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Bimodules in bordered Heegaard Floer homology
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Bordered Heegaard Floer homology is a three-manifold invariant which associates to
a surface F an algebra A.F / and to a three-manifold Y with boundary identified
with F a module over A.F / . In this paper, we establish naturality properties of
this invariant. Changing the diffeomorphism between F and the boundary of Y

tensors the bordered invariant with a suitable bimodule over A.F / . These bimodules
give an action of a suitably based mapping class group on the category of modules
over A.F / . The Hochschild homology of such a bimodule is identified with the
knot Floer homology of the associated open book decomposition. In the course of
establishing these results, we also calculate the homology of A.F / . We also prove
a duality theorem relating the two versions of the 3–manifold invariant. Finally,
in the case of a genus-one surface, we calculate the mapping class group action
explicitly. This completes the description of bordered Heegaard Floer homology for
knot complements in terms of the knot Floer homology.

57R57; 53D40

1 Introduction

Bordered Heegaard Floer homology is an invariant associated to a three-manifold with
boundary (see the authors [21]), depending on some additional data. More specifically,
let F be a closed, oriented surface of genus k . A bordered three-manifold with
boundary F is a compact, oriented three-manifold Y equipped with an orientation-
preserving diffeomorphism �W F!@Y . Bordered Heegaard Floer homology associates
to F (and some extra data; see below) a differential graded (dg) algebra A.F /. If Y

is a bordered three-manifold with boundary F , the theory associates to Y a right
A1–module bCFA.Y / over A.F /, the type A module of Y , whose quasi-isomorphism
type depends only on the underlying diffeomorphism type of Y . To a three-manifold
with boundary the theory also associates a left A1–module over A.�F /, bCFD.Y /,
the type D module of Y .
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Bordered Heegaard Floer homology is related to Heegaard Floer homology bHF.Y / via
a pairing theorem: if Y is a three-manifold which is divided into Y1 and Y2 by a sepa-
rating surface F , then bCF.Y /, a chain complex whose homology calculates bHF.Y /,
is obtained as the A1–tensor product of bCFA.Y1/ with bCFD.Y2/. In other words,

bHF.Y /Š TorA.F /.bCFA.Y1/; bCFD.Y2//:

1.1 Reparametrization and the bordered Floer invariants

A key goal of this paper is to study how the bordered Heegaard Floer invariants change
under reparametrization of the boundary. More precisely, we fix a closed surface
F and a preferred disk D � F , together with a point z 2 @D . Consider the space
of diffeomorphisms of F which preserve the disk D and the point z 2 @D . This
topological group will be called the strongly based diffeomorphism group of .F;D; z/.
Its group of path components is called the strongly based mapping class group of F ,
and two diffeomorphisms in the same path component are called strongly isotopic. This
agrees with the usual mapping class group of F n int.D/ (fixing the boundary).

Consider next a handle decomposition of F with one zero-handle and where D is
the unique two-handle. We will mark in addition a basepoint z on the boundary of
F nD . This data can be combinatorially encoded in the form of a pointed matched
circle (see Definition 3.1 below). Bordered Floer homology associates to a pointed
matched circle Z a differential-graded algebra A.Z/. Modules over these algebras are
independent of the decomposition Z in the following sense:

Theorem 1 If Z1 and Z2 are two pointed matched circles representing the same
underlying surface, then the derived categories of dg A.Z1/– and A.Z2/–modules are
equivalent.

For the purpose of this introduction, we will typically suppress the pointed matched
circle Z from the notation, referring somewhat imprecisely to A.F /. Theorem 1
provides some justification for this practice.

A bordered three-manifold is a quadruple .Y; �; z1;  /, where Y is an oriented three-
manifold with boundary, � is a disk in @Y , z1 is a point on @� and

 W .F;D; z/! .@Y; �; z/

is a diffeomorphism from F to @Y sending D to � and z to z1 .

The strongly based diffeomorphism group of F acts on the set of bordered three-
manifolds by composition:

� � .Y; �; z1;  /D .Y; �; z1;  ı�
�1/:
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There are bimodules which encode this action, using the A1–tensor product. Specifi-
cally, let M be a right A1–module over the dg algebra A and N be an A1–bimodule
over A and B , where B is another dg algebra. Then we can form the derived (or A1 )
tensor product M z̋A N , to obtain a right A1–module over B . We have bimodules
associated to reparameterizing the boundary, as given in the following:

Theorem 2 Given a strongly based diffeomorphism �W .F1;D; z/! .F2;D; z/ be-
tween surfaces F1 and F2 (corresponding to possibly different pointed matched circles),
there are associated bimodules:

1CFAA.�/A.�F1/;A.F2/; A.F1/
1CFDA.�/A.F2/; A.F1/;A.�F2/

1CFDD.�/:1

If .Y1; �1; z1;  1W F1! @Y1/ and .Y2; �2; z2; .� 2/W �F2! @Y2/ (so  2W F2!

�@Y2 ) are bordered 3–manifolds then

bCFA.Y1;  1/ z̋A.F1/
1CFDA.�/' bCFA.Y1;  1 ı�

�1/;

1CFAA.�/ z̋A.F2/
bCFD.Y2;  2/' bCFA.Y2;�. 2 ı�//;

bCFA.Y1;  1/ z̋A.F1/
1CFDD.�/' bCFD.Y1;�. 1 ı�

�1//;

1CFDA.�/ z̋A.F2/
bCFD.Y2;  2/' bCFD.Y2;  2 ı�/:

(This is proved in Section 7.1. See particularly Figure 17 for a schematic illustrating
why the parametrizations are as given.)

The bimodules satisfy the following invariance property:

Theorem 3 If � and �0 are strongly isotopic diffeomorphisms of F then their associ-
ated bimodules are quasi-isomorphic.

(This is proved in Section 6.4.)

The bimodules also behave functorially under composition, according to the following
two results:

Theorem 4 The type DA bimodule associated to identity map from F to itself,
1CFDA.IF /, is quasi-isomorphic to A.F / as an .A.F /;A.F //–bimodule.

(This is proved in Section 8.1.) Note that A.F / is the identity for the tensor product
operation.

1Given algebras A and B , we write AMB to denote a module with a left action of A and a right
action of B . We write A;BM to denote a module with commuting left actions of A and B , and MA;B

to denote a module with commuting right actions of A and B .
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Theorem 5 Given two strongly based diffeomorphisms �1W F1! F2 , �2W F2! F3 ,
we have that

1CFDA.�1/ z̋A.F2/
1CFDA.�2/' 1CFDA.�2 ı�1/:

(This is proved in Section 7.1.)

Together, Theorems 3, 4 and 5 can be summarized by saying that the bimodules induce
an action of the based mapping class group of a surface F on the module category of
A.F /; see Theorem 15 in Section 8 for a more precise statement. Actions of mapping
class groups — particularly, braid groups — on categories have arisen in other contexts;
see for example Khovanov and Thomas [16] and the references therein.

Theorem 2 is also interesting in the case where � is the identity map. In that case,
the theorem allows one to convert a type D module into a type A module, and vice
versa. The statement is given in the following corollary, which can be thought of as
exhibiting a kind of Koszul duality (see Priddy [32]) between the algebra of a surface
and its orientation reverse:

Corollary 1.1 There are dualizing modules 1CFAA.I/ and 1CFDD.I/ (bimodules
associated to the identity map on F ), which can be used to convert bCFD –modules to
bCFA –modules and vice versa, in the sense that

1CFAA.I/ z̋A.�F /
bCFD.Y;� /' bCFA.Y;  /;

bCFA.Y;  / z̋A.F / 1CFDD.I/' bCFD.Y;� /:

The modules 1CFAA.I/ and 1CFDD.I/ uniquely determine one another, as explained
in Section 9. Indeed, this description, along with the above corollary, quickly leads to
the following result which allows one to express type A modules entirely in terms of
type D modules:

Theorem 6 Let Y be a bordered three-manifold with boundary F . Then bCFA.Y / is
quasi-isomorphic, as a right A1–module over A.F /, to the chain complex of maps
from 1CFDD.I/ to bCFD.Y /.

(This theorem is stated more precisely and proved in Section 9, as Theorem 16.)

In fact, 1CFDD.I/, and hence also 1CFAA.I/, can be calculated explicitly; see the
authors [20].

The bimodule A.F / 1CFDA.�/A.F / of a strongly based diffeomorphism

�W .F;D; z/! .F;D; z/
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is a bimodule over a single algebra A.F / on both sides; hence it is natural to study its
Hochschild homology. We give this operation a topological interpretation. To state this
interpretation, recall that a strongly based diffeomorphism �W .F;D; z/! .F;D; z/

naturally gives rise to a three-manifold with an open book decomposition. More
precisely, consider the three-manifold with torus boundary, defined as the quotient
of Œ0; 1�� .F nD/ by the equivalence relation .0; �.x// � .1;x/. This manifold is
equipped with an embedded, closed curve on the boundary, .Œ0; 1��fzg/=.0; z/� .1; z/.
By filling along the curve on the boundary, we get a closed three-manifold, equipped
with a knot K induced from f0g�@D . We denote the resulting three-manifold by Y .�/,
and let K�Y .�/ be the canonical knot in it. This presentation of the three-manifold Y

underlying Y .�/ is called an open book decomposition of Y , and K is called the
binding.

Theorem 7 Let � be a strongly-based diffeomorphism, and consider its associated
A.F /–bimodule 1CFDA.�/. The Hochschild homology of the bimodule 1CFDA.�/ is
the knot Floer homology of Y .�/ with respect to its binding K , bHFK .Y .�/;K/.

(This is proved in Section 7.2.)

Remark 1.2 Let K be a fibered knot in S3 , F a fiber surface for K and �W F ! F

the monodromy. A classical theorem states that the Alexander polynomial of K is the
characteristic polynomial of ��W H1.F /!H1.F /. Theorem 7 categorifies this in the
following sense. On the one hand, by the second author and Szabó [28, Equation (1)],
the Euler characteristic of bHFK .Y .�/;K/ is �K .t/. On the other hand, the (mod-
ulo 2) Grothendieck group of the category of A.F /–modules is ƒ�H1.F IF2/ and the
functor 1CFDA.�/ z̋ � decategorifies to ��W ƒ�H1.F IF2/!ƒ�H1.F IF2/; compare
the authors [23]. Hochschild homology decategorifies to the graded trace; and the
graded trace of ��W ƒ�H1.F IF2/!ƒ�H1.F IF2/ is (by definition) the characteristic
polynomial of ��W H1.F IF2/! H1.F IF2/. (To obtain the decategorification with
Z–coefficients would require an absolute Z=2–grading on the bimodules, which we
do not construct.)

1.2 A more general framework

The bimodules associated to mapping classes come from a more general construc-
tion, which gives an invariant for a bordered three-manifold Y12 with two boundary
components F1 and F2 , and extra data specified by a strong framing, which is a
parameterization of the boundary components of Y12 and a framed arc connecting the
two boundary components of Y12 . More precisely, we have the following.
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Definition 1.3 Fix two connected surfaces .F1;D1; z1/ and .F2;D2; z2/ equipped
with preferred disks and basepoints on the boundaries of the disks. A strongly bordered
three-manifold with boundary F1qF2 is an oriented three manifold Y12 with two
boundary components, equipped with

� preferred disks �1 and �2 on its two boundary components,

� basepoints z0i 2 @�i ,

� diffeomorphisms  W .F1qF2;D1qD2; z1qz2/! .@Y12; �1q�2; z
0
1
qz0

2
/,

� an arc  connecting z0
1

to z0
2

, and

� a framing of  , pointing into �i at z0i for i D 1; 2.

(See also Definition 5.1.) Note that we can remove a neighborhood of  from Y12 to
obtain a three-manifold M with boundary F1 # F2 . The trivialization of the normal
bundle of  is the additional data needed to construct a parameterization of the boundary
of M from the parameterization of @Y .

To obtain a bimodule, we must fix further data: we mark each boundary component of Y

with an A or a D . This determines whether the corresponding boundary component is
treated as a type D module or a type A module (and hence, whether the underlying
algebra is associated to the boundary component with its induced orientation, or the
opposite of its induced orientation). More explicitly, we have the following:

Theorem 8 Let Y12 be a bordered three-manifold with two boundary components F1

and F2 and a strong framing. Then, we can associate the following bimodules to Y12 :

1CFAA.Y12/A.F1/;A.F2/; A.�F1/
1CFDA.Y12/A.F2/; A.�F1/;A.�F2/

1CFDD.Y12/:

The quasi-isomorphism types of these bimodules are diffeomorphism invariants of the
bordered three-manifold Y12 with its strong boundary framing.

(A graded refinement of this theorem is proved in Section 6, as Theorem 10.)

The bimodules associated to an automorphism of F are gotten as a special case of
the above construction, where Y12 D Œ0; 1��F , with the identity parametrization on
one component and � on the other component. In Section 7, we shall prove general
versions of the pairing theorem, from which Theorems 2 and 5 follow as corollaries.

There are other versions of the pairing theorem, including a “double-pairing theorem”,
where we glue two three-manifolds with two boundary components together, as in
Theorem 14. Theorem 7 is the specialization of this to the case where we are self-gluing
Œ0; 1��F .
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After building the basic background, we turn to the particular case of a surface of
genus one. In this case, we calculate the bimodules associated to an arbitrary mapping
class, hence giving an explicit description of the dependence of the bordered Heegaard
Floer homology of a three-manifold with torus boundary on the parameterization of the
boundary. This also completes the description of bCFD in terms of knot Floer homology
for a knot in S3 . Specifically, we showed in [21, Chapter 11] how to calculate the
type D module of a knot complement in terms of the knot Floer homology of the
knot when the framing on the knot is sufficiently large. With the help of the torus
mapping class group calculations and Theorem 2, we are now able to calculate the
type D module for arbitrary framings, as promised in [21].

1.3 Organization

This paper is organized as follows. In Section 2 we recall the algebraic background
on A1–algebras and modules used throughout this paper. These include the familiar
notions of A1–modules, which we call here type A structures to distinguish them
from type D structures, which are a variant of projective modules (see Corollary 2.3.25;
compare also Remarks 2.2.36 and 2.2.37). These are then combined to give various
notions of bimodules. We discuss various operations on modules and bimodules — in
particular, the tensor product, Hom and Hochschild homology functors — and review
some category theory. Section 2 concludes with a discussion of group-valued gradings.

In Section 3 we recall the notion of a pointed matched circle Z , which is effectively the
handle decomposition of a surface used to define its associated algebra. We then recall
the definition of the algebra A.Z/ (introduced in [21]). In Section 4, we turn to the
calculation of the homology of the algebra A.Z/. This calculation is used significantly
in the subsequent proof of Theorem 4 in Section 8.1. It is interesting to note that, as a
consequence of this calculation, we obtain a smaller differential graded algebra A0 (a
quotient of A by a differential ideal), which can be used in place of A for the purposes
of the invariant; see Proposition 4.2. (Although we do not pursue this further in the
present work, it does considerably simplify computations in practice.)

In Section 5, we study Heegaard diagrams associated to strongly framed three-manifolds,
and recall their existence and uniqueness properties. We also turn our attention to a
case of particular importance: strongly framed three-manifolds associated to strongly
based surface automorphisms. We show how to construct explicitly the corresponding
Heegaard diagrams in this case. In Section 6, we turn to the construction of bordered
bimodules for strongly based three-manifolds, and verify their invariance properties,
verifying Theorems 8 and 3.

In Section 7, we turn to the various pairing theorems which these bimodules enjoy.
Theorems 2, 5 and 7 are deduced from these pairing theorems. In Section 8, we
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employ the calculations from Section 4, together with a suitable variant of the pairing
theorem, to deduce that the type DA bimodule associated to the identity map is A.F /;
see Theorem 4. Thus armed, we complete the proof that the derived category of
modules over the algebra associated to a pointed matched circle depends only on the
homeomorphism type of the underlying surface; see Theorem 1. This information also
allows us to construct an action of the mapping class group on the derived category of
A.F /–modules. Theorem 4 is also the main ingredient we use in Section 9 to prove
the duality theorem, Theorem 6.

Finally, in Section 10 we compute the bimodules associated to torus automorphisms.
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2 A1–algebras and modules

In this section we recall various notions from the theory of A1–algebras and de-
rived categories. Most of these results are standard (see Keller [13], Bernstein and
Lunts [5], Lefèvre-Hasegawa [19] and Seidel [36]), and are collected here for the
reader’s convenience. Our treatment is slightly nonstandard in that we use extensively a
certain algebraic object defined over A1–algebras which we call “type D structures.”
The reader is encouraged to think of these as projective modules over the algebra.
These arise naturally in the context of bordered Floer theory — the bordered invariant
bCFD.Y / of [21] is a type D structure — and are convenient for various algebraic

constructions. (In fact, type D structures have appeared under various guises elsewhere;
see Remarks 2.2.36 and 2.2.37.)
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Convention 2.0.1 Throughout, (A1–) algebras will be algebras over the a ring k,
which is either F2 or, more generally,

LN
iD1 F2 . Unless otherwise stated, tensor

products denote tensor products over k. (When we need to refer to a second such
ground ring we will denote it j .)

Note that for most of this paper it is enough to consider dg algebras rather than more
general A1–algebras, so the reader could skip Section 2.1 if desired. More general
A1–algebras do appear in Section 4.2.

In one unusual twist, our A1–algebras and modules are graded by noncommutative
groups, as explained in Section 2.5.

2.1 A1–algebras

2.1.1 Definition of A1 –algebras

Definition 2.1.1 An A1–algebra A over k is a Z–graded k–bimodule A, equipped
with degree-0 k–linear multiplication maps

(2.1.2) �i W A
˝i
!AŒ2� i �

defined for all i � 1, satisfying the compatibility conditions that, for each n� 1 and
elements a1; : : : ; an ,

(2.1.3)
X

iCjDnC1

n�jC1X
`D1

�i

�
a1˝ � � �˝ a`�1˝�j .a`˝ � � �˝ a`Cj�1/

˝ a`Cj ˝ � � �˝ an

�
D 0:

Here A˝i denotes the k–bimodule

i‚ …„ ƒ
A˝k � � � ˝k A and Œ2� i � denotes a degree shift.

We use A for the A1–algebra and A for its underlying k–bimodule.

An A1–algebra is strictly unital (or just unital) if there is an element 1 2A with the
property that �2.a; 1/ D �2.1; a/ D a and �i.a1; : : : ; ai/ D 0 if i ¤ 2 and aj D 1

for some j . For a unital A1–algebra, the unit gives a preferred map �W k!A.

An augmentation of an A1–algebra is a map �W A! k, satisfying the conditions that

(2.1.4)

�.1/D 1;

�.�2.a1; a2//D �.a1/�.a2/;

�.�k.a1; : : : ; ak//D 0 for k ¤ 2:

This gives an augmentation ideal AC D ker � .
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One could consider a more general notion of augmentation, where � is an A1 homo-
morphism in the sense of Section 2.1.2. We do not do this here, as we do not need
this level of generality for our present purposes, and indeed, it would cause undue
complication, especially in Section 2.3.5.

Note that in particular �1 gives A the structure of a chain complex. A differential
graded algebra over k is an A1–algebra with �i D 0 for all i > 2.

Convention 2.1.5 Throughout this paper, A1–algebras will be assumed strictly unital
and augmented.

We can think about the A1–relation (2.1.3) graphically. First, we associate operations
to graphs.

Definition 2.1.6 An A1–operation tree � is a finite, directed tree embedded in the
plane such that each nonleaf vertex of � has exactly one outgoing edge.

In every A1–operation tree � there is a unique leaf that is a sink, along with n source
leaves. Then given an A1–algebra A we can associate to � an operation

�� W A
˝n
!A

(with some grading shift) as follows. To compute ��.a1 ˝ � � � ˝ an/, start with
a1; : : : ; an at the source leaves (labeled in order, clockwise around the boundary of � ).
Flow these elements along � , and when a string of elements enter a vertex of valence
k > 1, apply �k . The element at the sink is the output.

In these terms, the basic A1 relation states that the sum of �� over A1–operation
trees � with exactly two nonleaf vertices is zero.

Given an A1–algebra AD .A; f�ig/ we can form the tensor algebra

T �.AŒ1�/ WD

1M
nD0

A˝nŒn�:

Setting �0 D 0, we can combine all the �i to form a single map

(2.1.7) �W T �.AŒ1�/!AŒ2�:

Defining xDAW T �.AŒ1�/! T �.AŒ1�/ by

xDA.a1˝ � � �˝ an/D

nX
jD1

n�jC1X
`D1

a1˝ � � �˝�j .a`˝ � � �˝ a`Cj�1/˝ � � �˝ an;
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the A1 compatibility relations are encoded in the relation �ı xDAD 0 or, equivalently,
xDA ı xDA D 0.

Our A1–algebras also need to be appropriately bounded. Before giving the general
case, we start with the version for dg algebras:

Definition 2.1.8 We say that an augmented dg algebra A has nilpotent augmentation
ideal if there exists an n so that .AC/n D 0. We will also abuse terminology and say
that A itself is nilpotent.

Note that this is stronger than saying that every element of AC is nilpotent. Also, a
unital algebra can never be nilpotent in the strict sense.

Definition 2.1.9 An augmented A1–algebra AD .A; f�ig/ is called nilpotent if there
exists an n so that for any i >n, any elements a1; : : : ; ai 2AC and any A1–operation
tree � , ��.a1˝ � � �˝ ai/D 0.

(An equivalent definition of nilpotent would be to require that there are only finitely
many � for which �� is not identically zero on inputs from AC . The definitions
of “operationally bounded” for modules and bimodules, below, can be reformulated
similarly. Also, the fact that the two definitions of nilpotent agree in the case of dg
algebras involves using the Leibniz rule to push any instances of �1 onto the inputs
and then using .�1/

2 D 0.)

Remark 2.1.10 In [21] we assumed a weaker condition on our algebra: that �i D 0

for i sufficiently large. The stronger condition of Definition 2.1.9 is used to ensure
that our smaller model � of the A1–tensor product of bimodules (rather than just
modules) is well defined in all cases (Proposition 2.3.10) and for some of the categorical
aspects of this paper (in particular, Proposition 2.3.18). See also Remark 2.3.12.

Convention 2.1.11 With the exception of Section 2.1.3, all of the A1–algebras that
show up in this paper will be assumed (or proved) to be nilpotent.

2.1.2 Definition of A1 –algebra maps

Definition 2.1.12 Let A and B be A1–algebras. An A1–homomorphism from A
to B is a collection of degree-0 maps � D f�i W AŒ1�˝i ! BŒ1�g, i � 1, satisfying a
compatibility condition which we state in terms of an auxiliary map F� DT �.AŒ1�/!
T �.BŒ1�/, defined by

F�.a1˝ � � �˝ an/D
X

i1C���CikDn

�i1
.a1˝ � � �˝ ai1

/˝�i2
.ai1C1˝ � � �˝ ai1Ci2

/

˝ � � �˝�ik
.an�ikC1˝ � � �˝ an/:
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The compatibility condition is that

(2.1.13) xDB
ıF� D F� ı xDA:

Note that if � D f�ig is an A1–homomorphism then �1 is a chain map.

Composition of A1–homomorphisms is characterized by the property that F�ı D

F� ıF ; we leave it to the reader to verify that such a composition exists.

It turns out that A1–algebra isomorphisms are just homomorphisms with �1 invertible:

Lemma 2.1.14 Let A be an A1–algebra and �W A! B an A1–algebra homomor-
phism such that �1 is an isomorphism. Then � is invertible, ie there is an A1–algebra
homomorphism  W B!A such that � ı D IB and  ı� D IA .

Proof It suffices to show that � has both left and right inverses; we will show that �
has a left inverse. Set  1 D �

�1
1

. Observe that  satisfies the first relation for A1–
homomorphisms (�A

1
ı 1C 1 ı�

B
1
D 0); moreover, for any way of completing  

to an A1–homomorphism, . ı�/1 D IA .

Now, assume inductively that we have found  i for i < n so that for 1 < i < n,
. ı�/i D 0. Observe that

. ı�/n.a1˝ � � �˝ an/D  n.�1.a1/˝ � � �˝�1.an//C

n�1X
iD1

 i.F
�
i .a1˝ � � �˝ an//:

(Here F
�
i is the component of F� that lands in B˝i � T �B .) So, if we set

 n.b1˝ � � �˝ bn/D

n�1X
iD1

 i.F
�
i .�

�1
1 .b1/˝ � � �˝�

�1
1 .bn///;

we have . ı�/nD0. Continuing in this way, we construct a map  so that  ı�D IA .
We can also find a map  0 so that � ı 0 D IB similarly; it follows, of course, that
 D  0 .

It remains to check that  satisfies the relation for A1–homomorphisms, or equiva-
lently that F is a chain map. But we already know that F D .F�/�1 , so the result
follows from the fact that the inverse of a chain isomorphism is a chain map.

Definition 2.1.15 An A1–algebra homomorphism �W A! B is called a quasi-iso-
morphism if �1 induces an isomorphism from the homology of A with respect to �A

1

to the homology of B with respect to �B
1

.
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2.1.3 Induced A1 –algebra structures The following is the main lemma of homo-
logical perturbation theory; see [36, Section (1i)], Kontsevich and Soibelman [18, Sec-
tion 6.4] and Keller [13, Section 3.3; 11, page 4]. For the proof we refer the reader to
the references.

Proposition 2.1.16 Let A be an A1–algebra and B� a chain complex over k.

(1) If f W B�! A is a homotopy equivalence of chain complexes then there is an
A1–algebra structure f�ig on B� and maps fi W B

˝i!AŒ1� i � (i � 1) so that

� �1 is the differential on B� ,
� f1 is the given chain map f , and
� ffigW .B�; f�ig/!A is a quasi-isomorphism.

Moreover, if B� is a dg algebra and f1 is an algebra map, we can choose f�2g

to be the multiplication on B� .

(2) If gW A! B� is a homotopy equivalence of chain complexes then there is an
A1–algebra structure f�ig on B� and maps gi W A˝i! BŒ1� i � so that

� �1 is the differential on B� ,
� g1 is the given chain map g , and
� fgigW A! .B�; f�ig/ is a quasi-isomorphism.

Remark 2.1.17 Note that over k there is no distinction between homotopy equiva-
lences and quasi-isomorphisms of chain complexes.

Corollary 2.1.18 Let A be an A1–algebra and H the homology of A, which inherits
an associative algebra structure from A. Let i W H!A denote an inclusion choosing
a representative for each homology class and pW A! H any projection that sends
each cycle to its homology class. Then there is an A1–algebra structure H consisting
of maps f�ig on H such that there are A1–quasi-isomorphisms f W H ! A and
gW A!H extending i and p respectively.

Proof The existence of f�ig and either f or g is immediate from Proposition 2.1.16;
it remains to show that the A1–algebra structures on H given by the two parts of
Proposition 2.1.16 can be chosen to be the same.

Proposition 2.1.16 gives us two A1–algebra structures H and H0 on H and A1–
quasi-isomorphisms f W H!A, gW A!H0 . Observe that g1 ıf1 is the identity map
on H . So, by Lemma 2.1.14, g ı f W H! H0 is an isomorphism. Then f W H! A
and .g ıf /�1 ıgW A!H are the desired maps.
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Remark 2.1.19 Even if A is nilpotent, the induced A1–structure on the homology H
of A may not be nilpotent (or even satisfy the weaker condition that �i D 0 for
sufficiently large i ). However, for the algebras A.Z/ of interest in this paper, the
induced A1–structures on H will be nilpotent; see also Remark 4.9.

Definition 2.1.20 The quasi-isomorphisms f W H!A given by Corollary 2.1.18 will
be called standard quasi-isomorphisms.

Note that the higher products on H depended on some choices. In certain situations,
however, they are canonically defined; we discuss one instance of this (which will
play a role in Section 4). Let A be an A1–algebra, with products �i , and H be its
homology algebra, with products x�i .

Definition 2.1.21 A sequence ˛1; : : : ; ˛m 2 H is said to be Massey admissible if
for any 1 � i < j �m with .i; j /¤ .1;m/, we have x�j�iC1.˛i ; ˛iC1; : : : ; j̨ /D 0

and Hg.i;j/C1 D 0, where g.i; j / is the grading of x�j�iC1.˛i ; : : : ; j̨ /, ie g.i; j /D

j � i � 1C gr.˛i/C � � �C gr. j̨ /.

Lemma 2.1.22 Let A be a dg algebra, and let H denote its homology. Suppose
˛1; : : : ; ˛m 2H is Massey admissible. Then, there are elements �i;j 2A for 0� i <

j �m and .i; j /¤ .0;m/ such that

d�i;j D
X

i<k<j

�i;k � �k;j ;

and where, for i D 1; : : : ;m, �i�1;i is a cycle representing the homology class ˛i .
Moreover, x�m.˛1; : : : ; ˛m/ is represented by the cycle

(2.1.23)
X

0<k<m

�0;k � �k;m:

The homology class of this cycle is independent of the choices of the �i;j .

Proof Fix a standard quasi-isomorphism f W H!A and consider the A1 relation
for the map f , with inputs ˛1; : : : ; ˛m . Since the target is a dg algebra, this relation
contains no trees with more than two nodes labeled by f . Indeed, there are the
following four types of trees:

(1) Trees where there are two nodes labeled by f , whose two outputs get multiplied
in A.

(2) Trees with one node which is a multiplication x�i of some proper (consecutive)
subsequence of ˛1; : : : ; ˛m , followed by a node labeled fm�iC1 .
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(3) The tree representing f1.x�m.˛1; : : : ; ˛m//.

(4) The tree representing �1.fm.˛1; : : : ; ˛m//.

Now set �i;j D fj�i.˛iC1; : : : ; j̨ /. We can interpret the sum of trees of type (1) as
the sum appearing in (2.1.23). Massey admissibility guarantees that higher multiplica-
tion x�i on a proper consecutive subsequence vanishes, and hence that terms of type (2)
vanish. The term of type (3) gives a cycle representing �m.˛1; : : : ; ˛m/. The term of
type (4) evidently gives a coboundary. It follows that for one choice of the �i;j the
lemma holds.

It remains to show that the homology class is independent of all the choices made,
and hence that, for a Massey admissible sequence, x�m.˛1; : : : ; ˛m/ is independent of
the choice of compatible A1–algebra structure on H�.A/. To this end, we show that
if for some c , we exchange exactly one of the �a;b for b � a � c by � 0a;b , then we
can complete this to a system of � 0i;j so that the final result changes by a coboundary.
Specifically, note that �a;b � � 0a;b is a cycle, and it is supported in grading g.a; b/C 1.
Hence, by Massey admissibility, in fact �a;b � � 0a;b D d�a;b for some choice of �a;b .
Now, define, for all i � a and j � b ,

� 0a;j D �a;j C �a;b � �b;j ;

� 0i;b D �i;bC �i;a � �a;b;

and all other i < j , � 0i;j D �i;j . It is straightforward to check that the � 0i;j satisfy the
same equations as the original �i;j , and also that

X
0<k<m

� 0i;k � �
0
k;j �

X
0<k<m

�i;k � �k;j D

8̂̂̂<̂
ˆ̂:

d.�0;m/ if 1D a, b Dm,
d.�0;b � �b;j / if 1D a, b <m,
d.�0;a � �a;m/ if 1< a, b Dm,
0 otherwise.

It is easy to see that we can go between any two solutions f�i;j g and f� 0i;j g by a
sequence of moves of the above type, and each step leaves the homology class of the
expression from (2.1.23) unchanged.

Remark 2.1.24 Equation (2.1.23) is the traditional definition of the Massey product,
which is typically defined only up to some indeterminacy. The Massey admissibility
condition guarantees that there is no ambiguity in its definition.

2.2 Modules over A1–algebras

In this section we define various notions of A1–modules and bimodules which are
used throughout the paper. As noted earlier, our treatment is nonstandard in that we

Geometry & Topology, Volume 19 (2015)



540 Robert Lipshitz, Peter S Ozsváth and Dylan P Thurston

introduce an object which we call a “type D structure”, which the reader can think of
as a type of projective module; see Corollary 2.3.25.

Another slightly unusual feature of our treatment is that we will define our categories
of modules as dg categories. We start by reviewing this notion.

2.2.1 Background on dg categories The material in this section is standard, but
perhaps unfamiliar to the low-dimensional topology community. Our treatment is
drawn from Keller [14], to which we refer the reader for more details and further
results.

Definition 2.2.1 A differential graded category is a category C such that the mor-
phism spaces are chain complexes and composition of morphisms is bilinear and
commutes with the differential, ie such that composition of functions gives chain maps
ıW Mor.y; z/˝k Mor.x;y/!Mor.x; z/.

The prototypical example is the category of chain complexes:

Example 2.2.2 The dg category of chain complexes has objects chain complexes C�
and morphism spaces

Mor.C�;D�/n D ff D .fi W Ci!DnCi/
1
iD�1g

with differential defined by

.@f /.x/D @D.f .x//Cf .@C x/:

Note that the 0–cycles in .Mor.C�;D�/; @/ are exactly the degree-0 chain maps
between C� and D� and the boundaries are the nullhomotopic chain maps. The
homology of .Mor.C�;D�/; @/ is the group of chain maps modulo homotopy.

Definition 2.2.3 Given a dg category C, let Z.C/ (respectively Z�.C/) denote the
category with the same objects as C and morphisms HomZ.C/.x;y/DZ0.MorC.x;y//

(respectively HomZ�.C/.x;y/DZ�.MorC.x;y//) the degree-0 cycles (respectively
cycles of any degree) in the morphism space of C. We call the morphisms in Z�.C/

the homomorphisms in C, and sometimes denote the set of homomorphisms simply by
Hom (as distinct from the set of all morphisms Mor).

Let H.C/ (respectively H�.C/) denote the category with the same objects as C

and morphisms HomH.C/.x;y/DH0.MorC.x;y// (respectively HomH�.C/.x;y/D

H�.MorC.x;y//), the degree-0 homology (respectively total homology) of the mor-
phism space of C.
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Example 2.2.4 For C the dg category of chain complexes, Z.C/ is the usual category
of chain complexes, in which the morphism spaces are the degree-0 chain maps. The
category H.C/ is the homotopy category of chain complexes.

The category H.C/ is naturally a triangulated category; see [14, Section 3.4]. One
could go further and invert quasi-isomorphisms, but for our purposes this will not be
necessary.

Definition 2.2.5 Let C be a dg category. Morphisms f;g 2MorC.x;y/ are called
homotopic if there is a morphism h 2MorC.x;y/ so that .@h/D f �g ; in this case
we write f � g . A cycle f 2MorC.x;y/ is a homotopy equivalence if there is a cycle
g 2MorC.y;x/ so that g ıf � Ix and f ıg � Iy .

Definition 2.2.6 For f 2Mor.x;y/, let

f�wW Mor.w;x/!Mor.w;y/;

f �z W Mor.y; z/!Mor.x; z/;

be the maps obtained by pre- and post-composing with f . We will sometimes write f�
or f � if the spaces are clear from context.

Lemma 2.2.7 If f;g 2MorC.x;y/ are homotopic morphisms then f�w � g�w and
f �z � g�z .

Similarly, if f 2MorC.x;y/ is a homotopy equivalence then the maps f�w and f �z

are chain homotopy equivalences.

The proof is straightforward.

Definition 2.2.8 Let C and D be dg categories. A dg functor F W C!D is a functor
C!D such that for any objects x and y of C, F.Mor.x;y// is a degree-0 dg module
homomorphism.

Lemma 2.2.9 If F is a dg functor and f;g 2Mor.x;y/ are homotopic then F.f /
and F.g/ are homotopic. If f is a homotopy equivalence then F.f / is a homotopy
equivalence.

The proof is immediate from the definitions.
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Definition 2.2.10 Let C and D be dg categories and F ;GW C! D dg functors. We
say F is homotopic to G if for each x 2 Ob.C/ there are homotopy equivalences
�x W F.x/! G.x/ so that for any x;y 2 Ob.C/ the following diagram commutes up
to homotopy:

MorC.x;y/ MorD.F.x/;F.y//

MorD.G.x/;G.y// MorD.F.x/;G.y//

F

G .�y/�

.�x/
�

A dg functor F W C!D is a homotopy equivalence if there is a functor GW D! C so
that G ıF is homotopic to IC and F ıG is homotopic to ID .

(In Definition 2.2.10 we have not required any coherence for the homotopies in the
diagram; one could formulate stronger notions with such coherence built in.)

Definition 2.2.11 Let C and D be dg categories. A functor F W C!D is a quasiequiv-
alence if

� for all x;y 2 Ob.C/, the map F.x;y/W MorC.x;y/!MorD.F.x/;F.y// is a
quasi-isomorphism, and

� the induced map H.F/W H.C/! H.D/ is an equivalence of categories.

(See [14, Section 2.3] for more details.)

Proposition 2.2.12 If F W C!D is a homotopy equivalence then F is a quasiequiva-
lence.

Again, the proof is straightforward.

Just as one can generalize the notion of dg algebras to A1–algebras, one can generalize
the notion of dg categories and dg functors to A1–categories and A1–functors. Some
of the categories studied in this paper (in particular, the category of type D modules)
are A1–categories, and some of the functors (in particular, �) are A1–functors.
Most of the additional complications are, however, not important for the applications in
this paper: when working with dg algebras (rather than A1–algebras), the categories
we consider are honest dg categories (see Remark 2.2.28). So we will not spell out the
notions of A1–categories and A1–functors, trusting the reader to provide them if
desired, or to consult Seidel [35].
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Remark 2.2.13 The reader might find the following analogy helpful for understanding
the role of these dg categories. It has been understood for some time that when working
with complexes, rather than taking homology of complexes it is often better to pass to
the derived category, ie to invert morphisms which induce isomorphisms on homology.
For example, operations like tensor product and Hom are better behaved with respect to
inverting quasi-isomorphisms than with respect to taking homology, giving rise to the
derived functors Tor and Ext. The language of A1–algebras allows one to view the
derived category of R–modules itself as the homology of a dg category. Then, if one
is interested in studying categories of modules, it is better to work with dg categories
and invert quasiequivalences of categories rather than take homology and work with
derived categories.

2.2.2 The category of A1 –modules

Definition 2.2.14 A (right) A1–module MA over A D .A; f�ig/ is a Z–graded
k–module M together with degree-0 k–linear maps mjC1W M ˝AŒ1�˝j ! M Œ1�

(j D 0; : : : ;1) such that for each i D 0; : : : ;1, x 2M and a1; : : : ; ai 2A,

(2.2.15) 0D

i�1X
jD0

mi�j .mjC1.x; a1; : : : ; aj /; ajC1; : : : ; ai/

C

iX
jD1

i�jC1X
kD1

mi�jC1.x; a1; : : : ; ak�1; �j .ak ; : : : ; akCj /; akCjC1; : : : ; ai/:

An A1–module is strictly unital if m2.x; 1/ D x and miC1.x; a1; : : : ; ai/ D 0 if
i ¤ 1 and one of the ai 2 k.

We will sometimes refer to A1–modules as type A modules, to place them on equal
footing with the type D modules which will appear later (Definition 2.2.23). The
bordered invariant bCFA.Y / is an A1–module.

Convention 2.2.16 All A1–modules will be assumed strictly unital.

As with the A1–relation for algebras (2.1.3), (2.2.15) has an interpretation in terms
of trees. In this interpretation, there are two types of strands: those corresponding to
algebra elements, and distinguished (dotted) ones corresponding to module elements.
Precisely:

Definition 2.2.17 A (right) A1–module operation tree is a finite directed tree �
embedded in the plane so that all edges point downwards, with the edges of two types,
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the algebra edges (labeled by A) or module edges (labeled by M ) and nonleaf vertices
marked either � or m, and so that:

� Each nonleaf vertex has exactly one outgoing edge.

� Each � vertex touches only algebra edges.

� At each m vertex, the leftmost incoming edge and the outgoing edge are module
edges, and the other incoming edges are algebra edges.

� There is at least one module edge.

To an A1–module operation tree we can associate an operation m� W M ˝A˝n!M

by flowing along the edges as before, applying �i or mi depending on the label at the
vertex. Then (2.2.15) says that the sum of m� over all A1–module operation trees �
with two vertices and a fixed number of inputs vanishes.

An A1–module operation tree is called spinal if each node is labeled m, ie the line of
module edges goes through each node.

Definition 2.2.18 We say that an A1–module MA is operationally bounded (or just
bounded) if, for all x 2M there exists an n so that for any i > n and any spinal
A1–module operation tree � with iC1 input edges, m�.x˝ � // vanishes on .AC/˝i .

Graphically, this says that for each x there exists an n so that if i1C� � �C ik > n then
for any a1;1; : : : ; ak;ik

2AC ,

x

�i1C1

:::

�ikC1

0.

a1;1˝ � � �˝ a1;i1
� � � ak;1˝ � � �˝ ak;ik

The notion of operationally bounded modules is different from more traditional defini-
tions of boundedness; for instance, it does not imply any bound on degrees which have
nonzero homology groups.

Geometry & Topology, Volume 19 (2015)



Bimodules in bordered Heegaard Floer 545

Remark 2.2.19 As in Remark 2.1.10, this is a stronger condition than the condition
called “operationally bounded” in our previous paper [21], where we just assumed that
mi D 0 for i sufficiently large. But note that a dg module over a nilpotent dg algebra
is automatically operationally bounded in the stronger sense above. The reason we
want the stronger condition relates to subtleties of the box tensor product of bimodules,
not modules.

We can combine the multiplications mi on an A1–module MA into a single map
mW M ˝T �.AŒ1�/!M Œ1�. Because we assume MA is strictly unital, all the infor-
mation is contained in a map M ˝ T �.ACŒ1�/!M Œ1�, also denoted m. If MA is
operationally bounded then the map m extends to a map from the completed tensor
product: mW M ˝ xT �.AŒ1�/!M Œ1�. (Here, xT �.AŒ1�/D

Q1
iD0 AŒ1�˝i .)

Definition 2.2.20 The category ModA of (right) A1–modules over A is the dg
category whose objects are A1–modules MA and whose morphism spaces are defined
as follows. The Z–graded vector spaces underlying the morphism spaces are the vector
spaces of k–module homomorphisms

MorA.MA;NA/ WD Homk.M ˝T �.ACŒ1�/;N /;

where AC is the augmentation ideal of A. Here we think of the homomorphisms
between two Z–graded k–modules V and W as a graded F2 vector space, with

Homk.V;W /i WD
M

j

Homk.Vj ;WiCj /:

If h 2MorA.MA;NA/, denote the component parts by hi W M ˝ .ACŒ1�/
˝.i�1/!N .

The differential on morphisms is given by

.@h/.x; a1; : : : ; an/

WD

X
iCjDn

hiC1.mjC1.x; a1; : : : ; aj /; ajC1; : : : ; an/

C

X
iCjDn

miC1.hjC1.x; a1; : : : ; aj /; ajC1; : : : ; an/

C

X
iCjDn

n�jX
kD1

hiC1.x; a1; : : : ; ak�1; �jC1.ak ; : : : ; akCj /; akCjC1; : : : ; an/:

The A1–homomorphisms from MA to NA in the usual sense (see for example [13])
are the cycles in the morphism complex; cf Definition 2.2.3.
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Remark 2.2.21 Strict unitality is built into the definition of A1–morphisms, since
we use the augmentation ideal in the definition of the morphism spaces.

We can again give a graphical notation for operations built from morphisms, as follows.
Let h be an A1–morphism from MA to NA . An A1–module morphism tree � is
a planar directed tree satisfying all the conditions of an A1–module operation tree,
except that the module edges may be marked either M or N , and there is one node
labeled by h with an M input and N output which is otherwise like an m node. Again,
we can define a map h� W M ˝ .ACŒ1�/

˝n!N by applying at each vertex �i , hi , or
mi in either M or N , as appropriate.

Definition 2.2.22 An A1–morphism h from MA to NA is operationally bounded
if for each x 2M there is an n so that h�.x˝ � // vanishes on .AC/˝i for all spinal
A1–module morphism trees � with i > n inputs.

We can also view a morphism .hj /
1
jD1

as a single map hW M ˝ T �.AŒ1�/ ! N .
Writing �W T �.V /! T �.V /˝T �.V / for the natural comultiplication for any vector
space V , we can also draw the differential of a morphism h as:

@hD

�

m

h

C

�

m

h C

h

xD

We have used dashed lines for module elements, and solid lines for algebra elements,
either in A in AC . A doubled arrow denotes elements of T �.AŒ1�/ or T �.ACŒ1�/.

Given f 2MorA.M;N / and g 2MorA.N;L/, we define the composite morphism
g ıf 2MorA.M;L/ by

.g ıf /.x˝˛/D g ı .f ˝ IT �.AŒ1�//.x˝�.˛//:

This induces a chain map

MorA.N;L/˝MorA.M;N /!MorA.M;L/:
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We can draw composition as

g ıf D

�

f

g

2.2.3 The category of type D structures Throughout this subsubsection, let AD
.A; f�ig/ be an A1–algebra satisfying Convention 2.1.5.

Definition 2.2.23 A (left) type D structure over A is an object AN consisting of
a graded k–module N equipped with a degree-0 linear map ı1W N ! AŒ1�˝ N ,
satisfying a compatibility condition which is best described after introducing an auxiliary
construction.

Define maps ıi W N ! .AŒ1�/˝i ˝N (i � 2) inductively by

ıiC1
WD .IA˝i ˝ ı1/ ı ıi

and define ıW N ! xT �.AŒ1�/˝N by

(2.2.24) ı.x/ WD

1X
iD0

ıi :

(Here xT �.AŒ1�/ D
Q1

iD0 AŒ1�˝i .) Then the compatibility condition is that for any
x 2N ,

(2.2.25) .�˝ IN / ı ı.x/D 0:

Here � is the sum of the structure maps of A, as in (2.1.7).

We say that AN is operationally bounded if for each x 2 AN , there is a constant
nD n.x/ with the property that for all i > n, ıi.x/D 0. This is equivalent to saying
that the above ı factors thorough the inclusion of T �.AŒ1�/ in xT �.AŒ1�/.

When more than one module is present, we will often write ıN;i for the operation ıi on
the type D structure N and ıN to denote the map ı on N . This conflict of notation
with ıi should not cause confusion.
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Sometimes we refer to type D structures as type D modules.

Note that the defining (2.2.25) makes sense since A is nilpotent. We can represent
Definition 2.2.23 graphically by:

ı D ı WD C

ı1

C

ı1

ı1

C � � �

Then, (2.2.25) takes the form:

ı

�

D 0

We can also form type D structures into a dg or an A1 category ModA
u where

Mor.AM;AN / is the chain complex whose underlying space consists of maps

h1
W M !A˝N:

Such a map can be upgraded to a map to the tensor algebra: define hi W M !A˝i˝N

by

hi
WD

i�1X
jD0

.IA˝jC1 ˝ ıN;i�j�1/ ı .IA˝j ˝ h1/ ı ıM;j

and hW M ! xT �A˝ N by h WD
P1

iD1 hi . The symbol u in the notation ModA
u

indicates that objects in the category of type D structures are not required to be
bounded (ie they are possibly unbounded; see Definition 2.2.29).

The degree of an element of Mor.AM;AN / is the degree of the corresponding map of
vector spaces M !A˝N .

The boundary operator on morphisms is defined by

.@h/1 WD .�˝ IN / ı h;

as depicted on the left in Figure 1.
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ıM

h1

ıN

�

ıM

h1

ıN

.h0/1

ıP

�

ıM0

.h1/
1

ıM1

.h2/
1

:::

.hk/
1

ıMk

:::

�

Figure 1: Operations on type D morphisms: from left to right, we have the
differential on Mor.AM;AN / , the composition of morphisms and the higher
(A1 ) compositions.

The composition of two morphisms h1 2Mor.AM;AN / and .h0/1 2Mor.AN;AP / is
defined by

(2.2.26) .h0 ı h/1

WD .�˝IN /ı .IT �˝ ı
P /ı .IT �˝ .h

0/1/ı .IT �˝ ı
N /ı .IT �˝h1/ı ıM

I

this is illustrated in the middle in Figure 1.

It is straightforward to verify that this is a map of chain complexes, ie @.h ı h0/ D

@h ı h0C h ı @h0 .

The attentive reader will notice that the composition of morphisms is not associative
but associative only up to homotopy. In fact:

Lemma 2.2.27 There are higher composition maps which make ModA
u into an A1–

category.
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Proof Let AM0 ,. . . ;AMk be type D structures over A. Define a higher composition
map

ık W Mor.AM0;
AM1/˝ � � �˝Mor.AMk�1;

AMk/!Mor.AM0;
AMk/

by the diagram on the right in Figure 1.

It is easy to check that the higher composition maps ık satisfy the A1–relation.

Remark 2.2.28 In the case where A is a dg algebra, the higher composition maps of
Lemma 2.2.27 vanish, so ModA

u is an honest dg category.

We call the cycles in Mor.AM;AN / type D module homomorphisms.

Note that, since composition of morphisms in Mor. ModA
u / is associative up to homo-

topy, the homotopy category H. ModA
u / is an honest category.

