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Limit groups over partially commutative groups
and group actions on real cubings

MONTSERRAT CASALS-RUIZ

ILYA KAZACHKOV

The study of limit groups, that is, finitely generated fully residually free groups, was
a key first step towards the understanding of the elementary theory of a free group.
In this paper we conduct a systematic study of the class U of finitely generated fully
residually partially commutative groups.

Our first main goal is to give an algebraic characterisation of the class U: a finitely
generated group G is fully residually partially commutative if and only if it is a
subgroup of a graph tower (a group built hierarchically using partially commutative
groups and (nonexceptional) surfaces.) Furthermore, if the group G is given by its
finite radical presentation, then the graph tower and the embedding can be effectively
constructed. This result generalises the work of Kharlampovich and Miasnikov on
fully residually free groups.

Following Sela’s approach to limit groups, the second goal of the paper is to provide
a dynamical characterisation of the class U . We introduce a class of spaces, called
real cubings, as higher-dimensional generalisations of real trees and show that a
specific type of action on these spaces characterises the class U: a finitely generated
group acts freely cospecially on a real cubing if and only if it is fully residually
partially commutative. As a corollary we get that (geometric) limit groups over
partially commutative groups are fully residually partially commutative. This result
generalises the work of Sela on limit groups over free groups.

20F65, 20F67; 20F70, 20E08

1 Introduction

Around 1945, A Tarski asked whether or not free groups have the same elementary
theory and if their theory is decidable. Since then, Tarski problems have motivated a
large body of research which has uncovered deep connections between model theory,
geometry and group theory and served as a nexus for many now classical results
in geometric group theory and theoretical computer science. Tarski problems were
finally solved in 2006 in a series of papers; see Sela [54] and Kharlampovich and
Myasnikov [41] and references there.
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A key step in the work on Tarski problems was the study of groups that belong to
the universal class of free groups. In his work [49], Remeslennikov established a link
between model theory and group theory by showing that the class of groups universally
equivalent to a free group is exactly the class of fully residually free groups, that is, the
class of groups for which, given any finite set of elements from a fixed group, there
exists a homomorphism from the group to a free group which is injective on this set.
In [3], Baumslag, Myasnikov and Remeslennikov characterised this class of groups in
algebro-geometric terms and show that finitely generated fully residually free groups
are coordinate groups of irreducible algebraic sets over free groups.

First structural results on fully residually free groups were obtained by Kharlampovich
and Miasnikov in [38]. In their work, the authors show that limit groups can be obtained
recursively from free groups, (nonexceptional) surface groups and free abelian groups
by a finite sequence of amalgamated free products and HHN-extensions over Z. Among
other things, the existence of such decomposition implies that finitely generated fully
residually free groups are finitely presented and, moreover, coherent.

In his work, Sela suggested a new, more geometric approach to the analysis of Dio-
phantine sets and the study of first order properties of free groups; see [52]. Sela
characterised the multifaceted class of fully residually free groups via their actions
on real trees and popularised these groups as limit groups. Using structural theorems
for groups acting on real trees, the author obtained a hierarchical description of limit
groups in terms of their JSJ–decomposition. Following Sela’s approach, Champetier
and Guirardel gave a topological characterisation of the class of limit groups as limits
of free groups in a compact space of marked groups and proved that this class is
the smallest containing finitely generated free groups, and stable under free products
and under taking generalised doubles over a group in the class; see Champetier and
Guirardel [15]. The versatile nature and rich structure of the class of limit groups made
them an object of intense study.

Inside the class of limit groups there is a prominent subclass that clearly stands out:
the class of !–residually free towers (alias NTQ–groups). A finitely generated group
is an !–residually free tower if it belongs to the smallest class of groups containing
finitely generated free groups and (nonexceptional) surface groups, which is stable
under taking free products, free extensions of centralisers, and attaching retracting
surfaces along maximal cyclic subgroups.

The importance of this class is two-fold. On the one hand, !–residually free towers can
be used to characterise limit groups, namely a group is a limit group if and only if it is
a subgroup of an !–residually free tower. This characterisation is crucial in the work
of Kharlampovich and Miasnikov to determine the algebraic structure and finiteness
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properties of limit groups (see also [15]). On the other hand, towers are key to describe
the class of finitely generated groups elementarily equivalent to a free group:

Theorem (Kharlampovich and Miasnikov [41]; Sela [54]) A finitely generated
group G is elementarily equivalent to a free group if and only if it is a hyperbolic
!–residually free tower.

The main goal of this paper is to undertake a systematic study of the universal class
defined by a partially commutative group. Recall that a group G is called partially
commutative (or right-angled Artin) if it is given by a presentation

G D hx1; : : : ;xn jRi;

where R� fŒxi ;xj �D 1 j i; j D 1; : : : ; n; i ¤ j g.

Some of the aforementioned characterisations of limit groups are of general nature and
can be restated in the setting of partially commutative groups; see Baumslag, Myas-
nikov and Remeslennikov [3], Myasnikov and Remeslennikov [47] and Daniyarova,
Myasnikov and Remeslennikov [19] (recall that partially commutative groups are linear
and hence equationally Noetherian).

Theorem [19] Let G be a partially commutative group and G a finitely generated
group. Then the following statements are equivalent:

� G is universally equivalent to G .

� G is fully residually G .

� G is the coordinate group of an irreducible algebraic set over G .

Our first main goal is to describe the algebraic structure of finitely generated fully
residually partially commutative groups. A naturally arising obstacle here is that the
structure of these groups is at least as complex as the structure of subgroups of partially
commutative groups. In turn, subgroups of partially commutative groups are known to
be very diverse: surface groups and graph braid groups as well as fundamental groups
of CAT.0/ 3–manifolds are virtually subgroups of partially commutative groups (see
Crisp and Wiest [18] and Liu [43]); and complicated: some of them exhibit remarkable
finiteness properties (see Stallings [56], Bieri [6] and Bestvina and Brady [5]). With
this in mind, our strategy is to introduce a new class of groups with a solid algebraic
structure that we call graph towers, and prove that any finitely generated fully residually
partially commutative group is a subgroup of a graph tower.
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Graph towers, as generalisations of !–residually free towers, can be loosely described
as the smallest class of groups containing partially commutative groups and (nonexcep-
tional) surface groups, which is stable under taking graph products, (free) extensions of
centralisers, and attaching retracting surfaces along maximal cyclic subgroups (the way
the surfaces are attached is using some type of “graph product with amalgamation”;
see definition below). This endows graph towers with two natural underlying structures
(which naturally hints at their name): the tower structure, as quotients of !–residually
free towers by (the normal subgroup generated by a set of) commutation relations;
and the graph product structure, as quotients of some partially commutative group
by a specific set of relations (surface and commutation relations). More formally,
graph towers are defined recursively using algebraic constructions as follows. Graph
towers of height 0 are partially commutative groups. A graph tower Tl of height l

is constructed by taking an amalgamated product (and HNN–extension) of a graph
tower Tl�1 of height l �1 and a direct product of either a free abelian group, or a free
group or a surface group with boundary, and the centraliser CTl�1.D/ of (a certain)
subgroup D of Tl�1 , where the amalgamation is taken over this centraliser CTl�1.D/.
More precisely, we have:

Definition (see Lemma 5.3) Let partially commutative groups be graph towers of
height 0. Assume that graph towers Tl�1 of height l � 1 have been constructed. Then
a graph tower of height l has one of the following presentations:

(a1) Tl�1 �C
Tl�1 .D/ .CTl�1.D/ � hxl

1
; : : : ;xl

ml
i/ (basic type, D is a certain non-

abelian subgroup of Tl�1 ).

(a2) Tl�1 �C
Tl�1 .D/ .CTl�1.D/�hxl

1
; : : : ;xl

ml
j Œxl

i ;x
l
j �D 1; 1� i; j �ml ; i ¤ j i/

(basic type, D is a certain abelian subgroup of Tl�1 ).

(b1) Tl�1 �C
Tl�1 .u/ .CTl�1.u/� hxl

1
; : : : ;xl

ml
j Œxl

i ;x
l
j �D 1; 1 � i; j �ml ; i ¤ j i/

(abelian type, u is a nontrivial irreducible root element; see page 735 for the
definition).

(b2) Tl�1 �C
Tl�1 .D/ .CTl�1.D/�hxl

1
; : : : ;xl

ml
j Œxl

i ;x
l
j �D 1; 1� i; j �ml ; i ¤ j i/

(abelian type, D is a certain nonabelian subgroup of Tl�1 ).

(c) Tl�1�C
Tl�1 .D/�hu2gC1;:::;umi .hu2gC1; : : : ;um;x

l
1
; : : : ;xl

ml
jW i�CTl�1.D//

(surface type, W is a nonexceptional quadratic equation and D is a certain
nonabelian subgroup of Tl�1 ).

At this point, we are vague about the conditions on the subgroup D . This makes some
cases to seem redundant: (b1) seems a particular case of (a2). The definition will be
made precise and the difference will be clear when constructing the graph towers; see
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Section 5. Informally, the subgroups D of Tl�1 behave as directly indecomposable
canonical parabolic subgroups (see page 735 for definition), ie they are subgroups gen-
erated by some generators of Tl�1 which are discriminated (in a “minimal way”) into
directly indecomposable canonical parabolic subgroups of the partially commutative
group G ; hence, since u need not be a generator, formally it does not belong to the
subgroup D ; see Section 5.

Notice that the class of graph towers naturally extends the class of !–residually free
towers. Indeed, if the subgroup D of an !–residually free tower is nonabelian, then
since centralisers in a freely discriminated group Tl�1 are commutative transitive, it
follows that CTl�1.D/ is trivial and so, in this case, the decompositions listed in the
definition correspond to free products, and amalgamated products and HNN–extensions
(over infinite cyclic groups). If the subgroup D is abelian, then CTl�1.D/ is a maximal
abelian subgroup of Tl�1 and the decomposition corresponds to an amalgamated
product over a (finitely generated) free abelian group.

Once the class of graph towers is introduced, we are in the position to state one of the
main results of our paper.

Theorem A finitely generated group G is a fully residually partially commutative
group if and only if it is a subgroup of a graph tower.

Furthermore, if the groups G is given by its finite radical presentation, then the
corresponding graph tower T and the embedding of G into T can be constructed
effectively.

This result generalises the work in [38] (see also [15]) which is foundational in the
solution of Tarski problems for free groups.

As we already mentioned above, partially commutative groups are equationally Noe-
therian and hence any finitely generated residually G group is a subdirect product
of the direct product of finitely many fully residually G groups; see the authors [13]
and [3]. We show that such an embedding can be given effectively.

Theorem Let G be a finitely generated residually G group given by its finite radical
presentation. Then one can effectively construct an embedding of G into the direct
product of finitely many fully residually G groups.

An analogous result for free groups was proven by Kharlampovich and Miasnikov
in [38] and later by Bridson, Howie, Miller and Short in their work on the structure of
finitely presented residually free groups; see [10].
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All of the aforementioned results are based on the combinatorial process to describe
homomorphisms from any finitely generated group to partially commutative groups
developed by the authors in [14].

In more geometric terms, Sela characterised limit groups via their action on real trees.
He noticed that groups that admit infinitely many (nonconjugate) homomorphisms to
a free group have a special type of action on real trees and defined limit groups as
quotients of these groups by the (stable) kernel of the action. He then used structural
theorems on groups acting on real trees to describe the hierarchical structure of limit
groups in terms of their abelian JSJ–decomposition. When one tries to pursue an
analogous geometric approach for limit groups over partially commutative groups, one
immediately runs into some natural difficulties, namely:

� On what type of spaces do limit groups over partially commutative groups act?
What is the geometry of these spaces?

� Are there any structural theorems for groups acting on these spaces (eg an
analogue of Rips’ theorem for groups acting on real trees)?

� What type of decomposition describes the structure of limit groups over partially
commutative groups?

In Section 9 we conduct the first steps to address the aforementioned questions: we
introduce a new class of spaces, that we call real cubings on which limit groups over
partially commutative groups act naturally and prove structural results for a specific
type of group actions on real cubings which we call essentially free cospecial. The
type of action we study is restrictive and in fact we show that it characterises the class
of limit groups over partially commutative groups. Namely, we prove:

Theorem Let G be a finitely generated group. The group G acts essentially freely
cospecially on a real cubing if and only if it is a limit group over a partially commutative
group if and only if it is a subgroup of a graph tower.

As a corollary, we obtain a generalisation of Sela’s characterisation of (geometric) limit
groups as fully residually free groups.

Corollary A finitely generated group G is a (geometric) limit group over a partially
commutative group G if and only if it is fully residually G .

In the case of free actions, the above theorem results in the following corollary, which
can be likened to Rips’ theorem on free actions on real trees (see Section 10 for further
discussion).
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Corollary A finitely generated group G acts freely, essentially freely and cospecially
on a real cubing if and only if G is a subgroup of the graph product of free abelian and
(nonexceptional) surface groups.

In particular, if the real cubing is a real tree, then G is a (subgroup of) the free product
of free abelian groups and (nonexceptional) surface groups.

The results of our work bring out some interesting questions and new directions as
well as suggest ways to approach them. We now briefly list some of them and refer the
reader to Section 10 for further discussion.

Firstly, the structural results on limit groups over partially commutative groups and
graph towers open ways to tackle a number of questions for these classes of groups,
for instance:

� Are the conjugacy and isomorphism problems decidable for graph towers?

� Are graph towers hereditary conjugacy separable?

� Are quasiconvex subgroups of graph tower over partially commutative groups
virtual retracts?

� Are graph towers virtually special?

� What is the rank gradient and homology of a graph tower?

� Do partially commutative groups have finite Krull dimension?

In a different vein, our work points towards a generalisation of Rips’ theory of groups
acting on real trees. In the free group case, Rips’ machine takes a (free) action of a
finitely presented group on a real tree and analyses the dynamics of this action. The
machine shows that the action admits a decomposition in simpler pieces and that these
pieces correspond to dense actions of abelian groups on a line, or actions of a surface
group on a tree dual to a foliation, or are simplicial or Levitt-type actions of a free
group. When stated this way, there is no obvious connection between Rips’ machine
and the Makanin–Razborov process for analysing homomorphisms. However, both
procedures are closely related. A key point is that using the geometry of real trees,
one can encode the dynamics of the group’s action into a foliated band complex; in
turn, band complexes can be likened to generalised equations and the final punchline
is that the process to analyse generalised equations (the Makanin–Razborov process)
can be naturally extended to analyse foliated band complexes. Our hope is that good
actions on real cubings can be encoded into multifoliated band complexes, which can
be interpreted as constrained generalised equations and that the procedure we describe
in this paper will guide the analysis of the corresponding dynamics.
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Last but not least, just as the class of !–residually free towers plays a crucial role
in the classification of groups elementarily equivalent to a free group [41; 54], it is
our hope that the class of graph towers will play a similar role in the classification of
groups elementarily equivalent to a given partially commutative group.

Organisation of the paper

We now outline the organisation of the paper. In Section 2, we review basic notions
and fix notation on partially commutative groups and algebraic geometry over groups.

Before we describe the content of the next sections, we present the strategy for our
approach and explain the difficulties that one needs to overcome. In the free group
case, Kharlampovich and Miasnikov showed that given a limit group G one can
effectively construct an !–residually free tower TG and an embedding i W G! TG .
This construction essentially relies on the Makanin–Razborov process for describing the
set of homomorphisms from G to a free group. The Makanin–Razborov diagram is a
finite rooted tree, whose vertices v are labelled by finitely generated groups Gv together
with (a subgroup of) the automorphism group of Gv ; leaves are just labelled by free
groups; and edges .v; v0/ are labelled by proper epimorphisms from Gv to Gv0 . This
diagram describes the set of all homomorphisms from G to a free group, namely each
homomorphism ' from G to a free group “factors” through a branch v0; v1; : : : ; vk

of the diagram, ie ' is the composition  0�v0;v1
 1 � � ��vk�1;vk

� , where  i is an
automorphism of group associated to the vertex vi , �vi ;viC1

is the epimorphism
labelling the edge .vi ; viC1/ and � is a homomorphism from the free group associated
to the leaf vk to a free group.

Each vertex v in the diagram has an associated type: abelian, surface, linear or trivial.
In turn, each of these types determines a splitting in the JSJ–decomposition of Gv
(or a free splitting), that is, a decomposition of Gv as an amalgamated product (or
HNN–extension) over an abelian (maybe trivial) subgroup. Furthermore, since the
group G is a limit group (that is fully residually free), one can show that there is a
discriminating family that factors through a branch of the diagram. Using induction on
the height of this branch and taking into consideration the types of the vertices in the
branch and so the structure of the groups that occur in the branch, one constructs the
!–residually free tower and the corresponding embedding.

Along these lines, we expected to use the analogue of the Makanin–Razborov process
for partially commutative groups presented in [14] to construct the corresponding graph
towers. However, there is an essential difference: the type of a vertex alone does not
determine the structure of the corresponding group. The main obstruction to obtaining
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splittings is the presence of commutation relations in the presentation; see Example 3.1
in Section 3.

A key notion to overcome this setback is that of tribes. Roughly speaking, two generators
belong to the same tribe if the set of generators with whom they commute is the same, ie
the generators xi and xj of Gv belong to the same tribe if for any xk the commutator
Œxi ;xk � is a relation of Gv if and only if so is Œxj ;xk �.

If the type of the vertex v is abelian, then, as in the free group case, we do obtain a
splitting. If the type of a vertex is quadratic (type 12), then we show that if the group of
automorphisms associated to the vertex is nontrivial and so there is dynamics associated
to Gv , then this dynamics occurs inside a tribe. Thus, in the quadratic case, it is the
presence of nontrivial dynamics that assures the splitting of the group. However, this
approach is insufficient to obtain a splitting in the linear case: even when the group of
automorphisms is nontrivial, we could not directly prove that then the dynamics occur
inside a tribe and obtain an splitting of the group.

Intuitively, the main difference between the quadratic and linear cases is that the
dynamics in the quadratic case, as in the free group case, is “mixing” and this forces
uniformity on the type of commutation constraints involved in the action which in turn
implies that the dynamics occur inside a tribe; however, in the linear case the dynamics
need not be “mixing” and so we cannot use it to get control on the commutation
constraints.

For this reason, we were forced to modify the treatment of the linear case in the process
presented in [14]. The main idea is to force by construction that the dynamics in
the linear case happen inside a tribe. This is achieved by adding a new case in the
description of our process from [14, Case 6.5]. The main goal of Section 3.1 is to
show that under this additional assumption on the linear case, the main result of [14]
still holds, that is one can still construct a finite Makanin–Razborov-type diagram that
describes all homomorphisms (and for which the dynamics of the groups associated to
the vertices are inside a tribe). We call this new diagram, the tribal solution tree.

In Section 4, we show that the groups Gv associated to vertices of the tribal solution
tree that have nontrivial dynamics do split, that is they can be presented as amalgamated
products (and HNN–extensions); we further find the explicit presentations for these
groups.

In Section 5 we introduce the notion of graph tower and in Section 6 we show how to
associate a graph tower to a given branch of a tribal solution tree.

In Section 7 we prove that the graph towers we constructed are discriminated by a
family of homomorphisms induced by the homomorphisms that factor through the
branch of the tribal solution tree that defines the tower.
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In Section 8 we prove our embedding results.

Theorem Given a limit group G over a partially commutative group G one can
effectively construct a graph tower T and an embedding i W G! T.

Given a residually G group G one can effectively construct finitely many limit groups
G1; : : : ;Gk and an embedding of G into the direct product G1 � � � � �Gk .

In Section 9, we take a more geometric perspective and define real cubings as ultralimits
of cubings of bounded width. We then introduce a specific type of group actions on
real cubings that we call essentially free cospecial. We proceed to show that these
actions characterise the class of limit groups and give a generalisation of Sela’s result on
geometric limit groups over free groups and fully residually free groups by proving that
(geometric) limit groups over a partially commutative group G are fully residually G .

Finally, in the last section, we discuss some open problems and give an outlook.
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2 Basics

2.1 Partially commutative groups

In this section we recall some preliminary results on partially commutative groups and
introduce the notation we use throughout the text.

Let � D .V .�/;E.�// be a (undirected) simplicial graph. Then the partially commu-
tative group G DG.�/ defined by the (commutation) graph � is the group given by
the presentation

G D hV .�/ j Œv1; v2�D 1 whenever .v1; v2/ 2E.�/i:

We note that G is not necessarily finitely generated.
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Let � 0D .V .� 0/;E.� 0// be a full subgraph of � . It is not hard to show (see for instance
Esyp, the second author and Remeslennikov [24]) that the partially commutative
group G0 D G.� 0/ is the subgroup of G generated by V .� 0/, ie G.� 0/ D hV .� 0/i.
Following Duncan, the second author and Remeslennikov [22], we call G.� 0/ a
canonical parabolic subgroup of G .

