizes the given Hodge numbers.
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Proof For nD 1 we may put X D P1 and for nD 2 the blow-up of P2 in h1;1� 1

points does the job. It remains to deal with n� 3. Here, by Theorem 1 there exists an
.n�1/–dimensional smooth complex projective variety Y whose Hodge decomposition
on H n�2.Y;C/ has Hodge numbers�

1
2
� hn�1;1; : : : ; 1

2
� h1;n�1

�
:

By the Künneth formula, the product X WD Y �P1 has Hodge numbers

hp;q.X /D hp;q.Y /C hp�1;q�1.Y /:

Using the Hodge symmetries on Y , Corollary 13 follows.

6 Proof of Theorem 3

In this section we prove Theorem 3, stated in Section 1. Our proof will follow the same
lines as the proof of Theorem 1 in Section 5.

Given a truncated n–dimensional formal Hodge diamond whose Hodge numbers (resp.
primitive Hodge numbers) are denoted by hp;q (resp. lp;q ). Suppose that one of the
following two additional conditions holds:

(1) The number hk;0 vanishes for all k ¤ k0 for some k0 2 f1; : : : ; n� 1g.

(2) The number hk;0 vanishes for all k D 1; : : : ; n� 3.

We will construct universal constants C.p; n/ such that under the additional assumption
lp;p � C.p; n/ for all 1 � p < n=2, an n–dimensional smooth complex projective
variety X with the given truncated Hodge diamond exists. Then Theorem 3 follows as
soon as we have shown C.p; n/� p � .n2� 2nC 5/=4.

Since blowing-up a point on X increases the primitive Hodge number l1;1.X / by one
and leaves the remaining primitive Hodge numbers unchanged, it suffices to deal with
the case where l1;1 D C.1; n/ is minimal.

To explain our construction, let us for each r � s > 0 with 2< r C s < n consider the
.r C s� 2/–fold product

Tr;s WD .Clr;s /rCs�2;

where Clr;s is the hyperelliptic curve of genus lr;s , constructed in Section 3.1. On Tr;s

we consider the group action of

Gr;s WDG.r � 1; s� 1; lr;s/;

defined in Section 3.2.
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At this point we need to distinguish between the above cases (1) and (2). We begin
with (1) and consider the index set

I WD f.r; s/ j r � s > 0; n> r C s > 2g[ fi0g;

and put
Ti0
WD .Clk0;0/k0 and Gi0

WDG.k0; 0; l
k0;0/:

By Lemma 10, we may apply the construction method of Section 4.2 to the set of
data .Ti ;Gi ; I; i0/. Thus, Proposition 12 yields an n–dimensional smooth complex
projective variety X whose primitive Hodge numbers lp;q.X / with pC q < n are
given by

(6-1) lp;q.X /D dim
�
H p;q.Ti0

/Gi0

�
C

X
.r;s/2Infi0g

dim
�
H p�1;q�1.Tr;s/

Gr;s
�
:

If p > q , then Lemmas 8 and 9 say that

(6-2) dim
�
H p�1;q�1.Tr;s/

Gr;s
�
D

�
0 if .r; s/¤ .p; q/;
lp;q if .r; s/D .p; q/:

Moreover,

(6-3) dim
�
H p;q.Ti0

/Gi0

�
D

�
0 if .k0; 0/¤ .p; q/;

lp;q if .k0; 0/D .p; q/:

In (6-1), the summation condition .r; s/ 2 I n fi0g means r � s > 0 and n> r C s > 2.
It therefore follows from (6-2) and (6-3) that lp;q.X /D lp;q holds for all p > q with
pCq< n. By the Hodge symmetries on X , lp;q.X /D lp;q then follows for all p¤ q

with pC q < n.

Next, for p D q , one extracts from (6-1) an explicit formula of the form

lp;p.X /D lp;p
CC1.p; n/;

where C1.p; n/ is a constant which only depends on p and n. Replacing lp;p by
lp;p �C1.p; n/ in the above argument then shows that in case (1), an n–dimensional
smooth complex projective variety with the given truncated Hodge diamond exists as
long as

lp;p
� C1.p; n/

holds for all 1� p < n=2.

In order to find a rough estimate of C1.p; n/, we deduce from Lemmas 8 and 9 the
inequalities

dim
�
H p;p.Ti0

/Gi0

�
� 1 for all p ,
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and

dim
�
H p�1;p�1.Tr;s/

Gr;s
�
�

�
p if .r; s/¤ .p;p/;
pC lp;p if .r; s/D .p;p/:

Using these estimates, (6-1) gives

(6-4) C1.p; n/� 1C
X

r�s>0
n>rCs>2

p;

where we used that .r; s/ 2 I n fi0g is equivalent to r � s > 0 and n > r C s > 2. If
we write bxc for the floor function of x , then (6-4) gives explicitly

C1.p; n/� p � n �
�

n�1
2

˘
�p �

�
n�1

2

˘
�
��

n�1
2

˘
C 1

�
:

If n is odd, then the above right-hand side equals p � .n� 1/2=4 and if n is even, then
it is given by p � n.n� 2/=4. Hence,

C1.p; n/� p � .n� 1/2=4:

Let us now turn to case (2). Here we consider the same index set I as above, and for
all i ¤ i0 we also define Ti and Gi as above. However, for i D i0 , we put

Ti0
WD .Cln�1;0/n�1

� .Cln�2;0/n�2;

Gi0
WDG.n� 1; 0; ln�1;0/�G.n� 2; 0; ln�2;0/:

By Lemma 10, there exist integers N1 and N2 such that Gi0
admits an embedding into

GL.N1C 1/�GL.N2C 1/ in such a way that an Gi0
–equivariant embedding of Ti0

into PN1�PN2 exists. Using the Segre map, we obtain for some N > 0 an embedding
of Gi0

into GL.N C1/ and an Gi0
–equivariant embedding of Ti0

into PN . Moreover,
by Lemma 10, Ti0

contains a point pi0
which is fixed by Gi0

. Hence the construction
method of Section 4.2 can be applied to the above set of data. Therefore Proposition 12
yields an n–dimensional smooth complex projective variety X whose primitive Hodge
numbers lp;q.X / are given by formula (6-1).

For p > q and pC q < n, the Gi0
–invariant cohomology of Ti0

is trivial whenever
.p; q/ is different from .n�2; 0/ and .n�1; 0/. Moreover, for .p; q/D .n�1; 0/ it has
dimension ln�1;0 and for .p; q/D .n� 2; 0/ its dimension equals ln�2;0 . Thus (6-1)
and the Hodge symmetries on X yield lp;q.X /D lp;q for all p ¤ q with pC q < n.
Also, as in case (1), we obtain

lp;p.X /D lp;p
CC2.p; n/;
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where C2.p; n/ is a constant in p and n which can be estimated by

C2.p; n/� pC 1C
X

r�s>0
n>rCs>2

p;

where we used that H p;p.Ti0
/Gi0 has dimension pC 1. Our estimation for C1.p; n/

shows
C2.p; n/� p � .n� 1/2=4Cp:

Then, for lp;p � C2.p; n/, we may replace lp;p by lp;p � C2.p; n/ in the above
argument and obtain an n–dimensional smooth complex projective variety with the
given truncated Hodge diamond.

Let us now define

(6-5) C.p; n/ WDmax
�
C1.p; n/;C2.p; n/

�
:

Then in both cases (1) and (2), a variety with the desired truncated Hodge diamond
exists if lp;p � C.p; n/. Moreover, C.p; n/ can roughly be estimated by

C.p; n/� p �
n2�2nC5

4
:

This finishes the proof of Theorem 3.

Remark 14 As we have seen in the above proof, we may replace the given lower
bound on lp;p in assumption (1) of Theorem 3 by the smaller constant C.p; n/, defined
in (6-5).

7 Special weight-2 Hodge structures

In this section we show that for weight-two Hodge structures, the lower bound h1;1 � 2

in Theorem 1 can be replaced by the optimal lower bound h1;1 � 1. Our proof uses an
ad hoc implementation of the Godeaux–Serre construction. The examples we construct
here compare nicely to the results in Sections 11 and 12. However, since the methods of
this section are not used elsewhere in the paper, the reader can easily skip this section.

