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Quasimorphisms on contactomorphism groups
and contact rigidity

MATTHEW STROM BORMAN

FROL ZAPOLSKY

We build homogeneous quasimorphisms on the universal cover of the contactomor-
phism group for certain prequantizations of monotone symplectic toric manifolds.
This is done using Givental’s nonlinear Maslov index and a contact reduction tech-
nique for quasimorphisms. We show how these quasimorphisms lead to a hierarchy
of rigid subsets of contact manifolds. We also show that the nonlinear Maslov
index has a vanishing property, which plays a key role in our proofs. Finally we
present applications to orderability of contact manifolds and Sandon-type metrics on
contactomorphism groups.
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Dedicated with gratitude to our teacher Leonid Polterovich on his 50th birthday.

1 Introduction and results

1.1 Quasimorphisms on contactomorphism groups

A quasimorphism on a group G is a function �W G!R which is a homomorphism
up to a bounded error, that is, there is D > 0 such that

(1-1) j�.ab/��.a/��.b/j �D for all a; b 2G;

and it is homogeneous if �.ak/D k�.a/ for all a2G and k 2Z. It is straightforward
to show that homogeneous quasimorphisms are conjugation-invariant and restrict to ho-
momorphisms on abelian subgroups. See Bavard [11], Calegari [25] and Kotschick [60]
for background on quasimorphisms, their connection with bounded cohomology, and
their applications to commutator length and other quantitative group-theoretic questions.
For the sake of exposition, in this paper by quasimorphism we will mean a nonzero,
homogeneous quasimorphism.

The construction and applications of quasimorphisms on infinite-dimensional groups
of symmetries have recently been a popular theme of research; see Entov [37], Fukaya,
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366 M S Borman and F Zapolsky

Oh, Ohta and Ono [49], Gambaudo and Ghys [50], Ghys [52; 53], Polterovich [76],
Shelukhin [83] and Usher [85]. One reason is that groups of diffeomorphisms are often
perfect (see Banyaga [8]), thus admit no nonzero homomorphisms to R and so one is led
to study quasimorphisms on them instead. When the group has an interesting metric such
as the hydrodynamic metric on the group of volume-preserving diffeomorphisms of a
Riemannian manifold (see Brandenbursky [22] and Brandenbursky and Shelukhin [23])
or Hofer’s metric on the Hamiltonian group of a symplectic manifold (see Entov and
Polterovich [38] and Py [77]), quasimorphisms can be used to understand the coarse
geometry of these groups. Another reason is that oftentimes quasimorphisms on the
symmetry groups of symplectic and contact manifolds lead to results on the geometry
of the underlying manifolds themselves, which is also the case in the present paper.

We will only consider contact manifolds .V; �/ where V is connected and closed,
unless stated otherwise, and � is a cooriented contact structure. We will write .V; �; ˛/
if we want to specify a choice of a coorienting contact form ˛ such that � D ker˛ . The
Reeb vector field associated to a contact form ˛ will be denoted R˛ and is uniquely
defined by

˛.R˛/D 1 and �R˛d˛ D 0:

Let Cont0.V; �/ be the identity component of the group of contactomorphisms and
denote by eCont0.V; �/ its universal cover.

Given a smooth time-dependent function hW Œ0; 1��V !R, called a contact Hamil-
tonian, there is a unique time-dependent vector field fXht

gt2Œ0;1� satisfying

(1-2) ˛.Xht
/D ht and d˛.Xht

; � /D�dht C dht .R˛/˛; where ht D h.t; � /:

The vector field fXht
g preserves � and integrates into a contact isotopy based at the

identity and denoted f�t
h
gt2Œ0;1� . This establishes a bijection, depending on the contact

form ˛ , between smooth functions hW Œ0; 1��V !R and contact isotopies based at
the identity id of V . If h;g 2 C1.V /, then

(1-3) fh;gg˛ WD �dg.Xh/C dh.R˛/g

is the contact Hamiltonian corresponding to the Lie bracket of Xh and Xg . We write z�h

for the element of eCont0.V; �/ represented by the contact isotopy f�t
h
gt2Œ0;1� . For

the constant function h D 1, the vector field X1 D R˛ is the Reeb vector field and
hence z�1 is the element generated by the Reeb flow.

Following Eliashberg and Polterovich [36] for z� 2 eCont0.V; �/ we will write id� z�
if there is a nonnegative contact Hamiltonian h such that z� D z�h in eCont0.V; �/. The
nonnegativity of h is equivalent to Xht

being nowhere negatively transverse to � , and
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Quasimorphisms on contactomorphism groups and contact rigidity 367

therefore it is independent of ˛ . This induces a reflexive and transitive relation on
eCont0.V; �/, where

(1-4) z� � z if and only if id� z��1
z ;

which is also bi-invariant [36]. The contact manifold .V; �/ is called orderable if � is
a partial order on eCont0.V; �/, that is, � is also antisymmetric.

Definition 1.1 For a quasimorphism �W eCont0.V; �/! R we define the following
properties:

(i) Monotone z� � z implies �.z�/� �. z /.

(ii) C 0 –continuous If h is a smooth contact Hamiltonian and there is a sequence
of smooth contact Hamiltonians h.n/ such that h.n/! h in C 0.Œ0; 1��V /, then
�.z�h.n//! �.z�h/.

(iii) Vanishing If U � V is an open subset and there is  2 Cont0.V; �/ with
 .U /\U D∅, then �.z�h/D 0 if supp.h/� Œ0; 1��U .

A subset S � V is displaceable if there is  2Cont0.V; �/ with  .S/\ xS D∅. Note
that the vanishing property is independent of the choice of a contact form.

1.1.1 Givental’s asymptotic nonlinear Maslov index Besides Poincaré’s rotation
number on eCont0.S1/�eDiff0.S

1/, the only previous construction of quasimorphisms
on contactomorphism groups was Givental’s asymptotic nonlinear Maslov index (see
Givental [54, Section 9]):

(1-5) �GivW eCont0.RP2d�1/!R;

with RP2d�1 being taken with the standard contact structure. Results in [54, Section 9]
imply �Giv is a homogeneous quasimorphism, as Ben Simon [12, Theorem 0.2] proved.
In Section 4.3 we will review the definition and relevant properties of Givental’s
quasimorphism and prove the following proposition.

Proposition 1.2 Givental’s quasimorphism �GivW eCont0.RP2d�1/!R is monotone,
C 0 –continuous and has the vanishing property.

For time-independent contact Hamiltonians, Givental proved [54, Corollary 3, Section 9]
that �Giv is monotone and C 0 –continuous, and as we will explain, his proofs work
in general. The vanishing property, which does not appear in [54], together with
Theorem 1.19 below, give an alternative proof of Ben Simon’s Theorem 0.6 in [12].
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1.1.2 Quasimorphisms for prequantizations of even toric manifolds A prequan-
tization of a symplectic manifold .M; !/ is a contact manifold .V; �; ˛/ with a map
� W .V; ˛/! .M; !/ defining a principal S1 –bundle such that ��! D d˛ , and the
Reeb vector field R˛ induces the free S1 –action on V , where S1 D R=„Z, „ > 0

being the minimal period of a closed Reeb orbit.

A toric symplectic manifold .M 2n; !;T / is a symplectic manifold endowed with an
effective Hamiltonian action of a torus T of dimension n. The action is induced by a
moment map M ! t� , where t� is the dual of the Lie algebra t of T , and the image
of the moment map is called the moment polytope and denoted �. If � has d facets,
then it is given by

(1-6) �D fx 2 t� j h�j ;xiC aj � 0 for j D 1; : : : ; d g;

where aj 2 R and the conormals �j 2 t are primitive vectors in the integer lattice
tZ WD ker.expW t! T /.

A symplectic manifold .M; !/ is monotone if and only if there is a positive constant
� > 0 so that Œ!�D �c1.M / 2H 2.M IR/, and for toric manifolds this is equivalent
to being able to choose the moment map so that a1 D � � � D ad D �. We call the
moment polytope � even if

Pd
jD1 �j 2 2tZ and we say that a toric manifold is even

if its associated moment polytope is even. In Section 1.6 we give examples of closed
monotone even symplectic toric manifolds. We can now formulate our main result.

Theorem 1.3 Every closed monotone even toric symplectic manifold .M; !;T / has
a prequantization . �M ; �; ˛/ for which there is a quasimorphism

�W eCont0. �M ; �/!R

that is monotone, has the vanishing property and is C 0 –continuous.

In Section 1.3 below we discuss the significance of this theorem in the context of stable
Calabi quasimorphisms on the universal cover of the Hamiltonian group of a symplectic
manifold.

Theorem 1.8 below shows how a monotone quasimorphism on eCont0.V / can induce
a monotone quasimorphism on eCont0. xV / if . xV ; x�/ is the result of performing contact
reduction on .V; �/. In Section 2.1 we will show how the even moment polytope of
a monotone toric manifold .M; !;T / naturally leads to a prequantization . �M ; �; ˛/

obtained from RP2d�1 via contact reduction. The proof of Theorem 1.3 is then given
in Section 2.2 where we apply Theorem 1.8 to Givental’s quasimorphism �Giv on
eCont0.RP2d�1/ to build the monotone quasimorphisms �W eCont0. �M ; �/!R.
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Quasimorphisms on contactomorphism groups and contact rigidity 369

Not all prequantizations � W .V; ˛/! .M; !/ of a monotone even toric symplectic
manifold .M; !/ admit nontrivial monotone quasimorphisms on eCont0.V /. This is
because if V is not orderable, then there is no monotone quasimorphism on eCont0.V /

(see Theorem 1.28 below). The basic example is the standard contact sphere S2d�1 for
d � 2, which is a prequantization of the even toric manifold CPd�1 but is not orderable.
See Section 1.5.1 for further discussion about orderability and quasimorphisms.

Remark 1.4 If � W .V; ˛/! .M; !/ is a prequantization, then for any cyclic subgroup
Zk � S1 the quotient manifold V =Zk is also a prequantization of M . Pulling
back contact Hamiltonians via the projection V ! V =Zk induces a homomorphism
eCont0.V =Zk/! eCont0.V / and therefore the quasimorphisms of Theorem 1.3 give

rise to quasimorphisms on eCont0. �M =Zk/.

Remark 1.5 There is work in progress by Karshon, Pabiniak and Sandon to generalize
Givental’s construction of the asymptotic nonlinear Maslov index, with lens spaces
being the first step. If for a prime p there is a monotone quasimorphism with the
vanishing property

�KPSW eCont0.S
2d�1=Zp/!R;

where Zp acts by multiplication by a pth root of unity, then Theorem 1.3 would
generalize to the closed monotone toric symplectic manifolds .M; !;T / whose sum
of conormals in the moment polytope satisfies

Pd
jD1 �j 2 p � tZ (see the proof of

Lemma 2.1).

1.1.3 Reduction for quasimorphisms on contactomorphism groups In [20; 21] a
procedure for pushing forward quasimorphisms on the universal cover of the Hamilton-
ian group of a symplectic manifold via symplectic reduction was developed by Borman.
In this paper we will streamline this technique and adapt it to the contact setting in
Theorem 1.8, which will be used to prove Theorem 1.3. Before we can formulate the
reduction theorem for quasimorphisms, we need the following two definitions.

Definition 1.6 For a contact manifold .V; �; ˛/, a closed submanifold Y � V trans-
verse to � is strictly coisotropic with respect to ˛ if it is coisotropic, that is, the
subbundle T Y \ � of the symplectic vector bundle .�jY ; d˛/ is coisotropic,

(1-7) fX 2 �y j �X d˛ D 0 on TyY \ �yg � TyY \ �y for all y 2 Y ,

and R˛.y/ 2 TyY for all y 2 Y , that is, the Reeb vector field is tangent to Y .
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The property of being coisotropic is independent of the contact form and, assuming
transversality, being strictly coisotropic with respect to ˛ is equivalent to

(1-8) TyY d˛
WD fX 2 TyV j �X d˛ D 0 on TyY g � TyY for all y 2 Y :

One can check that Y � .V; �/ is strictly coisotropic with respect to some contact form
if and only if Y is the diffeomorphic image of a coisotropic submanifold under the
projection SV ! V where SV is the symplectization of V .