Finally, we can also form the category of bounded type D structures:

Definition 2.2.29 We call a type D morphism hW AM ! AN bounded if for any
x 2 AM , there is a constant nD n.x/ such that for all i � n, .IA˝i˝h/ııM;i.x/D 0

and .IA˝ ı
N;i/ ı h.x/D 0.

Let ModA
b denote the category of bounded type D structures and bounded morphisms.

In fact, it is clear from the definition that:

Lemma 2.2.30 Any morphism between bounded type D structures is bounded.

One can, of course, define right type D structures similarly; we denote the category of
right type D structures over A by ModAu .

Definition 2.2.31 Given a type D structure .AM; ı1/, define the opposite type D

structure . SM A; xı1/ as follows. First suppose that A and M are finite-dimensional.
As a k–module, SM is just M � D Homk.M;k/. The map ı1 on M is an element of
Homk.M;A˝M /'M �˝A˝M 'Homk.M

�;M �˝A/, and xı1 is obtained by
viewing ı1 as lying in Homk.M

�;M �˝A/. If A or M are not finite-dimensional,
Homk.M;A˝M / is a subspace of Homk.M

�;M �˝A/, and xı1 is the image of ı1

under the inclusion.

Lemma 2.2.32 Given a type D structure .M; ı1/, the opposite structure .. SM /A; xı1/

satisfies the type D structure equation (2.2.25).
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Proof The two structure equations are the same, as can be seen most easily graphically
in the finite-dimensional case:

0 D

ıM

h1

ıN

�

D

ıN

h1

ıM

�

D

xıN

h1

xıM

�

In the last diagram, the dotted arrow represents the dual space M � , for which the maps
travel in the opposite direction.

Lemma 2.2.30 of course says that ModA
b is a full subcategory of ModA

u . We will find
it most convenient to work in a category which is in between the two:

Definition 2.2.33 Let AMod� ModA
u denote the full subcategory whose objects are

type D structures N which are homotopy equivalent to bounded type D structures.

See also Proposition 2.3.24 for an alternate characterization, in terms of bar resolutions.
Our reason for preferring the above category is that it is quasiequivalent to the category
of type A modules; see Proposition 2.3.18.

A type D structure AM can be seen as a way to generalize the notion of “projective
module” to modules over an A1–algebra. In particular, we will see in Section 2.3.2
how to make A˝k M into an A1–module over A, which, when A is a differential
graded algebra and AM is bounded, is a projective module (Corollary 2.3.25).

Remark 2.2.34 The notion of boundedness is not invariant under isomorphisms of
type D structures. For example, consider the algebra A D A.T ; 0/ discussed in
Section 3.3 and the following type D structures over A:

� AM given by M D F2ha; bi with ı1.a/ D �12 ˝ a C .�1 C �3/ ˝ b and
ı1.b/D �23˝ b .

� AN given by M D F2hc; di with ı1.c/D .�1C �3/˝ d and ı1.d/D 0.
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(These are both models for bCFD of the .�1/–framed solid torus; compare [21, Sec-
tion 11.2].) Clearly, AN is bounded but AM is not. The map f W AN ! AM given by
f 1.c/D a and f 1.d/D bC �2˝ a is an isomorphism.

Remark 2.2.35 Let Cob.A/D T �.ACŒ1�
�/ be the tensor algebra on the dual of AC

(the “cobar resolution” of A) and bCob.A/ its completion with respect to the length
filtration. Then the operation xDA dualizes to endow Cob.A/ and bCob.A/ with a
differential. One can show that an A1–module over A is exactly a type D structure
over bCob.A/.

Remark 2.2.36 In a similar vein to Remark 2.2.35, we have the following reformula-
tion of bounded type D structures in terms of differential comodules. Consider the bar
resolution Bar.A/DT �.ACŒ1�/, endowed with its differential, which sums over all the
ways of grouping together k consecutive elements and applying �k to them. This can
be thought of as an associative coalgebra equipped with the comultiplication �, which
sums over all the ways of splitting up an element a1˝ � � � ˝ an as a tensor product
of two elements of Bar.A/, .a1˝ � � � ˝ ai/˝ .aiC1˝ � � � ˝ an/. Bounded type D

structures over A are precisely differential comodules over Bar.A/. Specifically, fix a
differential comodule

�W N ! Bar.A/˝N

equipped with compatible differential DW N ! N . Letting …i denote the natural
projection map …i W T �.ACŒ1�/ ! ACŒ1�˝i , we can define the associated type D

structure by ı1 D D C .…1 ˝ IN / ı�. Conversely, given a type D structure ı1 ,
the comodule structure � is given by �D ŒT �.IA � �/˝ IM � ı ı , where ı is given
in (2.2.24), and the differential is given by .�˝ IM / ı ı1 . Indeed, it is interesting to
compare � with the twisted tensor product of [19]. (See also Keller [12].)

Remark 2.2.37 Given the dg algebra (respectively A1 algebra) A, we can form the dg
category (respectively A1–category) C0.A/ whose objects correspond to elementary
idempotents of A. Given idempotents I and J , let Mor.I;J / be the algebra elements
with J �a�I Da (endowed with the natural differential), and let composition correspond
to multiplication in the algebra (respectively higher composition correspond to higher
multiplications in the algebra). A type D structure over A can be thought of as a
twisted complex over the additive closure of C0.A/. (For the definition of twisted
complexes, see Bondal and Kapranov [7] and Kontsevich [17].)

2.2.4 Bimodules of various types Just as there are two notions of module over an
A1–algebra — those of an A1–module (or type A module) and a type D structure —
there are four notions of bimodule: type DD, AA, DA and AD. Actually, there are
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subtleties about defining type DD modules over general A1–algebras, so for these we
restrict to dg algebras.

Definition 2.2.38 Let A and B be (strictly unital, augmented) A1–algebras over k

and j respectively. Then an A1–bimodule or type AA bimodule AMB over A and B
consists of a graded .k; j /–bimodule M and degree-0 maps

mi;1;j W AŒ1�
˝i
˝M ˝BŒ1�˝j

!M Œ1�

such that, for mD
P

i;j mi;1;j , the following analogue of (2.2.15) is satisfied:

(2.2.39) m

m

� �

C

xDA

m

C

xDB

m

D 0

An A1–bimodule is strictly unital if m1;1;0.1;x/D x Dm0;1;1.x; 1/ for any x and
if mi;1;j .a1; : : : ; ai ;x; b1; : : : ; bj / vanishes if i C j > 1 and one of the ak or b` lies
in k or j . We shall always work with strictly unital A1–bimodules.

A morphism AMB!ANB is a collection of maps fi;1;j W ACŒ1�
˝i˝M˝BCŒ1�

˝j!N .
The set of morphisms is naturally a graded F2 vector space; compare Definition 2.2.20.
Moreover, the set of morphisms forms a chain complex: writing f to denote the total
map f W T �.ACŒ1�/˝M ˝T �.BCŒ1�/!N , the differential of such a morphism f

is:

@f D f

m

� �

C m

f

� �

C

xDA

f

C

xDB

f
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Given another morphism gW ANB! APB define:

g ıf D f

g

� �

We let AModB denote the dg category of type AA modules over A and B . The cycles
in Mor.AMB;ANB/ are the type AA bimodule homomorphisms.

Example 2.2.40 If A and B are dg algebras and M is a type AA bimodule such
that mi;1;j vanishes whenever i C j > 1 then M is an ordinary dg bimodule.

An AA module operation tree is like an A1–module operation tree, except that the
algebra edges are now labeled either A or B , and nodes labeled m the incoming
module edge need not be the leftmost edge, but edges to the left of the module edge
are labeled A and edges to the right are labeled B . Similarly for AA morphism trees.

Definition 2.2.41 An A1–bimodule AMB is (operationally) bounded if for each
x 2M there is an n so that for i C j > n and any spinal AA module operation tree �
with iC1Cj total inputs, i labeled A (to the left of the module edge) and j labeled B

(to the right of the module edge), m�. � ˝x ˝� / vanishes on .ACŒ1�/˝i˝.BCŒ1�/
˝j .

It is left (respectively right) (operationally) bounded if for each x 2M and each i there
exists an n so that for all spinal AA module operation trees � with i right (respectively
left) inputs and j > n left (respectively right) inputs, m�. � ˝ x ˝ � / vanishes on
.ACŒ1�/

˝j ˝ .BCŒ1�/
˝i (respectively .ACŒ1�/˝i ˝ .BCŒ1�/

˝j ).

Similarly, a morphism f W AMB! ANB is called bounded if for each x 2M there
is an n so that for any spinal AA morphism tree � with i C 1C j > n total inputs,
f�. � ˝ x ˝ � / vanishes on .ACŒ1�/˝i ˝ .BCŒ1�/

˝j . It is left (respectively right)
bounded if for each x 2M and each i there exists an n so that for any spinal AA
morphism tree � with i right (respectively left) inputs and j > n left (respectively
right) inputs, f�. � ˝ x ˝ � / vanishes on .ACŒ1�/

˝j ˝ .BCŒ1�/
˝i (respectively

.ACŒ1�/
˝i ˝ .BCŒ1�/

˝j ).

(See also Lemma 2.3.11 for a mild reformulation of these notions and unification with
the notion of boundedness for type DA and DD structures, defined below.)
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Example 2.2.42 An A1–algebra A can be viewed as an A1 bimodule AAA over
itself, with

mi;1;j .a1; : : : ; am;x; b1; : : : ; bn/D �iCjC1.a1; : : : ; ai ;x; b1; : : : ; bj /:

This bimodule is operationally bounded if A is nilpotent (as we are assuming through-
out), but not usually otherwise.

Definition 2.2.43 Let A and B be A1–algebras over k and j respectively. Then a
type DA bimodule ANB over A and B consists of a graded .k; j /–bimodule N and
degree-0, .k; j /–linear maps

ı1
1Cj W N ˝BŒ1�˝j

!AŒ1�˝N:

The compatibility condition is as follows. Let ı1 D
P

j ı
1
j . Define maps ıi W N ˝

T �.BŒ1�/!AŒ1�˝i ˝N inductively by

ı0
D IN ;

ıiC1
D .IA˝i ˝ ı1/ ı .ıi

˝ IT �B/ ı .IN ˝�/;

where �W T �.B/! T �.B/˝T �.B/ is the canonical comultiplication. Let

ıN
W N ˝T �.B/! xT �.AŒ1�/˝N

be the map defined by

ıN
D

1X
iD0

ıi :

That is, graphically:

ıN
D ıN WD ˚ ı1 ˚

�

ı1

ı1

˚

�

ı1

ı1

ı1

� � �
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Then, the compatibility condition is given graphically by

xDB

ıN

C

xDA

ıN

D 0;

or symbolically by

(2.2.44) ıN
ı .IN ˝

xDB/C . xDA
˝ IN / ı ı

N
D 0:

(Compare (2.2.25).)

A type DA structure AMB is called strictly unital if ı1
2
.x; 1/D 1˝x for any x 2M

and ı1
1Ci

.x; b1; : : : ; bi/D 0 if i > 1 and some b` 2 j , so ı1
1Ci

is induced by a map
from N ˝BCŒ1�

˝i to AŒ1�˝N , which we also denote ı1
1Ci

. We will assume our
type DA structures are strictly unital.

A morphism of type DA structures f 1W AMB!
ANB is a collection of maps f 1

1Cj
W M˝

BCŒ1�
˝j !A˝N . The set of morphisms is naturally a graded vector space; compare

Definition 2.2.20. Moreover, the set of morphisms forms a chain complex: the differ-
ential of a morphism f 1 is shown in Figure 2 (left). Define higher composition maps
ık.f1; : : : ; fk/ as in Figure 2 (right). These composition maps make the collection
of type DA structures over A and B into an A1 category, which we denote ModA

u B .
The cycles in Mor.AMB;

ANB/ are called type DA structure homomorphisms.

Let
ıi
j D ı

i
ˇ̌
N˝B

˝.j�1/
C

; ıN
j D ı

N
ˇ̌
N˝B

˝.j�1/
C

be the parts of ıi and ıN taking j inputs.

Definition 2.2.45 A DA module operation graph � consists of:

� A connected, directed graph G .

� An embedding �W G! xD2 of G in the disk, so that all edges point downwards.

� A labeling of the vertices of G mapped by � to the interior of the disk (the
interior vertices) by �, ı , or � .

� A marking of each edge of G as either a module edge (labeled M ) or an algebra
edge (labeled A or B ).
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@.f 1/D

�

ıM

f 1

ıN

�A

C

xDB

f 1

�

ıMkC1

f 1
k

ıMk

f 1
k�1

:::

ıM2

f 1
1

ıM1

�A

Figure 2: The differential and composition of DA morphisms: on the left,
we have the differential of a type DA morphism, which can also be thought
of as the composition map ı1 ; on the right, we have the composition ık of
morphisms f1; : : : ; fk .

This data is required to satisfy:

� The directed graph G has no oriented cycles.

� The vertices mapped by � to @xD2 (the exterior vertices) are leaves.

� At each � vertex, there is at least one incoming and exactly one outgoing edge,
all algebra edges with the same label.

� At each � vertex, there is one incoming algebra edge and no outgoing edges.

� At each ı vertex, there is at least one incoming and exactly two outgoing edges,
such that the leftmost incoming and right outgoing edge are module edges, and
with the other incoming edges marked B and the other outgoing edge marked A.

� There is a module edge.
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Call an exterior vertex an in (respectively out) vertex if it is a source (respectively sink).
Note that all in (respectively out) vertices are consecutive with respect to the cyclic
order on @xD2 . It also follows from the conditions that the edge from the leftmost in
(respectively rightmost out) vertex is a module edge, and the edges from all other in
(respectively out) vertices are algebra edges.

Associated to a DA module operation graph with .i C 1/ in and .j C 1/ out vertices is
a map

ı� W M ˝B˝i
C !A˝j

˝M;

defined in the obvious way.

A DA module operation graph is spinal if it has no � nodes.

Definition 2.2.46 A type DA structure AMB is called (operationally) bounded if for
each x 2M there is an n so that for all i C j > n and spinal DA module operation
graphs � with i (right) algebra inputs and j (left) algebra outputs, ı�.x˝ � / vanishes
on .BCŒ1�/˝i . It is right (operationally) bounded if for each x and each j there is
an n so that for spinal DA module operation graphs � with i > n algebra inputs and j

algebra outputs, ı�.x˝ � // vanishes on .BCŒ1�/˝i . It is left (operationally) bounded
if for each x 2 AMB and each i there is an n so that for all DA module operation
graphs � with i algebra inputs and j > n algebra outputs, ı�.x˝ � / vanishes on
.BCŒ1�/

˝i . Boundedness for morphisms is defined similarly.

We denote the category of bounded type DA structures and bounded type DA morphisms
by ModA

B B .

Remark 2.2.47 One reason that � appears in the boundedness conditions for type
DA structures is that we want the forgetful functor from type DA structures to type A

modules (see Section 2.3.1) to take right bounded structures to bounded modules.

Definition 2.2.48 Let A and B be A1–algebras over k. Given an A1–morphism
�W B!A, defined by maps �k W B

˝k!A, define a bimodule AŒ��B with underlying
space a free rank-1 module over k and structure maps given by the �k . That is, let
� 2 Œ�� be the generator and define

ı1
1Ck.�; b1; : : : ; bk/D �k.b1; : : : ; bk/˝ �:

As a special case, given an A1–algebra A we have the module AŒI�A . As a k–module,
AŒI�A is isomorphic to k. For k ¤ 2, ı1

k
D 0, while

ı1
2.�; a/D a˝ �;

where � is the generator of AŒI�A . We call AŒI�A the identity bimodule.
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Remark 2.2.49 The identity bimodule AŒI�A is typically not (operationally) bounded:
in fact, it is bounded if and only if T �AC is finite-dimensional. The module AŒI�A is
always left and right (operationally) bounded, however.

In fact, the modules from Definition 2.2.48 have the following easy characterization:

Lemma 2.2.50 Let A and B be A1–algebras over k. Let AMB be a type DA
bimodule whose underlying k–bimodule is k. Assume furthermore that ı1

1
D 0. Then

there is an A1–algebra morphism �W B!A with the property that AMB Š
AŒ��B .

Proof Given AMB with generator � as a k–module, the homomorphism � is uniquely
characterized by

ı1
nC1.�; b1; : : : ; bn/D �n.b1; : : : ; bn/˝ �:

The hypothesis that ı1
1
D 0 ensures that �0 D 0, so we drop it. We must verify that

� D f�ig
1
iD1

satisfies the A1–relation (2.1.13). Define � W k˝T �.B/' T �.B/˝k

to be the canonical identification (as both are isomorphic to T �.B/). Then we have
ı D .F� ˝ Ik/ ı � . So, by the A1–relation for ı ,

0D ı ı .Ik˝
xDB/C . xDA

˝ Ik/ ı ı

D .F� ˝ Ik/ ı � ı .Ik˝
xDB/C . xDA

˝ Ik/ ı .F
�
˝ Ik/ ı �

D ..F� ı xDB/˝ Ik/ ı � C .. xD
A
ıF�/˝ Ik/ ı �;

hence F� ı xDBC xDA ıF� D 0, as desired.

Remark 2.2.51 The hypothesis that ı1
1
D 0 can be dropped, if we allow for more

general types of A1–algebra morphisms, ie those which contain a term �0 . The
hypotheses of Lemma 2.2.50 are satisfied in the case we use it (Theorem 4).

Definition 2.2.52 Let AModB denote the full subcategory of ModA
u B consisting of

type DA bimodules which are homotopy equivalent to bounded type DA bimodules.

This is equivalent to the category of type DA bimodules which are homotopy equivalent
to left bounded type DA bimodules; see Proposition 2.3.24 below.

One can define type AD modules similarly, by reflecting all of the pictures. For
instance, given �W B!A, one can define a module BŒ��

A analogous to the one from
Definition 2.2.48.

Like for the D structures, type DA modules have opposite type AD modules. We will
explain this operation only under some finiteness assumptions:
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Definition 2.2.53 Suppose that .AMB; ı
1/ is a type DA structure and A, B and M

are finite-dimensional. Define the opposite type AD structure .B SM A; xı1/ as follows.
As a .k; j /–bimodule, SM is just M � D Homk˝j .M;k˝ j / Š HomF2

.M;F2/.
The map ı1

k
on M is an element of Homk.M ˝B˝k

C ;A˝M / ' Homk.B
˝k
C ˝

M �;M �˝A/, and xı1 is obtained by viewing ı1 as lying in the right-hand side.

Lemma 2.2.54 Given a type DA structure AMB , the opposite type AD structure B SM
A

satisfies the type AD structure equation.

Proof We leave the verification, which is similar to the proof of Lemma 2.2.32, to the
reader.

Next, we turn to our final notion of bimodule, a type DD structure. We will only define
these when A and B are dg algebras.

Definition 2.2.55 Let A and B be dg algebras over k and j . We define the category
of type DD structures over A and B , ModA B

u u , to be the category of type D structures
over A˝F2

Bop , that is, ModA˝F2
Bop

u .

We denote a type DD structure M by AM B . The cycles in Mor.AM B;AN B/ are the
type DD structure homomorphisms.

We think of the data of a type DD structure as a graded .k; j /–bimodule M and a
degree-0 map ı1W M !A˝M˝BŒ1�, such that the following compatibility condition
holds:

ı1

ı1

�2 �2

C

ı1

�1

C

ı1

�1

D 0:

A morphism g1W AM B! AN B of type DD structures is a map g1W M !A˝N ˝B .
The set of morphisms is naturally a graded vector space, as in Definition 2.2.20.
Moreover, the set of morphisms forms a chain complex: the differential of a morphism
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g1 is:

@.g1/D

ı1

g1

�A
2

�B
2

C ı1

g1

�A
2

�B
2

C

g1

�B
1

C

g1

�B
1

Composition in ModA B
u u is given by: for g1W AM B! AN B and h1W AN B! APB ,

h1
ıg1
D h1

g1

�A
2

�B
2

:

Given a type DD structure .M; ı1/ define maps ıi inductively by

ıi
D .IA˝.i�1/ ˝ ı1

˝ IB˝.i�1// ı ıi�1
W M !A˝i

˝M ˝B˝i

and set ı D
L1

iD0 ı
i .

Similarly, given a morphism g1W AM B! AN B , define gi W M !A˝i˝N ˝B˝i by

gi
D

iX
jD1

.IA˝j ˝ ı
N;i�j

˝ IB˝j / ı .IA˝.j�1/ ˝g1
˝ IB˝.j�1// ı ıM;j�1

and let g D
P1

iD1 gi .

Note that the augmentation �W A! k of A extends to a map �W T �A! k by �.a1˝

� � �˝ ak/D �.a1/ � � � �.ak/.

Definition 2.2.56 We call a type DD structure AM B left (respectively right) (opera-
tionally) bounded if for each x 2 AM B , there is a constant n with the property that for
all i > n, .IA˝i ˝ IM ˝ �B/ ı ı

i D 0 (respectively .�A˝ IM ˝ IB˝i / ı ıi D 0). We
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call AM B (operationally) bounded if for each x , n can be chosen so that ıi.x/D 0

for i > n. Boundedness for morphisms of type DD structures is defined similarly.

As usual, the condition of being operationally bounded is stronger than the condition
of being both left and right bounded.

Definition 2.2.57 Call a type DD structure separated if the map ı1 can be written as
ı1LC ı1R , where ı1LW M !A˝M ˝ j and ı1RW M ! k˝M ˝B .

Remark 2.2.58 In general, over A1–algebras, a type DD bimodule AM B should
be a type D module over A˝F2

Bop . The difficulty is in defining the tensor product
of A1–algebras. This has been done (see Saneblidze and Umble [33], Markl and
Shnider [26] and Loday [24]) but is somewhat complicated and is unnecessary for this
paper.

Definition 2.2.59 Given dg algebras A and B , let ModA B
B denote the category whose

objects consist of bounded type DD bimodules. Similarly, we define ModA B to be
the full subcategory of ModA B

u u consisting of type DD bimodules which are homotopy
equivalent to bounded ones.

See also Proposition 2.3.24.

So far, we have discussed bimodules with a single left and a single right action. One can
also consider bimodules with two left actions or two right actions, and, indeed, it is most
natural to define the invariant 1CFAA (respectively 1CFDD ) of Section 6 as a bimodule
with two right (respectively left) actions. Obviously, there are no new mathematical
difficulties in this theory. Moreover, the notation extends easily; for example, MA;B
denotes a type AA bimodule with two right actions and ModA;B denotes the dg category
of such bimodules.

2.3 Operations on bimodules

2.3.1 Forgetful functors In defining the tensor product and one sided Mor opera-
tions, it will be convenient to invoke forgetful functors between certain of our categories.
In particular, there are forgetful functors

F W AModB!
AMod;

F W AModB! AMod;

gotten by F.AMB; fı
1
i g/ D .

AM; xı1/ where AM is isomorphic to M as a .k; j /–
bimodule and xı1 D ı1

1
; and similarly F.AMB; fmi;1;j g/D .AM; Smi/ where SmiC1 D

mi;1;0 . (The forgetful functor is defined similarly on morphisms.)
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Similarly, there are forgetful functors

F W AModB! AMod;

F W AModB! AMod;

gotten by F.AM B; fı1g/ D .AM; xı1/ where AM is isomorphic to M as a .k; j /–
bimodule and xı1 D .IA˝M ˝ �B/ ı ı

1 ; and similarly F.AM B; fı1
i g/D .AM; Smi/

where SmiC1 D .M ˝ �B/ ı ı
1
i . As before, �BW B! j denotes the augmentation.

These forgetful functors interact well with our definition of boundedness:

Lemma 2.3.1 Let M be a bimodule of any type. If M is left bounded then F.M / is
bounded.

We leave the proof to the reader; it is not hard, but involves several cases. Note that
this lemma is actually implicit in writing, say, that F W AModB!

AMod, since AMod

consists of type D structures homotopy equivalent to bounded ones.

There are, of course, also functors which forget the left action; we will denote these by
F as well.

2.3.2 Tensor products In the present section, we define a pairing between type A

modules and type D modules (and their generalizations to bimodules), which gives a
model for the derived tensor product of A1–modules. This model for the derived prod-
uct comes up naturally when one studies the gluing problems for pseudoholomorphic
curves (see Section 7). Indeed, this model typically has smaller rank than the usual
derived tensor product (though its differentials are correspondingly more complicated).

We start by considering modules with a single action, and then proceed to bimodules.

Definition 2.3.2 For A an A1–algebra, MA 2ModA , and AN 2AMod, with at least
one of MA or AN bounded, define MA�AN to be chain complex with underlying
space M ˝k N and boundary operator

@ WD .mM ˝ IN / ı .IM ˝ ı
N /:

The boundedness hypothesis implies that the tensor product is well-defined as follows.
If MA is bounded then the operations mi vanish for sufficiently large i , so they sum
to give a map M ˝ xT �.A/!M . If AN is bounded then the image of ıN lies in
T �A˝M , to which we can apply

P
mi .
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Graphically, the differential on MA�AN is given by:

ıN

mM

The fact that @2 D 0 is verified in [21, Lemma 2.30].

We will see presently that � induces a bifunctor on the level of derived categories.
Functoriality for � on the dg level is somewhat subtle, however. Given a f W MA!M 0

A
and g1W AN!AN 0 , there are two natural diagrams that one might use to define f �g1 ,
shown in the left of Figure 3.

ıN

f

ıN

g1

ıN 0

m

or

ıN

g1

ıN 0

m

ıN 0

f

.IM �g1/D

ıN

g1

ıN 0

m

and f � IN D

ıN

f

Figure 3: Diagrams for defining the box product of morphisms: on the left,
we have two options for defining f �g ; on the right, we have box products
with the identity morphisms.

In other words, if we define .I�g1/ and .f � I/ as in the right of Figure 3 then the
two different choices correspond to .IM 0�g1/ı .f �IN / and .f �IN 0/ı .IM �g1/

respectively. (Of course, for the diagram defining IM �g1 to make sense we either
need MA or both AN and AN 0 to be operationally bounded, and for the diagram
defining f � IN to be defined we need either the map f or the module AN to be
operationally bounded.)
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The two choices above are homotopic. Indeed:

Lemma 2.3.3 Fix MA;NA;LA 2 ModA and AP;AQ;AR 2 AMod with AP;AQ

and AR bounded or MA;NA;LA and the morphisms between them bounded. Then
the maps

. � � IP /W MorA.MA;NA/!Mork.MA�AP;NA�AP /;

.IM � � //W MorA.AP;AQ/!Mork.MA�AP;MA�AQ/;

defined above are chain maps. Further:

(1) The maps .IM � � // and . � � IP / are functorial under composition in sense
that the square

MorA.M;N /˝MorA.N;L/ Mork.M �P;N �P /

˝Mork.N �P;L�P /

MorA.M;L/ Mork.M �P;L�P /

f˝g 7!.f�IP /˝.g�IP /

.f˝g/ 7!gıf
.k˝l/ 7!lık

h 7!.h�IP /

commutes while the following square commutes up to homotopy:

MorA.P;Q/
˝MorA.Q;R/

Mork.M �P;M �Q/

˝Mork.M �Q;M �R/

MorA.P;R/ Mork.M �P;M �R/

f 1˝g1 7!.IM �f 1/˝.IM �g1/

.f 1˝g1/

7!g1ıf 1 .k˝l/ 7!lık

h1 7!.IM �h1/

(2) The maps . � � I/ and .I� � // commute in the sense that the square

MorA.M;N /

˝MorA.P;Q/
Mork.M �P;M �Q/

˝Mork.M �Q;N �Q/

Mork.M �P;N �P /

˝Mork.N �P;N �Q/
Mork.M �P;N �Q/

f˝g1 7!.IM �g1/
˝.f�IQ/

.f˝g1/ 7!.f�IP /

˝.IN �g1/ .k˝l/7!lık

.k˝l/ 7!lık

commutes up to homotopy.
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Proof We leave as exercises that the . � � IP / and .IM � � // are chain maps. The
fact that the first square commutes is straightforward. The homotopy H for the second
square

H W Mor.P;Q/˝Mor.Q;R/!Mor.M �P;M �R/

is defined by

(2.3.4) H.f 1
˝g1/D .�˝ IR/ ı .IM ˝ ..I xT �.AŒ1�/˝ ı

R/ ı .I xT �.AŒ1�/˝g1/

ı .I xT �.AŒ1�/˝ ı
Q/ ı .I xT �.AŒ1�/˝f

1/ ı ıP //:

Note the similarity of the right-hand side to the definition of the composition f 1 ıg1

in (2.2.26).

The homotopy K for the third square

KW Mor.M;N /˝Mor.P;Q/!Mor.M �P;N �Q/

is furnished by
K.f;g1/.x˝p/D .f ˝ IQ/.x˝g.p//;

or pictorially:

ıN

g1

ıN

f

This completes the proof.

Let us choose, arbitrarily, to define f �g1 D .f � I/ ı .I�g1/. Then:

Corollary 2.3.5 (1) The operation � induces a chain map

MorA.M;N /˝MorA.P;Q/!Mor.M �P;N �Q/:

(2) The operation � is functorial up to homotopy. That is, .f �g1/ ı .f 0� .g0/1/
is homotopic to .f ıf 0/� .g1 ı .g0/1/.
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(3) If f 2 Mor.MA;NA/ and g1 2 Mor.AM;AN / are cycles then f � g1 is a
cycle.

(4) If f 2Mor.MA;NA/ and g1 2Mor.AM;AN / are cycles and either f or g1

is nullhomotopic then f �g is nullhomotopic.

(5) The operation � descends to bifunctors

�W H.ModbA/�H.AMod/! H.Modk/;

�W H.ModA/�H.AModb/! H.Modk/:

Proof The fact that � induces a chain map on morphism spaces follows from
Lemma 2.3.3: it is defined as a composite of two chain maps. To verify part (2),
note that

.f �g1/ ı .f 0� .g0/1/D Œ.f � I/ ı .I�g1/� ı Œ.f 0� I/ ı .I� .g01//�

� Œ.f � I/ ı .f 0� I/� ı ŒI�g1
ı I� .g0/1�

� .f ıf 0� I/ ı .I�g1
ı .g0/1/

D .f ıf 0/� .g1
ı .g0/1/;

where the first homotopy uses part (2) of Lemma 2.3.3 while the second homotopy
uses part (1) of Lemma 2.3.3.

Parts (3) and (4) are easy to verify. Part (5) then follows formally.

Corollary 2.3.6 If f 1 2 MorA.P;Q/ is a chain homotopy equivalence of type D

structures, then IM � f 1 2Mor.M �P;M �Q/ is a chain homotopy equivalence
of complexes. Similarly, if � 2 MorA.M;N / is a chain homotopy equivalence of
A–modules, then �� IP W Mor.M �P;N �P / is a chain homotopy equivalence of
complexes.

While commuting f � I and I�g was somewhat subtle, (A1 ) functoriality of � in
each factor is more straightforward:

Lemma 2.3.7 Let MA be an A1–module and AN a type D structure. Then

(1) the operation �A�AN gives a dg functor ModA!Modk and

(2) the operation MA�A� extends to an A1–functor AMod!Modk .
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Proof The first part is straightforward. For the second, if ANi , i D 0; : : : ; n are
type D structures and fi W

ANi!
ANiC1 are morphisms, define:

.MA� � //1;n.IM ; f1; : : : ; fn/D

ıN0

f1

ıN1

:::

ıNn�1

fn

ıNn

mM

It is straightforward to verify that this makes MA� � into an A1–functor.

Remark 2.3.8 Even when A is a dg algebra, so AMod is an honest dg category, the
operation MA�A� is still only an A1–functor.

Next we turn to the behavior of � for bimodules. Since we have various kinds of
bimodules, there are various cases of the tensor product:

� DA�DD is a type DD module.

� AA�DD is a type AD module.

� DA�DA is a type DA module.

� AA�DA is a type AA module.

(In each case, we assume one of the factors in the tensor product is appropriately
bounded; see Proposition 2.3.10.)
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Definition 2.3.9 Let AMB and BNC (respectively AMB and BNC , AMB and BN C ,
AMB and BN C ) by a type AA and DA (respectively DA and DA, AA and DD, DA
and DD)2 bimodules with either M right bounded or N left bounded. As a chain
complex, define

AMB� BNC D F.AMB/B� BF.BNC/

with AA (respectively DA, AD, DD) structure map given as in Figure 4 far left (respec-
tively center left, center right, far right).

(In the figure, we use the following notation: given elements b1; : : : ; bk in a dg
algebra B , ….b1; : : : ; bk/D b1 � � � bk denotes their product. Note that DD bimodules
by assumption involve dg algebras.)

ıN

m

ıN

ı1

ı

m …

ı

ı1 …

Figure 4: Bimodule structure on �–tensor products of bimodules: on the
far left, we have AA�DA; center left, DA�DA; center right, AA�DD; far
right, DA�DD . Here, for elements a1; : : : ; an 2 A of a dg algebra we let
….a1˝ � � �˝ an/ denote the product of the elements, a1 � � � an .

Since most of the results in all of these cases are quite similar, we will often use the
ambiguous notation M or N to refer to any consistent way of placing superscripts
and subscripts.

Proposition 2.3.10 The condition that M be right bounded or N be left bounded
guarantees that the sums defining the structure maps for M �N in Figure 4 are finite.
In this case they satisfy the corresponding structure equations. Moreover:

(1) If M and N are both left bounded (respectively right bounded) then M �N is
left bounded (respectively right bounded).

(2) If M (respectively N ) is bounded then M �N is left bounded (respectively
right bounded).

(3) If M (respectively N ) is bounded and N (respectively M ) is right bounded
(respectively left bounded) then M �N is bounded.

2In the last two cases we assume that B and C are dg algebras. In general, we implicitly add this
hypothesis any time a type DD structure is mentioned.
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The reader might find it interesting to compare Proposition 2.3.10 with Lemma 5.7.

In order to prove Proposition 2.3.10 without checking all the cases individually, we
will reformulate and unify the various definitions of boundedness. Given an operation
graph of one of the types considered above (planar, directed graphs with labeled nodes
and edges, obeying certain restrictions), we can restrict the inputs and outputs to lie in
AC and BC . (For the outputs, this means applying .1� �/ to each output edge.) This
gives a map

mC
�
W .AC/

˝k1 ˝M ˝ .BC/
˝k2 ! .AC/

˝l1 ˝M ˝ .BC/
˝l2

for appropriate values of k1 , k2 , l1 and l2 . (Some of k1 , k2 , l1 and l2 will necessarily
be 0, depending on the type of bimodule.)

Lemma 2.3.11 A bimodule M (of any type) is bounded if and only if for each x 2M

there is a bound on the number of leaves of bimodule operation trees � for which
the corresponding operation mC

�
is nonzero when applied to x . It is left bounded if

and only if for any x and any bound on the number of right inputs/outputs there is a
bound on the number of left inputs/outputs. Similar statements hold for right bounded
bimodules and for bimodule morphisms.

Proof sketch This is very close to the definition of boundedness or left/right bound-
edness in each case, with the exception of the restriction to spinal graphs (without �
nodes). Let � 0 be the graph obtained from � by pushing all � nodes upstream through �
nodes, using the relations in (2.1.4), as far as possible, and then taking the subgraph
formed by the m or ı nodes and any adjacent � nodes. Because AC and BC are
nilpotent, there is a bound on the number of inputs to � that can contribute to an
input to � 0 . Similarly, there is a bound on the number of outputs from � 0 that can
contribute to an output of � . Thus, bounds on the inputs/outputs of � give bounds on
the inputs/outputs of � 0 , and vice versa.

Proof sketch of Proposition 2.3.10 All of the bimodule structure operations in
Figure 4 can be expanded out so that each algebra edge carries an element of AC ,
BC or CC , rather than just A, B or C , simply by taking a sum of terms where we
apply � or .1� �/ on each edge. Now suppose N is left bounded and we wish to
compute a structure map on M �N with some fixed number of outputs/inputs on the
right and left. Then there is a bound on the number of BC edges leaving the dotted
line corresponding to N , which immediately gives a bound on the number of terms
contributing to the definition of the structure map.

A similar argument works if M is right bounded.
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If M and N are both left bounded and we have a bound on the number of terms on the
right of the entire diagram, then left-boundedness of N gives us a bound on the number
of algebra edges communicating between the two dotted lines, and left-boundedness
of M then gives a bound on the number on the number of algebra edges on the left of
the diagram, as desired to show that M �N is left bounded.

The other cases are similar.

Remark 2.3.12 If we drop the assumption that the algebras involved are nilpotent,
Lemma 2.3.11 becomes false, but most cases of Proposition 2.3.10 remain true. How-
ever, in a tensor product where the right factor is a DD module (ie AMB � BN C or
AMB � BN C ), if we only assume that N is left bounded it does not follow that the
sums in Figure 4 are finite. A strengthening of the definition of left/right boundedness
for DD bimodules fixes this case. However, if A is not nilpotent, AAA is not usually
left or right bounded which, for instance, breaks Proposition 2.3.18.

As with tensoring type D and A modules, the tensor product for bimodules is not
strictly functorial. Again, we define the box product of two morphisms in terms of the
box product of a morphism with the identity morphism. There are now eight cases:

� Given fAAW AMB! AM 0
B and BNC define fAA� IN as in Figure 5(a).

� Given fDAW
AMB!

AM 0
B and BNC define fDA� IN as in Figure 5(b).

� Given fAAW AMB! AM 0
B and BN C define fAA� IN as in Figure 5(c).

� Given fDAW AMB! AM 0
B and BN C define fDA� IN as in Figure 5(d).

� Given AMB and gDAW
BNC!

BN 0C define IM �gDA as in Figure 5(e).
� Given AMB and gDAW

BNC!
BN 0C define IM �gDA as in Figure 5(f).

� Given AMB and gDD W
BN C! B.N 0/C define IM �gDD as in Figure 5(g).

� Given AMB and gDD W
BN C! B.N 0/C define IM �gDD as in Figure 5(h).

In all cases, define f �g to be .f � I/ ı .I�g1/.

With these definitions, the obvious analogue of Lemma 2.3.3 holds. Moreover, similarly
to Corollary 2.3.5 and Lemma 2.3.7 we have:

Lemma 2.3.13 (1) �W Mor.M;M 0/˝Mor.N;N 0/!Mor.M �N;M 0�N 0/ is
a chain map.

(2) The operation � is functorial up to homotopy. That is, .f �g/ ı .f 0�g0/ is
homotopic to .f ıf 0/� .g ıg0/.

(3) The operations MA� � and � �AN extend to A1–functors, and so

(4) The operations � descend to bifunctors of homotopy categories.
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ıN

fAA

(a)

ıN

fDA

(b)

ıN

fAA …

(c)

ıN

fDA …

(d)

ıN

g1
DA

ıN

mM

�

(e)

ıN

g1
DA

ıN

ıM

�

(f)

ıN

g1
DD

ıN

mM …

(g)

ıN

g1
DD

ıN

ıM …

(h)

Figure 5: The box product of a bimodule morphism with the identity morphism

Next we turn to the question of associativity of tensor product. Like functoriality on
the dg level this is somewhat subtle, but it is straightforward in several cases:

Lemma 2.3.14 (1) Let ANB be a type AA module and M A and BP type D struc-
tures. Then there is a canonical isomorphism

.M A�ANB/� BP ŠM A� .ANB� BP /:

(2) Let ANB be a type DA structure, MA a type A module and BP a type D

structure. Then there is a canonical isomorphism

.MA�ANB/� BP ŠMA� .ANB� BP /:
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(3) Let AN B be a separated type DD structure as in Definition 2.2.57. Then for
any MA and BP there is a canonical isomorphism

.MA�AN B/B� BP ŠMA� B.AN B� BP /:

Similar statements hold if M and/or P is a bimodule (of any type compatible with the
� products).

Proof The differential on the triple box product in the three cases is given by the
diagrams

(1)
ıM ıP

mN

(2)

mM

ıP

ıN (3)
mM

ıN;L

C

mN

ıN;L

respectively, independently of which way one associates. (In the separated type DD
module, the map ıL is defined from ı1L in the same way ı is defined from ı1 . The
fact that these are the only two terms in the differential follows from strict unitality of
the modules.) The same holds for bimodules, with slightly extended diagrams.

For N a nonseparated type DD, the box tensor product is not strictly associative as in
Lemma 2.3.14. However, associativity does hold up to homotopy equivalence:

Proposition 2.3.15 Let A and B be dg algebras and MA , AN B and BP be right
type A, type DD, and left type A structures respectively. Suppose moreover that AN B

is homotopy equivalent to a bounded type DD structure. Then .MA�AN B/� BP is
homotopy equivalent to MA� .AN B� BP /. The analogous statements hold if M is a
type AA or DA module and/or P is a type AA or AD module.

We will prove this in Section 2.3.3, after introducing the bar resolution.

2.3.3 Bar resolutions of modules

Definition 2.3.16 For A a dg algebra, ABar.A/A is the type DD bimodule with
underlying k–module T �.AŒ1�/, with basis written Œa1j � � � jak � for k�0, and structure
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maps

ı1Œa1j � � � jak � WD a1˝ Œa2j � � � jak �˝ 1C 1˝ Œa1j � � � jak�1�˝ ak

C

X
1�i�k

1˝ Œa1j � � � j�1.ai/j � � � jak �˝ 1

C

X
1�i�k�1

1˝ Œa1j � � � j�2.ai ; aiC1/j � � � jak �˝ 1:

Note that ABar.A/A is bounded as a type DD structure.

We can use the bar resolution to define the tensor product of A1–modules:

Definition 2.3.17 Given A1–modules MA and AN over a dg algebra A, define the
A1–tensor product of M and N to be

MA z̋ AN WDMA�ABar.A/A�AN:

The module ABar.A/A is separated, so by Lemma 2.3.14 it is okay that we have not
parenthesized the triple box product. This definition agrees with the standard definition
(eg [13, Section 6.3]).

Proposition 2.3.18 Let A be a dg algebra. The map AN 7! AAA�AN induces an
A1–functor AMod! AMod. Similarly, the map MA 7!MA� ABar.A/A induces
an A1–functor AMod! AMod. These two functors are homotopy inverses to one
another (and the homotopy is canonical). They entwine the tensor products � and z̋
in the sense that there is a canonical homotopy equivalence

MA�AN ' .MA/ z̋ .AAA�AN /:

In particular, the categories AMod and AMod are quasiequivalent, and hence their
derived categories are equivalent.

Corresponding statements hold for the categories of type DD, DA, and AA modules.

We will prove Proposition 2.3.18 presently. The proposition justifies the following
abuse of notation: given a type D structure AM , let AM D AAA�AM . Similarly,
given a type A module AN , let AN D ABar.A/A�AN . This notation extends in an
obvious way to bimodules. The statement in Proposition 2.3.18 about tensor products
becomes

MA�AN 'MA z̋ AN:

The proof of Proposition 2.3.18 is based on the following key lemma:
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Lemma 2.3.19 For any dg algebra A, the type DA module ABar.A/A � AAA is
homotopy equivalent to AŒI�A . Moreover, the homotopy equivalence �W ABar.A/A�
AAA!

AŒI�A is bounded.

(See Example 2.2.42 and Definition 2.2.48 for definitions of AAA and AŒI�A . Also,
the homotopy inverse to � is not necessarily bounded.)

Proof This lemma is a version of the standard fact that the bar resolution is a resolution.
(See [21, Proposition 2.16] for a version that is not far from the one we give below.)
We translate the proof into our language. For convenience, write AMA or just M for
ABar.A/A�AAA . Now define �W M ! I by

�1
1Cl.Œa1j � � � jak �b; c1; : : : ; cl/ WD

�
0 k > 0 or l > 0;

b˝ 1 k D l D 0:

Define  W I!M by

 1
1Cl.1; a1; : : : ; al/ WD 1˝ Œa1j � � � jal � 1:

It is elementary to check that � and  are homomorphisms of type DA structures (ie
cycles in their respective morphism spaces) and that � ı is the identity. The other
composition  ı � is not the identity, but it is homotopic to the identity by the map
hW M !M defined by

h1
1Cl.Œa1j � � � jak �b; c1; : : : ; cl/ WD 1˝ Œa1j � � � jak jbjc1j � � � jcl � 1:

Lemma 2.3.20 Let A be a dg algebra and MA an A1–module over A. Then
MA�AŒI�A is canonically isomorphic to MA . Similarly, if AN is a type D structure
then AŒI�A�AN is canonically isomorphic to AN . Similar statements hold when M

is a type AA or DA module and when N is a type DA or DD module.

Proof This is immediate from the definitions.

Proof of Proposition 2.3.18 The fact that AAA� � and ABar.A/A� � are functorial
is part of Lemma 2.3.13. To see that these two functors are homotopy inverses, note
that

AAA� .ABar.A/A� � /Š .AAA�ABar.A/A/� � ' AŒI�
A� � ;

where the isomorphism uses Lemma 2.3.14 and the homotopy equivalence uses Lem-
mas 2.3.19 and 2.3.13. But AŒI�A� � is an equivalence of categories. Similar reasoning
applies to the composition ABar.A/A� .AAA� � /, proving the result.

The corresponding statements about bimodules follow similarly. The fact that the
functors intertwine � and z̋ is obvious from the definitions.
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Definition 2.3.21 Given an A1–module MA over a dg algebra define its bar resolu-
tion to be

Bar.MA/DMA�ABar.A/A�AAA:

Similarly, if AMB is a type AA structure then define its bar resolution to be

Bar.AMB/D AAA�ABar.A/A�AMB� BBar.B/B� BBB:

By taking bar resolutions, over a dg algebra, every A1–module is A1–homotopy
equivalent to an honest dg module:

Proposition 2.3.22 Let A be a dg algebra and MA an A1–module over A. Then:

(1) Bar.MA/ is A1–homotopy equivalent to MA .

(2) Bar.MA/ is an honest dg module.

Similarly, if B is another dg algebra and AMB is a type AA structure then:

(1) Bar.AMB/ is A1–homotopy equivalent to AMB .

(2) Bar.AMB/ is an honest dg module.

Proof This is a combination of Lemmas 2.3.19 and 2.3.20. Lemma 2.3.19 furnishes a
homotopy equivalence between left-bounded type DA modules �W ABar.A/A�AAA!
AŒI�A . This induces a homotopy equivalence

IM � �W MA�ABar.A/A�AAA!MA�AŒI�A;

while Lemma 2.3.20 furnishes the isomorphism MA ŠMA�AŒI�A .

It is immediate from Lemma 2.3.19 that:

Corollary 2.3.23 If A is a dg algebra, then:

� MA z̋ AAA is chain-homotopy equivalent to MA .

� .MA z̋ ANB/ z̋ BP DMA z̋ .ANB z̋ BP /.

� MA z̋ .AAA�AN /'MA�AN .

Thus, for instance, z̋ turns H.AModA/ into a monoidal category.

The bar resolution can be used to give an alternate characterization of the subcategory
AMod� ModA

u :
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Proposition 2.3.24 The following conditions on a type D structure are equivalent:

(D-1) AN is homotopy equivalent to a bounded type D structure.

(D-2) The canonical map ABar.A/A�AAA�AN ! AN (induced by combining
maps from Lemmas 2.3.19 and 2.3.20) is a homotopy equivalence.

Analogously, the following are equivalent for a type DA structure:

(DA-1) ANB is homotopy equivalent to a left bounded type DA structure.

(DA-2) ANB is homotopy equivalent to a bounded type DA structure.

(DA-3) The canonical map ABar.A/A�AAA�ANB!
ANB is a homotopy equiv-

alence.

(DA-4) The canonical map ABar.A/A�AAA�ANB� BBar.B/B� BBB !
ANB

is a homotopy equivalence.

The following conditions on a type DD bimodule are equivalent:

(DD-1) AN B is homotopy equivalent to a bounded type DD structure.

(DD-2) The canonical map

ABar.A/A�AAA�AN B� BBB� BBar.B/B! AN B

is a homotopy equivalence.

Proof We start with the case of a type D module AN .

(D-1))(D-2) Let AN 0 be a bounded type D structure, and �W N ! N 0 be a ho-
motopy equivalence. According to Lemma 2.3.13, we have a homotopy commutative
diagram:

ABar.A/A�AAA�AN AŒI�A�AN AN

ABar.A/A�AAA�AN 0 AŒI�A�AN 0 AN 0

�� IN

IBar.A/�A�� �

�� IN 0

Š

Š

All arrows with the possible exception of ��IN are homotopy equivalences. It follows
that �� IN is a homotopy equivalence as well.
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(D-2))(D-1) Since AAA is a bounded type AA structure, we can form ABar.A/A�
AAA�AN . Moreover, since ABar.A/A is a bounded type DD structure, ABar.A/A�
AAA�AN is a bounded type D structure.

The type DA case is similar. The type DD case follows from the type D case.

Corollary 2.3.25 Let A be a dg algebra. Suppose AM is homotopy equivalent to
a bounded type D structure (ie AM is an object in AMod). Then AAA� AM is a
projective A–module.