Theorem 15 Let h2;0 and h1;1 be natural numbers with h1;1 � 1. Then in each
dimension greater than or equal to 3 there exists a smooth complex projective variety X

with
h2;0.X /D h2;0 and h1;1.X /D h1;1:
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Proof Since blowing-up a point increases h1;1 by one and leaves h2;0 unchanged,
in order to prove Theorem 15, it suffices to construct for given g in each dimension
n> 2 a smooth complex projective variety X with h2;0.X /D g and h1;1.X /D 1.

We fix some large integers N1 and N2 and consider T WD Cg
2 together with the

subgroups G1.2; 0;g/ and G2.2; 0;g/ of Aut.T /, defined in Section 3.2. For j D

1; : : : ;N1 , we denote a copy of T N2 by Aj and we put

A WDA1 � � � � �AN1
:

That is, A is a .2 �N1 �N2/–fold product of Cg , but we prefer to think of A to be an
N1 –fold product of T N2 , where the j th factor is denoted by Aj .

Next, we explain the construction of a certain subgroup G of automorphisms of A.
This group is generated by five finite subgroups G1; : : : ;G5 in Aut.A/. The first
subgroup of Aut.A/ is given by

G1 WDG1.2; 0;g/�N1 ;

where G1.2; 0;g/ acts on each Aj via the diagonal action. The second one is

G2 WDG1.2; 0;g/�N2 ;

acting on A via the diagonal action. The third one is given by

G3 WDG2.2; 0;g/;

acting on each Aj as well as on A via the diagonal action. The fourth group of
automorphisms of A equals

G4 WD Sym.N1/;

which acts on A via permutation of the Aj . Finally, we put

G5 WD Sym.N2/;

which permutes the T –factors of each Aj and acts on A via the diagonal action.

Suppose we are given some elements �i 2Gi . Then, �3 commutes with �4 and �5 ,
and �3 ı �1 D �

0
1
ı �3 , respectively �1 ı �3 D �3 ı �

00
1

as well as �3 ı �2 D �
0
2
ı �3 ,

respectively �2 ı �3 D �3 ı �
00
2

holds for some �0i ; �
00
i 2 Gi , where i D 1; 2. Similar

relations can be checked for all products �iı�j and so we conclude that each element �
in the group G � Aut.A/, which is generated by G1; : : : ;G5 , can be written in the
form

� D �1 ı�2 ı�3 ı�4 ı�5;

where �i lies in Gi .
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Suppose that the fixed point set FixA.�/ contains an irreducible component whose
codimension is less than

min.N1=2; 2N2/:

Since � is just some permutation of the 2N1N2 curve factors of A, followed by
automorphisms of each factor, we deduce that � needs to fix more than

2N1N2�min.N1; 4N2/

curve factors. If �4 were nontrivial, then � would fix at most 2.N1 � 2/N2 curve
factors, and if �5 were nontrivial, then � would fix at most 2N1.N2�2/ curve factors.
Thus �4 D �5 D id. If �3 were nontrivial, then its action on a single factor T D Cg

2

cannot permute the two curve factors. Thus �3 is just multiplication with �1 on each
curve factor. This cannot be canceled with automorphisms in G1.2; 0;g/, since the
latter is a cyclic group of order 2gC 1. Therefore �3 D id follows as well.

Since � fixes more than 2N1N2 �N1 curve factors, we see that � D �1 ı�2 needs
to be the identity on at least one Aj0

. Since �2 acts on each Aj in the same way, it
lies in G1\G2 and so we may assume �2 D id. Finally, any nontrivial automorphism
in G1 has a fixed point set of codimension greater than or equal to 2N2 . This is a
contradiction.

For N1 and N2 large enough, it follows that the G–action on A is free outside a
subset of codimension greater than n. Then, by Lemma 6, A=G contains a smooth
n–dimensional subvariety X whose cohomology below degree n is given by the
G –invariants of A.

For the proof of the theorem, it remains to show h2;0.X /D g and h1;1.X /D 1. For
this purpose, we denote the fundamental class of the j th curve factor of A by

�j 2H 1;1.A/:

Moreover, we pick for j D 1; : : : ; 2N1N2 a basis !j1; : : : ; !jg of .1; 0/–classes of
the j th curve factor of A in such a way that

 �g!jl D �
l!jl ;

for a fixed .2gC 1/th root of unity � . Then the cohomology ring of A is generated by
the �j , !jl and their conjugates.

Suppose that we are given a G –invariant .1; 1/–class which contains !is ^!jr non-
trivially. Then application of a suitable automorphism in G1 shows that after relabeling
A1; : : : ;AN1

, we may assume 1� i; j � 2N2 . Moreover, it follows that i and j have
the same parity, since otherwise r C s would be zero modulo 2gC 1, contradicting
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1� r; s � g . Finally, application of a suitable element in G2 shows that i D j . Since
!is ^!ir is a multiple of �i , it follows that our G–invariant .1; 1/–class is of the
form

�1 ��1C � � �C�2N1N2
��2N1N2

:

Since G acts transitively on the curve factors of A, this class is G–invariant if and
only if �1 D � � � D �2N1N2

. This proves h1;1.X /D 1.

It remains to show h2;0.X /D g . We define for l D 1; : : : ;g the .2; 0/–class

!l WD

N1N2X
iD1

!2i�1l ^!2il

and claim that these form a basis of the G –invariant .2; 0/–classes of A. Clearly, they
are linearly independent and it is easy to see that they are G –invariant.

Conversely, suppose that a G –invariant class contains !il1
^!jl2

nontrivially. Then,
application of a suitable element in G1 shows that l1˙ l2 is zero modulo 2gC1. This
implies l1 D l2 . Therefore, our G –invariant .2; 0/–class is of the formX

ijl

�ijl �!il ^!jl :

For fixed l D 1; : : : ;g , we write �ij D �ijl and note thatX
ij

�ij �!il ^!jl

is also G–invariant. We want to show that this class is a multiple of !l . Applying
suitable elements of G1 shows that the above .2; 0/–class is a sum of .2; 0/–classes
of the factors A1; : : : ;AN1

. Since this sum is invariant under the permutation of the
factors A1; : : : ;AN1

, it suffices to consider the class

2N2X
i;jD1

�ij �!il ^!jl

on A1 , which is invariant under the induced G2 – and G5 –action on A1 . In this sum
we may assume �ij D 0 for all i � j and application of a suitable element in G2

shows that the above class is given by

N2X
iD1

�2i�12i �!2i�1l ^!2il :
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Finally, application of elements of G5 proves that our class is a multiple of

N2X
iD1

!2i�1l ^!2il :

This finishes the proof of h2;0.X /D g and thereby establishes Theorem 15.

Remark 16 The above construction does not generalize to higher degrees, at least not
in the obvious way.

8 Primitive Hodge numbers away from the vertical middle
axis

In this section we produce examples whose primitive Hodge numbers away from the
vertical middle axis of the Hodge diamond (1-4) are concentrated in a single .p; q/–
type. These examples will then be used in the proof of Theorem 5 in Section 9. Our
precise result is as follows:

Theorem 17 For a>b�0, n�aCb and c�1, there exists an n–dimensional smooth
complex projective variety whose primitive .p; q/–type cohomology has dimension
.3c � 1/=2 if p D a and q D b , and vanishes for all other p > q .

In comparison with Theorem 3, the advantage of Theorem 17 is that it also controls the
Hodge numbers hp;q with p ¤ q and pC q D n. These numbers lie in the horizontal
middle row of the Hodge diamond (1-4) and so they were excluded in the statement of
Theorem 3.

Using an iterated resolution of .Z=3Z/–quotient singularities whose local description
is given in Section 8.1, we explain an inductive construction method in Section 8.2.
Using this construction, Theorem 17 will easily follow in Section 8.3. Our approach is
inspired by Cynk–Hulek’s construction of rigid Calabi–Yau manifolds [7].

8.1 Local resolution of Z=3Z–quotient singularities

Fix a primitive third root of unity � and choose affine coordinates .x1; : : : ;xn/ on Cn .
For an open ball Y �Cn centered at 0 and for some r � 0, we consider the automor-
phism �W Y ! Y given by

.x1; : : : ;xn/ 7! .� �x1; : : : ; � �xr ; �
2
�xrC1; : : : ; �

2
�xn/:
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Let Y 0 be the blow-up of Y in the origin with exceptional divisor E0 � Y 0 . Then �
lifts to an automorphism �0 2Aut.Y 0/ and we define Y 00 to be the blow-up of Y 0 along
FixY 0.�

0/. The exceptional divisor of this blow-up is denoted by E00 � Y 00 and �0 lifts
to an automorphism �00 2 Aut.Y 00/. In this situation, we have the following lemma.