We denote the length of a word w by jwj. For a word w 2 G , we denote by xw a
geodesic of w . Naturally, j xwj is called the length of an element w 2G . An element
w 2 G is called cyclically reduced if the length of xw2 is twice the length of xw or,
equivalently, the length of w is minimal in the conjugacy class of w .

For a given word w , denote by alph.w/ the set of letters occurring in w . For a word
w2G , define A.w/ to be the subgroup of G generated by all letters that do not occur in
a geodesic xw and commute with w . The subgroup A.w/ is well-defined (independent
of the choice of a geodesic xw ); see [24]. Let v;w 2 G be so that Œv; w� D 1 and
alph.v/\ alph.w/D∅ or, which is equivalent, v 2A.w/ and w 2A.v/. In this case,
we say that v and w disjointly commute and write v� w . Given a set of elements S

of G , define A.S/D
T
w2S A.w/.

For a (not necessarily finitely generated) partially commutative group G.�/, consider its
noncommutation graph �D .V .�/;E.�// defined as follows. The vertex set V .�/

coincides with V .�/. There is an edge connecting vi and vj in � if and only if
i ¤ j and there is no edge connecting vi and vj in � . Note that the graph � is the
complement graph of the graph � . The graph � is a union of its connected components
I1; : : : ; Ik , which induce a decomposition of G as the direct product

G DG.I1/� � � � �G.Ik/:

Given w2G and the set alph.w/, just as above, consider the graph �.alph.w// (which
is a full subgraph of �). This graph can be either connected or not. If it is connected,
we call w a block. If �.alph.w// is not connected, then we can decompose w into
the product

(1) w D wj1
�wj2
� � �wjt

; j1; : : : ; jt 2 J;

where jJ j is the number of connected components of �.alph.w// and the word wji

is a word in the letters from the j th
i connected component. Clearly, the words

fwj1
; : : : ; wjt

g pairwise disjointly commute. Each word wji
, i 2 1; : : : ; t is a block

and so we refer to presentation (1) as the block decomposition of w .

Observe that the number of blocks of the block decomposition of w 2G is bounded
above by the rank of G . An element g 2G is called irreducible if it is a conjugate of
a cyclically reduced block element.
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Remark Irreducible elements play a very important role in the theory of partially
commutative groups. They are crucial in describing centralisers of elements; they
are used to prove that free extensions of centralisers are discriminated by partially
commutative groups (see [14]); they are key to understanding the cut-points in the
asymptotic cones of partially commutative groups (see Behrstock and Charney [4]);
and they will be used essentially in this paper.

An element w 2 G is called a least root (or simply, root) of v 2 G if there exists a
positive integer 1<m 2N such that v D wm and there does not exists w0 2G and
1 < m0 2 N such that w D w0m

0

. In this case, we write w D
p
v . By a result from

Duchamp and Krob [21], partially commutative groups have least roots, that is, the
root element of v is defined uniquely.

Let � be a simplicial graph. For any x 2 V .�/, define x? to be the subset of all
vertices y 2 V .�/ so that there is an edge .x;y/ 2E.�/. We note that x 62 x? . Given
a subset X � V .�/, set X? D

T
x2X x? .

Let w be a cyclically reduced element of G . It is not hard to see halph.w/?i DA.w/.

Introduce an equivalence relation � on the set of vertices V .�/. For two vertices
v1; v2 2 V .�/, set v1 � v2 if and only if v?

1
D v?

2
. Since for every v 2 � , we have

v 62 v? , it follows that if v1 � v2 , then they are not connected by an edge in � .
Define the graph � 0 whose vertices are � equivalence classes and there is an edge
joining Œu� to Œv� if and only if .u0; v0/ is an edge of � for some (and thus for all)
u0 2 Œu� and v0 2 Œv�. The graph � 0 is called the deflation of � . Observe that the
partially commutative group G.� 0/ is isomorphic to a canonical parabolic subgroup
of G.�/.

Definition 2.1 A canonical parabolic subgroup K of a partially commutative group is
called closed if K?? DK. The subgroup K is called coirreducible if K is closed and
its complement K? is a directly indecomposable canonical parabolic subgroup. We
denote by alph.K/ the set of canonical generators of G that generate K.

In our setting, the set of edges E.�/ of the graph � will be decomposed into a
disjoint union of two sets, E.�/D Ed .�/[Ec.�/, Ed .�/\Ec.�/D ∅. Let Gd

and Gc be the partially commutative groups defined by the graphs .V .�/;Ed .�//

and .V .�/;Ec.�//, correspondingly. Then any canonical parabolic subgroup K
of G naturally defines canonical parabolic subgroups Kd and Kc of Gd and Gc ,
correspondingly.

We say that a canonical parabolic subgroup K of G is Ed .�/–coirreducible (Ed .�/–
directly (in)decomposable) if so is the induced subgroup Kd of Gd . Similarly, a
subgroup K is called Ec.�/–abelian if so is the induced subgroup Kc of Gc .
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The canonical parabolic subgroup A.Kd / of Gd naturally defines a canonical parabolic
subgroup of G , which we shall denote by AEd .�/.Kd /.

The remainder of this section is devoted to defining a normal form for partially com-
mutative groups introduced in [20] by Diekert and Muscholl. The main feature of this
normal form is that it is “stable under inversions”, that is if the word w is in the normal
form, then so is its inverse w�1 . This normal form is only used to prove some of the
more technical statements of the paper. Hence, the rest of this section can be omitted
at a first reading.

Let G be a partially commutative group given by the presentation hA j Ri. Let
F D F.A˙1/ be the free monoid on the alphabet A[A�1 and let T D T .A˙1/ be
the partially commutative monoid with involution given by the presentation

T .A˙1/D hA[A�1
jRT i;

where Œa�i ; a
ı
j �2RT if and only if Œai ; aj �2R, �; ı 2 f�1; 1g (recall that, by definition,

Œai ; ai � 62R). The involution on T is induced by the operation of inversion in G and
does not have fixed points. We refer to it as to the inversion in T and denote it by �1 .

Following [20], we define a clan to be a maximal subset C D C[C�1 of A[A�1 such
that Œa; c� 62RT if and only if Œb; c� 62RT for all a; b 2 C and c 2A˙1 . A clan C is
called thin if there exist a 2 C and b 2A˙1 nC such that Œa; b� 2RT and is called
thick, otherwise.

Example 2.2 If T is a direct product of d free monoids, then the number of thin
clans is d for d > 1, and it is 0 for d D 1.

Let GDha; b; c; d; e j Œa; c�; Œc; b�; Œb; d �; Œd; a�; Œc; d �i, then fa; a�1; b; b�1g, fc; c�1g,
fd; d�1g are the thin clans of T and fe; e�1g is the thick clan (note that c and d do
not belong to the same clan, since Œc; d � 2RT , but Œc; c� 62RT .

It follows from the definition that there is at most one thick clan and that the number
of thin clans never equals 1. Every element of A[A�1 belongs to exactly one clan.
In the following, we pick a thin clan and we make it thick by removing commutation.
It might be that the number of clans does not change, but the number of thin clans
decreases. This is the reason why the definition of DM-normal form below is based on
thin clans (instead of considering all clans).

It is convenient to encode an element of the partially commutative monoid as a finite
labelled acyclic oriented graph ŒV;E; ��, where V is the set of vertices, E is the set of
edges and �W V !A˙1 is the labelling. Such a graph induces a labelled partial order.
For an element w 2 T , w D b1 � � � bn , bi 2 A˙1 , we introduce the graph ŒV;E; ��
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as follows. The set of vertices of ŒV;E; �� is in one-to-one correspondence with the
letters of w , V D f1; : : : ; ng. For the vertex j we set �.j /D bj . We define an edge
from bi to bj if and only if both i < j and Œbi ; bj � 62RT . The graph ŒV;E; �� thereby
obtained is called the dependence graph of w . Up to isomorphism, the dependence
graph of w is unique, and so is its induced labelled partial order, which we further
denote by ŒV;�; ��.

Let c1 < � � � < cq be the linearly ordered subset of ŒV;�; �� containing all vertices
with label in the clan C . For the vertex v 2 V , we define the source point s.v/ and
the target point t.v/ as

s.v/D supfi j ci � vg; t.v/D inffi j v � cig:

By convention, sup∅D 0 and inf∅D qC 1. Thus, 0� s.v/� q , 1� t.v/� qC 1

and s.v/� t.v/ for all v 2 V . Note that we have s.v/D t.v/ if and only if the label
of v belongs to C .

For 0 � s � t � qC 1, we define the median position m.s; t/ as follows. For s D t ,
we let m.s; t/D s . For s < t , by [20, Lemma 1], there exist unique l and k such that
s � l < t , k � 0 and

csC1 � � � cl 2 F.C/.C�1F.C//k ; clC1 � � � ct�1 2 .F.C�1/C/kF.C�1/;

where F.C/ and F.C�1/ are free monoids on the indicated alphabets. Then we define
m.s; t/D lC 1

2
and we call m.s; t/ the median position. Define the global position of

v 2 V to be g.v/Dm.s.v/; t.v//.

We define the normal form nf.w/ of an element w 2 T by introducing new edges
into the dependence graph ŒV;E; �� of w . Let u; v 2 V be such that �.v/ 2 C and
Œ�.u/; �.v/� 2 RT . We define a new edge from u to v if g.u/ < g.v/, otherwise,
we define a new edge from v to u. The new dependence graph ŒV; yE; �� defines a
unique element of the trace monoid yT , where yT is obtained from T by omitting the
commutativity relations of the form Œc; a� for any c 2 C and any a 2A˙1 . Note that
the number of thin clans of yT is strictly less than the number of thin clans of T . We
proceed by designating a thin clan in yT and introducing new edges in the dependence
graph ŒV; yE; ��.

It is proven in [20, Lemma 4], that the normal form nf is a map from the trace monoid T
to the free monoid F.A[A�1/, which is compatible with inversion, ie it satisfies
that �.nf.w// D w and nf.w�1/ D nf.w/�1 , where w 2 T and � is the canonical
epimorphism from F.A[A�1/ to T .

We refer to this normal form as to the DM–normal form or simply as to the normal
form of an element w 2 T .
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Let w 2 G be a word and let H < G be a canonical parabolic subgroup, that is,
H DH1 �H2 , Hi ¤ 1. We say that w has 2k � 1 H–alternations if w contains a
subword v1u1 � � � vkuk , where vi 2H1 and ui 2H2 are nontrivial words, i D 1; : : : ; k .

Lemma 2.3 Let w 2G be written in the DM–normal form. Let H<G be a canonical
parabolic subgroup which decomposes as a nontrivial direct product of two canonical
parabolic subgroups H1 and H2 , HDH1 �H2 . Then the number of H–alternations
in w is bounded above by a constant that depends only on the number of clans of G .

Proof We use induction on the number of thin clans of G . If the number of thin clans
equals one, then the statement is obvious.

Suppose that the statement is true for all partially commutative groups with less than n

thin clans and let G have precisely n thin clans. Let w 2G be some word, let ŒV;E; ��
be the dependence graph of w and let C be a thin clan of G , and write

w D w1c1w2 � � �wqcqwqC1;

where c1; : : : ; cq are all the letters in w which belong to the clan C and the dependence
relations for C have already been established.

By definition of the DM–normal form,

nf.w/D nf.w1/c1 nf.w2/ � � � nf.wq/cq nf.wqC1/:

Therefore, if H\ hC i D 1, then the statement follows by induction.

Suppose H and hC i intersect nontrivially, then either H\hC i<H1 or H\hC i<H2 .
Let v1 � � � vk be an H–alternation in nf.w/. If v1 � � � vk does not contain ci for all
i D 1; : : : ; q , then the statement follows by induction. Let us assume that v1 � � � vk

contains ci for some i D 1; : : : ; q and let i be minimal so that ci is a letter of vj .

If j D k , then the bound on k follows by induction. Suppose that j ¤ 1, then vj�1

is a subword of nf.wi/ and vjC1 is a subword of nf.wl/ for some l ¤ i . But since
vj�1�vj and vjC1�vj , it follows that for every letters x and y from vj�1 and vjC1 ,
the global positions g.x/ and g.y/ (with respect to C ) coincide, contradicting the
definition of the DM–normal form. It follows that k ¤ 2; : : : ; k � 1.

Suppose that j D 1. Let i 0 be minimal so that i 0 > i and ci0 is contained in v1 � � � vk .
Observe that, without loss of generality, we may assume that such i 0 exists since,
otherwise, the bound on k follows by induction. The letter ci0 is a letter of some vj 0 .
If j 0 ¤ k , then vj 0�1 is a subword of wi0 and vj 0C1 is a subword of nf.wl 0/ for some
l 0 > i 0 . But, since vj 0�1� vj 0 and vj 0C1� vj 0 , it follows that for every letters x

and y from vj 0�1 and vj 0C1 , the global positions g.x/ and g.y/ (with respect to C )
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coincide, which contradict the definition of the DM–normal form. If j 0 D k , then the
bound on k follows by induction.

2.2 Algebraic geometry over groups

The objective of this section is to establish the basics of algebraic geometry over groups.
We refer the reader to [3; 19] for details. Let GDhAi be a group and F.X / be the free
group on the alphabet X , X D fx1;x2; : : : ;xng. Denote by GŒX � the free product
G �F.X /.

For any element s 2 GŒX �, the formal equality s D 1 can be treated, in an obvious
way, as an equation over G . In general, for a subset S � GŒX �, the formal equality
S D 1 can be treated as a system of equations over G with coefficients in A. Elements
from X are called variables and elements from A˙1 are called coefficients or constants.
To emphasise this we sometimes write S.X;A/D 1.

A solution U of the system S.X / D 1 over a group G is a tuple of elements
g1; : : : ;gn 2 G such that every equation from S vanishes at .g1; : : : ;gn/, that is,
Si.g1; : : : ;gn/ D 1 in G , for all Si 2 S . Equivalently, a solution U of the system
SD1 over G is a G –homomorphism �U W GŒX �!G induced by the map �U W xi 7!gi

such that S � ker.�U /. When no confusion arises, we abuse the notation and write
U.w/, where w 2GŒX �, instead of �U .w/.

Denote by nclhSi the normal closure of S in GŒX �. Then every solution of S.X /D 1

in G gives rise to a G–homomorphism GŒX �=nclhSi ! G , and vice versa. The set
of all solutions over G of the system S D 1 is denoted by VG.S/ and is called the
algebraic set or variety defined by S .

For every system of equations S , we set the radical of the system S to be the following
subgroup of GŒX �:

R.S/D fT .X / 2GŒX � j 8g1; : : : ;8gn.S.g1; : : : ;gn/D 1! T .g1; : : : ;gn/D 1/g:

It is easy to see that R.S/ is a normal subgroup of GŒX � that contains S . There is a
one-to-one correspondence between algebraic sets VG.S/ and radical subgroups R.S/

of GŒX �. Notice that if VG.S/D∅, then R.S/DGŒX �.

It follows from the definition that

R.S/D
\

U2VG.S/

ker.�U /:

The quotient group
GR.S/ DGŒX �=R.S/
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is called the coordinate group of the algebraic set VG.S/ (or of the system S ). There
exists a one-to-one correspondence between algebraic sets and coordinate groups. More
formally, the categories of algebraic sets and coordinate groups are dual; see [3, Theo-
rem 4]. If a group G D GR.S/ is given as the quotient GŒX �=R.S/, we say that G

is given by its radical presentation. If the corresponding system S is finite, we say
that G is given by a finite radical presentation.

Given a system of equations S D 1, we denote by GS the group GŒX �=nclhSi.

A group H is called (G–)equationally Noetherian if every system S.X / D 1 with
coefficients from G is equivalent over G to a finite subsystem S0 D 1, where S0 � S ,
ie the system S and its subsystem S0 define the same algebraic set. If G is G–
equationally Noetherian, then we say that G is equationally Noetherian. If G is
equationally Noetherian then the Zariski topology over Gn is Noetherian for every n,
ie every proper descending chain of closed sets in Gn is finite. This implies that
every algebraic set V in Gn is a finite union of irreducible subsets, called irreducible
components of V , and such a decomposition of V is unique. Recall that a closed
subset V is irreducible if it is not a union of two proper closed (in the induced topology)
subsets.

We note that partially commutative groups are linear (see [33]), thus, equationally
Noetherian (see [3]).

We say that a family of homomorphisms f'ig � Hom.H;K/ separates (discrimi-
nates) H into K if for every nontrivial element h 2H (every finite set of nontrivial
elements H0 �H ) there exists k so that 'k.h/¤ 1 ('k.h/¤ 1 for every h 2H0 ).
In this case, we also say that H is residually K (that H is fully residually K ) and call
the family f'ig separating (discriminating).

Remark 2.4 There is a natural epimorphism from GŒX �=nclhSi onto GR.S/ . This
epimorphism is an isomorphism if and only if GŒX �=nclhSi is residually G .

Theorem 2.5 [47] Let H be a group. Then for a finitely generated group G the
following conditions are equivalent:

(1) G is fully residually H .

(2) G is the coordinate group of an irreducible variety over H .

If any of the above two conditions holds, then

(3) G embeds into an ultrapower of H .

Furthermore if H is equationally Noetherian, then all three conditions above are
equivalent.
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Lemma 2.6 Let G be a fully residually H group and let f'ig be a discriminating
family for G . If the family f'ig is a union of finitely many families, f'ig D f'i;1g[

� � � [ f'i;ng, then one of the families f'i;kg is a discriminating family for G .

Proof Without loss of generality, we may assume that nD 2 and f'ig D f�ig[ f ig.
We show that either f�ig or f ig is a discriminating family for G .

If we assume the contrary, then there exist finite sets of nontrivial elements S D

fg1; : : : ;gmg �G and T D fh1; : : : ; hkg �G which can not be discriminated into H

by f�ig and f ig, correspondingly, ie for all i we have  i.gli
/D 1 and �i.hmi

/D 1

for some li D 1; : : : ;m, mi D 1; : : : ; k . Since f'ig D f�ig[ f ig, the set S [T can
not be discriminated by f'ig into H , a contradiction.

Remark 2.7 Let G be a group discriminated by a finitely generated partially commu-
tative group G . Notice that since G has only finitely many different canonical parabolic
subgroups, then, by Lemma 2.6, for any H < G , there exists a canonical parabolic
subgroup H of G with the two following properties: there exists a discriminating
family f'ig such that 'i.H / < H and there exist no proper canonical parabolic
subgroups H0 of H with the first property.

The term limit group was introduced by Sela in [52] in the setting of free groups. The
original definition is given in terms of the action of G on a limiting real tree. One can
prove (see [52]) that, in the case of free groups, the geometric and residual definitions
are equivalent. In Section 9, following Sela, we introduce the class of (geometric) limit
groups over partially commutative groups and show that it coincides with the class of
finitely generated fully residually partially commutative groups. From now on, slightly
abusing the terminology, we sometimes refer to finitely generated fully residually G
groups as limit groups over G .

3 Tribal Makanin–Razborov diagrams

In the free group case, Kharlampovich and Miasnikov used induction on the height of
the Makanin–Razborov diagram and the structure of groups assigned to its vertices to
give a hierarchical construction of NTQ–groups or !–residually free towers; see [38].
Our aim is to use a similar approach in order to construct a natural generalisation of
towers of free groups, which we call graph towers.

In [14] we described an analogue of the Makanin–Razborov process for partially com-
mutative groups, which, given a finitely generated group G and a partially commutative
group G , produces a diagram that encodes the set of all homomorphisms from G
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to G . In order to construct graph towers the only missing ingredient is to have a good
understanding of the structure of coordinate groups associated to the vertices of the
diagram.

To describe the structure of coordinate groups associated to vertices in the Makanin–
Razborov diagrams for free groups, one only needs to change the presentation of the
group to the one that clearly exhibits its algebraic structure as amalgamated product or
HNN–extension.