Proof By Lemma 2.3.13 and Proposition 2.3.24, AAA�AM is homotopy equivalent
to its bar resolution. But the bar resolution of any module is projective [5, Proposi-
tion 10.12.2.6], and projectivity is preserved by homotopy equivalences.

Remark 2.3.26 The condition that AM is homotopy equivalent to a bounded type
D structure is essential. For instance, let AD F2Œt �=t2 , and AM have one generator
x with ı1x D t ˝x , then AM D AAA�AM is acyclic but, since .A=t/˝AM has
homology, we can conclude that AM is not homotopy equivalent to the trivial module.
Thus AM is not projective.

Note in particular that this implies that not every type D structure is homotopy equiva-
lent to a bounded type D structure.

Finally, we turn to the proof of Proposition 2.3.15, which is based on the following
observation:

Lemma 2.3.27 If AN B is homotopy equivalent to a bounded type DD structure, then
it is homotopy equivalent to a separated one.

Proof Let AM B be a type DD module. Then ABar.A/A� AAA� AM B � BBB �
BBar.B/B is a separated type DD module, and is homotopy equivalent to AM B by
Proposition 2.3.24.

Proof of Proposition 2.3.15 Let A zN B be a separated type DD module homotopy
equivalent to AN B . Then

.MA�AN B/�BP ' .MA�A zN B/�BP 'MA�.A zN B�BP /'MA�.AN B�BP /;

where the outside equivalences use Lemma 2.3.13 and the middle equivalence uses
Lemma 2.3.14.
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Remark 2.3.28 The results of this section generalize in a transparent way to the case
of A1–algebras; the only obstruction is that we have not defined the bar resolution
except over dg algebras, an obstruction which is more terminological than mathematical.
The key observation is that the difficulties mentioned in Remark 2.2.58 do not arise for
separated DD modules like AM A .

2.3.4 More Mor Recall from Section 2.3.1 that there are functors F which forget
one of the actions on a bimodule.

Definition 2.3.29 Define MorB.AMB; CNB/ to be the complex Mor.F.M/B;F.N /B/.
We define a .C;A/–bimodule module structure on MorB.AMB; CNB/ as follows. The
operation mi;1;j D 0 unless either i D 0 or j D 0. The operation m0;1;0 is, of course,
the differential on the Mor complex. Finally, for exactly one of i and j nonzero,
define

mi;1;0.c1; : : : ; ci ; f /kC1.x; b1; : : : ; bk/

D

X
pCqDk

mN
i;1;q.c1; : : : ; ci ; fpC1.x; b1; : : : ; bp/; bpC1; : : : ; bk/;

m0;1;j .f; ac ; : : : ; aj /kC1.x; b1; : : : ; bk/

D

X
pCqDk

fqC1.m
M
j ;1;p.a1; : : : ; aj ;x; b1; : : : ; bp/; bpC1; : : : ; bk/:

Graphically, if we draw f as

f

M
N

T
� B

then the module structure on MorB.AMB; CNB/ is given as in Figure 6.

Lemma 2.3.30 The structure defined in Definition 2.3.29 satisfies the A1–bimodule
relation (2.2.39).

Proof This is a straightforward, if tedious, verification. It is clear from the diagrams
that the left and right actions commute. The A1–relation for the right action involves
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f

mMor WD

T
�

C

f

mN

�

T
�

C

T
� B

M
N

mi;1;0.c1; : : : ; ci ; f /

f

mMor WD

T
�
A

mM

f

�

T
� B

T
�

A

M
M

N

m0;1;j .f; a1; : : : ; aj /

Figure 6: Module structure on the Mor–complex

the following terms:

mM

mM

f

� �
T
� B

T
�

A

M

N
mM

f

�

xDB

T
� BT

�
A

M

N

xDB

mM

f

�

T
� BT

�
A

M

N

2 �
mM

f

mN

�
T
� BT

�
A

M

N

mM

f

xDA �
T
� B

T
�

A

M
N
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Here, the first four terms come from m.m.f; a1; : : : ; aj /; ajC1; : : : ; ak/; the first one
is the generic case, the second is part of the j D 0 case, the third is part of the j D k

case, and the fourth occurs in both the j D 0 and j D k cases. The fifth term comes
from m.f; xDA.a1; : : : ; ak//. Applying the A1–relation for M , these terms cancel.

A similar argument applies to the left action.

Bimodule morphisms f W AMB! AM 0
B and gW CNB! CN 0B induce A1–maps

f �W MorB.AM 0
B; CNB/!MorB.AMB; CNB/;

g�W MorB.AMB; CNB/!MorB.AMB; CN 0B/;

as follows. Define f �
i;1;j

to be zero if i > 0 and define

f �W MorB.AM 0
B; CNB/˝T �.A/!MorB.AMB; CNB/

by:

h

M
0

N

T
� B

;

T
�

A

f �

��! f

�

h

M
M
0

N

T
�

B

T
�

A

Similarly, define g�;i;1;j to be zero if j > 0 and

g�W T
�.C /˝MorB.AMB; CNB/!MorB.AMB; CN 0B/

by:

T
�

C ; h

M
N

T
� B

g�
�!

g

�

h

M
N
0

T
�

B

T
�

C
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Proposition 2.3.31 The assignments f 7! f � and g 7! g� define chain maps

MorB.AMB;AM 0
B/! CMorA.MorB.AM 0

B; CNB/;MorB.AMB; CNB//;

MorB.CNB; CN 0B/! CMorA.MorB.AMB; CNB/;MorB.AMB; CN 0B//:

In particular:

(1) If f and g are A1 bimodule homomorphisms then f � and g� respect the
bimodule structures on MorB .

(2) If f 0W AMB ! AM 0
B is homotopic to f then .f 0/� is homotopic to f � . If

g0W CNB! CN 0B is homotopic to g then g0� is homotopic to g� .

(3) If f is a homotopy equivalence then f � is a homotopy equivalence. If g is a
homotopy equivalence then g� is a homotopy equivalence.

Moreover, these maps are functorial: given f 0W AM 0
B! AM 00

B and g0W CN 0B! CN 00B ,
.f 0 ıf /� D f � ı .f 0/� and .g0 ıg/� D g0� ıg� .

Proof The statement that the assignments f 7! f � and g 7! g� are chain maps
follows from a straightforward computation once you sort through the definitions. The
functoriality statement is also verified directly; this verification is less painful.

Recall that the operation � is functorial (up to homotopy). In particular, given a
morphism f 2 Mor.MB;NB/ and a type D structure BP there is an associated
morphism .f � IP / 2 Mork.MB � BP;NB � BP /, defined in Figure 3. If M , N

and P are bimodules AMB , CNB and BPE then we may view f � I as an element of
MorE.AMB� BPE ; CNB� BPE/.

Proposition 2.3.32 Let AMB , CNB and BPE be bimodules. Then “tensoring with the
identity map”

� � IP W MorB.AMB; CNB/!MorE.AMB� BPE ; CNB� BPE/

is a map of .C;A/–bimodules.

An analogous result holds if P is a type AA module, with z̋ in place of �.
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Proof We will discuss the left action by T �C ; the other cases are similar. On one
hand,

Œ.c1˝ � � �˝ ck/ �f �� IP D

c1˝ � � �˝ ck

ıP

�

f

mN

while on the other hand:

.c1˝ � � �˝ ck/ � .f � IP /D

c1˝ � � �˝ ck

�

ıP

ıP

f

mN

But, by the definition of ıP , these two diagrams are exactly the same.

The analogue if P is a type AA module follows from the definition of z̋ in terms
of �.

Lemma 2.3.33 For any strongly unital A1–algebras A and B and A1–bimodule
BMA , BMA is quasi-isomorphic to MorA.AAA; BMA/ as a .B;A/–bimodule.

Proof For nonnegative integers i and j , define maps

�i;1;j W .BC/
˝i
˝MorA.AAA; BMA/˝ .AC/

˝j
! BMA

by

�i;1;j .b1; : : : ; bi ; f; a1; : : : ; aj /D

�
fjC1.1; a1; : : : ; aj / if i D 0;

0 if i > 0.

One can check that the �i;1;j piece together to give a chain map from the complex
T �.BCŒ1�/˝MorA.AAA; BMA/˝T �.ACŒ1�/ to BMA ; ie � gives a bimodule mor-
phism.
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We claim that the component �0;1;0W MorA.AAA; BMA/! BMA is an isomorphism
in homology. To this end, observe that

MorA.AAA; BMA/Š Homk.A˝T �.ACŒ1�/;M /;

where the isomorphism is as chain complexes and Homk means the full chain complex
of morphisms, not just the subset of chain maps. The chain complex structure on
A˝T �.ACŒ1�/ that makes this isomorphism true is simply the bar resolution of k (ie
it is AAA�ABar.A/A�k, where here k is thought of as a A–module using the aug-
mentation � ). Thus, by Proposition 2.3.22, it follows that Homk.A˝T �.ACŒ1�/;M /

is homotopy equivalent to Homk.k;M /ŠM . Indeed, it is straightforward to verify
that the homotopy equivalence is furnished by our map �0;1;0 .

Lemma 2.3.34 Let AMB and ANC be bimodules and CPE a type DA structure. Then

MorA.AMB;ANC� CPE/ŠMorA.AMB;ANC/� CPE

as .B; E/–bimodules.

Proof This is immediate from the definitions.

For computations, it is often more convenient to work with Mor complexes of type D

structures, which tend to be much smaller. We will outline how this theory works,
leaving the reader to supply most of the proofs.

Definition 2.3.35 Let AMB and ANC be type DA bimodules. Let MorA.AMB;
ANC/D

Mor.AF.M /;AF.N // where F is the functor forgetting the right action. Endow
MorA.AMB;

ANC/ with an A1 .C;B/–bimodule structure by setting mMor
i;1;j D 0

if i and j are both nonzero, and defining the product T �B˝MorA.AMB;
ANC/!

MorA.AMB;
ANC/ by

T
�B ; f 1

M
MA

�!

ıM

f 1

�A

M
N

T
� B

T
�
A
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and the product MorA.AMB;
ANC/˝T �C!MorA.AMB;

ANC/ by:

f 1

M
MA

;

T
�C �!

f 1

ıN

�A

M

T
�
C

T
� A

The obvious analogue of Proposition 2.3.31 holds in this context. Moreover, the
following analogue of Proposition 2.3.32 is true:

Proposition 2.3.36 Let AMB and ANC be type DA bimodules and EPA a type AA
bimodule. Then the “tensoring with the identity map”

IP � � W MorA.AMB;
ANC/!MorE.EPA�AMB; EPA�ANC/

is a map of .C;B/–bimodules.

Corollary 2.3.37 If A is a dg algebra then MorA.AMB;
ANC/ is canonically isomor-

phic to the chain complex of maps

 W AAA�AMB! AAA�ANC

which commute with the A action, equipped with the differential

@ D @A�N ı C ı @A�M :

If AMB and ANC are homotopy equivalent to bounded type DA structures then the inclu-
sion of this subcomplex into MorA.AAA�AMB;AAA�ANC/ is a quasi-isomorphism.

Proof Taking P D AAA in Proposition 2.3.36, we get a map

IA� � W MorA.AMB;
ANC/!MorA.AAA�AMB;AAA�ANC/:

It is clear that this map is injective, and so identifies MorA.AMB;
ANC/ with some

subcomplex of the A1–maps AAA�AMB!AAA�ANC . It is straightforward to see
that it is the stated subcomplex. The fact that this subcomplex is homotopy equivalent
to the entire MorA–complex follows from Proposition 2.3.18.
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There is one more case that we will consider: that of the type DA structure on the
type D structure morphisms from a type DA module to a type DD module. Before
discussing this morphism space, we pause to note another interpretation of the chain
complex of morphisms between two type D structures:

Lemma 2.3.38 Let AM and AN be type D structures. Then

MorA.AM;AN /Š SM A�AAA�AN:

Here SM A denotes the opposite type D structure to AM , as in Definition 2.2.31.

Proof This is immediate from the definitions, as follows. The chain complex for the
morphism complex isomorphism

h1

M

N
A

@
�!

ıM

h1

ıN

�

M

M

N

N

which corresponds to the differential on the box complex:

h1

M

N @
�!

ıM

h1

ıN

�M

M
N

N

This completes the proof.

Now, suppose that AMB is a type DA structure and AN C is a type DD module. Then
we can give the morphism space MorA.AMB;

AN C/ the structure of a type DA module
via the isomorphism

(2.3.39) MorA.AMB;
AN C/Š B SM

A�AAA�AN C :

(The opposite type DA structure B SM
A is defined in Definition 2.2.53.) This is related

to the module structure on the space of type AA morphisms as follows:
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Proposition 2.3.40 For AMB 2
AModB and AN C 2 AlgModC , there is a canonical

inclusion

MorA.AMB;
AN C/!MorA.AAA�AMB;AAA�AN C/

respecting the bimodule structure and inducing an isomorphism on homology.

Proof That there is such an inclusion inducing an isomorphism on homology follows
from Proposition 2.3.18. We leave verification that it respects the bimodule structure to
the reader.

2.3.5 Hochschild homology We next turn to the Hochschild homology, or self tensor
product, of a bimodule with two actions of the same algebra. We first introduce the
classical Hochschild complex of an A1–bimodule and then give a version for type DA
structures analogous to the � tensor product; we also prove that the two definitions
are equivalent in the obvious sense (Proposition 2.3.54). The Hochschild complex of
a type DA structure arises naturally when studying the knot Floer homology of open
books; see Section 7.2.

Definition 2.3.41 Let A be an A1–algebra over a commutative ground ring k, and
AMA be an A1–bimodule. The Hochschild complex CH.AMA/ of AMA is defined
as follows. Let CHn.M / be the F2 vector space which is the quotient of

M ˝k

n‚ …„ ƒ
AŒ1�˝k � � � ˝k AŒ1�

by the relations

e �x˝ a1˝ � � �˝ an D x˝ a1˝ � � �˝ an � e;

where e ranges over k. As a vector space,

CH.AMA/D

1M
nD0

CHn.M /:

The differential on CH.AMA/ is given by

D.x˝ a1˝ � � �˝ a`/

D

X
mCn�`

mm;1;n.a`�mC1; : : : ; a`;x; a1; : : : ; an/˝ anC1˝ � � �˝ a`�m

C

X
1�m<n�`

x˝ a1 � � � ˝�n�m.am; : : : ; an�1/˝ an˝ � � �˝ a`:
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It is perhaps more instructive to think of CHn.M / as generated by equivalence classes
of collections of n elements arranged on a circle (the equivalence relation coming
from a circular tensor product). From this description, then D is a sum of maps
which take any collection of i � n consecutive terms and apply whichever higher
multiplication map is available to this collection. The result of this component of D

lies in CHn�iC1.M /. Graphically, D is

�

mM

C

xDA
;

where in the first diagram a bundle of strands in ˝�A runs off the right edge and comes
back on the left.

Note that the subscript n on CHn is not a grading (though it is a filtration). The grading
on CHn is given by

gr.x˝ a1˝ � � �˝ an/D gr.x/C gr.a1/C � � �C gr.an/C n:

Lemma 2.3.42 The endomorphism D of CH.AMA/ is a differential. If AMA and
ANA are A1–homotopy equivalent bimodules, the Hochschild complexes CH.AMA/

and CH.ANA/ are homotopy equivalent chain complexes.

Proof The fact that D2 D 0 follows easily from the fact that m and � satisfy the
A1–relations. For the second statement, for f 2Mor.AMA;ANA/ define

CH.f /W CH.AMA/! CH.ANA/

by:

CH.f /D
�

fM

(As before, a bundle of strands running off the right edge of a diagram comes back on
the right.) It is easy to verify that this definition makes CH into a dg functor, and that
CH.I/D I . The result follows.

Definition 2.3.43 The homology of CH.M /, denoted by HH.M /, is called the
Hochschild homology of the bimodule M .
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We next show that, in certain cases, the Hochschild homology can be computed from a
much smaller complex.

First, some terminology. Given a k–bimodule N , let ŒN;k� be the submodule of N

generated by all elements of the form nk � kn, where n 2 N and k 2 k, and let
N ı D N=ŒN;k� denote the vector space quotient of N by ŒN;k�. We call N ı the
cyclicization of N . Note that for bimodules M and N , any .k;k/–bilinear map
N !M descends to a linear map N ı!M ı .

Now, let ANA be a type DA structure, and AMADAAA�ANA the associated type AA
bimodule. Let

ı1
j W N ˝A

˝j
C !A˝N

denote the structure maps for ANA . We will assume that ANA is bounded in the sense
of Definition 2.2.46. The vector space N ı will be the underlying vector space for the
smaller model for the Hochschild complex of AMA .

The maps ı1
j fit together to give a degree �1 map

zıW N ˝T �.ACŒ1�/!AŒ1�˝N ˝T �.ACŒ1�/;

defined by

zı.x˝ a1˝ � � �˝ am/D
X

0�j�m

ı1
j .x˝ � � � a1˝ � � �˝ aj /˝ ajC1˝ � � �˝ am:

There is an F2 –linear, degree 1 cyclic rotation map

RW .AŒ1�˝N ˝T �.ACŒ1�//
ı
! .N ˝T �.ACŒ1�//

ı

defined by

R.a0˝x˝ a1˝ � � �˝ am/D x˝ a1˝ � � �˝ am˝ Œ.I� �/.a0/�;

where � denotes the augmentation on A. Note that the map R would not make sense
without cyclicizing: if �1; �2 2 k are orthogonal idempotents, and a 2 A and n 2 N

are such that aD �1a�1 and nD �2n�1 then a˝nD 0 but R.a˝n/D n˝a¤ 0. We
can similarly define a map

xRW .T �.ACŒ1�/˝N ˝T �.ACŒ1�//! .N ˝T �.ACŒ1�//
ı

by

xR.a0˝ � � �˝ an˝x˝ anC1˝ � � �˝ am/D x˝ anC1˝ � � �˝ am˝ a0˝ � � �˝ an:

The map I� � and its tensor powers will come up frequently, so we let � W AŒ1�˝k !

ACŒ1�
˝k (respectively � W T �.AŒ1�/! T �.ACŒ1�/) denote .I � �/˝k (respectively
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L
k.I��/

˝k ). We will need also the obvious inclusion map �W N !N ˝T �.ACŒ1�/,
and its cyclicization, which we also denote by �.

Provided that ANA is bounded, these ingredients can be assembled to form a linear
map z@W N ı!N ı defined by

(2.3.44) ı1
D

1X
nD1

� ı zı ı

n�1‚ …„ ƒ
.R ı zı/ ı � � � ı .R ı zı/ ı �:

We can draw the map z@ as:

(2.3.45) z@D
X

ı1

�

�

ı1

�

�

ı1

�

:::
:::

ı1

�

Lemma 2.3.46 Assume ANA is bounded. For any x 2 ANA the sum defining z@.x/
is finite.

Proof This is immediate from the definitions.

Our next goal is to show z@2 D 0. In order to do this, we develop some more notation.
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For N and A as above, define maps fk W .N ˝T �.ACŒ1�//
ı! .N ˝T �.ACŒ1�//

ı

by defining f0 to be the identity map and defining fk by the diagram:

fkC1 D

ı
�

fk

D

fk

ı
�

Similarly, define maps f .2/
k
W .N ˝T �.ACŒ1�/˝T �.ACŒ1�//

ı! .N ˝T �.ACŒ1�/˝

T �.ACŒ1�//
ı by letting f .2/

0
be the identity map and:

f
.2/

kC1
D

ı
�

f
.2/

k

D

f
.2/

k

ı
�

Lemma 2.3.47 Assume that ANA is a bounded type DA structure. Then given
any x 2 ANA , there is a constant C D C.x/ with the property that for all k � C ,
fk.x; � // D fkC1.x; � // and moreover fk.x ˝ a/ D 0 if a 2 .ACŒ1�/

˝i for some
i > 0. Consequently, for k sufficiently large the fk are induced by a map

f1W N
ı
! .N ˝T �.ACŒ1�//

ı

in the sense that for k > C.x/,

fk.x; a/D

�
f
.2/
1 .xa/ a 2 k

0 otherwise:

Similarly, given x 2 ANA , there is a constant C D C.x/ such that for k � C ,
f
.2/

k
.x; � ; � / D f

.2/

kC1
.x; � ; � /; fk.x ˝ a ˝ b/ D 0 if a or b is in .ACŒ1�/

˝i for
some i > 0; and so the f .2/

k
are induced by a map

f
.2/
1 W N

ı
! .N ˝T �.ACŒ1�/˝T �.ACŒ1�//

ı

in the same sense.

Proof Recall that ıN DINCı
1C� � � . By the definition of admissibility there is a C so

that ınD 0 for n>C . In fk the operator ı occurs k times in a row, and consequently
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all but C of these terms must be IN . This implies that fk.x; � //D fkC1.x; � // for
sufficient large k . To see that fk is induced from f1 , note that IN .x˝ a/ D 0 if
a 62 T 0.ACŒ1�/D k.

The arguments for the corresponding statements about f .2/
k

are similar.

With this notation, we are now able to reinterpret the Hochschild differential:

Lemma 2.3.48 The operator z@ is given by:

(2.3.49) z@D

f1

ı1

�

Proof Each term in (2.3.49) can be expanded to give a term in (2.3.45) (by expanding ı
into copies of ı1 ). We must show that each term in (2.3.45) occurs exactly once
this way. The idea is to read the expression in (2.3.45) from bottom to top. More
precisely, consider a term in (2.3.45); we want to write this term in the form of
(2.3.49). Label the ı1 ’s occurring in order as ı1

.1/
; : : : ; ı1

.k/
. The operation ı1

.k/
has a

sequence of inputs a1; : : : ; a` . The input a1 came from some ı1
.i/

for some i < k . Let
ı.1/ D ı

1
.k�1/

ıR ı � � � ıR ı ı1
.i/

. Similarly, the operation ı1
.i�1/

has inputs a0
1
; : : : ; a0

l
,

where a0
1

is produced by ı1
.j/

for some j < i�1. Let ı.2/D ı1
.i�1/
ıRı� � �ıRıı1

.j�1/
.

Repeat, producing operations ı.3/; : : : ; ı.m/ . Then the term in (2.3.49) with operations
ı.m/; : : : ; ı.1/; ı

1
.k/

corresponds to the given term in (2.3.45), and moreover it is clear
from the construction that this is the unique sequence of operations corresponding to
the given term.

Next, we summarize the properties of the operators we have introduced:

Lemma 2.3.50 With notation as above:

(1) We have f .2/1 D .I˝�/ ıf1 D Œ. xR ı ı/˝ I� ı .I˝�/ ıf1 . That is:

f
.2/
1

D

f1

�

D

f1

�

ı

�
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(2) The operator

f1
xDA

fk

C

f1
�

ı1

�
fk

is independent of k .

Proof We prove part (1) by induction on k , showing more generally that:

f
.2/

2k
D

fk

�

f
.2/

2kC1
D

fk

�
ı

�

(These identities relate to the portion of fk etc with no algebra inputs.) Indeed, the
second equality follows from the first and the definition of f .2/

k
. For the first equality,

the k D 0 case is trivial: both sides reduce to the identity map on N . For the inductive
step:

fkC1

�
D

fk

ı
�

�

D

fk

�
ı

�

ı
�
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D

f
.2/

2k

ı
�

ı
�

D f
.2/

2kC2

where the first equality uses the inductive definition of fkC1 ; the second equality uses
the fact that ı and � respect the coalgebra structure of T �AC ; the third equality uses
the inductive hypothesis; and the fourth uses the inductive definition of f .2/

2kC2
(twice).

For part (2), observe that

f1
xDA

fk

C

f1
�

ı1

�
fk

D

f1
xDA

ı
�

fk�1

C

f1
�

ı1

�

ı�

fk�1

D

f1

ı
�

xDA

fk�1

C

f1
�

ı1

�

ı
�

fk�1

D

f1
xDA

fk�1

C

f1
�

ı1

�
fk�1
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where the first equality uses the definition of fk , the second uses the type DA structure
relation, combined with the fact that

xDA
ı� C� ı xDA

D �˝� C� ˝ �

(which follows from the assumption that A is strictly unital), and the third uses part (1)
and the definition of f1 .

Proposition 2.3.51 If .ANA; ı/ is a bounded type DA structure, then z@2 D 0.

Proof To see that z@2 D 0, we prove that for any k :

(2.3.52) z@2
D

f1
xDA

fk

ı1

�

C

f1

�

ı1

�

fk

ı1

�

Indeed, for k� 0, the first term of (2.3.52) vanishes (because of the xDA followed by
the fk ; see Lemma 2.3.47), while, in light of Lemma 2.3.47, the second term reduces
to the reinterpretation of z@ from Lemma 2.3.48.

On the other hand, it is immediate from part (2) of Lemma 2.3.50 that the expression
on the right of (2.3.52) is independent of k . For k D 0, (2.3.52) reduces to

z@2
D

f1
xDA

ı1

�

C

f1

�

ı1

�

ı1

�

which is zero by the type DA structure relation (with one algebra element output).
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We let eCH .ANA/D .N=Œk;N �; z@/ denote the chain complex associated as above to
the type DA structure ANA .

Similarly, given a bounded type DA morphism between two bounded type DA structures
f W ANA!

AN 0A , define a map eCH .f /W N=Œk;N �!N 0=Œk;N 0� by

eCH .f /D
1X

n;mD0

� ı

n‚ …„ ƒ
.zı ıR/ ı � � � ı .zı ıR/ ıf ı

m‚ …„ ƒ
.R ı zı/ ı � � � ı .R ı zı/ ı �:

Proposition 2.3.53 The assignment eCH is an A1 functor from the category of
bounded type DA bimodules to Modk , the category of chain complexes over k. In
particular, if f W ANA!

AN 0A is a bounded type DA homomorphism, then eCH .f / is
a chain map, and if f and f 0 are homotopic morphisms, then the maps eCH .f / and
eCH .f 0/ are chain homotopic.

Proof The proof is essentially the same as the proof that z@2 D 0 (Proposition 2.3.51),
and we leave it to the reader.

The relation between eCH .ANA/ and CH.AMA/ is similar to the relation between �
and z̋ (Proposition 2.3.18). In particular:

Proposition 2.3.54 Let A be a dg algebra.

(1) Suppose that AMA is a type AA module. Then ABar.A/A�AMA is a bounded
type DA structure and the complex CH.AMA/ is isomorphic to the complex

eCH .ABar.A/A�AMA/:

(2) Suppose that ANA is a bounded type DA structure. Then the complex eCH .ANA/

is homotopy equivalent to the complex CH.AAA�ANA/.

Proof Part (1) is immediate from the definitions. Part (2) follows from part (1), which
gives the first isomorphism in the string

CH.AAA�ANA/ŠeCH .ABar.A/A�AAA�ANA/'eCH .ANA/I

together with the following observation: since ANA is bounded, the natural map

�˝ IN
ABar.A/A�AAA�ANA!

ANA

is a bounded homotopy equivalence (a fact which can be seen by looking at the maps
from Proposition 2.3.22). In view of this fact, Proposition 2.3.53 supplies the second
homotopy equivalence.
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Remark 2.3.55 The extension of Proposition 2.3.54 to A1–algebras is straightfor-
ward; the reason that we restrict to the dg case is that we have not defined the bar
resolution more generally.

2.4 Equivalences of categories

In Section 2 we introduced many different categories of modules and bimodules. In
Section 2.3.3 we showed that the dg categories ModA and ModA are quasiequivalent,
and also corresponding statements for bimodules; in particular, their homological
categories H.ModA/ and H.ModA/ are equivalent triangulated categories. In this
section we continue to tame the multitude, showing that:

� If A is a dg algebra then H.ModA/ is triangle-equivalent to the derived category
of dg A–modules.

� If A and B are quasi-isomorphic dg (or, more generally, A1–) algebras then
ModA and ModB are quasiequivalent.

The results in this section are not purely of aesthetic interest: various of them will be
used in Sections 8 and 9, with consequences that are useful for computation.

2.4.1 Homotopy equivalence and quasi-isomorphism Let A be a differential grad-
ed algebra. Throughout this section, the word honest is used to distinguish ordinary
(“honest”) differential graded modules from A1–modules. We can consider the
following different models for the derived category of A–modules:

� The category DH ;qi with objects honest dg A–modules and morphisms obtained
by localizing the homotopy category of honest module maps with respect to
quasi-isomorphisms. (Recall that a quasi-isomorphism is a chain map inducing
an isomorphism on homology.)

� The category DH ;1 with objects honest dg A–modules and morphisms A1–
homotopy classes of A1–morphisms.

� The category DH ;1qi obtained from DH ;1 by localizing with respect to A1–
quasi-isomorphisms.

� The category D1;1 with objects A1–modules and morphisms A1–homotopy
classes of A1–morphisms. (This has been denoted H.ModA/ elsewhere in this
section.)

� The category D1;1qi obtained from D1;1 by localizing with respect to A1–
quasi-isomorphisms.
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Proposition 2.4.1 The categories DH ;qi , DH ;1 , D1;1 and D1;1qi are all equiva-
lent triangulated categories. Corresponding statements hold for categories of bimodules.

Proof The proof is standard so we will only sketch it. The main point is that all of
these categories are equivalent to the full subcategory of honest, projective modules.
To see this, one observes that:

(1) The bar resolution functor M 7! Bar.M / maps the category of (A1/ modules
into the subcategory of projective modules, and takes A1–module homomor-
phisms to honest dg module homomorphisms.

(2) Any map between projective dg modules inducing an isomorphism on homology
has a homotopy inverse (see eg [5, Lemma 10.12.2.2]).

(3) The canonical map Bar.M /!M is an isomorphism in any of DH ;qi , DH ;1 ,
D1;1 and D1;1qi , and so the bar resolution functor is naturally isomorphic to
the identity functor.

These, together, imply the result.

Note that, concretely, Proposition 2.4.1 implies that every quasi-isomorphism of A1–
modules is a homotopy equivalence. The analogue for (bounded) type D structures,
and for bimodules, is given in Corollary 2.4.4.

The honest homotopy category of dg A–modules is not in general equivalent to the
derived category; it is part (3) of the proof that breaks down.

Proposition 2.4.2 With respect to the identification from Proposition 2.4.1 the tensor
product z̋ of Definition 2.3.17 is identified with the usual derived tensor product.

Proof This is clear from the definitions and the fact that the bar resolution of a module
is projective.

Definition 2.4.3 A map f W AM ! AN of type D modules is a quasi-isomorphism
if the induced map IA � f W AAA � AM ! AAA � AN is a quasi-isomorphism.
Similarly, a map f W AMB!

ANB of type DA modules is called a quasi-isomorphism
if the induced map IA � f W AAA � AMB ! AAA � ANB is a quasi-isomorphism,
and a map f W AM B ! AN B of type DD modules is called a quasi-isomorphism if
the induced map IA � f � IBW AAA � AM B � BBB ! AAA � AN B � BBB is a
quasi-isomorphism.
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Corollary 2.4.4 Let AM;AN 2 AMod. A map f W AN ! AN is a quasi-isomorphism
if and only if it is a homotopy equivalence. The same holds if M and N are instead
in AModB , AModB or AModB .

Proof For type D structures, this is immediate from Propositions 2.3.18 and 2.4.1.
The bimodule analogues follow from these results together with Proposition 2.4.11,
below.

2.4.2 Induction and restriction Consider a map of A1–algebras �W A! B . As-
sociated to � are restriction and induction functors

Rest� W ModB!ModA;

�InductW AMod! BMod;

which are defined by � � BŒ��A and BŒ��A� � respectively, where BŒ��A is as defined
in Definition 2.2.48.3 One can define restriction functors of left modules and induction
functors of right type D structures similarly, using AŒ��

B instead of BŒ��A .

It is obvious from their definitions that these functors behave well with respect to
composition of algebra homomorphisms:

Lemma 2.4.5 If �W A! B and  W B! C are A1–algebra homomorphisms then

Rest� ıRest D Rest ı� ;
 Induct ı �InductD  ı�Induct:

For most of the rest of this section we restrict to the case that A and B are dg algebras.

Lemma 2.4.6 Let �W A! B be an A1 morphism. Then there is a natural map of
A–A type AA bimodules

AAA! AŒ��
B� BBB� BŒ��A:

Similarly, if A and B are dg algebras then there is a natural map of B–B type DD
bimodules

BŒ��A�ABar.A/A�AŒ��
B
!

BBar.B/B:

When � is a quasi-isomorphism, then these two natural maps are quasi-isomorphisms.

3Since AMod and BMod are A1–categories, the induction functor is, of course, an A1–functor;
if A and B are dg algebras then this complication disappears.
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Proof Define a map f W AAA! AŒ��
B� BBB� BŒ��A by

fi;1;j .a1; : : : ; ai ; a
0; a001; : : : ; a

00
j /D 1k˝�iC1Cj .a1; : : : ; ai ; a

0; a001; : : : ; a
00
j /˝ 1k:

Using the fact that

mŒ���B�Œ��.a1; : : : ; ai ; 1k˝ b˝ 1k; a
00
1; : : : ; a

00
j /

D 1k˝�B.F
�.a1; : : : ; ai/; b;F

�.a001; : : : ; a
00
j //˝ 1k

it is easy to verify that f is an A1–bimodule homomorphism (ie d.f /D 0). Further-
more, if �1 induces an isomorphism on homology, f0;1;0 induces an isomorphism on
homology, ie f is a quasi-isomorphism.

For the second part, define a map gW BŒ��A�ABar.A/A�AŒ��
B! BBarB of separated

type DD modules by

g.1k˝ Œa1j � � � jak �˝ 1k/D 1k˝ ŒF
�.a1˝ � � �˝ ak/�˝ 1k:

Then it is easy to see that g is a type DD homomorphism (ie d.g/D 0). Moreover,
if � is a quasi-isomorphism then F� is a quasi-isomorphism, and hence g is a quasi-
isomorphism.

Definition 2.4.7 Fix A1–algebras A and B . A quasi-inverse to a type DA bimod-
ule APB is a type DA bimodule BQA with the property that APB� BQA '

AIA and
BQA�APB '

BIB . A type DA bimodule is quasi-invertible if it has a quasi-inverse.

There are obvious analogous definitions if P is a type AA and Q is a type DD module,
and if P and Q are both type AA modules (using z̋ instead of �).

Although a quasi-isomorphism between A1–algebras need not be invertible, it does
have a quasi-inverse:

Proposition 2.4.8 If �W A!B is a quasi-isomorphism, then AŒ��B is quasi-invertible.

Proof We will see the quasi-inverse to M D AŒ��B is N D BBar.B/B�BŒ��
A�AAA .

Indeed,

N �M Š BBar.B/B� BŒ��
A�AAA�AŒ��B '

BBar.B/B� BBB '
BŒI�B;

where the first quasi-isomorphism uses Lemma 2.4.6 and the second uses Lemma 2.3.19.

Similarly,

M �N Š AŒ��B� BBar.B/B� BŒ��
A�AAA '

ABar.A/A�AAA '
AŒI�A;

where again the first quasi-isomorphism uses Lemma 2.4.6 and the second uses
Lemma 2.3.19.
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One reason to be interested in quasi-invertible bimodules is the following:

Lemma 2.4.9 If BMA is quasi-invertible then the functors BMA� � and � � BMA
are quasiequivalences of categories. Analogous statements hold for type DD and AA
modules. An analogous statement holds for type AA modules with z̋ in place of �.

The proof is straightforward.

We have now proved the dg case of the following proposition, which we state merely
for the reader’s edification (compare [5, Theorem 10.12.5.1]):

Proposition 2.4.10 Let A and B be A1–algebras and �W A!B a quasi-isomorphism.
Let Induct� W ModA!ModB denote the functor

MA 7! Induct�.MA�ABar.A/A/B� BBB:

Then Rest� and Induct� are inverse quasiequivalences of dg categories. In partic-
ular, the derived categories H.ModA/ and H.ModB/ are equivalent. Corresponding
statements apply to categories of type D structures and bimodules of all kinds.

The argument we have given works in general, with the only obstruction being the fact
that we have not defined type DD modules over A1–algebras. This is not a serious
difficulty for the purpose of this result; cf Remark 2.3.28.

2.4.3 Bimodules and .Aop˝B/–modules Let A and B be differential graded al-
gebras. An honest .A;B/–bimodule is exactly the same as a right .Aop˝B/–module.
For A1–bimodules, this is not quite true: a .Aop˝B/–module has distinct operations
m3.x; x ˝ 1; 1˝ �/ and m3.x; 1˝ �; x ˝ 1/, both of which intuitively correspond to
the operation m3.�;x;  / on an A1–bimodule.

Nevertheless, the two categories are equivalent. More precisely, let M be a right A1
.Aop˝B/–module. We define an A1 .A;B/–bimodule structure on M as follows.
Given sequences SA D .a1; : : : ; am/ of elements of A and SB D .b1; : : : ; bn/ of
elements of B , we say that a sequence SAop˝B D .c1; : : : ; cmCn/ of elements of
Aop˝B interleaves SA and SB if:

� Each ck is either xai ˝ 1 or 1˝ bi .

� The sequence obtained from fcig by forgetting the 1˝ bi is exactly .xa1 ˝

1; : : : ; xam˝ 1/.

� The sequence obtained from fcig by forgetting the xai ˝ 1 is exactly .1 ˝

b1; : : : ; 1˝ bn/.
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The .A;B/–bimodule structure on M is defined by

mm;1;n.a1; : : : ; am;x; b1; : : : ; bn/D
X

.c1;:::;cmCn/ interleaves
.a1;:::;am/ and .b1;:::;bn/

mmCnC1.x; c1; : : : ; cmCn/:

It is routine to verify that these higher products do, in fact, make M into an .A;B/–
bimodule. Moreover, this construction extends in an obvious way to maps, leading to a
functor from MAop˝B to AMB .

Proposition 2.4.11 The categories H.ModAop˝B/ and H.AModB/ are equivalent tri-
angulated categories.

Proof This follows from Proposition 2.4.1 for .Aop ˝ B/ modules and for .A;B/
bimodules.

2.5 Group-valued gradings

The gradings on Floer homology theories differ from gradings in classical homology
or homological algebra in (at least) three important ways:

(1) It is often easiest to consider Floer complexes as relatively graded groups, rather
than absolutely graded ones.

(2) The relative grading is usually only partially defined. That is, Floer chain
complexes break up as direct sums in which there is a relative grading on each
summand but no way to compare the gradings across summands.

(3) The relative gradings on Floer complexes are often cyclic, ie by Z=n rather than
by Z.

All three points lead to difficulties with homological algebra. In particular, there is no
notion of a degree-0 morphism between two different relatively graded modules, nor
is it clear how to define the cone of a morphism between relatively graded modules.

In the literature, points (1) and (2) are usually treated by fixing a lift of the (partially
defined) relative grading to an absolute grading, or quantifying over all such lifts; see
Seidel [34]. (Alternatively, for Heegaard Floer theory of rational homology spheres
there is a natural absolute Q–grading lifting the relative Z–grading; see the second
author and Szabó [30].) In papers where point (3) leads to difficulties, authors usually
either restrict the generality of their results or work with a periodic Z–graded lift of the
Z=n–graded module (although this, too, leads to difficulties with homological algebra).
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None of these approaches seem satisfactory for bordered Floer theory. Indeed, we
observed in [21] that there is a natural grading on the algebras involved in bordered
Floer theory by noncommutative groups G , and on the modules involved by G –sets.
This section is devoted to reviewing and expanding the algebraic framework of such
gradings. While group-valued gradings have occurred before in the literature (see
Năstăsescu and Van Oystaeyen [27] and Khovanov[15]), our perspective and goals
seem somewhat different.

Partially-defined relative Z– or Z=n–gradings are a special case of the construction
here. More dramatically, cyclic gradings arise naturally when taking tensor products of
noncyclically-graded modules in the G –set graded context.

This section is organized as follows. In Section 2.5.1 we review the basic definitions of
G –valued gradings from [21], and extend the theory to bimodules. Section 2.5.1 should
provide enough background on noncommutative gradings for the reader with a little
faith to understand most of the rest of this paper, except for Section 9. Section 2.5.2
extends the notion of dg categories as appropriate for categories of G–set graded
modules; the generalization is called a Z–set graded dg category. Section 2.5.3 then
organizes the G –set graded modules into Z–set-graded dg categories. This then allows
one to extend easily the homological algebra introduced earlier in this section to G –set
graded modules.

2.5.1 Basics of group-valued gradings We start by recalling some notions of group-
valued gradings of algebras and modules from [21], and then generalize them somewhat.
Note that all of our A1–algebras and modules have underlying vector spaces (or k–
modules), and all of the structure maps of A1–algebras and modules are maps between
tensor products of vector spaces. So to grade these modules and speak about the degrees
of structure maps it suffices to explain gradings of vector spaces and tensor products of
vector spaces. We do so as follows:

Definition 2.5.1 Let .G; �/ be a pair of a group G and a distinguished element � in
the center of G . A G –graded k–bimodule is a k–bimodule V which is decomposed
as a direct sum

V D
M
g2G

Vg:

We say that an element v 2 Vg is homogeneous of degree g and write gr.v/D g .

If V and W are two G–graded k–bimodules then V ˝W is itself G–graded by
gr.v˝w/D gr.v/ gr.w/.

For a G–graded k–bimodule V , the space V Œn� is a G–graded k–bimodule with
gradings shifted by �nW V Œn�g D V��ng .
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A homomorphism f W V !W between G–graded k–bimodules is homogeneous of
degree k 2 Z if for all g 2G , f .Vg/�Wg�k .

Using Definition 2.5.1, the definitions of A1–algebras and A1–algebra homomor-
phisms (Sections 2.1.1 and 2.1.2) carry over to the G –graded case without change. For
example:

Definition 2.5.2 Let .G; �/ be a group with a distinguished central element. An
A1–algebra graded by .G; �/ is an A1–algebra A with a grading gr by G (as a
k–bimodule), ie a decomposition AD

L
g2G Ag , satisfying the following condition:

For homogeneous elements ai , we require that

(2.5.3) gr.�j .a1; : : : ; aj //D gr.a1/ � � � gr.aj /�
j�2:

Example 2.5.4 In the case that G D Z and � D 1, Definition 2.5.2 reduces to a
classical (Z–graded) A1–algebra.

If A is G –graded, we could consider modules that are also G –graded. However, we
prefer to consider modules which are graded by G –sets. Again, it suffices to explain
the notion of k–modules graded by G –sets:

Definition 2.5.5 Let .G; �/ be a group with a distinguished central element, and let S

be a right G –set. An S –graded k–module is a k–module V which is decomposed as
a direct sum

M D
M
s2S

Vs:

If V is an S –graded k–module and W is a G–graded k–bimodule, then V ˝W is
itself S –graded by gr.v˝w/D gr.v/ gr.w/. Similarly if T is a left G –set and V is
a T –graded k–module, then W ˝V is T –graded by gr.w˝ v/D gr.w/ gr.v/.

For any module V graded by a set with an action of �, the space V Œn� is V with
shifted grading: V Œn�x D V��nx . Note that we need not distinguish between left and
right actions of � since � is central.

Via Definition 2.5.5 the definitions of A1–modules and type D structures (Sec-
tions 2.2.2 and 2.2.3) carry over to the G –set graded case without change. For example:

Definition 2.5.6 For .G; �/ a group with a distinguished central element, A a G–
graded A1–algebra, and S a right G –set, a right S –graded A1–module is an A1–
module MA whose underlying k–module is graded by S , such that for homogeneous
elements x 2M and ai 2A,

gr.mjC1.x; a1; : : : ; aj //D gr.x/ ��j�1 gr.a1/ � � � gr.aj /:
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Example 2.5.7 The case that G D Z, � D 1, and S is a freely transitive G–set is
equivalent to relatively Z–graded modules. In particular, given a transitive Z–set
graded module M one can define a relative grading on M by gr.x;y/D n if x and y

are homogeneous and gr.x/�n D gr.y/. Conversely, given a relatively Z–graded
module M it is not hard to construct a canonical Z–set S and an associated S –graded
module.

Definition 2.5.8 For S a G–set and M an S –graded module, we say that a G–
invariant subset T � S is essential if each G–orbit in T contains an element s so
that Ms is nontrivial.

The theory of G –set gradings has a simple extension to bimodules:

Definition 2.5.9 If .G1; �1/ and .G2; �2/ are two groups with distinguished central
elements, define the group

G1 ��G2 WDG1 �G2=.�1 D �2/

with the distinguished central element �D Œ�1�D Œ�2�. So, a .G1 ��G2/–set is a set
with commuting actions of G1 and G2 , where the actions of �1 and �2 agree.

A left-right .G1;G2/–set graded k–module is a left .G1��G
op
2
/–set graded k–module.

(Left-left and right-right graded modules are defined similarly.)

Via Definition 2.5.9 the definitions of bimodules of various types (Section 2.2.4) carry
over to the G –set graded case without change: if A is G1 –graded and B is G2 –graded,
then we consider bimodules that are left-right .G1;G2/–set graded.

We next turn to tensor products of G –set graded modules.

Definition 2.5.10 If .G; �/ is a group with a distinguished central element, S is a
right G –set, and T is a left G –set, define their twisted product

S �G T WD .S �T /=.s �gt/� .sg� t/:

The set S �G T has an action of � defined by � � Œs � t � WD Œs�� t �D Œs ��t �, but in
general has no further structure. For V and W two k–modules graded by S and T ,
respectively, V ˝W is graded by the Z–set S �G T , where if v 2 Vs and w 2Wt ,
then v˝w 2 .V ˝W /Œs�t � .

Thus, for instance, if MA is graded by S and AN is graded by T , MA � AN is
graded by S �G T .
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More generally, for the tensor product of bimodules, if G1;G2;G3 are all groups with
distinguished central elements, S is a left-right .G1;G2/–set, and T is a left-right
.G2;G3/–set, then S �G2

T is a left-right .G1;G3/–set in an obvious way. As before,
if V and W are two spaces graded by S and T , respectively, V ˝W is graded by
S �G2

T . In particular, if AMB and BNC are two left-right set-graded A1–bimodules,
then AMB� BNC is also a left-right set-graded A1–bimodule.

Note that the complex MA�AN is not in general Z–graded; rather, the action of � on
S �G T breaks up the morphism space into a sum of chain complexes according to the
orbits of the action, with possibly cyclic grading on each orbit. (See [21, Example 2.46]
for an example where the grading ends up being a finite cyclic group, even though the
action of � on each side has infinite order.)

The grading on the Hochschild complex of a G –set graded bimodule behaves as one
would expect:

Definition 2.5.11 For S a left-right .G;G/–set, define

Sı WD S=.s �g/� .g � s/;

where s 2 S , g 2G . Sı has a Z–action given by multiplication by � on the left or
right.

There is a quotient map from S to Sı , which we denote s 7! sı .

Lemma 2.5.12 Let AMA be a type DA bimodule graded by a left-right .G;G/–set S .
Then eCH .M / is graded by Sı . The analogous statement holds for the Hochschild
complex of a type AA bimodule.

There are two ways to form G –set graded modules into categories. The easier of the
two, which will suffice for most of the paper, is to define a category for each transitive
G –set S , and to restrict to morphisms which only shift the grading by a power of �:

Definition 2.5.13 Fix .G; �/ a group with a distinguished central element and S a
right G–set where the action of G is transitive. Let n be the order of � in S . (This
order is well defined since the G action is transitive.) For V and W two S –graded
k–modules, let eHomS .V;W / be the .Z=nZ/–graded F2 vector space with

eHomS .V;W /i WD
M
s2S

Hom.Vs;Ws�i /:

These can be organized into a category eModk;S , whose objects are S –graded k–
modules and morphism spaces are eHomS .V;W /.
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For A a G–graded A1–algebra, the category eModA;S of right S –graded A1–
modules over A is the dg category whose objects are right S –graded A1–modules MA
and whose morphism spaces are

eMorA;S .MA;NA/D eHomS .M ˝T �.ACŒ1�/;N /;

with the differential as in Definition 2.2.20. (Here we have extended the notion of dg
categories in the obvious way to allow cyclic gradings.)

The definitions in Section 2.2.1 of homotopic morphisms and homotopy equivalences
carry over unchanged. We extend the definitions of Z.eModA;S / and H.eModA;S / in
the obvious ways, and H.eModA;S / is still a triangulated category.

We define categories of other kinds of modules in the G –set graded case analogously.
For instance we have a category A eModS of left S –graded type D structures over A,
as well as categories of bimodules of various types.

The invariants 1CFDD.Y; s/, 1CFAA.Y; s/ and 1CFDA.Y; s/ defined in Section 6 will
be well defined up to isomorphism in H.eModS / (for appropriate grading sets S ).

2.5.2 Set-graded dg categories It is natural to talk about morphisms between mod-
ules graded by different G –sets, or in other words to collect the S –graded modules for
all G –sets S into a single category. In doing so, one encounters the following issues:

� There is no natural way to define a degree-0 morphism from an S –graded
module to a T –graded module if S is different from T .

� More generally, if M and N are graded by G –sets S and T respectively then,
like M ˝N , the collection of morphisms Mor.M;N / is graded by a Z–set
constructed from S and T rather than simply by Z.