Lemma 18 The fixed point set of �00 on Y 00 equals E00 . Moreover:

(1) If r D 0 or r D n, then E00 ŠE0 Š Pn�1 . Otherwise, E0 Š Pn�1 and E00 is a
disjoint union of P r�1 �Pn�r and P r �Pn�r�1 .

(2) The quotient Y 00=�00 is smooth and it admits local holomorphic coordinates
.z1; : : : ; zn/, where each zj comes from a �–invariant meromorphic function
on Y , explicitly given by a quotient of two monomials in x1; : : : ;xn .

Proof This lemma is proved by a calculation similar to Kollár [11, pages 84–87],
where the case nD 2 is carried out.

The automorphism �0 acts on the exceptional divisor E0 Š Pn�1 of Y 0! Y by

Œx1 W � � � W xn� 7! Œ� �x1 W � � � W � �xr W �
2
�xrC1 W � � � W �

2
�xn�:

Hence, if r D 0 or r D n, then FixY 0.�
0/ equals E0 . Since this is a smooth divisor

on Y 0 , the blow-up Y 00! Y 0 is an isomorphism and the quotient Y 00=�00 is smooth.
Moreover, E0 ŠE00 is covered by n charts U1; : : : ;Un such that on Ui , coordinates
are given by

(8-1)
�x1

xi
; : : : ;

xi�1

xi
;xi ;

xiC1

xi
; : : : ;

xn

xi

�
:

The quotient Y 00=�00 is then covered by U1=�
00; : : : ;Un=�

00 . Coordinate functions
on Ui=�

00 are given by the following �–invariant rational functions on Y :�x1

xi
; : : : ;

xi�1

xi
;x3

i ;
xiC1

xi
; : : : ;

xn

xi

�
:

This proves the lemma for r D 0 or r D n.

If 0< r <n, then FixY 0.�
0/ equals the disjoint union of E0

1
ŠP r�1 and E0

2
ŠPn�r�1 ,

sitting inside E0 . The exceptional divisor E0 is still covered by the n–charts U1; : : : ;Un ,
defined above. Moreover, the charts U1; : : : ;Ur cover E0

1
and UrC1; : : : ;Un cover E0

2
.

Fix a chart Ui with coordinate functions .z1; : : : ; zn/. If i � r , then �0 acts on r � 1

of these coordinates by the identity and on the remaining coordinates by multiplication
with � . Conversely, if i > r , then �0 acts on n� r � 1 coordinates by the identity
and on the remaining coordinates by multiplication with �2 . We are therefore in the
situation discussed in the previous paragraph and the lemma follows by an application
of that result in dimension n� r C 1 and r C 1 respectively.
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8.2 Inductive approach

In this section we explain a general construction method which will allow us to prove
Theorem 17 in Section 8.3 by induction on the dimension.

For natural numbers a ¤ b and c � 0, let Sa;b
c denote the family of pairs .X; �/,

consisting of a smooth complex projective variety X of dimension aC b and an
automorphism � 2 Aut.X / of order 3c , such that properties (1)–(5) below hold.
Here � denotes a fixed primitive .3c/th root of unity and g WD .3c � 1/=2.

(1) The Hodge numbers hp;q of X are given by ha;b D hb;a D g and hp;q D 0 for
all other p ¤ q .

(2) The action of � on H a;b.X / has eigenvalues �; : : : ; �g .

(3) The group H p;p.X / is for all p � 0 generated by algebraic classes which are
fixed by the action of � .

(4) The set FixX .�
3c�1

/ can be covered by local holomorphic charts such that �
acts on each coordinate function by multiplication with some power of � .

(5) For 0 � l � c � 1, the cohomology of FixX .�
3l

/ is generated by algebraic
classes which are fixed by the action of � .

For 0� l � c � 1, we have obvious inclusions

FixX

�
�3l �
� FixX

�
�3c�1�

:

It follows from (4) that FixX .�
3l

/ can be covered by local holomorphic coordinates
on which �3l

acts by multiplication with some power of �3l

. In particular, FixX .�
3l

/

is smooth for all 0� l � c� 1; its cohomology is of .p;p/–type, since it is generated
by algebraic classes by (5). We also remark that condition (3) implies that each variety
in Sa;b

c satisfies the Hodge conjecture. Finally, note that .X; �/ 2 Sa;b
c is equivalent

to .X; ��1/ 2 Sb;a
c .

The inductive approach to Theorem 17 is now given by the following.

Proposition 19 Let .X1; �
�1
1
/ 2 Sa1;b1

c and .X2; �2/ 2 S
a2;b2
c . Then

.X1 �X2/=h�1 ��2i

admits a smooth model X such that the automorphism id��2 on X1 �X2 induces an
automorphism � 2Aut.X / with .X; �/ 2 Sa;b

c , where aD a1Ca2 and bD b1Cb2 .
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Proof We define the subgroup

G WD h�1 � id; id��2i

of Aut.X1 �X2/. For i D 1; : : : ; c we consider the element

�i WD .�1 ��2/
3c�i

of order 3i in G . This element generates a cyclic subgroup

Gi WD h�ii �G;

and we obtain a filtration

0DG0 �G1 � � � � �Gc D h�1 ��2i;

such that each quotient Gi=Gi�1 is cyclic of order three, generated by the image of �i .

By definition, G acts on
Y0 WDX1 �X2:

Using the assumptions that .X1; �
�1
1
/ and .X2; �2/ satisfy (1)–(3), it is easily seen

(and we will give the details later in this proof) that the h�1��2i–invariant cohomology
of Y0 has Hodge numbers ha;b D hb;a D g and hp;q ¤ 0 for all other p ¤ q . The
strategy of the proof of Proposition 19 is now as follows.

We will construct inductively for i D 1; : : : ; c smooth models Yi of Y0=Gi , fitting
into the following diagram:

(8-2)

Y 00
c�1

�� !!

� � �

�� ��

Y 00
1

�� ��

Y 00
0

����
Yc Yc�1 Y2 Y1 Y0

Here, Y 00
i�1
! Yi will be a 3 W 1 cover, branched along a smooth divisor, and Y 00i ! Yi

will be the composition Y 00i ! Y 0i ! Yi of two blow-down maps. This way we obtain
a smooth model

X WD Yc

of Y0=h�1 ��2i. At each stage of our construction, the group G will act (in general
noneffectively) and we will show that each blow-up and each triple quotient changes
the h�1 ��2i–invariant cohomology only by algebraic classes which are fixed by the
G –action. Since h�1 ��2i acts trivially on X , it follows that H�.X;C/ is generated
by h�1 ��2i–invariant classes on Y0 together with algebraic classes which are fixed
by the action of G . Hence X satisfies (1). We then define � 2 Aut.X / via the action
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of id��2 2G on Yc and show carefully that the technical conditions (2)–(5) are met
by .X; �/.

In the following, we give the details of the approach outlined above.

We begin with the explicit construction of diagram (8-2). Firstly, let Y 0
0

be the blow-up
of Y0 along FixY0

.�1/. Since G is an abelian group, its action on Y0 restricts to an
action on FixY0

.�1/ and so it lifts to an action on the blow-up Y 0
0

. This allows us to
define Y 00

0
via the blow-up of Y 0

0
along FixY 0

0
.�1/. Again, G lifts to Y 00

0
since it is

abelian. Using this action, we define

Y1 WD Y 000 =h�1i;

where by abuse of notation, h�1i denotes the subgroup of Aut.Y 00
0
/ which is generated

by the action of �1 2G .

We claim that Y1 is a smooth model of Y0=h�1i. To see this, we define

U0 WD Y0 nFixY0
.�1/

and note that the preimage of this set under the blow-down maps

Y 000 �! Y 00 �! Y0

gives Zariski open subsets

U 00 � Y 00 and U 000 � Y 000 ;

both isomorphic to U0 . The group G acts on these subsets and so

U1 WD U 000 =h�1i

is a Zariski open subset in Y1 which is isomorphic to the Zariski open subset

U0=h�1i � Y0=h�1i:

The latter is smooth since �1 acts freely on U0 and so it remains to see that Y1 is
smooth at points of the complement of U1 � Y1 . To see this, note that by (4),

FixY0
.�1/D FixX1

�
�3c�1

1

�
�FixX2

�
�3c�1

2

�
inside Y0 can be covered by local holomorphic coordinates on which �1 ��2 acts by
multiplication with some powers of � . On these coordinates, �1 acts by multiplication
with some powers of a third root of unity. The local considerations of Lemma 18
therefore apply and we deduce that Y1 is indeed a smooth model of Y0=G1 .