Example 3.1 Assume that the coordinate group associated to a vertex of linear type
has the presentation

GDhx1; : : : ;xnjw1.x3; : : : ;xn/Dx1x2; w2.x3; : : : ;xn/D1; : : : ; wk.x3; : : : ;xn/D1i;

ie the generators x1 and x2 only appear once in a single relation. In this case, using
Tietze transformation, we can change the presentation of the group and show that it
splits as a free product, that is,

G D hx3; : : : ;xn j w2.x3; : : : ;xn/D 1; : : : ; wk.x3; : : : ;xn/D 1i � hx2i:

Unfortunately, in the case of partially commutative groups the presence of commutation
constraints in the presentation prevents one from using this direct approach. For
instance, suppose that we add the commutation constraints Œx1;x3� and Œx2;x3� in the
presentation of G , ie

H D hx1; : : : ;xn j w1.x3; : : : ;xn/D x1x2; : : : ; wk.x3; : : : ;xn/D 1;

Œx1;x3�D 1; Œx2;x3�D 1i:

This could very well be the coordinate group associated to a vertex of linear type in
our diagram, however there is no obvious way of changing its presentation to exhibit
any splitting.

This shows that, unlike in the free group case, in the partially commutative case
coordinate groups associated to vertices of the diagram do not necessarily split as
amalgamated products or HNN–extensions. To overcome this main difficulty, our goal
is to show that if a coordinate group associated to a vertex has “nontrivial dynamics”,
that is, there is a nontrivial group of automorphisms associated to it in the diagram,
then it does split. In order to pursue this approach, one needs to perform a very careful
analysis of the dynamics of infinite branches in the process presented in [14] taking
into consideration the behaviour not only of the relations of the presentation but also,
crucially, of the commutation constraints.
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To this end, in this section we review and slightly modify the process described in [14] to
obtain a new diagram, called the tribal solution tree. Just as the solution tree constructed
in [14], the tribal solution tree encodes the set of all homomorphisms from a finitely
generated group to a partially commutative group; however, the set of commutation
constraints of the coordinate groups associated to its vertices (called tribal coordinate
groups) has more structure. In the next section we shall show that tribal coordinate
groups have a clear algebraic structure and split as amalgamated products.

The process to construct the solution tree presented in [14] is very long and rather
involved and so we do not repeat the full construction here. Therefore, this section is
not self-contained: we frequently refer to [14] for details and some familiarity with
that text is assumed.

We now begin by reviewing some of the constructions presented in [14]. As shown
in [14, Chapter 3], given a finitely generated group G and a partially commutative
group G , one can effectively construct finitely many constrained generalised equations
�0; : : : ; �m (see definition below) and homomorphisms �i from G to the coordinate
group of the generalised equation �i so that any homomorphism from G to G factors
through the coordinate group of a generalised equation �i for some iD0; : : : ;m, ie for
any homomorphism 'W G!G , there exist i and a homomorphism '0W GR.�i /!G
so that ' D �i'

0 .

A generalised equation ‡ can be viewed as a combinatorial object which encodes a
system of equations over a free monoid.

v � �.v/ � �.�/

� �.�/ �.�/

1 2 3 4 5 6 7 8

h1 h2 h3 h4 h5 h6 h7

Figure 1: Simple quadratic generalised equation

Items hi correspond to variables and each pair of dual bases �;�.�/ defines the
equation .h˛.�/ � � � hˇ.�/�1/

".�/ D .h˛.�.�// � � � hˇ.�.�//�1/
".�.�// . A tuple H D

.H1; : : : ;H�‡ / is a solution of the generalised equation ‡ if H˛.�/ � � �Hˇ.�/�1 and
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H˛.�.�// � � �Hˇ.�.�//�1 are freely reduced words so that .H˛.�/ � � �Hˇ.�/�1/
".�/ is

graphically equal to .H˛.�.�// � � �Hˇ.�.�//�1/
".�.�// , for every pair of dual bases

�;�.�/; see [14, Chapter 3] for details.

A constrained generalised equation �D h‡;<‡ i is a generalised equation ‡ together
with a set of commutation constraints <‡ � h�h associated to the variables (items) h

of ‡ . A tuple H D .H1; : : : ;H��/ is a solution of the generalised equation �

if H˛.�/ � � �Hˇ.�/�1 and H˛.�.�// � � �Hˇ.�.�//�1 are geodesic words in G so that
.H˛.�/ � � �Hˇ.�/�1/

".�/ is graphically equal to .H˛.�.�// � � �Hˇ.�.�//�1/
".�.�// for

every pair of dual bases �;�.�/, and H satisfies the commutation constraints, ie
Hi�Hj for all commutation constraints <‡ .hi ; hj /.

The coordinate group GR.‡/ of ‡ is the group GŒh�=R.‡/, where, abusing the
notation, we denote by ‡ the system of equations associated to the generalised
equation ‡ . The coordinate group GR.�/ of � is the group GŒh�=R.�/, where,
abusing the notation, we denote by � the system of equations associated to the
generalised equation ‡ and the set of commutation relations Œhi ; hj � for all hi , hj

so that <‡ .hi ; hj /. We denote by G‡ (by G� ) the group GŒh�=nclh‡i (the group
GŒh�=nclh�i).

The description of the set of homomorphisms Hom.G;G/ reduces to the study of the
sets of solutions of the constrained generalised equations �i , i D 0; : : : ;m.

In short, given a generalised equation �, we described a process that produces a
(possibly) infinite, locally finite, rooted tree T .�/ which encodes the solution set of �.
Infinite branches of this tree are of three specific types: linear, quadratic or general type.
The dynamics of these infinite branches determine specific families of automorphisms
of the coordinate group associated to �. One then shows that, using these families of
automorphisms, one can produce a finite tree, the solution tree Tsol.�/ that encodes
the set of solutions of �; see [14, Theorem 9.2].

We now review and refine this process to obtain a tight control on the behaviour
of constraints in infinite branches. We begin by slightly generalising the notion
of (constrained) generalised equation. To each (constrained) generalised equation
� D h‡;<‡ i we associate the following additional information. To each item hi

of � we assign a canonical parabolic subgroup of G , denoted by alph .hi/, which
is consistent with the constraints, ie if .hi ; hj / 2 <‡ then alph .hi/� alph .hj /. A
solution of a generalised equation with associated parabolic subgroups alph.hi/ is a
solution of the generalised equation � that further satisfies halph.Hi/i D alph.hi/ for
all items hi of �.

Given a base � (or a section � D Œk; l �) of �, we define alph.�/ (alph.�/) as the
canonical parabolic subgroup of G defined by the union of subgroups alph.hi/ for
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each i D ˛.�/; : : : ; ˇ.�/�1 (i D k; : : : ; l �1), ie the subgroup alph.�/ (alph.�/) is
the canonical parabolic subgroup generated by the union of the alphabets of the items
covered by the base � (belonging to the section � ).

Given a finitely generated partially commutative group G and a generalised equation �,
there exist finitely many constrained generalised equations with associated parabolic
subgroups alph.hi/, say f�1; : : : ; �kg so that every solution H of � is a solution of
one generalised equation �i , i D 1; : : : ; k . Furthermore, it follows from the definition
that any solution of �i is a solution of �. Hence the study of solutions of a constrained
generalised equation is equivalent to the study of solutions of generalised equations
with associated canonical parabolic subgroups.

The process which is described in [14, Chapter 4], uses 5 elementary transformations
ET1; : : : ;ET5 which, applied to a given (constrained) generalised equation, produce
finitely many new ones. In what follows, we use the description of the transformations
as well as the notation given in [14, Section 4.2]. For all transformations ET1–ET4, and
also ET5 in the case when ET5 does not introduce new boundaries, there is a natural
one-to-one correspondence between items of the original generalised equation and
items of each of the produced generalised equations. Using this natural correspondence
between items, we transfer the associated canonical parabolic subgroups and so we use
these transformations for (constrained) generalised equations with associated parabolic
subgroups. Suppose that the transformation ET5 introduces a new boundary q0 between
the boundaries q and q C 1 and a new boundary connection .p; �; q0/. Let �0 be
the obtained generalised equation. From �0 we construct finitely many generalised
equations with associated parabolic subgroups so that

� alph.h0i/D alph.hi/, i ¤ q; q0 ,
� alph.h0q/; alph.h0q0/ < alph.hq/ so that halph.h0q/[ alph.h0q0/i D alph.hq/.

The new elementary transformation ET5 (of generalised equations with associated
parabolic subgroups) is obtained by applying the transformation ET5 from [14] and
then replacing each generalised equation �0 by finite family generalised equations
with associated parabolic subgroups described above.

From now on we abuse the terminology and we call (constrained) generalised equa-
tions with associated parabolic subgroups alph.hi/ simply (constrained) generalised
equations.

3.1 Tribes

In this section we introduce the notion of a tribe which plays a crucial role in the
study of the dynamics of infinite branches. The importance of this notion is that it is
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intrinsically related to the fact that one can define a certain finitary “hierarchy” (finite
partial order) on the commutation constraints associated to the variables, which, on
the one hand, serves as a measure of complexity of the constraints and, on the other
hand, it assures that (the normal subgroup generated by) the commutation relations of a
given class is invariant under certain automorphisms of the free group. This invariance
is a key point that allows us to establish the structure of tribal coordinate groups in
Section 4.

For instance, tribes will assure that the group H from Example 3.1 is not a vertex of
our diagram, as it is not tribal (see Definition 3.28). However, in the group

H Dhx1; : : : ;x7 jx3x4x3x�1
4 Dx1x2; : : : ; wk.x3; : : : ;x7/; Œxi ;x5�D 1; Œx4;x7�D 1;

i D 1; 2; 3; 4i;

the variables x1 and x2 belong to the same tribe and the automorphism of the free group
induced by the map x1! x1x�1

2
and xi ! xi for i ¤ 1 fixes the normal subgroup

generated by the commutation relations fŒxi ;x5�; Œx4;x7�; i D 1; 2; 3; 4g. Using this
automorphism, one can rewrite the presentation of H so that it exhibits a splitting as
an HHN-extension with stable letter x2 and associated subgroup x5 . This shows the
essence of tribes.

As a final remark we stress the importance of the fact that hierarchy be finite. In
our case, this is an immediate consequence of the fact that the underlying partially
commutative group G is finitely generated.

Let fA.S1/; : : : ;A.Sm/g be the finite set of distinct canonical parabolic subgroups of
G D hAi, where Si �A, i D 1; : : : ;m.

Let � D h‡;<‡ i be a generalised equation (with associated parabolic subgroups
alph.hi/). A tribe of � is a set of items, bases and sections of �. We say that an
item hj (or a base, or a section) of � belongs to the tribe ti if and only if one has
that A.alph.hj // D A.Si/ (or A.alph.�// D A.Si/, or A.alph.�// D A.Si/, corre-
spondingly), for some i D 1; : : : ;m. Notice that, in general, two items hj , hk might
belong to the same tribe although alph.hj /¤ alph.hk/. Furthermore, if <‡ .hj ; hk/,
then hj and hk belong to different tribes since for every solution H one has that
Hj � Hk . Abusing the notation, for a tribe ti we denote by A.ti/ the canonical
parabolic subgroup A.Si/, ie the set of letters ak 2A so that for every hj 2 ti we have
Hj � ak . For an item hi (base �, section � ) of � we set t.hi/ (t.�/ and �.�/) to
be the tribe to which hi (� or � ) belongs.

We say that a tribe tj dominates the tribe ti and write tj � ti if and only if A.tj /�A.ti/.
The relation � is a partial order on the set of all tribes. A tribe is minimal with respect
to � if and only if it does not strictly dominate any other tribe.
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Let �D h‡;<‡ i be a generalised equation and assume that <‡ .hi ; hk/. Then, for
any solution H of �, we have that Hi�Hk . If hj belongs to a tribe that dominates
the tribe of hi , it follows that Hj � Hk for all solutions H of �. Hence, every
solution of � is a solution of �0 D h‡;<‡ [f.hj ; hk/gi.

Definition 3.2 We say that the set <‡ is completed if for all hj that belong to a
tribe that dominates the tribe of hi , if <‡ .hi ; hk/ then <‡ .hj ; hk/. In particular,
if two items hi and hj belong to the same tribe, then <‡ .hi ; hk/ if and only if
<‡ .hj ; hk/. Moreover, if hj belongs to a tribe that dominates the tribe of hi , then
<‡ .hj /�<‡ .hi/.

Remark 3.3 Without loss of generality, we further assume that for all generalised
equations �D h‡;<‡ i the sets <‡ are completed.

Lemma 3.4 Let �0 D h‡ 0;<‡ 0i be obtained from � D h‡;<‡ i by an elemen-
tary transformation in ET1–ET5 (see [14, Section 4.2]) or a derived transformation
D1;D2;D3;D5;D6 (see [14, Section 4.3]) and let � be the corresponding epimor-
phism, � W GR.�/! GR.�0/ . Let wi.h

0/ D h
0�i1

i1
� � � h

0�iki

iki
, �ij D ˙1, j D 1; : : : ; ki ,

i D 1; : : : ; �� � 1, be the image of hi under � . Then for every j the tribe t.h0ij /

dominates the tribe t.hi/. Furthermore, every minimal tribe of �0 dominates a minimal
tribe of �.

Proof For the elementary transformations ET1;ET2 and ET3, the epimorphism � is
the identity map, �.hi/D �.h

0
i/, and the statement follows.

From the description of ET5, it follows that if the number of items ��0 of �0 equals
the number of items �� of �, then �.hi/D h0i for all i . By definition of a solution of
generalised equation, for every solution H of �, we have Hi

:
DH 0i , where :

D denotes
graphical equality of words and the statement follows.

Suppose now that ��0 > �� . Then �.hi/D h0ij for all i ¤ q and �.hq/D h0
q0�1

h0q0
(here we use the notation from the description of ET5; see [14, pages 54–55]). Since
for every solution H of � we have the graphical equality Hq

:
DH 0

q0�1
H 0q0 , the first

statement follows since, by definition, Hq is a subword of a word in the normal form and
therefore is a reduced word. Furthermore, if for some j the tribe t.h0ij / (or t.h0

q0�1
/

or t.h0q0/) is minimal in �0 , then, since equalities are graphical, it dominates the
tribe t.hi/ (or t.hq/), which is also minimal.

For the transformation ET4, if ��0 D �� , then �.hi/D h0ij for all i . By definition we
have Hi

:
DH 0ij and the statement follows in this case. We now used the notation from

the description of ET4; see [14, pages 53–54]. Suppose that ".�/D ".�.�// (the proof
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is identical in the other case), then �.hi/D h0
t.i/
� � � h0

t.iC1/�1
if ˛C 1� i � ˇ.�/� 1

and �.hi/Dh0ij otherwise. For every solution H of � and every ˛C1� i �ˇ.�/�1,
we have that Hi

:
DH 0

t.i/
� � �H 0

t.iC1/�1
and the first statement follows. Furthermore, if

for some i the tribe t.h0ij / (or one of the tribes ft.h0
t.i/
/; : : : ; t.h0

t.iC1/�1
/g) is minimal

in �0 , then it dominates the tribe t.hi/ (or t.hq/), which is also minimal.

Since the statement is true for all elementary transformations, the statement for derived
transformations now follows.

By construction, every boundary of the generalised equation in �iC1 either corresponds
to a boundary of �i or it has been introduced between ˇ.�i/� 1 and ��i

in �i . It
follows that if the boundaries j and jC1 of �iC1 correspond to boundaries between k

and kC1 in �i , then the tribe of an item hj in the generalised equation �iC1 dominates
the tribe of hk in �i . Applying this argument recursively, we conclude that if �l ,
l > i has been obtained from �i by a sequence of entire transformations and the
boundaries j and j C 1 of �l correspond to boundaries between k and kC 1 in �i ,
then the tribe of an item hj in the generalised equation �l dominates the tribe of hk

in �i .

Let t.�/ be the tribe of a base � in �. Then the tribe of every item covered by �
dominates t.�/. We note that the tribe of � in �i is dominated by the tribe of �
in �iC1 (unless � is completely removed when passing from �i to �iC1 ).

3.2 Construction of the tree T

In this section we use tribes to adjust the construction of the tree T which is described
in [14, Chapter 4]. Note that the main result of [14, Chapter 4] remains unchanged,
namely:

Proposition 3.5 [14, Proposition 4.13] For a (constrained) generalised equation
� D �v0

over F , one can effectively construct a locally finite, possibly infinite,
oriented rooted at v0 tree T , T D T .�v0

/, such that:

.1/ The vertices vi of T are labelled by generalised equations �vi
over F .

.2/ The edges vi! viC1 of T are labelled by epimorphisms

�.vi ; viC1/W GR.�vi
/!GR.�viC1

/:

The edges vk ! vkC1 , where vkC1 is a leaf of T and tp.vkC1/ D 1, are
labelled by proper epimorphisms. All the other epimorphisms �.vi ; viC1/ are
isomorphisms, in particular, edges that belong to infinite branches of the tree T

are labelled by isomorphisms.
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.3/ Given a solution H of �v0
, there exists a path v0 ! v1 ! � � � ! vl and a

solution H .l/ of �vl
such that

�H D �.v0; v1/ � � ��.vl�1; vl/�H .l/ :

Conversely, for every path v0! v1! � � � ! vl in T and every solution H .l/

of �vl
the homomorphism

�.v0; v1/ � � ��.vl�1; vl/�H .l/

gives rise to a solution of �v0
.

However our modification in the construction of the tree T allows us to have an extra
requirement on the type of infinite branches of the tree of Proposition 3.5. Namely, we
prove the following lemma; see Lemma 3.8 below.

Lemma 3.6 [14, Lemma 4.19] Let

(2) v0! v1! � � � ! vr ! � � �

be an infinite path in the tree T .�/. Then there exists a natural number N such that
all the edges vn! vnC1 of this path with n �N are principal edges, and one of the
following conditions holds:

Linear case We have 7� tp.vn/� 10 for all n�N and all items that do not belong
to the kernel belong to a minimal tribe.

Quadratic case We have tp.vn/D 12 for all n�N .

General case We have tp.vn/D 15 for all n�N .

In the construction of the tree T there are two kinds of edges: principal and auxiliary;
see [14, page 64]. In particular, the above lemma states that one can assume that in
infinite branches all edges are principal.

In order to prove the above result, we modify the linear cases [14, Cases 7–10] in the
construction of the process tree T as follows. Our new cases 7� 10, which we shall
call cases 70–100 will be identical to the ones described in [14], but will have an added
assumption that items that do not belong to the kernel belong to a minimal tribe. In
order to have this extra condition, we introduce a new case 6.5 in the construction
of the process tree described in [14]. All other cases in the construction of our new
process tree are verbatim to [14].

Let ftig be the set of minimal tribes of active bases of a generalised equation �, ie
there exists an active base of � that belongs to the tribe ti and this tribe does not
strictly dominate the tribe of any other active base.
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Case 6:5: There exists an item hi in an active section of �v such that 
i D 1 In
this case, for every item hi that does not belong to the kernel Ker.�v/ of �v and does
not belong to a minimal tribe, we introduce

� a base �i , so that ".�i/D 1, ˛.�i/D i , ˇ.�i/D i C 1,

� an item hdi
(along with a new boundary and re-enumerate all boundaries as

appropriate) in the nonactive part of �, and

� the dual base �.�i/ of �i so that ".�.�i//D1, ˛.�.�i//Ddi and ˇ.�.�i//D

di C 1.

We set <‡ .hdi
/ D <‡ .hi/ in the obtained generalised equation and we call the

introduced bases auxiliary.

Remark 3.7 We record the following observations.

� By construction, auxiliary bases belong to nonminimal tribes.

� Using Tietze transformations, it is immediate to check that the coordinate group
associated to the obtained generalised equation �0 is isomorphic to the coordinate
group of �.

� If � satisfies the conditions of case 6:5 and �0 is the obtained generalised
equation with auxiliary bases, using a natural one-to-one correspondence between
items of � and �0 , we have that Ker.�/� Ker.�0/.

Case 70 There exists an item hi in an active section of �v such that 
i D 1, such
that both boundaries i and iC 1 are closed and every item hj 62Ker.�v/ belongs to a
minimal tribe.

Then we remove the closed section Œi; i C 1� together with the linear base using ET4.

Case 80 There exists an item hi in an active section of �v such that 
i D 1, one
of the boundaries i , i C 1 is open, say i C 1, and the other is closed and every item
hj 62 Ker.�v/ belongs to a minimal tribe.

In this case, we first perform ET5 and �–tie i C 1 by the only base � it intersects;
then using ET1 we cut � in i C 1; and then we delete the closed section Œi; i C 1�

using ET4.
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Case 90 There exists an item hi in an active section of �v such that 
i D 1 and such
that both boundaries i and i C 1 are open and every item hj 62 Ker.�v/ belongs to
a minimal tribe. In addition, there is a closed section � such that � contains exactly
two bases �1 and �2 , � D �.�1/D �.�2/ and �1; �2 is not a pair of matched bases,
ie �1 ¤ �.�2/; moreover, in the generalised equation z�v D D3.�/ all the bases
obtained from �1; �2 by ET1 when constructing z�v from �v , do not belong to the
kernel of z�v .