Definition 1.7 Let �W eCont0.V; �/! R be a monotone quasimorphism. A closed
subset1 Y � V is �–subheavy if

�.z�h/D 0

whenever h is an autonomous contact Hamiltonian with hjY D 0.

Here now is the reduction theorem for quasimorphisms on contactomorphism groups,
which we will prove in Section 3. Consider the setting

(1-9) .V; �; ˛/� .Y; ˛jY /
�
�! . xV ; x�; x̨/;

where .V; �; ˛/ and . xV ; x�; x̨/ are closed contact manifolds, Y � V is a closed sub-
manifold that is strictly coisotropic with respect to ˛ , and �W Y ! xV is a fiber bundle
such that �� x̨ D ˛jY .

Theorem 1.8 In the setting (1-9) if Y �V is subheavy for a monotone quasimorphism
�W eCont0.V; �/!R, then it induces a monotone quasimorphism

(1-10) x�W eCont0. xV ; x�/!R defined by x�.z�xh/ WD �.
z�h/;

where h 2 C1.Œ0; 1��V / is any contact Hamiltonian such that hjŒ0;1��Y D �
�xh. The

vanishing property and C 0 –continuity passes from � to x�.

An example of the geometric setting seen in (1-9) arises in contact reduction (see
Geiges [51, Theorem 6]) where a compact Lie group G acts on V preserving ˛ with
moment map P W V ! g� . In this case Y DP�1.0/ is strictly coisotropic with respect
to ˛ and xV D Y=G is a contact manifold assuming G acts freely on Y . When we
prove Theorem 1.3 in Section 2.2 it will be in the case of contact reduction for torus
actions on RP2d�1 .

It should be noted that, considering more general group actions on RP2d�1 , it is possible
to construct monotone quasimorphisms with the vanishing property on prequantizations

1See Remark 1.16 regarding the closed assumption, which also applies to the definition of superheavy
sets below.
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Quasimorphisms on contactomorphism groups and contact rigidity 371

of symplectic manifolds more general than toric ones, however we shall not pursue
this direction here.

1.2 Contact rigidity

Nondisplaceability phenomena in contact manifolds is one aspect of contact rigidity and
it is much less studied than nondisplaceability in symplectic manifolds by Hamiltonian
diffeomorphisms; see Abreu, Borman and McDuff [2], Abreu and Macarini [4], Biran,
Entov and Polterovich [18], Cho [28], Entov and Polterovich [39; 42], Fukaya, Oh,
Ohta and Ono [47], McDuff [67], Wilson and Woodward [87] and Woodward [88]. As
with the symplectic setting, contact nondisplaceability goes back to a conjecture of
Arnold that for the standard contact structure on the jet space J 1N D T �N �R of
a closed manifold N , the zero section f.q; 0; 0/ j q 2 N g cannot be displaced from
the zero wall f.q; 0; z/ j q 2N; z 2 R/g by a contact isotopy and this was proved by
Chekanov [26] using generating functions. Using spectral invariants from generating
functions Zapolsky [89] proved contact rigidity for smooth and singular subsets of the
standard contact T �N�S1 . Floer-theoretic methods have also been used by Eliashberg,
Hofer and Salamon [34] and Ono [74] to detect nondisplaceable submanifolds in unit
cotangent bundles of closed manifolds and in certain prequantizations. Recently sheaf-
theoretic methods have also been playing a role in symplectic and contact rigidity; see
for example Tamarkin [84] and Guillermou, Kashiwara and Schapira [55].

In the series of papers [18; 38; 39; 42] Entov and Polterovich showed how to use
the machinery of their quasimorphisms on the universal cover of the Hamiltonian
group of a symplectic manifold .M; !/ and quasistates in order to study the rigidity
of symplectic intersections. In particular in [42] they showed that there is a hierarchy
of rigid subsets in symplectic manifolds for which they introduced the terminology of
heavy and superheavy subsets.

1.2.1 Superheavy and subheavy sets for monotone quasimorphisms on ACont0

Inspired by Entov–Polterovich’s work, in this paper we will show how monotone
quasimorphisms on eCont0.V / can also be used to study the rigidity of intersections
in contact manifolds. In analogy to the terms heavy and superheavy for subsets of
symplectic manifolds, we will also show how such monotone quasimorphisms detect a
hierarchy of rigid subsets in contact manifolds, namely subheavy (defined above) and
superheavy sets:

Definition 1.9 If �W eCont0.V; �/!R is a monotone quasimorphism, then a closed
subset Y � V is �–superheavy if

�.z�h/ > 0
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for all autonomous contact Hamiltonians h 2 C1.V / such that hjY > 0.

Given a prequantization � W .V; ˛/ ! .M; !/, in Section 1.3 we will discuss how
superheavy subsets in the symplectic manifold .M; !/ are related to subheavy and
superheavy subsets of the contact manifold .V; ˛/. The basic properties of superheavy
sets in contact manifolds are given by the following proposition.

Proposition 1.10 Let �W eCont0.V; �/!R be a monotone quasimorphism.

(i) The properties �–superheavy and �–subheavy are independent of the choice of
contact form ˛ for � used to link contact Hamiltonians and contact isotopies.

(ii) If Z is �–superheavy and Z � Y , then Y is �–superheavy and likewise for
�–subheavy.

(iii) The property of being �–subheavy is preserved by elements of Cont0.V; �/, and
likewise for �–superheavy.

(iv) The entire manifold V is �–superheavy.

The next theorem and its corollary relates subheavy and superheavy sets with contact
rigidity.

Theorem 1.11 Let �W eCont0.V; �/!R be a monotone quasimorphism.

(i) All �–superheavy subsets are �–subheavy.

(ii) If Y is �–superheavy and Z is �–subheavy, then Y \Z 6D∅.

As an immediate corollary of Proposition 1.10(iii) and Theorem 1.11 we have:

Corollary 1.12 If Y �V is �–subheavy and Z�V is �–superheavy for a monotone
quasimorphism �W eCont0.V; �/!R, then the following hold:

(i) Y cannot be displaced from Z , that is,  .Y /\Z 6D∅ for all  2 Cont0.Y /.

(ii) Z is nondisplaceable, that is,  .Z/\Z 6D∅ for all  2 Cont0.Y /.

See Section 4.1 for the proofs of Proposition 1.10 and Theorem 1.11, which together with
Corollary 1.12 are analogous to the basic properties of heavy and superheavy subsets of
a symplectic manifold [42, Section 1.4]. We also have the following criterion for when
a �–subheavy set is automatically �–superheavy, which we prove in Section 4.1.

Proposition 1.13 Let �W eCont0.V; �/! R be a monotone quasimorphism and let
Y � V be a �–subheavy subset. If Y is preserved by the flow of some positive contact
vector field, then Y is �–superheavy.
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In the context of Theorem 1.8, note that Proposition 1.13 implies that the �–subheavy
subset Y � V , which is strictly coisotropic, is actually �–superheavy.

As the next theorem shows, the properties of being subheavy and superheavy are
respected by the reduction of the quasimorphisms in Theorem 1.8. Recall in Theorem 1.8
one has contact manifolds .V; �; ˛/ and . xV ; x�; x̨/ and a closed submanifold Y � V

with a fiber bundle �W Y ! xV . There are monotone quasimorphisms

(1-11) �W eCont0.V; �/!R and x�W eCont0. xV ; x�/!R

where by definition x�.z�xh/ WD �.z�h/ for any contact Hamiltonian h 2 C1.Œ0; 1��V /

that satisfies ��xhD hjŒ0;1��Y .

Theorem 1.14 For monotone, C 0 –continuous quasimorphisms from (1-11) as in
Theorem 1.8, if Z � V is �–subheavy, then �.Y \Z/ � xV is x�–subheavy and
likewise for superheavy sets.

Proof First note that since Y is �–superheavy by Proposition 1.13, there is a nontrivial
intersection Y \Z 6D∅ by Theorem 1.11 if Z is �–subheavy.

Assume Z � V is �–superheavy and let xh 2 C1. xV / be such that xhj�.Y\Z/ > 0. For
� > 0 sufficiently small, let xf 2 C1. xV / be such that xf D � in a neighborhood of
�.Y \Z/ and xh� xf . Now we can pick an extension f 2 C1.V / so that f jZ D �
and �� xf D f jY . Since Z is �–superheavy it follows that x�.z� xf /D �.z�f / > 0, and
hence by monotonicity x�.z�xh/ > 0. Therefore �.Y \Z/� xV is x�–superheavy.

Assume Z � V is �–subheavy and let xh 2 C1. xV / be such that xhj�.Y\Z/ D 0.
Pick a sequence xfn 2 C1. xV / such that there is C 0 –convergence xfn!

xh and there
are neighborhoods Nn of �.Y \ Z/ such that xfnjNn

D 0. Now pick extensions
fn 2 C1.V / so that fnjZ D 0 and �� xfn D fnjY . Since Z is �–subheavy we know

x�.z� xfn
/ WD �.z�fn

/D 0

and since x� is C 0 –continuous, it follows that x�.z�h/D 0. Therefore �.Y \Z/� xV

is x�–subheavy.

Remark 1.15 The C 0 –continuity assumption was not used to prove that superheavi-
ness descends under reduction. Also the descent for subheaviness holds without the
C 0 –continuity assumption if Z intersects Y sufficiently nicely, for instance if there is
a small tubular neighborhood prW U ! Y of Y such that pr jU\Z W U \Z! Y \Z

is a fiber bundle. However in general it is not possible to find a smooth extension h of
��xh with hjZ D 0, which we get around by using the C 0 –continuity assumption.
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Remark 1.16 We only consider closed subsets in the hierarchy of subheavy and super-
heavy subsets, and for instance we use this assumption in our proofs of Theorem 1.11
and Proposition 1.13. Of course it is possible to extend the definitions and the theorems
to arbitrary subsets via closure, but we have suppressed this for the sake of exposition.

1.2.2 Rigid Legendrians and pre-Lagrangians As demonstrated by previous work
in contact rigidity by Eliashberg [33] and [34; 74; 36] two important classes of
submanifolds in contact manifolds are Legendrians and pre-Lagrangians. Recall
(see [34, Section 2.2]) that a pre-Lagrangian submanifold Y nC1 � .V 2nC1; �/ is
one such that Y is transverse to � and there is a contact form ˛ such that d˛jY D 0,
that is, Y is a strictly coisotropic submanifold of minimal dimension. An equivalent
definition from [34, Proposition 2.2.2] is that Y is the diffeomorphic image of a
Lagrangian under the projection SV ! V , where SV is the symplectization of V .
A nice class of examples is as follows: for a prequantization � W .V; ˛/! .M; !/

and a Lagrangian L �M , the submanifold ��1.L/ � V is pre-Lagrangian. Note
that Proposition 1.13 implies every closed subheavy pre-Lagrangian submanifold is
superheavy.