� Further, with this construction, there are natural morphisms, like the identity
morphism, which are not homogeneous (not supported in a single grading).

We will formalize these notions as follows. We will define a category of Z–set graded
chain complexes. If M and N are graded by G–sets S and T respectively then
the morphisms from M to N will be a Z–set graded chain complex. (That is, the
categories of G –set graded modules of various kinds are enriched over the category of
Z–set graded chain complexes.)

Definition 2.5.14 Let S and T be two sets, each endowed with a Z–action (written
as multiplication by �). A relation between S and T is a subset R � S � T . We
write sRt to mean that .s; t/ 2 R. We say that R is �–invariant if it satisfies the
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property that sRt if and only if .�s/R.�t/. The composite of two relations R1�S�T

and R2 � T �U , written R1 ıR2 � S �U , is the relation

R1 ıR2 D f.s;u/ j s 2 S;u 2 U; 9t 2 T W sR1t and tR2ug:

Definition 2.5.15 A Z–set graded chain complex over k is a triple .S;C; @/, where
S is a set with a Z action (written as multiplication by �), C is a k–module graded
by S , and @ is an operator on C satisfying @2D0 and such that for x2Cs , @x2C��1s .
We form Z–set graded chain complexes into a category as follows. A morphism from
.S;C; @1/ to .T;C 0; @2/ is

� a �–invariant relation R between S and T , and

� a k–module map �W C ! C 0 that is compatible with R, in the sense that

�.Cs/�
M
t2T
sRt

C 0t :

Let Mor..S;C; @1/; .T;C
0; @2// denote this space of morphisms, with its natural dif-

ferential.

If in addition � intertwines the actions of @1 and @2 , we say that � is a homomorphism.
To compose two morphisms, we compose the relations in the sense of Definition 2.5.14
and compose the k–module maps.

The category of Z–set graded chain complexes has objects triples .S;C; @/ as above
and Hom..S;C; @/; .T;D; @0// the set of homomorphisms (not just morphisms) from
.S;C; @/ to .T;D; @0/.

Given two Z–set graded complexes .S;C; @1/ and .T;D; @2/, we can form their
tensor product

.S;C; @1/˝ .T;D; @2/ WD .S �Z T;C ˝k D; @1˝ ID C IC ˝ @2/;

where gr.x˝y/D Œgr.x/�gr.y/� for homogeneous x;y . This tensor product extends
in an obvious way to (homo)morphisms, giving a monoidal structure on this category.

Example 2.5.16 Consider a 3–manifold Y . The Heegaard Floer complex bCF.Y / is
a set-graded chain complex where the grading set S is (noncanonically) given by[

s2spinc.Y /

Z= div.c1.s//:

(In fact, the grading set can be defined canonically. First one fixes a Heegaard diagram
and base generator and uses these to define a G–set grading as in Section 6.5. Then
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one observes that different base generator or Heegaard diagram lead to canonically
isomorphic G –sets.)

The most useful notion of an element of a Z–set graded chain complex .S;C; @/ is
not the naive notion of an element of C : elements carry with them some additional
grading information, as follows.

Definition 2.5.17 Let k denote the Z–set graded chain complex .Z;k0; 0/, where
k0 denotes a copy of k lying in grading 0. An element of a Z–set graded chain
complex .S;C; @/ is a morphism of Z–set graded chain complexes k! .S;C; @/.
(Note that k is the identity for the tensor product, and so this is natural from the point
of view of category theory.)

Lemma 2.5.18 An element of .S;C; @/ (in the sense of Definition 2.5.17) is equiva-
lent to a pair .T;x/ where T � S and x 2

L
s2T Cs .

Proof A morphism k! .S;C; @/ is given by a �–invariant relation R between Z
and S , and a map � . Let T be ft 2 S j 0Rtg, the set of elements that are related
to 0, and let x D �.1/. In the opposite direction, for any subset T of S , there is a
unique �–invariant relation R between Z and S with the property that T is the set of
elements related to 0; and similarly, any element x 2 C can be viewed as �.1/ for a
uniquely determined �W k! C .

For T � S we let CT denote the set of elements of C with grading set T , ie the
elements of the form .T;x/. For s 2 S , then, Cfsg is isomorphic to Cs as defined in
Definition 2.5.15.

We can use the tensor product to define an internal Mor for (appropriately finite) Z–set
graded chain complexes, just as for ordinary chain complexes. We start by explaining
G –set gradings of dual spaces:

Definition 2.5.19 For G any group and S a right G–set, let S� be a set with el-
ements s� in bijection with elements s of S , and with a left G–action defined by
g � s� WD .s �g�1/� . If V is an S –graded k–module, the graded dual of V , which we
will denote V gr� , is an S�–graded module with

.V gr�/s� WD .Vs/
�:

With these definitions, if � W V ! V is homogeneous with respect to the right action
of g on S , then ��W V �! V � is homogeneous with respect to the left action of g

on S� .
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Definition 2.5.20 Suppose that .S;C; @1/ and .T;D; @2/ are set-graded chain com-
plexes such that C is supported on finitely many orbits of the action of Z on S . Then
we define a Z–set graded chain complex Mor..S;C; @1/; .T;D; @2// to be a chain
complex graded by T �� S� with

Mor..S;C; @1/; .T;D; @2//u WD
Y

s�2S�

M
t2T

uDŒt�s��

Hom.Cs;Dt /:

The differential on Mor..S;C; @1/; .T;D; @2// is given as usual by

.@�/.x/D @.�.x//C�.@x/:

Note that if C is finite-dimensional, then

Mor..S;C; @1/; .T;D; @2//' .T;D; @2/˝ .S
�;C gr�; @�1/:

We have defined two different notions of “a morphism” between Z–set graded chain
complexes. Fortunately, they agree:

Lemma 2.5.21 The set of elements (Definition 2.5.17) of the internal morphism
complex Mor..S;C; @1/; .T;D; @2// (Definition 2.5.20) are in natural bijection with
the morphisms of Z–set graded complexes defined in Definition 2.5.15.

Proof An element of the internal morphism complex gives a morphism as follows.
Thanks to Lemma 2.5.18, we can think of an element of the internal morphism complex
as a subset R0 of T �� S� , together with a choice of

� 2
M

u2R0�T��S�

Mor..S;C; @1/; .T;D; @2//u

D

M
u2R0�T��S�

Y
s�2S�

M
t2T

uDŒt�s��

Hom.Cs;Dt /:

This � , of course, can be thought of as a k–module map from C to D . Now, subsets
of T �� S� are in one-to-one correspondence with subsets of .T �S/=Z, which in
turn are in one-to-one correspondence with �–invariant relations R between S and T .
Under this correspondence, we think of � as a k–module map from C to D which is
compatible with R (in the sense of Definition 2.5.15).

Conversely, given a morphism, an element of the morphism complex can be constructed
by reversing the above process.

We next turn to issues of injectivity. The notion of injectivity for morphisms of Z–set
graded chain complexes takes into account also grading information, as follows:
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Definition 2.5.22 A relation R � S � T is said to be injective if for every s 2 S ,
there is a t 2 T so that sRt and s0Rt does not hold for any other s0 2 S .

A morphism .R; �/ 2 Hom..S;C; @/; .T;D; @0// (in the sense of Definition 2.5.15) is
said to be homology injective if R is injective in the sense above and the element � ,
thought of as a homomorphism from C to D , induces an injective map on homology.

If R is a relation between S and T , and †� S , let †R� T denote the subset of all
t 2 T with the property that sRt holds for some s 2†.

Lemma 2.5.23 A relation R is injective in the sense of Definition 2.5.22 if and only
if for any two subsets †;†0 � S , †RD†0R implies that †D†0 (ie R induces an
injective function from subsets of S to subsets of T ).

Proof Suppose first that R is injective in the sense of Definition 2.5.22. For s 2 S ,
let f .s/ 2 T be the element promised by that definition. Then R induces a bijection
between S and f .S/, and if †RD†0R, then f .†/D†R\f .S/D†0R\f .S/D

f .†0/, so †D†0 .

Conversely, suppose that R induces an injective function on subsets of S . Then in
particular, for each element s 2 S , SR © .S n fsg/R. Let f .s/ 2 T be an element
of SR that is not in .S nfsg/R. Then f .s/ satisfies the conditions of Definition 2.5.22.

Lemma 2.5.24 A homomorphism .R; �/ of Z–set graded complexes is injective in
the sense of Definition 2.5.22 if and only if composition with � induces an injection on
the set of elements of .S;C / (in the sense of Definition 2.5.17) to the set of elements
of .T;D/.

Proof Let .R; �/ be a morphism from .S;C / to .T;D/. For an element .†;x/ of
.S;C / (where †� S and x 2 C† ), the image (element of .T;D/) under .R; �/ is
the pair .†R; �.x//.

From Lemma 2.5.23, we see .R; �/ is injective on elements of .S;C / of the form
.†; 0/ (with †� S ) if and only if R is injective; and it is injective on more general
elements if and only if � , thought of as a homomorphism from C to D , is injective.

Since the set of morphisms between Z–set graded chain complex .S;C; @1/ and
.T;D; @2/ (with C supported on finitely many Z–orbits) is itself a chain complex,
there is an obvious notion of when two morphisms are homotopic. In fact, the definition
of homotopic morphisms can be extended without difficulty to the general case without
the finiteness restriction on C .
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Definition 2.5.25 A Z–set graded dg category is a category C where the morphism
spaces are Z–set graded chain complexes over F2 and composition of morphisms
gives a Z–set graded chain maps ıW Mor.y; z/˝Mor.x;y/!Mor.x; z/.

Example 2.5.26 An ordinary dg category C gives a Z–set graded dg category eC as
follows. Let Ob.eC/ D Ob.C/. For objects M;N 2 Ob.eC/ define MoreC.M;N / D

.Z;MorC.M;N /; @/, where @ is the differential on MorC.M;N /.

Example 2.5.27 As a special case of Example 2.5.26, consider a Z–graded A1–
algebra A and its Z–set graded dg category of right modules MA . Given mod-
ules MA and NA , the space Mor.MA;NA/ is a Z–set graded chain complex. As in
Definition 2.5.17, an element of Mor.MA;NA/ — ie a morphism from MA to NA —
has some grading information built into it.

More precisely, an “element” of the morphism space Mor.MA;NA/ consists of a pair
.S; �/, where �W M ˝T �A!N is a map of A1–modules and S � Z is such that
if x 2Mi then �1.x/�

L
j2SCi Nj , and similarly for higher products.

The definitions in Section 2.2.1 of homotopic morphisms and homotopy equivalences
carry over unchanged to an arbitrary Z–set graded dg category C. The definitions
of Z�.C/ and H�.C/ also carry over. However, it no longer makes sense to talk about
morphisms of degree 0, so we no longer have Z.C/ or the triangulated category H.C/.

Definition 2.5.28 A Z–set graded dg functor F W C!D is a functor enriched so that
for x;y 2 C, the map F W Mor.x;y/! Mor.F.x/;F.y// is a Z–set graded chain
complex homomorphism (Definition 2.5.15).

Lemma 2.2.9, Definitions 2.2.10 and 2.2.11, and Proposition 2.2.12 carry over almost
unchanged to the context of Z–set graded dg functors. (In Definition 2.2.11, con-
sider H�.F / instead of H.F /.) The basic example is provided by tensor products: see
Example 2.5.35.

2.5.3 Categories of G –set graded modules We now define a category of G–set
graded modules where the sets may vary.

We start by defining the grading set for the Hom–space:

Definition 2.5.29 If .G; �/ is a group with a distinguished central element, S and T

are two right G –sets, and V and W two k–modules graded by S and T , respectively,
then Homk.V;W / is defined to be V gr�˝W (as a F2 vector space) with its T �G S�

grading.
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Remark 2.5.30 One might imagine the grading set for the Hom space between S –
and T –graded modules should be the set of G–equivariant maps S ! T . However,
in many situations (eg, if G D Z, S D Z=2 and T D Z) this prevents there being any
homogeneous homomorphisms at all. Our philosophy is that any module map (between
finite-dimensional modules, say) should be decomposable as a sum of homogeneous
maps.

Definition 2.5.31 For A a .G; �/–graded A1–algebra over k, let ModA be the set-
graded dg category whose objects are strictly unital, set-graded A1–modules (ie pairs
.S;MA/ where MA is graded by S ), and whose morphism spaces are

(2.5.32) MorA..S;MA/; .T;NA// WD Homk.M ˝T �.ACŒ1�/;N /;

with a grading by T �G S� and differential as in Definition 2.2.20. (The right-hand
side of (2.5.32) is to be interpreted as a Z–set graded chain complex.) To define
composition, we need to give Z–set graded chain maps

MorA..S;MA/; .T;NA//˝MorA..T;NA/; .U;PA//!MorA..S;MA/; .U;PA//:

On the chain level, this map is defined as in Section 2.2.2. It preserves the grading
relation R generated by

..s� �G t/�� .t
�
�G u//R .s� �G u/

for s 2 S , t 2 T , and u 2 U .

Example 2.5.33 Specializing Definition 2.5.31 to the case where AD kD F2 , we
see that ModF2

is the category of Z–set graded chain complexes. Indeed, the above
definition allows us to consider the category of set-graded chain complexes as a set-
graded dg category (compare Example 2.2.2).

For a fixed transitive G–set S , the category eModA;S with grading set S (compare
Definition 2.5.13) is a subcategory of ModA , but not a full subcategory: morphisms in
eModA;S are only allowed to shift the grading by a power of �, while in ModA there

is no such restriction.

We define ModA similarly, using type D structures instead of A1–modules. When A
is an A1–algebra rather than a dg algebra, MA is a Z–set graded A1–category, which
is defined analogously to Z–set graded dg categories. The variants AMod and AMod

are defined symmetrically, using left actions instead of right actions. Categories of
bimodules are defined similarly; cf Definition 2.5.9.

We can consider Z–set graded functors from the set-graded category MA (from
Definition 2.5.31) to the category of Z–set graded chain complexes. Although the
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definition of this notion can be pieced together by what has been written so far, we
spell it out for the reader’s convenience:

Example 2.5.34 Let A be a .G; �/–graded A1–algebra, let MA (whose objects
are pairs .S;MA/, where S is a G–set and MA is graded by S ) be its category
of G–set graded A1–modules, and let ModF2

denote the category of Z–set graded
chain complexes. A differential set-graded functor (or, less precisely, a dg functor)
F WMA!ModF2

consists of the following data:

� For each .S;MA/ 2MA , a pair F.S;MA/D .S
0;M 0/, where S 0 is a Z–set

and M 0 is a chain complex graded by S 0 .

� For each pair .S;MA/; .T;NA/ 2MA , an element F.S;M /;.T;N / (in the sense
of Definition 2.5.17) of the internal hom set

HomC.MorA..S;M /; .T;N //;MorC..S 0;M 0/; .T 0;N 0//;

which in turn consists of a pair .R.S;M /;.T;N /; ˆ.S;M /;.T;N //, where R is a
�–invariant relation

R.S;M /;.T;N / � .T �G S�/� � .T 0 �� .S
0/�/

and ˆ.S;M /;.T;N / is a cycle in

MorC.MorA..S;M /; .T;N //;MorC..S 0;M 0/; .T 0;N 0//

which is supported in R.S;M /;.T;N / .

Moreover, we demand that the F.S;M /;.T;N / respect composition, in the sense that the
following two conditions are satisfied:

(1) R.S;M /;.U;L/ DR.S;M /;.T;N / ıR.T;N /;.U;L/ .

(2) The following diagram commutes:

MorA..S;M /; .T;N //

˝MorA..T;N /; .U;L//
MorA..S;M /; .U;L//

MorC.F.S;M /;F.T;N //

˝MorC.F.T;N /;F.U;L// MorC.F.S;M /;F.U;L//

ıA

ıC

ˆ.S;M /;.T;N /

˝ˆ.T;N /;.U;L/
ˆ.S;M /;.U;L/
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The following example (and its generalizations to bimodules) will be of importance
to us:

Example 2.5.35 Let A be a G –graded A1–algebra, and fix a G –set graded type D

structure .U;AP /. The operation .S;MA/ 7! .S �G U;MA � AP / induces a dg
functor F from the category of G –set graded A1–modules, ModA , to the category of
Z–set graded chain complexes. In particular, given two G –set graded A1–modules
.S;MA/ and .T;NA/, we define a homomorphism

F.S;M /;.T;N / D .R; ˆ/ 2 Hom.Mor.M;N /;Mor.M �P;N �P //

as follows: R is the tautological relation in

.T �G S�/� ..T �G U /�� .S �G U /�//D .T �G S�/� ..T �G U /�� .U
�
�G S�//

given by
Œt �G s��RŒ Œt �G u��� Œu

�
�G s�� �;

and ˆ is the map � � IN from Section 2.3.2.

Definition 2.5.36 A dg functor F WMA ! ModF2
(as in Example 2.5.34) is said

to be homology faithful if the homomorphisms F.S;M /;.T;N / are homology injective
in the sense of Definition 2.5.22 (that is, F induces an injective functor H.MA/!

H.ModF2
/).

It is necessary to take morphisms of bimodules over one of the two actions, and to
consider the bimodule structure on the result (see especially Sections 2.3.4 and 9). This
operation interacts with the gradings as follows:

Definition 2.5.37 If S is left .G1��G
op
2
/–set and T is a left .G3��G

op
2
/–set, define

HomG2
.S;T / WD fhs; ti j s 2 S; t 2 T g=fhsg; tgi � hs; ti j g 2G2g

D T �G2
S�:

We view the result as a left .G3��G
op
1
/–set, as in the description as a product over G2 .

If V and W are graded by S and T , respectively, then Homk.V;W / may be graded
by HomG2

.S;T /. In particular, all of the one-sided Mor–spaces between various
bimodules are graded by sets like this. For instance, if A, B , C are A1–algebras
graded by G1 , G2 , G3 , respectively, and AMB and CNB are graded by S and T as
above, then MorB.AMB; CNB/ has underlying space Homk.M˝T �.BŒ1�/;N /, which
is graded by HomG2

.S;T /. With this grading on MorB.AMB; CNB/, the differential
is a graded map.
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3 Pointed matched circles

3.1 The algebra of a pointed matched circle

We start by recalling the following definition [21]:

Definition 3.1 A pointed matched circle is an oriented circle Z , equipped with a
basepoint z and additional 4k points aDfa1; : : : ; a4kg (all distinct from z ) which are
partitioned into pairs in such a manner that the one-manifold obtained by performing
surgeries on the 2k pairs of points gives a circle.

The pairing of points can be thought of as map M taking an element of a to its
equivalence class (consisting of two elements). Alternately, we may think of the pairing
as an involution x 7! x0 on a , taking a point to the other element of its pair. We often
abbreviate the data .Z; fa1; : : : ; a4kg;M; z/ by Z .

Construction 3.2 Given a pointed matched circle Z , we can associate a surface whose
boundary is a circle, containing a marked point z . We denote this surface Fı.Z/,
and let F.Z/ denote the result of filling in the boundary component of Fı.Z/ with a
disk D . Note that any two surfaces specified by the same pointed matched circle are
homeomorphic, via a homeomorphism which is uniquely determined up to isotopy.

Any surface of genus k > 1 can be represented by more than one pointed matched
circle. There are two convenient families of pointed matched circles which can be
used to describe an arbitrary oriented surface. One is the split pointed matched circle,
which is obtained as the k–fold connected sum of pointed matched circles representing
genus-one surfaces (and dropping extra basepoints). The other we call the antipodal
pointed matched circle, where x 7! x0 is the map exchanging antipodal points. See
Figure 7. One can also reverse the orientation of a pointed matched circle Z to get a
new pointed matched circle �Z .

Recall from [21] the algebra A.n; k/. An F2 –basis for A.n; k/ is given by triples
.S ;T ; �/, where S and T are k–element subsets of Œn�D f1; : : : ; ng and �W S ! T

is a bijection with �.x/� x for each x 2S . Associated to any such triple is a number
inv.�/, the number of inversions of � . We define

.S1;T1; �1/ � .S2;T2; �2/

D

�
.S1;T2; �2 ı�1/ T1 D S2, inv.�2 ı�1/D inv.�1/C inv.�2/

0 otherwise.
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z z

Figure 7: Two convenient pointed matched circles for the genus-2 surface:
on the left, we have the split pointed matched circle; on the right, we have the
antipodal pointed matched circle.

Let Inv.�/ denote the set of inversions of � , so inv.�/D # Inv.�/. For � D .i; j / 2
Inv.�/ define �� by �� .i/D �.j /, �� .j /D �.i/, and �� .k/D �.k/ for k ¤ i; j .
There is a differential on A.n; k/ given by

@.S ;T ; �/D
X

�2Inv.�/
inv.�� /Dinv.�/�1

.S ;T ; �� /:

We draw basis elements of A.n; k/ as strand diagrams with upward-veering strands,
like this:

1
2
3
4
5

1
2
3
4
5

The product becomes concatenation (with the convention that double crossings are set
to zero) and the differential corresponds to smoothing crossings.

Now, let Z be a pointed matched circle. For each i D�k; : : : ; k we define a subalgebra
A.Z; i/�A.4k; kC i/ as follows. Cutting Z at the basepoint z , the orientation of Z

identifies a with Œ4k�, so we can view the matching M as inducing an involution
x 7! x0 of Œ4k�, which we extend to an involution on the set of subsets of Œ4k�. For
aD .S ;T ; �/ a basis element of A.4k; kC i/ and i � Fix.�/ a set of fixed points of
� define a map

�i W .S n i /[ .i 0/! .T n i /[ .i 0/

by

�i .j /D

�
�.j / if j 62 i 0,
j if j 2 i 0.

Define
E.S ;T ; �/D

X
i�Fix.�/

..S n i /[ i 0; .T n i /[ i 0; �i /:
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(Loosely speaking, E.S ;T ; �/ is obtained by “smearing” the locations of the hori-
zontal strands in � according to the matching.) Then, A.Z; i/ is the subalgebra of
A.4k; kC i/ generated by

fE.S ;T ; �/ j S \S 0 D T \T 0 D∅g:

(In fact, these elements span A.Z; i/ as an F2 –vector space.)

Note in particular that the primitive idempotents in A.Z; i/ correspond naturally to
.kC i/–element subsets of Œ2k�D Œ4k�=M . Given a .kC i/–element subset s of Œ2k�

we let I.s/ denote the corresponding idempotent.

The subalgebra A.Z; 0/ � A.Z/ is the summand directly relevant to the case of 3–
manifolds with connected boundary. The other summands become necessary when con-
sidering three-manifolds with disconnected boundary (as in, for instance, Theorem 7).
Consider the extreme cases A.Z;�k/ and A.Z; k/. The algebra A.Z;�k/ is isomor-
phic to F2 ; the generator is the identity permutation of the empty set. By contrast,
the algebra A.Z; k/ is quite large, but it follows from Theorem 9 in Section 4 that
H�.A.Z; k//Š F2 .

We can put the algebras together to form

A.Z/D
kM

iD�k

A.Z; i/;

which we think of as an algebra with an extra integer grading (represented by the
integer i ), so that elements with different grading multiply to 0. We call this grading
the strands grading on A.Z/.

Let I.Z; i/ denote the ring of idempotents in A.Z; i/ and I.Z/ the ring of idempotents
in A.Z/. Of course, we can think of A.Z; i/DA.Z/ � I.Z; i/D I.Z; i/ �A.Z/. We
think of the ring of idempotents as the ground ring. The algebra A.Z/ has a natural
augmentation �W A.Z/ ! I.Z/, sending any strand diagram with a nonhorizontal
strand to 0.

The algebra A.Z/ can also be defined in terms of Reeb chords in .Z; a/; see [21, Sec-
tion 3.1.3]. In particular, given a set of Reeb chords � there is an associated algebra
element a.�/ (which may be zero if � does not satisfy some compatibility conditions).

Remark 3.3 It is not hard to show that if Z represents a surface F of genus k then
the Grothendieck group of projective A.Z; i/–modules has rank

�
2k

kCi

�
. It is interesting

to compare with the homology of SymkCi.Fı/.
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3.2 Gradings

As discussed in [21, Section 3.3], the algebra A.Z/ is not graded by Z, but rather by
a noncommutative group G , a Z–central extension of H1.F.Z//. In fact, it is more
naturally graded by a larger group G0 . We recall that construction first (and discuss
some of its key properties) and then we turn to the refinement to gradings in G (which
depends on some auxiliary choices).

Let Z0 D Z n z . Fix p 2 a and ˛ 2 H1.Z
0; a/. We define the multiplicity m.˛;p/

of ˛ at p to be the average of the local multiplicity of ˛ just above p and just below p .
Extend this to a bilinear pairing

mW H1.Z
0; a/�H0.a/!

1
2
Z:

Let G0.Z/ denote the Z–central extension of H1.Z
0; a/ with the commutation relation

z̨ � ž D ž � z̨ ��2m.ˇ;@˛/;

where ˛; ˇ 2H1.Z
0; a/, z̨ and ž are lifts of ˛ and ˇ to G0 , � is a generator for the

center, and @W H1.Z
0; a/!H0.a/ denotes the connecting homomorphism. The group

G0.Z/ can be realized explicitly as an index two subgroup of the group 1
2
Z�H1.Z

0; a/

endowed with the multiplication map

.`1; ˛1/ � .`2; ˛2/D .`1C `2Cm.˛2; @˛1/; ˛1C˛2/;

This index-two subgroup is generated by elements �D .1; 0/ and .�1
2
; Œi; iC1�/, where

i D 1; : : : ; 4k � 1. We call ` (respectively ˛ ) the Maslov component (respectively
spinc component) of .`; ˛/. Concretely, G0.Z/ consists of pairs .`; ˛/ where

`� 1
4

#.parity changes in ˛/ .mod 1/:

A basis element a of the algebra A.Z/ has an associated one-chain in H1.Z; a/, Œa�.
Recall also that a is a linear combination of basic elements of A.4k; kC i/; let a0

be any of the terms appearing in this linear combination. Using a0 and Œa� we can
construct the G0.Z/–grading by the formulas

�.a/D inv.a0/�m.Œa0�;S/;

gr0.a/D .�.a/; Œa�/;
(3.1)

where S is the initial idempotent of a0 (ie I.S/ � a0 D a0 ). A short argument
shows that the quantity �.a/ is independent of the choice of a0 ; for more details,
see [21, Proposition 3.40]. It is also not hard to show that for any a, gr0.a/ is an
element of G0.Z/, and the map gr0 gives A.Z/ a G0.Z/–grading, in the sense that
gr0.a � b/D gr0.a/ � gr0.b/ and gr0.@a/D ��1 gr0.a/; see [21, Proposition 3.39].
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As an immediate application of the grading, our algebras satisfy the condition of
Definition 2.1.9.

Lemma 3.2 For any pointed matched circle Z , the algebra A.Z/ has nilpotent aug-
mentation ideal.

Proof This is immediate from the facts that A.Z/ is finite-dimensional and elements
of the augmentation ideal have positive H1.Z

0; a/ gradings.

In Section 8.1, we will use a stronger grading-positivity result for our algebras:

Lemma 3.3 For any pointed matched circle Z , A.Z/ is gr0–graded in nonpositive
Maslov degrees. More precisely, if a is a generator of A.Z/, then the Maslov degree
of a is less than or equal to zero, with equality if and only if a is an idempotent.

Proof We will show that �.a/ is less than or equal to �1
2

times the number of moving
(nonhorizontal) strands in a. Letting † denote the set of moving strands in a, observe
that

�.a/D�
#j†j

2
C

X
si ;sj2†
si¤sj

.#.si \ sj /�m.I.si/; Œsj �/�m.I.sj /; Œsi �//;

where I.si/ denotes the initial point of the strand si , and Œsi � is its associated interval.
(Horizontal strands do not contribute to �.a/.) Evidently, the only positive contributions
here come from crossings of si and sj . For each, the contribution is at most 1 for each
pair fsi ; sj g. However, if si and sj cross, then either the initial point of si is contained
in the interior of Œsj � or the initial point of sj is contained in the interior of Œsi �. Thus,
we can cancel off each positive contribution with a corresponding �1.

3.2.1 Refined gradings The Heisenberg group G.Z/ of H1.F / is the central exten-
sion of H1.F IZ/ by a subgroup Z generated by �, with commutation relation

g � hD h �g ��2#.Œg�\Œh�/

for any g; h 2G.Z/. (Here, Œg� and Œh� are the images of g and h in H1.F /.)

As in [21, Section 3.3.2], there is a natural inclusion i�W H1.F /!H1.Z
0; a/, with im-

age the kernel of M�ı@. Since Œg�\Œh�Dm.i�Œh�; @i�Œg�/, it follows that this inclusion
G.Z/ ,!G0.Z/ is a group homomorphism. As explained in [21, Section 3.3.2], the G0

grading on the algebra can be refined to a G–valued grading. (The refined grading
leads to cleaner statements of the pairing theorems; see, for instance, Theorem 13 in
Section 7.) That construction involves certain choices, as we now elaborate.
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Definition 3.4 Fix a pointed matched circle. Given an element ˛ 2 H1.Z; a/ and
subsets s and t of Œ2k� we say ˛ is compatible with the idempotents I.s/ and I.t/ if

M�.@˛/D t� s:

In particular, for a generator a of A.Z/ with I.s/ �a �I.t/D a, the homology class Œa�
is compatible with s and t .

Definition 3.5 Grading refinement data for the algebra A.Z/ consists of a function

 W fs j s � Œ2k�g !G0.Z/

satisfying the condition that if g0 2G0.Z/ is a group element so that Œg0� is compatible
with I.s/ and I.t/, then  .s/ �g0 � .t/�1 lies in G.Z/�G0.Z/.

Grading refinement data for A.Z; i/ can be specified by choosing, for each i D

0; : : : ; 2k , a base idempotent ti � Œ2k� with jti j D i and maps

 i W fs j s � Œ2k�; jsj D ig !G0.Z/

satisfying

M�@Œ i.s/�D s� ti :

Definition 3.6 Given grading refinement data  as above, we can define a corre-
sponding G.Z/–valued grading gr on A.Z/ as follows. For any generator a of
A.Z; i/�A.Z/ with idempotents s and t , define

gr .a/D  .s/ � gr0.a/ � .t/�1:

It is straightforward to verify that this is indeed a grading with values in G.Z/�G0.Z/.

For fixed refinement data  , we can consider the categories of G.Z/–graded A1–
modules and type D structures (and corresponding bimodules). For the few times we
wish to call attention to all this information, we will decorate the relevant categories,
writing, for example, ModG.Z/

A; for the category of G.Z/–graded A1–modules over A
with its G.Z/–grading induced by the refinement data  .

The reader is warned that if  and  0 are two different refinement data for Z then the
induced G.Z/–graded algebras are typically not graded quasi-isomorphic. They do,
however, have isomorphic module categories, according to the following:
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Proposition 3.7 If  and  0 are two different refinement data for A.Z/, the identity
type DA bimodule AŒI�A can be given a grading, A; ŒI�A; 0 so that the functors

. � �A; ŒI�A; 0/W Mod
G.Z/
A; !Mod

G.Z/
A; 0 ;

.A; ŒI�A; 0 � � /W Mod
A; 0
G.Z/!Mod

A; 
G.Z/;

induce equivalences of categories.

(See Definition 2.2.48 for the definition of AŒI�A .)

Proof Consider the left-right .G.Z/;G.Z//–set T D G.Z/, with action given by
.g1 �g2/ �g D g1 �g �g2 . We endow AŒI�A with a grading by T , as follows. Recall
that generators of AŒI�A are of the form I.s/ where s is any subset of Œ2k�. We endow
the generator I.s/ of AŒI�A with the grading

(3.8) gr 
 0
.I.s//D  .s/ � 0.s/�1

2 T:

We denote the resulting T –graded module by A; ŒI�A; 0 . We must check that, for any
homogeneous algebra element aD I.s/ � a � I.t/, the gradings of I.s/ � a and a � I.t/

are consistent. We compute (using Definition 3.6):

gr 
 0
.I.s// � gr 0.a/D . .s/ 

0.s/�1/. 0.s/ gr0.a/ 0.t/�1/(3.9)

D  .s/ gr0.a/ 0.t/�1

D gr .a/ � gr 
 0
.I.t//;

showing that A; ŒI�A; 0 is indeed a T –graded A.Z;  /–A.Z;  0/ bimodule. An
inverse to this bimodule is supplied by the analogously-defined bimodule A; 0ŒI�A; ,
where we use the canonical identification T �G.Z/ T ! T induced by multiplication
to grade the isomorphism from the tensor product to the identity.

Definition 3.10 Let S be a right G0–space and MA an A1–module over A graded
by S . Consider choices of x;y 2MA and s; t � Œ2k� with the following properties:

� x � I.s/D x .
� y � I.t/D y .
� x and y are nonzero elements which are homogeneous with respect to the

S –grading.

We say .S;MA/ is G –refinable if for all choices of x , y , s , and t as above, any group
element g 2G0 such that gr0.x/ �g D gr0.y/ is compatible with the idempotents I.s/

and I.t/.
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Remark 3.11 Let .S;MA/ be G–refinable. If x 2MA is a homogeneous element,
then there is an elementary idempotent I.s/ with the property that x �I.s/D x . To see
this, note that if x is homogeneous of some degree (in S ), then x � I.s/ and x � I.t/

are homogeneous of the same degree; thus, if both elements are nonzero, then the
identity element e 2G0 is compatible with the idempotents I.s/ and I.t/, which in
turn forces s D t .

Lemma 3.12 For any grading refinement data  , there is a natural functor

F W Mod
G.Z/
A; !Mod

G0.Z/
A

which is homology faithful (ie the induced functor on homology is injective on mor-
phisms). These functors are compatible with changing refinement data, in the sense that
there is a natural isomorphism of functors

F Š F 
0

ı . � �A; IA; 0/:

Let MA 2Mod
G0.Z/
A be an object with grading set S that is essential in the sense of

Definition 2.5.8. Then, MA is isomorphic to F .NA; / for some NA; 2Mod
G.Z/
A; 

if and only if MA is G –refinable.

Proof First we define the functor F . Recall that objects in Mod
G.Z/
A; consist of pairs

.S;MA/, where

� S is a right G.Z/–set and

� MA is a right A A1–infinity module graded by S

(satisfying the necessary compatibility conditions). The functor is defined on objects by

F .S;MA/D .S �G.Z/G0.Z/;NA/;

where on the right-hand side, the module MA is given the grading gr.x/D gr0.x/ �
 �1.s/, where x � I.s/D x .

We now must define the functor on morphisms. (See Example 2.5.34.) Given two
objects .MA;S/ and .NA;T / in ModG.Z/

A; , we must define a homomorphism of
set-graded complexes

MorG.Z/
A; ..S;MA/; .T;NA//

!MorG0.Z/
A ..S �G.Z/G0.Z/;MA/; .T �G.Z/G0.Z/;NA//:
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This consists of two pieces of data: a chain map ˆ of morphism spaces, which in this
case we take to be the identity map (as a graded linear map), and a �–invariant relation
(on which it is supported)

R� .T �G.Z/ S�/�� ..T �G.Z/G0.Z//�G0.Z/ .S �G.Z/G0.Z//�/

which in this case we take to be the relation

.t �G s�/R.t �G g0/�G0 .g
0
�G s�/;

for arbitrary s 2 S , t 2 T , g0 2G0 .

The identity map ˆ is clearly injective, both as a chain map and on homology. To
check that R is injective (as in Definition 2.5.22), note that

.t �G s�/R.t �G 1/�G0 .1�G s�/

and that
.t1 �G 1/�G0 .1�G s�1 /D .t2 �G g0/�G0 .g

0
�G s�2 /

if and only if there is an element k 2G0 so that

.t1 �G 1/� .1�G s�1 /D .t2 �G g0k/� k�1
� .g0 �G s�2 /D .t2 �G g0k/� .g0k �G s�2 /I

ie there are g; h 2G so that the following equations hold:

t1 � 1D t2 �g�g�1g0k;

s1 � 1D s2 � h� h�1g0k:

We conclude that gDh, and hence t1D t2 �g and s1D s2 �g ; ie .s1�G t�
1
/D .s2�G t�

2
/,

as needed.

One can think of the functor F as given by . � �A; IA/, where we think of A; IA
as the identity bimodule with its G.Z/–G0.Z/ grading by the set G0.Z/, endowed
with the left G.Z/ action by left translation, and right G0.Z/–grading by G0.Z/. The
stated isomorphism of functors (gotten by varying  ) follows from the fact that

A0
 IA; �A; IA Š

A; 0IA:

Finally, we prove the claim about the image of F . Given a G.Z/–refinable module
.MA;S/, we proceed as follows. For each nonzero, gr0–homogeneous element x we
define

(3.13) gr.x/D gr0.x/ � .s/�1;

where I.s/ is the idempotent with x �I.s/Dx (see Remark 3.11). Let gr.MA/ denote
the image in S of all homogeneous elements. Let T � S denote the G.Z/–orbits
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of gr.MA/. The grading gr can be viewed as giving a T –grading on MA , for the
G.Z/–set T . Moreover, applying F to this object, we obtain an object which is
isomorphic to MA with its original S –grading, via the G0.Z/–space isomorphism
T �G.Z/G0.Z/Š S (given by .t;g0/ 7! t �g0 ). (Note that we are using here the fact
that the grading set S is essential; otherwise the canonical map T �G.Z/G0.Z/! S

would fail to surject.)

Remark 3.14 We have phrased Lemma 3.12 in terms of right A1–modules over A;
but the same arguments work for type D structures, and indeed bimodules of various
types. Note, however, when refining left, rather than right, modules, (3.13) gets
replaced by gr.x/ D  .s/ � gr0.x/. Similarly, if M is a left-right A–bimodule, we
define gr.x/D  .s/ � gr0.x/ � .t/�1 when I.s/ �x � I.t/D x .

When working with type D modules, we also need to relate the grading on A.Z/ and
A.�Z/. Recall from [21, Equation (10.19)] that, if r W Z!�Z is the (orientation-
reversing) identity map, then

(3.15) R.j ; ˛/D .j ; r�.˛//

defines an group antihomomorphism from G.Z/ to G.�Z/. For s� Œ2k� corresponding
to an idempotent in A.Z/, let s0D Œ2k�ns correspond to the complementary idempotent
in A.�Z/.

Definition 3.16 Given grading refinement data  for A.Z/, the reverse of  is
defined on the idempotents of A.�Z/ by

 0.s0/DR. .s//�1:

Lemma 3.17 The reverse grading refinement data  0 of Definition 3.16 is grading
refinement data for A.�Z/ (ie satisfies Definition 3.5).

(Compare [21, Equation (10.35)].)

Proof For g0 2G0.�Z/ compatible with I.s0/ and I.t0/, we have

 0.s0/ �g0 � 0.t0/�1
DR. .s//�1

�g0 �R. .t//DR. .t/ �R.g0/ � .s/�1/:

Now observe that R.g0/ is compatible with I.t/ and I.s/, so  .t/ �R.g0/ � .s/�1 is
in G.Z/ as  is grading refinement data for A.Z/. Thus the last line in the displayed
equation is in G.�Z/, as desired.
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3.3 An example: The algebra of the surface of genus-one

We recall the algebra for a genus-one surface, as described in [21, Section 11.1].

Consider the surface F of genus 1. This can be represented by a unique pointed
matched circle Z . The corresponding algebra A.Z/ has three nontrivial summands

A.Z/DA.Z;�1/˚A.Z; 0/˚A.Z; 1/:

The two outermost summands are not very interesting. The summand A.Z;�1/ is
isomorphic to F2 (there are zero moving strands). Although A.Z; 1/ is not one-
dimensional, its homology is, and indeed A.Z; 1/ is quasi-isomorphic to F2 .

Thus, in the genus-one case, the interesting algebra is the summand ADA.Z; 0/.

That algebra is generated (over F2 ) by two idempotents �0 and �1 , and six nontrivial
elements �1 , �2 , �3 , �12 , �23 , and �123 .

The differential is zero, and the nonzero products are

�1�2 D �12; �2�3 D �23; �1�23 D �123; �12�3 D �123:

(All other products of two �’s vanish.) There are also compatibility conditions with
the idempotents:

�1 D �0�1�1; �2 D �1�2�0; �3 D �0�3�1;

�12 D �0�12�0; �23 D �1�23�1; �123 D �0�123�1:

The unrefined grading takes values in the group G0 generated by quadruples .mI a; b; c/
where j 2 1

2
Z, a; b; c 2Z and j is an integer if a; b; c 2 2Z or if b 2 2Z and a; c 62 2Z,

and a half-integer otherwise. The multiplication on G0 is given by

.m1I a1; b1; c1/ � .m2I a2; b2; c2/

D

�
m1Cm2C

1
2

ˇ̌̌̌
a1 b1

a2 b2

ˇ̌̌̌
C

1
2

ˇ̌̌̌
b1 c1

b2 c2

ˇ̌̌̌
I a1C a2; b1C b2; c1C c2

�
:

Here � is the element .1I 0; 0; 0/. Gradings on the algebra are specified by

gr0.�1/D .�
1
2
I 1; 0; 0/; gr0.�2/D .�

1
2
I 0; 1; 0/; gr0.�3/D .�

1
2
I 0; 0; 1/:

The group G �G0 is generated by elements .1I 0; 0; 0/, .1
2
I 0; 1; 1/ and .1

2
I 1; 1; 0/.

One choice of grading refinement data f g is given by the function  W f�0; �1g !G0

(3.1)  .�0/D .0I 0; 0; 0/;  .�1/D .�
1
2
I 1; 0; 0/:
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With respect to this refinement, then, the induced G–grading on the algebra is speci-
fied by

gr.�1/D .0I 0; 0; 0/; gr.�2/D .�
1
2
I 1; 1; 0/; gr.�3/D .0I �1; 0; 1/:

3.4 Induction and restriction functors

Consider two pointed matched circles Z D .Z; a;M; z/ and Z 0 D .Z0; a0;M 0; z0/.
Taking the connect sum of Z and Z0 at the points z and z0 we obtain a new matched
circle .Z # Z0; a[ a0;M [M 0/. There are two natural choices of where to put the
basepoint for Z # Z0 ; for definiteness, we will put the basepoint in Z \ .Z # Z0/,
slightly counterclockwise of where the original z was. Thus, we obtain a new pointed
matched circle Z #Z 0 . See Figure 8. If Z specifies a surface F and Z 0 specifies F 0

then Z #Z 0 specifies F # F 0 .

z z0 z

# D

Figure 8: The connect sum of pointed matched circles

There is an obvious inclusion map

iZ;Z0 W A.Z/˝A.Z 0/!A.Z #Z 0/:

This is a morphism of differential algebras. If we fix grading refinement data for  1

for A.Z/,  2 for A.Z 0/, and  12 for A.Z #Z 0/ independently, then the bimodule
A.Z#Z0/ŒiZ;Z0 �A.Z/˝A.Z0/ is graded by G.Z/�Z G.Z 0/Š G.Z #Z 0/ as follows. For
�s1�s2

an idempotent in A.Z/˝A.Z 0/, set the grading of the generator I.s1 � s2/

to be

(3.1) gr.I.s1 � s2//D  12.s1 � s2/ 1.s1/
�1 2.s2/

�1:

(Compare Equation (3.8).) We must check that, for a2A.Z/˝A.Z 0/ from idempotent
s1 � s2 to t1 � t2 , that �s1�s2

� a and a � �t1�t2
have consistent grading, ie

gr.I.s1 � s2// � gr 1� 2
.a/D gr 12

.a/ � gr.I.t1 � t2//:

This straightforward computation is analogous to Equation (3.9). Thus, these inclusion
maps induce (graded) restriction functors of module categories

(3.2) RestZ;Z0 W ModA.Z#Z0/!ModA.Z/;A.Z0/I
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see Section 2.4.2.

There are also projection maps

pZ;Z0 W A.Z #Z 0/!A.Z/˝A.Z 0/

obtained by setting to zero any basis element which crosses between Z and Z0 .
(This can also be thought of as adding a second basepoint to Z # Z 0 .) For ar-
bitrary grading refinement data for A.Z/, A.Z 0/, and A.Z # Z 0/, the bimodule
A.Z/˝A.Z0/ŒpZ;Z0 �A.Z#Z0/ can be graded by Equation (3.1) as before. Thus, we get an
induction functor

InductZ;Z
0

W
A.Z#Z0/Mod! A.Z/;A.Z0/ModI

again, see Section 2.4.2.

These restriction and induction functors will be used in defining the type AA and DD
modules, respectively, in Section 6.

3.5 Mapping class groupoid

Fix an integer k . Let Z be a pointed matched circle on 4k points, and let Fı.Z/ be
the associated surface-with-boundary.

Given pointed matched circles Z1 and Z2 let

MCG0.Z1;Z2/D f�W F
ı.Z1/

Š
! Fı.Z2/ j �.z1/D z2g=isotopy

denote the set of basepoint-respecting isotopy class of homeomorphisms �W Fı.Z1/!

Fı.Z2/ carrying z1 to z2 , where zi 2 @F
ı.Zi/ is the basepoint. (The subscript 0 is

to indicate that the maps respect the boundary and the basepoint.)

The genus-k bordered mapping class groupoid MCG0.k/ is the category whose objects
are pointed matched circles with 4k points and with morphism set between Z1 and Z2

given by MCG0.Z1;Z2/. This is clearly a groupoid: each morphism is invertible, and
any two objects can be connected by a morphism. Moreover, the endomorphisms of a
given pointed matched circle is identified with the strongly based mapping class group
of the surface of genus k .

Remark 3.1 Our mapping class groupoid is closely related to the Ptolemy groupoid
studied by Penner [31]. In particular, our pointed matched circles are called chord
diagrams in the fat graph literature; see Andersen, Bene and Penner [1] and Bene [4].
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4 Homology of the algebra

In this section we compute the homology H.A.Z// of the algebras A.Z/. We will
denote H.A.Z// by H.Z/. Like A.Z/, H.Z/ is graded by G0.Z/. Specifically,
the degree .`; h/ part of H.Z/ is represented by cycles whose spinc part is h, and
whose number of crossings is determined, up to an additive constant depending on the
one-chain and initial idempotent, by `; see Equation (3.1).

This calculation will be used later in proving functorial properties of bordered Heegaard
Floer homology (especially in showing that the identity diffeomorphism induces the
identity bimodule, Theorem 4). For the purpose of the following statement, recall that
if p 2 Œ4k�, we let M.p/ denote its corresponding equivalence class with respect to
the matching.

2664
3775D

2664
3775

Figure 9: Illustration of the statement of Theorem 9: from left to right, we
have an algebra element whose homology class is ruled out by condition (2),
an algebra element whose homology class is ruled out by condition (3), and
two algebra elements representing the same homology class. In each case
only a portion of the matched circle is drawn.

Theorem 9 Let s; t be a pair of subsets of Œ2k�. The degree .`; h/ part of I.s/ �H.Z/ �
I.t/ is trivial unless all of the following conditions hold:

(1) The homology class h is compatible with I.s/ and I.t/, in the sense of
Definition 3.4.

(2) The local multiplicities of h 2H1.Z; a/ are 0 or 1.

(3) If p1;p2 2 a are matched points (so M.p1/DM.p2/), p1 2 Int.supp.h//, and
p2 62 Int.supp.h//, then M.p1/ 62 s\ t .

(4) The Maslov degree ` is minimal among all algebra elements with associated
one-chain h.

Furthermore, for every .`; h/, I.s/, and I.t/ satisfying the conditions above, the degree
.`; h/ part of I.s/ �H � I.t/ is 1–dimensional, and is represented by any crossingless
diagram of the correct grading.
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The above result can be used to calculate the ranks of the homology. For example,
by counting the spinc parts allowed in the above theorem, one finds that for the split
pointed matched circle for the surface of genus-two Zspl , H.Zspl/ has total rank 164,
divided up according to the number of strands as follows:X

i

dim.H.Zspl; i// �T
i
D T �2

C 32 �T �1
C 98C 32 �T 1

CT 2:

On the other hand, if Z is the antipodal pointed matched circle for the surface of
genus-two then H.Z; 0/ has rank 70, though the other ranks are the same; ieX

i

dim.H.Z; i// �T i
D T �2

C 32 �T �1
C 70C 32 �T CT 2

(so the total rank is 136). The different ranks here underscore the fact that the algebra is
really associated to a pointed matched circle, rather than its underlying surface. We shall,
however, see later that the derived categories of modules for different representatives
of the same surface are equivalent; cf Theorem 1.

4.1 Computing the homology

Before proving Theorem 9, we first study the (rather simple) homology of A.n; k/.

Lemma 4.1 For S and T two subsets of f1; : : : ; ng, if the unique homology class
h 2 H1.Z; a/ satisfying @h D T � S has all nonnegative local multiplicities then
I.S / � A.n; k/ � I.T / is nonempty. If some local multiplicity is at least two, then
I.S / �A.n; k/ �I.T / has dimension at least 2 (ie there is some element with a crossing
in it).