In this case, using ET5, we �1 –tie all the boundaries that intersect �1 ; using ET2, we
transfer �2 onto �.�1/; and remove �1 together with the closed section � using ET4.

Case 100 There exists an item hi in an active section of �v such that 
i D 1 and
such that both boundaries i and i C 1 are open and every item hj 62 Ker.�v/ belongs
to a minimal tribe.

In this event we close the section Œi; i C 1� using D1 and remove it using ET4.

A crucial notion for the analysis of the process tree is that of a complexity of generalised
equation. By convention, the auxiliary bases that we introduced in Case 6.5 do not
contribute to the complexity of a generalised equation. Formally, for a closed section
� 2†.�/ denote by n.�/ the number of nonauxiliary bases in � . The complexity of
a generalised equation � is defined as

compD comp.�/D
X

�2A†.�/

maxf0; n.�/� 2g:

Note that the complexity of a generalised equation defined above differs slightly from
the definition used in [14] since it does not count auxiliary bases. Uncontrolled addition
of auxiliary bases could potentially result in a new source of infinite branches in the
construction of the tree. The hierarchy on tribes is used to control this phenomena:
newly added auxiliary bases go up in the hierarchy and when they are maximal, no new
auxiliary bases are further introduced. At this point, the complexity of a generalised
equation defined in [14] does not increase and we can analyse the corresponding
generalised equation using the process from [14].

Given a generalised equation �, we construct an oriented rooted tree T 0.�/ as follows:
we start from the root v0 to which we assigned � and proceed by induction on the
height of the tree. Suppose, by induction, that the tree T 0.�/ is constructed up to
height n, and let v be a vertex of height n. We now describe how to extend the tree
from v . The construction of the outgoing edges from v depends on which of the 15
cases takes place at the vertex v . We always assume that if the generalised equation �v
satisfies the assumptions of case i , then �v does not satisfy the assumptions of all the
cases j with j < i .
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Using this procedure we obtain a tree T 0 D T 0.�/ satisfying all the properties listed
in Proposition 3.5, this is our new process tree. We are now in the position to describe
infinite branches of the tree T 0 .

Lemma 3.8 [14, Lemma 4.19] Let

(3) v0! v1! � � � ! vr ! � � �

be an infinite path in the tree T 0.�/. Then there exists a natural number N such that
all the edges vn! vnC1 of this path with n �N are principal edges, and one of the
following conditions holds:

Linear case We have 70 � tp.vn/� 100 for all n�N .

Quadratic case We have tp.vn/D 12 for all n�N .

General case We have tp.vn/D 15 for all n�N .

Proof Observe that if in an infinite branch the type of a vertex is 6, then the pair of
matched bases cannot be auxiliary since the dual of an auxiliary base is by construction
nonactive. Hence after applying case 6 the complexity of a generalised equation strictly
decreases.

The argument given in the proof of [14, Lemma 4.19] shows that infinite branches are
of type 12, 15 or 6:5, 70–100 .

We are left to show that in an infinite branch of type 6:5, 70–100 , the case 6:5 can only
occur finitely many times. By Lemma 3.4, without loss of generality we may assume
that the minimal tribe (of an active base) is constant throughout the infinite branch.

Recall that an item does not belong to the kernel of a generalised equation if after an
elimination process the item is uncovered (see the description of derived transforma-
tion D4 in [14, pages 57–58]). If in an infinite branch the type of �vi

is 6:5, then either
the type of �viC1

or of �viC2
is 70–100 . Indeed, assume that the type of �viC1

is
also 6.5, then each item which does not belong to the kernels of �vi

and of �viC1
and

which does not belong to a minimal tribe is covered by two auxiliary bases. Therefore,
in the elimination process for �viC2

every such item is covered at least twice and so it
belongs to Ker.�viC2

/. Hence the type of viC2 � 70 and all items in �viC2
that do

not belong to Ker�viC2
belong to the minimal tribe. Furthermore, it follows from [14,

Lemma 7.10] that in an infinite branch, cases 70–100 leave the kernel of the generalised
equation invariant and so the type of �viCn

is never 6:5 for n� 2. We conclude that
the infinite branch is of type 70–100 as desired.
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3.3 Construction of the finite tribal tree T0

In [14, Chapter 7], we proved that one can associate specific groups of automor-
phisms to � and determine a finite subtree T0.�/ of the infinite tree T .�/ such
that for any solution of �, there exists another solution, which is equivalent to the
original one modulo associated automorphisms and which factors through the finite
tree T0.�/. Furthermore, leaves of the tree T0.�/ are either of type 1, ie correspond
to proper quotients, or they only contain nonactive sections with periodic structures;
see [14, Proposition 7.1].

The aim of this section is to present a construction of an analogous finite tree that, on
the one hand, takes into account the modifications we made in the previous section
(Cases 6:5; 70–100 ) in the construction of the process tree T 0.�/ and, on the other
hand, allows for a subtle analysis of the behaviour of tribes in infinite branches.

More precisely, in this section we introduce the notions of tribal generalised equations
of types 12, 15 and linear type (see Definitions 3.24, 3.26 and 3.28) and prove:

Proposition 3.29 For a (constrained) generalised equation �D�v0
, one can effec-

tively construct a finite oriented rooted at v0 tree T0 , T0 D T0.�v0
/ such that:

(1) The tree T0 is a subtree of the tree T 0.�/.

(2) To the root v0 of T0 we assign a recursive group of automorphisms Aut.�/
related to tribal generalised equations of type 12,15 and linear in the tree T0 .

(3) For any solution H of a generalised equation � there exists a leaf w of the tree
T0.�/, tp.w/D 1; 2, and a solution H Œw� of the generalised equation �w such
that

� H Œw� <Aut.�/ H ;
� if tp.w/D 2 and the generalised equation �w contains nonconstant nonac-

tive sections, then either

– there exists a period P such that H Œw� is periodic with respect to the
period P and the generalised equation �w is either singular of strongly
singular with respect to the periodic structure P.H Œw�;P / or

– the section has been transferred to the nonactive part by an auxiliary
base.

3.3.1 Quadratic case The goal of this section is to prove a refinement of the following
lemma from [14] and analyse the behaviour of tribes in an infinite branch of type 12.
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Lemma 3.9 [14, Lemma 7.11] Let v0! v1! � � � ! vn! � � � be an infinite path
in the tree T 0.�/, where tp.vi/ D 12 for all i , and �v0

; �v1
; : : : ; �vn

; : : : be the
sequence of corresponding generalised equations. Then among f�vi

g some generalised
equation occurs infinitely many times. Furthermore, if �vk

D �vl
, then �.vk ; vl/

is a G–automorphism of the coordinate group GR.�vk
/ invariant with respect to the

nonquadratic part.

More precisely, we aim to show that all the items of the quadratic section that are
not fixed by the group of automorphisms assigned to the vertex belong to the same
minimal tribe and so, in particular, all of them commute with the same set of items.
Furthermore, items of the quadratic section that are fixed by the automorphisms belong
to tribes that dominate the minimal tribe (the one defined by any of the items which is
not fixed by the automorphisms).

Let us begin with the analysis of an infinite branch of type 12. Let � D h‡;<‡ i
be a quadratic constrained generalised equation of type 12. Throughout this section
we will be mostly concerned with active bases, boundaries, items etc, ie bases, items
and boundaries of the (active) quadratic part. When no confusion arises, we will omit
saying that the bases (items, boundaries etc) are active.

Let us consider an infinite branch of type 12 in the tree T .�/,

�0!�1! � � � :

Then, by [14, Lemma 7.12], there exists a generalised equation �r0
that repeats

infinitely many times in the infinite branch: �r0
D �r1

D � � � . Without loss of
generality, we assume that r0 D 0. Furthermore, the canonical epimorphism �.ri ; rj /

from G�ri
to G�rj

is an automorphism of G�ri
. In fact, since there are finitely

many different generalised equations appearing in the infinite branch, without loss
of generality, we may assume that every generalised equation of the infinite branch
appears in it infinitely many times.

Since the branch is infinite and �0 repeats infinitely many times, we have that the
complexity, the number of active (nonauxiliary) bases and the number of active items
is constant throughout the branch, ie comp.�i/D comp.�iC1/, nA.�i/D nA.�iC1/

and ��i
D��iC1

for all i . Furthermore, if �i is the carrier of �i , then every �i –tying
introduces a new boundary. There is a natural one-to-one correspondence between the
bases of �i and �iC1 . Namely, the base �i in �iC1 is the only leading base which
is not the carrier and all the other bases are naturally preserved. Hence, we may assume
that the sets of bases of �i and �iC1 coincide.
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Lemma 3.10 Let � be a generalised equation of type 12 that repeats infinitely many
times in the infinite branch. Then one can declare the active part of the generalised
equation � to contain only one closed section.

Proof Suppose that � contains more than one (active) closed section: Œ1; i � and Œi; j �.

For every n we partition the set of bases BS.�n/ of �n into two. Let L.�n/ be
the set of bases � of �n so that ˛.�/ and ˇ.�/ lie to the left of the boundary i

of �. Set R.�n/ to be the set of bases � of �n so that ˛.�/ and ˇ.�/ lie to the
right of the boundary i of �. Since the boundary i is closed in �, it follows that
BS.�n/DLtR.

Notice that if � 2R.�n/, then � 2R.�nC1/.

We first observe that the carrier base of �n belongs to L.�n/ for all n. Indeed,
if �kC1 is the generalised equation so that its carrier �kC1 belongs to R.�kC1/ and
for all n� k the carrier �n of �n belongs to L.�n/, then it follows that nA.�k/ >

nA.�kC1/, a contradiction.

We now show that if � 2R.�/ and �.�/ 2L.�/, then �.�/ is never carrier. Assume
the contrary, ie �.�/D �l is the carrier of �l for some l . Let � be a transfer base.
In the infinite branch, the base � is transferred infinitely many times. Let �m be the
next time � is transferred. It is clear that the carrier �m belongs to R.�m/, deriving
a contradiction with the above observation.

Since, the generalised equation � repeats, it follows that no boundaries are introduced
between ˛.�.�// and ˇ.�.�//. Therefore, one can declare the section Œi; j � of � to
be nonactive.

Let � be a base of �. We call the number l.�/D ˇ.�/�˛.�/ the length of � (in �).
We call the base short if l.�/D 1 and long otherwise.

Let �1 and �2 be two long bases of �. Notice that since there are no free boundaries
in � and since, by Lemma 3.10, the generalised equation � has only one active closed
section, then every boundary touches precisely two bases. Therefore, the bases �1

and �2 either do not overlap or if they do, then ˛.�2/Dˇ.�1/�1 or ˛.�1/Dˇ.�2/�1.

For every generalised equation �r from the infinite branch and any h
.r/
i 2 �r , the

set of words f�.vr ; vs/.h
.r/
i / j s > r; �r D�sg is either finite or infinite, ie the orbit

of an item under the automorphisms associated to �r is either a finite or an infinite
set. Define the set F.�r / to be the set of items of �r for which this set is finite and
let H.�r / be its complement.
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Notice that by the description of automorphisms associated to a generalised equation
of type 12 (see [14, Lemma 7.7]) any item that belongs to a quadratic-coefficient base
of �r or does not belong to the quadratic part is fixed by the automorphisms, and so
belongs to the set F.�r /.

Let h
.0/
i 2 F.�0/ and let

f's.h
.0/
i / j 's D �.v0; vs/.h

.0/
i /;�0 D�sg D fwi1; : : : ; wikg

be the orbit of h
.0/
i by the family of automorphisms f'sg associated to the vertex v0 .

Without loss of generality we can assume in an infinite branch the sets Il D fs 2N j
's D �.v0; vs/.h

.0/
i /D wikg, l D 1; : : : ; k are all infinite.

Remark 3.11 By replacing the infinite branch at �0 by k identical branches at �0;l ,
l D 1; : : : ; k and assigning to �0;l the group of automorphisms f's j s 2 Ilg, we may
assume that if h

.0;l/
i 2 F.�0;l/, then

's.h
.0;l/
i /D wi;l for all s 2 Il , l D 1; : : : ; k .

Let �s D�0 be so that for all h
.0/
i 2F.�/ we have that �.v0; vs/.h

.0/
i /Dw.h.s//D

h
.s/
i1
� � � h

.s/
in

. For all s0 > s such that �s0 D�0 , we have that

�.v0; vs0/.h
.0/
i /D�.vs; vs0/.�.v0; vs/.h

.0/
i //D�.vs; vs0/.h

.s/
i1
� � � h

.s/
in
/Dh

.s0/
i1
� � � h

.s0/
in
:

From the definition of �.vs; vs0/, we conclude that �.vs; vs0/.h
.s/
ij
/ D h

.s0/
ij

and so
h.s/ij
2 F.�s/ and �.vs; vt /.h

.s/
ij
/D h.t/m , for all s < t < s0 , �s D�s0 .

Remark 3.12 Without loss of generality we may assume that h
.0/
i 2 F.�0/ if and

only if 's.h
.0/
i /D h

.0/
i for all automorphism associated to �0 .

Furthermore, we have that if h
.0/
i 2 F.�0/ then �.v0; vt /.h

.0/
i /D h

.t/
m 2 F.�t / for

all t > 0. Hence jF.�0/j � � � � � jF.�t /j � � � � . Then, since the number jF.�0/j

is bounded above by ��0
D ��t

, without loss of generality, we may assume that the
number jF.�0/j is constant throughout the branch, ie jF.�0/j D jF.�t /j for all t .

Given a generalised equation �, we define m.�/ to be the set of minimal tribes of the
generalised equation:

m.�/D
˚
t.hj /

ˇ̌
hj 2H.�/ and t.hj / does not strictly dominate t.hk/

for all hk 2H.�/
	

and h.Mi.�// to be the set of items that belong to a given minimal tribe Mi of �:

h.Mi.�//D fhj 2H.�/g j t.hj / 2Mi ;Mi 2m.�/g:
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We draw the reader’s attention to the fact that the minimal tribes are defined using the
items from H.�/, which, by definition, are active.

Lemma 3.13 In an infinite branch of type 12, there exists i 2 N so that m.�i/ D

m.�j / for all j > i . Furthermore, the cardinality of the set h.Mk.�i// is constant, ie
jh.Mk.�i//j D jh.Mk.�j //j for every minimal tribe Mk 2m.�i/Dm.�j /.

Proof Since the generalised equation repeats infinitely many times, �r0
D�r1

D � � �

and since there are finitely many different tribes, for sufficiently large i and passing to
a subsequence �ri0

D�ri1
D � � � , we may assume that the tribe of every item h.rij

/
k

is the same, ie t.h.ri0
/

k
/ D t.h.rij

/
k

/ for all j 2 N . Hence m.�ri0
/ D m.�rij

/ and
jh.Mk.�ri0

//j D jh.Mk.�rij
//j for all Mk 2 m.�ri0

/D m.�rij
/. To simplify the

notation, set i0 D 0.

It follows from the above equalities that in order to prove that m.�i/D m.�j / and
that jh.Mk.�i//j D jh.Mk.�j //j for all i; j 2 N and Mk 2 m.�i/, it suffices to
show that m.�i/�m.�iC1/ and that jh.Mk.�i//j � jh.Mk.�iC1//j.

Let � be the carrier of �i , let j ; jC1 be the boundaries that touch a transfer base (that
is j C 1� ˇ.�/� 1) and let .j ; �; b.j // be the corresponding boundary connection
introduced in the entire transformation. Suppose b.j / is introduced between l.b.j //

and l.b.j //C 1. By Lemma 3.4, it follows that t.h
.iC1/

l.b.j//
/ dominates t.h

.i/
j / and

t.h
.iC1/

b.j/
/ dominates t.h

.i/

l.b.j//
/. Therefore, we have that m.�i/ � m.�iC1/ and

jh.Mk.�i//j � jh.Mk.�iC1//j for all minimal tribes Mk .

We call the items of �i that belong to a minimal tribe minimal.

Recall that the carrier base �i of �i is a long base. Since there are no free boundaries,
there are exactly ˇ.�i/� 1 transfer bases and all of them are short. Moreover, �i is a
short transfer base of �iC1 ; see Figure 1.

Definition 3.14 Let � be the carrier base of �. We take the (uniquely defined) transfer
base � so that ˛.�/ D 1 and we �–tie the boundary 2 D ˇ.�/. We then transfer �
from � onto �.�/. Now we cut � in the boundary 2 and delete the section Œ1; 2�.

It follows from the definition that the (usual) entire transformation D5 is a composition
of the transformations just introduced (namely of ˇ.�/�2 such transformations). From
now on, we abuse the terminology and refer to the introduced transformation as to the
entire transformation and refer to the usual entire transformation as D5 or complete
entire transformation.
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Lemma 3.15 In an infinite branch �0!�1! � � � of type 12, there exists a gener-
alised equation �p such that

(A) either the item h
.p/
1

belongs to a minimal tribe of �p , or

(B) the entire transformation introduces a new boundary in an item that belongs to a
minimal tribe of �p .

Proof Let h
.r0/
j be a minimal item of �r0

. Since h
.r0/
j 2H.�r0

/, by definition of the
set H.�r0

/, the orbit of h.r0/
j under the automorphisms associated to �r0

is infinite.
Therefore, there exists p 2N so that

j�.r0; i/.h
.r0/
j /j D 1 for all i � p and j�.r0;pC 1/.h

.r0/
j /j � 2:

Hence either

� a base covering the item �.r0;p/.h
.r0/
j /D h

.p/
jp

is transferred (case (A) of the
lemma) and so, by Remark 3.12, one can assume that jp D 1, or

� in the entire transformation of the generalised equation �p , a new boundary is
introduced between the boundaries jp and jpC 1 (case (B) of the lemma).

Furthermore, since �.r0; i/.h
.r0/
j /D h

.i/
ji

for all i � p , it follows that the tribe of h
.i/
ji

is the same for all i � p , ie t.h.i/ji
/D t.h.r0/

j /. Hence if h.r0/
j belongs to a minimal

tribe Mk in �0 , then h.i/ji
also belongs to the tribe Mk and, by Lemma 3.13, Mk is

a minimal tribe in �p .

Lemma 3.16 In an infinite branch of type 12,

�0!�1! � � � ;

where �i is obtained from �iC1 by an entire transformation, there exists a generalised
equation �k of the infinite branch such that the item h

.k/
1

is minimal (case (A) of
Lemma 3.15 holds).

Proof By Lemma 3.15, it suffices to show that if in the infinite branch there exists
a generalised equation that satisfies case (B) of Lemma 3.15, then there exists a
generalised equation that satisfies case (A).

Without loss of generality, we may assume that the generalised equation �0 satisfies
case (B) of Lemma 3.15, ie the entire transformation introduces a boundary connection
.2; �; b.2// and the boundary b.2/ is between the boundaries l.b.2// and l.b.2//C 1,
where � is the carrier base of �0 and h

.0/

l.b.2//
is a minimal item that belongs to some

minimal tribe M.
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Since, by Lemma 3.13, the number of minimal items of a fixed minimal tribe M in
the infinite branch is constant, it follows that either h.1/

l.b.2//
or h.1/

b.2/
is minimal and

belongs to M. If h.1/
b.2/
2 h.M/, then, by Lemma 3.4, we have that h.0/

1
2 h.M/ and

hence �0 satisfies case (A) of Lemma 3.15.

Assume now that h
.1/

l.b.2//
is minimal and belongs to M. Let k be so that for all the

boundary connections .i; �; b.i//, i D 2; : : : ; k � 1, one has l.b.i// D l.b.2// and
l.b.k// > l.b.2//.

Suppose that �i , i D 1; : : : ; k � 1, does not satisfy case (A) of Lemma 3.15. Then,
since the number of minimal items of the minimal tribe M is constant in the infinite
branch, it follows that h

.k/

b.k�1/
is minimal and belongs to h.M/ (note that here k � 1

is the boundary of �0 ). By definition of k and Lemma 3.4, the tribe of h.k/
b.k�1/

dominates the tribe of h.0/
k�1

and hence, h.0/
k�1

is minimal and belongs to h.M/. We
conclude that the generalised equation �k falls under case (A) of Lemma 3.15.

Corollary 3.17 Let v0! v1! � � � ! vn! � � � be an infinite path in the tree T .�/,
where tp.vi/D 12 for all i , and �v0

; �v1
; : : : ; �vn

; : : : be the sequence of correspond-
ing generalised equations. Then among f�vi

g some generalised equation �ik
occurs

infinitely many times and h
.ik/
1

is minimal.