As we will see from our examples of subheavy and superheavy subsets of contact
manifolds in Section 1.4, prototypically a subheavy submanifold is a Legendrian and
a superheavy submanifold is a pre-Lagrangian. In particular in Corollary 1.26 we
explicitly identify a �–subheavy Legendrian submanifold and a �–superheavy pre-
Lagrangian torus for each of the quasimorphisms in Theorem 1.3. For the case of
Givental’s quasimorphism on RP2d�1 , a �Giv –subheavy Legendrian is

RPd�1
L WD fŒz� 2RP2d�1

j z 2Rd
g

and a �Giv –superheavy pre-Lagrangian torus is

TRP WD fŒz� 2RP2d�1
j jz1j

2
D � � � D jzd j

2
D 1=�g;

where we are viewing RP2d�1 as the quotient of the sphere S2d�1 � Cd with
radius

p
d=� . See Lemmas 1.23 and 1.22 for the proofs.

More generally we have the following existence theorem for nondisplaceable pre-
Lagrangian tori, analogous to Entov and Polterovich’s proof [39, Theorem 2.1] of the
existence of nondisplaceable Lagrangians in closed toric symplectic manifolds.

Theorem 1.17 If �W eCont0.V; �/!R is a monotone quasimorphism with the vanish-
ing property and .V; ˛/ is a prequantization of a closed toric manifold .M; !/, then V

contains a nondisplaceable pre-Lagrangian torus.

See Section 4.1 for the proof of Theorem 1.17.
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1.3 Quasimorphisms on AHam.M / and symplectic quasistates

For a closed symplectic manifold .M; !/, a smooth Hamiltonian F W Œ0; 1��M !R
induces a time-dependent vector field fXFt

gt2Œ0;1� by

(1-12) �XFt
! D�dFt ; where Ft D F.t; � /:

Integrating XFt
gives a Hamiltonian isotopy f�t

F
gt2Œ0;1� of M based at id the identity

of M and these are in bijection with smooth Hamiltonians F W Œ0; 1��M !R normal-
ized so

R
M Ft!

n D 0 for all t 2 Œ0; 1�. The Hamiltonian group Ham.M / is the set of
time-one maps �1

F
of such Hamiltonian isotopies and eHam.M / is its universal cover.

We write z�H for the element of eHam.M / represented by the Hamiltonian isotopy
f�t

H
gt2Œ0;1� . For normalized functions H;G 2 C1.M / their Poisson bracket

(1-13) fH;Gg! WD !.XG ;XH /D�dG.XH /

is the Hamiltonian whose vector field is the Lie bracket of XH and XG . A subset
S �M is displaceable if there is � 2 Ham.M / so that �.S/\ xS D∅.

For a quasimorphism �M W
eHam.M /!R one defines the following two properties

(see [38] and Entov, Polterovich and Zapolsky [45]):

(i) Stable For normalized Hamiltonians H;GW Œ0; 1��M !R,

(1-14)
Z 1

0

min
M
.Ht �Gt / dt �

�M .z�G/��M .z�H /

Vol.M /
�

Z 1

0

max
M
.Ht �Gt / dt;

where Vol.M /D
R

M !n .

(ii) Calabi If U �M is an open displaceable subset and if H W Œ0; 1��M ! R
has support in Œ0; 1��U , then

�M .z�H /D CalU .z�H / WD

Z 1

0

Z
U

Ht!
n dt:

Such quasimorphisms were constructed by Entov and Polterovich in [38] using spectral
invariants in Hamiltonian Floer theory and their construction has been refined and
extended in Entov and Polterovich [40], Lanzat [64; 62; 63], Monzner, Vichery and
Zapolsky [71], Ostrover [75] and [49; 85].

On a closed symplectic manifold .M; !/ a quasistate is a functional �W C1.M /!R
satisfying the following properties for all H;K 2 C1.M /:

(i) Monotone If H �K , then �.H /� �.K/.

(ii) Normalized �.1/D 1.

(iii) Quasilinearity If fH;Kg! D 0, then �.H CK/D �.H /C �.K/.
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These quasistates are the symplectic version of Aarnes’ notion of topological quasistate
[1]. As established in [39], every stable quasimorphism �M W

eHam.M /!R induces
a quasistate ��M

W C1.M /!R defined by

(1-15) ��M
.H / WD

R
M H!n��M .z�H /

Vol.M /
:

Such quasistates are Ham.M /–invariant. If �M also has the Calabi property, then ��M

has the vanishing property, that is, �.H /D 0 whenever supp.H /�M is displaceable.

Definition 1.18 Let �W C1.M /!R be a quasistate on a closed symplectic manifold
.M; !/. A closed subset X �M is �–superheavy if

(1-16) min
X

H � �.H /�max
X

H

for all H 2 C1.M /.

This definition was introduced in [42] and �–superheavy sets X �M are nondisplace-
able when � is Ham.M /–invariant, by [42, Theorem 1.4]. See [18; 45; 49], Buhovsky,
Entov and Polterovich [24], Entov and Polterovich [39; 41; 42; 43], Entov, Polterovich
and Py [44] and Khanevsky [58] for various applications of Entov–Polterovich’s
quasimorphisms and quasistates.

Recall that for a prequantization � W .V; ˛/! .M; !/ one has the following central
extension of Lie algebras:

0!R! .C1.V /S
1

; f � ; � g˛/! .C1.M /=R; f � ; � g!/! 0:

Here C1.V /S
1

'C1.M / is the set of S1 –invariant functions on V and C1.M /=R
is canonically the Lie algebra of Ham.M /. When M is closed this sequence has a
unique splitting by the Lie algebra homomorphism

� W C1.M /=R! C1.V /S
1

given by H 7! ��H �

R
M H!n

Vol.M /

and � induces a homomorphism

(1-17) ��W eHam.M /! eCont0.V /; where ��.z�H /D z��.H /:

See Ben Simon [13, Section 1.3] for more details on this point and in particular a proof
that (1-17) is a homomorphism.

We now have the following result, generalizing Ben Simon [12], which uses the
homomorphism (1-17) to relate quasimorphisms on eCont0 and eHam . Recall that we
denote z�1 2

eCont0.V / to be the element generated by the Reeb vector field R˛ .
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Theorem 1.19 Let � W .V; ˛/! .M; !/ be a prequantization of a closed symplectic
manifold and let �W eCont0.V /!R be a monotone quasimorphism, then

(1-18) �M WD �
Vol.M /

�.z�1/
.� ı��/W eHam.M /!R

is a stable quasimorphism. The quasistate associated to �M from (1-15) has the form

��M
.H / WD

�.z���H /

�.z�1/
:

If � has the vanishing property, then �M has the Calabi property and ��M
has the

vanishing property.

A historical remark is in order. While Givental [54] applied his quasimorphism to
various contact rigidity phenomena on RP2d�1 , such as the existence of Reeb chords,
it was first in the symplectic setting that Entov and Polterovich developed a systematic
approach to use their quasimorphisms in order to study symplectic rigidity. However,
as Theorem 1.19 shows, for prequantizable symplectic manifolds, quasimorphisms on
eCont0 are potentially more fundamental objects than quasimorphisms on eHam . A

related question is if it is possible to obtain one of Entov–Polterovich’s quasimorphisms
on eHam.M / from a quasimorphism on eCont0.V / via Theorem 1.19, and this is open
even for the case of the prequantization RP3!CP1 .

The following proposition shows how the Entov–Polterovich notion of superheaviness
(1-16) with respect to a symplectic quasistate on .M; !/ is related to sub- and super-
heaviness with respect to a quasimorphism on eCont0.V / when � W .V; ˛/! .M; !/

is a prequantization.

Proposition 1.20 If � W .V; ˛/! .M; !/ is a prequantization, �W eCont0.V /!R is
a monotone quasimorphism and �M W

eHam.M /!R is the quasimorphism induced
according to Theorem 1.19, then we have the following:

(i) If Y � V is �–subheavy, then �.Y /�M is ��M
–superheavy.

(ii) If X �M is ��M
–superheavy, then ��1.X /� V is �–superheavy.

Theorem 1.19 and Proposition 1.20 are proved in Section 4.2.

Given a collection .H1; : : : ;Hk/ of pairwise Poisson commuting Hamiltonians on M ,
organized as a map ˆW M !Rk , in [39] Entov and Polterovich defined a fiber ˆ�1.p/

to be a stem if every other fiber ˆ�1.q/�M was displaceable. They proved in [42, The-
orem 1.8] that a stem X � M is superheavy with respect to any quasistate with
the vanishing property. Using Theorem 1.19 and Proposition 1.20 we now have
the following corollary for any prequantization � W . �M ; ˛/! .M; !/ and monotone
quasimorphism �W eCont0. �M /!R with the vanishing property:
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Corollary 1.21 If X � .M; !/ is a stem, ��1.X /� �M is �–superheavy.

Stems can be very singular subsets, an example being the product of 1–skeletons of
fine triangulations of 2–spheres [39, Corollary 2.5].

1.4 Examples of contact rigidity

In this subsection we will present concrete examples of subheavy and superheavy
subsets of contact manifolds.

1.4.1 Examples using Givental’s quasimorphism We will start with the rigidity
results that just use Givental’s monotone quasimorphism �GivW eCont0.RP2d�1/!R.
For us it will be convenient to introduce the following models of the standard con-
tact S2d�1 and RP2d�1 . For  D .1; : : : ; d / 2Nd , consider the sphere

(1-19) S2d�1
 D

�
z 2Cd

ˇ̌̌̌
�

dX
jD1

j jzj j
2
D

dX
jD1

j

�
with the contact form given by the restriction of

(1-20) ˛std D
1

2

dX
jD1

.xj dyj �yj dxj /

to S2d�1
 with Reeb flow

(1-21) �t
R
.z1; : : : ; zd /D .e

2�i1t=dz1; : : : ; e
2�id t=dzd /:

For the antipodal Z2 –action on Cd , let

(1-22) .RP2d�1
 ; � / WD .S

2d�1
 =Z2; ker˛std/:

Note when  D .1; : : : ; 1/ that .RP2d�1
 ; � / is the standard model for .RP2d�1; �/,

so we will drop the reference to  in this case. Via radial projection z 7! .
p

d=
p
�/ z
jzj

,
which induces a contactomorphism

(1-23) r W .RP2d�1
 ; � /! .RP2d�1; �/;

we have Givental’s quasimorphism �GivW eCont0.RP2d�1
 /!R for any  2Nd .

Lemma 1.22 The torus

(1-24) TRP WD fŒz� 2RP2d�1
 j jz1j

2
D � � � D jzd j

2
D 1=�g �RP2d�1



is �Giv –superheavy.
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Proof of Lemma 1.22 Since the radial projection (1-23) preserves TRP , it suffices to
show TRP �RP2d�1 is �Giv –superheavy. For

CPd�1
D

�
Œz1 W � � � W zd �

ˇ̌̌̌
�
X
jzj j

2
D d

�
;

consider the prequantization � W RP2d�1! CPd�1 . Using the Hamiltonian U.d/–
action on CPd�1 , the Clifford torus Td�1

Clif WD �.TRP/ can be shown to be a stem;
see [18, Lemma 5.1]. Since �Giv has the vanishing property by Proposition 1.2, it
follows from Corollary 1.21 that TRP is �Giv –superheavy.

Lemma 1.22 will play a large role in our proof of Theorem 1.3 for it will ensure we
are applying Theorem 1.8 to a �Giv –superheavy subset.

While by Theorem 1.11 it is impossible for a Legendrian submanifold to be superheavy,
since they are always displaceable (for instance by an arbitrarily small positive contact
isotopy), it is possible for a Legendrian to be subheavy as the next example shows. The
proof is given in Section 4.3.

Lemma 1.23 The standard Legendrian

(1-25) RPd�1
L WD fŒz� 2RP2d�1

 j z 2Rd
g �RP2d�1



is �Giv –subheavy.

Once we take the orbit of RPd�1
L

under the Reeb flow, which is a closed subset since
the Reeb flow is periodic, we get the following immediate corollary of Lemma 1.23
and Proposition 1.13.