Proof If hD 0, then S DT and we can take the element I.S /. If h has nonnegative
local multiplicities, pick some maximal interval Œi; j ��Z with positive multiplicity,
connect i to j , and subtract 1 from all multiplicities in Œi; j �. The result still has
nonnegative multiplicity and by induction we can find an element of A.n; k � 1/ with
these multiplicities. When we add the first strand we get our desired element. If h has
multiplicity at least 2 anywhere, we will consider nested intervals in this procedure
and therefore construct an element of the strands algebra with a crossing.

Proposition 4.2 For S and T two subsets of f1; : : : ; ng, if I.S / �A.n; k/ � I.T / is
1–dimensional, so is its homology; otherwise the homology is 0.

Proof Each summand I.S / �A.n; k/ � I.T / has a well-defined induced one-chain h

with @hD T �S . If I.S / �A.n; k/ � I.T / is more than one-dimensional, it is easy to
see that at least one of following two conditions is satisfied:
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(1) Some element of S \T is in the interior of the support of h.

(2) The chain h has local multiplicity at least 2 at some point.

Thus, our goal is to show that if h satisfies either of the above two conditions then the
corresponding summand of A.n; k/ is acyclic.

We start with case (1): suppose that i 2 S \T is contained in a part of the support
of h where the local multiplicity (both just above and just below i ) is 1. (The other
possibilities in case (1) will be handled in case (2) below.) Then we define a map

H W I.S / �A.n; k/ � I.T /! I.S / �A.n; k/ � I.T /

as follows. Recall that the part of the algebra I.S / �A.n; k/ � I.T / is spanned by
upward-veering maps �W S ! T . Given such a map � , define H.�/ by

H.�/D

�
0 �.i/D i;

�.i;j/ �.i/¤ i; �.j /D i:

(Recall that for � a transposition, �� was defined in Section 3 and switches the roles
of the inputs i and j .)

We claim that this map H is a nullhomotopy of the identity on this part of the algebra:

(4.3) @ ıH CH ı @D I:

It suffices to verify this for generators �W S ! T , with the same two cases as in the
definition of H :

� Suppose �.i/D i . Then, H.�/D 0. Moreover, there is exactly one term in @�
for which H does not vanish: it is the term corresponding to the resolution of the
horizontal strand at i with a unique strand corresponding to �.j /D k , where
j < i < k . (Note that this term is nonzero: since the local multiplicity of h at i

is one, the resolution of this crossing cannot introduce a new double-crossing.)
Of course, H applied to this resolution is � ; thus we have verified (4.3) in this
case.

� Suppose there are k < i < j with �.i/ D j and �.k/ D i . Now, terms in
@H.�/ and those in H@.�/ pair off except for the single term in @H.�/ where
we resolve the crossing in H.�/ which did not already appear in � . This term,
of course, gives � .

We have verified (4.3), and hence the homology of I.S / �A.n; k/ � I.T / is trivial in
this part of case (1).
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For case (2), we proceed similarly. Now, choose i so that the local multiplicity of h

just below i is 1 and the local multiplicity just above i is 2. Indeed, we can choose i

so that the local multiplicity of h at any point less than i is strictly less than 2. We
then let j denote the element of S just below i . Since we have already considered
case (1), we can also assume without loss of generality that the local multiplicity of
h just below j is zero. Once again, we define a map H satisfying (4.3), by defining
H.�/ for �W S ! T ; only now, the cases are slightly different:

H.�/D

�
0 �.i/ < �.j /;

�.i;j/ �.j / < �.i/:

We verify (4.3) for generators �W S ! T . In either case, there is a strand si starting
at i and a strand sj starting at j .

� Suppose that �.i/ < �.j /. Then H.�/D 0, and there is exactly one term in @�
for which H.�/ is nonzero, corresponding to the resolution of the crossing of si

and sj . (Again, the assumptions on the multiplicities guarantee that this term is
nonzero.)

� Suppose that �.i/ > �.j /. We divide the crossings in � into two kinds: a
special crossing is a crossing of a strand s with si , which has the property that s

also crosses sj . Any other crossing is said to be generic. If  is a resolution
of � at a generic crossing, then it is easy to see that  .i/ >  .j /, and hence
that the terms in H.@�/ which come from generic resolutions of � cancel
corresponding terms in @H.�/. If  is a resolution of � at a special crossing,
however,  .i/ <  .j / and hence H. / D 0. Likewise, the corresponding
terms in @H.�/ which are gotten by resolving the special crossings are also
zero, as these resolutions all introduce double-crossings in H.�/. Finally, there
is one leftover term in @H.�/ which does not appear in H.@�/, namely the
term gotten by resolving the crossing between si and sj ; this gives � back, as
desired.

This completes the proof of the proposition.

Remark 4.4 We could alternately prove Proposition 4.2 by identifying I.S / �A.n; k/ �
I.T / with an interval in Hasse diagram of the Bruhat order of the symmetric group
on k letters, and applying the results of Björner and Wachs [6], which imply that such
an interval is acyclic if it has more than one element. The argument above can be
viewed as an explicit proof of this fact.

Proof of Theorem 9 We first prove the necessary hypotheses as stated.
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(1) Without the compatibility condition, the degree .`; h/ part of I.s/ �A.Z/ � I.t/
is trivial.

(2) If the local multiplicity of h is negative anywhere, then the degree .�; h/ part of
I.s/�A.Z/�I.t/ is empty. Otherwise, suppose that the multiplicity of h is bigger
than 1 somewhere. Consider the filtration on I.s/ �A.Z/ � I.t/ given by the
number of horizontal strands. The differential on A.Z/ can decrease the number
of horizontal strands by at most one, in the case where we smooth a crossing with
a horizontal strand. We will show that the homology of the associated graded
complex C.`; h;�/D

L
m2Z C.`; h;m/ is zero. Here ` and h are the gradings

inherited from before, and m is the newly-introduced grading, which we think
of as the number of nonhorizontal strands. We claim that C.�; h;m/ is nearly
identified with the corresponding subcomplex of A.4k;m/. The complex is not
quite the same since we need to forbid horizontal strands; however, we can shift
down the endpoints on the right by one half unit, to obtain an embedding of
C.�; h;m/ into I.S / �A.8k;m/ � I.T 0/�A.8k;m/ (where here T 0 is gotten
from T by shifting down by one half). If h has local multiplicity greater than
or equal to 2 somewhere, then so do the generators of I.S / �A.8k;m/ � I.T 0/.
It follows from Lemma 4.1 that the dimension of I.S / �A.8k;m/ � I.T 0/ is at
least two, and hence, by Proposition 4.2, that its homology is trivial.

(3) Suppose not; then M.p1/ is in both the initial and final idempotent. Modify
the filtration from case (2) by considering the filtration on I.s/ �A.Z/ � I.t/
given by the number of horizontal strands other than the one at p1 (if there is
one). Again we can identify the associated graded pieces with an appropriate
part of A.8k;m/, where we shift all right endpoints other than p1 down by half
a unit. (To see this identification, note that since p2 62 Int.supp.h//, there are
no crossings with the horizontal strand at p2 .) If we delete p1 from the initial
and final idempotent, by Lemma 4.1 we can construct an algebra element with
these endpoints in the corresponding summand of A.8k;m� 1/. If we then
add a horizontal strand at p1 , we introduce an element with a crossing (since
p1 2 Int.supp.h//). It follows from Proposition 4.2 that the homology of this
piece is trivial.

If none of the other conditions apply, our homology class h consists of a disjoint
union of intervals with multiplicity 1, so that for every matched pair fp1;p2g that is
contained in both s and t , either both of p1 and p2 are in Int.supp.h// or neither
is. Let m be the number where both are. As before, consider the filtration by the
number of horizontal strands. In this case the filtration is actually a grading (which the
differential drops by one), since the only possible crossings are between nonhorizontal
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strands and horizontal strands. Then the complex I.s/ �A.Z/ � I.t/ is isomorphic to
the standard complex for the m–dimensional hypercube, with the gradings matching
(up to an overall shift). In particular, there is a unique element in H0 (which is the
lowest Maslov grading), represented by any generator in this grading. Such a generator
corresponds to a crossingless matching.

4.2 Massey products

Recall (Corollary 2.1.18) that one can endow H.Z/ with an A1–structure so that
A.Z/ is quasi-isomorphic to H.Z/. As discussed in Section 2.1.3, while many of
the induced higher products on H.Z/ are not entirely canonical, some of them are.
The aim of the present section is to show that the homology H.Z/ is generated by
canonically determined higher products of chords of length one, in a suitable sense.
This will have as a corollary a certain rigidity of the algebra (Proposition 4.7), which
will be useful for us in Section 8.1.

Proposition 4.1 Let � 2H.Z/ be a nontrivial, homogeneous homology class whose
support has length greater than one. Then there is some m > 1 and a Massey
admissible sequence (in the sense of Definition 2.1.21) of homogeneous elements
˛1; : : : ; ˛m 2H.Z/ with nonzero support with the property that � D x�m.˛1; : : : ; ˛m/.

We will use the following technical lemma to ensure Massey admissibility.

Lemma 4.2 Let ADA.Z/. Let ˛1; : : : ; ˛m be a collection of homogeneous homol-
ogy classes in H , and choose homogeneous representing cycles a1; : : : ; am . Suppose
that there are elements �i;j 2A defined for 1� i < j �m so that:

� For i D 2; : : : ;m, �i�1;i D ai .

� d�i;j D
P

i<k<j �i;k � �k;j .

� For each j > i C 1, we have d�i;j ¤ 0.

� For 1 < i < m, there is no algebra element whose support is Œ˛1�C � � � C Œ˛i �

and whose initial idempotent agrees with the initial idempotent of ˛1 .

Then the associated homology classes ˛1; : : : ; ˛m form a Massey admissible sequence,
and moreover a1 � �1;m represents x�m.˛1; : : : ; ˛m/ (for any choice of compatible x�i ).

Proof We wish to apply Lemma 2.1.22. When 1� i < j �m, �i;j is a chain whose
grading is � � g.i C 1; j /, where g.i; j / is the grading of x�j�iC1.˛i ; : : : ; j̨ /. (We
write now ��g.i; j / in place of the g.i; j /C1 appearing in Definition 2.1.21, where the
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grading set was Z.) Since for 1< i < iC1< j �m the differential of d�i;j is nonzero
(by hypothesis), it follows from Theorem 9 that the homology group H��g.iC1;j/ is 0

for all 1� i < iC1< j �m. Moreover, the final condition ensures that for 1< j <m,
x�i.˛1; : : : ; j̨ /D 0 since in fact there is no algebra element in the appropriate grading.
Similarly, H��g.1;j/ is 0. Thus, ˛1; : : : ; ˛m is a Massey admissible sequence, and in
fact Lemma 2.1.22 applies (after we extend the �i;j ’s above by setting �0;1 D a1 and
�0;j D 0 for 1< j <m).

Before proving Proposition 4.1, we introduce some more terminology, and then some
further lemmas.

Let � be an element of H.Z/ supported in grading .`; h/. A point p in a is called
fully unoccupied if M.p/ does not appear in either the initial or the final idempotent
of � . A point p1 in a is called fully internal if both p1 and its mate p2 are contained
in Int.supp.h//. It is called fully internal and unoccupied if p1 is fully internal and
M.p1/ is not contained in the initial (and hence also the terminal) idempotent.

Lemma 4.3 Suppose that � is a nontrivial homology class in H.Z/ supported in
degrees .`; h/, and suppose that there is a point p which is fully internal and unoccupied.
Then, we have a Massey admissible sequence of m> 1 homology classes ˛1; : : : ; ˛m ,
each of which has nontrivial support, with

� D x�m.˛1; : : : ; ˛m/:

Proof According to Theorem 9, � can be represented by a single diagram (rather
than a formal sum of diagrams). Now, any representative for � has some strand which
crosses p . In fact, we can find a representative for � with the property that on the
strand s1 through p , there are no points which are fully internal and occupied. We find
a representative a 2A for � with the property that all the other strands of a become
stationary after the moment when s1 hits p1 , after which point only s1 moves. See
Figure 10 for an illustration.

This provides a factorization (in A) aD b1 � b2 , where b1 is the part of � before s1

crosses p , and b2 corresponds to the portion of s1 starting at p (and whose initial
idempotent coincides with the terminal idempotent of b1 ). Our condition on the
strand s1 ensures that b1 is a cycle. By contrast, b2 need not be a cycle: we can
break s1 into m�1 segments by positions q2; : : : ; qm�1 , where the qi are those points
in the interior of the support of s1 but above p which are occupied but only partially
internal in b2 . In order for � to be homologically nontrivial, each qi must be matched
with some corresponding q0i contained in the support of b1 . The q0i are necessarily in
the terminal but not initial idempotent of b1 , so that there is a strand in b1 entering q0i .
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q1

q2

q3

q4

�
q1

q2

q3

q4

b1 b2
q1

q2

q3

q4

a1 a2 a3 a4

Figure 10: Illustration of the proof of Lemma 4.3: we start with the cycle � ,
which has a strand s1 which crosses the position q4 , which is fully internal
and unoccupied. The strand s1 then crosses two other positions (q3 and q2 )
which are matched with terminal points in � . Thus, factoring the portion of
the strand starting at q4 to the right, we obtain a factorization of � into b1 �b2 ,
where b2 is not a cycle. The Massey factorization into a1; : : : ; a4 is shown
on the right.

(The q0i are not in the interior of h, since the qi were not fully internal and occupied;
we will use this observation towards the end of the proof.) We label the qi with the
following conventions:

� q1 is the terminal point of the strand s1 .

� fqig are ordered in the opposite order to the order they are encountered along s1 .

� qm D p .

We construct cycles faig
m
iD1

as follows. Let a1 D b1 . To define the other ai , note
that the terminal idempotent of b1 has the form I.s/, where s D s1 n fM.q1/g

and s1 includes all the M.qi/. Now, for i D 2; : : : ;m, the initial idempotent of ai is
s1 n fM.qi�1/g and ai consists of a single moving strand, which is the portion of s1

from qi to qi�1 . Clearly, each ai is a cycle.

Now, define �i;j for 1 � i < j � m to be the algebra element obtained from the
substrand of s1 which goes from qj to qi , and with initial idempotent I.s1nfM.qj /g/.
In particular for 2� i �m, we have �i�1;i D ai . Any algebra element with support
Œa1�C � � � C Œai � with i <m has some strand which starts at qi ; but M.qi/ is not in
the initial idempotent of ˛1 , so there are no such elements. (Here we are using the
fact that none of the qi was fully internal and occupied, as promised). Lemma 4.2
applies, showing ˛1; : : : ; ˛m is Massey admissible, and further that x�m.˛1; : : : ; ˛m/D

a1 � �1;m D b1 � b2 D Œ��.
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Lemma 4.4 Suppose that � is a nontrivial homology class in H.Z/ supported in
degrees .`; h/, and suppose that there is a point p in the interior of the support of
h which is matched with another point p0 on the boundary of the support. Then we
have a Massey admissible sequence of m> 1 homology classes ˛1; : : : ; ˛m , each with
nontrivial support, with

� D x�m.˛1; : : : ; ˛m/:

Proof By hypothesis, M.p/ occurs in either the initial or the terminal idempotent
of � , but not both. We focus first on the case where M.p/ is in the initial idempotent.

As in the proof of Lemma 4.3, we find a strand s1 which moves across p , and in fact,
we can find a representative of � so that no points which are fully internal and occupied
are encountered on that strand. We then find a representative a for � so that all the
other strands of a are stationary after the moment where s1 hits p .

As before, this gives a factorization aD b1 �b2 , where b2 corresponds to the substrand
of s1 starting at p . Once again, b1 is a cycle. The strands picture for b2 might have
some crossings, which are in one-to-one correspondence with points in the support
of s1 above p and which are matched with terminal points of b1 . (Figure 10 can be
modified to give a picture of the present case: simply cut off the bottom-most length
one interval in the pointed matched circle, so that now q4 is matched with an initial
point of b1 .) Our sequence a1; : : : ; am is now obtained by the same mechanism as in
the proof of Lemma 4.3.

The case where M.p/ is in the terminal idempotent of � follows similarly. In this case,
we find a representative for our strands so that all the strands of z are stationary until
the moment where s1 hits p . This now gives a factorization z D b1 � b2 , where b1

corresponds to the substrand of s1 starting at its initial point and going until p , and b2

consists of the rest of s1 and all other strands. Now, b2 is a cycle. The strands picture
for b1 might have some crossings, which are in one-to-one correspondence with the
points in the support of s1 after its initial point but before p . A slight modification to
Lemma 4.2 then applies.

Lemma 4.5 Suppose that � is a nontrivial homology class in H.Z/ supported in
degrees .`; h/, and suppose that there is no point in the interior of the support of h which
is matched with either an initial or terminal point of � , or which is fully unoccupied.
Then, there is some terminal point which is not matched with any other point in the
support of h.

Proof Suppose on the contrary that every terminal point is matched with another
point in h. Since no point in the interior is matched with an initial or terminal point,
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it follows that each terminal point is matched with an initial point. Moreover, since
there are no fully unoccupied points, and � is nontrivial, criterion (3) in Theorem 9
ensures every point in the interior of h is matched with another point in the interior
of h. It is now easy to see that the support of h disconnects the one-manifold obtained
by doing surgery on the matched pairs in Z , contrary to the definition of a pointed
match circle.

Proof of Proposition 4.1 Suppose � 2 I.s/ �H.Z/ � I.t/ is a nontrivial homology
class whose support has length greater than one. Let p1 be any point in the interior of
the support of � , and let p2 be the other point with M.p1/DM.p2/. We have the
following cases:

� If M.p1/ 62 s[ t , then Lemma 4.3 provides the desired factorization.

� If p2 is in the boundary of the support of � , then Lemma 4.4 provides the desired
factorization.

� If p2 is not contained in the closure of the support of � , then but M.p1/2 s[t ,
then this also forces M.p1/ 2 s\ t (since p1 is in the interior of the support
of � ), which, in view of Theorem 9(3), contradicts the assumption that � is
homologically nontrivial.

Thus, we can assume that every interior point is occupied in both initial and terminal
idempotents and is equivalent to some other point in the interior (ie it is fully internal
and occupied). Moreover, Lemma 4.5 ensures that there is a point p on the boundary
of the support which is not equivalent to any other point in the support of h. We assume
that p is an initial point; the case when it is a terminal point is similar.

Consider the point q just above p . We have shown that it is in the terminal idempotent,
whether or not it is in the interior of the support; in any case, there is a representing
cycle a which contains a length one strand from p to q . We can factor this strand off
the right, so as to factor a as a product of two cycles.

As a digression, the following is a corollary of the above proofs, showing that for the
split genus-k matched circle, Proposition 4.1 can be strengthened.

Corollary 4.6 For the split genus k matched circle Zspl , H.Zspl/ is generated as an
algebra by homology classes of Reeb chords of length 1.

Proof Suppose first there is a point p1 on the boundary of the support which is
matched with a point p2 in the interior. Then, since the since the distance between p1
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and p2 is two, there is a unique point q in between them. We can factor off the chord
between p1 and q on one side or the other (depending on whether the idempotent of q

is occupied or not), so that the two factors are both cycles.

Otherwise, if Lemma 4.3 applies, the factorization of a into algebra elements b1 �b2 is
a factorization into cycles.

In the remaining case of Proposition 4.1 (when neither Lemma 4.3 nor Lemma 4.4
applies), we obtain a factorization into cycles as in the proof of Proposition 4.1.

Aspects of Proposition 4.1 are illustrated in Figure 11. In particular, the second example
shows that A.Zspl/ is not formal when the genus is bigger than one, and the last example
shows that Corollary 4.6 is not true for the antipodal matched circle of genus 2.

Figure 11: Factorization in the algebra: on the left, we have exhibited an
element of the algebra for the split genus-two matched circle which cannot
be factored into length one chords; however, this is not a cycle. (Note also
that its differential cannot be written as a product of length one chords.) In
the middle, there are 4 algebra elements in the split genus-two case with a
well defined, nonzero Massey product, showing that the algebra is not formal.
On the right, we have exhibited a homology class for the antipodal pointed
matched circle which can be written as a Massey product, but not an ordinary
product, of Reeb chords of length 1 .

Proposition 4.1 has the following consequence which will be used in the proof of
Theorem 4:

Proposition 4.7 Suppose that �W A.Z/!A.Z/ is a G –graded A1 morphism such
that �1.�/D � where � is any Reeb chord of length one. Then �1 induces the identity
map on homology.

Proof Precomposing � with the standard quasi-isomorphism f W H!A, we reduce
to the following statement: Let  W H!A be a morphism of A1–algebras with the
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property that for each length 1 chord � ,  .�/ is a cycle representing the homology
class of � , then  1 induces the identity map on homology; ie if � is any homology
class, then  1.�/ is a cycle representing � .

We prove this by induction on the total size of the support of � . Let � be a nontrivial
homology class with support of size bigger than 1, and find a corresponding Massey
admissible sequence ˛1; : : : ; ˛m so that � D x�m.˛1; : : : ; ˛m/, where the support
of each ˛i is smaller than the support of � . Define �i;j D  j�i.˛iC1; : : : ; j̨ /, so
that �i�1;i D  1.˛i/. By the inductive hypothesis, �i�1;i is a cycle representing the
homology class ˛i . The A1 relation for  , together with Massey admissibility,
ensures that for .i; j /¤ .0;m/,

d�i;j D
X

i<k<j

�i;k � �k;j :

Lemma 2.1.22 ensures
P

0<k<m �0;k � �k;m is a cycle representing x�m.˛1; : : : ; ˛m/.
On the other hand, another application of the A1 relation (and Massey admissibility)
gives

d�0;m D
X

0<k<m

�0;k � �k;mC 1.x�m.˛1; : : : ; ˛m//I

ie  1.�/D 1.x�m.̨ 1; : : : ; ˛m// represents the homology class x�m.̨ 1; : : : ; ˛m/D� .

Remark 4.8 The above proof works, provided � preserves the relevant notions of
homogeneity: ie it works whether � is G– or G0–graded. In the application (see
Section 8.1), we are interested in the case where � is G –graded.

Remark 4.9 The A1–structure on H.Z/ is nilpotent (Definition 2.1.9), by the argu-
ment of Lemma 3.2.

4.3 A smaller model for A.Z/

Let Z be a pointed matched circle. Of course, H.Z/ is derived equivalent to A.Z/.
Thus, for our purposes, we could always work with A1–modules over this homology.
This has the advantage that the underlying algebra has smaller rank, but the disadvantage
that now one must always keep track of A1 operations. There is, however, a natural
intermediate level: there is a differential graded algebra A0.Z/ which is a quotient
of A, but which is quasi-isomorphic to A.

Definition 4.1 Let I � A.Z/ denote the differential ideal generated by all algebra
elements which have local multiplicity greater than 1 somewhere.
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Proposition 4.2 The quotient map

A.Z/!A.Z/=I DA0.Z/

is a quasi-isomorphism. Moreover, the map sending M 7!M z̋A.Z/A0.Z/ induces
an equivalence of derived categories.

Proof The quasi-isomorphism statement is a direct consequence of Theorem 9(2).
The equivalence of derived categories statement follows; see Proposition 2.4.10 (or
indeed [5, Theorem 10.12.5.1]).

In view of Proposition 4.2, we could with use A0.Z/ in place of A.Z/ throughout the
present paper. We chose not to do this for aesthetic reasons; but note that, for practical
calculations, it is indeed preferable to work in A0.Z/.

5 Bordered Heegaard diagrams

In this section, we extend the notion of a bordered Heegaard diagram of [21, Chapter 4]
to 3–manifolds with two boundary components. (The generalization to manifolds with
more than two boundary components is straightforward, and we mostly leave it to the
interested reader; see also Remark 5.7.) This generalization was first sketched in the
appendix to [21], which the reader may want to consult for a condensed treatment.

First, we recall the notion of strongly bordered three-manifolds with two boundary
components, introduced in Definition 1.3. We adapt the definition slightly, so that
borderings are specified by pointed matched circles, and give notation which will be
used later.

Definition 5.1 A strongly bordered three-manifold with two boundary components Y
is a tuple

Y D .Y;ZL; �L; zL; �L;ZR; �R; zR; �R; z; �z/;

where:

� Y is a compact, oriented three-manifold with two boundary components @LY

and @RY .

� �L � @LY and �R � @RY are preferred disks.

� zL 2 @�L and zR 2 @�R are basepoints on the boundaries of the disks.
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� �L and �R are homeomorphisms

�LW .F.ZL/;DL; zL/! .@LY; �L; zL/;

�RW .F.ZR/;DR; zR/! .@RY; �R; zR/:

(Here, DL and DR are the preferred disks in F.ZL/ and F.ZR/, equipped
with the basepoints zL and zR coming from the pointed matched circles; see
Construction 3.2. In the interest of notational simplicity, we do not distinguish
the notation for the basepoints in the model surface from the preferred basepoints
on @Y .)

� z is a path in Y connecting zL to zR .

� �z is an isotopy class of nowhere vanishing normal vector fields to z pointing
into �L at zL and into �R at zR .

We wish to describe Heegaard diagrams which specify the above data. Before doing this,
we recall how we specify bordered three-manifolds (with one boundary component) by
diagrams.

Definition 5.2 A pointed bordered Heegaard diagram with one boundary component
is a quadruple HD .x†; x̨;ˇ; z/, where x† is a compact surface of genus g with one
boundary component; ˇ is a g–tuple of pairwise disjoint curves in the interior † of x†;

x̨ D f

x̨
a‚ …„ ƒ

x̨
a
1 ; : : : ; x̨

a
2k ;

˛c‚ …„ ƒ
˛c

1; : : : ; ˛
c
g�kg

is a collection of pairwise disjoint embedded arcs (the x̨a
i ) with boundary on @x† and

circles (the ˛c
i ) in the interior † of x†; and z is a basepoint in @x† n˛a . We require

that x† n x̨ and x† nˇ both be connected; this translates to the condition that the ˛–
(respectively ˇ–) curves be linearly independent in H1.x†; @x†/.

Given a bordered Heegaard diagram HD .†;˛;ˇ; z/, the boundary @x† is a pointed
matched circle in a natural way, with aD x̨a

\ @x†, M the matching pairing up the
endpoints of each x̨a

i , and z the basepoint z . We call this pointed matched circle Z.H/.

Construction 5.3 A pointed bordered Heegaard diagram H with one boundary com-
ponent specifies a 3–manifold Y .H/ with one boundary component as follows:

(1) Thicken x† to x†� Œ0; 1�.

(2) Attach three-dimensional two-handles along the ˛–circles in x†� f0g.

(3) Attach three-dimensional two-handles along the ˇ–circles in x†� f1g.
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A

A

z

A

A

zC

Figure 12: A pointed bordered Heegaard diagram and the associated 3–
manifold: the picture on the left is a Heegaard diagram for the bordered solid
torus shown on the right. The shaded part of the boundary is Fı.Z.H// .

A parameterization of the boundary is specified as follows. Consider the graph

.x̨a
[ .@x† n nbd.z///� f0g � x†� f0g;

thought of as a subset of @Y . The closure Fı of a neighborhood of this graph is naturally
identified with the surface-with-boundary Fı.Z.H// associated to the pointed matched
circle Z.H/. (This identification reverses orientation with our orientation conventions.
Note that this neighborhood of the ˛–arcs is orientation-reversing homeomorphic to a
portion of @Y .H/, so that the orientation of Fı.Z.H// agrees with the orientation of
@Y .H/.) The deleted neighborhood of z is an interval with endpoints z� and zC , and
we can take either of them (say, zC ) as corresponding to the basepoint on the boundary.
The complement of Fı in @Y is a disk. See Figure 12.

Thus fortified, we turn to the two boundary component case.

Definition 5.4 An arced bordered Heegaard diagram with two boundary components
is a quadruple .x†; x̨;ˇ; z/ where:

� x†g is a compact surface of genus g with two boundary components, @L
x†

and @R
x†.

� ˇ is a g–tuple of pairwise disjoint curves in the interior † of x†.

� x̨ is a collection

x̨ D f

x̨
a;L‚ …„ ƒ

x̨
a;L
1
; : : : ; x̨

a;L
2`
;

x̨
a;R‚ …„ ƒ

x̨
a;R
1
; : : : ; x̨

a;R
2r
;

˛c‚ …„ ƒ
˛c

1; : : : ; ˛
c
g�`�r g
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is a collection of pairwise disjoint embedded arcs with boundary on @L
x†

(the x̨ a;L
i ), arcs with boundary on @R

x† (the x̨ a;R
i ), and circles (the ˛c

i ) in the
interior † of x†.

� z is a path in x† n .x̨ [ˇ/ between @L
x† and @R

x†.

These are required to satisfy:

� x† n x̨ and x† nˇ are connected.
� x̨ intersects ˇ transversely.

An arced bordered Heegaard diagram H with two boundary components specifies two
pointed matched circles

ZL.H/D .@L
x†; x̨a;L

\ @L
x†;ML; z\ @L

x†/;

ZR.H/D .@R
x†; x̨a;R

\ @R
x†;MR; z\ @R

x†/;

where ML (respectively MR ) is the pairing matching the endpoints of each arc in x̨a;L
i

(respectively x̨a;R
i ).

A

B

A

B
zC

z�

z

z� z�

A

B

A

B

zC zC

Figure 13: Drilling Heegaard diagrams: on the left, we have an arced bor-
dered Heegaard diagram H for T 2�Œ0; 1�; on the right, we have the result Hdr

of drilling the tunnel z from H , a bordered Heegaard diagram with a single
boundary component.

Definition 5.5 Given an arced bordered Heegaard diagram HD .x†; x̨;ˇ; z/ with two
boundary components, there is a bordered Heegaard diagram Hdr with one boundary
component, obtained by deleting a neighborhood of the arc z from x†. The boundary
of the deleted neighborhood of z consists of two disjoint pushoffs zC and z� of z ,
and @x†dr is

.@L
x† n nbd.zL//[ .@R

x† n nbd.zR//[ zC[ z�:
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We can equally well choose to put the basepoint of Hdr on zC or on z� . We will call
these two choices of basepoint zC and z� respectively. For either of these choices,
we call the pointed bordered Heegaard diagram Hdr a diagram obtained from H by
drilling. Note that Z.Hdr/ is the pointed matched circle ZL.H/ #ZR.H/.

We will use the notation Hdr2 to denote the doubly pointed Heegaard diagram obtained
by viewing both zC and z� as basepoints of the drilled diagram.

See Figure 13 for an illustration of the drilling construction on Heegaard diagrams.

Construction 5.6 An arced bordered Heegaard diagram with two boundary compo-
nents in the sense of Definition 5.4 gives rise to a strongly bordered three-manifold in
the sense of Definition 5.1, as follows. Let Hdr be the Heegaard diagram obtained from
H by drilling (Definition 5.5). The boundary of Y .Hdr/ is decomposed as a connect
sum F.ZL/ # F.ZR/. We attach a three-dimensional two-handle along the connect
sum annulus to obtain Y . To see the other structure, we perform this construction with
more care. The boundary of Y .Hdr/ consists of three pieces:

� A neighborhood of the graph

.x̨a
L[ .@L

x† n nbd.zL///� f0g � x†� f0g;

whose closure is identified in an orientation-reversing way with Fı.ZL/, which
we denote Fı

L
. (Note that Fı

L
contains the basepoint zC

L
on its boundary.)

� A neighborhood of the graph

.x̨a
R [ .@R

x† n nbd.zR///� f0g � x†� f0g;

whose closure is identified in an orientation reversing way with Fı
R
WD Fı.ZR/.

(Note that Fı
L

contains the basepoint zC
R

on its boundary.)

� An annulus A, equipped with a path zC connecting zC
L

to zC
R

(this is the
path zC on the boundary of x†dr D

x†dr � f0g, thought of as a subset of the
boundary of Y .Hdr/.)

Now, we attach a three-dimensional two-handle to Y .Hdr/ along the annulus A. More
precisely, let � be a two-dimensional disk. We glue �� Œ0; 1� to Y .Hdr/, identifying
.@�/� Œ0; 1� with the annulus A, so that .@�/� f0g is glued to the boundary of Fı

L
,

while ��f1g is glued to the boundary of Fı
R

. Let �L D��f0g and �R D��f1g.
It is easy to see that this gives a three-manifold homeomorphic to Y . Moreover, in this
model, the boundary of Y consists of the disjoint union of Fı

L
[�L and Fı

R
[�R ,

and �L and �R respectively contain zC
L

and zC
R

on their boundary. Our preferred
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disks are �L and �R , and their basepoints are zC
L

and zC
R

. The homeomorphisms �L

and �R are supplied by the pointed matched circles. The arc z is supplied by zC ,
which in turn gives a path on .@�/� Œ0; 1�. The framing is specified so as to point into
�� ftg for each t 2 Œ0; 1�. See Figure 14.

C

C

A

B

A

B

z

C

C

A

B

A

B
zC

zL
C

zR
C

Figure 14: Constructing a bordered 3–manifold with two boundary compo-
nents from an arced bordered Heegaard diagram: the Heegaard diagram on
the left represents an elementary cobordism from the genus-two surface to the
genus-one surface. The lightly shaded region on the right picture is Fı.@LH/
(a surface of genus-two), while the darkly shaded one is Fı.@RH/ (a surface
of genus-one). There is a 2–handle attached along the thick (green) curve.

We call the data .Y; �L; zL; �R; zR; �L; �R; z/ from Construction 5.6 the strongly
bordered 3–manifold associated to the arced bordered diagram H . We will often abuse
notation and use Y or �L

Y�R
or ZL

YZR
to denote all the data of a strongly bordered

3–manifold (depending on which pieces we want to emphasize).

Remark 5.7 In the case of strongly bordered Heegaard diagrams with more than
two boundary components, one replaces the arc z with a tree (or, as a special case, a
sequence of arcs) connecting the various boundary components.

There is an inverse to the drilling construction, filling, defined as follows.
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Definition 5.8 Let HdrD .x†; x̨;ˇ; zC/ be a pointed bordered Heegaard diagram with
one boundary component. Let z� be another point in @x†, and suppose that, writing
@x† n fzC; z�g D ILq IR , there are no ˛–arcs running between IL and IR . Then
fzC; z�g decomposes Z.Hdr/ as a connect sum, Z.Hdr/DZL #ZR . Attaching a band
(two-dimensional one-handle) to Hdr between zC and z� gives a Heegaard diagram
Hf with two boundary components, with @LHf D ZL and @RHf D ZR .

The three-manifold Y .Hf / is obtained from Y .Hdr/ by attaching a 3–dimensional
2–handle to @Y .Hdr/ along the connect sum curve.

5.1 Arced bordered Heegaard diagrams

We can use the drilling construction to rephrase questions about arced bordered Hee-
gaard diagrams with two boundary components in terms of ordinary (one boundary
component) bordered three-manifolds. For example, we have the following:

Definition 5.1 Let H be an arced bordered Heegaard diagram.

� A generator of H is a generator of Hdr . We let S.H/ denote the set of generators
of H .

� Given generators x;y 2 S.H/, the set of domains connecting x and y ,
�2.x;y/, is the set of domains in Hdr connecting x to y that do not cross
either zC or z� . We view domains as linear combinations of components of
x† n .˛[ˇ/. Recall that @@.B/ denotes the intersection of @B with @x†.

� Let �@
2
.x;y/D fB 2 �2.x;y/ j @

@B D 0g. These are the provincial domains
from x to y .
There are natural isomorphisms

�2.x;x/ŠH2.Y .H/; @Y .H//;

�@2 .x;x/ŠH2.Ydr.H//;

corresponding to [21, Lemmas 4.18 and 4.20].

� We call elements of �2.x;x/ periodic domains.

� The arced bordered Heegaard diagram with two boundary components H is
called admissible (respectively provincially admissible) if the associated drilled
Heegaard diagram Hdr2 is admissible (respectively provincially admissible) in
the sense of [21, Definition 4.24] (respectively [21, Definition 4.23]), ie if every
nontrivial periodic domain (respectively provincial periodic domain) of H has
both positive and negative coefficients.
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Proposition 5.2 Any strongly bordered three-manifold with two boundary compo-
nents comes from an admissible arced bordered Heegaard diagram with two boundary
components.

Proof Choose a bordered Heegaard diagram for the bordered three-manifold (with one
boundary component) Y n nbd.z/. This can be done according to [21, Lemma 4.9];
moreover, it can be made admissible by [21, Proposition 4.10]. (Note that admissibility
with only one basepoint which is gotten from [21, Proposition 4.10] is slightly stronger
than the admissibility we require here.) The filling construction of Definition 5.8 then
produces the desired diagram for Y .

Proposition 5.3 If H and H0 specify the same strongly bordered 3–manifold then H
and H0 are related by a sequence of the following moves:

� Isotopies of the ˛– and ˇ–curves.

� Handleslides among the ˛–circles and among the ˇ–circles.

� Handleslides of an ˛–arc over an ˛–circle.

� Stabilizations of the diagram.

Moreover, if H and H0 are admissible (respectively provincially admissible) then the
moves can be chosen so that all intermediate diagrams are admissible (respectively
provincially admissible).

Proof Suppose H and H0 are provincially admissible and specify the same strongly
bordered 3–manifold. Then Hdr and H0dr specify the same bordered three-manifold
(with one boundary component). Thus, Hdr and H0dr can be connected by a sequence
of provincially admissible Heegaard moves which do not cross either of the basepoints,
as in [21, Propositions 4.10 and 4.25]. Filling all the diagrams, we obtain the desired
sequence connecting H to H0 .

The case when H and H0 are admissible is similar, except that Hdr and H0dr are not
necessarily admissible, as there may be periodic domains with positive coefficients
crossing the extra basepoint (say z� , if zC was the basepoint for H). The doubly-
pointed diagrams Hdr2 and H0dr2 are admissible (in the obvious sense), and [21, Propo-
sitions 4.10 and 4.25] adapt easily to the doubly-pointed case.

We call two diagrams which are related by the moves of Proposition 5.3 equivalent.

In the case of 3–manifolds with two boundary components, we can refine some
of the notions related to domains. Given a domain B , @@

L
B (respectively @@

R
B )
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denote the intersection of @B with @L
x† (respectively @R

x†). Let �@L
2
.x;y/D fA 2

�2.x;y/ j @
@
L

AD 0g denote the set of left-provincial domains connecting x and y , and
�@R

2
.x;y/DfA2�2.x;y/ j @

@
R

AD 0g the set of right-provincial domains connecting
x and y . It is easy to show that

�
@L

2
.x;x/ŠH2.Y .H/; @RY .H//;

�
@R

2
.x;x/ŠH2.Y .H/; @LY .H//:

Definition 5.4 An arced bordered Heegaard diagram H with two boundary compo-
nents is called left (respectively right) admissible if every nontrivial right-provincial
(respectively left-provincial) periodic domain has both positive and negative coefficients.

It is easy to show that Proposition 5.3 still holds if one replaces “admissible” by “left
admissible” or “right admissible”.

Lemma 5.5 The Heegaard diagram H is left (respectively right) admissible if and only
if there is an area form on x† with respect to which every right-provincial (respectively
left-provincial) periodic domain has signed area 0. The diagram H is admissible if and
only if there is an area form on x† with respect to which every periodic domain has
signed area 0.

Proof The proof is exactly the same as the proof of [21, Lemma 4.26], which in turn
is the same as the proof of the second author and Szabó [29, Lemma 4.12].

Note that

admissibleD) left or right admissible

D) left and right admissibleD) provincially admissible:

All of these implications are strict.

Finally we discuss how spinc –structures on manifolds with two boundary components
relate to arced, bordered Heegaard diagrams.

Before doing this, we recall some generalities (see [28]). Suppose that M is a three-
manifold, equipped with an oriented, nullhomologous knot C . Then, there is a notion
of relative spinc structures, denoted spinc.M;C /. These are defined to be spinc

structures on the zero-surgery manifold M0.C /. If C is equipped with a Seifert
surface F , there is an identification

spinc.M;C /Š spinc.M /˚Z:
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The projection onto Z is gotten by

s 7! 1
2
hc1.s/; yFi;

where yF is gotten by closing off F in M0.C /. This projection to Z is called the
Alexander grading on relative spinc structures.

Let Y be a strongly bordered 3–manifold with two boundary components specified by
an arced bordered Heegaard diagram Y . A meridian C of z � Y specifies a knot K

in YdrDY .Hdr/. This knot is nullhomologous. Indeed, the surface Fı.ZRY / provides
a natural choice of Seifert surface for K (and in particular an orientation for K ).

Lemma 5.6 There is a natural identification spinc.Ydr;K/Š spinc.Y /. Under this
identification, the Alexander grading of s corresponds to the evaluation of the corre-
sponding spinc structure on @RY .

Proof Let Y 0 denote zero-surgery on Ydr along K . It is easy to see that Y 0 is
naturally identified with the three-manifold obtained from Y by attaching a one-
handle to its boundary connecting the left and right basepoints. The identification
spinc.Ydr;K/Š spinc.Y / follows at once. Under this identification, @RY is clearly
homologous to the capped-off Seifert surface.

As in [28], an oriented knot is specified by a Heegaard diagram with two (ordered)
basepoints zC and z� (denoted w and z in [28]). The oriented knot in the three-
manifold is specified as follows: draw an arc from z� to zC which crosses only
ˇ–circles, and then close this up by drawing an arc from zC to z� which crosses only
˛–circles. (It might be necessary to push the two arcs into the two handlebodies to
make the knot be embedded.)

Lemma 5.7 The Heegaard diagram Hdr2 is a doubly-pointed bordered Heegaard
diagram for .Ydr;K/, where K is oriented as the boundary of Fı.ZRY /.

Proof Let  be a path in †dr connecting zC to z� in the complement of the ˛–
curves and � a path in †dr connecting z� to zC in the complement of the ˇ–circles.
Then the pushoff of  [ � is the knot specified by Hdr2 . We can choose  to lie in a
neighborhood of the ˛R –arcs and � to lie near @R†dr and cross only ˛R –arcs. Then
it is clear that  [ � is isotopic to ˙K . With our orientation conventions, if we wish
for K to be oriented as the boundary of Fı.ZR/, then we order zC and z� so that
the arc from zC to z� in Z.Ydr/ (with its induced orientation) contains the matched
pairs for ZR . (Equivalently, if we think of the arc z in H connecting @LH to @RH
as running left to right, then zC is gotten by translating z upwards in H , and z� is
gotten by pushing it down.)
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Definition 5.8 We can define a map sW S.H/! spinc.Y / as follows. View x 2S.H/
as a generator for S.Hdr/, let s.x/ denote its corresponding relative spinc structure,
and then let s.x/ be the corresponding spinc structure in spinc.Y /, according to the
equivalence of Lemma 5.6. Let

S.H; s/D fx 2S.H/ j s.x/D sg:

Lemma 5.9 Given x;y 2S.H/, we have �2.x;y/ 6D∅ if and only if s.x/D s.y/.

Proof In view of Lemma 5.6, this statement is equivalent to the corresponding state-
ment for knot Floer homology (see [28, Section 2.3; 29, Sections 2.4 and 2.6]). Recall
that this is proved first by constructing a difference element �.x;y/2H1.YdrnC; @Ydr/

for x;y 2 S.H/ (which vanishes if and only if �2.x;y/ is nonempty), and then
showing that s.y/D s.x/CPD.�.x;y//.

As noted in the discussion of the Alexander grading above, there is a restriction map
spinc.Y /! spinc.@RY /Š Z. We will see in the proof of Theorem 14 in Section 7
that this restriction map is closely related to the strands grading on the algebra.

5.2 Gluing Heegaard diagrams

In Section 7, we will see how bordered Floer homology groups transform under three
gluing operations one can perform on bordered three-manifolds.

The first of these gluing operations glues a bordered three-manifold with one boundary
component to one with two boundary components.

Construction 5.1 Suppose Y is a bordered three-manifold with one boundary compo-
nent whose parameterization is specified by a homeomorphism �W F.Z/! @Y , and
let Y 0 be a strongly bordered three-manifold with two boundary components @LY 0

and @RY 0 with parameterizations specified by

�0LW F.Z
0
L/! @LY 0; �0RW F.Z

0
R/! @RY 0:

Suppose moreover that Z D�Z 0
L

. Then we can form the bordered three-manifold

Y @Y[@LY 0 Y
0;

which is obtained by gluing Y to Y 0 via the identification of @Y with �@LY 0 given
by �0

L
ı ��1 . (Note that for the purpose of this definition, we do not need Y 0 to be

strongly bordered, just bordered; however, in our applications Y 0 will be equipped
with this extra data.)
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The second of these gluing operations glues two strongly bordered three-manifolds
with two boundary components.

Construction 5.2 Fix two strongly bordered three-manifolds with two boundary
components

.Y 0;Z 0L; �
0
L; z
0
L; �

0
L;Z

0
R; �

0
R; z
0
R; �

0
R; 

0
z; �
0
z/;

.Y 00;Z 00L; �
00
L; z
00
L; �

00
L;Z

00
R; �

00
R; z
00
R; �

00
R; 

00
z ; �
00
z /:

Suppose moreover that Z 0
R
D �Z 00

L
. Then we can form a new strongly bordered

three-manifold with two boundary components. The underlying three-manifold is

Y 000 D Y 0 @RY 0[@LY 00 Y
00;

gotten by gluing @RY 0 to @LY 00 via �00
L
ı .�0

R
/�1 . The path  000 is gotten by connect-

ing  0z to  00z . Framings are obtained similarly.

The third gluing operation is a kind of self-gluing.

Construction 5.3 Suppose that

.Y;ZL; �L; zL; �L;ZR; �R; zR; �R; z; �z/

is a strongly bordered three-manifold with two boundary components; and suppose
moreover that ZL D �ZR . Then identifying the two boundary components of Y

together, we obtain a new three-manifold which is equipped with a framed knot, gotten
by gluing up the framed arc z . Performing surgery on this framed knot in the self-
glued three-manifold, we obtain a new three-manifold denoted .Y ı;K/, equipped with
a knot K gotten as the core of the surgery torus. We call .Y ı;K/ the generalized open
book associated to the strongly bordered three-manifold Y .

The justification for this terminology is the following. If we consider a strongly based
mapping class �W Fı.Z/! Fı.Z/, there is an associated strongly bordered three-
manifold M� whose underlying topological space is Œ0; 1��F.Z/, parameterized by
the identity on one boundary and (the map on the closed surface induced by) � on the
other; see Construction 5.2 and Lemma 5.6. The associated three-manifold .Y ı;K/
gotten as above is classically known as the open book associated to � .

On the level of Heegaard diagrams, the three gluing operations can be described as
follows.

Let H D .†;˛;ˇ; z/ be a pointed bordered Heegaard diagram with one boundary
component, and H0 D .†0;˛0;ˇ 0; z0/ an arced bordered Heegaard diagram with two
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boundary components. Suppose that the pointed matched circle Z.H/ associated to H
is the orientation reverse �ZL.H0/ of the left pointed matched circle associated to H0 .
Then gluing the boundary of H to the left boundary of H0 we obtain a new pointed
bordered Heegaard diagram

H @[@L
H0 D .† @[@L

†0;˛ @[@L
˛0;ˇ [ˇ 0; @Rz

0/:

Similarly, if H00 is another arced bordered Heegaard diagram with two boundary
components, such that ZL.H00/D�ZR.H0/ then we can glue H00 to H0 to get

H0 @R
[@L

H00 D .†0 @R
[@L

†00;˛0@R
[@L

˛00;ˇ 0[ˇ 00; z0 @R
[@L

z00/:

Lemma 5.4 With notation from above, gluing bordered Heegaard diagrams corre-
sponds to gluing bordered three-manifolds as follows:

Y .H @[@L
H0/D Y .H/[�0

L
ı��1 Y .H0/;

Y .H0 @[@L
H00/D Y .H0/[�00

L
ı.�0

R
/�1 Y .H00/:

Proof This is straightforward.

Finally, we have the following construction mirroring Construction 5.3 on the level of
Heegaard diagrams:

Construction 5.5 Suppose that H is an arced bordered Heegaard diagram with two
boundary components such that ZLHD�ZRH . Then we can glue @LH to @RH . The
result is a closed surface †� of genus gC1 with g ˛–circles and g ˇ–circles, as well
as a closed curve zı corresponding to the arc z . Place basepoints zC and z� on the
two sides of zı , and then surger out the arc zı from †� . The result is a doubly-pointed
Heegaard diagram Hı D .†ı;˛ı;ˇı; zC; z�/, which we call the self-glued diagram
associated to H .

Lemma 5.6 The self-glued diagram Hı of Construction 5.5 represents the gen-
eralized open book associated to the strongly bordered three-manifold .Y ı;K/ of
Construction 5.3.

Proof This is straightforward; see also Lemma 5.7.

Next, we discuss how the gluing constructions interact with the admissibility hypotheses.

Lemma 5.7 Let H1 and H2 be arced bordered Heegaard diagrams with two boundary
components, such that ZR.H1/D�ZL.H2/. Let HDH1 @R

[@L
H2 . If H1 is right

admissible and H2 is provincially admissible, or if H1 is provincially admissible and
H2 is left admissible, then H is provincially admissible. Moreover:

Geometry & Topology, Volume 19 (2015)



654 Robert Lipshitz, Peter S Ozsváth and Dylan P Thurston

(1) If H1 and H2 are both left admissible (respectively right admissible) then H is
left admissible (respectively right admissible).