Lemma 3.18 Let �0 be a generalised equation of type 12 that repeats infinitely many
times in the infinite branch. Let � be the carrier of �0 and let h

.0/
1

be an item from
a minimal tribe M. Then the item h

.0/

ˇ.�/�1
is also minimal and belongs to h.M/. In

particular, the item h.1/
1

of �1 , where �1 is obtained from �0 by a complete entire
transformation is minimal and belongs to h.M/.

The tribe of every item covered by � dominates the minimal tribe M of h
.0/
1

. Fur-
thermore, if an item h

.0/
i covered by � strictly dominates the minimal tribe, then

�.v0; v1/.h
.0/
i /D h

.1/
j and, in particular, h

.0/
i 2 F.�0/.

Proof Recall that every �–tying introduces a new boundary. We only consider the
case when ".�.�//D ".�/D 1. The remaining cases are analogous. We �–tie all the
boundaries 2; : : : ; ˇ.�/� 1 thus introducing boundaries n2; : : : ; nˇ.�/�1 between the
boundaries l.n2/ and l.n2/C 1,. . . , l.nˇ.�/�1/ and l.nˇ.�/�1/C 1. We will denote
the corresponding items of �1 by

h.1/l.j/; h.1/l.j/C1 and h.1/nj
:

Since the number of minimal items of a fixed minimal tribe in the infinite branch
is constant, it follows that at least one of the items h

.1/

l.2/
and h

.1/
n2

belongs to h.M/.
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Hence, the item h.0/
l.2/

of �0 is minimal and belongs to h.M/. Therefore, since the
number jh.M/j is constant both h.1/

l.2/
and h.1/n2

are minimal and belong to h.M/.

If l.3/ > l.2/, we conclude that the item h
.0/
2

of �0 is minimal and belongs to h.M/.
Either l.2/D l.3/ or, otherwise, we can repeat the above argument for h2 . Let m be
maximal so that l.2/D l.m/. Then the items h

.1/
ni

of �1 belong to the same tribe as the
item h

.0/
i of �0 , i D 2; : : : ;m�1, and since the number jh.M/j in the infinite branch

is constant, then h
.1/
nm

is minimal and belongs to h.M/. It follows that the item h
.0/
m is

minimal and belongs to h.M/, hence we can repeat the argument for h
.0/
m .

We conclude that the item h
.0/

ˇ.�/�1
of �0 is minimal and belongs to h.M/ as so does

the item h.1/nˇ.�/�1
of �1 .

Notice that we have shown that for any item h
.0/
i covered by �, if l.i/ < l.iC1/, then

the tribe of h
.0/
i is minimal and belongs to h.M/. Furthermore, all the boundaries

are introduced in items whose tribe is M. Hence for any h
.0/
i covered by � such that

l.i/D l.i C 1/, we have that its tribe dominates the minimal tribe M of h
.0/
1

.

Remark 3.19 From the proof of Lemma 3.18, it follows that, under the assumptions
of the lemma, the image of the minimal item h.0/

l.2/
of �0 under �.v0; v1/ is h.1/

l.2/
h.1/n2

and both of the items h.1/
l.2/

, h.1/n2
are minimal.

Lemma 3.20 Let �0 be a generalised equation of type 12 that repeats infinitely many
times in the infinite branch. Then, in the infinite branch, all bases of �0 , except,
perhaps, bases � contained in the long base � so that ˇ.�/ D �A , are transferred
infinitely many times.

Proof Notice that, without loss of generality, we can assume that if a base is transferred,
then it is transferred infinitely many times in an infinite branch.

Consider the long base � of �0 so that ˇ.�/ D �A . Let C.�/ be the set of bases
contained in �.

If either � or any of the bases in C.�/ is the carrier base or is transferred in some
generalised equation of the infinite branch, say �k , then h

.k/
1

is an item with boundaries
inside one of the items h

.0/

˛.�/
; : : : ; h

.0/

ˇ.�/
. Hence, the section Œ1; ˛.�/� of �0 (and so

all the bases in this section) has been transferred and the statement follows. Notice that
since the base � is long, for a base contained in � to be a carrier base of a generalised
equation �k , it is necessary that �.�/ or � be the carrier base of a generalised
equation �l , where l < k .

Assume further that � and the bases from C.�/ are neither carrier bases nor transfer
bases.
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Without loss of generality, we may assume that there exists a base � 2 C.�/[ f�g

so that �.�/ is the carrier of some �k . Indeed, suppose that �.�/ is neither carrier
nor transfer base for all � 2 C.�/[f�g. In this case, the section Œ˛.�/; ˇ.�/� can be
declared nonactive and we can set �A to be ˛.�/. Similarly, if some base �.�/ is
transferred but for all generalised equations we have ˇ.�.�//�˛.�.�//D 1, then the
section Œ˛.�/; ˇ.�/� can be declared nonactive and we can set �A to be ˛.�/. Finally,
assume that a base �.�/ is transferred and for some generalised equation we have that
ˇ.�.�//�˛.�.�// > 1. Since �.�/ is transferred infinitely many times and transfer
bases are always short, it follows that before being transferred, the base �.�/ must
be a carrier base (since this is the only way a long base can become short). Therefore,
there exists a base � 2 C.�/[f�g so that �.�/ is the carrier of some �k .

Note that since the branch is infinite, every �–tying introduces a new boundary. Since
there exists a base � 2 C.�/ so that �.�/ is the carrier of some generalised equation,
say �k , at this step the new boundaries are introduced in the section Œ˛.�/; ˇ.�/�.
Hence, for the generalised equation �0 to repeat, there must exist l so that �.�/ is
the carrier of �l .

Notice that, in particular, we have shown that in the assumptions of the lemma, either �
or its dual �.�/ is a carrier base.

Suppose that ".�/ � ".�.�//D�1. Then, in the generalised equation �lC1 we have
ˇ.�/ < �A . Hence, for the generalised equation �0 to repeat, the base � has to be
transferred. In this case, we conclude that all the bases of �0 , except, perhaps, bases �
contained in a base � so that ˇ.�/D �A , are transferred infinitely many times.

Suppose now that ".�/�".�.�//D1. Let � be the (uniquely defined) transfer base of �l

so that ˛.�/D 1. Since the base � is a transfer base of �l , it is transferred infinitely
many times in an infinite branch and hence for some generalised equation, say �k , the
item h

.k/
1

is an item with boundaries inside one of the items h
.0/

˛.�/
; : : : ; h

.0/

ˇ.�/
. Hence,

the section Œ1; ˛.�/� of �0 (and so all the bases in this section) has been transferred
and the statement follows.

Lemma 3.21 Let � be a generalised equation of type 12 that repeats infinitely many
times in the infinite branch and let h1 be minimal. Then, for every long base �, the
items h˛.�/ and hˇ.�/�1 ¤ h�A�1 are minimal.

In other words, all items that are not covered by a short base are minimal and belong to
the same minimal tribe M and all the other items belong to tribes that dominate M.

Proof By Lemma 3.18, if �1 is obtained from � by a (complete) entire transfor-
mation D5, then the item h

.1/
1

of �1 is also minimal. Hence, in the infinite branch,
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the items h
.i/
1

and h
.i/

ˇ.�i /�1
are always minimal and the items hj , 1< j < ˇ.�i/� 1

belong to tribes that dominate the tribe of h.i/
1

, where �i is the carrier of �i .

Let � be the (uniquely defined) long base so that ˇ.�/ D �A . We now consider an
arbitrary long base � of the generalised equation � distinct from �. To prove the
lemma, it suffices to show that hˇ.�/�1 is minimal.

For every generalised equation �i we have that either

(I) the boundary 1 of �i corresponds to a boundary ji of �, ji � ˇ.�/ in �, or

(II) there is a base �i of �i so that ˇ.�i/ corresponds to the boundary ˇ.�/ of �.

Furthermore, since � ¤ �, by Lemma 3.20, there exists N so that for all n � N

the generalised equation �n satisfies case (I), and for all m < N the generalised
equation �m satisfies case (II).

Notice that the boundary ˇ.�N�1/ of �N�1 corresponds to a boundary jN of �,
so that jN � ˇ.�/. Suppose that jN D ˇ.�/ (ie the boundary ˇ.�N�1/D ˇ.�N�1/

corresponds to the boundary ˇ.�/ of �). Then the boundary ˇ.�N�1/� 1 of �N�1

corresponds to a boundary between ˇ.�/� 1 and ˇ.�/ in �. Since h
.N�1/

ˇ.�N�1/�1
is

minimal, so is hˇ.�/�1 .

If jN > ˇ.�/ in � (ie �N�1 is a transfer base of �N�1 ), then, it is not hard to see
that the boundary ˛.�N�1/ of �N�1 corresponds to a boundary between ˇ.�/� 1

and ˇ.�/ in �. We conclude that hˇ.�/�1 is minimal.

Corollary 3.22 Let � be a generalised equation of type 12 that repeats infinitely
many times in the infinite branch and let the item h1 of � be a minimal item that
belongs to the minimal tribe M D t.h1/ of �. Then the tribe t.hi/ of any item hi

of � dominates the tribe t.h1/, i D 2; : : : ; �A� 1.

Proof By Lemma 3.20, all bases of � except, perhaps, bases � contained in a base �
so that ˇ.�/D �A , are transferred infinitely many times. Hence, by Lemma 3.21, it
now follows that the tribes of all the items hi , i D 1; : : : ; ˛.�/� 1 of � dominate the
tribe t.h1/, where � is the (uniquely defined) long base so that ˇ.�/D �A .

Since the base �.�/ is not contained in �, so the tribe of every item that belongs
to �.�/ dominates the tribe t.h1/. It follows that the base �.�/, and so �, belong
to a tribe that dominates t.h1/. Therefore, the tribe of every item that belongs to �
dominates t.h1/.
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Definition 3.23 It follows from Corollary 3.22 that if � is a generalised equation of
type 12 that repeats infinitely many times in the infinite branch, then there is only one
minimal tribe in �, ie jm.�/j D 1. We further denote this minimal tribe by M.

Definition 3.24 Let � be a generalised equation that repeats infinitely many times
in an infinite branch of type 12 and such that the item h1 of � is minimal and
belongs to the minimal tribe MD t.h1/ of �. We call such a generalised equation
tribal generalised equation of type 12. Note that by Corollary 3.17, tribal generalised
equations of type 12 exist in any infinite branch of type 12.

We summarise the discussion of this section in the following lemma.

Lemma 3.25 [14, Lemma 7.11] Let v0! v1!� � �! vn!� � � be an infinite path in
the tree T .�/, where tp.vi/D12 for all i , and �v0

; �v1
; : : : ; �vn

; : : : be the sequence
of corresponding generalised equations. Then among f�vi

g some tribal generalised
equation of type 12 occurs infinitely many times. Furthermore, if �vk

D �vl
, then

�.vk ; vl/ is a G–automorphism of the coordinate group GR.�vk
/ invariant with respect

to the nonquadratic part.

3.3.2 Case 15 Let us now consider an infinite branch of type 15. If an infinite branch
of type 15 has infinitely many generalised equations that contain nontrivial quadratic
part (or, in other words, there are infinitely many consecutive leading quadratic bases),
then the quadratic part of some generalised equation, say �, repeats infinitely many
times in the branch; see [14, Lemma 7.11]. By Corollary 3.17, in an infinite sequence
of generalised equations (with nontrivial quadratic parts) there exists at least one whose
quadratic part is tribal of type 12, ie the corresponding quadratic part repeats infinitely
many times in the infinite branch and h1 belongs to the minimal tribe of the quadratic
part.

Definition 3.26 A generalised equation in an infinite branch of type 15 is called tribal
generalised equation of type 15 if either its quadratic part is tribal of type 12 or its
quadratic part is trivial.

3.3.3 Linear case In the linear case, the following lemma is an immediate conse-
quence of the construction of the tree T 0 .

Lemma 3.27 [14, Lemma 7.9] Let v0! v1! � � �! vn! � � � be an infinite path in
the tree T 0.�/, where 70� tp.vi/� 100 for all i , and let �v0

; �v1
; : : : ; �vn

; : : : be the
sequence of corresponding generalised equations. Then among f�vi

g some generalised
equation �vk

occurs infinitely many times. If �vk
D �vl

, then �.vk ; vl/ is a G–
automorphism of GR.�vk

/ invariant with respect to the kernel of �vk
. Furthermore,

all items that do not belong to the kernel Ker.�vk
/ belong to a minimal tribe.
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Definition 3.28 A (constrained) generalised equation � of type i , i 2 f70; : : : ; 100g

that appears infinitely many times in an infinite branch of linear type is called tribal
linear generalised equation.

3.3.4 The tribal finite tree T0.�/ Repeating the argument of [14, Chapter 7] and
using Lemmas 3.27 and 3.25 instead of Lemmas 7.9 and 7.11 of [14], we obtain the
following proposition.

Proposition 3.29 [14, Proposition 7.1] For a (constrained) generalised equation
�D �v0

, one can effectively construct a finite oriented rooted at v0 tree T0 , T0 D

T0.�v0
/ such that:

.1/ The tree T0 is a subtree of the tree T 0.�/.

.2/ To the root v0 of T0 we assign a recursive group of automorphisms Aut.�/
related to tribal generalised equations of type 12; 15 and linear in the tree T0 .

.3/ For any solution H of a generalised equation � there exists a leaf w of the
tree T0.�/, tp.w/D 1; 2, and a solution H Œw� of the generalised equation �w
such that

– H Œw� <Aut.�/ H (see [14, page 109] for notation);
– if tp.w/D 2 and the generalised equation �w contains nonconstant nonac-

tive sections, then either

� there exists a period P such that H Œw� is periodic with respect to the
period P and the generalised equation �w is either singular of strongly
singular with respect to the periodic structure P.H Œw�;P / or

� the section has been transferred to the nonactive part by an auxiliary
base.

Recall that in the process of constructing the tribal tree T0.�/, we duplicate some
infinite branches of type 12; see Remark 3.11. This splitting allows us to have extra
assumptions on solutions that factor through a given branch. We record this fact in the
remark below.

Remark 3.30 Let �k be a tribal generalised equation of type 12 in T0.�/. If
h
.k/
i 2 F.�k/, then

'�.vk ; vkC1/.h
.k/
i /D w.h.kC1//;

where w.h.kC1// is a word in items from �kC1 such that for a solution H .k/ D

'�.vk ; vkC1/H
.kC1/ , we have that H

.k/
i D w.H .kC1//.
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3.4 The tribal tree Tsol.�/

This section follows the constructions presented in [14, Chapters 8 and 9]. Our main
goal is to construct a finite tribal tree Tdec.�/ that contains the tribal tree T0.�/ as
a subtree and for which all the epimorphisms from the root to the leaves are proper.
In order to do so, we need to take care of the new nonactive sections that are created
by the auxiliary bases introduced in Case 6.5. Once we proved the existence of such
tribal tree Tdec.�/, the construction of the tribal solution tree is exactly the same as
in [14, Chapter 9]. Namely, we proceed by constructing the tree Tdec for each leaf of
the tree Tdec.�/ and use the fact that partially commutative groups are equationally
Noetherian to conclude that this construction terminates.

Proposition 3.31 [14, Proposition 8.1] For a (constrained) generalised equation
�D�v0

, one can effectively construct a finite oriented rooted at v0 tree Tdec , Tdec D

Tdec.�v0
/ such that:

.1/ The tribal tree T0.�/ is a subtree of the tribal tree Tdec .

.2/ To every vertex v of Tdec we assign a recursive group of automorphisms A.�v/

(related to tribal generalised equations).

.3/ For any solution H of a generalised equation � there is a leaf u of the tree Tdec ,
tp.u/D 1; 2, and a solution H Œu� of the generalised equation �u such that

– �H D �0�.v0; v1/�1 : : : �.vn�1;u/�n�H Œu� , where �i 2A.�vi
/;

– if tp.u/D 2, then all nonactive sections of �u are constant sections.

Proof By Proposition 3.29, if the type of a leaf w of the tribal tree T0.�/ is 2 and
the generalised equation �w contains nonconstant nonactive sections, then either

� there exists a period P such that H Œw� is periodic with respect to the period P

and the generalised equation �w is either singular of strongly singular with
respect to the periodic structure P.H Œw�;P / or

� the section has been transferred to the nonactive part by an auxiliary base.

The treatment of the former case, namely when the nonactive section has a singular or
strongly singular periodic structure is exactly the same as in [14, Section 8.1].

To deal with the nonactive sections transferred by auxiliary bases, we proceed by
induction on the height of tribes.

If the tribe of an auxiliary base that transferred the section � is maximal, then we
declare the section � active in �w and construct the tribal tree T0.�w/. Notice that
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since every item in the section � (and so in the active part of �w ) is maximal, by
Lemma 3.4 so are all the items in all the generalised equations that appear in the
tree T 0.�w/. It follows that no vertex in the tree T 0.�w/ is of type 6.5. Therefore,
there are no more new auxiliary bases added in the construction of the tree T0.�w/.

Furthermore, if the tree T0.�/ has leaves of type 2 that are not periodised with respect
to a singular or strongly singular periodic structure, then the corresponding nonactive
sections have been transferred by auxiliary bases in the section � and so these active
sections also belong to a maximal tribe, but contain strictly less (than � ) auxiliary bases
(since no auxiliary bases appear in the process and the carrier is an auxiliary base and
is removed). We therefore can proceed by induction on the number of auxiliary bases.
If there are no auxiliary bases in the nonactive section � that has been transferred by
a maximal auxiliary base, then all leaves of the tree T0.�w/ of type 2 correspond to
generalised equations periodised with respect to singular or strongly singular periodic
structures and we can construct the tree Tdec.�w/ just as in [14].

We have shown that if the auxiliary base belongs to a maximal tribe, then one can
construct the tribal tree Tdec .

Since, by construction, auxiliary bases belong to a tribe that strictly dominates a minimal
tribe of �, it follows that the minimal tribe of a nonactive section transferred by an
auxiliary base is not minimal. Hence, by induction we can construct the tree Tdec.�w/

where �w is a generalised equation of type 2 in T0.�/ and is not periodised.

Define Tdec.�/ as the tree obtained from T0.�/ by gluing to each leaf w of type 2 the
corresponding tribal tree Tdec.�w/. It is straightforward to check that the tree Tdec.�/

satisfies the required properties.

We now repeat the argument given in [14, Chapter 9] and use the fact that partially
commutative groups are equationally Noetherian to construct the tribal solution tree
from the tribal tree Tdec.�/. We summarise the main result of this section in the
following theorem.

Theorem 3.32 [14, Theorem 9.2] Let �D�.h/ be a constrained generalised equa-
tion in variables h. Let Tsol.�/ be the solution tree for �. Then the following
statements hold.

.1/ For any solution H of the generalised equation � there exist: a path v0 !

v1! � � �! vn D v in Tsol.�/ from the root vertex v0 to a leaf v , a sequence of
automorphisms �D .�0; : : : ; �n/, where �i 2A.�vi

/, �vi
are tribal generalised

equations and a solution H .v/ associated to the vertex v , such that

(4) �H Dˆ�;H .v/ D �0�.v0; v1/�1 : : : �.vn�1; vn/�n�H .v/ :
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.2/ For any path v0! v1! � � � ! vn D v in Tsol.�/ from the root vertex v0 to
a leaf v , any sequence of automorphisms � D .�0; : : : ; �n/, �i 2A.�vi

/, and
any solution H .v/ associated to the vertex v , the homomorphism ˆ�;H .v/ is a
solution of �. Moreover, every solution of � can be obtained in this way.

4 Structure of coordinate groups

As we discussed in the previous section, a key step in our construction of graph towers
is the analysis of the structure of coordinate groups assigned to vertices of the solution
tree. In general, the structure of a coordinate group does not depend only on the type of
the generalised equation itself, but rather on the existence of some dynamical behaviour
associated to it. Deeper understanding of these dynamics motivated and piloted the
changes made to the process described in [14] and led us to the concept of tribal
generalised equation and the construction of the tribal solution tree.

In this section, we show that the coordinate groups of tribal generalised equations of
type 12, 15 and linear type do have a clear algebraic structure, that is, they split as
amalgamated products while preserving the underlying structure of graph products.

Note that in this section we primarily work with the groups G� . However, the notions
of canonical homomorphisms, fundamental branch etc are defined using coordinate
groups of generalised equations. All these notions carry over from coordinate groups
to the groups G� and we use them in this context. For instance, by construction, the
canonical homomorphism �.v0; v1/W GR.�0/! GR.�1/ is induced by a homomor-
phism from G�0

to G�1
which, abusing the notation, we also denote by �.v0; v1/.