Corollary 1.24 The subset

(1-26) L WD
[
t2R

�t
R
.RPd�1

L /� .RP2d�1
 ; � /

is �Giv –superheavy.

Corollary 1.24 can be used to prove rigidity in weighted complex projective spaces.
Recall for a primitive vector  2Nd that the weighted complex projective space CP. /
is the symplectic orbifold obtained as the quotient of S2d�1

 by the Reeb flow (1-21). A
Hamiltonian isotopy of CP. / is by definition an isotopy that lifts to a contact isotopy
of S2d�1

 preserving the contact form. If the fixed point set of the involution on CP. /
induced by complex conjugation on Cd is

RP. /�CP. /
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and we have

TCP WD fŒz� 2CP. / j jz1j
2
D � � � D jzd j

2
D 1=�g �CP. /;

then we have the following proposition.

Proposition 1.25 If for a primitive vector  D .1; : : : ; d /2Nd each j is odd, then

RP. /\ .RP. // 6D∅; RP. /\ .TCP/ 6D∅; TCP\ .TCP/ 6D∅;

for all Hamiltonian isotopies  of CP. /.

Proof The fact that all j are odd is equivalent to the time t D 1
2

Reeb flow (1-21)
being the antipodal map on S2d�1

 . Therefore if each j is odd, then the quotient map
S2d�1
 !CP. / factors through the projection map

� W RP2d�1
 !CP. /

and hence any Hamiltonian isotopy of CP. / lifts to a contact isotopy of RP2d�1
 .

By the definitions, under the projection map �.L / � RP. / and �.TRP/ D TCP .
Since L and TRP are �Giv –superheavy by Lemmas 1.24 and 1.22 it follows from
Theorem 1.11 that both L and TRP are nondisplaceable and cannot be displaced
from each other by a contact isotopy. Therefore the same holds for RP. / and TCP

for Hamiltonian isotopies.

Nondisplaceability of TCP �CP. / for any primitive  2Nd was proved by Wood-
ward [88] and Cho and Poddar [30]. Nondisplaceability of RP. / for an odd primitive
vector  was previously proved by Lu [66].

1.4.2 Examples using the quasimorphisms from Theorem 1.3 In the proof of
Theorem 1.3 in Section 2 we will apply Theorem 1.8 to Givental’s quasimorphism to
build �. In particular, for an appropriate primitive vector  2Nd , in Section 2.2 we
present the prequantization . �M ; ˛/ in the setting (1-9) of Theorem 1.8:

(1-27) .RP2d�1
 ; � ; ˛std/� .Y; ˛stdjY /

�
�! . �M ; �; ˛/;

where Y is a �Giv –superheavy submanifold containing TRP and � WD x�Giv is the
reduction of Givental’s quasimorphism. For the torus TRP and standard Legendrian
RPd�1

L
in RP2d�1

 from (1-24) and (1-25) define the following two subsets of �M :

(1-28) T �M WD �.TRP/ and �MR WD �.Y \RPd�1
L /:

Note that T �M is a pre-Lagrangian torus while �MR is Legendrian. We now have the
following corollary.
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Corollary 1.26 For a quasimorphism �W eCont0. �M / ! R from Theorem 1.3, the
pre-Lagrangian T �M is �–superheavy and the Legendrian �MR is �–subheavy.

Proof This follows directly from Theorem 1.14, and Lemmas 1.22, and 1.23.

The next result concerns rigidity for the real part MR � .M; !/ of a symplectic toric
manifold, which is characterized as the fixed point set of the antisymplectic involution
that preserves the moment map. Using the prequantization � W . �M ; ˛/! .M; !/ we
construct in Section 2.1 for a monotone even toric manifold, the real part of M can be
identified with

MR WD �. �MR/;

where �MR �
�M is from (1-28). For the quasimorphism �W eCont0. �M /! R from

Theorem 1.3, let ��M
W C1.M /!R be the induced symplectic quasistate on .M; !/

from Theorem 1.19.

Proposition 1.27 The real part MR � .M; !/ of a monotone even toric symplectic
manifold is ��M

–superheavy and hence nondisplaceable.

Proof Using �MR is �–subheavy by Corollary 1.26 it follows MR D �. �MR/ is
��M

–superheavy by Proposition 1.20 and therefore is nondisplaceable.

Haug [56] proved the nondisplaceability part of Proposition 1.27 without the even
assumption using Biran and Cornea’s Lagrangian quantum homology [16; 17].

Similarly the central toric fiber TM � .M; !/ of a monotone even toric manifold
is nondisplaceable and cannot be displaced from the real part MR . This is because
��1.TM /DT �M so Proposition 1.20 and Corollary 1.26 imply TM is ��M

–superheavy.
The nondisplaceability now follows from [42, Theorem 1.4]. These results have been
established by various authors; see [4; 39], Alston and Amorim [7], Cho [29], and
Fukaya, Oh, Ohta and Ono [48]. In particular Abreu and Macarini [4] showed how
simple previous nondisplaceability results in CPn can be combined with symplectic
reduction to prove nondisplaceability for TM and the pair .TM ;MR/, but could not
prove MR was nondisplaceable.

1.5 Orderability and metrics on ACont0

Recall from Section 1.1 that a contact manifold .V; �/ is orderable if eCont0.V; �/ is
partially ordered by the relation � from (1-4).
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1.5.1 Orderability for contact manifolds and quasimorphisms There has been
a fair amount of research concerning orderability of contact manifolds. Since we
are mainly dealing with closed contact manifolds, let us give examples of orderable
and nonorderable closed contact manifolds. Eliashberg, Kim and Polterovich prove
in [35] that the ideal contact boundary of a sufficiently subcritical Weinstein manifold
is not orderable. In particular the standard contact spheres S2d�1 are not orderable
for d � 2. Cosphere bundles of closed manifolds are known to be orderable (see
Albers and Frauenfelder [5], Chernov and Nemirovski [27] and [35; 36]) and more
generally Albers and Merry proved in [6] that Liouville-fillable contact manifolds with
nonvanishing Rabinowitz Floer homology are orderable. Using the connection between
orderability and contact squeezing developed by Eliashberg, Kim and Polterovich [35],
Milin [70] and Sandon [81] proved that lens spaces are orderable.

In [36, Section 1.3.E] Eliashberg and Polterovich proved that RP2d�1 is orderable
using Givental’s quasimorphism �Giv . Their argument works in general and implies
the following.

Theorem 1.28 [36] A contact manifold .V; �/ is orderable if there is a monotone
quasimorphism � on eCont0.V; �/.

Proof By [36, Criterion 1.2.C] to prove .V; �/ is orderable it suffices to prove for any
contact Hamiltonian with h> 0 on Œ0; 1��V that

z�h 6D id in eCont0.V; �/:

Since �.id/D 0, we are done because for any such contact Hamiltonian �.z�h/ > 0

by Proposition 1.10(iv).

Corollary 1.29 The contact manifolds . �M ; �/ in Theorem 1.3 are orderable.

Recall that the contact manifolds . �M ; �/ are obtained from contact reduction of
RP2d�1 , which is of course orderable. It would be interesting to prove Corollary 1.29
directly, that is, to prove orderability persists under contact reduction.

By Theorem 1.28, orderability is a necessary condition for the existence of a nonzero ho-
mogeneous monotone quasimorphism on eCont0.V /. However in general the converse
is not well understood and potentially is a delicate question, which we will illustrate
with the following examples regarding R2n�S1 and its group of compactly supported
contactomorphisms Contc0.R

2n �S1/, where the contact form is ˛stdC dt and dt is
the angular form on S1 DR=Z.
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Assumption 1.30 The contactomorphism groups Contc0.V / and eCont
c

0.V / are per-
fect for every contact manifold .V; �/.

A proof of Assumption 1.30 appears in Rybicki [78].

Example 1.31 Sandon has proved [79; 80] that R2n � S1 is orderable, that is,
that the Eliashberg–Polterovich relation (1-4) is indeed a partial order on the group
eContc

0
.R2n � S1/, and also proved it induces a partial order on Contc0.R

2n � S1/.
However Contc0.R

2n�S1/ and eCont
c

0.R
2n�S1/ do not admit non-zero homogeneous

quasi-morphisms, due to a general argument of Kotschick [61, Theorem 4.2] together
with Assumption 1.30.

Example 1.32 Consider now the domain B2n
R
�S1 , where

B2n
R WD fz 2Cn

j �jzj2 <Rg:

Since R2n�S1 is contactomorphic to B2n
1
�S1 by [35, Proposition 1.24], Example 1.31

indicates eContc
0
.B2n

1
�S1/ does not admit a nonzero homogeneous quasimorphism.

On the other hand, eContc
0
.B2n

R
�S1/ admits a nonzero homogeneous quasimorphism

whenever 2n=.nC 1/ <R< 2. When R< 2 we have the contact embedding

(1-29) ˆW B2n
R �S1

!RP2nC1 given by .z; t/ 7! e�it

r
nC 1

2

�
z;

r
2

�
� jzj2

�
written as a map to S2nC1Dfz 2CnC1 j�jzj2D nC1g from (1-19); where t 2 Œ0; 1/.
When R>2n=.nC1/, one can check the image ˆ.B2n

R
/ contains the �Giv –superheavy

torus TRP �RP2nC1 from Lemma 1.22 and hence one can use ˆ to pullback �Giv to
a nonzero homogeneous quasimorphism on eContc

0
.B2n

R
�S1/.

The reader is also referred to Ben Simon and Hartnick’s work [14; 15] regarding a
general connection between quasimorphisms and partial orders.

1.5.2 Sandon-type metric In [79] Sandon introduced an unbounded integer-valued
conjugation-invariant norm on Contc0.R

2n �S1/, the identity component of the group
of compactly supported contactomorphisms of R2n �S1 , and such norms have been
further studied in [6; 89], by Colin and Sandon [31], and Fraser, Polterovich and
Rosen [46]. In what follows we will consider the norm � defined in [46], whose
definition we will now recall.

Consider any orderable contact manifold .V; �/ for which there is a positive contact
Hamiltonian f > 0 such that z�f is in the center of eCont0.V /. Examples of this are
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given by orderable contact manifolds with a periodic Reeb flow, for instance RP2d�1

or any of the contact manifolds �M from Theorem 1.3. The functionals on eCont0.V /,

��. z / WDmax
˚
n 2 Z j z�

n
f �
z 
	

and �C. z / WDmin
˚
n 2 Z j z � z�

n
f

	
;

are conjugation-invariant, since z�f is in the center of eCont0.V /, and

�W eCont0.V /! Z; where �.z�/ WDmax
˚ˇ̌
�C.z�/

ˇ̌
;
ˇ̌
��.z�/

ˇ̌	
;

defines a conjugation-invariant norm, by [46, Theorem 2.4]. Using z�f is generated by
a strictly positive contact Hamiltonian, it is easy to see from [36, Criterion 1.2.C] that
�.z�

n
f /D jnj for any n 2 Z and hence � is stably unbounded. This norm is related to

monotone quasimorphisms on eCont0.V / as follows:

Lemma 1.33 If �W eCont0.V /!R is a monotone quasimorphism, thenˇ̌
�. z /

ˇ̌
� �.z�f /�. z /:

Note that �.z�f / > 0 since �¤ 0.

Proof By the definition of �˙ and the fact that � is monotone and homogeneous,

��. z /�.z�f /� �. z /� �C. z /�.z�f /;

from which the result follows.

Next we show the above norm is unbounded on subgroups of eCont0.V / associated
to certain open subsets. For an open subset U � V let eCont0.U /� eCont0.V / be the
subgroup consisting of elements z�h where the Hamiltonian h has compact support
contained in U .

Theorem 1.34 If U � V is an open subset containing a �–superheavy subset, then
there is z 2 eCont0.U / with

lim
n!1

�. z 
n
/

n
> 0;

that is, � is stably unbounded on eCont0.U /.