(2) If H1 (respectively H2 ) is admissible then H is left admissible (respectively
right admissible).

(3) If H1 (respectively H2 ) is admissible and H2 (respectively H1 ) is right admis-
sible (respectively left admissible) then H is admissible.

The obvious analogues hold in the case that H1 has only one boundary component.
(Many of the statements become the same in this case.)

Proof We will discuss the case that H1 is right admissible and H2 is provincially
admissible, and the case that both H1 and H2 are left admissible; the other cases are
similar.

Suppose H1 is right admissible. If P is a nontrivial provincial periodic domain in H
then P \H1 is a left-provincial periodic domain in H1 . Hence either P \H1 has
both positive and negative coefficients or P \H1 is the trivial domain. In the latter
case, P \H2 is a provincial periodic domain, and hence has both positive and negative
coefficients. In either case, P has both positive and negative coefficients.

Similarly, suppose H1 and H2 are both left admissible. If P is a nontrivial right-
provincial periodic domain in H then P \H2 is a right-provincial periodic domain
in H2 , and hence either has both positive and negative coefficients or is trivial. In the
latter case, P \H1 is a nontrivial right-provincial periodic domain in H1 , and hence
has both positive and negative coefficients.

We say a doubly-pointed Heegaard diagram is admissible if all periodic domains (ie
domains which miss both basepoints) have both positive and negative local multiplicities.
This is the condition required to define knot Floer homology using the given Heegaard
diagram. (It corresponds to weakly admissibility for all spinc structures for singly-
pointed Heegaard diagrams, in the sense of [29, Definition 4.10].)

Lemma 5.8 Let H denote an arced bordered Heegaard diagram with two boundary
components and such that ZL.H/D �ZR.H/. Suppose that H is admissible. Then
the doubly-pointed Heegaard diagram Hı is admissible.

Proof Note that the set of periodic domains in Hı is a subset of the set of periodic
domains in H . By Lemma 5.5, we can find an area form on y† with respect to which
any periodic domain has signed area zero. This induces an area form on †ı with the
corresponding property.
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5.3 Bordered Heegaard diagrams for surface diffeomorphisms

Definition 5.1 Given a bordered 3–manifold .Y;  / (where  W F.Z/! @Y ) and
� 2MCG0.Z;Z 0/, let �.Y;  / denote the bordered 3–manifold .Y;  ı��1/, the result
of twisting the parameterization of the boundary by � . This has a natural extension to
strongly bordered three-manifolds as well: given a strongly bordered three-manifold
 L

Y R
, where  RW F.ZR/! @RY , and � 2MCG0.ZR;Z 0R/, let �. L

Y R
/ be the

strongly bordered three-manifold . L
Y Rı��1/.

When considering the above action of the mapping class group on bordered three-
manifolds, the following strongly bordered 3–manifolds arise naturally:

Construction 5.2 Fix pointed matched circles ZL and ZR , and a strongly based
mapping class �W .F.ZL/;DL; zL/! .F.ZR/;DR; zR/. We can form a corresponding
strongly bordered three-manifold with Y D Œ0; 1��F.ZR/, @LY D f0g � �F.ZR/,
@RY D f1g � F.ZR/, �L D f0g �DR ,  L D f0g � �� , �R D f1g �DR ,  R D

f1g � I , z D Œ0; 1� � fzRg. We call it the mapping cylinder of � , and denote the
resulting arced bordered three-manifold by �.Œ0; 1��F.ZR//I or simply M� . Note
that @LM� D�F.ZL/.

Remark 5.3 In general, for two topological spaces X and Y and a map �W X ! Y ,
the mapping cylinder of � is the quotient space

M� D .Œ0; 1��X qY /=..1;x/� �.x//;

equipped with maps

 LW X ,!M� ;  RW Y ,!M� ;

 L.x/D 0�x;  R.y/D y:

This definition works for arbitrary maps � and, for instance, gives a CW complex
if X and Y are CW complexes and � is a cellular map. In the case when � is a
homeomorphism, the above space is equivalent to Œ0; 1��X with  L D f0g � IX and
 R D f1g � �

�1 , which in turn is equivalent to Œ0; 1� � Y with  L D f0g � � and
 R D f1g � IY .

Lemma 5.4 Any strongly bordered 3–manifold Y whose underlying space can be
identified with a product of a surface with an interval (so that z is identified with the
product of a point with the interval, respecting the framing) is of the form M� for
some choice of strongly based mapping class � . Moreover, two such strongly bordered
three-manifolds are isomorphic if and only if they represent the same strongly based
mapping class.
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Proof Suppose that  L
Y R

is a strongly bordered three-manifold whose underlying
space is homeomorphic to the product of a surface with an interval. To keep orientations
consistent, let F.ZL/D�@L.Y / and F.ZR/D @R.Y /. We extract a strongly based
mapping class �2MCG0.F.ZL/;F.ZR// as follows. Fix a diffeomorphism ˆW Œ0; 1��

F.ZR/! Y so that the following hold:

� ˆjf1g�F.ZR/ D  R .

� ˆ.Œ0; 1�� zR/D z .

� ˆ.f0g �DR/D�L .

� ˆ.f1g �DR/D�R .

� The normal vector �z is never tangent to ˆ.Œ0; 1�� @DR/.

We then define

� D .ˆjf0g�F.ZR//
�1
ı .� L/W F.ZL.H//! F.ZR.H//:

Then ˆ provides an isomorphism between Y and the strongly bordered three-manifold
�.Œ0; 1��F.ZR//I .

Next, we claim that the strongly based mapping class of � is independent of the
choices made. Indeed, if ˆ0W Œ0; 1��F.ZR/! Y is an alternate choice of ˆ, then
ˆ�1 ıˆ0 is a pseudoisotopy from .ˆjf0g�F.ZR//

�1 ıˆ0jf0g�F.ZR/ to the identity map.
(A pseudoisotopy between two self-diffeomorphisms f0 and f1 of a closed manifold
M is a self-diffeomorphism of Œ0; 1��M that restricts to f0 on f0g �M and f1 on
f1g�M .) Since the equivalence relations induced by pseudoisotopy and isotopy agree
in dimension 2,4 it follows that

.ˆjf0g�F.ZR//
�1
ı .� L/ and .ˆ0jf0g�F.ZR//

�1
ı .� L/

are isotopic, as desired.

These three-manifolds encode the action of the mapping class group on bordered
three-manifolds, in the following sense.

Lemma 5.5 Fix a strongly based diffeomorphism �W F.Z/! F.Z 0/. The associated
strongly bordered three-manifold M� has the following properties:

4Proof: if a map � is pseudoisotopic (concordant) to the identity then, in particular, � is homotopic to
the identity. But homotopic homeomorphisms of surfaces are isotopic.
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(1) If .Y;  / is a bordered three-manifold, where  W F.Z/ ! @Y is a strongly
based mapping class, then �.Y;  / is obtained by gluing Y and M� ,

�.Y;  /Š Y @Y[@L
M� ;

canonically.

(2) If  L
Y R

is a strongly bordered three-manifold with two boundary compo-
nents, where  RW F.ZR/! @RY and Z ŠZR , then �. L

Y R
/ is obtained by

gluing Y and M� along @RY ,

�. L
Y R

/Š . L
Y R

/ @R
[@L

M� ;

canonically.

(3) Given another strongly based diffeomorphism �0W F.Z 0/! F.Z 00/, we have
that M�0ı� is obtained from gluing

M�0ı� ŠM� @R
[@L

M�0

canonically.

Proof It is straightforward to construct the isomorphism realizing properties (1) and (2).
Property (3) follows from property (2), as

�0.M�/D �
0.�.Œ0; 1��F.Z 0//I/

D �.Œ0; 1��F.Z 0//.�0/�1

D �0ı�.Œ0; 1��F.Z 00//I
DM�0ı� :

This concludes the proof.

Similarly, for self gluing, we have:

Lemma 5.6 Let �W F.Z/! F.Z/ be a strongly based diffeomorphism. Then the
generalized open book associated to M� (Construction 5.3) agrees with the open book
associated to � (with the orientation conventions from Geiges [10, Section 4.4.2] or
Etnyre [8, Section 2], say).

Proof The open book associated to � is given by

.Œ0; 1�� .F.Z/ n�//
.�

.1;x/� .0; �.x//

.t;x/� .t 0;x/ for x 2 @�

�
;

which agrees with the conventions from Construction 5.3.
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In the sequel, we will find it convenient to reformulate the above properties in terms of
Heegaard diagrams.

Definition 5.7 Fix a strongly based mapping class � . We say that a Heegaard diagram
H represents � if its underlying three-manifold Y .H/ is homeomorphic (respecting
the marking) to the mapping cylinder M� of Construction 5.2.

Lemma 5.8 If H and H0 represent the same element � 2 MCG0.F.ZL/;F.ZR//

then H and H0 are equivalent.

Proof By Proposition 5.3, it suffices to show that Y .H/ and Y .H0/ are isomorphic
strongly bordered 3–manifolds. But this follows from Lemma 5.4.

Lemma 5.9 Fix strongly bordered mapping classes � 2 MCG0.F.Z/;F.Z 0// and
 2MCG0.F.Z 0/;F.Z 00//, and let H� and H be Heegaard diagrams representing �
and  respectively. Then the union .H�/ @R

[@L
.H / is a Heegaard diagram which

represents the composite  ı� .

Proof This follows from Lemma 5.4 and part (3) of Lemma 5.5.

It will be useful to have an explicit construction of a Heegaard diagram associated to a
strongly based mapping class � .

Let Z be a pointed matched circle. Consider the product of the circle and an interval,
Œ0; 1� �Z . Attach one-handles to f1g �Z as specified by the matching. For each
pair pi and qi on the pointed matched circle which are matched (ie with M.pi/D qi )
we run an arc ai through the one-handle and extend ai as fpi ; qig � Œ0; 1� through the
annulus Œ0; 1��Z , so that its boundary lies on f0g �Z . This gives a surface-with-
boundary F0 which is homeomorphic to the surface F.Z/ with two disks removed, and
which is equipped with 2k arcs fa1; : : : ; a2kg. Equip F0 with an additional 2k arcs
fb1; : : : ; b2kg, which are chosen so that the arc bi is contained in the i th one-handle
attached to the original annulus, and is dual to ai . (That is, bi meets ai in a single,
transverse intersection point, and is disjoint from all the aj with i ¤ j .) The boundary
of F0 has two components, one of which contains all the endpoints of the bi , which we
denote @bF0 , and the other which contains all the endpoints of the ai . The basepoint in
the pointed matched circle equips F0 with an arc � which connects the two boundary
components of F0 . See Figure 15 on the left.

Now, let xF0 be another copy of F0 with orientation reversed, equipped with curves
fxaig

2k
iD1

and fxbig
2k
iD1

. Let † be the surface with two boundary components, obtained
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from F0q
xF0 , by identifying @bF0 with @b

xF0 in such a manner that the boundary of bi

is identified with the boundary of xbi , and the @bF0 boundary point of � is identified
with the corresponding boundary point of x� . The surface † comes with 4k arcs ˛a;L

i

and ˛a;R
i given by ˛a;L

i Dai and ˛a;R
i Dxai . The surface † also comes with 2k circles

ˇi D bi [
xbi and one more arc zD � [x� . Then .†; ˛i;L

1
; : : : ; ˛

i;R
2k
; ˇ1; : : : ; ˇ2k ; z/ is

a diagram for the identity map. Again, see Figure 15, in the middle.

b1

a1

a2

� b2

˛
a;L
1

˛
a;L
2

A

B

A

B

ˇ1

ˇ2

˛
a;R
1

˛
a;R
2z

A

B

A

B

z

Figure 15: Constructing a Heegaard diagram for a surface automorphism: on
the left, we have the surface F0 and the arcs ai and bi in it; in the center, we
have the surface † , and ˛– and ˇ–curves giving a diagram for the identity
map. The subsurface F0 of † is shaded; note that F0 n � is (orientation-
preserving) homeomorphic to Fı . Right: the resulting diagram for a Dehn
twist along the dashed curve in † .

Definition 5.10 For � a strongly based diffeomorphism F.Z/ ! F.Z 0/, let †
be the surface obtained by gluing F0.Z 0/ and xF0.Z/ along @b , ˛a;L

i D �.ai/ �

F0.Z 0/, ˛a;R
i D xai �

xF0.Z/, ˇi D bi [
xbi , and z D � [ x� . We call H.�/ D

.†; ˛a;L
1
; : : : ; ˛a;L

2k
; ˛a;R

1
; : : : ; ˛a;R

2k
; ˇ1; : : : ; ˇ2k ; z/ the canonical bordered Heegaard

diagram associated to � .

(Again, see Figure 15.)

Lemma 5.11 The canonical bordered Heegaard diagram H.�/ associated to � repre-
sents the map � in the sense of Definition 5.7.

Proof We first verify the statement in the case where  is the identity mapping class.
Let H be the corresponding Heegaard diagram. Clearly, the three-manifold Y .H/ is
a surface times an interval. Thus, according to Lemma 5.4, Y .H/ represents some
mapping class  . Moreover, after performing some handleslides and cancelations, one
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can see that H @RH[@LH H is equivalent to H . Thus, by Lemams 5.9 and 5.4,  ı 
represents the same mapping class as  . Thus,  represents the identity mapping
class.

In general, the mapping cylinder M� is �.Œ0; 1��F.Z 0//I , which we can think of as
obtained from the mapping cylinder for the identity by twisting the parametrization
by � on the left, which is just what we did above by changing the ˛a;R arcs.

6 Bimodules for bordered manifolds

Recall from [21] that bordered Floer homology associates to a bordered 3–manifold Y

with one boundary component modules bCFD.Y / and bCFA.Y /. The module bCFD.Y /
is, more precisely, a type D structure in the sense of Definition 2.2.23, and encodes
all the holomorphic curve counts in its differential. The module bCFA.Y / is an A1–
module, which encodes holomorphic curve counts in all its actions.

For a 3–manifold Y with two boundary components, we can treat each boundary
component in either a type A or a type D manner. Treating both as type A boundaries
leads to 1CFAA.Y /. Treating one as type A and the other as type D leads to 1CFDA.Y /.
Treating both as type D leads to 1CFDD.Y /.

It turns out that both 1CFAA.Y / and 1CFDD.Y / can be obtained from the modules
for 3–manifolds with a single boundary component via the drilling construction of
Definition 5.5 and the restriction / induction functors of Section 3.4. Defining the
module 1CFDA.Y / seems to require some new work, though the ideas (and analytic
machinery) are all present in the single boundary component cases.

The reader is encouraged to consult Section 10 for examples of the bimodules. The
reader may also want to refer to [21, Appendix A] for an abbreviated (and, in the case
of 1CFAA and 1CFDD , slightly different) account of this material.

6.1 The type AA bimodule

Definition 6.1 Let Y be a strongly bordered 3–manifold with @LY D F.ZL/ and
@RY D F.ZR/. Fix an arced bordered Heegaard diagram H for Y , and assume H is
provincially admissible. Then, define

1CFAA.H/D RestZ;Z0.bCFA.Hdr//

which, in light of Section 2.4.3, we can view as a bimodule with A1–commuting right
actions of A.ZL/ and A.ZR/.
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The module 1CFAA.H/ decomposes as a direct sum

1CFAA.H/D
M

s2spinc.Y /

1CFAA.Y; s/:

Geometrically, Definition 6.1 means that 1CFAA.H/ is generated over F2 by g–tuples
of points in ˛ \ ˇ , one on each ˛– and ˇ–circle and no two on the same ˛–arc.
The differential counts provincial holomorphic curves, ie curves not approaching @x†.
The right bimodule structure come from counting curves with asymptotics at @L

x†

and @R
x†, with appropriate height constraints on the asymptotics.

Proposition 6.2 If H and H0 are Heegaard diagrams for the same strongly bor-
dered 3–manifold Y then 1CFAA.H/A.ZL/;A.ZR/ and 1CFAA.H0/A.ZL/;A.ZR/ are A1–
homotopy equivalent bimodules.

Proof As in the proof of Proposition 5.3, the drilled Heegaard diagrams Hdr and H0dr
are equivalent, so the result follows from invariance of bCFA [21, Theorem 7.17].

Because of Proposition 6.2, we are justified in writing 1CFAA.Y / to denote the (homo-
topy equivalence class of) 1CFAA.H/ for some (any) diagram H for Y .

Lemma 6.3 If H is admissible (respectively left admissible, right admissible) in
the sense of Definition 5.1 (respectively Definition 5.4) then 1CFAA.H/ is bounded
(respectively left bounded, right bounded) in the sense of Definition 2.2.41.

Proof This follows easily from Lemma 5.5, similarly to [21, Lemma 7.7].

6.2 The type DD bimodule

Definition 6.1 Let Y be a strongly bordered 3–manifold with @LY D F.ZL/ and
@RY D F.ZR/. Fix an arced bordered Heegaard diagram H for Y , and assume H is
provincially admissible. Then, define

1CFDD.H/D Induct�ZL;�ZR . bCFD.Hdr//;

a type DD structure over A.�ZL/ and A.�ZR/ (where �Z denotes Z with its
orientation reversed).

The module 1CFDD.H/ decomposes as a direct sum

1CFDD.H/D
M

s2spinc.Y /

1CFDD.Y; s/:
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Geometrically, Definition 6.1 means that 1CFDD.H/ is generated as a type DD structure
over A.ZL/˝A.ZR/ by g–tuples of points in ˛\ˇ , one on each ˛– and ˇ–circle
and no two on the same ˛–arc. The differential counts holomorphic curves with
asymptotics at @x†, without height constraints. These curves contribute coefficients
corresponding to their asymptotics.

Proposition 6.2 If H and H0 are Heegaard diagrams for the same strongly bordered
3–manifold Y then

A.�ZL/;A.�ZR/ 1CFDD.H/ and A.�ZL/;A.�ZR/ 1CFDD.H0/

are homotopy equivalent bimodules.

Proof As in invariance of 1CFAA , the proof of Proposition 5.3 implies that the drilled
Heegaard diagrams Hdr and H0dr are equivalent, so the result follows from invariance
of bCFD [21, Theorem 6.16].

Because of Proposition 6.2, we are justified in writing 1CFDD.Y / to denote the (ho-
motopy equivalence class of) 1CFDD.H/ for some (any) diagram H for Y .

Lemma 6.3 If H is admissible (respectively left admissible, right admissible) in
the sense of Definition 5.1 (respectively Definition 5.4) then 1CFDD.H/ is bounded
(respectively left bounded, right bounded) in the sense of Definition 2.2.56.

Proof As for 1CFAA , this follows easily from Lemma 5.5.

6.3 The type DA bimodule

Fix a provincially admissible arced bordered Heegaard diagram H D .x†g; x̨;ˇ; z/,
with boundaries ZL and ZR representing surfaces of genus kL and kR . We will
associate to H a bimodule over A.�ZL/ and A.ZR/,

A.�ZL/ 1CFDA.H/A.ZR/:

(As usual, �ZL denotes the orientation reverse of ZL .)

Recall that ~.H/ is the set of g–tuples of points x in † so that

� exactly one xi lies on each ˛– and each ˇ–circle, and

� no two xi lie on the same ˛–arc.
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Let X.H/ be the F2 –vector space spanned by ~.H/.

Given x 2 ~.H/ let oL.x/ denote the indices of the ˛L –arcs occupied by x and
oR.x/ the indices of the ˛R –arcs occupied by x . We let ~.H; i/� ~.H/ denote the
subset of generators with #oR.x/D i . Note that #oL.x/C #oR.x/D kLC kR . Let
IL;D.x/ D I.Œ2kL� n oL.x// and IR;A D I.oR.x//. We define a left (respectively
right) action of I.ZL/ (respectively I.ZR/) on ~.H/ by

I.s/ �x � I.t/ WD

�
x I.s/D IL;D.x/ and I.t/D IR;A.x/;

0 otherwise;

where s and t are subsets of Œ2k�.

As an .I.ZL/; I.ZR//–bimodule, A.�ZL/ 1CFDA.H/A.ZR/ is ~.H/, with the above
action.

Our next task is to define the type DA structure maps on 1CFDA.H/, for which we
resort to holomorphic curves.

As in [21], we will count holomorphic curves in

..† n z/� Œ0; 1��R; .˛� f1g �R/[ .ˇ � f0g �R//:

To avoid repeating the seemingly innumerable definitions and propositions of [21, Chap-
ter 5], we will use the drilling construction of Section 5 and simply use moduli spaces
defined in [21]. (Since we are considering only curves missing the region containing z ,
moduli spaces in the tunneled diagram contain the moduli spaces in the original
diagram.)

So, let HdrD .x†dr; x̨dr;ˇdr; zC/ denote the bordered Heegaard diagram with one bound-
ary component obtained by drilling a tunnel from H . Reeb chords in .@x†dr n zC; x̨dr\
x†dr/ come in three kinds:

� Reeb chords connecting points in @x̨a;L
dr ; we refer to these as left Reeb chords,

and decorate them with an “L”.

� Reeb chords connecting points in @x̨a;R
dr ; we refer to these as right Reeb chords,

and decorate them with an “R”.

� Reeb chords connecting points in @x̨a;L
dr to points in @x̨a;R

dr ; we refer to these as
mixed Reeb chords and shall have no use for them in the present discussion.

Note that there is a one-to-one correspondence between ~.H/ and S.Hdr/.

Recall that a decorated source SF is a Riemann surface S with boundary and boundary
punctures, where each puncture is either labeled C1, �1 or e1, and the e1
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punctures are further labeled by Reeb chords at east infinity. Given generators x and y ,
a homology class B 2 �2.x;y/ connecting x to y , a decorated source SF , and an
ordered partition E� of the Reeb chords labeling punctures of SF we have a moduli
space

MB.x;y ISFI E�/

of holomorphic curves uW S !†dr � Œ0; 1��R in the homology class B with asymp-
totics specified by x , y and E� [21, Definition 5.11]. The expected dimension of
MB.x;y ISFI E�/ is given by

(6.1) g��.S/C 2e.B/CjE�j � 1DW ind.B;SF; E�/� 1I

see [21, Proposition 5.8]. If the curve u is an embedding then the Euler characteristic
of S is determined by

(6.2) �.S/D �emb.B; E�/ WD gC e.B/� nx.B/� ny.B/� �.E�/I

see [21, Proposition 5.62]. In particular, this leads us to define

(6.3) ind.B; E�/ WD e.B/C nx.B/C ny.B/C �.E�/CjE�j:

If the asymptotic data .x;�/ is such that u�1.y̨
a;L
i � .1; t// (respectively u�1.y̨

a;R
i �

.1; t//) consists of at most one point for any given t (ie .x;�/ is strongly boundary
monotonic) then the moduli space MB.x;y ISFI E�/ is well behaved, and we can
understand its codimension-one boundary:

Proposition 6.4 [21, Theorem 5.55] Suppose that .x; E�/ is strongly boundary mono-
tonic. Fix y , B 2 �2.x;y/, and SF with e1 punctures labeled by E�, such that
ind.B;SF; E�/D 2. Let MDMB.x;y ISFI E�/. Then the total number of all

(1) two-story ends of M,

(2) join curve ends of M,

(3) odd shuffle curve ends of M, and

(4) collision of levels i and iC1 in M, where �i and �iC1 are weakly composable

is even.

Examples of the four types of degenerations are shown in Figure 16.

To define the multiplications on 1CFDA.H/ we collect certain of the M.x;y ISFI E�/.
Specifically, given a sequence E�L of left Reeb chords and a sequence of sets of right
Reeb chords .�R

1
; : : : ;�R

n /, we say that a sequence E� D .�1; : : : ;�m/ interleaves
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y1

x1 y2

x2

@x†

y1

x1 y2

x2

y1

x1 y2

x2

@x†

y1

x1 y2

x2

y1

x1

@x†

y1

x1

y2

y1

x2

x1

y2

y1

x2

x1

Figure 16: Examples of the four codimension-one degenerations: on the far
left, we have a two-level splitting; in the center left, degenerating a join curve;
in the center right, degenerating a split curve (a collision of levels); on the
far right, degenerating a shuffle curve. The dark dots indicate branch points.
This figure is adapted from [21, Figures 5.1 and 5.5].

. E�LI�R
1
; : : : ;�R

n / if, as a multiset, f�1; : : : ;�mg D E�
L q f�R

1
; : : : ;�R

n g, and the
orderings of E�L and .�1; : : : ;�n/ agree with the orderings induced by E�.

Now, let

MB.x;y I E�L
I�R

1 ; : : : ;�
R
n /D

[
E� interleaves .E�LI�R

1
;:::;�R

n /

�.S/D�emb.B;E�/

MB.x;y ISFI E�/:

Lemma 6.5 If E� and E�0 both interleave . E�LI�R
1
; : : : ;�R

n / then .x; E�/ is strongly
boundary monotonic if and only if .x; E�0/ is strongly boundary monotonic. Moreover,
for any homology class B , ind.B; E�/D ind.B; E�0/.

Proof The boundary monotonicity statement is immediate from the definition. It is
also immediate from the definitions that if E� interleaves . E�LI�R

1
; : : : ;�R

n / then

�.E�/D �. E�L/C �.�R
1 ; : : : ;�

R
n /:

So the statement about ind follows from the definition, Equation (6.3).
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Consequently, it makes sense to talk about a triple .xI E�LI�R
1
; : : : ;�R

n / being strongly
boundary monotonic: such a triple is strongly boundary monotonic if for some (equiva-
lently, any) sequence E� interleaving . E�LI�R

1
; : : : ;�R

n /, .x; E�/ is strongly boundary
monotonic. Similarly, define ind.BI E�LI�R

1
; : : : ;�R

n / to be ind.B; E�/ for any E� which
interleaves . E�LI�R

1
; : : : ;�R

n /.

With these moduli spaces in hand, define a type DA structure (Definition 2.2.43) on
1CFDA by

(6.6) ı1
nC1.x; a.�

R
1 /; : : : ; a.�

R
n //

WD

X
y2~.H/

X
B2�2.x;y/

ind.BI E�LI�R
1
;:::;�R

n /D1

#.MB.x;y I E�L
I�R

1 ; : : : ;�
R
n // � a.��

L
1 / � � � a.��

L
m/y

where E�L D .�L
1
; : : : ; �L

m/ and ��i denotes �i with its orientation reversed. The
reader may find it helpful to compare this definition with [21, Chapter 7]. Also,
note that the case nD 0 is essentially the differential on bCFD from [21, Chapter 6].
Finally, notice that if .xI E�LI�R

1
; : : : ;�R

n / is not strongly boundary monotonic then
either the left-hand side of (6.6) is nonsensical or the element a.��L

1
/ � � � a.��L

m/y is
automatically 0.

Lemma 6.7 Under the provincial admissibility hypothesis, the sum defining ın is
finite.

Proof This is a trivial adaptation of [21, Lemma 7.7].

This completes the definition of 1CFDA.H/. It remains to check that:

� The maps ın satisfy the compatibility conditions of Definition 2.2.43 (see
(2.2.44)).

� If H and H0 define the same strongly bordered 3–manifold then 1CFDA.H/ is
A1–homotopy-equivalent to 1CFDA.H0/.

We start by refining Proposition 6.4.

Proposition 6.8 Fix generators x and y , B 2 �2.x;y/, a sequence of left Reeb
chords E�L and a sequence of sets of right Reeb chords .�R

1
; : : : ;�R

n /, such that
.xI E�LI�R

1
; : : : ;�R

n / is strongly boundary monotonic. Assume that

ind.BI E�L
I�R

1 ; : : : ;�
R
n /D 2:

Then the sum of the following numbers is even:
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(1) The number of two-story ends of MB.x;y I E�LI�R
1
; : : : ;�R

n /, ieX
ind.B1I E�

L
1
I�R

1
;:::;�R

i
/D1

ind.B2I E�
L
2
I�R

iC1
;:::;�R

n /D1

#.MB1.x;wI E�L
1 I�

R
1 ; : : : ;�

R
i /�M

B2.w;y I E�R
2 I�

R
iC1; : : : ;�

R
n //;

where the sum is over w2 ~.H/, B1 2 �2.x;w/, B2 2 �2.w;y/, BDB1�B2 ,
i D 0; : : : ; n and . E�L

1
; E�L

2
/D E�L .

(2) The number of join curve ends among right Reeb chords, ieX
iD1;:::;n

�i;jD�a]�b

#MB.x;y I E�L
I�R

1 ; : : : ;�
R;a;b
i ; : : : ;�R

n /;

where �R;a;b
i is obtained from �R

i by replacing �i;j 2 �
R
i by �a; �b .

(3) The number of odd shuffle curve ends among right Reeb chords, ie
nX

iD1

#MB.x;y I E�L
I�R

1 ; : : : ;�
R;0
i ; : : : ;�R

n /;

where �R;0
i is obtained from �R

i by performing a weak shuffle.

(4) The number of collisions among right levels, ie
nX

iD1

#MB.x;y I E�L
I�R

1 ; : : : ;�
R
i ]�

R
iC1; : : : ;�

R
n /;

where �i and �iC1 are weakly composable.

(5) The number of join curve ends among left Reeb chords, ie
nX

iD1

#MB.x;y I E�
L;0
I�R

1 ; : : : ;�
R
n /;

where E�L;0
D .�L

1
; : : : ; �L

i�1
; f�L

a ; �
L
b
g; : : : ; �L

m/ is obtained by replacing �L
i D

�L
a ] �

L
b

in E�L with f�L
a ; �

L
b
g.

(6) The number of split curve ends among left Reeb chords, ieX
�

L;C

i
D�

L;�

iC1

#MB.x;y I .�L
1 ; : : : ; �

L
i�1; �

L
i ] �

L
iC1; : : : ; �

L
m/I�

R
1 ; : : : ;�

R
n /:

(7) The number of other collisions of left levels �i ; �iC1 , ieX
#MB.x;y I E�

L;0
I�R

1 ; : : : ;�
R
n /;
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where

E�
L;0
D .�L

1 ; : : : ; �
L
i�1; f�

L
i ; �

L
iC1g; : : : ; �

L
n / and �

L;C
i ¤ �

L;�
iC1

:

Moreover, �L
i and �L

iC1
must satisfy

� �
L;C
i and �L;�

iC1
do not lie on the same ˛–arc, and

� .�L
i ; �

L
iC1

/ are not interleaved (in that order).

Proof Recall that embedded curves have maximal index and, in codimension one,
families of embedded curves converge to embedded curves [21, Proposition 5.62,
Lemmas 5.69 and 5.70]. So summing Proposition 6.4 over all SF with embedded
Euler characteristic, there are four kinds of ends not accounted for:

� The first is collisions of levels between right and left Reeb chords; these cancel
in pairs.

� The second is collisions of right levels which are not composable; these are
prohibited by [21, Lemma 5.70].

� The third is collisions of left levels not satisfying the conditions set out; the
first condition comes from the fact that boundary degenerations are prohibited
(see [21, Lemma 5.54]). (Note that collisions where �L;C

i D �
L;�
iC1

are included
in sum (6).) The second comes from the fact that f�L

i g and f�L
iC1
g must be

composable [21, Lemma 5.70].
� The last possibility is shuffle curve ends among left Reeb chords. These are

prohibited because each part of E�L has only a single Reeb chord.

The result follows.

Proposition 6.9 The maps ın satisfy the compatibility conditions of a type DA struc-
ture.

Proof The proof is a combination of the proofs of [21, Propositions 6.7 and 7.12],
and we shall be somewhat terse. We must show that for any �1; : : : ;�n ,

0D .@˝ IN /.ınC1.x˝ a.�1/˝ � � �˝ a.�n///

C

X
iCjDnC2

.�2˝IN/ı.IA˝ıi/.ıj.x˝a.�1/˝ � � �˝a.�j�1//˝a.�j/˝ � � �˝a.�n//

C

nX
iD1

ınC1.x˝ a.�1/˝ � � �˝ @a.�i/˝ � � �˝�n/

C

nX
iD1

ın.x˝ a.�1/˝ � � �˝ a.�i/a.�iC1/˝ � � �˝�n/I
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cf Definition 2.2.43.

The second term corresponds to two level splittings, sum (1) of Proposition 6.8.
The third term corresponds to the right join and shuffle ends, sums (2) and (3) of
Proposition 6.8; see also [21, proof of Proposition 7.12]. The fourth term corresponds
to the collisions of right levels, sum (4) of Proposition 6.8; again, see also [21, proof of
Proposition 7.12]. The first term corresponds to sum (6) of Proposition 6.8; compare [21,
Lemma 6.11].

It remains to see that the sums (5) and (7) of Proposition 6.8 cancel in pairs as long as
a.��L

1
/ � � � a.��L

m/¤ 0. (See also [21, Proof of Proposition 6.7] for this part of the
proof.) This product being nonzero imposes the following additional conditions on
collisions of left levels �i and �iC1 :

� �
L;�
i and �

L;�
iC1

lie on different ˛–arcs. Similarly, �L;C
i and �

L;C
iC1

lie on
different ˛–arcs. See [21, Lemma 6.9].

� If �L;�
i and �L;C

iC1
lie on the same ˛–arc then �L;�

i D �
L;C
iC1

. This is immediate
from a.��L

i /a.��
L
iC1

/¤ 0.

� .�L
iC1

; �L
i / are not interleaved (in that order). Again, this is immediate from the

fact that a.��L
i /a.��

L
iC1

/¤ 0.

Thus, the two allowed kinds of left collisions which are not algebraically 0 are:

� Collisions with �L;�
i D �

L;C
iC1

; these moduli spaces cancel with the join curve
ends of the factorization a.��L

1
/ � � � a.�.�L

i ] �
L
iC1

// � � � a.��L
m/.

� Collisions with the endpoints of �L
i and �L

iC1
lying on four different ˛–arcs, and

with �L
i and �L

iC1
either nested or disjoint; in this case, the same degeneration

also occurs for the factorization with a.�L
i / and a.�L

iC1
/ switched.

This concludes the proof.

We next turn to the issue of invariance.

Proposition 6.10 If H and H0 are provincially admissible arced bordered Heegaard
diagrams defining the same strongly bordered 3–manifold ZL

YZR
, then the correspond-

ing bimodules

A.�ZL/ 1CFDA.H/A.ZR/ and A.�ZL/ 1CFDA.H0/A.ZR/

are A1–homotopy equivalent.

Geometry & Topology, Volume 19 (2015)



670 Robert Lipshitz, Peter S Ozsváth and Dylan P Thurston

Proof As in the case of a single boundary component, the invariance is proved by
constructing homotopy equivalences corresponding to each of the Heegaard moves of
Proposition 5.3; the reader should have no difficulty adapting the proof from [21, Sec-
tion 7.1] to the present situation.

Because of Proposition 6.10, we are justified in writing 1CFDA.Y / to denote the
(homotopy equivalence class of) 1CFDA.H/ for some (any) diagram H for Y .

We conclude this section with a lemma about admissibility.

Lemma 6.11 If H is admissible (respectively left admissible, right admissible) in
the sense of Definition 5.1 (respectively Definition 5.4) then 1CFDA.H/ is bounded
(respectively left bounded, right bounded) in the sense of Definition 2.2.46.

Proof As for 1CFAA and 1CFDD , this follows easily from Lemma 5.5.

Remark 6.12 It follows from the pairing theorems of Section 7 that the module
1CFDA.Y / is determined by 1CFDD.Y / (or, equally well, 1CFAA.Y /). Consequently,

the bimodules associated to 3–manifolds with two boundary components are com-
pletely determined by the invariants of 3–manifolds with connected boundaries, via
the induction/restriction functors.

6.4 Modules associated to surface automorphisms

Given a strongly based diffeomorphism  W .F;D; z/! .F;D; z/, define

1CFAA. /A.F /;A.F / WD1CFAA.H/A.F /;A.F /;
A.�F /;A.�F / 1CFDD. / WD A.�F /;A.�F / 1CFDD.H/;

A.�F / 1CFDA. /A.F / WD
A.�F / 1CFDA.H/A.F /;

where H is any Heegaard diagram representing  (in the sense of Definition 5.7).

Proof of Theorem 3 This is immediate from Lemma 5.8 and invariance of 1CFAA ,
1CFDD and 1CFDA , Propositions 6.2, 6.2 and 6.10 respectively.

6.5 Gradings

Suppose Y is a strongly bordered three-manifold with boundary parameterized by ZL

and ZR , and choose a compatible provincially admissible arced bordered Heegaard
diagram H .
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The gradings on 1CFDD.Y / and 1CFAA.Y / are induced by the induction and restriction
functors, so we will focus on the grading of 1CFDA.Y /DA.�ZL/ 1CFDA.Y /A.ZR/ . (An
alternate approach to the gradings on 1CFDD.Y / and 1CFAA.Y / is in Remark 6.16.)

The bimodule 1CFDA.Y / interacts with the strands grading in the following way. The
condition that #oL.x/C #oR.x/D kLC kR for all generators x gives

I.�ZL; i/ � 1CFDA.Y /D 1CFDA.Y / � I.ZR; i/:

Thus, defining 1CFDA.Y; i/ WD 1CFDA.Y / � I.ZR; i/, we have that 1CFDA.Y; i/ is a
type DA structure over A.�ZL; i/ and A.ZR; i/, and

(6.1) A.�ZL/ 1CFDA.H/A.ZR/ D

M
i2Z

A.�ZL;i/ 1CFDA.H; i/A.ZR;i/:

Moreover, by Lemma 5.9, there is a natural splitting of 1CFDA.Y / according to spinc

structures: 1CFDA.Y / D
L

s2spinc.Y /
1CFDA.Y; s/. In particular, to define the sum-

mand 1CFDA.Y; s/, we repeat the construction from Section 6.3, using only the subset
~.H; s/� ~.H/ of generators representing s.

We would like to endow 1CFDA.Y / with the structure of a left-right .G0.�ZL/;

G0.ZR//–set graded bimodule (in the sense of Definition 2.5.9); ie we would like
to grade 1CFDA.Y / by a set with a compatible right action by

G0DA.@H/ WDG0.�ZL/
op
��G0.ZR/:

(When the Heegaard diagram is clear from the context, we will sometimes write G0DA
to mean G0DA.@H/.) This is done by a suitable adaptation of the grading on bCFD and
bCFA from [21].

We will often work in the isomorphic group

G0AA.@H/DG0.ZL/��G0.ZR/:

Recall from (3.15) that, if r W Z!�Z is the (orientation-reversing) identity map, then

R.j ; ˛/D .j ; r�.˛//

defines a group antihomomorphism from G.Z/ to G.�Z/, and so an isomorphism
G.Z/ŠG.�Z/op . Then

R�� IW G0AA.@H/!G0DA.@H/

is a canonical isomorphism, which we denote zR.

We will construct the grading one spinc structure at a time. Specifically, fix a Heegaard
diagram H for Y and a spinc structure s over Y . Suppose that there is at least one
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generator for S.H/ which represents s; we will return to the case that H has no
generator representing s at the end of this subsection.

There is a map
g0W �2.x;y/!G0AA.@H/

defined by

(6.2) g0.B/D .�e.B/� nx.B/� ny.B/; @
@LB; @@R B/;

where e.B/ is the Euler measure of B and nx.B/ is sum of the average local multi-
plicities of B at each coordinate of x . (Compare [21, Section 10.2].)

Recall from Section 3.2 that G0.Z/ is an index two subgroup of the group 1
2
Z �

H1.Z
0; a/ (with a twisted multiplication), so we must show that g0.B/ 2 G0AA.@H/.

To this end, we have the following:

Lemma 6.3 The tuple g0.B/ defined in (6.2) is an element of G0AA.@H/.

Proof This follows from [21, Proposition 10.3] by drilling.

Lemma 6.4 If B1 2 �2.x;y/ and B2 2 �2.y ;w/, then

(6.5) g0.B1 �B2/D g0.B1/ �g
0.B2/:

Proof This follows from [21, Lemma 10.4] by drilling.

For x 2S.H/, let P 0x �G0AA.@H/ be g0.�2.x;x//.

Corollary 6.6 For x 2S.H/, P 0x is a subgroup of G0AA.@H/. Also, if y 2S.H/ is
another generator and C 2 �2.x;y/, then P 0x D g0.C / �P 0y �g

0.C /�1 .

Proof Both parts follow immediately from Lemma 6.4.

Definition 6.7 Fix x0 2 S.H; s/. Let S 0DA.H;x0/ denote the quotient zR.P 0x0
/n

G0DA.@H/ as a set with a right action of G0DA.@H/, or equivalently as a left-right
.G0.�ZL/;G

0.ZR//–set. There is a grading on 1CFDA.H; s/ with values in S 0DA.H;x0/,
defined by gr0x0

.x/DŒ zR.g0.B//� for any B 2 �2.x0;x/.

With the above definition, Lemma 6.4 ensures that if B 2 �2.x;y/, then

(6.8) gr0x0
.y/D gr0x0

.x/ � zR.g0.B//;

where the multiplication on the right is right translation in G0DA.@H/ of the right
coset gr0x0

.x/.
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Lemma 6.9 If B 2 �2.x;y/, and . E�L; E�
R
/ is compatible with B , then

�jE�
R
j�ind.BI E�LIE�

R
/
� gr0.E�R

/D zR.g0.B// � gr0.�E�L/

inside G0DA.@H/.

Proof This is a combination of the following facts:

gr0.E�R
/D .�.E�

R
/; 0; @@RB/;

gr0.�E�L/D .�jE�L
j � �. E�L/;�@@LB; 0/;

ind.BI E�L
I E�

R
/D e.B/C nx.B/C ny.B/C �.E�

R
/C �. E�L/CjE�L

jC jE�
R
j:

The first of these equations is verified in [21, Lemma 5.60]; the second is verified in
the proof of [21, Lemma 10.20]; and the third is the definition, (6.3). Note that the two
terms on the right-hand side, gr0.�E�L/ and zR.g0.B//, commute with each other, as
the spinc component of gr0.�E�L/ is the negative of the portion of the spinc component
of zR.g0.B// that lies on the left boundary.

Proposition 6.10 The map gr0x0
defines a grading of 1CFDA as a DA structure with

values in the right G0DA.@H/–set S 0DA.H;x0/. Different choices of x0 2S.H; s/ lead
to canonically isomorphic G0DA.@H/–set graded modules.

Proof For the first part, suppose that a.�E�L/˝y appears with nonzero multiplicity
in ı1

nC1
.x; a.�1/; : : : ; a.�n//. Then there is a domain B 2 �2.x;y/ so that . E�L; E�

R
/

is compatible with B , and indeed ind.B; E�LI E�
R
/D 1. We need to know

�n�1
� gr0x0

.x/ �

nY
iD1

gr0.�R
i /D gr0.�E�L/ ? gr0x0

.y/

(where here ? refers to the left action of G0.�ZL/, which in turn can be viewed as
right translation by an element of G0.�ZL/

op � G0DA.@H/). But this follows from
Lemma 6.9 and (6.8).

Suppose now x0 and x1 are two different choices of generator both of which represent s.
This means that there is a domain C 2 �2.x0;x1/. We define now an identification

ˆ0x1
x0
W zR.P 0x1

/nG0DA.@H/! zR.P
0
x0
/nG0DA.@H/

by
ˆ0x1

x0
. zR.P 0x1

/ � h/D zR.P 0x0
/ � zR.g0.C // � h:
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This gives a well-defined map on coset spaces since P 0x0
D g0.C / �P 0x1

�g0.C /�1 , by
Corollary 6.6. Now, for any other y representing s and any B 2 �2.x1;y/,

ˆ0x1
x0
.gr0x1

.y//Dˆ0x1
x0
. zR.P 0x1

/ � zR.g0.B///D zR.P 0x0
/ � zR.g0.C // � zR.g0.B//

D zR.P 0x0
/ � zR.g0.C �B//D gr0x0

.y/;

by the various definitions and another application of Corollary 6.6. Thus, the desired
isomorphism

. 1CFDA.H; s/; gr0x1
;S 0DA.H;x1// 7! . 1CFDA.H; s/; gr0x0

;S 0DA.H;x0//

is supplied by the identity map on the modules, combined with the map ˆ0x1
x0

on the
G0DA.@H/–sets.

Finally, we comment briefly on the case that H has no generators representing the
spinc –structure s. In this case, 1CFDA.H; s/ is the trivial module, but (perhaps) we
should still specify its grading set. Choose another diagram H0 so that there is a
generator x0 2S.H0/ with s.x0/D s, and define the grading set for 1CFDA.H; s/ to be
S 0DA.H

0;x0/ and the grading on 1CFDA.H; s/ to be the unique map from S.H; s/D∅
to S 0DA.H

0;x0/. A simplified version of the invariance proof (keeping track only of
the G0–set gradings, and not the modules themselves) shows that, up to isomorphism
(in the category of G0–set graded bimodules), this is independent of the choice of H0 ;
see the proof of Proposition 6.14 for more details.

6.5.1 Refined gradings We now give the bimodule 1CFDA.Y; s/ a grading by a left-
right (G.�ZL/;G.ZR/)–set, using the smaller grading group from Section 3.2.1. Let
GAA.@H/DG.ZL/��G.ZR/ and GDA.@H/DG.�ZL/

op ��G.ZR/.

The existence of a refinement is a formal consequence of the following:

Lemma 6.11 The image P 0x of �2.x;x/ in G0AA.@H/ is in fact contained in GAA.@H/.
Moreover, given two generators x and y representing s, if gr0.x/ � zR.g/ D gr0.y/,
with g D gL �� gR , then R.gL/ is compatible with the idempotents IL;D.x/ and
IL;D.y/, and gR is compatible with the idempotents IR;A.x/ and IR;A.y/, in the
sense of Definition 3.4.

Proof Suppose x and y represent s, and let B 2 �2.x;y/. It is clear that the
homology class @@

L
.B/ is compatible with the idempotents IL;A.x/ and IL;A.y/,

or equivalently that r�.@
@
L
.B// is compatible with IL;D.x/ and IL;D.y/. Similarly,

@@
R
.B/ is compatible with IR;A.x/ and IR;A.y/.

Specializing to the case where x D y , P 0x is contained in GAA.@H/�G0AA.@H/.
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We turn to the second condition. For notational simplicity, let IAA.x/ denote the pair
of idempotents .IL;A.x/; IR;A.x//. Since x and y both represent s, there is some
B 2�2.x;y/. Moreover, gr0.y/D gr0.x/ � zR.g0.B//, which ensures that gD h �g0.B/

for some h 2 P 0x (since gr0.x/ and gr0.y/ are cosets of P 0x ). Since h 2GAA.@H/ and
g0.B/ is compatible with I.x/ and I.y/, it follows readily that g is also compatible
with the idempotents IAA.x/ and IAA.y/, or equivalently that R.gL/ is compatible
with IL;D.x/ and IL;D.y/ and gR is compatible with IR;A.x/ and IR;A.y/.

Lemma 6.11 ensures the type DA bimodule 1CFDA.H; s/ is refinable, in the sense of
Definition 3.10, provided our Heegaard diagram has a generator which represents s

(except now we are using left-right .G.�ZL/;G.ZR//–sets, rather than just right G –
sets). Thus, the analogue of Lemma 3.12 (adapted to bimodules) applies, allowing us
to think of 1CFDA.H; s/ as a left-right .G.�ZL/;G.ZR//–graded type DA structure.

More concretely, fix a reference point x0 2 S.H; s/, and fix refinement data  L;A

and  R;A for A.ZL/ and A.ZR/, respectively. Let  L;D be the reverse of  L;A

(see Definition 3.16), which is grading refinement data for A.�ZL/ by Lemma 3.17.
Define  AA.x/ 2G0AA.@H/ and  DA.x/ 2G0DA.@H/ by

 AA.x/D . L;A.IL;A.x//;  R;A.IR;A.x///;

 DA.x/D . L;D.IL;D.x//
�1;  R;A.IR;A.x///D zR. AA.x//:

For B 2 �2.x;y/, let g.B/ D  AA.x/ � g
0.B/ �  AA.y/; by Lemma 6.11, g.B/ 2

GAA.@H/. Let PxD g.�2.x;x//. Let SDA.H;x0/ be the quotient zR.Px0
/nGDA.@H/

as a right GDA.@H/–set. For any x 2S.H; s/, define

grx0
.x/D gr0x0

.x/ � zR. AA.x/
�1/D gr0x0

.x/ � DA.x/
�1(6.12)

D  L;D.x/ � gr0x0
.x/ � R;A.x/

�1

as an element of SDA.H;x0/. (Compare Equation (3.13).)

For a different choice of initial point x1 representing s, we define a canonical identifi-
cation of grading sets as in the proof of Proposition 6.10:

(6.13) ˆx1
x0
. zR.Px1

/ � h/D zR.Px0
/ � zR.g.C // � h;

where C 2 �2.x0;x1/.