Similarly, any solution H of � is induced by a homomorphism from G� to G , which
we also denote by H .

4.1 Structure of the quadratic part

Let �D h‡;<‡ i be a tribal generalised equation of type 12. Denote by BSA.�/ the
set of all active bases of the generalised equation �. Our next goal is to show the set

fh.�/ j � 2 BSA.�/g

is a generating set of the subgroup of G� generated by the active items of � (ie
the subgroup generated by the items from the quadratic section of �). In this new
generating set, we prove that this subgroup is Tietze-equivalent to a one-relator quotient
of a partially commutative group, where the relation is a quadratic word.
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To simplify the notation, below we sometimes write � instead of h.�/. Firstly, we
use induction to define the map  from the subgroup generated by the items of the
quadratic part of ‡ to the subgroup hBSA.�/i of G‡ as follows.

Recall that if �1 is the long leading base, then every item hi , i D 1; : : : ; ˇ.�1/� 2

is covered by a short base �i . Then, for every item hi , i D 1; : : : ; ˇ.�1/� 2, we set
 .hi/D �i .

Notice that
hˇ.�1/�1 D h�1

ˇ.�1/�2 � � � h
�1
2 h�1

1 �1:

We set
 .hˇ.�1/�1/D  .h

�1
ˇ.�1/�2 � � � h

�1
2 h�1

1 /�1:

Note that the image of the item hˇ.�1/�1 is a word whˇ.�1/�1
in the bases �i so that

˛.�i/ < ˇ.�1/� 1 and every such base occurs in whˇ.�1/�1
precisely once.

Suppose that the map  is defined for all the items hi , i < k , and that if an item hi

is covered only by long bases, then the image  .hi/ is a word whi
in the bases � so

that ˛.�/ < i and every such base occurs in whi
precisely once.

We define  .hk/ recursively. If hk is covered by a short base �k , then we set
 .hk/D �k . Otherwise, hk is only covered by (two) long bases �1 and �2 , where
˛.�2/D ˇ.�1/� 1D k . Then we define

 .hk/D  .h
�1
k�1 � � � h

�1
1 h1 � � � h˛.�1�1//�1

D  ..h�1
k�1 � � � h

�1
˛.�1/

/�1 D �
�1
k�1 � � � �

�1
˛.�1/C1 .h

�1
˛.�1/

/�1:

Since ˛.�1/ < k and the item h˛.�1/ is covered by two long bases, it follows by
induction assumption that  .h˛.�1// is a word in the bases � so that ˛.�/ < ˛.�1/,
and every such base occurs in this word precisely once. It follows that  .hk/ is a word
in the bases � so that ˛.�/ < k , and every such base occurs in this word precisely
once.

Example 4.1 Let � be the generalised equation given on Figure 1. Then

 .h1/D �;  .h2/D �;  .h3/D �
�1��1�;  .h4/D�.�/;

 .h5/D�.�/
�1��1���.�/;  .h6/D �;  .h7/D�.�/:

We now determine the presentation of the subgroup generated by active items of the
quadratic part of ‡ in the generators BSA.�/.
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Note that, by Lemma 3.10, every boundary of � touches precisely two bases, ie for
every boundary i , 1< i < � , there exist a base �i such that ˛.�i/D i and a base �i

such that ˇ.�i/D i . Therefore we can define the words

W1 D �1�ˇ.�1/�ˇ.�ˇ.�1/
/ � � � �m�ˇ.�m/;

where ˇ.�ˇ.�m//D �� and

W2 D �1�ˇ.�1/�ˇ.�ˇ.�1/
/ � � � �n�ˇ.�n/;

where ˇ.�ˇ.�n//D �� . We set

(5) W DW1W �1
2 :

For each item hi , i D �A; : : : ; �� � 1, ie for items that do not belong to the active
quadratic section, we set  .hi/D hi .

Example 4.2 Let � be the generalised equation given on Figure 1. Then

W1 D ���.�/��.�/; W2 D ��.�/�.�/:

Lemma 4.3 In the above notation, the map  induces an isomorphism from G‡ to
the group

K‡ D hBSA.�/; h�A
; : : : ; h���1 jW D 1;

�".�/�.�/�".�.�// D 1; �".�/h.�.�//�".�.�//;R0i;

where � runs over the set of quadratic bases, � runs over the set of quadratic-coefficient
bases and R0 is the set of relations of the nonactive part, ie R0 is the set of relations
h.�/".�/h.�.�//�".�.�// , for all pairs of nonactive bases �, �.�/.

Proof Straightforward computation shows that for every base � that belongs to the
quadratic part such that either � is short or ˇ.�/¤ �A , we have  .h.�//D �. Indeed,
if � is short, then the statement is obvious. Let � be a long base. Then the item hˇ.�/�1

is covered by two long bases, � and � . We have

 .h.�//D  .h˛.�// � � � .hˇ.�/�2/ .hˇ.�/�1/

D  .h˛.�// � � � .hˇ.�/�2/ � �
�1
ˇ.�/�2 � � � �

�1
˛.�/C1 .h

�1
˛.�//�

D  .h˛.�// � �˛.�/C1 � � � �ˇ.�/�2 � �
�1
ˇ.�/�2 � � � �

�1
˛.�/C1 .h

�1
˛.�//�D �:

We conclude that  maps h.�/".�/h.�.�//�".�.�// to the identity in K‡ for all pairs
of dual bases except for the pair �;�.�/, where � is the (uniquely defined) long base
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so that ˇ.�/D �A . For the pair �;�.�/, we have

 .h.�//D  .h˛.�// � � � .hˇ.�/�1/D  .h˛.�//�˛.�/C1 � � � ��A�1:

Thus,  .h.�// is the product of all bases � of � so that � ¤ �. It follows that
 .h.�/".�/h.�.�//�".�.�/// is trivial in K‡ since W D 1 and �".�/�.�/�".�.�//D 1

are relations of K‡ . We conclude that  is a (surjective) homomorphism.

We define the map %W K‡ !G‡ by %.�/D h.�/. The map % extends to a homomor-
phism. Straightforward verification shows that every relation of K‡ maps to the identity
in G� and that % D id and  %D id and we conclude that  is an isomorphism.

Let us now show how to extend the isomorphism  to an isomorphism of G� .

Let „ be the set of relations defined as follows.

� For every pair of items hi ; hj of � so that <‡ .hi ; hj / and hi , hj are covered
by short bases �i , �j , correspondingly, we set Œ�i ; �j �D 1 2„.

� For every pair of items hi ; hj of � so that <‡ .hi ; hj / and hi is covered by a
short base �i and hj is a nonactive item, we set Œ�i ; hj �D 1 2„.

� For every pair of items hi ; hj of � so that <‡ .hi ; hj / and hi is covered only
by long bases and hj is a nonactive item, we set Œ�; hj �D 1 2„, for all bases �
in the quadratic section.

� For every pair of items hi ; hj of � so that <‡ .hi ; hj / and hi and hj belong
to the nonactive part, we set Œhi ; hj �D 1 2„.

Lemma 4.4 Let �D h‡;<‡ i be a tribal generalised equation of type 12. Then, in
the above notation, the map  induces an isomorphism from G� to the group

(6) KD
˝
BSA.�/; h�A

; : : : ; h���1

ˇ̌
W D 1; �".�/�.�/�".�.�// D 1;

�".�/h.�.�//�".�.�//;R0; „
˛
;

where � runs over the set of quadratic bases, � runs over the set of quadratic-coefficient
bases and R0 is the set of relations of the nonactive part, ie R0 is the set of relations
h.�/".�/h.�.�//�".�.�// , for all pairs of nonactive bases �, �.�/.

Proof By Lemma 4.3, the map  induces an isomorphism from G‡ to K‡ . Observe
that if an item hi belongs to two long bases, then, by Lemma 3.13, it belongs to the
minimal tribe. Since any other item hj from the quadratic part belongs to a tribe that
dominates the tribe of hi , it follows that hj 62 <‡ .hi/, ie if <‡ .hi ; hk/, then hk is
nonactive. Now a straightforward verification shows that  is an epimorphism.
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Furthermore, since, by Remark 3.3, the set <‡ is completed, it follows that  is an
isomorphism. Indeed, if an item hi belongs to two long bases, then by Lemma 3.21, it
belongs to the minimal tribe. Since items of the quadratic part belong to tribes that
dominate the minimal tribe and, by assumption, <‡ is completed, it follows that if
<‡ .hi ; hj /, then <‡ .hi ; hk/ for all items hk from the quadratic part.

Our next goal is to show that under the above conditions, one can take the quadratic
equation W to the standard form. In order to do so, we replace the generalised
equation � by another generalised equation, in which if an item belongs to a tribe
which strictly dominates the minimal tribe, then this item is covered by a short quadratic-
coefficient base.

Lemma 3.18 implies that items that belong to tribes which strictly dominate the minimal
tribe belong to F.�0/. By Remark 3.30, for any item h

.0/
i that belongs to a tribe that

strictly dominates t.h
.0/
1
/, there is a word wi.h

.1// 2G�1
so that for all solutions

H .0/
D '�.v0; v1/H

.1/

we have that '�.v0; v1/.hi/D wi.h
.1// and H

.0/
i DH .1/.wi/.

We replace �0 D h‡0;<‡0
i by a new generalised equation �0

0
D h‡ 0

0
;<‡ 0

0
i con-

structed as follows. Replace the nonactive part of �0 by the nonactive part of
�1 D h‡1;<‡1

i. For any item h
.0/
i in the active part that does not belong to the

minimal tribe t.h
.0/
1
/ let wi.h

.1//D h.1/
i;1
�i;1 � � � h.1/

i;ki

�i;ki , �i;j 2 f1;�1g.

Introduce new boundaries in the item h
.0/
i so that

h
.0/
i D h

.0/
i;1

0�i;1

� � � h
.0/

i;ki

0�i;ki
; �i;j 2 f1;�1g; j D 1; : : : ; ki :

Erase the short base � of �0 covering h
.0/
i . We now introduce new bases �i;1; : : : ; �i;ki

along with the corresponding duals in such a way that �i;j covers the item h.0/i;j
0 , j D

1; : : : ; ki and the dual �.�i;j / covers the item h.1/i;j and ".�i;j /D �i;j , ".�.�i;j //D 1.

Note that, by Lemma 3.21, it follows that if a short base covers an item that belongs to
a tribe which strictly dominates t.h

.0/
1
/, then either it is a quadratic-coefficient base or

it is quadratic and its dual is also a short base. Hence, the base �.�/ is a short base
that covers an item that dominates t.h

.0/
1
/.

The set <‡ 0
0

of �0
0

is defined naturally:

<‡ 0
0
.h
.0/
i;j

0

; h
.0/
i0;j 0

0

/ if and only if <‡1
.h
.1/
i;j ; h

.1/
i0;j 0/ or <‡0

.h
.0/
i ; h

.0/
i0 /:

<‡ 0
0
.h
.0/
i;j

0

; h
.0/
i0 / if and only if <‡0

.h
.0/
i ; h

.0/
i0 /:

<‡ 0
0
.h
.0/
i;j

0

; h
.1/
i / if and only if <‡1

.h
.1/
i;j ; h

.1/
i /:
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The other relations in <‡ 0
0

are naturally induced by <‡0
and <‡1

. We assume <‡ 0
0

is completed (see Remark 3.3). We conclude that:

� �0
0

is a generalised equation of type 12.

� If & W G�0
! G�0

0
is a natural homomorphism, then any solution H of the

generalised equation �0 induces a solution H 0 of the generalised equation �0
0

.
In other words, the following diagram is commutative:

(7)

G�0

&
//

H !!

G�0
0

H 0}}
G�1

H .1/

��
G

� G�1
is a retraction of G�0

0
.

Remark 4.5 Note that if � is an active base of �0
0

, then either the tribe of every
item h

.0/
i
0 , i D ˛.�/; : : : ; ˇ.�/� 1, covered by � dominates t.h

.0/
1
/ and at least one

of the items belongs to the tribe t.h
.0/
1
/ or else every item covered by � belongs to a

tribe that strictly dominates t.h
.0/
1
/ and then the base � is a short quadratic-coefficient

base. In other words, in �0
0

the tribe of every quadratic base is the same minimal tribe
and the tribes of the quadratic-coefficient bases dominate this minimal tribe.

Let

LD
˝
f� j � 2 BSA.�

0
v0
/g; h�A

; : : : ; h���1

ˇ̌
�".�/�.�/�".�.�// D 1;

�".�/h.�.�//�".�.�// D 1
˛

for all quadratic bases � and all quadratic coefficient bases � . It is clear that L is a
free group.

Let M be quotient of L by the set of commutators „0 defined analogously to „; see
(6). By definition, M is a free partially commutative group.

The word W defined in (5) is a quadratic word in the free group L. It can be taken
to the surface relation form (9) or (10) by an automorphism of the free group L; see
Comerford and Edmunds [17].
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Lemma 4.6 Let � be the automorphism of the free group L that takes the quadratic
equation W D 1 to the normal form. Then � induces an automorphism �0 of the
partially commutative group M that takes the quadratic equation W D 1 to the normal
form and fixes all the quadratic-coefficient bases and items hi , i D �A; : : : ; ��� 1.

Proof Denote by var.W / the set of variables of W D 1 that occur in W exactly twice.
By definition of L and M and by construction of �0

0
, we get that if x 2 var.W /,

then x is a quadratic base of �0
0

and the tribe of x is the minimal tribe t.h
.0/
1
/.

Suppose that W DAxBxC . Let �x be the automorphism of L induced by the map
x!A�1xAB�1 . The automorphism �x transforms the word W into

�x.W /DAA�1xAB�1BA�1xAB�1C D x2AB�1C:

Every letter in A and B is either a variable of W D 1 (then it corresponds to a quadratic
base which belongs to t.h

.0/
1
/) or it is a coefficient of W D 1 (then it corresponds to

a quadratic-coefficient base which belongs to a tribe that strictly dominates t.h
.0/
1
/).

Hence, by Laurence [42], it follows that �x induces an automorphism of M.

Observe that AB�1C is a quadratic word in fewer variables than W . The statement
now follows by induction.

Suppose now that every variable x of W occurs in it as x and as x�1 . Let W D

Ax�1BxC , where the number of variables j var.B/j in B is minimal among all such
decompositions of W . In particular, it follows that B is linear.

If var.B/ D ∅, then we consider the automorphism �x of L defined by the map
x 7! xC�1 . Then �x.W /DACx�1Bx . As above, the automorphism �x induces an
automorphism of M. Note that the number of variables in AC is strictly lower than
that of W and the statement, in this case, follows by induction.

Let var.B/ ¤ ∅. Then B D B1yıB2 , where ı D ˙1, and neither B1 nor B2

contains y˙1 . Applying the automorphism y 7! y�1 , if necessary, we may assume
that ı D 1.

Consider the automorphism �y of L defined by y 7! B�1
1

yB�1
2

. Then �y.W / D

�y.A/x
�1yx�y.C /. The variable y�1 occurs either in A or in C . We assume y�1

occurs in C (the other case is similar), ie C D C1y�1C2 . Then

�y.A/DA; �y.C /D C1B2y�1B1C2 and �y.W /DAx�1yxC1B2y�1B1C2:

Applying the automorphism �x defined by the map x 7! x.C1B2/
�1 , we get that

�x�y.W /DAC1B2x�1yxy�1B1C2:
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Let �1 be the automorphism that conjugates x and y by ACB2 . Then

�1�x�y.W /D x�1yxy�1B1C2AC1B2:

As above, the automorphisms �1 , �x and �y induce automorphisms of M. We now
observe that B1C2AC1B2 is a quadratic word in fewer variables than W and the
statement now follows by induction.

Corollary 4.7 In the notation of Lemma 4.6, the automorphism �0 induces an auto-
morphism of the group K that takes the quadratic relation to the normal form. Therefore,
if �D h‡;<‡ i is a tribal generalised equation of type 12, then G� is isomorphic to
the group

KD
˝
BSA.�/; h�A

; : : : ; h���1

ˇ̌
W D 1; �".�/�.�/�".�.�// D 1;

�".�/�.�/�".�.�// D 1;R0; „0
˛
;

where � runs over the set of quadratic bases, � runs over the set of quadratic-coefficient
bases and W is a quadratic word in the normal form

Œ�1; �2� � � � Œ�2g�1; �2g��2gC1
�2gC1 � � ��m

�m

D �.v0; v1/
�
Œ�1; �2� � � � Œ�2g�1; �2g��2gC1

�2gC1 � � ��m
�m
�

or

�2
1 � � � �

2
2g�2gC1

�2gC1 � � ��m
�m D �.v0; v1/

�
�2

1 � � � �
2
2g�2gC1

�2gC1 � � ��m
�m
�

and where R0 is the set of relations of the nonactive part, ie R0 is the set of relations
�".�/�.�/�".�.�// , where �, �.�/ runs over the set of pairs of nonactive bases.

4.2 Structure of the linear part

Lemma 4.8 Let �D h‡;<‡ i be a tribal generalised equation of linear type (70–100 ).
Then, in the notation used in the description of the derived transformation D4 (see
eg [14, Equations (4.1) and (4.2)]) the following isomorphisms hold:

GR.�/ 'GŒh1; : : : ; h�x�1
; z1; : : : ; zl �

ı
R.x�1[fŒzk ; hj � j <‡ .zk ; hj /g/;

GR.�/ 'GŒh1; : : : ; h� x�00 ; z1; : : : ; zl �
ı

R.x�00[fŒzj ; hk � j <‡ 0.zj ; hk/g/:

Proof Indeed, to prove the lemma it suffices to observe that the relations fŒhj ; w�� j

<‡ .hj ; hi/g and fŒzk ; w�� j <‡ .zk ; hi/g, and

fŒw�
�1h0i ; hj � j <‡1

.hi ; hj /g; fŒw�
�1h0i ; zj � j <‡1

.hi ; zj /g;

fŒw�; hj � j <‡1
.hi�1; hj /g; fŒw�; zj � j <‡1

.hi�1; zj /g;
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belong to the normal closures of x�1 [ fŒzk ; hj � j <‡ .zk ; hj /g and x�00 [ fŒzj ; hk � j

<‡ 0.zj ; hk/g, correspondingly. This is immediate since, by the description of the
cases 70–100 , the items that do not belong to the kernel belong to the minimal tribe
and therefore the tribe of every item covered by an eliminable base dominates the tribe
of the item hi (see the definition of eliminable base) and the set of relations <‡ is
completed.

Corollary 4.9 [14, Lemma 4.7] In the notation of Lemma 4.8 and [14, Section 4.3],
one has the isomorphism

GR.�/ 'GŒh1; : : : ; h�Ker.�/
; z1; : : : ; zl �

ı
R.Ker.�/[K/;

where fz1; : : : ; zlg is a set of free variables of Ker.�/, and K is a (computable) set of
commutators of the form Œzi ; hj � and Œzi ; zk �.

5 Graph towers

The goal of this section is to introduce the class of graph towers which is key for
describing finitely generated fully residually partially commutative groups.

Graph towers are natural generalisations of !–residually free towers. Recall that a
finitely generated group is an !–residually free tower if it belongs to the smallest class
of groups containing all finitely generated free groups and (nonexceptional) surface
groups, which is stable under taking free products, free extensions of centralisers, and
attaching retracting surfaces along maximal cyclic subgroups.

As we mentioned in the introduction, !–residually free towers (alias NTQ–groups)
are essential to characterise and describe the structure of the class of limit groups, as
well as to classify groups elementarily equivalent to a free group; see [41; 54]. In the
next section, we show that graph towers also characterise the class of fully residually
partially commutative groups and it is left to see if they are going to play a similar role
in the classification of groups elementarily equivalent to a given partially commutative
group.

The notion of a graph tower is somewhat technical. Before turning our attention to
the formal definition, let us review some particular cases to gain an intuition. Free
extensions of centralisers are one of the basic operations for constructing limit groups (in
some sense it is the main operation in constructing limit groups, since limit groups are
also characterised as subgroups of iterated sequences of free extensions of centralisers;
see [38]). As in the case of free groups, extensions of centralisers are also going to
play an important role in characterising limit groups over partially commutative groups.
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Although it is a simple construction, it already demonstrates some of the subtleties that
need to be taken into consideration.

As the following example shows, in general free extensions of centralisers are not
discriminated by G .