Proof By the above lemma we have

�. z /�
j�. z /j

�.z�f /
;

therefore it suffices to produce an element z 2 eCont0.U / with �. z /¤ 0. If h is such
that the restriction of h to the superheavy subset is positive and supp.h/ � U , then
since by definition �.z�h/ > 0, we are done.
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In [31], Colin and Sandon used the notion of a discriminant point to define a nondegen-
erate bi-invariant metric on eCont0.V; �/ for any contact manifold, which they called
the discriminant metric. Using the relation between Givental’s quasimorphism �Giv

with discriminant points (see Section 4.3.1 for more on this), Colin and Sandon were
able to show the discriminant metric is stably unbounded on eCont0.RP2d�1/. It
would be interesting to determine if the quasimorphism �W eCont0. �M /!R we built
in Theorem 1.3 can also be used to show the discriminant metric on eCont0. �M / is
stably unbounded.

1.6 Examples of even monotone polytopes

Moment polytopes corresponding to closed monotone symplectic toric manifolds are
known as smooth Fano polytopes. They have been classified by hand up to dimension 4

in Batyrev [9; 10], Sato [82] and Watanabe and Watanabe [86] and there is an algorithm
in Øbro [73] for higher dimensions. We give various examples of even smooth Fano
polytopes in Rn and their corresponding symplectic toric manifolds. For the polytopes
we just list the interior conormals f�j g 2 Zn , where f�1; : : : ; �ng is the standard basis.

The first example is CPn with conormals f�1; : : : ; �n;�.�1C� � �C�n/g and in dimension
two there are

CP2; CP1
�CP1; CP2 # 3CP

2
;

where the last one has conormals f˙�1;˙�2;˙.�1C �2/g. In dimension three there
are 18 smooth Fano polytopes by the classification [9; 86] and 8 are even. Four are
basic,

CP3; CP1
�CP2; .CP1/3; CP1

� .CP2 # 3CP
2
/;

and the remaining four have the structure of toric bundles (see McDuff and Tol-
man [69, Definition 3.10]):

(i) The CP1 –bundle P .C˚O.2// over CP2 with conormals

f˙�1; �2; �3; 2�1� �2� �3g:

(ii) The .CP2#2CP
2
/–bundle F4

3
(in the notation of [86]) over CP1 with conormals

f˙�1;˙�2;��1� �2; �3;��1� �2� �3g:

(iii) The CP1 –bundle P .C˚O.1; 1// over CP1 �CP1 with conormals

f˙�1; �2; �3; �1� �2; �1� �3g:

(iv) The CP1 –bundle P .C˚O.1;�1// over CP1 �CP1 with conormals

f˙�1; �2; �3; �1� �2;��1� �3g:
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�1

�2

�3

�1 �2

�3

Figure 1: On the left, we have the polytope for the .CP2 # 2CP
2
/–bundle

over CP1 in (ii). On the right, we have the polytope for the CP1 –bundle
P .C˚O.1;�1// over CP1 �CP1 in (iv).

The example in (i) generalizes to the CP1 –bundles P .C˚O.2k// over CPn where
0� 2k � n. See Figure 1 for the polytopes from (ii) and (iv).
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2 Proof of the main theorem

In this section we will present the proof of Theorem 1.3. Section 2.1 contains the
construction of the prequantization � W . �M ; ˛/! .M; !/ and Section 2.2 builds the
announced quasimorphisms �W eCont0. �M /!R using Theorem 1.8.

2.1 Constructing the family of contact manifolds

The goal of this subsection is to present the construction of a prequantization . �M ; �; ˛/

for an even closed monotone toric symplectic manifold .M; !/ with moment polytope

(2-1) �D fx 2 t� j hx; �j iC 1� 0 for j D 1; : : : ; d g

as in (1-6), where �j 2 tZ are primitive vectors and each one defines a different
facet of the polytope �. The polytope � is compact and smooth, meaning each
k –codimensional face of � is the intersection of exactly k facets and the k associated
conormals f�l1

; : : : ; �lk
g can be extended to an integer basis for the lattice tZ . In (2-1)

we have used the normalization Œ!�D c1.M / since .M; !/ is monotone and scaling
the polytope � is equivalent to scaling ! .

2.1.1 The standard toric structure on Cd and Delzant’s construction Let us
briefly recall the standard toric structure on .Cd ; !std D dx ^ dy/. The action of
Td DRd=Zd on Cd , which rotates each coordinate, is induced by the moment map

P W Cd
!Rd�; where h�;P i.z/D �

dX
jD1

�j jzj j
2 for �D .�1; : : : ; �d / 2Rd :

Indeed for � 2Rd , the vector field

(2-2) X�.z/D 2� i.�1z1; : : : ; �dzd / 2Cd
D TzCd

is the Hamiltonian vector field for the function h�;P iW Cd ! R and it gives the
infinitesimal action of � on Cd . Observe that for the 1–form

(2-3) ˛std D
1

2

dX
jD1

.xj dyj �yj dxj /;
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where d˛std D !std , one has

(2-4) ˛std.X�/D h�;P i and �X�d˛std D �X�!std D�dh�;P i:

Delzant in [32] gave a way to reconstruct a closed symplectic toric manifold from its
moment polytope using symplectic reduction of Cd , which we will now recall in the
case of the polytope � in (2-1). Define the surjective linear map

ˇ�W R
d
! t by �j 7! �j for j D 1; : : : ; d ,

where f�j gdjD1
are the standard basis vectors of Rd and �j 2 tZ are conormals in

(2-1). Since � is compact and smooth, we know ˇ�.Z
d /D tZ , and so we can define

the connected subtorus

(2-5) K� Td

to be the kernel of the induced map Œˇ��W Td ! T with Lie algebra

(2-6) k WD ker.ˇ�W Rd
! t/:

If ��W Rd�! k� is dual to the inclusion k�Rd , then the action of K on Cd has

PK WD �
�
ıP W Cd

! k�

for its moment map. The torus K acts freely on the regular level set

(2-7) P�1
K .c/�Cd ; where c WD ��.1; : : : ; 1/ 2 k�;

and for � 2 k it follows from (2-4) that .LX�!std/jP�1
K .c/ D 0. Therefore symplectic

reduction gives a symplectic manifold .M�; !�/ where

(2-8) M� WD P�1
K .c/=K;

and the symplectic form !� is induced from !stdjP�1
K .c/ . It follows from Delzant’s

theorem [32] that .M�; !�/ and .M; !/ are equivariantly symplectomorphic as toric
manifolds.

The following lemma that shows the significance of the assumption that � is an even
moment polytope.

Lemma 2.1 Let � 2Td be the element such that � � z D�z for z 2Cd . The torus K
from (2-5) contains the element � if and only if � is even.

Proof Note that � D
�

1
2
; : : : ; 1

2

�
in Td DRd=Zd and therefore since T D t=tZ it is

clear from (2-5) that � 2K if and only if
Pd

jD1
1
2
�j 2 tZ .
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2.1.2 The contact manifold .cM ; �/ from Delzant’s construction of .M; !/ Us-
ing Delzant’s construction we will now describe the contact manifold . �M ; �/ associated
to an even monotone symplectic toric manifold with moment polytope (2-1). Define

k0 WD ker.cW k!R/

to be the annihilator of the linear functional c D ��.1; : : : ; 1/ 2 k� from (2-7) and

(2-9) K0 �K

to be the connected codimension-1 subtorus with Lie.K0/D k0 . Since � in (2-1) is
an even moment polytope, by Lemma 2.1 we know K0C h�i � K, where h�i � K
is the subgroup generated by � . Therefore K0Ch�i also acts freely on the level set
P�1

K .c/ from (2-7).

The contact manifold . �M ; � D ker˛/ is given by

(2-10) �M WD P�1
K .c/=.K0Ch�i/

and the contact form ˛ , which is induced from ˛stdjP�1
K .c/ , is well-defined because

the infinitesimal action of K0 is tangent to ker˛std along P�1
K .c/, which follows from

(2-4). For the circle S1 DK=.K0Ch�i/, the natural projection map

(2-11) � W . �M ; ˛/! .M�; !�/

defines a principal S1 –bundle and satisfies ��!�D d˛ since !stdD d˛std . Therefore
by using a symplectomorphism .M�; !�/' .M; !/, we have that (2-11) is the desired
prequantization in Theorem 1.3.

We will now present a formula for the period of the Reeb vector field of . �M ; ˛/ and
hence the Euler class e.�/ 2H 2.M IZ/ of the principal S1 –bundle (2-11). For the
functional cW k!R from (2-7), let

ck 2 Z

be the positive generator of the image c.kZ/� Z of the integer lattice kZ WD k\Zd

and let

(2-12) ı WD

�
1 if � 2K0;

2 if � 62K0:

Proposition 2.2 The Reeb vector field for . �M ; ˛/ has period ck=ı and the Euler class
of � W . �M ; ˛/! .M; !/ equals

e.�/D�
ı

ck
c1.M / 2H 2.M IZ/:
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Proof Recall for a principal S1 –bundle � W V !M that if ˛ is a connection 1–form
on V and ! D ��.d˛/ is the curvature 2–form on M , then the Euler class is given
by (see Morita in [72, Section 6.2(d)])

e.�/ WD
�1R

��1.m/ ˛
Œ!� 2H 2.M IZ/;

ie the negative of the curvature form divided by the integral of the connection form over
a fiber. For our prequantization,

R
��1.m/˛ is the period of the Reeb vector field and we

used the normalization Œ!�D c1.M /, so it suffices to compute that
R
��1.m/˛ D ck=ı .

Consider �M� WDP�1
K .c/=K0 with the 1–form ˛� induced from ˛std . Under the iden-

tification .M; !/' .M�; !�/ from (2-8), the projection map defines a prequantization

��W . �M�; ˛�/! .M; !/:

We will compute that
R
��1
�
.xz/˛� D ck for any xz 2 M , and this will suffice since�M�!

�M is a degree-ı cover. By the definition of . �M�; ˛�/, its Reeb vector field
can be represented by the infinitesimal action of X� from (2-2) on P�1

K .c/ for any

(2-13) � 2 k such that h�; ci D 1:

For any such �, the period of the Reeb orbit can also be characterized as the smallest
T > 0 so that exp.T �/ 2K0 for the exponential map expW k!K. Since h�0; ci D 0

for any �0 2 k0 and K0 is connected, we can choose � as in (2-13) so that the first
return is at exp.T �/ D 1 2 K. In this case T � 2 kZ and T D hT �; ci 2 c.kZ/, so
therefore T D ck , the minimal positive generator of c.kZ/.

Remark 2.3 Both possibilities in (2-12) actually occur. For the case of CPn we have
� 62K0 , since K0 D 1, and for CPn �CPn below we have � 2K0 .