Since G is abelian, the G –action on Y 00
0

descends to a G –action on Y1 . The subgroup
G1 � G acts trivially on Y1 and the induced G=G1 –action on Y1 is effective. Also
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note that Gi acts freely on U0 � Y0 and so Gi=G1 acts, for 2� i � c , freely on the
Zariski open subset U1 � Y1 . By (4), the complement of U0 in Y0 can be covered by
local holomorphic coordinates on which G acts by multiplication with some roots of
unity on each coordinate. It therefore follows from the second statement in Lemma 18
that the complement of U1 in Y1 can also be covered by local holomorphic coordinates
in which G acts by multiplication with some roots of unity on each coordinate. This
shows that we can repeat the above construction inductively.

We obtain for i 2 f1; : : : ; cg smooth models

Yi WD Y 00i�1=h�ii

of Y0=Gi on which G acts (noneffectively). The smooth model Yi contains a Zariski
open subset

Ui Š U0=h�ii

on which Gl=Gi acts freely for all i C 1� l � c ; explicitly, Ui WD U 00
i�1
=h�ii, where

U 00
i�1
� Y 00

i�1
is isomorphic to Ui�1 . The complement of Ui is covered by local

holomorphic coordinates on which G acts by multiplication with some roots of unity
on each coordinate.

Y 00i is then defined via the two-fold blow-up

(8-3) Y 00i �! Y 0i �! Yi ;

where one blows up the fixed point set of the action of �iC1 on Yi and Y 0i respectively.
The preimage of Ui in Y 0i and Y 00i gives Zariski open subsets

U 0i � Y 0i and U 00i � Y 00i ;

which are both isomorphic to Ui . Since G is abelian, the G–action on Yi induces
actions on Y 0i and Y 00i and these actions restrict to actions on Ui ŠU 0i ŠU 00i . The com-
plement of U 0i in Y 0i (resp. U 00i in Y 00i ) is by Lemma 18 covered by local holomorphic
coordinates on which G acts by multiplication with some roots of unity on each coor-
dinate. Using the local considerations in Lemma 18, it follows that YiC1D Y 00i =h�iC1i

is a smooth model of Y0=GiC1 which has the above stated properties. This finishes
the inductive construction of diagram (8-2).

Our next aim is to compute the cohomology of Yc . Since Gc acts trivially on Yc ,
we may as well compute the Gc –invariant cohomology of Yc . This point of view
has the advantage that it allows an inductive approach, since for i D 0; : : : ; c � 1, the
Gc –invariant cohomology of Yi is easier to compute than its ordinary cohomology.

Before we can carry out these calculations, we have to study the action of arbitrary
subgroups � �G on Yi , Y 0i and Y 00i . Since G is an abelian group, it follows that it
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acts on the fixed point sets FixYi
.�/, FixY 0

i
.�/ and FixY 00

i
.�/, defined in (1-6). These

actions have the following important properties, where as usual, cohomology means
singular cohomology with coefficients in C (see our conventions in Section 1.6).

Lemma 20 Let � �G be a subgroup which is not contained in Gi . Then FixYi
.�/,

FixY 0
i
.�/ and FixY 00

i
.�/ are smooth, their G–actions restrict to actions on each irre-

ducible component and their Gc –invariant cohomology is generated by G–invariant
algebraic classes.

Note that the assumption �ªGi is equivalent to saying that the action of � is nontrivial
on each of the spaces Yi , Y 0i and Y 00i .

Proof of Lemma 20 To begin with, we want to verify the lemma for FixY0
.�/, where

� � G is nontrivial. Recall that Y0 D X1 �X2 and that each element in � is of the
form �

j
1
��k

2
. The fixed point set of such an element is then given by

FixY0

�
�

j
1
��k

2

�
D FixX1

�
�

j
1

�
�FixX2

�
�k

2

�
:

The intersection of sets of the above form is still of the above form and so

FixY0
.�/D FixX1

�
�

j
1

�
�FixX2

�
�k

2

�
;

for some natural numbers j and k . Since .X1; �
�1
1
/ and .X2; �2/ satisfy (4), it

follows that FixY0
.�/ is smooth. Also, G acts trivially on H 0.FixY0

.�/;C/ by (5)
and so the G –action restricts to an action on each irreducible component of FixY0

.�/.

Since � is not the trivial group, we now assume without loss of generality that j

is not divisible by 3c . Since .X; ��1
1
/ satisfies (5), the cohomology of FixX1

.�
j
1
/ is

then generated by h�1i–invariant algebraic classes. The Gc –invariant cohomology
of FixY0

.�/ is therefore generated by products of these algebraic classes with h�2i–
invariant classes on FixX2

.�k
2
/. Since .X2; �2/ satisfies (1)–(3) and (5), the latter

are, regardless whether k is divisible by 3c or not, given by h�2i–invariant algebraic
classes. This shows that the Gc –invariant cohomology of FixY0

.�/ is generated by
G –invariant algebraic classes, as we want.

Using induction, let us now assume that the lemma is true for FixYi
.�/ for some i � 0

and for all � ª Gi . Blowing-up FixYi
.�iC1/ on Yi , we obtain the diagram

FixY 0
i
.�/

��

� � // Y 0i

��
FixYi

.�/
� � // Yi

and we denote the exceptional divisor of the blow-up Y 0i ! Yi by E0i � Y 0i .
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Let us first prove that FixY 0
i
.�/ is smooth and that G acts on its irreducible components.

To see this, note that away from E0i , the blow-down map Y 0i ! Yi is an isomorphism
onto its image. Since FixYi

.�/ is smooth, it is then clear that the intersection of
FixY 0

i
.�/ with Y 0i nE0i is smooth. Also, G acts on the irreducible components of

FixY 0
i
.�/ which are not contained in E0i , since the analogous statement holds for the

components of FixYi
.�/. On the other hand, E0i can be covered by local holomorphic

coordinates on which G acts by multiplication with roots of unity. In each of these
charts, FixY 0

i
.�/ corresponds to a linear subspace on which G acts. We conclude that

FixY 0
i
.�/ is smooth and that G acts on each of its irreducible components.

Next, let P be an irreducible component of FixY 0
i
.�/. We have to prove the following.

Claim The Gc –invariant cohomology of P is generated by G–invariant algebraic
classes.

Proof Let us denote the image of P in Yi by Z . Then Z is contained in FixYi
.�/

and the proof of the claim is divided into two cases.

In the first case, we suppose that Z is not contained in the intersection

(8-4) FixYi
.h�; �iC1i/D FixYi

.�/\FixYi
.�iC1/:

In this case, P is the strict transform of Z in Y 0i . Conversely, if zZ � FixYi
.�/ is any

irreducible component, not contained in (8-4), then its strict transform in Y 0i is contained
in FixY 0

i
.�/. Hence Z is in fact an irreducible component of FixYi

.�/. This implies
that FixZ .�iC1/ consists of irreducible components of (8-4) and so FixZ .�iC1/ is
smooth by induction. Moreover, the strict transform P of Z in Y 0i can be identified
with the blow-up of Z along FixZ .�iC1/. We denote the exceptional divisor of this
blow-up by D and obtain natural maps

f W D ,! P and gW D! FixZ .�iC1/;

where f denotes the inclusion and g the projection map respectively. Using Theorem 11
and (4-1), we see that the cohomology of P is generated (as a C–module) by pullback
classes of Z together with products

ŒD0�j ^f�.g
�.˛//;

where D0 is an irreducible component of D , j is some natural number and ˛ is a
cohomology class on FixZ .�iC1/.

The image g.D0/ is an irreducible component of FixZ .�iC1/. By induction, G acts
on g.D0/ and hence also on D0 , the projectivization of the normal bundle of g.D0/
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in Z . This implies that ŒD0� 2 H�.P;C/ is a G–invariant algebraic class. More-
over, the Gc –invariant cohomology of Z as well as the Gc –invariant cohomology of
FixZ .�iC1/ is generated by G–invariant algebraic classes by induction. It therefore
follows from the above description of H�.P;C/ that the Gc –invariant cohomology
of P is indeed generated by G –invariant algebraic classes.