Proposition 6.14 Fix a spinc structure s on some strongly bordered 3–manifold
ZL

YZR
, and let H and H0 be Heegaard diagrams for Y in each of which there is at
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least one generator representing s. Fix refinement data  L and  R for A.�ZL/ and
A.ZR/ respectively. Then the induced bimodules

A.�ZL/ 1CFDA.H; s/A.ZR/;
A.�ZL/ 1CFDA.H0; s/A.ZR/

are A1–homotopy equivalent as left-right .G.�ZL/;G.ZR//–graded bimodules.

Proof Invariance in the ungraded sense was verified in Proposition 6.10. We will
first produce a map of G0DA.@H/–sets S 0DA.H; s/! S 0DA.H

0; s/ compatible with the
continuation isomorphism of Proposition 6.10. The isomorphism of Proposition 6.10 is
a sequence of elementary isomorphisms corresponding to stabilizations, handleslides,
and isotopies and changes of almost complex structure, and we will treat these separately.
Note that, by Proposition 6.10, in each case we are free to choose base generators for H
and H0 that are convenient.

Suppose H0 is obtained from H by stabilizing in the region containing the basepoint z .
Then there is an obvious identification of generators in S.H; s/ and S.H0; s/. Fix a
base generator x02S.H; s/ and let x0

0
denote the corresponding generator of S.H0; s/.

Then the obvious identification between P 0x0
and P 0x0

0
induces an identification of

grading sets, which commutes with the stabilization isomorphism on 1CFDA .

Next, suppose H0 is obtained from H by a handleslide. There are several cases: a
handleslide among the ˇ–circles, among the ˛–circles, or of an ˛–arc over an ˛–circle.
The case of sliding an arc over a circle is the most complicated, so we will restrict to
that one; for definiteness, suppose that ˛a;L

1
is slid over ˛c

1
. As in [21, Section 6.3.2],

arrange that each ˛–arc of H0 is close to the corresponding ˛–arc of H and intersects
it in a single point, denoted �L

i or �R
i , and that for each �L

i (respectively �R
i ) there is

a bigon in .†;˛;˛0/ originating at �L
i (respectively �R

i ) (ie the �L
i would correspond

to the top graded generator in a closed diagram). Let fH;H0 denote the triangle map
giving the isomorphism of Proposition 6.10.

Then, fix a base generator x0 2 S.H; s/. There is a corresponding generator x0
0
2

S.H0; s/ so that there is a provincial domain in .†;˛;˛0;ˇ/ connecting x0 , x0
0

and a
generator ‚0 composed of �L

i and �R
i ; and so that this domain consists of a disjoint

union of triangles supported in the isotopy region and possibly an annulus with boundary
on ˛a;L

1
, ˛a;L;0

1
and ˛c

1
. Then there is an obvious identification between P 0x0

and P 0
x0

0

,
which gives an identification of grading sets S 0DA.H; s/Š S 0DA.H

0; s/.

To see that this identification is compatible with the isomorphism of Proposition 6.10,
recall that to each domain B0 in .†;˛;˛0;ˇ/ counted in the triangle map there is an
associated domain B in .†;˛;ˇ/. Moreover, if .B0; E�/ contributes to fH;H0 then
ind.B; E�/D 0. It follows that from this and the fact that the map fH;H0 treats the E�

Geometry & Topology, Volume 19 (2015)



Bimodules in bordered Heegaard Floer 677

in the same way that ı1 does that the map fH;H0 preserves the relative G0DA.@H/
gradings.

The case that H0 differs from H by an isotopy or a change of complex structure is
similar to, but easier than, the case of a handleslide, so we leave it to the reader.

Finally, we turn to the GDA.@H/–set gradings. In view of Lemmas 3.12 and 6.11, the
G0–set gradings can be lifted to G –set gradings. Moreover, since we choose the same
refinement data for the two Heegaard diagrams, compatibility of the map of G0–sets
with the isomorphism of Proposition 6.10 implies compatibility of the map of G –sets
with the isomorphism of Proposition 6.10.

The above proposition allows us to use Heegaard-diagram-free notation for 1CFDA :
we write A.�ZL/ 1CFDA.Y; s/A.ZR/ for A.�ZL/ 1CFDA.H; s/A.ZR/ , where H is any
Heegaard diagram which represents Y . We also let SDA.Y; s/ (or just S.Y; s/) denote
the corresponding grading set.

Moreover, we can let

(6.15) S.Y /D
[

s2spinc.Y /

S.Y; s/;

and define

A.�ZL/ 1CFDA.H/A.ZR/ D

M
s2spinc.Y /

A.�ZL/ 1CFDA.Y; s/A.ZR/;

and think of it as graded by S.Y /.

Remark 6.16 Instead of using induction and restriction, the gradings on the bimodules
1CFDD.Y / and 1CFAA.Y / can be treated similarly to the discussion above. The in-

variant 1CFAA.H/ is graded by the right G0AA.@H/–set S 0AA.@H/ D P 0xnG
0
AA.@H/.

The refined grading on 1CFAA.H/ is by the right GAA D G.ZL/ �Z G.ZR/–set
SAA.@H/ D PxnGAA . Tracing through the definitions shows that this grading set
(and the corresponding grading) is the same as that given by the restriction functor.

Similarly, the invariant 1CFDD.H/ is graded by the left G0DD.@H/ D G0.�ZL/ �Z

G0.�ZR/–set S 0DD.@H/DG0AA.@H/=RR.P 0x/ (where RR denotes the map G0.ZL/
op �Z

G0.ZR/
op ! G0.�ZL/ �Z G0.�ZR/ gotten by applying R to each factor). The

refined grading on 1CFDD.H/ is by the left GDD.@H/ D G.�ZL/�Z G.�ZR/–set
SDD.@H/DGAA.@H/=RR.Px/. Again, it follows from the definitions that this agrees
with the grading given by the induction functor.
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6.6 Invariance

We collect the results from this section into the following:

Theorem 10 Let Y12 be a three-manifold with boundary, strongly bordered by Z1

and Z2 , and fix grading refinement data for A.Z1/ and A.Z2/. Then we can associate
the following G –set graded bimodules to Y12 :

1CFAA.Y12/A.Z1/;A.Z2/; A.�Z1/
1CFDA.Y12/A.Z2/; A.�Z1/;A.�Z2/

1CFDD.Y12/:

The quasi-isomorphism types of these G–set graded bimodules are diffeomorphism
invariants of the bordered three-manifold Y12 with its strong boundary framing.

Proof Without the gradings, this is immediate from Propositions 6.2, 6.2 and 6.10. The
fact that the isomorphisms respect the grading on 1CFDA is proved in Proposition 6.14;
the proofs that the isomorphisms respect the gradings on 1CFAA and 1CFDD are
analogous.

7 Pairing theorems

Theorems 2, 5 and 7 can all be seen as pairing theorems, which express how the
bordered Floer homology groups transform as bordered three manifolds are glued
in the three situations discussed in Section 5.2. The aim of the present section is to
study how the bordered invariants change under these three gluing operations, to obtain
proofs of the aforementioned three theorems. (Indeed, we obtain three generalizations,
Theorems 11, 12 and 14 below.)

7.1 Pairing along a connected surface

Here is the promised generalization of Theorem 2:

Theorem 11 Let Y12 be a strongly bordered three-manifold with boundary parameter-
ized by �Z1 and Z2 . Let Y1 be a three-manifold with boundary parameterized by Z1 .
Then there are A1–homotopy equivalences:

bCFA.Y1/�A.Z1/
1CFDA.Y12/' bCFA.Y1[F1

Y12/;

1CFAA.Y12/�A.�Z1/
bCFD.Y1/' bCFA.Y1[F1

Y12/;

bCFA.Y1/�A.Z1/
1CFDD.Y12/' bCFD.Y1[F1

Y12/;

1CFDA.Y12/�A.�Z1/
bCFD.Y1/' bCFD.Y1[F1

Y12/:

The first two are equivalences of type A structures over A.Z2/, while the second two
are equivalences of type D structures over A.Z1/.

Geometry & Topology, Volume 19 (2015)



Bimodules in bordered Heegaard Floer 679

(Here and later, the A1–(bi)modules like 1CFDA.Y12/ are required to be appropriately
bounded for the tensor product to exist. This is always possible, as we just choose the
Heegaard diagram to be the appropriate variant of admissible.)

In a similar spirit, we have the following generalization of Theorem 5:

Theorem 12 Let Y12 be a strongly bordered three-manifold with boundary parame-
terized by �Z1 and Z2 . Let Y23 be a strongly bordered three-manifold with boundary
parameterized by �Z2 and Z3 . Then there are A1–quasi-isomorphisms:

1CFDA.Y12/�A.Z2/
1CFDA.Y23/'

A.Z1/1CFDA.Y12[F2
Y23/A.Z3/;

1CFAA.Y12/�A.Z2/
1CFDA.Y23/'1CFAA.Y12[F2

Y23/A.�Z1/;A.Z3/;

1CFDA.Y12/�A.Z2/
1CFDD.Y23/'

A.Z1/;A.�Z3/ 1CFDD.Y12[F2
Y23/;

1CFAA.Y12/�A.Z2/
1CFDD.Y23/'

A.�Z3/1CFDA.Y12[F2
Y23/A.�Z1/:

Proof of Theorems 11 and 12 Both of the proofs of the pairing theorem in [21]
extend easily to these cases. To belabor the point, we will prove in detail the first
equivalences of Theorem 11 via nice diagrams; the proofs of the other parts of the
theorems proceed similarly.

So, let H1 be a nice diagram for Y1 ; existence of such is guaranteed by [21, Proposi-
tion 8.2]. Let H0 be a Heegaard diagram for Y12 . Apply the algorithm from [21, Propo-
sition 8.2] to H0dr and then fill in the tunnel; the result is a Heegaard diagram H12

for Y12 so that Hdr12 is nice. (We will simply call H12 nice in this case.)

We turn to the first isomorphism of Theorem 11. Note that the fact that H1 and H12

are nice implies (by [21, Lemma 8.3]) that they are admissible; Proposition 2.3.10 and
Lemma 6.11 imply that the box product bCFA.H1/�A.Z2/

1CFDA.H12/ is well defined.
On the other side, Lemma 5.7 implies that the glued diagram H D H1 @[@L

H12 is
admissible. (In fact, H is nice, and hence admissible by [21, Lemma 8.3].)

We claim that bCFA.H1/�A.Z2/
1CFDA.H12/ is exactly equal to bCFA.H/. As a first

step, note that there is an obvious correspondence between generators. (In particular,
only 1CFDA.H12; 0/� 1CFDA.H12/ contributes to the tensor product.) So, we need to
check that this identification respects the differentials and right module structures.

On the one hand, the diagram H is obviously nice. So, by [21, Proposition 8.4],
the differential on bCFA.H/ counts (provincial) rectangles and bigons, while the only
nontrivial (right) algebra actions correspond to unions of half-strips through @RH .
Note that these half strips are entirely contained in H12 �H .

On the other hand, in bCFA.H1/�A.Z2/
1CFDA.H12/, the differential comes from three

different contributions:
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� Provincial curves in H1 , which correspond to bigons and rectangles by [21, Propo-
sition 8.4].

� Provincial curves in H12 , which again correspond to bigons and rectangles
by [21, Proposition 8.4].

� Contributions of the form

x1˝x12
I˝ı1

���! x1˝ .�˝y12/D .x1˝ �/˝y12

m2˝I
����! y1˝y2:

The third kind of contributions correspond exactly to rectangles crossing @H1D @LH12 .
The other two correspond to bigons and rectangles in H contained entirely in one
of H1 or H12 . Consequently, the differentials on bCFA.H1/�A.Z2/

1CFDA.H12/ and
bCFA.H/ agree.

Since H12 is nice, the right module structure comes entirely from juxtapositions of
half-strips crossing @RH12 . These are exactly the same curves which define the module
structure on bCFA.H/, and they contribute in the same way.

Thus, we have an isomorphism of right differential modules

bCFA.H1/�A.Z2/
1CFDA.H12/Š bCFA.H/:

Proof of Theorems 2 and 5 Theorem 2 (respectively Theorem 5) is an immediate
consequence of Theorem 11 (respectively Theorem 12), together with the definition of
the bimodule of a surface diffeomorphism, and the interpretation of the derived tensor
product in terms of �, Propositions 2.3.18 and 2.4.2. (A schematic, illustrating one
way to keep the compositions straight, is given in Figure 17.)

Similarly, we have the following:

Proof of Corollary 1.1 This is a special case of Theorem 2, using the identity map
for  .

7.1.1 Gradings We discuss now how the pairing theorem intertwines the gradings
on the two sides. For definiteness, we will consider the � product of two type DA
modules; the other cases are similar.

Fix strongly bordered 3–manifolds Y1 and Y2 with two boundary components, where Yi

is parameterized by ZL.Yi/ and ZR.Yi/, with ZR.Y1/D �ZL.Y2/, so that we can
form the manifold Y DY1@RY1

[@LY2
Y2 . For brevity, let Zmid be ZR.Y1/D�ZL.Y2/.

As in (6.15), we let SDA.Yi/ and SDA.Y / denote the various grading sets for the
bordered Floer homology bimodules. Since ZLY D ZLY1 and ZRY D ZRY2 ,
SDA.Y1/�G.Zmid/ SDA.Y2/ is naturally a left-right .G.�ZL.Y //;G.ZR.Y ///–set.

As before, we will write, for instance, GDA.@Y / for G.�ZL.Y //
op ��G.ZR.Y //.
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bCFA.Y1;  1/�A.F1/
1CFDA.�/

'bCFA.Y1;  1 ı�
�1/

Y1 @Y1 Œ0; 1��F2

 1 �

F1

I
F2

Y1 @Y1

Œ0; 1��F2 1 �

F1

I
F2

bCFA.Y1;  1/�A.F1/
1CFDD.�/

' bCFD.Y1;�. 1 ı�
�1//

1CFAA.�/�A.F2/
bCFD.Y2;  2/

'bCFA.Y2;�. 2 ı�//

Œ0; 1��F2

@Y2 Y2

I  2

F2

�

F1

Œ0; 1��F2 @Y2 Y2

�

F1

I  2

F2

1CFDA.�/�A.F2/
bCFD.Y2;  2/

' bCFD.Y2;  2 ı�/

Figure 17: Schematic illustration of Theorem 2: the four cases are shown
in order left-to-right, top-to-bottom. To compute the parametrization of the
boundary after gluing, start at the unglued boundary component and follow
the arrows until you reach @Yi , composing the maps labeling the arrows (or
their inverses).

Theorem 13 If ZR.Y1/ D �ZL.Y2/ D Zmid and Y D Y1 @LY1
[@RY2

Y2 as above,
there is an identification of GDA.@Y /–sets

SDA.Y1/�G.Zmid/ SDA.Y2/Š SDA.Y /

so that the isomorphism in Theorem 11 is a GDA.@Y /–set graded isomorphism.

In fact, we can refine this statement slightly: there is a natural identification between
spinc –structures on Y and G.@Y /–orbits in SDA.Y1/ �G.Zmid/ SDA.Y2/ Š SDA.Y /,

Geometry & Topology, Volume 19 (2015)



682 Robert Lipshitz, Peter S Ozsváth and Dylan P Thurston

which is refined by the identification in Theorem 13; the identification is given in the
proof.

Proof of Theorem 13 The identification of GDA.@Y /–sets

SDA.Y1/�G.Zmid/ SDA.Y2/Š SDA.Y /

is given one spinc structure (over Y ) at a time. More precisely, fix s 2 spinc.Y /, and
let si denote its restriction to Yi . We will exhibit an identification

SDA.Y1; s1/�G.Zmid/ SDA.Y2; s2/Š
[

h2H1.@RY1IZ/

SDA.Y; sCPDŒh�/:

We work with a Heegaard diagram HDH1 ZR
[ZL

H2 for Y which has a generator x

representing s, so that the restrictions xi of x to Hi represent si . Thus, our goal is to
construct a map

SDA.H1;x1/�G.Zmid/ SDA.H2;x2/Š
[

h2H1.@RY1IZ/

SDA.Y; sz.x/CPDŒh�/:

First, however, we construct the identification on the level of orbit spaces, ie spinc

structures. And indeed, before this, we construct a map

pxW SDA.H1;x1/�G.Zmid/ SDA.H2;x2/!H1.Y; @Y /;

as follows. Recall from Section 6.5 that SDA.H1;x1/ and SDA.H2;x2/ are the coset
spaces zR.Px1

/nGDA.@H1/ and zR.Px2
/nGDA.@H2/ respectively. For brevity, we

will write zPx for zR.Px/. Thus we can write elements of SDA.H1;x1/ �G.Zmid/

SDA.H2;x2/ as . zPx1
� .n1; ˛1; ˇ1// � . zPx2

� .n2; ˛2; ˇ2//, where we have ni 2 Z,
˛i 2H1.F.�ZL.Yi/// and ˇi 2H1.F.ZR.Yi///. We then define

px.. zPx1
� .n1; ˛1; ˇ1//� . zPx2

� .n2; ˛2; ˇ2///D i�.ˇ1C˛2/;

where here i� is the inclusion map from H1.@RY1/DH1.�@LY2/ to H1.Y IZ/. With
this definition, elements

s; t 2 SDA.H1;x1/�G.Zmid/ SDA.H2;x2/

lie in the same GDA.@Y /–orbit if and only if px.s/D px.t/.

The map px depends on the base generator x . However, the map

q D qxW SDA.H1;x1/�G.Zmid/ SDA.H2;x2/! spinc.Y /;

qx.s1 � s2/D s.x/Cpx.s1 � s2/
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is independent of x , in the following sense. If x and y are two choices of base
generators, then qx ıˆ

y
x D qy , where here

ˆ
y
x W SDA.H1;x1/�G.Zmid/ SDA.H1;x2/! SDA.H1;y1/�G.Zmid/ SDA.H1;y2/;

given by ˆy
x D .ˆ

y1
x1
�ˆ

y2
x2
/, is the map gotten by putting together the two canonical

identifications of grading sets (see (6.13); see also Proposition 6.10). More explicitly,
if there are Ci 2 �2.xi ;yi/, then

ˆ
y
x. zPy1

�g1 �
zPy2
�g2/D . zPx1

� zR.g.C1// �g1 �
zPx2
� zR.g.C2// �g2/:

Now, i�.@
@
R
ŒC1�C r�.@

@
L
ŒC2�//D �.x;y/, where �.x;y/ is the map giving the differ-

ence in spinc structures between x and y as in the proof of Lemma 5.9. Thus,

qx ıˆ
y
x. zPx1

� .n1; ˛1; ˇ1/� zPx2
� .n2; ˛2; ˇ2//

D qx. zPx1
� zR.g.C1// � .n1; ˛1; ˇ1/� zPx2

� zR.g.C2// � .n2; ˛2; ˇ2//

D s.x/C i�.ˇ1C @
@
R ŒC1�C r�.@

@
LŒC2�/C˛2/

D s.x/C �.x;y/C i�.ˇ1C˛2/

D s.y/C i�.ˇ1C˛2/

D qy. zPy1
� .n1; ˛1; ˇ1/� zPy2

� .n2; ˛2; ˇ2//;

as claimed.

Thus, if we write si D sjYi
, the map q defines an identification of GDA.@Y /–orbits in

SDA.Y1; s1/�G.Zmid/ SDA.Y2; s2/

and those spinc structures on Y which are of the form s C PDŒi�.h/� for some
h 2H1.@RY1/.

We refine this to a map of grading sets, as follows. Given orbits O1 and O2 of
GDA.@Y1/ and GDA.@Y2/ respectively, fix a GDA.@Y /–orbit O12 in O1 �O2 , and
suppose that there is a generator x for H which represents the corresponding spinc

structure. Without loss of generality, we can think of SDA.Y; s/ as the orbit of gr.x/,
and its components xi as determining the grading sets SDA.Hi ;xi/, so that O12 is
contained in the orbit of gr.x1/ � gr.x2/. Then define a map O12 ! SDA.Y; s/ as
follows. Any element of O12 can be represented as

zPx1
� .n1; ˛1; ˇ1/� zPx2

� .n2; ˛2; ˇ2/;

where ˇ1C˛2 D 0. Then define a map �W O12! SDA.Y; s/ by

�. zPx1
� .n1; ˛1; ˇ1/� zPx2

� .n2; ˛2; ˇ2//D zPx � .n1C n2; ˛1; ˇ2/:
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It is clear that this defines a map of GDA.@H/DG.�ZL/
op ��G.ZR/ sets.

To verify this map respects the gradings on 1CFDA.H1/� 1CFDA.H2/ and 1CFDA.H/,
suppose y D y1˝y2 is another generator of 1CFDA.H/ and B 2 �2.x;y/. We can
decompose B as B1 �B2 where Bi 2 �2.xi ;yi/ and @@

R
B1 D @

@
L

B2 . Then

grx.y/D
zPx � .�e.B/� nx.B/� ny.B/; r�.@

@
LB1/; @

@
RB2/ � DA.y/

�1;

grx1
.y1/D zPx1

� .�e.B1/� nx.B1/� ny.B1/; r�.@
@
LB1/; @

@
RB1/ � DA.y1/

�1;

grx2
.y2/D zPx2

� .�e.B2/� nx.B2/� ny.B2/; r�.@
@
LB2/; @

@
RB2/ � DA.y2/

�1:

(By Section 6.5.1,  DA.y/D . L;D.IL;D.y//
�1;  R;A.IR;A.y///.) Thus

�.gr.y1/� gr.y2//

D �. zPx1
� .�e.B1/� nx1

.B1/� ny1
.B1/; r�.@

@
LB1/; @

@
RB1/ � DA.y1/

�1

� zPx2
.�e.B2/� nx2

.B2/� ny2
.B2/; r�.@

@
LB2/; @

@
RB2/ � DA.y2/

�1/

D �. zPx1
.�e.B1/� nx1

.B1/� ny1
.B1/; r�.@

@
LB1/; @

@
RB1/. L;D.IL;D.y1//; 0/

� zPx2
.�e.B2/� nx2

.B2/� ny2
.B2/; r�.@

@
LB2/; @

@
RB2/.0;  R;A.IR;A.y2//

�1//

D zPx �.�e.B1/�nx1
.B1/�ny1

.B1/�e.B2/�nx2
.B2/�ny2

.B2/; r�.@
@
LB1/; @

@
RB2/

� . L;D.IL;D.y1//;  R;A.IR;A.y2//
�1/

D .�e.B/� nx.B/� ny.B/; r�.@
@
LB/; @RB/ � DA.y/

�1

D gr.y1˝y2/;

as desired.

7.2 Hochschild homology and knot Floer homology

To give a precise statement of the self-pairing theorem, we will need to discuss the
relevant Alexander grading on knot Floer homology for generalized open books.

Let Y be a strongly bordered three-manifold with two boundary components speci-
fied by �Z and Z , and let .Y ı;K/ be its associated generalized open book, as in
Construction 5.3.

Recall that Fı.Z/DF.Z/nD2 . Then we can think of Fı�Y ı as an embedded Seifert
surface for K . As such, it induces an integral grading on the knot Floer homology
bCFK .Y ı;K/. Specifically, thinking of knot Floer homology as graded by relative

spinc structures spinc.Y ı;K/, the summand of bHFK .Y ı;K/ in Alexander grading
i is the sum of knot Floer homology groups over all relative spinc structures s with
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1
2
hc1.bs/; Œ yF �i D i , where here yF is the surface gotten by capping off Fı in the zero-

surgery of Y ı.F /, and bs is the extension of the relative spinc structure s over the
zero-surgery.

On the bordered side, the bimodule 1CFDA.Y / splits according to the strands grad-
ing 1CFDA.Y / D

L
i2Z

1CFDA.Y; i/ (see (6.1)); and hence, so does its Hochschild
homology.

The following is a generalization of Theorem 7:

Theorem 14 Let Y be a strongly bordered three-manifold with two boundary compo-
nents parameterized by �Z and Z . Let .Y ı;K/ be the open book obtained by gluing
the boundary components of Y together and performing 0–surgery on  . Then there is
an identification between the knot Floer homology of the generalized open book and
the Hochschild homology of the bimodule of Y

bHFK .Y ı;K/Š HH.A.Z/ 1CFDA.Y /A.Z//;

which identifies the Alexander grading on knot Floer homology with the strands grading
on the bimodule; ie

bHFK .Y ı;K; i/Š HH.A.Z;i/ 1CFDA.Y; i/A.Z;i//:

Moreover, this isomorphism intertwines the Z–set gradings on HH.A.Z/ 1CFDA.Y /A.Z//
(from Lemma 2.5.12) and on bHFK .Y ı;K/.

(For the statement about gradings, we have chosen the same grading refinement data  
(Definition 3.5) for the two sides of H .)

We prove this theorem in two ways, first with nice diagrams and then with deforming
the diagonal.

Proof via nice diagrams As in the proof of Theorems 11 and 12, choose a nice
diagram H for Y . By [21, Lemma 8.3], the diagram H is admissible. Hence, by
Lemma 6.11, the bimodule 1CFDA.H/ is bounded. Also, by Lemma 5.8, the doubly-
pointed Heegaard diagram Hı is weakly admissible.

Note that, by assumption, ZR.H/Š�ZL.H/; denote ZR.H/ simply by Z .

View 1CFDA.H/ as a type DA structure with structure maps

ınC1W X.H/˝A.Z/˝n
!A.Z/˝X.H/:

By Proposition 2.3.54, the Hochschild homology of 1CFDA.H/ is computed as the
homology of .X.H/ı; z@/ where X.H/ı DX.H/=ŒI.Z/;X.H/� is the cyclicization of
X.H/ and z@ is as in Equation (2.3.44).
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Let Hı be the doubly-pointed Heegaard diagram for .Y ı;K/ gotten by self-gluing H ,
as in Construction 5.5. We will show the complex .X.H/ı; z@/ is exactly bCFK .Hı/.
First, as an F2 –vector space, X.H/ı is isomorphic to bCFK .Hı/: the F2 –vector space
X.H/ı has basis the generators x 2S.H/ such that IL;D.x/D IR;A.x/: there is a
natural one-to-one correspondence between such generators in ~.H/ and the generators
of ~.Hı/.

Since H is nice, the definition of z@, Equation (2.3.44), simplifies considerably. Indeed,
for n> 1,

� ı .R ı ı/n ı �D 0:

Consequently, the differential z@ has two contributions, corresponding to the cases nD 0

and nD 1. The nD 0 part of z@ corresponds to provincial domains in the differential
on 1CFDA.H/, ie rectangles and bigons in H . These also contribute in exactly the
same way to the differential on bCFK .Hı/.

The nD 1 part of z@ corresponds to chains of the form

x
@
�! �y

R
�! y�

m2
��!w:

These correspond exactly to rectangles in Hı which cross @LHD @RH : the first arrow
comes from one half of the rectangle, which crosses the left boundary in a chord � ,
while the third arrow comes from the other half, crossing the boundary in the same � .
In total, this rectangle contributes exactly as it would for bCFK .H/.

Certainly no bigons in Hı cross through @LH , and no rectangle can cross @LH twice.
So, the differential on bCFK .Hı/ is exactly the same as the differential z@ on X.H/ı ,
proving the isomorphism.

We turn next to the strands grading. Let ~.H/ı be the generators in ~.H/ that survive
in X.H/ı . This set is naturally identified with ~.Hı/. To verify the statement about
the Alexander and strand gradings, it suffices to show that generators x 2 ~.H/ı with
#oR.x/D kC i are mapped under the natural one-to-one correspondence to generators
xı 2 ~.Hı/ with Alexander grading equal to i . (Recall that oR.x/ denotes the set of
˛R –arcs which are occupied by the generator x .)

To verify the this assertion, observe that the surface Fı is isotopic to the union of

� a regular neighborhood N of
S2k

iD1 ˛
a;R
i [ @R

x† and
� the descending disk of @N n @R

x†.

So, it follows from the description of s.xı/ from [29, Section 2.6; 28, Section 2.3] that

hc1.1s.xı//; cFı i D �2kC 2#.xı\N /D 2i:
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Finally we turn to the Z–set gradings. Fix a generator xı 2 S.Hı/ for the self-
glued Heegaard diagram, and let x 2 S.H/ denote the corresponding generator
for the bordered Heegaard diagram. Regard gr.x/ as an element of SDA.H/=� D
zPx0
nGDA.@H/=�, where � is the equivalence relation

.n; ˛; ˇ/� .n; ˛Cˇ; 0/;

and otherwise the notation is as in Section 6.5. (This is the same as the equivalence
relation from Lemma 2.5.12. For brevity, we denote GDA.@H/ by G .)

We first show that the divisibility of gr.x/ and gr.xı/ are the same. Indeed, n �gr.x/D
gr.x/ means there is a periodic domain P 2 �2.x;x/ with zR.g.P // D .n; ˛;�˛/.
But then P closes up to give a periodic domain in �2.x

ı;xı/ with ind.P /D n.

Next we identify the Z–orbits in SDA.H/=� with the Z–orbits of the grading set of Hı ,
ie the relative spinc –structures on Y ı nK , as follows. Fix a spinc –structure s on H
and let x be a generator representing s. Recall that the spinc –structure s corresponds
to the G–orbit of gr.x/; we will use x as the base generator for this orbit. The sum
map G!H1.@L.Y .H/// given by

.n; ˛; ˇ/ 7! ˛Cˇ

does not descend to the G–orbit of gr.x/, as there may be elements of zPx with
nontrivial image under this map. However, the inclusion H1.@L.Y .H///!H1.Y

ınK/

kills the image of zPx . If we further compose with the Poincaré duality isomorphism
H1.Y

ı nK/ŠH 2.Y ı;K/ we get a map

pxW gr.x/ �G!H 2.Y ı;K/:

This map depends on the choice of x ; however, the map qW gr.x/ �G! spinc.Y;K/

defined by q.gr.x/ �g/D s.xı/Cpx.g/ is independent of the choice of x . In fact, q

descends to an identification of Z–orbits in SDA.H/=� with relative spinc –structures.

Now, focus on the Z–orbit in SDA.H/=� which contains the generator x . The map of
grading sets (on this Z–orbit) is completely determined by the requirement that gr.x/
map to gr.xı/. It remains to check that this map is compatible with the isomorphism

HH.A.Z/ 1CFDA.Y /A.Z//Š bHFK .Y ı;K/:

Let y be in the Z–orbit of x . Then there is a domain B 2�2.x;y/ so that r�.@
@
L

B/D

�@@
R

B . Taking x as our base generator (ie setting gr.x/D zPx �GDA.@H/), we have

gr.y/D zPx � .�e.B/� nx.B/� ny.B/; r�.@
@
LB/; @@RB/

� . .IL;D.y//;  .IR;A.y//
�1/;

gr.y/ı D Œ.�e.B/� nx.B/� ny.B/; 0; 0/�D �
gr.xı;yı/;
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where gr.y/ı is defined in Definition 2.5.11; the factors  .IL;D.y// and  .IR;A.y//
�1

cancel in S.H/ı because IL;D.y/DIR;A.y/; gr.xı;yı/ denotes the .Z=n/–grading
difference between xı and yı ; and the last equality follows from the fact that B gives
a domain Bı in �2.x

ı;yı/ with the same Euler measure and point measures as B .

Proof via deforming the diagonal (sketch) Fix an admissible Heegaard diagram
HD .†;˛;ˇ; z/ for Y . Given a holomorphic map uW S !†� Œ0; 1��R with right
punctures pR

1
; : : : ;pR

i and left punctures pL
1
; : : : ;pL

j we have points

evR.u/D .t ıu.pR
1 /; : : : ; t ıu.pR

i // 2Ri ;

evL.u/D .t ıu.pL
1 /; : : : ; t ıu.pL

i // 2Rj :

By a self-matched curve we mean a holomorphic map uW S !†� Œ0; 1��R with the
same number of right punctures as left punctures, labeled by the same Reeb chords in
the same order, and such that evR.u/D evL.u/. Let MB

SM denote the set of embedded,
self-matched curves in the homology class B . One can show that, generically, MB

SM is
a manifold, transversely cut out and of dimension e.B/C nx.B/C ny.B/� 1. Also,
for appropriate almost complex structures, the differential on bCFK .Hı/ is given by

@x D
X

y

X
B2�2.x;y/

e.B/Cnx.B/Cny.B/D1

.#MB
SM/y :

Next, we deform the condition of being self-matched in two stages. First, for t 2 Œ0;1/,
a T–shifted self-matched curve is a curve u with right punctures pR

1
; : : : ;pR

j and left
punctures pL

1
; : : : ;pL

j so that for each i D 1; : : : ; j ,

t ıu.pR
i /CT D t ıu.pL

i /

(and u is asymptotic to the same Reeb chords at pR
i and pL

i ). A 0–shifted self-matched
curve is just a self-matched curve as previously defined. Let MB

T –S;SM denote the
moduli space of T –shifted self-matched curves. Defining @ instead using MB

T –S;SM ,
we get a new chain complex which is homotopy equivalent to bCFK .Hı/.

Now, take T !1. Sequences of Ti –shifted self-matched curves with Ti!1 con-
verge to many-story holomorphic combs .u1;u2; : : : ;ul/ where each ui 2�2.xi ;xiC1/

(with x1 D x and xlC1 D y ), subject to the following condition. Let pR
i;1; : : : ;p

R
i;jR

i

denote the right punctures of ui and pL
i;1; : : : ;p

L
i;jL

i
denote the left punctures of ui .

Then:

� For each i D 1; : : : ; l � 1, j R
i D j L

iC1
, and j R

l
D j L

1
D 0.

� For each i D 1; : : : ; l � 1 and j D 1; : : : ; ji , u is asymptotic to the same Reeb
chords at pR

i;j and pL
iC1;j

.
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� For each i D 1; : : : ; l � 1 and j D 1; : : : ; ji � 1,

(7.1) t ıui.p
R
i;lC1/� t ıui.p

R
i;l/D t ıuiC1.p

L
iC1;lC1/� t ıuiC1.p

L
iC1;l/:

We call such combs 1–shifted self-matched combs, and let MB
1–S;SM denote the

moduli space of 1–shifted self-matched combs. Using MB
1–S;SM instead of MB

SM ,
we again obtain a new chain complex, homotopy equivalent to bCFK .Hı/. (See
Figure 18 for an example of this shifting and the further steps in the proof.)

Next, we further deform the diagonal as follows. An 1–shifted, T –self-matched holo-
morphic comb is a holomorphic comb .u1;u2; : : : ;ui/ satisfying the same conditions
as a 1–shifted self-matched comb, except that (7.1) is replaced with the formula

T � .t ıui.p
R
i;lC1/� t ıui.p

R
i;l//D t ıuiC1.p

L
iC1;lC1/� t ıuiC1.p

L
iC1;l/:

An 1–shifted, 1–self-matched comb is the same as an 1–shifted self-matched comb.

Let MB
1–S;T –SM denote the moduli space of 1–shifted, T –self-matched combs. By

replacing MB
SM with MB

1–S;T –SM , we get another chain complex homotopy equivalent
to bCFK .Hı/.

Now, send T !1. One can show that sequences of 1–shifted, Ti –self-matched
combs converge to holomorphic combs .u1;u2; : : : ;ul/ such that:

� Each ui is asymptotic to a sequence of sets of Reeb chords E�R
i D.�

R
i;1; : : : ;�

R
i;jR

i
/

at @R†, and to a sequence of Reeb chords E�L
i D .�

L
i;1; : : : ; �

L
i;jL

i
/ at @L†.

� The sequence of algebra elements a.�R
1;1
/; : : : ; a.�R

1;jR
1
/; a.�R

2;1
/; : : : and the

sequence of algebra elements a.�E�L
1
/; a.�E�L

2
/; : : : are the same.

� Each ui is rigid, as a one-story comb with the specified asymptotics.

We call such a comb a 1–shifted, 1–self-matched holomorphic comb, and denote
the moduli space of such combs by MB

1–S;1–SM Replacing MB
SM by MB

1–S;1–SM ,
we obtain another chain complex homotopy equivalent to bCFK .Hı/. But this chain
complex also has an alternate description: it is the Hochschild complex for 1CFDA.H/
of Proposition 2.3.54. This implies the result.

The statements about gradings follows exactly as in the “nice diagrams” version of the
proof.

Proof of Theorem 7 This is immediate from Lemma 5.6, Theorem 14 and the defini-
tion of 1CFDA. / in Section 6.4.

Geometry & Topology, Volume 19 (2015)



690 Robert Lipshitz, Peter S Ozsváth and Dylan P Thurston
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1
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A
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Figure 18: Hochschild homology via deforming the diagonal: on the far left,
we have a region in a Heegaard diagram H , contributing to the differential on
CFKy.Hı/ . All of the ˛–arcs shown are parts of different ˛–curves; center
left, we have a schematic of the corresponding self-matched curve; center
right, we have a schematic of the corresponding 1–shifted self-matched
curve; far right, we have a schematic of the corresponding1–shifted1–self-
matched curve. Another interesting example can be obtained by reflecting
the diagram horizontally.

8 The mapping class group action

In this section, we show that the bimodules 1CFDA.�/ associated to surface diffeomor-
phisms � induce an action of the bordered mapping class group on the derived category
of A.Z/–modules. A key step towards establishing this result is that the bimodule
associated to the identity surface diffeomorphism is the identity map, ie 1CFDA.IF.Z//

is homotopy equivalent to A.Z/ŒI�A.Z/ (Definition 2.2.48), verifying Theorem 4. This
is done in Section 8.1. The mapping class group action on the derived categories is
stated precisely in Section 8.2, and verified in Section 8.3.

8.1 Identity bimodules

We first prove that the identity map on Z induces a bimodule which is quasi-isomorphic
to the identity bimodule on A.Z/, as stated in Theorem 4.

We make our notation slightly more precise than in the original statement of the theorem,
writing A.Z/ for A.F /, so the desired result is 1CFDA.IF.Z// '

A.Z/ŒIA.Z/�A.Z/
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During the proof we also make our notation also less precise, dropping the subscript
from the identity I (which could be either the algebra of Z , or the surface associated
to Z ): it should be clear from the context.

Proof of Theorem 4 We start by arguing that A.Z/ 1CFDA.I/A.Z/ is quasi-invertible
in the sense of Definition 2.4.7. Consider the canonical bordered Heegaard diagram for
the identity diffeomorphism (Definition 5.10), illustrated in Figure 19 (left). It is clear
from inspection that A.Z/ 1CFDA.I/A.Z/ is isomorphic to A.F / as a left A.F /–module.
Moreover, ı1

1
D 0: any nontrivial domain meets the type A boundary in the canonical

diagram. Thus, Lemma 2.2.50 applies, showing that 1CFDA.I/A.Z/ is isomorphic to
A.F /Œ��A.F / for some A1–endomorphism � of A.F /.

A

B

A

B

C

D

C

D

A

B

A

B

C

D

C

D

A

B

A

B

C

D

C

D

Figure 19: The canonical Heegaard diagram for the identity map: on the left,
we have the identity map of the split genus-2 surface; center and right, we
have two of the holomorphic disks implying ��.�/ D � for any length 1

chord � .

For any Reeb chord � of length 1, ��.�/ D � , as there is an obvious holomorphic
disk; see Figure 19 (center, right). By Proposition 4.7, �1 induces the identity map on
the homology of A.F /; in particular, � is a quasi-isomorphism. By Proposition 2.4.8
A.Z/ 1CFDA.I/A.Z/ is quasi-invertible.
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Next, according to Theorem 5,

A.Z/ 1CFDA.I/A.Z/�A.Z/ 1CFDA.I/A.Z/ '
A.Z/ 1CFDA.I/A.Z/:

Hence, applying � with the quasi-inverse to A.Z/ 1CFDA.I/A.Z/ to both sides of the
above quasi-isomorphism, we obtain the desired quasi-isomorphism

A.Z/ 1CFDA.I/A.Z/ '
A.Z/ŒI�A.Z/:

Corollary 8.1 Let � 2MCG0.F.Z//. Then the functors

� �A.Z/1CFDA.�/A.Z/W ModA.Z/!ModA.Z/;

A.Z/1CFDA.�/A.Z/� � W A.Z/Mod! A.Z/Mod;

are auto quasiequivalences of Z–set graded differential categories.

More generally, if � 2MCG0.F.Z/;F.Z 0// is in the mapping class groupoid, then the
functors

� �A.Z/1CFDA.�/A.Z0/W ModA.Z/!ModA.Z0/;

� �A.Z/;A.�Z0/ 1CFDD.�/W ModA.Z/!
A.�Z0/Mod;

A.Z/1CFDA.�/A.Z0/� � W A.Z
0/Mod! A.Z0/Mod;

1CFAA.�/A.�Z/;A.Z0/� � W A.Z
0/Mod!ModA.�Z0/;

are quasiequivalences of Z–set graded differential categories.

Proof We will prove that

� �A.Z/ 1CFDA.�/A.Z0/W ModA.Z/!ModA.Z0/

is a quasiequivalence; the other cases are similar. By Lemma 2.4.9 it suffices to show
that A.Z/ 1CFDA.�/A.Z0/ is quasi-invertible.

Fix any Heegaard diagrams H for � and H0 for ��1 . It follows from Lemma 5.9 that
H@R
[@L

H0 is a Heegaard diagram for the identity map IF.Z/ 2MCG0.F.Z/;F.Z//
while H0@R

[@L
H is a Heegaard diagram for IF.Z0/ 2 MCG0.F.Z 0/;F.Z 0//. By

Theorem 12,

A.Z/1CFDA.H/A.Z0/�A.Z0/1CFDA.H0/A.Z/ ' A.Z/1CFDA.H @R
[@L

H0/A.Z0/;
A.Z0/1CFDA.H0/A.Z/�A.Z/1CFDA.H/A.Z0/ ' A.Z0/1CFDA.H0@R

[@L
H/A.Z0/:
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By Lemma 5.8 and Proposition 6.10,

A.Z/1CFDA.H @R
[@L

H0/A.Z/ ' A.Z/1CFDA.H.IF.Z///A.Z/;

A.Z0/1CFDA.H0 @R
[@L

H/A.Z0/ ' A.Z0/1CFDA.H.IF.Z0///A.Z0/:

So, by Theorem 4,

A.Z/1CFDA.H/A.Z0/�A.Z0/1CFDA.H0/A.Z/ ' A.Z/ŒI�A.Z/;

A.Z0/1CFDA.H0/A.Z/�A.Z/1CFDA.H/A.Z0/ ' A.Z0/ŒI�A.Z0/:

This proves the claim.

Finally, as another corollary, we have Theorem 1, the statement that different pointed
matched circles for a given surface have equivalent derived categories.

Proof of Theorem 1 This follows from Corollary 8.1 by choosing any mapping class
� 2MCG0.Z1;Z2/.

8.2 Group actions on categories

To state the mapping class group(oid) action precisely requires a little categorical
algebra, which we review in this subsection.

Definition 8.1 Let G be a group and C a category. Let End.C/ denote the class of
functors F W C! C.

� A strict action of G on C is a map AW G ! End.C/ such that A.I/ is the
identity functor and if g; h 2G then A.gh/DA.g/ ıA.h/.

� A weak action of G on C is a map AW G ! End.C/ together with a natural
isomorphism A0 of the identity functor IC to A.I/; and for each g; h 2 G ,
an isomorphism A2.g; h/ from A.g/ ıA.h/ to A.gh/, so that the following
diagrams commute:

A.g/ ıA.h/ ıA.k/ A.gh/ ıA.k/

A.g/ ıA.hk/ A.ghk/

A2.g;h/ıIA.k/

IA.g/ıA2.h;k/ A2.gh;k/

A2.g;hk/
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A.g/ ı IC A.g/

A.g/ ıA.I/ A.gI/

D

A.g/ıA0

A2.g;I/

D

IC ıA.g/ A.g/

A.I/ ıA.g/ A.Ig/

D

A0ıA.g/

A2.I;g/

D

(Compare Mac Lane [25, Section XI.2].)

If C has some extra structure (for example, if it is triangulated) then we replace End.C/
by the class of endofunctors preserving that structure.

Remark 8.2 This terminology is not entirely standard. In particular, the reader is
cautioned that some sources call our weak action a strong action.

We want to extend the notion of weak group actions to actions of groupoids, so first
we reinterpret it. Recall:

Definition 8.3 If D and E are 2–categories then a weak 2–functor from D to E

consists of:

� A map AW ObD! ObE .

� For each a; b 2 ObD a functor Aa;bW MorD.a; b/!MorE.A.a/;A.b//.

� For each a 2 ObD a 2–morphism Aa 2 2Mor.IA.a/;Aa;a.Ia//.

� For each a; b; c 2 ObD , f 2MorD.b; c/, and g 2MorD.a; b/, a 2–morphism

Aa;b;c.f;g/ 2 2Mor.Ab;c.f / ıAa;b.g/;Aa;c.f ıg//;

forming a natural transformation of functors; more precisely, as f and g vary,
both Ab;c.f / ı Aa;b.g/ and Aa;c.f ı g/ give functors from MorD.b; c/ �

MorD.a; b/ to MorE.A.a/;A.c//; then Aa;b;c is required to be a natural trans-
formation between these two functors.

These data must satisfy:
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� For any objects a; b; c; d 2ObD and morphisms f 2MorD.c; d/, g2MorD.b; c/

and h 2MorD.a; b/ the diagram

Ac;d .f / ı .Ab;c.g/ ıAa;b.h// .Ac;d .f / ıAb;c.g// ıAa;b.h/

Ac;d .f / ıAa;c.g ı h/ Ab;d .f ıg/ ıAa;b.h/

Aa;d .f ı .g ı h// Aa;d ..f ıg/ ı h/

D

D

IAc;d .f /
ıAa;b;c.g;h/ Ab;c;d .f;g/ıIAa;b.h/

Aa;c;d .f;gıh/ Aa;b;d .f ıg;h/

commutes.

� For any morphism f 2Mor.a; b/, the diagrams

Aa;b.f / ı IA.b/ Aa;b.f /

Aa;b.f / ıA.Ib/ Aa;b.f ı Ib/

Aa;b.f /ıAb

D

Aa;b;b.f;I/

D

IA.a/ ıAa;b.f / Aa;b.f /

A.Ia/ ıAa;b.f / Aa;b.Ia ıf /

AaıAa;b.f /

D

Aa;a;b.I;f /

D

commute.

See Bénabou [3, Definition 4.1], which defines the notion more generally for weak
2–categories (or bicategories), although we choose to keep the standard convention for
order of composition.

We may view a group G as a 2–category � with a single object � , Mor.�; �/DG , and
2Mor.g; h/ empty if g¤ h and consisting of the identity map if gD h. A category C

specifies a 2–category End.C/ with a single object �, Mor.�;�/ D End.C/, and
2Mor.F1;F2/ the set of natural transformations from F1 to F2 .
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Lemma 8.4 With the above setup, a weak action of G on C is a weak 2–functor
from � to End.C/.

Proof This is largely immediate from the definitions: Given a weak action A, we
define a weak 2–functor B by:

� B.�/D �.
� B�;�.g/DA.g/; this function on the objects of Mor�.�; �/ extends trivially to

the morphisms of Mor�.�; �/ (which are the 2–morphisms of � ).
� B�;�;�.g; h/DA2.g; h/; this map automatically defines a natural transformation,

since Mor�.�; �/�Mor�.�; �/ has only identity morphisms.

The diagrams that are required to commute are precisely the same in the two cases.

This leads easily to the notion of a groupoid action.

Definition 8.5 Let C1; : : : ;Cn be categories and � a groupoid. Make � into a 2–
category with only identity 2–morphisms. Let End.fC1; : : : ;Cng/ denote the full
2–subcategory of Cat generated by C1; : : : ;Cn . That is,

Ob.C/D fC1; : : : ;Cng;

Mor.Ci ;Cj /D ffunctors F W Ci! Cj g;

2Mor.F1;F2/D fnatural transformations from F1 to F2g:

Then a weak action of � on fC1; : : : ;Cng is a weak 2–functor from � to End.C/.
(Again, if the categories C1; : : : ;Cn are triangulated, say, then we restrict to triangulated
functors.)

(There is an obvious analogue when C has infinitely many elements, but we shall not
need this.)

Recall from Definition 2.5.31 that ModA.Z/ denotes the category of G–set graded
right A1–modules over A.Z/, and H�.ModA.Z// the category whose objects are
set-graded A1–modules over A.Z/ and morphisms are A1–homotopy classes of
A1–module maps. There is no natural notion of degree-0 morphisms in ModA.Z/ ,
and so H�.ModA.Z// is not a triangulated category in the usual sense. However,
ModA.Z/ does have a (nonfull) subcategory eModA.Z/;G.Z/ of modules graded by the
grading group G.Z/ (considered as a right G.Z/–set); see Definition 2.5.13. On this
subcategory there is a notion of degree-0 morphisms and so one obtains a triangulated
category H.eModA.Z/;G.Z//.

The goal of the rest of this section is to prove:
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Theorem 15 The bimodules 1CFDA.�/ induce a weak action of the genus-k bordered
mapping class groupoid MCG0.k/ on fH�.ModA.Z// j genus.F.Z//D kg. This action
preserves the subcategories fH.eModA.Z/;G.Z//g and acts by triangulated functors on
fH.eModA.Z/;G.Z//g.