2.1.3 An example in the case M DCPn�1�CPn�1 Consider the even toric mono-
tone symplectic manifold

.M; !/D .CPn�1
�CPn�1; n� ˚ n�/;

where
R

CP1 � D 1. Its moment polytope is

�
.x;x0/ 2 .R2n�2/�

ˇ̌̌̌
xj C 1� 0;�

n�1X
jD1

xj C 1� 0;x0j C 1� 0;�

n�1X
jD1

x0j C 1� 0

�
;
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where we have identified T D R2n�2=Z2n�2 . In this case, K0 � K are the subtori
of T2n whose Lie algebras in R2n have bases

k0 D span
� nX

jD1

�j �

nX
jD1

�0j

�
and kD span

� nX
jD1

�j ;

nX
jD1

�0j

�
:

The moment map PKW C
2n! k� D .R2/� for the action of K on C2n is

PK.z; z
0/D �

� nX
jD1

jzj j
2;

nX
jD1

jz0j j
2

�

and we have P�1
K .c/ is S2n�1 �S2n�1 �C2n since

P�1
K .c/D

�
.z; z0/ 2C2n

ˇ̌̌̌
�

nC1X
jD1

jzj j
2
D �

nC1X
jD1

jz0j j
2
D n

�
:

The action of the circle K0 on C2n is given by � � .z; z0/D .�z; x�z0/ for � in the unit
circle S1 , and note that � 2K0 . The contact manifold is

(2-14) �M D .S2n�1
�S2n�1/=K0;

with contact form ˛ induced by ˛stdjS2n�1 ˚˛stdjS2n�1 . The Reeb vector field R˛ is
represented by X� with �D 1

2n
.1; : : : ; 1/2R2n from (2-2) and it has period is ckD n,

so therefore the prequantization is the R=nZ–bundle

(2-15) � W . �M ; ˛/! .CPn�1
�CPn�1; n� ˚ n�/:

Since the first Chern class c1.CPn�1 �CPn�1/D .n; n/ 2H 2.CPn�1 �CPn�1IZ/,

e.�/D .�1;�1/ 2H 2.CPn�1
�CPn�1

IZ/

from Proposition 2.2.

Rescaling so that prequantization is a R=Z–bundle, we see that

� W �M ! .CPn�1
�CPn�1; � ˚ �/

is the standard Boothby–Wang prequantization [19]. For the case of n D 2, it is
known that �M is contactomorphic to the unit cotangent bundle U T �S3 of S3 ; for
instance see Abreu and Macarini [3, Section 6.1]. However when n � 3, it follows
from [19, Theorem 8] that �M is not even topologically a unit cotangent bundle.
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2.2 Applying Theorem 1.8 to prove Theorem 1.3

Proof of Theorem 1.3 Theorem 1.3 will be proved by applying Theorem 1.8 to
Givental’s quasimorphism �GivW eCont0.RP2d�1

 /!R in the setting

(2-16) .RP2d�1
 ; � ; ˛std/� .Y; ˛stdjY /

�
�! . �M ; �; ˛/

for an appropriate  and Y that we describe below.

By [4, Lemma 4.8] there is a primitive vector  D .1; : : : ; d / 2 kZ WDZd \ k where
each j � 1. Fix such a  and consider the sphere S2d�1

 from (1-19). Note that

P�1
K .c/� S2d�1

 D fz 2Cd
j h;P i.z/D h; cig

since z 2P�1
K .c/ is equivalent to h�;P i.z/D h�; ci for all � 2 k. Since � is even we

know � 2K by Lemma 2.1 and modding out by the antipodal Z2 D h�i action gives
the submanifold

(2-17) Y WD P�1
K .c/=h�i � .RP2d�1

 ; � /;

where .RP2d�1
 ; � /D .S

2d�1
 =h�i; ker˛std/. The natural projection map

(2-18) �W Y ! �M
is a principal .K0Ch�i/=h�i–bundle and by the construction of the 1–form ˛ from
(2-10) it follows that ��˛ D ˛stdjY .

To verify the geometric setting (1-9) of Theorem 1.8 it remains to prove that Y �

RP2d�1
 is strictly coisotropic with respect to ˛std . Note that P�1

K .c/� .Cd ; !std/ is
a coisotropic submanifold, meaning that for all z 2 P�1

K .c/ we have

(2-19) .TzP�1
K .c//!std WD fX 2 TzCd

j �X!std D 0 on TzP�1
K .c/g � TzP�1

K .c/;

since P�1
K .c/ is the regular level set of a moment map or as can be verified with

(2-4). It now follows from (2-19) and d˛std D !std that P�1
K .c/ � S2d�1

 satisfies
the condition (1-8) to be strictly coisotropic with respect to ˛std and therefore so is
Y �RP2d�1

 .

Using the definition (2-7) of P�1
K .c/ we know that

fjz1j
2
D � � � D jzd j

2
D 1=�g � P�1

K .c/;

since if z 2 fjz1j
2 D � � � D jzd j

2 D 1=�g, then for any � 2 k one has

(2-20) h�;P i.z/D �

dX
jD1

�j
1

�
D

dX
jD1

�j D h�; ci;
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where the last equality follows from the fact that c WD ��.1; : : : ; 1/. Hence TRP � Y

for the torus TRP �RP2d�1
 from (1-24), which is �Giv –superheavy by Lemma 1.22.

Therefore by Theorem 1.11 we know Y � RP2d�1
 is �Giv –subheavy. Applying

Theorem 1.8 to (2-16) constructs the desired quasimorphism x�W eCont0. �M ; �/! R
that is monotone, C 0 –continuous and has the vanishing property.

Remark 2.4 For any closed even symplectic toric manifold .M; !;T / the construc-
tion in this section can be modified to produce a prequantization � W . �M ; ˛/! .M; !/

that is constructed by contact reduction of a real projective space. Without the mono-
tonicity assumption however, one needs to replace cD ��.1; : : : ; 1/ with ��.a1; : : : ; ad /

where the aj are the support constants in the moment polytope (1-6). With this change
(2-20) no longer holds so the reduction will not pass through the superheavy torus TRP .
This is similar to the proof of [4, Proposition 4.9].

3 Proof of the reduction theorem for quasimorphisms

In this section we will present the proof of Theorem 1.8.

3.1 Preliminary lemmas

3.1.1 Geometric setting of Theorem 1.8 Let us begin by collecting a few lemmas
about the geometric setting of Theorem 1.8,

(3-1) .V; �; ˛/� .Y; ˛jY /
�
�! . xV ; x�; x̨/;

where .V; �; ˛/ and . xV ; x�; x̨/ are closed contact manifolds, Y � V is a closed sub-
manifold that is strictly coisotropic with respect to ˛ , and � is a fiber bundle such that
�� x̨ D ˛jY .

Lemma 3.1 The map d�W T Y ! T xV relates the Reeb vector fields:

d� ıR˛jY DRx̨ ı �:

Proof Note that by Definition 1.6 of strictly coisotropic the Reeb vector field R˛jY

is tangent to Y . To show d� ıR˛ DRx̨ ı � one computes

x̨.d�.R˛//D �
�
x̨.R˛/D ˛.R˛/D 1

and for any u 2 T Y one has

d x̨.d�.R˛/; d�.u//D d.�� x̨/.R˛;u/D d˛.R˛;u/D 0;

which proves �d�.R˛/d x̨ D 0 since d�W T Y ! T xV is surjective. By definition of Rx̨
this proves d� ıR˛jY DRx̨ ı � .
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For xh 2 C1.Œ0; 1�� xV /, an extension of xh will be any h 2 C1.Œ0; 1��V / such that

hjŒ0;1��Y D �
�xh:

Lemma 3.2 If h 2 C1.Œ0; 1��V / is an extension of xh 2 C1.Œ0; 1�� xV /, then:

(i) The contact vector field Xht
jY is tangent to Y .

(ii) The contact vector fields of h; xh are related by d� : d� ıXht
jY DXxht

ı � .

(iii) As maps, � ı�t
h
jY D �

t
xh
ı �W Y ! xV and � ı .�t

h
/�1jY D .�

t
xh
/�1 ı �W Y ! xV

for all t 2 Œ0; 1�.

Proof It suffices to prove (i) for autonomous h 2 C1.V / and xh 2 C1. xV /. Let
u 2 T Y , then by the definition of Xh from (1-2) and the relations

�� x̨ D ˛jY ; ��xhD hjY ; d� ıR˛jY DRx̨ ı �

we have

d˛.Xh;u/D�dh.u/C dh.R˛/˛.u/D�d xh.d�.u//C d xh.Rx̨/x̨.d�.u//

D d x̨.Xxh; d�.u//:

Since Xxh D d�.v/ for some v 2 T Y , taking any u 2 .T Y /d˛ � T Y (see (1-8)),

d˛.Xh;u/D d x̨.d�.v/; d�.u//D d˛.v;u/D 0;

and hence XhjY 2 ..T Y /d˛/d˛ . Since Y is strictly coisotropic, it follows from (1-8)
that ..T Y /d˛/d˛ D T Y and hence XhjY 2 T Y .

For item (ii), similar considerations as above show

x̨.d�.Xh//D ˛.Xh/D xh at the point �.y/,

and likewise for any u 2 T Y ,

d x̨.d�.Xh/; d�.u//D d˛.Xh;u/D�dh.u/C dh.R˛/˛.u/

D�d xh.d�.u//C d xh.Rx̨/x̨.d�.u//:

Since d�W T Y ! T xV is surjective this shows d� ıXhjY DXxh ı � .

The first part of item (iii) immediately follows from item (ii). Via the identity

� ı .�t
h/
�1
jY D .�

t
xh
/�1
ı�t
xh
ı � ı .�t

h/
�1
jY D .�

t
xh
/�1
ı �

the second part of item (iii) follows from the first part of (iii).
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3.1.2 Using the subheavy assumption Recall that in Theorem 1.8 that in addition
to the geometric setting in (3-1), Y � V is subheavy with respect to a monotone
quasimorphism �W eCont0.V /!R.

Lemma 3.3 If h 2 C1.Œ0; 1��V / is such that Xht
jY 2 T Y for all t 2 Œ0; 1� and

(3-2) � ı�t
hjY D �W Y !

xV for all t 2 Œ0; 1�;

then �.z�h/D 0.

Proof Differentiating (3-2) with respect to t gives d�.Xht
/D 0 and hence on Y ,

ht D ˛.Xht
/D x̨.d�.Xht

//D 0:

Pick autonomous Hamiltonians g; k 2C1.V / so that g � h� k and gjY D kjY D 0.
Since Y is �–subheavy it follows that �.z�g/D �.z�k/D 0 and therefore �.z�h/D 0

since � is monotone.

Lemma 3.4 Let xh 2 C1.Œ0; 1�� xV / be such that f�t
xh
gt2Œ0;1� is a contractible loop in

Cont0. xV /. Then �.z�h/D 0 for any contact Hamiltonian h 2 C1.Œ0; 1��V / that is
an extension of xh.

Proof Let ˆW Œ0; 1�2 ! Cont0. xV / be a null-homotopy of loops for f�t
xh
g, so that

fˆs
tgt2Œ0;1� is a loop of contactomorphisms of xV for fixed s , such that

ˆ0
t D id xV and ˆ1

t D �
t
xh
:

Let
xH s
� W Œ0; 1��

xV !R

be the contact Hamiltonian generating the contact isotopy fˆs
tgt2Œ0;1� for fixed s and

note xH 1
t D
xht .

Let H W Œ0; 1�2 �V !R be an extension of xH so that H s
t jY D

xH s
t ı � and H 1

t D ht

is the chosen extension of xh. Let f‰s
t gt2Œ0;1� be the contact isotopy of V generated by

H s
� W Œ0; 1��V !R

for fixed s . It follows from Lemma 3.2 that �ı‰s
t jY Dˆ

s
t ı�W Y !

xV for all s and t .
In particular the concatenation of paths

f‰1�u
0 gu2Œ0;1� # f‰

0
ugu2Œ0;1� # f‰

u
1gu2Œ0;1�
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defines an isotopy f ugu2Œ0;1� in Cont0.V / such that  u.Y /D Y and � ı ujY D

id xV ı� since

id xV D fˆ
1�u
0 gu2Œ0;1� # fˆ

0
ugu2Œ0;1� # fˆ

u
1gu2Œ0;1� in Cont0. xV /.

Let z 2 eCont0.V / be the element represented by f ugu2Œ0;1� . By Lemma 3.3 we
know �. z /D 0 and hence �.z�h/D �. z /D 0 since f ugu2Œ0;1� is homotopic with
fixed endpoints to the isotopy f‰1

t gt2Œ0;1� D f�
t
h
gt2Œ0;1� .