It remains to deal with the case where the image Z of P in Yi is contained in (8-4). In
this case, around each point of Z there are local holomorphic coordinates .z1; : : : ; zn/

on which G acts by multiplication with some roots of unity. In these local coordinates,
the fixed point set of �iC1 corresponds to the vanishing set of certain coordinate
functions. After relabeling these coordinate functions if necessary, we may therefore
assume that locally, FixYi

.�iC1/ corresponds to fzmD � � � D znD 0g for some m� n.
This yields local homogeneous coordinates

(8-5) .z1; : : : ; zm�1; Œzm W � � � W zn�/

along the exceptional divisor E0i of Y 0i ! Yi . After relabeling of the first m � 1

coordinates if necessary, we may assume that � acts trivially on z1; : : : ; zk�1 and
nontrivially on zk ; : : : ; zm�1 for some 1 � k � m� 1. After relabeling zm; : : : ; zn

if necessary, we may then assume that in the homogeneous coordinates (8-5), P

corresponds to fzk D � � � D zh D 0g for some m� h� n. Here, each element  2 �
acts trivially on ŒzhC1 W � � � W zn�, that is,  acts by multiplication with the same root of
unity on zhC1; : : : ; zn .

The above local description shows that P!Z is a PGL–subbundle of the PGL–bundle
E0i jZ !Z ; explicit bundle charts for P are given by .z1; : : : ; zk�1; ŒzhC1 W � � � W zn�/

as above. The exceptional divisor E0i carries the line bundle OE0i
.1/ and we denote its

restriction to P by OP .1/. The cohomology of P is then generated (as a C–module)
by products of pullback classes on the base Z with powers of c1.OP .1//. The line
bundle OE0i

.1/ on the exceptional divisor E0i is isomorphic to the restriction of the line
bundle OY 0

i
.�E0i/ on Y 0i . The first Chern class of the latter line bundle is G –invariant

since G acts on E0i . It follows that c1.OP .1// is a G –invariant algebraic cohomology
class on P .

In the above local coordinates .z1; : : : ; zn/ on Yi , Z is given by fzk D � � � D zn D 0g.
The latter set is in fact the fixed point set of h�; �iC1i in this local chart and so it
follows that Z is an irreducible component of (8-4). By induction, the Gc –invariant
cohomology of Z is therefore generated by G–invariant algebraic classes. By the
above description of H�.P;C/, we conclude that the Gc –invariant cohomology of P

is generated by G–invariant algebraic classes, as we want. This finishes the proof of
our claim.
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Altogether, we see that the lemma holds for FixY 0
i
.�/. Repeating the above argument,

we then deduce the same assertion for FixY 00
i
.�/.

Next, let � be a subgroup of G , not contained in GiC1 . We denote by

pi W Y
00
i �! YiC1

the quotient map. Then

p�1
i .FixYiC1

.�//D
˚
y 2 Y 00i

ˇ̌
g.y/ 2 fy; �iC1.y/; �

2
iC1.y/g for all g 2 �

	
:

If this set is contained in FixY 00
i
.�iC1/, then it is given by FixY 00

i
.h�; �iC1i/. The

restriction of pi to FixY 00
i
.�iC1/ is an isomorphism onto its image and so we deduce

that in this case, FixYiC1
.�/ satisfies the lemma.

Conversely, if p�1
i .FixYiC1

.�// is not contained in FixY 00
i
.�iC1/, then we pick some

y 2 p�1
i .FixYiC1

.�// with y 62 FixY 00
i
.�iC1/:

Since �iC1 acts trivially on YiC1 and since we are interested in FixYiC1
.�/, we assume

without loss of generality that �iC1 is contained in � . Then, � acts transitively on
fy; �iC1.y/; �

2
iC1

.y/g. This gives rise to a short exact sequence

1 �!H �! � �! Z=3Z �! 1;

where H � � acts trivially on y and where g 2 � is mapped to j C 3Z if and only
if g.y/D �j

iC1
.y/. Recall that G Š Z=3cZ�Z=3cZ, and so � Š Z=3kZ�Z=3mZ

for some k;m� 0. In the above short exact sequence, �iC1 is mapped to a generator
in Z=3Z and so �iC1 cannot be a multiple of 3 in � . That is,

� Š h�iC1i � h i

for some  2 � . Since �iC1 acts trivially on YiC1 , one easily deduces that

(8-6) FixYiC1
.�/D FixYiC1

. /D

2[
jD0

pi

�
FixY 00

i

�
 ı �j

iC1

��
:

The irreducible components of FixYiC1
.�/ are therefore of the form pi.Z/, where Z

is an irreducible component of
2[

jD0

FixY 00
i

�
 ı �j

iC1

�
:

As we have already proven the lemma on Y 00i , we know that the G–action on Y 00i
restricts to an action on Z . In particular,

pi.Z/DZ=h�iC1i:
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Since the abelian group G acts on Z , it also acts on the above quotient.

For the moment we assume that pi.Z/ is smooth. Its cohomology is then given by
the �iC1 –invariant classes on Z . Since �iC1 is contained in Gc , it follows that the
Gc –invariant cohomology of pi.Z/ is given by the Gc –invariant cohomology of Z .
Since we know the lemma on Y 00i , the latter is generated by G–invariant algebraic
classes, as we want.

It remains to see that FixYiC1
.�/ is smooth. In the local holomorphic charts which

cover the complement of UiC1 in YiC1 , this fixed point set is given by linear subspaces
which are clearly smooth. It therefore suffices to prove that the fixed point set of �
on UiC1 is smooth. By (8-6), the latter is given by

FixUiC1
.�/D

� 2[
jD0

FixU 00
i

�
 ı �j

iC1

��.
h�iC1i:

Since we know the lemma already on Y 00i , the set FixU 00
i
. ı�j

iC1
/ is smooth and �iC1

acts on it. This action is free of order three since GiC1=Gi acts freely on U 00i . Therefore,

FixU 00
i

�
 ı �j

iC1

�
=h�iC1i

is smooth for all j . The smoothness of FixUiC1
.�/ follows since

FixU 00
i

�
 ı �

j1

iC1

�
\FixU 00

i

�
 ı �

j2

iC1

�
D∅

holds for j1 6� j2 .mod 3/. This concludes Lemma 20 by induction on i .

Via diagram (8-2), we have constructed a smooth model

X WD Yc

of Y0=h�1 ��2i. The group G acts on X and the automorphism � 2 Aut.X / which
we have to construct in Proposition 19 is simply given by the action of id��2 2 G

on X . This automorphism has order 3c since this is true on the Zariski open subset
Uc �X . By Lemma 20, the pair .X; �/ satisfies (5); it remains to show that .X; �/
satisfies (1)–(4).

The cohomology of X Using Lemma 20, we are now able to read off the cohomology
of X from diagram (8-2). Indeed, the cohomology of Y 00i is given by the cohomology
of Yi (via pullbacks) plus some classes which are introduced by blowing up FixYi

.�iC1/

on Yi and FixY 0
i
.�iC1/ on Y 0i respectively. By Lemma 20, these blown-up loci are

smooth and their Gc –invariant cohomology is generated by G–invariant algebraic
classes. Moreover, G acts on each irreducible component of the blown-up locus and
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so G acts on each irreducible component of the exceptional divisors of the blow-ups. In
particular, the corresponding divisor classes in cohomology are G –invariant. It follows
that the Gc –invariant cohomology of Y 00i is given by the Gc –invariant cohomology
of Yi plus some G–invariant algebraic classes. Also, since �iC1 is contained in Gc ,
the quotient map Y 00i ! YiC1 induces an isomorphism on Gc –invariant cohomology.
It follows inductively that the Gc –invariant cohomology of X — which coincides with
the whole cohomology of X — is given by the Gc –invariant cohomology of Y0 plus
G –invariant algebraic classes.