Example 5.1 Let G D F.a; b/�F.c; d/, and let w D .ab; cd/ 2 G . Consider the
extension of centraliser of the element w , that is, the group H D hG; t j Œt;C.w/�D 1i.
It is easy to check that element v D Œat ; c� 2 H is nontrivial. However, for any
homomorphism � from H to G which restricts to the identity on G , we have that
�.t/ 2 C.w/D habi � hcdi and so �.v/D 1. Hence, H is not discriminated (even
separated) by G .

However, we showed in [13; 14] that any free extension of a centraliser of an irreducible
element b 2 G (see page 735 for definition) is discriminated by G . (In fact, one
can give a precise characterisation of the set of elements of a partially commutative
group G whose extension of centraliser is discriminated by G in terms of their block
decompositions.)

This particular case already shows that, on the one hand, there are some constraints on
the type of elements whose centralisers need to be extended and, on the other hand, that
one cannot expect to describe limit groups over partially commutative groups in terms
of their abelian JSJ–decomposition (or their JSJ over small groups, or over slender
groups) since in a free extension of a centraliser H DG �C.b/ hC.b/; t j Œt;C.b/�i the
amalgamation is taken over a centraliser of an irreducible element, which in general, is
a partially commutative group.

Another basic operation in the construction of !–residually free towers is “attaching
a retracting surface”. In the free group case, given a surface † with boundary and
Euler characteristic at most �2 or a punctured torus or a punctured Klein bottle one
can attach it to a free group F via a morphism �W �1.†/! F with nonabelian image
which is one-to-one on the restriction to the fundamental groups C1; : : : ;Cn of the
boundary components of †, ie the limit group is the fundamental group of the graph of
groups with two vertex groups F and �1.†/ and n edge groups C1; : : : ;Cn , where the
two edge morphisms are the identity and the restriction of � . In this case, the surface
naturally retracts to the free group and the discriminating family can be obtained from
the retraction by precomposing it with modular automorphisms of the surface.

If one wants to follow this pattern in the case of partially commutative groups, then
there are some necessary conditions to be imposed. As in the case of free extensions
of centralisers, one is to impose that the cyclic fundamental groups C1; : : : ;Cn of
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the boundary components of the surface be mapped by the retraction � to cyclic
subgroups generated by irreducible elements b1; : : : ; bn of the partially commutative
group G . Furthermore, in order to have “enough” automorphisms of the surface to
obtain a discriminating family, we impose that the irreducible elements bi , i D 1; : : : ; n

commute with the same set of generators, ie Ab DA.bi/DA.bj /, for all 1� i; j � n.
Finally, since the discriminating family retracts the surface onto the group generated
by bi , i D 1; : : : ; n, it is necessary to impose that the surface commute with Ab to
assure discrimination. Under the conditions we imposed, it is not too difficult to see
that the fundamental group of the graph of groups with two vertex groups G and
�1.†/�Ab and n edge groups C1�Ab; : : : ;Cn�Ab , where the two edge morphisms
are the identity and the restriction of � , is discriminated by G . We will show that,
basically, these sufficient conditions are necessary.

So, in view of the above discussion, we can say that, roughly speaking, graph towers
are built hierarchically from the partially commutative group G by gluing retracting
abelian groups and surface groups with the conditions that

� the abelian and surface groups are amalgamated along cyclic subgroups generated
by “irreducible” elements and

� these abelian and surface groups commute with the centraliser of the subgroup
onto which they retract to.

Although the idea is clear, the main technical problem in the formal definition of a graph
tower is that, a priori, we do not have control on the structure of centralisers of elements
of graph towers. In particular, it is not clear what an “irreducible” element is. Informally,
given a limit group over a partially commutative group, one could define an irreducible
element to be an element for which there exists a discriminating family that maps it into
irreducible elements. But we can not define it this way either, since when constructing
graph towers, we do not yet know that they are discriminated by G and in fact, it is only
a posteriori that we are able to conclude that the homomorphisms induced by solutions
that factor through the fundamental branch of the tribal solution tree discriminate the
graph tower into G and so to deduce that our “irreducible” elements have this property.

To deal with this difficulty, graph towers are defined as a triple: the group T (the graph
tower), a partially commutative group H and an epimorphism from H to T. In what
follows, we shall show that in fact both T and H are fully residually G groups.

The partially commutative group H is defined via its commutation graph � . We
subdivide the set of edges of the graph � into two disjoint sets: Ec.�/ and Ed .�/.
These two sets capture the different nature of commutation for the images of the
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elements of H in G , namely two vertices x and y are joined by an edge from Ec.�/

if and only if for a discriminating family, x and y are sent to the same cyclic subgroup
in G ; and two vertices x and y are joined by an edge from Ed .�/ if and only if for a
discriminating family, the images of x and y disjointly commute. (We also prove the
existence of a discriminating family with this property.)

Now we can define irreducible elements in T as the images of irreducible elements
in H . More generally, we define coirreducible subgroups K as closed subgroups of H
(ie K?? DK) so that K? is Ed .�/–directly indecomposable. The motivation behind
this definition is as follows. Notice that since in a given finitely generated partially
commutative group G there are finitely many different canonical parabolic subgroups,
so for a canonical parabolic subgroup K of H (where H is discriminated by G ) there
exists a subgroup GK of G so that for a discriminating family f'ig we have that
'i.K/ <GK and for no proper subgroup G0K of GK there exists such a discriminating
family. We show that given a coirreducible subgroup K of H , there exists a discrim-
inating family so that GK is coirreducible in G . In particular, GK? is a directly
indecomposable subgroup of G and if GK? is not cyclic, then CG.GK?/DGK . For
intuition, it is helpful to think that the image of the subgroup K? in T is the subgroup
onto which the corresponding abelian (or surface) group retracts and so GK? is the
directly indecomposable canonical parabolic subgroup where the abelian (or surface)
subgroup is mapped by the discriminating family.

Definition 5.2 To any graph tower T, we associate a partially commutative group H
and an epimorphism � W H! T. The partially commutative group H is defined via its
commutation graph � . The set of edges E.�/ of the graph � is subdivided into two
disjoints sets, the set of d –edges and the set of c–edges, ie E.�/DEd .�/[Ec.�/,
Ed .�/\Ec.�/D∅. Furthermore, the set of edges Ec.�/ satisfies

(8) if .x;y/; .y; z/ 2Ec.�/; then .x; z/ 2Ec.�/:

For every subgroup K of H , abusing the notation, we denote the image �.K/ of K
in T by K.

We define a G–graph tower as an iterated sequence. We denote graph towers by T and
write Tl , to indicate that the graph tower Tl is of height l .

A G–graph tower T0 of height 0 is our fixed partially commutative group G . In this
case, the partially commutative group associated to T0 is also G DH.�0/, all edges
of �0 are d –edges and the epimorphism �0 is the identity.

Assume that Tl�1 is a G–graph tower of height l � 1, H.�l�1/ is its associated
partially commutative group and Tl�1 DH.�l�1/=nclhSl�1i. A G–graph tower Tl
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of height l , the associated partially commutative group H.�l/ and the epimorphism
�l W H.�l/! Tl are constructed using one of the following alternatives.

Basic floor The graph �l is defined as follows:

� V .�l/D V .�l�1/[fx
l
1
; : : : ;xl

ml
g.

� Ed .�l/DEd .�l�1/[f.x
l
i ;x

l�1/ j i D 1; : : : ;ml ;x
l�1D alph.K/g, where K

is an Ed .�l�1/–coirreducible subgroup of H.�l�1/.
� Ec.�l/ D Ec.�l�1/ if the subgroup K? is directly indecomposable (as a

subgroup of H.�l�1/).
� Ec.�l/ D Ec.�l�1/ [ f.x

l
i ;x

l
j / j 1 � i < j � mlg [ f.x

l
i ;x

l�1/ j 1 � i �

m;xl�1 D alph.K?/g if the subgroup K? is directly decomposable (we will
show in Lemma 6.2, that, in this case, K? is Ec.�l�1/–abelian).

We set H.�l/ to be the associated partially commutative group. It follows from the
definition that H.�l�1/ is a retraction of H.�l/ and so is Tl�1 of H.�l/=nclhSl�1i.

The group Tl is a quotient of H.�l/=nclhSl�1i by nclhS.xl ;H.�l�1//i, ie Tl D

H.�l/=nclhSl�1;Si, where the set of relations S is

the set of basic relations ŒCTl�1.K?/;xl
i �D 1; 1� i �ml :

Abelian floor The graph �l is defined as follows:

� V .�l/D V .�l�1/[fx
l
1
; : : : ;xl

ml
g.

� Ed .�l/DEd .�l�1/[f.x
l
i ;x

l�1/ j i D 1; : : : ;ml ;x
l�1D alph.K/g, where K

is an Ed .�l�1/–coirreducible subgroup of H.�l�1/.
� Ec.�l/DEc.�l�1/[f.x

l
i ;x

l
j / j 1� i < j �mlg if the subgroup K? is directly

indecomposable (as a subgroup of H.�l�1/).
� Ec.�l/ D Ec.�l�1/ [ f.x

l
i ;x

l
j / j 1 � i < j � mlg [ f.x

l
i ;x

l�1/ j 1 � i �

m;xl�1 D alph.K?/g if the subgroup K? is directly decomposable (we will
show in Lemma 6.2, that, in this case, K? is Ec.�l�1/–abelian).

We set H.�l/ to be the associated partially commutative group. It follows from the
definition that H.�l�1/ is a retraction of H.�l/ and so is Tl�1 of H.�l/=nclhSl�1i.

The group Tl is a quotient of H.�l/=nclhSl�1i by nclhS.xl ;H.�l�1//i, ie Tl D

H.�l/=nclhSl�1;Si, where the set of relations S is one of the following types:

� The relations ŒCTl�1.u/;xl
i � D 1, where u 2 K? < H.�l�1/ is a nontrivial

cyclically reduced root block element.
� The set of basic relations.
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Quadratic floor The graph �l is defined as follows:

� V .�l/D V .�l�1/[fx
l
1
; : : : ;xl

ml
g.

� Ed .�l/DEd .�l�1/[f.x
l
i ;x

l�1/ j i D 1; : : : ;ml ;x
l�1D alph.K/g, where K

is a Ed .�l�1/–coirreducible subgroup of H.�l�1/.

� Ec.�l/ D Ec.�l�1/ if the subgroup K? is directly indecomposable (as a
subgroup of H.�l�1/).

� Ec.�l/ D Ec.�l�1/ [ f.x
l
i ;x

l
j / j 1 � i < j � mlg [ f.x

l
i ;x

l�1/ j 1 � i �

m;xl�1 D alph.K?/g if the subgroup K? is directly decomposable (we will
see in Lemma 6.2, that, in this case, K? is Ec.�l�1/–abelian).

We set H.�l/ to be the associated partially commutative group. It follows from the
definition that H.�l�1/ is a retraction of H.�l/ and so is Tl�1 of H.�l/=nclhSl�1i.

The group Tl is a quotient of H.�l/=nclhSl�1i by nclhS.xl ;H.�l�1i//, ie Tl D

H.�l/=nclhSl�1;Si, where the set of relations S consists of the set of basic relations
fŒCTl�1.K?/;xl

i � D 1 j 1 � i � mlg and a relation W of one of the two following
forms: (orientable)

(9) Œx1;x2� � � � Œx2g�1;x2g�u2gC1
x2gC1 � � �um

xm

D Œv1; v2� � � � Œv2g�1; v2g�u2gC1
w2gC1 � � �um

wm

or (nonorientable)

(10) x2
1 � � �x

2
2gu2gC1

x2gC1 � � �um
xm D v2

1 � � � v
2
2gu2gC1

w2gC1 � � �um
wm ;

where ui ; vj ; wk 2K? and either

~ the Euler characteristic of W is at most -2, or W corresponds to a punctured
torus and the subgroup hui ; vj ; wk j i; k D 2g C 1; : : : ;m; j D 1; : : : ; 2g; i

of Tl�1 is nonabelian, ie the retraction of the (punctured) surface onto Tl�1 is
nonabelian; or

~~ gCm� 2 and

– the subgroup hŒv1; v2�; : : : ; Œv2g�1; v2g�;u2gC1
w2gC1 ; : : : ;um

wmi is non-
abelian, where W is orientable or

– the subgroup hv2
1
; : : : ; v2

2g
;u2gC1

w2gC1 ; : : : ;um
wmi is nonabelian, where W

is nonorientable,

that is, the solution is not atom-commutative (see Kharlampovich and Myas-
nikov [37, Definition 11]).
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Lemma 5.3 The graph tower Tl admits one of the following decompositions:

(a1) Tl�1 �C
Tl�1 .K?/ .CTl�1.K?/� hxl

1
; : : : ;xl

ml
i/ (if S is basic and K? is non-

abelian).

(a2) Tl�1�C
Tl�1 .K?/.CTl�1.K?/�hxl

1
; : : : ;xl

ml
j Œxl

i ;x
l
j �D1; 1� i; j �ml ; i¤j i/

(if S is basic and K? is abelian).

(b1) Tl�1 �C
Tl�1 .u/ .CTl�1.u/� hxl

1
; : : : ;xl

ml
j Œxl

i ;x
l
j �D 1; 1 � i; j �ml ; i ¤ j i/

(if S is abelian and u is nontrivial).

(b2) Tl�1�C
Tl�1 .K?/.CTl�1.K?/�hxl

1
; : : : ;xl

ml
j Œxl

i ;x
l
j �D1; 1� i; j �ml ; i¤j i/

(if S is abelian and K? is nonabelian).

(c) Tl�1�C
Tl�1.K?/�hu2gC1;:::;umi

.hu2gC1; : : : ;um;x
l
1
; : : : ;xl

ml
jW i�CTl�1.K?//

(if W satisfies one of the properties ~ and ~~ from Definition 5.2).

Proof The only decomposition that does not follow immediately from the definition
of a graph tower is c). From the definition, we have that

Tl�1
�hC

Tl�1 .K?/;u2gC1;:::;umi
.hCTl�1.K?/;u2gC1; : : : ;um;x

l
jW D 1;

ŒCTl�1.K?/;xl �D 1i/;

where xl D fxl
1
; : : : ;xl

ml
g. In Section 7, we prove the subgroup

hCTl�1.K?/;u2gC1; : : : ;umi

is the direct product of CTl�1.K?/ and hu2gC1; : : : ;umi, hence decomposition (c).

Remark 5.4 � Since graph towers can be described as iterated sequences of
amalgamated products and HNN–extensions, each graph tower Ti naturally
embeds into the graph tower TiC1 . In fact, for each floor, there is a natural
retraction of TiC1 onto Ti .

� If the graph tower is constructed using only basic floors, then T and H coincide,
ie the graph tower is itself a partially commutative group.

� Notice that graph towers are a natural generalisation of the notions of !–
residually free towers and NTQ–groups. Indeed, let G be a free group and
assume by induction that Tl�1 is an NTQ–group.
By assumption, in cases (a1), (b2) and (c) the group K? is nonabelian. In
particular, since limit groups have the CSA property, it follows that the centraliser
CTl�1.K?/ is trivial. Therefore, case (a1) corresponds to the free product of
the group Tl�1 and a free group; case (b2) corresponds to the free product
of Tl�1 and a free abelian group; and case (c) corresponds to a (sequence of)
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amalgamated products (and HNN–extensions) of Tl�1 with a surface group (so
that the natural retraction of the surface to Tl�1 is nonabelian).
In cases (a2) and (b1), the subgroup K? is abelian. Hence, these cases correspond
to extension of centralisers of maximal abelian subgroups, or equivalently, to
an amalgamated product of Tl�1 and a free abelian group (amalgamated by a
maximal (in Tl�1 ) abelian subgroup).
We therefore obtain an NTQ–group. Notice that the difference with an !–
residually free tower is that our construction is not canonical in the following
sense. In the construction of an !–residually free tower, at a given floor one
attaches all the pieces corresponding to the abelian JSJ–decomposition. In
our case, pieces are attached one by one, hence the same graph tower can be
constructed in several different ways (for example, at the same level one can
first attach an abelian group and then a surface group or vice versa).

� Notice that, in general, the centraliser of a set of elements in a partially com-
mutative group is neither commutative transitive, nor malnormal, nor small
(see [22]). Hence, the splittings we find do not correspond to the (abelian) JSJ
decomposition. Nevertheless, the decomposition we find plays the role analogous
to the one the JSJ plays for limit groups: one can define modular automorphisms
and show that under some restrictions on the decomposition (similar to the ones
for constructible limit groups), the groups we consider are discriminated using
the retraction and appropriate modular automorphisms.

� As we mentioned above, the construction of the graph tower is not canonical.
In the case of free groups, Kharlampovich and Miasnikov [39] described an
elimination process based on the Makanin–Razborov process that finds the
(cyclic) JSJ decomposition of a fully residually free group. If an appropriate JSJ
theory is developed for the class of groups we deal with in this paper, then one
could modify the process developed in [14] to obtain a canonical construction of
the graph tower.

6 Graph tower associated to a branch of the tribal Makanin–
Razborov diagram

The goal of this section is, given a branch �0! � � � !�q of the tribal solution tree,
to construct a graph tower T0 as well as a homomorphism �0 from G�0

to T0 so
that for every homomorphism H from GR.�0/ to G that factors through the branch
there exists a homomorphism H 0 from T0 to G such that the following diagram is
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hy1; : : : ;y6i

hay1ci

hacai

b2

a b1
c d

Figure 2: Graph tower of height 2: edges of the graph correspond to commu-
tation of the generators.

commutative:

(11)

GR.�0/

H %%

G�0
oo

H
��

�0
// T0

H 0{{
G

The graph tower is constructed using induction on the height of the branch. One begins
with the group associated to the leaf of the branch, which is a partially commutative
group discriminated by G and keeps building the graph tower according to the type of
epimorphism associated to the edges (or more precisely, the types of automorphism
groups associated to the vertices) of the branch.

Our induction hypothesis at step q is as follows:

(IH) Given a generalised equation �q , there exists a graph tower .Tq;Hq/, where
Hq DH.�q/, and a homomorphism �q from G�q

to Tq such that for every
solution H .q/ of the fundamental sequence, there exists a homomorphism
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H .q/W Tq!G that makes the diagram

G�q

H .q/ ##

�q
// Tq

H .q/0||
G

commutative; notice that if �qW Hq! Tq , then �qH .q/0 is a homomorphism
from Hq to G that, abusing the notation, we also denote by H .q/0 .

(IH1) for all generators xi ;xj 2 Hq , we have that .xi ;xj / 2 Ed .�q/ if and only
if H .q/0.xi/ � H .q/0.xj / for all homomorphisms H .q/0 induced by a so-
lution H .q/ that factors through the branch; furthermore, we have that if
.xi ;xj / 2Ec.�q/ then H .q/0.xi/, H .q/0.xj / belong to a cyclic subgroup for
all homomorphisms H .q/0 induced by a solution H .q/ that factors through the
branch;

(IH2) for any item h
.q/
i , if �q.h

.q/
i / D y

.q/
i1
� � �y

.q/

ik
, where y

.q/
ij 2 y.q/ and Tq D

hy.q/i, then

A.H .q/0.yij //�A.H .q/
i / and

k\
jD1

A.H .q/0.yij //DA.H .q/
i /

for all solutions H .q/ that factor through the branch and homomorphisms H .q/0

induced by H .q/ .

The induction hypotheses (IH1) and (IH2) are essential to keep control on the “type”
of subgroups whose centralisers we extend. In turn, this is crucial in order to prove
that graph towers are discriminated by G .

Remark 6.1 We record the following facts that will be used in the course of the proof.

(1) Groups corresponding to the leaves of Tsol.�/ are explicitly described (see
eg [14, Proposition 9.1]).

(2) Without loss of generality, one can assume that the word H.�/, where � is a
closed section of � and H is a solution of the constrained generalised equation �
is a subword of a word in the DM–normal form (see [14, Section 3.3.1]).

(3) Automorphisms associated to the vertices of the tree Tsol.�/ are completely
induced (see [14, Definition 7.2 in Section 7.1]). In short, an automorphism is
completely induced if, on the one hand it is tame (induced by an automorphism
of the free group) and, on the other hand, it also induces an automorphism of
the associated coordinate group over the free group (the coordinate group whose
defining relations are the equations, but not the commutation constraints).
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Before turning our attention to the construction of the graph tower, we clarify the
structure of orthogonal complements K? of coirreducible subgroups and justify the
somewhat nonintuitive definition. The structure of K? allows us, a posteriori, to estab-
lish that a discriminating family of the graph tower maps a coirreducible subgroup K
into a closed subgroup of G and the subgroup K? into a directly indecomposable
subgroup (which we treat differently depending on if it is cyclic or nonabelian).