In particular, for any pointed matched circle Z , the bimodules 1CFDA.�/ for the maps
�W F.Z/! F.Z/ induce a weak action of the genus-k bordered mapping class group
on H�.ModA.Z//, and for different choices of Z these actions are conjugate (in the
obvious sense). One easily digestible piece of Theorem 15 is that tensoring with the
bimodules 1CFDA.�/ induces equivalences of categories; this fact is Corollary 8.1.

Remark 8.6 It is important to note that it is the bordered mapping class group which
acts on the category, rather than the ordinary one. For example, if Z represents a
surface of genus one, and � denotes the mapping class which is gotten by Dehn twist
around the boundary of Z , then the tensor product with � induces a nontrivial action
on the category of A.Z/–modules. For instance, there is a module with rank one
over F2 (and trivial differential) whose tensor product with 1CFDA.�/ has homology
with rank 9; see Figure 20.

˛1

w

ˇ

z

˛2

˛1

w

ˇ

z

˛2

Figure 20: Action of the unbased mapping class group: the differential
module corresponding to one idempotent can be thought of as the type A

module associated to the doubly-pointed Heegaard diagram illustrated on the
left. The Dehn twist along the dotted curve (which can be thought of as Dehn
twist around the disk in the torus minus a disk) acts to give the diagram on
the right. Since there are no differentials, the rank of the homology of the
resulting module is 9 . (The diagram depicts a left-handed Dehn twist applied
to the ˇ–circle, which corresponds to the action of a right-handed Dehn twist
on the bordered three-manifold.)
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Remark 8.7 It is possible to refine Theorem 15 by allowing triangulated actions for
different grading sets beyond just G.Z/. For instance, consider the category eModA.Z/;�
defined to be the disjoint union, over all right G.Z/–sets S on which � acts freely, of
eModA.Z/;S . Here the “disjoint union” of categories means the category whose objects

are the union of the objects of the summands, with no morphisms between objects from
different summands, and with the inherited morphisms between objects from the same
summand. Then each eModA.Z/;S and therefore eModA.Z/;� are dg categories in the
usual sense, and MCG0.k/ acts by triangulated functors on fH.eModA.Z/;�/g.

Remark 8.8 Group actions on algebraic categories have seen considerable interest
recently; see for instance Ganter and Kapranov [9], as well as the references in Khovanov
and Thomas [16]. The reader might also wonder about groupish structures with more
interesting 2–morphisms; such objects are called 2–groups and are studied in Baez
and Lauda [2].

Remark 8.9 One could try to strengthen Theorem 15 as follows. Consider the 2–
category with objects pointed matched circles, Mor.Z;Z 0/ the set of diffeomorphisms
Fı.Z/!Fı.Z 0/, and 2–morphisms 2Mor.�;  / the set of isotopy classes of isotopies
from � to  . Then one could try to associate a weak 2–functor from this category to
the weak 2–category of algebras, bimodules and homotopy classes of A1–bimodule
maps. That is, one would associate a well-defined bimodule to each diffeomorphism
and an A1–homotopy equivalence of bimodules (well defined up to homotopy) to
each (isotopy class of) isotopy, satisfying appropriate coherence axioms. (One could
of course imagine going farther and look for a functor between the 1–category of
surfaces, diffeomorphisms, paths of diffeomorphisms, . . . and the 1–category of
differential algebras, differential bimodules, differential bimodule homomorphisms,
. . . .) Although this approach would lead to a slightly stronger result, it would require
additional technicalities (for example, consistent choices of perturbation data).

8.3 Construction of the mapping class group action

Before constructing the mapping class group action, we will need to study the DD–
identity bimodule.

We will need to consider simultaneously Z and �Z . To this end, recall from Section 3.2
that there is an orientation-reversing map

r W Z!�Z;

which induces the map ai 7!a4kC1�i on the points in Z (with respect to their orderings
induced by the orientations on Z and �Z ). This induces a map from Œ4k�=M to
Œ4k�=r.M /.
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Definition 8.1 Let Z be a pointed matched circle. If s and r.t/ form a partition of
Œ4k�=M , we say that the idempotents IA.Z/.s/ and IA.�Z/.t/ for A.Z/ and A.�Z/
are complementary idempotents.

Complementary idempotents show up in the generating set for 1CFDD for the standard
Heegaard diagram for the identity map, as follows:

Lemma 8.2 Consider the standard Heegaard diagram H for the identity map pictured
in Figure 19. The generating set S.H/ is in one-to-one correspondence with the set of
idempotents A.Z/: indeed, for each pair .I; I 0/ of complementary idempotents, there
is a unique generator x D x.I/ satisfying .I ˝ I 0/ �x D x .

Proof This follows from a straightforward inspection of the diagram.

We turn now to gradings on the identity type DD bimodule. The map

RW G.�Z/!G.Z/op

defined by R.s; �/D .s; r�.�// is a group isomorphism. Using this, we give G.Z/ the
structure of a left G.Z/�Z G.�Z/–set by the rule

.g1 �Z g2/� h WD g1 � h �R.g2/;

where the operation � on the right-hand-side refers to multiplication in G.Z/. When
referring to G.Z/ as a G.Z/�Z G.�Z/–set in this way, we denote it by T .

Lemma 8.3 For H the standard Heegaard diagram for the identity map, there is a
natural identification of the grading set SDD.H/ of 1CFDD.H/ with the G.Z/ �Z

G.�Z/–set T .

Proof Recall that Px0
is the image of the space of periodic domains under the

map from (6.2). SDD.H/ can be defined as the quotient of G.Z/ �Z G.�Z/ by
.R�R/.Px0

/. Another glance at the standard Heegaard diagram shows that Px0
is

generated by .0;�r�.m//�Z .0;m/, as m runs over intervals in Z connecting matched
pairs. The map

F W G.Z/�Z G.�Z/! T

defined by F.g1 � g2/ D g1 �R.g2/ induces an isomorphism of G.Z/�Z G.�Z/–
spaces

f W .G.Z/�Z G.�Z//=..R�R/.Px0
//! T:
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Lemma 8.4 Let Z be a pointed matched circle. Any grading-preserving homotopy
auto-equivalence of A.Z/;A.�Z/ 1CFDD.I/ as a type DD bimodule is homotopic to the
identity.

Proof It suffices to verify that for the standard Heegaard diagram H of the identity map,
pictured in Figure 19, the identity map is the only grading-preserving automorphism �

from 1CFDD.H/ to 1CFDD.H/.

It follows from Lemma 8.2 that our automorphism � is specified by algebra ele-
ments a.I;J / 2A.Z/ and b.I;J / 2A.�Z/, indexed by pairs I and J of primitive
idempotents for A.Z/, whose compatibility with the idempotents is given by

I � a.I;J / �J D a.I;J /; I 0 � b.I;J / �J 0 D b.I;J /;

(where I 0 is complementary to I and J 0 is complementary to J ), so that

�.x.I//D
X

J

.a.I;J /˝ b.I;J //˝x.J /:

To draw conclusions, we must turn to gradings. To this end, note that any two gen-
erators x.I/ and x.J / can be connected by a domain B with e.B/C nx.I /.B/C

nx.J /.B/D0, and @@R .B/Dr�.@
@L.B//. Thus, if we fix I , we can find one-chains ˛J

for each idempotent J , with the property that

gr0.x.J //D ..0; ˛J /�Z .0; r�.˛J ///� gr0.x.I//:

Let  and  0 be the grading refinement data for A.Z/ and A.�Z/, respectively.
Recall that

gr..a.I;J /˝b.I;J //˝x.J //D . .I/�Z 
0.I 0//�gr0.a.I;J /˝b.I;J //�gr0.x.J //:

Thus, if gr..a.I;J /˝ b.I;J //˝x.J //D gr.x.I//, then it follows that

gr0.a.I;J /˝ b.I;J // � gr0.x.J //D gr0.x.I//;

so that

gr0.a.I;J /˝ b.I;J //� ..0; ˛J /�Z .0; r�.˛J ///� gr0.x.I//D gr0.x.I//:

Hence (according to Lemma 8.3) there is another one-chain ˇ with the property that

gr0.a.I;J /˝ b.I;J // � ..0; ˛J /�Z .0; r�.˛J ///D .0; ˇ/�Z .0; r�.ˇ//:

Using mZ.˛J ; @ˇ/D�m�Z.r�.˛J /; @r�.ˇ//, it follows that gr0.a.I;J /˝b.I;J //D

.0; ˇ�˛J /�Z .0; r�.ˇ�˛J //. From Lemma 3.3, it follows that each of a.I;J / and
b.I;J / is an idempotent.

Geometry & Topology, Volume 19 (2015)



Bimodules in bordered Heegaard Floer 701

Thus, � has the form
�.x.I//D c.I; I/˝x.I/;

where here c.I; I/ can be either 0 or 1. The fact that � is an automorphism implies
that each of these terms is 1; ie � is the identity map.

Lemma 8.5 Let H and H0 be Heegaard diagrams representing � 2 MCG0.F.Z/;
F.Z 0//. Let

f;gW 1CFDA.H/! 1CFDA.H0/

be graded A1–homotopy equivalences of bimodules. Then f and g are A1–
homotopic.

Proof We start by considering the identity map IF.Z/ 2MCG0.F.Z/;F.Z//, with
the Heegaard diagrams HDH0 . By Lemma 8.4, 1CFDD.H/ has only one homotopy
class of auto-equivalences. By Corollary 8.1, 1CFAA.I/� � is an quasiequivalence of
categories from the category of type DD structures to the category of type DA structures,
and by Theorem 12,

1CFAA.I/� 1CFDD.H/' 1CFDA.H/:

Thus 1CFDA.H/ also has only one homotopy class of auto-equivalences.

The case where H ¤ H0 follows readily: 1CFDA.H/ and 1CFDA.H0/ are homo-
topy equivalent, so the set of equivalences from 1CFDA.H/ to 1CFDA.H0/ is iden-
tified with the set of homotopy auto-equivalences of 1CFDA.H/. Finally, the case
where �¤ I follows, since 1CFDA.�/ is carried by the equivalence of categories given
by 1CFDA.��1/� � to 1CFDA.I/ (again, by Theorem 12).

Proof of Theorem 15 For each mapping class Œ�� 2 MCG0.F.Z/;F.Z 0// choose
a diffeomorphism �W F.Z/! F.Z 0/ representing Œ��. Recall from Section 6.4 that
there is a canonical bordered Heegaard diagram H.�/ associated to � . For each �
choose also a generic almost complex structure J� on H.�/� Œ0; 1��R. Associated
to these choices is a well-defined bimodule 1CFDA.�/D 1CFDA.H.�/;J�/. Let F�
denote the functor

� � 1CFDA.�/W H.ModA.Z//! H.ModA.Z0//:

Now we define an action A of MCG0.k/ on fH.ModA.Z// j genus.F.Z//D kg, as in
Definition 8.5, as follows. First, let

A.Z/D H.ModA.Z//; AZ;Z0.Œ��/D F� :

It remains to define the correction terms Aa and Aa;b;c of Definition 8.3.
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By Theorem 4 and Lemma 8.5, given a pointed matched circle Z there is a unique
graded isomorphism 1CFDA.IF.Z//!

A.Z/ŒI�A.Z/ . Together with the canonical natural
isomorphism between the identity functor and � /�A.Z/ŒI�A.Z/ (see Lemma 2.3.20)
this defines a natural transformation

AZ W IH.ModA.Z//! FIF.Z/ :

Similarly, given Œ�12� 2 MCG0.A.Z1/;A.Z2// and Œ�23� 2 MCG0.A.Z2/;A.Z3//,
let �13 denote the chosen representative of Œ�23 ı�12� 2MCG.A.Z1/;A.Z3//. Then,
by the pairing theorem (Theorem 12) and Lemma 8.5 there is a unique isomorphism
(in the derived category)

ˆ123W
1CFDA.�12/� 1CFDA.�23/! 1CFDA.�13/:

This isomorphism induces a natural transformation

AZ1;Z2;Z3
.Œ�23�; Œ�12�/W F�23

ıF�12
! F�13

:

This completes the definition of the weak 2–functor A. It remains to check that A

satisfies the three commutative diagrams of Definition 8.3. But these follow trivially
from Lemma 8.5: both paths around the diagram correspond to graded isomorphisms
between a bimodule M and a bimodule of the form 1CFDA.�/, and that lemma
guarantees that there is a unique such isomorphism, so the diagrams must commute.

Finally, it is immediate from the definitions that these functors preserve the subcategories
H.eModA.Z/;G.Z//, and act by triangulated functors on them.

Remark 8.6 We have constructed an action of the mapping class group action on
the module category. The reader might be interested in its behavior on grading sets.
Specifically, if � 2MCG0.F.Z/;F.Z// is a strongly based mapping class, then one
can show that the grading set for 1CFDA.�; s/ is a left-right G.Z/–G.Z/–set, for
which both the left and the right actions are simply transitive. In turn, it is easy to see
that isomorphism classes of such G.Z/–G.Z/–sets are in one-to-one correspondence
with outer automorphisms of G.Z/ (fixing �). Thus, we obtain a representation
MCG0.F.Z/;F.Z//! Out.G.Z//. Projecting onto H1.F.Z//, of course, we get
the induced representation of the mapping class group on homology. But in fact, the
entire representation is also determined by its behavior on homology. For more on this,
see [20]; see also Lemma 10.3 for an explicit action in the case where g D 1.

9 Duality

In this section we will deduce Theorem 6 from the fact that 1CFAA.I/ and 1CFDD.I/
are quasi-inverses to each other (Definition 2.4.7) (which in turn follows from the
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pairing theorem (Theorem 5) and the fact that 1CFDA.I/' AŒI�A (Theorem 4)) and
the algebraic results from Section 2 (particularly Section 2.3.4). We give a genus-1
illustration of Theorem 6 in Section 10.3.

To keep notation simple, fix a pointed matched circle Z and let A D A.Z/ and
B DA.�Z/.

Recall from Section 2.3.3 that given a type D structure AM we let AM D AAA�AM

denote the corresponding type A module; and similarly for bimodules.

Lemma 9.1 Let C and E be A1–algebras. For any bimodules MBE and NBC , the
“tensoring with the identity map” morphism (see Proposition 2.3.32)

MorB. MBE ; NBC /!MorA.1CFAA.I/A;B� MBE ; 1CFAA.I/A;B� NBC /

is a quasi-isomorphism of .C; E/–bimodules.

Proof The fact that this map respects the bimodule structure is immediate from
Proposition 2.3.36.

As noted above, by Theorems 4 and 12, it is immediate that the bimodules B;A 1CFDD.I/
and 1CFAA.I/A;B are quasi-inverses to each other, as in Definition 2.4.7. It follows
from Lemma 2.4.9 that the functors

1CFAA.I/A;B� B � W H�.
BMod/! H�.ModA/;

�A�A;B 1CFDD.I/W H�.ModA/! H�.
BMod/;

are inverse equivalences of categories. But, on the level of morphisms, this says exactly
that the “tensoring with the identity” map

MorB.BM; BN /!MorA.1CFAA.I/A;B� BM; 1CFAA.I/A;B� BN /

is a quasi-isomorphism.

Proposition 9.2 There is a quasi-isomorphism of bimodules

MorB. BA 1CFDD.I/; BŒI�B/' 1CFAA.I/A;B:

Proof There are quasi-isomorphisms of G –set graded .B;A/–bimodules

MorB. BA 1CFDD.I/; BŒI�B/!MorA.1CFAA.I/A;B�B
B
A
1CFDD.I/; 1CFAA.I/A;B/

!MorA.AAA; 1CFAA.I/A;B/

!1CFAA.I/A;B:
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Here, the first map is induced by tensoring with the identity, and is a quasi-isomorphism
by Lemma 9.1. The second map is induced by naturality of Mor and is a quasi-
isomorphism because 1CFDD and 1CFAA are quasi-inverses. The third map comes
from Lemma 2.3.33. Note that all of these maps respect the G –set grading.

We are now in a position to prove Theorem 6, which we restate and generalize as
follows:

Theorem 16 Let Y be a bordered three-manifold with boundary parameterized
by F.Z/. Then

bCFA.Y /A.Z/ 'MorA.�Z/.A.Z/;A.�Z/ 1CFDD.I/;A.�Z/ bCFD.Y //

'MorA.�Z/.A.�Z/A.Z/
1CFDD.I/;A.�Z/bCFD.Y //:

Similarly, suppose Y12 is a strongly bordered three-manifold with boundary parameter-
ized by F.Z1/ and F.Z2/. Then

A.�Z1/1CFDA.Y12/A.Z2/

'MorA.�Z2/
�A.�Z2/

A.Z2/
1CFDD.IZ2

/;A.�Z1/;A.�Z2/1CFDD.Y12/
�
:

Proof As before, let ADA.Z/ and B DA.�Z/. By Proposition 2.3.40,

MorB. BA 1CFDD.I/; B bCFD.Y //'MorB.A;B 1CFDD.I/; B bCFD.Y //:

By definition (Equation (2.3.39)), Proposition 9.2, and Theorem 11 respectively,

MorB. BA 1CFDD.I/; B bCFD.Y //'MorB. BA 1CFDD.I/; BŒI�B/� B bCFD.Y /

'1CFAA.I/A;B� B bCFD.Y /

' bCFA.Y /A:

These isomorphisms are all maps of G –set graded modules.

The bimodule case is similar.

Remark 9.3 One might imagine that

bCFA.Y /A 'MorB.A;B 1CFDD.I/; B bCFD.Y //�AAA:

This is in fact the case. However, the most obvious analogue for bimodules is false.
See the authors [22].
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Remark 9.4 Like tensoring with 1CFDD.I/ or 1CFAA.I/, the duality exchanges the
actions of A.F; i/ and A.�F;�i/. (Since modules associated to manifolds with
connected boundary are supported in i D 0, this reversal of spinc –structures is invisible
in Theorem 6.)

Of course, the above discussion is much more useful once one calculates 1CFDD.I/.

Remark 9.5 Consider the type DD structure B which is generated by elements of
the form I.r/˝ I.s/, where here r; s � Œ2k� are complementary sets of subsets of
Œ2k�D Œ4k�=M , for a given pointed matched circle. Let R be the set of Reeb chords
for Z . For � 2R, let a.�/ 2 A.Z/ denote the algebra element associated to � , and
let a.��/ 2A.�Z/ denote the corresponding algebra element for the pointed matched
circle with the opposite orientation. We endow B with a differential which is given by

ı1.I.r/˝ I.s//D
X
�2R

I.r/a.�/Da.�/I.r 0/
.r 0;s0/ complementary

.a.�/˝ a.��//˝ .I.r 0/˝ I.s0//:

It is shown in [20] that the above explicitly-defined bimodule B is in fact quasi-
isomorphic to the bimodule 1CFDD.I/. (See also Proposition 10.1 for a verification of
this in the genus-one case.)

It is interesting to compare the bimodule of Remark 9.5 with the dualizing modules in
the theory of Koszul algebras. See for example [32].

10 Bimodules for the torus

In [21, Appendix A], we stated various bimodules for the torus. These included
the bimodules 1CFDD and 1CFAA for the identity cobordism, and also the type DA
bimodules for Dehn twists along generators for the mapping class group. In this section
we verify those claims. Bimodules for generators of the mapping class groupoid of a
surface with arbitrary genus, given using a different mechanism, are given in [20].

We use the notation for the torus algebra from Section 3.3 (mostly from [21]). In
Section 10.1, we calculate the AA and DD bimodules for the identity map. (The
same techniques can be used to calculate the DA bimodule of the identity map: we
do not bother with this, in view of Theorem 4, which ensures that it is simply the
identity bimodule. It is worth noting, though, that a direct calculation along the lines
of Section 10.1 would result in a different, though quasi-isomorphic, bimodule.) In
Section 10.2 we calculate the type DA bimodules which represent the mapping class
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group generators in genus-one. We conclude by giving an illustration of the duality
theorem (Theorem 6) in Section 10.3.

Note that we focus here on the case AD A.F; 0/. This is because A.F;�1/Š F2 ,
and A.F; 1/ is quasi-isomorphic to F2 , so all quasi-invertible bimodules over these
algebras are quasi-isomorphic to F2 .

10.1 Bimodules for the identity map of the torus

Consider the unique pointed matched circle Z for a surface of genus 1. In the present
section, we describe the bimodule 1CFAA.I; 0/, but first, we must set up some notation.
Recall that 1CFAA.I; 0/ is a right-right A.Z; 0/–A.�Z; 0/–bimodule. We write AD
A.Z; 0/, and B D A.�Z; 0/. Of course A Š B , but we still find it convenient to
distinguish them, to help record which actions we are using. Specifically, we think of
B as having idempotents which we denote j0 and j1 (corresponding to �0 and �1 in
A), and generators �i (corresponding to the �i in A). With these conventions, then,
we claim that the AA bimodule for the identity diffeomorphism of the torus (in the
i D 0 summand) is the AA bimodule illustrated in Figure 21. The idempotent actions
on the generators can be easily determined from the actions on the algebra (or indeed
they can be read immediately off the Heegaard diagram in Figure 22). We include only
two of them here and leave the others to the reader:

x � .�0˝ j0/D x; y � .�1˝ j1/D y :

Note that one can contract arrows to reduce to a quasi-isomorphic bimodule with only
two generators; however, in that model, the A1 operations look rather complicated.
(In particular, there are infinitely many different ones, ie the module is not operationally
bounded in the sense of Definition 2.2.41.)

We verify our description of the AA bimodule for the identity by drawing a suitable
Heegaard diagram and analyzing the holomorphic curves. Unfortunately, the canonical
Heegaard diagram for the identity map given by Definition 5.10 is not admissible.
This means that, although there are relatively few generators, we could have infinitely
many nontrivial A1–products (and hence infinitely many domains to consider). To
simplify matters, then, we apply some finger moves to get an admissible diagram H ,
as illustrated in Figure 22.

The diagram H has six generators: y D ae , xD bd , w1D bf1 , w2D bf2 , z1D c1e ,
and z2 D c2e . These can be connected by the domains labeled in Figure 22 to form
the graph shown in Figure 23.

This graph has the property that any homotopy class connecting two generators can be
realized as a path in the graph. Indeed, any positive domain connecting two generators
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2 /
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2 /C
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1 ;�
2 /

.�2
;�123

/

Figure 21: The type AA bimodule CFAAy.I; 0/: the labels on the arrows
indicate the A1 operations. For instance, the label .�23; �2/ on the arrow
from y to z2 means that m.y ; �23; �2/ contains a term z2 .

can be represented by a connected path of downward-pointing edges. For example,
there are two positive domains from w1 to w2 , and these are B2 and the composite
domain S1MR3 .

The regions corresponding to the various domains from Figure 23 represent polygons.
It follows that all the A1 operations from Figure 21 which drop height by one are
given by the corresponding labels; ie

m.w1; �1/D y ; m.z1; �1/D y ; m.y ; �2; �2/D x; m.x; �3/Dw2;

m.x; �3/D z2; m.w1/Dw2; m.z1/D z2:

The A1 relation for a type AA bimodule applied to the x components of m2.w1˝

�1˝ �2˝ �2/ and m2.z1˝ �2˝ �1˝ �2/ forces the arrows from w1 and z1 to x :

m.w1; �12; �2/D x;

m.z1; �2; �12/D x:
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�1

�2

�3

�3

�2

�1

z

B1

c1 c2

R1

a b

S3

R2 D S2 DM

d e
R3

f1

f2 B2

S1

Figure 22: Admissible Heegaard diagram for the identity map of the solid
torus: there are two handles attached to the surface, connecting the circles
that are vertically aligned with each other.

w1 z1

y

x

w2 z2

S1 R1

M

R3 S3

B2 B1

Figure 23: Graph of domains

Similar considerations force the arrows from y to w2 and z2 , from z1 to z2 , and
from w1 to w2 :

m.y ; �2; �23/Dw2; m.y ; �23; �2/D z2;

m.w1; �12; �23/Dw2; m.z1; �23; �12/D z2:
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Considering the w2 and z2 components of m2.z1˝ �2˝ �1˝ �23/ and m2.w1˝

�1˝ �23˝ �2/ respectively, we see that

m.z1; �2; �123/Dw2;

m.w1; �123; �2/D z2:

We must finally consider the possibility of alternative higher multiplications supported
by the positive domains we have found. For example, the domain S1MS3 , as we have
already seen, represents m.w1; �2; �123/D z2 , but has an alternative decomposition,
where we cut to the right wherever possible. This gives rise to a polygon representing

m.w1; �3; �2; �1; �2/D z2:

Inspecting the existing positive domains, it is clear that no other one can give rise to an
alternate A1 operation, as corresponding cuts are not possible.

This concludes the verification that the identity map gives rise to the bimodule pictured
in Figure 21. Having found all the holomorphic curves for the AA bimodule, it is easy
to write down also the type DD bimodule. To do this, we proceed as follows: we
relabel the algebra elements on the regions to be compatible with type D labelings (ie
swap the order of the generators on the boundary), then throw out some curves which
cannot contribute for idempotent reasons, and finally add up other curve counts.

For instance, a curve which used to count as m.w1; �1/D y now counts as giving a
term of �3˝y in @w1 . Also, the curve which used to count as m.w1; �12; �2/D x

now does not count. Finally, the contributions

m.w1; �123; �2/D z2 and m.w1; �3; �2; �1; �2/D z2

both contribute to the coefficient of .�123�2/˝ z2 in @w1 (and hence they cancel).
The results are summarized in Figure 24.

We can simplify this further, to obtain the following:

Proposition 10.1 There is a type DD identity bimodule for the torus with two genera-
tors p and q , satisfying

.�0˝ j0/ �p D p; .�1˝ j1/ � q D q;

and differential given by

@p D .�1�3C �3�1C �123�123/˝ q; @q D .�2�2/˝p:
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w1 z1

y

x

w2 z2

�3 �3

�2�2

�1 �1

1 1

�2
�123

Figure 24: The type DD bimodule CFDD^.I; 0/: the labels on the arrows
indicate differentials. For instance, the arrow from y to x signifies a term of
.�2�2/˝x in @y .

Proof Substitute

p D xC �1˝w1C �1˝ z1C �12�123˝w1;

q D y ;

in the description from Figure 24 to get a quasi-isomorphic submodule with the stated
differential. The idempotent actions follow immediately from the diagram. (Note that
the idempotents are the same as those arising from the interpretation of the generators
as generators for a type AA bimodule.)

The type DD module given in Figure 24 is bounded in the sense of Definition 2.2.56,
while the module given in Proposition 10.1 is merely left and right bounded.

Determining relative gradings is also a straightforward matter, as in Lemma 8.3.

10.2 The DA bimodules for the mapping class group of the torus

The mapping class group is generated by Dehn twists �m and �` along meridian and
longitude respectively (ie �m takes an n–framed knot complement to an .nC1/–framed
knot complement). We describe the summand 1CFDA. � ; 0/ of the type DA modules
for Dehn twists about these two curves and their inverses.
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`

Figure 25: Heegaard diagrams for mapping class group elements: we have
illustrated here genus-two bordered diagrams for the generators of the genus-
one mapping class group and their inverses, as indicated. In each of the four
diagrams, there are three generators in the i D 0 summand.

Heegaard diagrams for �m , ��1
m , �` and ��1

`
are illustrated in Figure 25. Each

of the four type DA structures 1CFDA.�m; 0/, 1CFDA.��1
m ; 0/, 1CFDA.�`; 0/, and

1CFDA.��1
`
; 0/ has three generators, which are labeled by four possible letters p ,

q , r , and s . ( 1CFDA.�˙1
m / does not have s and 1CFDA.�˙1

`
/ does not have r .) The

compatibility with the idempotents is given as follows:

�0 �p � �0 D p; �1 � q � �1 D q; �1 � r � �0 D r; �0 � s � �1 D s:

Next, we study the grading set for the modules. We will adopt the notation for
elements of G0 from [21, Chapter 11]; that is, elements of G0.T 2/ are written as tuples
g D .mI i; j ; k/ where m 2 1

2
Z is the Maslov component of g and i; j ; k are the

local multiplicities of Œg� 2 H1.Z n z; a/ at the three relevant components of Z n a;
see Section 3.3. Since G is a subgroup of G0 , this gives us notation for elements of G

as well.
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Definition 10.1 Let f W G!G be a group homomorphism. Let Gf be the associated
left-right G –G –space whose underlying set is G , and whose action is given by g1 ?

s � g2 D g1 � s � f .g2/, where ? denotes the left action on Gf , � denotes the right
action on Gf , and � denotes multiplication in G .

With this definition, if Gf ŠGg as left-right G –G –spaces, then f and g are conjugate
to one another.

Recall that the actions of the generating Dehn twists on homology is given by

.�m/�.m/Dm; .�m/�.`/DmC `;

.��1
m /�.m/Dm; .��1

m /�.`/D�mC `;

.�`/�.m/Dm� `; .�`/�.`/D `;

.��1
` /�.m/DmC `; .��1

` /�.`/D `:

Here, we are thinking of the homology classes m and ` as represented by local
multiplicities

mD .0; 1; 1/; `D .1; 1; 0/:

These have canonical lifts to elements in G , gotten by �mD gr.�23/ and z̀D gr.�12/;
ie (using the grading refinement data from (3.1)), we get

�mD .1
2
I 0; 1; 1/; z̀D .�1

2
I 1; 1; 0/

We define the following lifts of the action of homology to automorphisms of G.Z/:
fm , f �1

m , f` , and f �1
`

. These are determined by the property that they fix �, and
transform the other generators according to the following:

(10.2)

f �m.�m/D �m; f �m. z̀/D � � �m � z̀;
f �
�1
m .�m/D �m; f �

�1
m . z̀/D ��1

� �m�1
� z̀;

f �`.�m/D ��1
� �m � z̀�1; f �`. z̀/D z̀;

f �
�1
` .�m/D � � �m � z̀; f �

�1
` . z̀/D z̀:

Lemma 10.3 Let � 2 f�m; �
�1
m ; �`; �

�1
`
g. For the grading refinement data of (3.1), if

we base our grading sets around p , the intersection point in the �0 idempotent on both
the left and the right, then the grading set for 1CFDA.�/ is identified with Gf � , where
f � is the homomorphism corresponding to � as described in (10.2).
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With respect to these identifications of grading sets, we find

grm.p/D .0I 0; 0; 0/; grm.q/D .0I 0; 0; 0/; grm.r/D .
1
2
I 1; 1; 0/;

grm�1.p/D .0I 0; 0; 0/; grm�1.q/D .0I 0; 0; 0/; grm�1.r/D .�1
2
I �1;�1; 0/;

gr`.p/D .0I 0; 0; 0/; gr`.q/D .0I 0; 0; 0/; gr`.s/D .
1
2
I 1; 1; 0/;

gr`�1.p/D .0I 0; 0; 0/; gr`�1.q/D .0I 0; 0; 0/; gr`�1.s/D .�1
2
I �1;�1; 0/;

where the subscript on gr indicates which diagram we are considering.

p q

r q
r

p

�3 D3

�2 D2

�1 D1

�3D4

�2

�1

z

Figure 26: Heegaard diagram for �m , with labeled domains

Proof We describe in detail the calculations in the case where � D �m (and consider
gr D grm ). (The other cases are entirely parallel.) A basis for the space of periodic
domains �2.r; r/ is given by the domains D2CD3CD4 and D1CD2�D4 , with
diagrams labeled as in Figure 26.

Let ZLqZR be the boundary of the Heegaard diagram for � . The grading set for the
larger (G0 ) grading takes its values in the quotient of G0.�ZL/��G0.ZR/ (viewed as
a left-right G0.�ZL/–G0.ZR/–set) by relations coming from the periodic domains;
specifically,

gr0.p/D .1
2
I 0;�1;�1/ � gr0.p/ � .�1

2
I 0; 1; 1/;

gr0.p/D .1
2
I �1;�1; 0/ � gr0.p/ � .�1I 1; 0;�1/:

The first of these equations comes from D2CD3CD4 , which has e.D2CD3CD4/D

�2 and 2np.D2CD3CD4/D 2, r�.@
@L.D2CD3CD4//D .0;�1;�1/, @@R .D2C

D3CD4/D .0; 1; 1/. The second equation comes from D1CD2 �D4 , which has
e.D1CD2 �D4/ D �

1
2

and 2np.D1CD2 �D4/ D 1.) According to (6.12) (see
also Remark 3.14), we have gr.p/D  .�0/ � gr0.p/ � .�0/�1 ; but since  .�0/ is the
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identity, the above relations can be restated as

gr.p/D .1
2
I 0;�1;�1/ � gr.p/ � .�1

2
I 0; 1; 1/;

gr.p/D .1
2
I �1;�1; 0/ � gr.p/ � .�1I 1; 0;�1/:

It is now easy to see that the map from the grading set to Gf �m given by

(10.4) g1 � gr.p/ �g2 7! g1 �f
�m.g2/

(which evidently sends gr.p/ to .0I 0; 0; 0/) is an isomorphism of left-right G0–G0–
sets.

To calculate the grading of r , for example, consider the domain D2 from r to p .
This domain has e.D2/ D 0 and nr C np D 1=2, and hence it gives the relation
gr0.p/D .�1

2
I 0;�1; 0/?gr0.r/. Since gr.r/D .�1/ �gr0.r/ � .�0/�1 , it follows that

gr.r/D .1
2
I 1; 1; 0/:

A similar calculation (only now using the domain D1 ) shows gr.p/D gr.q/.

Next we turn to computing the explicit bimodules.

Proposition 10.5 The type DA bimodules for �m , ��1
m , �` and ��1

`
are as given in

Figure 27.

Proof We give the proof in detail for 1CFDA.�m/. We enumerate domains which
contribute to the type DA actions, organizing them by the algebra elements they
contribute on the type D side. These algebra elements in turn are determined by how
the domain meets @LH .

Algebra element 1 The only domain which is disjoint from @LH is D4 . That
represents a rectangle, which therefore contributes to ı1 . We denote this by writing

.r; �3/
D4
��! q;

to mean that q occurs in ı1.r; �3/.

Algebra element �1 There is only one valid domain which could contribute �1 ,
namely the domain D1 itself. Indeed, it is a rectangle, starting at p and ending at q .
Therefore, ı1.p; �1/ contains �1q , or graphically

.p; �1/
D1
��! �1˝ q:

Algebra element �2 The only domain which could contribute in this case is D2 ; and
that in turn is a bigon, giving

.r/
D2
��! �2˝p:
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p q

r

�m

�1˝�1C�123˝�123

C�3˝.�3;�23/

�
1

2
3
˝
�

1
2
C
�

3
˝
.�

3 ;�
2 /

� 2
3
˝
� 2

�23˝�23

�
2
˝

1 1
˝
� 3

p q

r

��1
m

�1˝�1C�123˝�123

�12˝.�123;�2/

�
3
˝

1
C
�

1
˝
�

1
2

�2˝.�23;�2/

1
˝
� 2

�23˝�23

�
2
˝
.�

3 ;�
2 /

� 2
3
˝
� 3

q p

s

�`

�2˝.�2;�12/

�
2
˝
.�

2 ;�
1 /

�23˝.�2;�123/

� 1
2
˝
� 1

�12˝�12

�3˝�3C�123˝�123

�
1
˝

1
C
�

3
˝
�

2
3

1
˝
� 2

q p

s

��1
`

�
2
˝

1

�12˝�12

1
˝
� 1

�3˝�3C�123˝�123

C�1˝.�12;�1/

�
1
˝
.�

2 ;�
1 /C

�
1

2
3
˝
�

2
3

� 1
2
˝
� 2

Figure 27: Type DA bimodules for torus mapping class group action. These
are the module associated to �m , ��1

m , �` , �1

`
respectively. The notation is as

follows. Consider the module for �m . The label �1˝ �1 on the horizontal
arrow indicates that m.p; �1/ contains a term of the form �1q . Similarly,
the label �3˝ .�3; �23/ on that arrow indicates that m.p; �3; �23/ contains
a term of the form �3q .

Algebra element �3 There are only two domains which can contribute �3 on the
type D side, and these are D3CD4 and D3C 2D4 , which we consider in turn.

D3CD4 This domain has two possible interpretations: either its input consists
of .p; �2�3/ or .p; �3; �2/. But the first interpretation is not valid: bilinearity over
the idempotents forces such a term to vanish. The second interpretation leads to
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considering the domain D3D4 , thought of as having a cut form p out to @RH . As
such, it represents an annulus with a cut parameter at r (whose other endpoints go
out to the other boundary component). Such an annulus is always represented by a
holomorphic curve. Hence we have

.p; �3; �2/
D3CD4
�����! �3˝ r:

D3 C 2D4 There are three possible interpretations of this domain: .p; �3; �23/,
.p; �23; �3/ or .p; �3; �2; �3/. The second interpretation is impossible because of
idempotents.

The third interpretation gives a moduli space whose expected dimension is nonzero; ie
the Maslov index of the moduli space is wrong. This is neatly formulated in terms of
the gradings calculated in Lemma 10.3. Specifically, substituting gradings calculated
from that lemma, we see that

��1
� gr.p˝ �3Œ1�˝ �2Œ1�˝ �3Œ1�/D �

2
� gr.p/ �f �.gr.�3/ � gr.�2/ � gr.�3//

D .1I �1; 0; 1/:

(Note that the notation �i Œ1� means the element �i 2 A with a shift in its grading.)
This is different from

gr.�3˝ q/D gr.�3/ � gr.q/D .0I �1; 0; 1/:

The reader might be concerned that this calculation depends on several auxiliary choices,
such as the choice of refinement data  and the identification of the grading set given
in Lemma 10.3. However, the conclusion that

��1 gr.p˝ �3Œ1�˝ �2Œ1�˝ �3Œ1�/D � � gr.�3˝ q/;

which rules out the possibility that �3˝q appears in m.p; �3; �2; �3/, is independent
of this choice (and indeed the exponent of � appearing on the right-hand side here
gives the dimension of the relevant moduli space.)

This leaves only the first possible interpretation

Q1W .p; �3; �23/
D3C2D4
������! �3˝ q:

(The label Q here signifies that we have not (yet) determined that this contribution is
indeed 1 .mod 2/.) Consider the A1 relation with inputs .p; �3; �2; �3/ and output
�3˝ q . The composite of

.p; �3; �2/
D3CD4
�����! �3˝ r
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with
.r; �3/

D4
��! q

gives one nontrivial term in this relation; the only possible alternate contribution is
gotten from the arrow Q1 under consideration. Thus, we have verified the existence of

.p; �3; �23/
D3C2D4
������! �3˝ q:

Algebra element �12 The possible domain is D1CD2 , thought of as a map

Q2W .r; �1/
D1CD2
�����! �12 � q:

But this is incompatible with the idempotents of q .

Algebra element �23 The domains are D2CD3 , D2CD3CD4 and D2CD3C2D4 .

D2CD3 This domain must have a cut out to @LH . After this cut is made, the domain
is a rectangle, giving a contribution

.q; �2/
D2CD3
�����! �23˝ r:

D2CD3CD4 This is a periodic domain, so could be interpreted to have initial and
terminal generator either p , q , or r . However, �23˝p cannot appear as the target
of a type DA action on p : the left idempotent of p is �0 , while the left idempotent
of �23 is �1 . Thus, we need consider only cases where the initial and terminal point
are q or r . We exclude first the latter case. Idempotents ensure that the only possible
interpretation of D2CD3CD4 as a nontrivial contribution to the type DA module
with initial generator r is to think of it as a domain from .r; �3; �2/ to �23˝ r . But
this is ruled out by gradings because

��1
� gr.r˝ �3Œ1�˝ �2Œ1�/D � � gr.r/ �f �.gr.�3/ � gr.�2//

D .1I 1; 2; 1//;

which is different from
gr.�23/ � gr.r/D .0I 1; 2; 1/:

Thus the initial and terminal generator must be q . Examining idempotents once again,
we see that there are only two possible interpretations of this domain. One is as a
domain from .q; �2; �3/ to �23˝ q . But this is ruled out by looking at gradings. The
only remaining interpretation of the domain is as a map

Q3W .q; �23/
D2CD3CD4
���������! �23˝ q:

We will now establish the existence of the contribution by Q3 , using the A1 relation,
together with the information about the type DA bimodule which we have so far

Geometry & Topology, Volume 19 (2015)



718 Robert Lipshitz, Peter S Ozsváth and Dylan P Thurston

collected. Specifically, consider the .�23˝ q/–coefficient of the A1 relation with
inputs .q; �2; �3/. We know that D2CD3 and D4 give a nonzero contribution of
m.m.q; �2/; �3/. Other terms in this A1 relation include m.q; �23/, which is counted
by Q3 . Possible other terms are m.m.q/; �2; �3/ and m.m.q; �2; �3//. Looking back
at those terms which contribute algebra elements 1, �2 , �3 and �23 , we see there are
no possible such terms. This forces the existence of

.q; �23/
D2CD3CD4
���������! �23˝ q:

D2CD3C2D4 This domain starts at r and terminates at q . There are two possible
interpretations of the domain to �23 ˝ q : one starts at .r; �3; �23/ while the other
starts at .r; �3; �2; �3/. Both possibilities are excluded by considering gradings:

��1 gr.r˝ �3Œ1�˝ �23Œ1�/D � � gr.�23˝ q/;

��1 gr.r˝ �3Œ1�˝ �2Œ1�˝ �3Œ1�/D �
2
� gr.�23˝ q/:

Algebra element �123 The domains now are D1CD2CD3 and D1CD2CD3CD4 .

D1CD2CD3CD4 , first visit There are two conceivable interpretations of this
domain compatible with the idempotents: one with input .p; �123/, and the other
with input .p; �3; �2; �1/. The first is forced to exist by the .�123˝ q/–coefficient
of the A1 relation with inputs .p; �1; �23/, since we have already verified that
m2.m2.p; �1/; �23/ D �123 ˝ q . We will return to the second interpretation of
D1CD2CD3CD4 ; but first we turn to the easier analysis of D1CD2CD3 .

D1CD2CD3 The initial point is p and the terminal point r , and hence it follows
readily that the only interpretation of this domain is as a map

Q3W m.p; �12/
D1CD2CD3
���������! �123˝ r:

We verify the existence of this map, by considering the �123˝r –component of the A1
relation with inputs .p; �12; �3/. One contribution to this is furnished by the domain
D1CD2CD3CD4 , interpreted as giving the operation m2.p; �123/D �123˝r . The
only conceivable alternate contribution is provided by the composite of the presently
considered domain (Q3 ) with

.r; �3/
D4
��! �1˝ q;

hence forcing the existence of

m.p; �12/
D1CD2CD3
���������! �123˝ r:
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D1CD2CD3CD4 revisited Recall that this domain had two interpretations; one
with one with input .p; �123/, and the other with input .p; �3; �2; �1/. We already
verified the existence of the curve with the first interpretation.

We will see that m4.p; �3; �2; �1/ vanishes (ie the contribution of D1CD2CD3CD4

under this second interpretation is zero), but this is surprisingly subtle. The A1 relations
on the type DA structure are not rich enough to give information in this case: the inputs
cannot be factored, and the product of any nonidempotent element with coefficient
�123 vanishes. Moreover, there are two types of curves which can contribute to this
m4 : in one, there are two cuts going out to @LH , and in the other, there are no such
cuts. To calculate the m4 , we use some information which can be extracted from the
type AA bimodule, which has the advantage that the two kinds of curves are counted
differently. To this end, we label chords on the left of the diagram in a type A manner,
ie placing algebra elements �1 , �2 and �3 along @LH in the regions D3 , D2 and D1

respectively.

Interpret the domain D1CD2CD3CD4 as contributing in the type AA bimodule.
Cutting all the way out to the boundary at each corner, we obtain a rectangle. Traversing
its boundary, we find a contribution

X W .p; �3; �2; �1; �3; �2; �1/
D1CD2CD3CD4
������������! q:

We wish to argue that there is also a curve contributing

Y W .p; �123; �3; �2; �1/
D1CD2CD3CD4
������������! q:

To see this, we consider the A1 relation with inputs .p; �3; �2; �1; �1; �23/ (recall
that the positions of the �i relative to the �i have no meaning). One contribution to
this A1 relation is the juxtaposition

.p; �3; �2; �1/
D3CD4
�����! r

(an annulus, which is easily seen to have a representative) with

.r; �1; �23/
D1CD2
�����! q

(a rectangle). The only term that can cancel this juxtaposition is m4.p; �123; �3; �2; �1/,
forcing the existence of the curve Y .

Turning attention back to the type DA bimodule, observe that both the curves X and Y

contribute to the .�123˝q/–coefficient of m4.r; �3; �2; �1/. Thus, taken together we
see that the contribution of D1CD2CD3CD4 to m4.p; �3; �2; �1/ vanishes. (Recall
that in the calculation of the type DD bimodule for the identity a similar mechanism
applied: the module was deduced from the AA identity bimodule, and there were two
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distinct A1 operations in the AA bimodules from w1 to z2 which canceled when
interpreted as contributions in the type DD identity bimodule.)

This completes the verification that 1CFDA.�m/ has the form stated in Figure 27. The
other mapping class group generators can be calculated in an entirely parallel way.

10.3 Duality for the genus-one handlebody

We illustrate now the duality theorem, Theorem 6, by explicitly verifying that the
description of the type A module for the genus-one handlebody gotten by inspecting
a Heegaard diagram with one generator is quasi-isomorphic to the one gotten from
the duality theorem. This calculation will use the type DD identity bimodule in the
genus-one case.

Continuing notation from Section 10.1, we let ADA.Z; 0/ and BDA.�Z; 0/. We
abbreviate A;BD for A;B 1CFDD.I/.

Our goal is to calculate the B–module MorA.BBB�A;BD;AN /, where here AN is the
type D module associated to a 0–framed solid torus from [21, Section 11.2]. We will
use the interpretation of this morphism space provided by Corollary 2.3.37. AN has
a single generator as a type D module; and hence AN D AAA�AN is spanned by
three elements: x , �2˝x and �12˝x . Note that �2˝x is in the left �1 –idempotent,
while the two other elements are in the left �0 –idempotent.

Figure 28: Module generators: in the top row, we have displayed the two
primitive idempotents (�0 and �1 respectively) in the torus algebra. In the
second row, we exhibit the three generators (x , �12˝x , and �2˝x respec-
tively) of the module for a framed handlebody. In the third row, we have
displayed the eight generators of DA

B . They are �0˝ j0 , �0˝ �2 , �0˝ �12 ,
�1˝ j1 , �1˝ �1 , �1˝ �3 , �1˝ �23 , and �1˝ �123 respectively.

The differential on AN is given by ı1.x/ D �12˝ x , so the differential on AN is
given by @.x/D �12˝x and @.�2˝x/D @.�12˝x/D 0.
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The module DA
B D BBB � A˝BD has eight generators, which are naturally labeled

�0˝j0 , �0˝�2 , �0˝�12 , �1˝j1 , �1˝�1 , �1˝�3 , �1˝�23 , and �1˝�123 . These are
all enumerated in Figure 28. A homomorphism from DA

B to AN is uniquely specified
by where it takes each of those eight generators. Of those eight generators, three
are in the �0 –idempotent, whereas five are in the �1 –idempotent. Thus, the vector
space MorA. DA

B ;AN / has 11 basis vectors, which are gotten by the six possible maps
sending any of the three elements f�0 ˝ j0 , �0 ˝ �2 �0 ˝ �12g to any of the two
elements fx; �12˝ xg, or the five maps gotten by sending any of the five elements
f�1˝ j1; �1˝ �1; �1˝ �3; �1˝ �23; �1˝ �123g to �2˝x .

X

T1

T2

H3

H4

H5

H1

H2

T3

T4

T5

Figure 29: Differentials in MorA. DA
B ;AN /: we have two charts, indicating

the two types of elements (corresponding to the two left-idempotent), wherein
we relabel the eleven basis vectors MorA. DA

B ;AN / by X , fTig
5
iD1

and
fHig

S
iD1 . For instance, T1 is the element which carries �0 ˝ �2 to the

element x , while H4 takes �0˝ �2 to �12˝x . There are three additional
components to the differential not captured by the convention that @Ti D

Hi C � � � : an H3 term in @X , an H4 term in @T1 , and an H5 term in @T2 .

These basis vectors are relabeled as indicated in Figure 29. The relabeling has the
convenient property that for all i D 1; : : : ; 5, the differential of Ti contains a nontrivial
component in Hi ; indeed, these are all the components of the differential coming
from DA

B . There are three additional components in the differential, taking X to H3 , T1

to H4 , and T2 to H5 . (These are all components coming from the differential in AN ).

The homology of this complex is carried by X CT3 . It is straightforward to verify that

.X CT3/ � �3 DH1; @.T1CT4/DH1;

.T1CT4/ � �2 DX CT3; .T1CT4/ � �23 DH1:
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Setting y DX CT3 , we see readily that this module is A1–homotopy equivalent to
the module generated by y , with A1 relations indexed by integers i � 0

m3Ci.y ; �3;

i‚ …„ ƒ
�23; : : : ; �23; �2/D y ;

which is in fact the module which is obtained from the inspection of holomorphic disks
(see [21, Lemma 11.22]).
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