Let us now calculate the Gc –invariant cohomology of Y0 . For i D 1; 2, there is by
assumption on .Xi ; �i/ a basis !i1; : : : ; !ig of H ai ;bi .Xi/ with

(8-7) ��1 .!1j /D �
�j!1j and ��2 .!2j /D �

j!2j :

This shows that for j D 1; : : : ;g , the following linearly independent .a; b/–classes
on Y0 are Gc –invariant:

!j WD !1j ^!2j :

Since .X1; �
�1
1
/ and .X2; �2/ satisfy (1), (2) and (3), it follows that apart from the

above .a; b/–classes (and their complex conjugates), all Gc –invariant classes on Yc

are generated by products of algebraic classes on X1 and X2 . These products are
G–invariant by (3). Finally, � acts on !j by multiplication with �j . Altogether, we
have just shown that .X; �/ satisfies (1), (2) and (3).

Charts around FixX .�
3c�1

/ By our construction, there are holomorphic charts
which cover the complement of Uc in Yc , such that � acts on each coordinate function
by multiplication with some power of � . Therefore, in order to show that .X; �/
satisfies (4), it remains to see that around points of

Wc WD FixYc

�
�3c�1�

\Uc ;

the same holds true.

Let us first prove that the preimage of Wc under the 3c W 1 étale covering � W U0!Uc

coincides with the set

W0 WD
��

FixX1

�
�3c�1

1

�
�X2

�
[
�
X1 �FixX2

�
�3c�1

2

���
\U0:

Clearly W0 � �
�1.Wc/. Conversely, suppose that .x1;x2/ 2 �

�1.Wc/. Then there
exists a natural number 1� k � 3c with

x1 D �
k
1 .x1/ and �3c�1

2 .x2/D �
k
2 .x2/:
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If x1 is not fixed by �3c�1

1
, then 3c�1 does not lie in the mod 3c orbit of k . That

is, k is divisible by 3c and we deduce that x2 is fixed by �3c�1

2
. This shows that

.x1;x2/ 2W0 as we want.

Since � W U0! Uc is an étale covering, local holomorphic charts on U0 give local
holomorphic charts on Uc . Around each point

x 2
�
FixX1

�
�3c�1

1

�
�X2

�
\U0

we may choose local holomorphic coordinates .z1; : : : ; zn/, such that ��1
1
� id acts

on each zj by multiplication with some power of � , by assumptions on .X1; �
�1
1
/.

Moreover, the images of ��1
1
� id and id��2 in the quotient G=Gc coincide and so

the action of ��1
1
� id on X actually coincides with the automorphism � . This shows

that .z1; : : : ; zn/ give local holomorphic coordinates around �.x/ on which � acts by
multiplication with some powers of � .

The case
x 2

�
X1 �FixX2

�
�3c�1

2

��
\U0

is done similarly and so we conclude that (4) holds for .X; �/. This finishes the proof
of Proposition 19.

8.3 Proof of Theorem 17

For a > b � 0, n � a C b and c � 1, we need to construct an n–dimensional
smooth complex projective variety Z

a;b;n
c whose primitive .p; q/–type cohomology

has dimension .3c � 1/=2 if p D a and q D b , and vanishes for all other p > q .
Suppose that we have already settled the case when nD aC b . Then, for n> aC b ,
the product

Za;b;n
c WDZa;b;aCb

c �Pn�a�b

has the desired properties. To prove Theorem 17, it therefore suffices to show that the
set S a;b

c , defined in Section 8.2, is nonempty for all a > b � 0 and c � 1. We will
prove the latter by induction on aC b .

We put gD .3c�1/=2 and consider the hyperelliptic curve Cg with automorphism  g

from Section 3.1. It is then straightforward to check that

(8-8) .Cg;  g/ 2 S1;0
c :

Indeed, it is clear that .Cg;  g/ satisfies (1)–(3) in the definition of S1;0
c . Moreover, the

complement of the point 12Cg is given by the affine curve y2D x2gC1C1 and  g

acts by multiplication with a primitive .3c/th root of unity � on x . For all 0� l � c�1,
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the fixed point set FixCg
. 3l

g / is therefore given by the points .x;y/D .0;˙1/ and 1.
These points are  g –invariant and so their cohomology is generated by  g –invariant
algebraic classes, which shows that (5) holds. It remains to establish (4). That is, we
need to find suitable holomorphic coordinates around the three fixed points of  3c�1

g .
Differentiating the affine equation y2 D x2gC1C 1 gives 2y � dy D .2gC 1/x2g � dx .
This shows that dx spans the cotangent space at .0;˙1/ and so x is a local coordinate
function near .0;˙1/. The automorphism  g acts on this function by multiplication
with � , as we want in (4). In order to find a suitable coordinate function around 1,
we use the coordinates .u; v/, introduced in Section 3.1. In these coordinates, the
curve Cg is given by the equation v2 D uCu2gC2 and 1 corresponds to the point
.u; v/ D .0; 0/. Around this point, the function v yields a coordinate function on
which  g acts via multiplication with �g ; see Section 3.1. This establishes (8-8) and
hence settles the case aC b D 1.

Let now a> b with aC b > 1. If b D 0, then by induction, the sets S1;0
c and Sa�1;0

c

are nonempty and so Proposition 19 yields an element in Sa;0
c , as desired. If b � 1,

then Sa;b�1
c is nonempty by induction. Also, S0;1

c is nonempty since it contains
.Cg;  

�1
g / by (8-8). Application of Proposition 19 then yields an element in Sa;b

c , as
we want. This concludes Theorem 17.

Remark 21 The variety in Sa;b
c which the above proof produces inductively is easily

seen to be a smooth model of the quotient of C aCb
g by the group action of G1.a; b;g/,

defined in Section 3.2.

9 Proof of Theorem 5

In this section we give a proof of Theorem 5, stated in Section 1. To begin with, we
prove that h1;1 dominates h2;0 nontrivially in dimension two.

Proposition 22 For a Kähler surface X , the following inequality holds:

h1;1.X / > h2;0.X /

Proof First observe that for the product of P1 with another smooth curve, h2;0

vanishes and so the inequality trivially holds because h1;1 > 0 is true for any Kähler
manifold. Since any Kähler surface of Kodaira dimension �1 is birationally equivalent
to such a product [3], and since h2;0 is a birational invariant, we deduce that the asserted
inequality is true in the case of Kodaira dimension �1. Since blowing-up a point
increases h1;1 by one and leaves h2;0 unchanged, we conclude that it suffices to prove
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h1;1.X / > h2;0.X / for all minimal surfaces X of nonnegative Kodaira dimension. For
such a surface X , the Bogomolov–Miyaoka–Yau inequality

c2
1.X /� 3c2.X /

holds. For Kodaira dimensions 0 and 1, this can be seen in [3, Table 10, page 244]
where all possible Chern numbers for minimal surfaces with these Kodaira dimensions
are listed. If the Kodaira dimension of X is equal to 2, that is, if X is a minimal
surface of general type, then the above inequality is due to Bogomolov–Miyaoka–Yau;
see [3, page 275].

In order to translate the above inequality into an inequality between the Hodge numbers
of X , we need the following identities which hold for all Kähler surfaces:

c2.X /D 2� 2b1.X /C b2.X /;

c2
1.X /D 10� 4b1.X /C 10h2;0.X /� h1;1.X /:

Using these, the Bogomolov–Miyaoka–Yau inequality turns out to be equivalent to

(9-1) 1C h1;0.X /C h2;0.X /� h1;1.X /:

This clearly implies h1;1.X / > h2;0.X /, which finishes the proof of Proposition 22.

Conversely, let us suppose that the Hodge number hr;s dominates hp;q nontrivially
in dimension n. That is, there are positive constants c1; c2 2 R>0 such that for all
n–dimensional smooth complex projective varieties X , the following holds:

(9-2) c1 � h
r;s.X /C c2 � hp;q.X /

By the Hodge symmetries (1-2), we may assume r � s , p � q , r C s � n and
1� pC q � n. The nontriviality of the above domination then means that (9-2) does
not follow from the Lefschetz conditions (1-3). In order to prove Theorem 5, it now
remains to show nD 2, r D s D 1 and p D 2.

Suppose that rCs<n. Since (9-2) does not follow from the Lefschetz conditions (1-3),
Theorem 3 (or Corollary 24 below) shows pC q D n. Using the Lefschetz hyperplane
theorem and the Hirzebruch–Riemann–Roch formula, we see however that a smooth
hypersurface Vd � PnC1 of degree d satisfies hr;s.Vd /� 1, whereas hp;q.Vd / tends
to infinity if d does. This is a contradiction and so r C s D n holds.