3.2 Proof of Theorem 1.8

Let PCont0. xV / denote the group of contact isotopies of . xV ; x�/ based at the iden-
tity with time-wise composition as the product: f�t

xh
g � f�t

xk
g D f�t

xh
ı �t
xk
g. Passing

to homotopy classes of isotopies with fixed endpoints is a group homomorphism
PCont0. xV / ! eCont0. xV / whose kernel consists of contractible loops based at the
identity.

Proof of Theorem 1.8 We will break the proof of Theorem 1.8 into a few steps.

Independence of choice of extension We will first prove

(3-3) x�W PCont0. xV /!R defined by x�.f�t
xh
g/D �.z�h/;

where h 2 C1.Œ0; 1��V / is any extension of xh 2 C1.Œ0; 1�� xV / is well defined. So
let h and k both be extensions of xh. For any positive integer m by Lemma 3.2(iii) it
follows that

� ı .�t
h/

m
ı .�t

k/
�m
jY D .�

t
xh
/m ı .�t

xk
/�m
ı �D �

and hence �.z�m
h
z�
�m
k /D 0 by Lemma 3.3. Using that � is a homogeneous quasimor-

phism (1-1) we haveˇ̌
�.z�h/��.z�k/

ˇ̌
D

1

m

ˇ̌
�.z�

m
h /��.z�

m
k /
ˇ̌
�

1

m
.DC�.z�

m
h
z�
�m
k //D

D

m

and taking the limit as m!1 shows �.z�h/D �.z�k/.

Homogeneous quasimorphism on PCont0. xV / We will first show that (3-3) defines a
quasimorphism. Let g; h; k 2C1.Œ0; 1��V / be extensions of xg; xh; xk 2C1.Œ0; 1�� xV /

where xg generates the product of xh and xk , that is, �t
xg D �

t
xh
ı�t
xk

. By Lemma 3.2(iii)
we have

� ı .�t
g/
�1
ı�t

h ı�
t
k jY D .�

t
xg/
�1
ı�t
xh
ı�t
xk
ı �D �

so by Lemma 3.3 it follows �.z��1
g
z�h z�k/D 0. If D is as in (1-1) for �, it follows thatˇ̌

x�.f�t
xh
g � f�t

xk
g/� x�.f�t

xh
g/� x�.f�t

xk
g/
ˇ̌
D
ˇ̌
�.z�g/��.z�h/��.z�k/

ˇ̌
� 2D
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and therefore x� in (3-3) is a quasimorphism.

We will now show that x� is homogeneous. If h;g.m/2C1.Œ0; 1��V / are extensions of
xh; xg 2C1.Œ0; 1�� xV / where �t

xg D .�
t
xh
/m for an integer m2Z, then again Lemma 3.3

shows
�.z�

�1
g.m/
z�

m
h /D 0:

It follows that

(3-4)
ˇ̌
x�.f�t

xh
g
m/�mx�.f�t

xh
g/
ˇ̌
D
ˇ̌
�.z�g.m//��.z�

m
h /
ˇ̌
�DC

ˇ̌
�.z�

�1
g.m/
z�

m
h /
ˇ̌
DD:

Dividing (3-4) by m and taking m!1 shows that

(3-5) lim
m!1

x�.f�t
xh
gm/

m
D x�.f�t

xh
g/;

and it follows from (3-5) that x� is homogeneous; see for instance [25, Lemma 2.21].

Descent to a quasimorphism on eCont0. xV / Since x�W PCont0. xV /!R vanishes on
the kernel of the map PCont0. xV /! eCont0. xV / by Lemma 3.4, it follows that x� in
(3-3) descends to a well-defined homogeneous quasimorphism x�W eCont0. xV /! R
by [20, Lemma 3.2].

Nonzero To see the quasimorphism x�W eCont0. xV /!R is not zero, let xh 2 C1. xV /

be any positive contact Hamiltonian and pick h 2 C1.V / to be a positive extension.
Since V is �–superheavy by Proposition 1.10(iv) it follows that x�.z�xh/D �.z�h/ > 0.

Monotone If xh� xk , then one can pick extensions h and k such that h� k . Since �
is monotone it follows �.z�h/� �.z�k/ and therefore x�.z�xh/� x�.z� xk/ by definition.

Vanishing Assume now that � has the vanishing property. Let U � xV be an open set
that is displaceable by an element of Cont0. xV /, then it follows from Lemma 3.2(iii)
that an open neighborhood N � V of ��1.U / � Y is displaceable by an element
of Cont0.V /. Now if xh 2 C1.Œ0; 1� � xV / has supp.xh/ � Œ0; 1� � U , then there is
an extension h 2 C1.Œ0; 1�� V / of xh with supp.h/ � Œ0; 1��N . Since � has the
vanishing property it follows �.z�h/ D 0 and so by definition x�.z�xh/ D 0 as well.
Therefore x� also has the vanishing property.

C 0 –continuity Assume that � is C 0 –continuous and let xh.n/ 2 C1.Œ0; 1�� xV / be
a sequence of contact Hamiltonians C 0 –converging to xh 2 C1.Œ0; 1�� xV /. Then we
can pick extensions h.n/ and h in C1.Œ0; 1��V / with C 0 –convergence h.n/! h.
Since � is C 0 –continuous, we have �.z�h.n//!�.z�h/ and hence x�.z�xh.n//! x�.z�h/

as well. Therefore x� is C 0 –continuous.
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4 Proof of rigidity and vanishing results

In this section we will present the remaining proofs.

4.1 Proof of rigidity results from Section 1.2

We will first prove the following lemma that shows that there is no difference between
positive and negative in terms of defining a subset to be superheavy with respect to a
quasimorphism on eCont0.V /.

Lemma 4.1 If �W eCont0.V; �/! R is a monotone quasimorphism and Y � V is a
closed subset, then Y is �–superheavy if and only if �.z�h/ < 0 for all autonomous
contact Hamiltonians where hjY < 0.

Proof If h is autonomous, then z��1
h is generated by the contact Hamiltonian �h and

therefore �.z��h/D��.z�h/ since � is homogeneous. The lemma now follows from
the definition of Y being superheavy from Definition 1.9.

Let us now prove Proposition 1.10 and Theorem 1.11, detailing the basic properties of
superheavy and subheavy sets.

Proof of Proposition 1.10 To prove item (i) recall that any two contact forms ˛
and ˛0 for � differ by multiplication by a positive function f W V ! R: ˛0 D f ˛ .
If h 2 C1.Œ0; 1� � V / is the contact Hamiltonian associated to the contact isotopy
f�tgt2Œ0;1� using the form ˛ , then f � h is the contact Hamiltonian associated to the
same isotopy using the form ˛0 . Hence hjŒ0;1��Y > 0 if and only if f � hjŒ0;1��Y > 0,
so �–superheaviness is independent of contact form and likewise for �–subheaviness.

Item (ii) is immediate since if hjY > 0, then hjZ > 0 and hence �.z�h/ > 0 since Z

is �–superheavy. The argument for �–subheaviness is analogous.

To prove (iii), first note homogeneous quasimorphisms are conjugation-invariant so

�.z�h/D �. 
�1 z�h /

for any h 2 C1.V / and  2 Cont0.V /, where we use the natural action of Cont0.V /
on eCont0.V / by conjugation. Furthermore  �1 z�h D z�g , where

g WD ˛.d �1.Xh/ ı /D .f � h/ ı 

for some positive function f 2C1.V /, so therefore gjY > 0 if and only if hj .Y /> 0.
Hence Y is �–superheavy if and only if  .Y / is �–superheavy and likewise for �–
subheavy.
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For item (iv), recall that we assume all quasimorphisms are homogeneous and nonzero.
Suppose there is an h 2 C1.V / such that h> 0 and �.z�h/D 0. For any integer m,
�.z�mh/D�.z�

m
h /D 0 since h is autonomous. Since for any k 2C1.Œ0; 1��V / there

is a positive integer m such that �mh � k � mh, it follows from the monotonicity
of � that �.z�k/D 0. Therefore �D 0, which is a contradiction.

Proof of Theorem 1.11 For item (i), let Y be �–superheavy and h be an autonomous
contact Hamiltonian where hjY D 0. Recall for any � 2 Cont0.V / that ��˛ D k˛ ,
where kW V !R is a positive function. It follows then for any positive integer m and
real number � > 0 that

gt WD ˛.XmhC d�t
mh.m�R˛/ ı .�

t
mh/
�1/;

which is the contact Hamiltonian so that �t
g D �t

mh
�t

m� for all t 2 Œ0; 1�, satisfies
gt jY > ı for some ı > 0. Using that Y is �–superheavy and � is monotone we have

�.z�mh z�m�/D �.z�g/ > 0:

Since h is autonomous, z�mh D z�
m
h , and using � is a homogeneous quasimorphism

(1-1) we get

m�.z�h/D�.z�mh/��.z�mh z�m�/C�.z�
�1
m�/�D >�.z�

�1
m�/�D D�m��.z�1/�D:

By dividing through by m and taking the limit as m!1 gives �.z�h/ > ���.z�1/

for all � > 0, and therefore taking �! 0 gives

�.z�h/� 0:

One proves �.z�h/� 0 similarly using Lemma 4.1. Therefore �.z�h/D 0 and hence Y

is �–subheavy.

To prove item (ii), suppose that Y and Z are disjoint and pick a contact Hamiltonian h

so that hjY > 0 and hjZ D 0, which is possible since Y and Z are closed subsets.
This leads to a contradiction since by the definitions of superheavy and subheavy we
have �.�h/ > 0 and �.�h/D 0.

Next up is the proof of Theorem 1.17 about the existence of nondisplaceable pre-
Lagrangians in prequantizations of toric symplectic manifolds.

Proof of Theorem 1.17 Let P W M 2n ! � � Rn be a moment map for the toric
structure on M , let � W .V; ˛/! .M; !/ be the prequantization map and let

yP D P ı� W V !�:
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Every fiber of yP is either a pre-Lagrangian torus or a sits over a strictly isotropic torus
in M and the latter are always displaceable (see Laudenbach [65]), so it suffices to
show not every fiber of yP is displaceable.

Suppose every fiber of yP is displaceable. Then we can take an open cover fUj g
d
jD1

of � such that each yP�1.Uj / � V is displaceable. Since the coordinate functions
of P commute, for any two functions f;gW Rn! R the contactomorphisms z� yP�f

and z� yP�g commute and z� yP�.fCg/ D z� yP�f z� yP�g . In particular if ffj g is a partition
of unity subordinate to fUj g, then

�.z�1/D �.z� yP�f1
C � � �C z� yP�fd

/D

dX
jD1

�.z� yP�fj /D 0

since homogeneous quasimorphisms are homomorphisms when restricted to abelian
subgroups and also that �.z� yP�fj /D 0 by the vanishing property. However �.z�1/ > 0,
so we have a contradiction.

Remark 4.2 The proof of Theorem 1.17 also shows if there is monotone quasimor-
phism �W eCont0.V; �/ ! R with the vanishing property and .V; �/ is completely
integrable contact manifold, in the sense of Khesin and Tabachnikov [59], then at least
one of the pre-Lagrangian fibers is nondisplaceable.

Let us now prove Proposition 1.13 which states that if a subheavy subset Y � V is
preserved by a positive contact vector field, then it is �–superheavy.