Suppose that r ¤ s . Then, considering a blow-up of Pn in sufficiently many distinct
points proves p ¤ q . Since p ¤ q and r ¤ s , we may then use certain examples from
Theorem 17 to deduce that (9-2) follows from the Lefschetz conditions (1-3). This
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contradicts the nontriviality of our given domination. Hence r D s and in particular
nD 2r is even.

Suppose that p D q . Considering again a blow-up of Pn in sufficiently many distinct
points then proves c1 � 1 and so (9-2) follows from the Lefschetz conditions. This
contradicts the nontriviality of (9-2) and so it proves p ¤ q .

Suppose that pC q < n. Using high-degree hyperplane sections of n–dimensional
examples from Theorem 3, one proves that there is a sequence of .n� 1/–dimensional
smooth complex projective varieties .Yj /j�1 such that hr�1;r�1.Yj / is bounded
whereas hp;q.Yj / tends to infinity if j does. (Note that we used p ¤ q here.) Since
nD 2r , we have hr�1;r�1.Yj /D hr;r .Yj / by the Hodge symmetries. Therefore, the
sequence of n–dimensional smooth complex projective varieties

.Yj �P1/j�1

has bounded hr;r but unbounded hp;q . This is a contradiction and hence shows
pC q D n.

Next, using Corollary 13 from Section 5, it follows that p D 2r and q D 0 holds. By
what we have shown so far we are thus left with the case where nD 2r D 2s , p D 2r

and qD 0. In order to finish the proof of Theorem 5, it therefore suffices to show r D 1.
For a contradiction, we assume that r � 2. By Theorem 17 there exists a .2r � 1/–
dimensional smooth complex projective variety Y with h2r�1;0.Y /D h0;2r�1.Y /D 1

and hp;q.Y /D 0 for all other p¤ q . Since r � 2, this implies for a smooth curve Cg

of genus g that

h2r;0.Y �Cg/D g and hr;r .Y �Cg/D 2 � hr�1;r�1.Y /:

Hence .Y � Cg/g�1 is a sequence of 2r –dimensional smooth complex projective
varieties such that hr;r is constant but h2r;0 tends to infinity if g does. This is the
desired contradiction and shows r D 1. This finishes the proof of Theorem 5.

Remark 23 One could of course strengthen Simpson’s domination relation between
Hodge numbers by requiring that (1-5) holds for all n–dimensional Kähler manifolds X .
However, since Proposition 22 holds for all Kähler surfaces, it is immediate that
Theorem 5 remains true for this stronger domination relation.

10 Inequalities among Hodge and Betti numbers

It is a very difficult and wide open problem to determine all universal inequalities
among Hodge numbers in a fixed dimension; see [20]. In Theorem 5 we basically
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solved this problem for inequalities of the form (1-5).1 In this section we deduce from
the main results of this paper some further progress on this problem. We formulate our
results in the category of smooth complex projective varieties, which is stronger than
allowing arbitrary Kähler manifolds.

Our first result is a consequence of Theorem 3:

Corollary 24 Any universal inequality among the Hodge numbers below the hori-
zontal middle axis in (1-4) of n–dimensional smooth complex projective varieties is a
consequence of the Lefschetz conditions (1-3).

Proof Assume that we are given a universal inequality between the Hodge numbers
of the truncated Hodge diamond of smooth complex projective n–folds. In terms of
the primitive Hodge numbers lp;q , this means that for all natural numbers p and q

with 0< pC q < n there are real numbers �p;q and a constant C 2R such that

(10-1)
X

0<pCq<n

�p;q � l
p;q.X /� C

holds for all smooth n–folds X . Using the Hodge symmetries (1-2), we may further
assume that �p;q D �q;p holds for all p and q . If we put X D Pn , then we see
C � 0. Moreover, for any natural numbers p and q with 0< pC q < n, there exists
by Theorem 3 a smooth complex projective variety X with lp;q.X /� 0, whereas
(modulo the Hodge symmetries) all remaining primitive Hodge numbers of its truncated
Hodge diamond are bounded from above, by n3 say. This proves �p;q � 0. That is,
the universal inequality (10-1) is a consequence of the Lefschetz conditions (1-3), as
we want.

As an immediate consequence of the above corollary, we note the following:

Corollary 25 Any universal inequality among the Hodge numbers of smooth complex
projective varieties which holds in all sufficiently large dimensions at the same time is
a consequence of the Lefschetz conditions.

In the same way we deduced Corollary 24 from Theorem 3, one deduces the following
from Theorem 17.

Corollary 26 Any universal inequality among the Hodge numbers away from the
vertical middle axis in (1-4) of n–dimensional smooth complex projective varieties is a
consequence of the Lefschetz conditions (1-3).

1“Basically” means that we did not determine the optimal coefficients in the universal inequality we
found in dimension two.
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Corollary 24 implies that in dimension n, the Betti numbers bk with k ¤ n do not
satisfy any universal inequalities other than the Lefschetz conditions

(10-2) bk � bk�2 for all k � n.

Using a simple construction, we improve this result now. Indeed, the following proposi-
tion determines all universal inequalities among the Betti numbers of smooth complex
projective varieties in any given dimension.

Proposition 27 Any universal inequality among the Betti numbers bk of smooth
complex projective n–folds is a consequence of the Lefschetz conditions (10-2).

Proof By the same argument as in the proof of Corollary 24, it clearly suffices to
prove the following claim.

Claim Let X be the product of Pn�k with some smooth hypersurface Vd � PkC1

of degree d . Then, for 0� j � n with j ¤ k , the j th primitive cohomology P j .X /

of X has dimension less than or equal to 1, whereas dim.Pk.X // tends to infinity if d

does.

It remains to prove the claim. For j < k , the Lefschetz hyperplane theorem yields

bj .Vd /D b2k�j .Vd /D bj .P
kC1/:

Moreover, from the adjunction formula we deduce that the topological Euler number
ck.Vd / tends to ˙1 if d !1. This proves that bk.Vd / tends to infinity if d does.

Using these Betti numbers of Vd , it is straightforward to check that

X WD Vd �Pn�k

has the primitive cohomology we want. This proves the above claim and thus finishes
the proof of Proposition 27.

11 Threefolds with h1;1 D 1

Here we show that in dimension three, the constraints which classical Hodge theory
puts on the Hodge numbers of smooth complex projective varieties are not complete.
Our result generalizes a result of Amorós and Biswas [1, Proposition 4.3], asserting
that there is no simply connected Kähler threefold with h2;0 D h1;1 D 1 and b3 D 0.
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Proposition 28 Let X be a smooth complex projective threefold with Hodge numbers
hp;q WD hp;q.X /. Suppose that h1;1 D 1. Then the following holds:

� The outer Hodge numbers satisfy h1;0 D 0 and h2;0 <max.h3;0; 1/.
� The canonical bundle of X is antiample if h3;0 D 0, numerically trivial if

h3;0 D 1 and ample if h3;0 > 1.

Moreover, if h3;0 > 1, then h2;1 < 126 � h3;0 holds and for h3;0� h2;0 bounded from
above, only finitely many deformation types of such examples exist.

Proposition 28 nicely compares to the examples in Theorem 15, where we have con-
structed threefolds X with h1;1.X /D 1 such that h2;0.X / is equal to any given natural
number.

Before we can prove Proposition 28, let us show the following general result.

Lemma 29 Let X be a Kähler manifold of dimension n and let k be an odd natural
number with 2k � n such that hk;k.X /D 1. Then, bj .X /D 0 for all odd j � k .

Proof Let ! denote the Kähler class of X . For a contradiction, suppose that the
assumptions of the proposition hold and that additionally bj .X / ¤ 0 for some odd
j � k . We may assume that j is minimal with this property. Then all j th cohomology
is primitive and we pick some nonzero primitive .p; q/–cohomology class ˛ with
pCqD j . Since hk;k.X /D 1 and since 2k � n, the Lefschetz conditions (1-3) imply
that H j ;j .X / is spanned by !j . Thus, by the Hodge–Riemann bilinear relations,
we have

˛^ x̨ D � �!j

for some � 2C�f0g. Since 2j � 2k � n, we have !2j ¤ 0. As ˛ is of odd degree,
this is a contradiction to the above equation and hence establishes the lemma.

Proof of Proposition 28 Let X be a smooth complex projective threefold with

h1;1.X /D 1:

The Riemann–Roch formula in dimension three says that

(11-1) c1.X /c2.X /D 24�.X;OX /:

By Lemma 29 we have h1;0.X /D h0;1.X /D 0. From the exponential sequence, it
therefore follows that X has Picard number one and hence the canonical class KX

of X is either ample, antiample or numerically trivial.

If �KX is ample, then h2;0 and h3;0 vanish.
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If KX is numerically trivial, then (11-1) shows that 1Ch2;0D h3;0 . Since numerically
trivial line bundles have at most one nontrivial section, we deduce h2;0 D 0 and
h3;0 D 1.

If KX is ample, then Yau’s inequality holds [22]:

(11-2) c1.X /c2.X /�
3
8
c3

1.X /:

Together with (11-1), this implies

(11-3) �.X;OX /�
1

64
c3

1.X / < 0:

Thus �c3
1
.X / can be bounded from above in terms of h3;0� h2;0 and hence Kollár–

Matsusaka’s theorem (see Lazarsfeld [14, page 239]) yields that only finitely many
deformation types of threefolds with h1;1 D 1, h3;0 > 1 and h3;0 � h2;0 bounded
from above exist. Furthermore, (11-3) shows that 1C h2;0 < h3;0 holds for any such
threefold.

Altogether, this proves firstly h2;0 <max.h3;0; 1/, and secondly that KX is antiample
if h3;0 D 0, it is numerically trivial if h3;0 D 1 and it is ample if h3;0 > 1.

Finally, let us assume that h3;0 > 1 or h2;0 > 0. Then KX is ample so Fujita’s
conjecture predicts that 6 �KX is very ample; see [14, page 252]. Although this
conjecture is still open, Lee proves in [15] that 10 �KX is very ample. Thus the
following argument due to Catanese and Schneider [4] applies. Firstly, the linear series
j10 �KX j embeds X into some PN and hence �X .20 �KX / is a quotient of �PN .2/

restricted to X . Since the latter is globally generated, it is nef and hence �X .20 �KX /

is nef. Secondly, by Demailly, Peternell and Schneider [8, Corollary 2.6], any Chern
number of a nef bundle F on an n–dimensional smooth complex projective variety X

is bounded from above by cn
1
.F /. In our situation, this yields

(11-4) c3.�
1
X .20 �KX //� c3

1.�
1
X .20 �KX //:

A standard computation gives

c3.�
1
X .20 �KX //D�8400 � c3

1.X /� 20 � c1.X /c2.X /� c3.X /;

c3
1.�

1
X .20 �KX //D�613

� c3
1.X /:

Together with Yau’s inequality (11-2), this yields in (11-4) that

(11-5) 1748588 � c1.X /c2.X /� 3 � c3.X /:

By the Riemann–Roch formula, this inequality is in fact one between the Hodge
numbers of threefolds with ample canonical bundle. In our case, h1;1D 1 and h1;0D 0
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yield
6994346C 6994346 � h2;0

C 3 � h2;1
� 6994349 � h3;0:

Thus, a rough estimation yields

h2;1 < 126
� h3;0:

This concludes the proof of the proposition.

Remark 30 Instead of using [8], but still relying on [15], Chang and Lopez prove
in [6] that there is a computable constant C > 0 such that C � c1.X /c2.X / � c3.X /

holds for all threefolds X with ample canonical bundle. Computing C explicitly shows
that it is about four times smaller than the analogous constant which appears in (11-5).
However, since the explicit extraction of C is slightly tedious and since this constant
is still far from being realistic, we did not try to carry this out here.

Using Proposition 28 together with the classification of Fano threefolds in Iskovkikh and
Prokhorov [10, page 215], we obtain the following classification of Hodge diamonds
of threefolds with h1;1 D 1 and h3;0 D 0.

Corollary 31 Let hp;q be the Hodge numbers of a smooth complex projective three-
fold with h1;1 D 1 and h3;0 D 0. Then h1;0 and h2;0 vanish, and for h2;1 precisely
one of the following values occurs:

h2;1
2 f0; 2; 3; 5; 7; 10; 14; 20; 21; 30; 52g:

12 Fourfolds with h1;1 D 1

Here we show that in dimension four, the constraints which classical Hodge theory
puts on the Hodge numbers of smooth complex projective varieties are not complete.

Proposition 32 Let X be a smooth complex projective fourfold with Hodge numbers
hp;q WD hp;q.X /. If h1;1 D 1, then h1;0 D 0 and for bounded h2;0 , h4;0 and h2;2 ,
only finitely many values for h3;0 , h2;1 and h3;1 occur.

Since Kähler manifolds with b2D 1 are projective, Proposition 32 implies immediately
that even for the Betti numbers of Kähler manifolds, the known constraints are not
complete.

Corollary 33 Let X be a Kähler fourfold with b2.X /D 1. Then b3.X / is bounded
in terms of b4.X /.
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Proof of Proposition 32 Let X be a smooth complex projective fourfold with Hodge
numbers hp;q and Chern numbers c4

1
; c2

1
c2; : : : ; c4 . Suppose that h1;1 D 1 and that

h2;0 , h4;0 and h2;2 are bounded. Then Lemma 29 shows h1;0 D 0. Moreover:

Lemma 34 The following inequality holds:

224C 228h2;0
� 224h3;0

C h2;2
� 2h3;1

C 226h4;0
�

1
3
� .4c2

1c2� c4
1/:

Proof Since h1;1 D 1, we see that c2.X / D � � !2 C ˛ , where ˛ is a primitive
.2; 2/–class and ! the Kähler class on X . Since ! and c2.X / are real cohomology
classes, we obtain

˛� x̨ D �.��x�/ �!2:

In this equation, the left-hand side is primitive. However, no nonzero multiple of !2 is
primitive and we conclude ˛ D x̨ and � 2R. Thus, by the Hodge–Riemann bilinear
relations, we have Z

X

˛^ x̨ D

Z
X

˛2
� 0:

This implies, since ˛^! D 0 and � 2R, that

(12-1)
Z

X

c2.X /
2
D

Z
X

.�2!4
C 2� �!2

^˛C˛2/� 0:

Let us now use the formula, due to Libgober and Wood [16],

(12-2) c1c3 D 12�2
� 36�3

C 72�4
� 14c4;

where �p D
P

q.�1/qhp;q . By the Riemann–Roch theorem and (12-1), we also have

�4
D

1
720
.�c4C c1c3C 3c2

2 C 4c2
1c2� c4

1/�
1

720
.�c4C c1c3C 4c2

1c2� c4
1/:

Using Libgober and Wood’s expression for c1c3 , this reads

�4
�

1
720
.�15c4C 12�2

� 36�3
C 72�4

C 4c2
1c2� c4

1/:

Finally, expressing the topological Euler characteristic c4 as well as all the �p in terms
of Hodge numbers, one obtains the inequality, claimed in the lemma.

Since h1;1D 1 and h1;0D 0, we see that X has Picard number one. Thus the canonical
class KX is either antiample, numerically trivial or ample.

In fixed dimension, there are only finitely many deformation types of smooth complex
projective varieties with antiample canonical class; see Kollár, Miyaoka and Mori [12].
Since deformation equivalent varieties have the same Hodge numbers [21, page 235],
the proposition is true in this case.

If KX is numerically trivial, then Lemma 34 implies that h3;0 and h3;1 are bounded.
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Moreover, Libgober and Wood’s formula (12-2) shows that

52C 40h2;0
� 4h2;1

� 2h2;2
� 52h3;0

C 8h3;1
C 44h4;0

D 0:

Since we already know that apart from h2;1 all Hodge numbers in the above identity
are bounded, it follows that h2;1 is bounded as well.

It remains to deal with the case where KX is ample. Here, Yau’s inequality [22] holds:

c2
1c2 �

2
5
c4

1 :

Using this, we obtain from Lemma 34 that

224C 228h2;0
� 224h3;0

C h2;2
� 2h1;3

C 226h4;0
�

1
5
c4

1 :

Since h2;0 , h4;0 and h2;2 are bounded, we deduce that c4
1

is bounded from above. Thus
Kollár and Matsusaka’s theorem [14, page 239] implies only finitely many deformation
types of such fourfolds exist. As in the case of antiample canonical class, h3;0 , h2;1

and h3;1 are bounded. This concludes the proof of Proposition 32.
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