Proof of Proposition 1.13 We will assume that Y is invariant under the flow for the
Reeb vector field R˛ , since any positive contact vector field is the Reeb vector for
some contact form; see McDuff and Salamon [68, Chapter 3.4]. Given h 2 C1.V /

such that hjY > 0, since Y is closed we have hjY � c for some positive c 2R. Let m

be a positive integer and note that �t
g D �

t
�mc�

t
mh

, where

gt WD ˛.�mcR˛C d�t
�mc.mXh/ ı .�

t
�mc/

�1/Dm.�cC h ı�t
mc/:

Since �t
mc D �

t
mcR˛

is a reparametrization of the Reeb flow, which preserves Y , it
follows that gt jY � 0 and hence �.z��mc z�mh/ D �.z�g/ � 0, since � is monotone
and Y is �–subheavy. Since h is autonomous it follows z�mh D z�

m
h and because � is

a homogeneous quasimorphism we have

m�.z�h/D �.z�mh/� �.z��mc z�mh/C�.z�mc/�D � �.z�mc/�D Dm�.z�c/�D:

By dividing through by m and taking the limit as m!1 gives �.z�h/� �.z�c/ and
�.z�c/ > 0 since V is �–superheavy by Proposition 1.10(iv).
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4.2 Proof of results from Section 1.3

Here we will prove the results in Section 1.3 about the relation between quasimorphisms
on eCont0.V / and eHam.M / when � W .V; ˛/! .M; !/ is a prequantization. Before
proving Theorem 1.19 we need the following lemma.

Lemma 4.3 If � W .V; ˛/! .M; !/ is a prequantization and �W eCont0.V /!R is a
monotone quasimorphism, then

�.z�cC��H /D

�Z 1

0

c.t/ dt

�
�.z�1/C�.z���H /

for all smooth functions H W Œ0; 1��M !R and cW Œ0; 1�!R.

Proof By using the contact Poisson bracket (1-3), or just the definitions, one sees
that z�c and z���H commute in eCont0.V / and z�cC��H D z�c z���H . Therefore since
homogeneous quasimorphisms are homomorphisms on abelian subgroups,

�.z�cC��H /D �.z�c/C�.z���H /;

and hence it suffices to prove that �.z�c/D
�R 1

0 c.t/ dt
�
�.z�1/.

Since z�� D z�c via a time-reparametrization where � D
R 1

0 c.t/ dt , this reduces to
proving �.z��/ D ��.z�1/ for all real numbers � 2 R. For any integer m 2 Z, this
holds since � is homogeneous and z�m D z�

m
1 . This extends to rational numbers and

since � is monotone it then holds for all real scalars.

Proof of Theorem 1.19 Since ��W eHam.M /! eCont0.V / from (1-17) is a homomor-
phism it is clear that �M is a quasimorphism. For stability let c.t/ WDminM .Ht�Gt /,
then by monotonicity and Lemma 4.3 we have�Z 1

0

c.t/ dt

�
�.z�1/C�.z���G/D �.z�cC��G/� �.z���H /

and hence �Z 1

0

min
M
.Ht �Gt / dt

�
�.z�1/� �.z���H /��.z���G/:

After translating to the definition of �M in (1-18) this is the left-hand part of the
stability condition (1-14). The right-hand side is proved analogously.

Lemma 4.3 shows that the formulas for ��M
in (1-15) and Theorem 1.19 are equal. It

follows from the formula in Theorem 1.19 that if � has the vanishing property, then
so does ��M

. This is because if X �M is displaceable by an element of Ham.M /,
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then ��1.X / � V is displaceable by an element of Cont0.V /. Going back to the
quasimorphism �M , it follows from [21, Proposition 1.7] that �M has the Calabi
property if the associated quasistate ��M

has the vanishing property.

Proof of Proposition 1.20 For item (i), it is enough to show that if H 2 C1.M /

is such that H j�.Y / D 0, then ��M
.H / D 0. If H j�.Y / D 0, then ��H jY D 0

and �.z���H / D 0 by the definition of Y being �–subheavy. It then follows from
Theorem 1.19 that ��M

.H /D 0.

For item (ii), let Y D ��1.X / and let h 2 C1.V / be such that hjY > 0. There
is H 2 C1.M / with ��H � h and H jX > 0. From the monotonicity of � and
Theorem 1.19 we have

�.z�h/� �.z���H /D �.z�1/��M
.H /

and therefore we are done since ��M
.H / � minX H > 0 by the definition of ��M

–
superheavy and since �.z�1/ > 0 by Proposition 1.10(iv).

4.3 Proofs about Givental’s quasimorphism

4.3.1 A brief summary of Givental’s quasimorphism Recall that a point v2 .V; �/
in a contact manifold is a discriminant point for a contactomorphism � 2 Cont.V; �/ if

(4-1) �.v/D v and .��˛/v D ˛v

for some (and hence every) contact form ˛ and the discriminant of Cont0.V; �/ is

†.V; �/ WD f� 2 Cont0.V; �/ j � has at least one discriminant pointg:

A C1–generic contactomorphism has no discriminant points. Indeed if v is a dis-
criminant point of � , then the image of d�v � idTvV is contained in �v and hence
d�v� idTvV has a nontrivial kernel. This means v is a degenerate fixed point and it is a
standard fact that C1–generic contactomorphisms do not have degenerate fixed points
(see Hofer and Salamon [57, Theorem 3.1] for a proof in the Hamiltonian case). In fact
any � 2 Cont0.V / on the discriminant †.V / can be perturbed off †.V / via the Reeb
flow, but we will not include the proof since this is not necessary for what follows.

In [54] Givental showed how to coorient the discriminant †� Cont0.RP2d�1/ using
generating functions. Given a smooth path  W Œ0; � �!Cont0.RP2d�1/ with endpoints
not on †, the coorientation gives a well-defined intersection index between  and †,
denoted

�G. / 2 Z
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which Givental called the nonlinear Maslov index. From the intersection viewpoint,
Givental specified [54, Section 9] conventions so that �G is defined for all paths of
contactomorphisms. Alternatively, as noted by Colin and Sandon [31, Section 7], the
nonlinear Maslov index can be defined purely in terms of generating families, leading
to a uniform definition of the nonlinear Maslov index for any smooth path of contacto-
morphisms of RP2d�1 . Here are some key properties of the nonlinear Maslov index:

(i) Given two paths i W Œ0; �i �! Cont0.RP2d�1/ with 0.�0/D 1.0/, one has

(4-2) �G.0/C�
G.1/D �

G.0 � 1/;

where 0 � 1W Œ0; �0C �1�! Cont0.RP2d�1/ is their concatenation.

(ii) For any path  in Cont0.RP2d�1/ and element � 2 Cont0.RP2d�1/,

(4-3) j�G.�/��G. /j � 2d;

where � is the path defined by t 7!  .t/� .

(iii) If a path  in Cont0.RP2d�1/ is disjoint from the discriminant, then

(4-4) �G. /D 0:

(iv) The nonlinear Maslov index �G. / is invariant under homotopies of  with
fixed endpoints.

The first item follows from the construction as an intersection index, the second
item is [54, Theorem 9.1(a)], and the final two properties are established by both
Givental [54, Section 9] and Colin and Sandon [31, Section 7].

If PCont0.RP2d�1/ denotes the space of contact isotopies f�tgt2Œ0;1� with �0 D id,
then one defines the asymptotic nonlinear Maslov index to be

(4-5) �Giv.f�
t
gt2Œ0;1�/ WD lim

�!1

�G.f�tgt2Œ0;��/

�
;

where f�tgt2Œ0;�� is given by concatenation so �kCs WD �s.�1/k for s 2 Œ0; 1� and
k 2N . Since �G is invariant under homotopies with fixed endpoints, the map in (4-5)
descends to a map

�GivW eCont0.RP2d�1/!R

and this is the definition of Givental’s quasimorphism from (1-5). As a special case of
(4-5) we have

(4-6) �Giv.z�/D lim
m!1

�G.z�
m
/

m

for z� 2 eCont0.RP2d�1/ and hence �Giv is homogeneous: �Giv.z�
m
/Dm�Giv.z�/.
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4.3.2 A subheavy Legendrian

Proof of Lemma 1.23 It suffices to prove RPd�1
L
�RP2d�1 is �Giv –subheavy since

it is preserved by radial projection (1-23).

If h is an autonomous contact Hamiltonian that vanishes on RPd�1
L

, then Xh is
always tangent to RPd�1

L
since it is Legendrian. Therefore the Legendrian nonlinear

Maslov index �.�/ from [54, Section 9] of the constant path of Legendrians � WD
f�t

h
.RPd�1

L
/gt2Œ0;�� vanishes. By the definition of �Giv in (4-5) and [54, Section 9,

Corollary 2] we know that

�Giv.z�h/D lim
�!1

�G.f�t
h
gt2Œ0;��/

�
D lim
�!1

�.f�t
h
.RPd�1

L
/gt2Œ0;��/

�

so �Giv.z�h/D 0 and therefore RPd�1
L

is �Giv –subheavy.

4.3.3 Proving properties of Givental’s quasimorphism in Proposition 1.2

Proof of Proposition 1.2 (Monotonicity) By [54, Theorem 9.1(b)], or equivalently,
by [31, Lemma 7.6], we know that �G.z�/� 0 if z� � id, so it follows from (4-6) that

0� �Giv.z�/ if id� z�:

Now if z� � z , then id� z m
ı z�
�m and hence �Giv. z 

m
ı z�
�m
/� 0. Using this and

that �Giv is a homogeneous quasimorphism, we get

m�Giv. z /�m�Giv.z�/D �Giv. z 
m
/��Giv.z�

m
/� �Giv. z 

m
ı z�
�m
/�D � �D:

Dividing by m and taking the limit m!1, gives �Giv.z�/��Giv. z / and hence �Giv

is monotone.

Proof of Proposition 1.2 (C 0 –continuity) Givental proved in [54, Corollary 3, Sec-
tion 9] that �Giv is C 0 –continuous for time-independent contact Hamiltonians and as
he explained to us the proof generalizes to time-dependent contact Hamiltonians in the
following way.

Suppose for smooth contact Hamiltonians h.n/; h 2 C1.Œ0; 1� �RP2d�1/ we have
C 0 –convergence h.n/ ! h. For a given � > 0, pick an integer m > 0 such that
6d=m< � and by [54, Theorem 9.1(c)] we know that if n is sufficiently large, then

j�G.f�t
h.n/
gt2Œ0;m�/��

G.f�t
hgt2Œ0;m�/j � 2d:

By (4-2) and (4-3), for any two integers m;N > 0,

j�G.f�t
kgt2Œ0;N m�/�N�G.f�t

kgt2Œ0;m�/j � 2dN
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for every k 2 C1.Œ0; 1��RP2d�1/, which applied to the previous inequality gives

j�G.f�t
h.n/
gt2Œ0;N m�/��

G.f�t
hgt2Œ0;N m�/j � 6dN

if n is sufficiently large. Dividing by N m and taking the limit as N !1 gives

j�Giv.z�h.n//��Giv.z�h/j �
6d

m
< �

if n is sufficiently large and therefore limn!1 �Giv.z�h.n//D �Giv.z�/.

Proof of Proposition 1.2 (Vanishing property) For an open U �RP2d�1 suppose
there is a  2Cont0.RP2d�1/ such that  .U /\U D∅ and without loss of generality
we may assume  has no discriminant points. By (4-2) we know that

j�G.f�t
h gt2Œ0;��/��

G.f�t
hgt2Œ0;��/j � 2d;

so if �G.f�t
h
 gt2Œ0;��/D 0 for all � � 0, then it will follow from (4-5) that

�Giv.z�h/D lim
�!1

�G.f�t
h
gt2Œ0;��/

�
D 0:

Therefore by (4-4) it remains to prove that �t
h
 has no discriminant points for all t � 0.

Assume p is a discriminant point for some �t
h
 . If p2U , then  .p/D .�t

h
/�1.p/2U

but this contradicts that  .U /\ xU D∅. If p 62U , then  .p/D .�t
h
/�1.p/D p so p

is a fixed point of  and also a discriminant point of  , but we assumed they did not
exist.
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