6.1 Coirreducible subgroups

The definition of coirreducible subgroup might seem somewhat artificial since we ask
that the subgroup K? be Ed .�/–directly indecomposable. In the following lemma
we clarify the structure of the subgroup K? in the group H .

Lemma 6.2 Let .T;H/ be a graph tower that satisfies the induction hypotheses (IH)
and (IH1). Then, if K? is an Ed .�/–directly indecomposable canonical parabolic
subgroup of H , then K? is either a directly indecomposable subgroup of H or Ec.�/–
abelian.

Proof Let HDG.�/. If follows from the induction hypothesis (IH1) that if .x;y/ 2
Ec.�/, then .x; z/ 2Ed .�/ if and only if .y; z/ 2Ed .�/.

Assume that K? is directly decomposable, but Ed .�/–directly indecomposable in H .
Without loss of generality, assume that K? DK1 �K2 . We use induction on the rank
of K2 to prove that then K? is Ec.�/–abelian.

Suppose that K2 has rank 1, ie K2 D hxi. Let alph.K1/D alph.K1;c/[ alph.K1;d /

where alph.K1;c/Dfy 2alph.K1/ j .x;y/2Ec.�/g and alph.K1;d /Dfy 2alph.K1/ j

.x;y/ 2Ed .�/g. Since K? is Ed .�/–directly indecomposable, we have K1¤K1;d .
If K1 DK1;c , then since the set Ec.�/ satisfies condition (8), it follows that K? is
Ec.�/–abelian. Otherwise, we have that .x; kd / 2 Ed .�/, for all kd 2 K1;d and
.x; kc/2Ec.�/ for all kc 2K1;c . It follows from the above observations that .kd ; kc/2

Ed .�/ for all kd 2K1;d and for all kc 2K1;c and hence K? DK1;d � hK1;c ;xi is
Ed .�/–directly decomposable, a contradiction.

Assume that K2 has rank r . Let x 2K1 and let alph.K2/D alph.K2;c/[alph.K2;d /,
where alph.K2;c/Dfy 2alph.K2/ j .x;y/2Ec.�/g and alph.K2;d /Dfy 2alph.K2/ j

.x;y/ 2 Ed .�/g. Notice that since by assumption K? is Ed .�/–directly indecom-
posable, we have that the set alph.K2; c/ is nonempty. As above, it follows that
K? D hK1[K2;ci �K2;d and the rank of K2;d is strictly less than the rank of K2 .
By induction we conclude that K? is Ec.�/–abelian.
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6.2 Base of induction

If the height q of the branch equals 0, then the group G�0
is the group associated

to the leaf of the tree Tsol.G/. By the description of the leaves of the tree Tsol

(see [14, Proposition 9.1] and its proof), it follows that G�0
is a partially commutative

group, which is fully residually G and it is built from G by a sequence of extensions
of centralisers of directly indecomposable canonical parabolic subgroups. Hence, in
our terms, this partially commutative group is a graph tower over G , where each floor
is basic, and at each floor Tk DHk (and �k is the identity).

If the variables x1; : : : ;xlk
extend a centraliser of a cyclic canonical parabolic sub-

group haii in H.�k�1/, then the subgroup hai ;x1; : : : ;xlk
i in H.�k/ is free abelian

and, by definition, the edges .ai ;xi/; .xi ;xj / belong to Ec.�k/. All the other (new)
edges belong to Ed .�k/.

From the construction of the leaves of the tree Tsol.G/ (see [14, Proposition 9.1]) we
obtain that the graph tower satisfies the induction hypothesis:

� The graph tower .TDHq;Hq/ trivially makes diagram (11) commutative.
� By definition of a solution of a generalised equation and since H 0 DH , for all

xi ;xj 2Hq , we have that .x.1/i ;x.1/j /2Ed .�q/ if and only if H 0.xi/�H 0.xj /

for every homomorphism H 0 induced by a solution H that factors through the
branch. Furthermore, if .xi ;xj / 2Ec.�q/, then H 0.xi/, H 0.xj / belong to the
same cyclic subgroup for every homomorphism H 0 induced by a solution H

that factors through the branch.
� Since �qW G�q

!Hq is the identity, it obviously satisfies the hypothesis (IH2): if
�q.hi/Dyi1 � � �yik , then A.H 0.yij //�A.Hi/ and

Tk
jD1 A.H 0.yij //DA.Hi/

for all solutions H that factor through the branch and homomorphisms H 0

induced by H .

6.3 Step of induction

Suppose that the graph tower T1 exists and the induction hypotheses (IH), (IH1) and
(IH2) are satisfied for the group G�1

. We show how to construct the graph tower T0

for the group G�0
and prove that the graph tower satisfies all the induction hypothesis.

We construct the group T0 starting from the graph tower T1 . The construction of T0

depends on the type of the vertex v0 . It follows by construction of the tribal solution
tree Tsol.�/ that one of the following hold:

� The automorphism group associated to �0 is trivial; in this case every solution of
�0 that factors through the branch also factors through the group G�1

.

Geometry & Topology, Volume 19 (2015)



788 Montserrat Casals-Ruiz and Ilya Kazachkov

� The automorphism group associated to �0 is nontrivial. Then one of the following
hold:

(1) �0 is a tribal general equation of linear type; in this case, every solution that
factors through the branch is the composition of an automorphism from the
automorphism group associated to �0 (ie automorphisms invariant with respect
to the kernel), the epimorphism �.v0; v1/ and a homomorphism from GR.�1/

to G (that factors through the branch).

(2) �0 is tribal of type 12; in this case, every solution that factors through the branch
is the composition of an automorphism from the automorphism group associated
to �0 (ie automorphisms invariant with respect to the nonquadratic part), the
epimorphism �.v0; v1/ and a homomorphism from GR.�1/ to G (that factors
through the branch).

(3) �0 is tribal of type 15; then every solution that factors through the branch is the
composition of an automorphism from the group of automorphisms generated
by automorphisms invariant with respect to the nonquadratic part and automor-
phisms associated to regular periodic structures, the epimorphism �.v0; v1/ and
a homomorphism from GR.�1/ to G (that factors through the branch).

(4) �0 is of type 2; then all solutions factor through a generalised equation which is
singular (or strongly singular) with respect to a periodic structure and so, in this
case, every solution is a composition of an automorphism associated to a vertex
of type 2, the epimorphism �.v0; v1/ and a homomorphism from GR.�1/ to G
(that factors through the branch).

6.4 Trivial group of automorphisms

If the group of automorphisms associated to a vertex of the tree Tsol is trivial, we
set T0 D T1 , H0 D H1 and �0 to be �.v0; v1/�1 , where �1 is the homomorphism
from G�1

to T1 that makes diagram (11) commutative. If the group of automorphisms
is trivial, any homomorphism that factors through the branch also factors through G�1

and so �0 and T0 make diagram (11) commutative.

6.5 Quadratic case

By replacing �0 by �0
0

if necessary (see diagram (7) and preceding discussion), we
can assume that short bases in �0 that belong to tribes that strictly dominate the
minimal tribe are quadratic-coefficient (see Remark 4.5 and discussion above).
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We aim to prove that there exists the following commutative diagram

G�0

�.v0;v1/

��

�0
// T0

��
��

H0
oooo

��
��

G�1 �1

//

H !!

T1

H 0~~

� ?

OO

H1
oooo

� ?

OO

G

and that the graph tower .T0;H0/ satisfies all the induction hypotheses. We fix the
following notation for the generators of the groups we consider: G�i

Dhh.i/i, i D 0; 1,
H1 D hx

.1/i, and T1 D hy
.1/i. Denote by '0 the composition of �.v0; v1/ and �1 .

Let N be the subset of the set of quadratic bases of �0 so that, for each pair of dual
bases �;�.�/, the set N contains exactly one of them. Let n be the cardinality of the
set N . Notice that, by definition, the set N contains long bases and short bases that
belong to the minimal tribe.

For every � 2 N , set '0.h
.0/.�// D w�.y

.1//. We define the canonical parabolic
subgroup K of H1 to be AEd .�1/.fw�.x

.1//; � 2N g/.

Lemma 6.3 The subgroup K of H1 is Ed .�1/–coirreducible.

Proof Let us begin with an observation. Since items of the generalised equation �0

have associated parabolic subgroups, there exists a canonical parabolic subgroup
GK < G such that for solutions of �0 , we have that halph.H .0/0.K//i D GK . By
definition of K and by the induction hypothesis (IH1), we have H .1/0.'0.h.�///�GK

for solutions of �1 . Furthermore, if ai� fH .1/0.'0.h.�/// j � 2N g, where ai 2A,
G D G.A/, again by the induction hypothesis (IH1), we have that ai 2 K and so
ai 2GK , hence we have that

halph.fH .1/0.'0.h.�/// j � 2N g/?i DGK:

Since every solution H .0/ that factors through the branch is obtained from a solu-
tion H .1/ of �1 that factors through the branch by precomposing it with a canonical
automorphism (and �.v0; v1/), it follows that ai � fH .0/.�/; � 2 N g for all solu-
tions H .0/ of the branch if and only if ai � fH .1/.�.v0; v1/.h.�///; � 2 N g for
all H .1/ from the branch, where ai 2G . Therefore halph.fH .0/.�/; � 2N g/?i DGK

and since all the bases � belong to the same minimal tribe, halph.H .0/.�//?i DGK ,
for all � 2N . Furthermore, since any minimal item h

.0/
i belongs to the same minimal
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tribe, we have that halph.H .0/
i /?i D GK . Hence, if h

.0/
j is so that the tribe of h

.0/
j

dominates the minimal tribe, then we have that H .0/
j 2G?K .

Let us now address the statement of the lemma. By definition, the group K is closed,
ie KDK?? . We only need to show that K? is Ed .�1/–directly indecomposable.

Assume the contrary, then K? DK1 � � � � �Kr , where r > 1 (and this decomposition
is with respect to the edges from Ed .�1/). Without loss of generality, we shall assume
that rD2. Since items of �0 have associated parabolic subgroups, there exist canonical
parabolic subgroups GKi

< G , i D 1; 2 such that for all solutions H .0/ that factor
through the branch we have H .0/0.Ki/DGKi

, i D 1; 2. Furthermore, by the induction
hypothesis (IH1), GK1

� GK2
. As we have shown, if h

.0/
i is an item whose tribe

dominates the minimal tribe, then H
.0/
i 2G?K<GK1

�GK2
. It follows by Lemma 3.21,

that H .0/.Œ1; �A�/ 2GK1
�GK2

.

By Lemma 3.10, the section Œ1; �A� is a closed section of � and, by Remark 6.1,
the word H .0/Œ1; �A� is a subword of a word in the DM–normal form. It follows by
Lemma 2.3, that the word H .0/Œ1; �A� contains only a bounded number of GK1

�GK2
–

alternations.

In the tribal tree T .�/, when applying an entire transformation from �0 , the only
items that could be mapped to a word of length greater than one by the epimorphism
�.v0; v1/ are h

.0/
1

and h
.0/

l.2/
, where the boundary connection .2; �; n2/ is introduced

and n2 is introduced between the boundaries l.2/ and l.2/C 1 of �0 . The image
of h

.0/
1

is a word that contains at least one minimal item, namely the item h
.1/

l.2/
. By

Remark 3.19, we have that the image of h.0/
l.2/

is the word h.1/
l.2/

h.1/n2
and both of the items

h.1/
l.2/

, h.1/n2
are minimal. Hence, the image of h.0/.Œ1; �A�/ is a word in variables h.1/

that contains at least jh.M/jC 1 minimal items.

Repeating this argument, we conclude that �.v0; vk/.h
.0/.Œ1; �A�// is a word in h.k/

that contains at least jh.M/jC k minimal items. By [14, Lemma 7.12], in an infinite
branch of type 12, there exists an infinite sequence of generalised equations

�0 D�n1
D � � � ;

so that every solution H .nk/ of �nk
induces a solution H .0/D�.v0; vnk

/H .nk/ of �0 .
Therefore, on the one hand, H .0/Œ1; �A�2GK1

�GK2
. On the other hand, H .0/Œ1; �A�

is graphically equal to a word w.H .1// that contains jh.M/j C nk minimal items.
Every minimal item defines at least one GK1

�GK2
–alternation. Hence, the word

H .0/Œ1; �A� contains at least jh.M/jC nk many GK1
�GK2

–alternations, deriving a
contradiction. Therefore, we have that s D r D 1, H .0/

i is a block and K? is directly
indecomposable.
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Remark 6.4 Our proof of Lemma 6.3 shows that for all solutions H that factor though
a given branch, one has that Hi 2GK? is a block element for all minimal items hi

of � and A.Hi/DA.GK?/.

Lemma 6.5 Let �0 be a tribal generalised equation of type 12. Then there exists an
element U 2G�0

so that H.U / is irreducible for all solutions H that factor through
the branch.

Proof Since the word H1 is a block (see Remark 6.4), since the tribe of hi dominates
the minimal tribe (see Corollary 3.22), and since the word H Œ1; i � is reduced as written,
it follows that the word H Œ1; i � is a block element for all 1< i � �A . Furthermore, if
the word H Œ1; i � is not irreducible, then it is not cyclically reduced.

If the word H1H Œ2; i � D wvw�1 is not cyclically reduced, then by [24, Proposi-
tion 3.18], the word w D d1d2 , where d1 is a left divisor of H1 , H1 D d1u1 , d2 is
a left divisor of H Œ2; i �, H Œ2; i �D d2u2 , and d2� u1 . Furthermore, since H1 is a
block element and A.d2/ >A.H1/, it follows that d2 6�H1 , hence d1 ¤ 1.

Let � be the carrier base of �. Suppose ".�/ D ".�.�//. In this case, we show
that H Œ1; ˛.�.�//� 1� is irreducible. Assume the contrary. Then, from the above
discussion, H1H Œ2; ˛.�.�//�1�D d1ud�1

1
, where d1¤ 1 is a left divisor of H1 . On

the other hand, by Lemma 3.10, the word H Œ1; ˇ.�.�//�DH Œ1; ˛.�.�//�1�H.�.�//

is reduced, a contradiction since d�1
1

right-divides H Œ1; ˛.�.�//� 1� and d1 left-
divides H.�.�//.

Suppose now that ".�/D�".�.�//. Let � be the (uniquely defined) long base, so that
˛.�/Dˇ.�/�1. Note that, since � is formally consistent (see [14, Definition 3.9]) we
have that � ¤�.�/. Let �0 be obtained from � by a complete entire transformation.
If ".�/ D ".�.�// in �0 , then, by Lemma 3.18, the argument above applies to the
generalised equation �0 and the carrier base � .

Suppose that ".�/ D �".�.�// in �0 . Let �00 be obtained from �0 by a complete
entire transformation. Then we have that ".�/D ".�.�// in �00 . Notice that since
the generalised equation � repeats infinitely many times in the infinite branch, the
tribe t.�/ of � is minimal in �00 . Without loss of generality, let ˛.�/ < ˛.�.�//.
From the above argument, it follows that the word H 00Œ˛.�/; ˛.�.�//�1� is irreducible.

Therefore, since GR.�/ 'GR.�0/ 'GR.�00/ , the statement follows.

Recall that quadratic words of the type Œx;y�;x2; z�1cz , where c is a constant are
called atomic quadratic words or simply atoms. Let W D 1 be a quadratic equation
over G written in the form r1r2 � � � rk D d , where ri are atoms and d 2 G . The
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number k is called the rank of the quadratic equation. Suppose that the rank k of
W D 1 is greater than or equal to 2. A solution H of W is atom-commutative if
ŒH.ri/;H.riC1/�D 1 for all i D 1; : : : ; k � 1.

Suppose that the quadratic equation satisfies one of the following two alternatives:

� The Euler characteristic of W is at most �2, or W corresponds to a punctured
torus and the subgroup

h'0.�/; '0.h
.0/
i / j � 2N ; h.0/i is covered by a quadratic-coefficient basei

of T1 is nonabelian, ie the retraction of the (punctured) surface onto T1 is
nonabelian.

� The rank k of W is greater than or equal to 2 and the minimal solution '0 is
not atom-commutative.

Note that, in the case of free groups, the above conditions are sufficient to ensure the
radical of the quadratic equation W D 1 coincides with the normal closure [38; 52]. We
will see in the next section that the same result holds for arbitrary partially commutative
groups (under the condition that the set of solutions of the quadratic equation factors
through an infinite branch).

Notice that, by Lemma 6.2, we have that K? is either Ed .�/–directly indecomposable
or Ec.�/–free abelian. If the equation W satisfies one of the above alternatives,
then K? cannot be free abelian and hence it is directly indecomposable.

Define the graph �0 by

� V .�0/D V .�1/[fx
.0/
1
; : : : ;x

.0/
n g,

� Ec.�0/DEc.�1/,

� Ed .�0/DEd .�1/[f.x
.0/
i ;x

.1/
j / j for all x

.1/
j 2K; i D 1; : : : ; ng,

where nD jN j. Then the group H0 DH.�0/ is given by the presentation

hH1;x
.0/
1
; : : : ;x.0/n j Œx

.0/
i ;x

.1/
j �D 1; for all x

.1/
j 2K; i D 1; : : : ; ni:

Define the map � 0
0

as8̂̂̂̂
<̂
ˆ̂̂:
�i! x

.0/
i �i 2N ;

�.�i/! x
.0/
i

�
�i 2N ; �i D�.�i/

�; � 2 f˙1g;

�! '0.h.�// for all quadratic-coefficient bases �;

h
.0/
i ! '0.h

.0/
i / for all nonactive items h

.0/
i :
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If T1D hy
.1/ j S1i, then we set T0 to be the quotient of H0 by the set of relations S1

and the set of relations S consisting of the set of basic relations ŒCT1
.K?/;x.0/i �D 1,

1� i � n and the relation � 0
0
.W /, where W is a quadratic word in the normal form

from Corollary 4.7. Notice that � 0
0
.W / is a quadratic word in the normal form in

variables x
.0/
i , i D 1; : : : ; n.

Lemma 6.6 The map � 0
0

extends via the isomorphism  (see Lemma 4.4) to a
homomorphism �0 from G�0

to T0 .

Proof By Corollary 4.7, the group G�0
is isomorphic to the group K . We show

that � 0
0

induces a homomorphism from K to T0 .

It is immediate to check that if r is either the relation W D 1 or a relation of the type
�".�/ D�.�/".�.�// or a relation from R0 , then � 0

0
.r/D 1. Therefore, we are left to

show that � 0
0

is trivial on the set of commutators „.

Assume that .Œ�i ; �j � D 1/ 2 „ where �i ; �j are short bases. Since bases from the
quadratic part belong to tribes that dominate the minimal tribe, it follows that �i

and �j belong to a tribe that strictly dominates the minimal tribe and hence, since
we assume that �0 D�

0
0

, the bases �i and �j are quadratic-coefficient bases. Since
� 0

0
.Œ�i ; �j �/D '0.Œ�i ; �j �/ and '0 is a homomorphism, we have that � 0

0
.Œ�i ; �j �/D 1.

Similarly, if .Œ�i ; h
.0/
j �D 1/ 2„, where �i is a quadratic-coefficient base and h

.0/
j is a

nonactive item, then � 0
0
.Œ�i ; h

.0/
j �/D '0.Œ�i ; h

.0/
j �/D 1.

If .Œh.0/i ; h
.0/
j �D 1/ 2„, where h

.0/
i and h

.0/
j belong to the nonactive part, then we

have that � 0
0
.Œh.0/i ; h.0/j �/D '0.Œh

.0/
i ; h.0/j �/D 1.

Assume that .Œ�i ; h
.0/
j � D 1/ 2 „, where �i is a quadratic base and h

.0/
j is an item

from the nonactive part. By the definition of „ and the fact that <‡0
is completed,

one has that <‡0
.h.0/i ; h.0/j / for all h.0/i from the quadratic part of �0 . Hence, from

the description of the process, we conclude that <‡1
.h.1/i ; h.1/j / for all h.1/i from the

word �.v0; v1/.h
.0/
i / and for all h.1/j from the word �.v0; v1/.h

.0/
j /. By definition

of a solution of a generalised equation, it follows that for any solution H .1/ of �1 ,
H .1/

i � H .1/
j . By the induction hypothesis (IH2) on �1 , for all yi from the word

�1.h
.1/
i / and all yj from the word �1.h

.1/
j /, we have that H 0.yi/� H 0.yj /. By

the induction hypothesis (IH1) on H1 , it follows that .xi ;xj / 2Ed .�1/. Therefore,
for any xj from the word '0.h

.0/
j / and any xi from the word '0.h

.0/
i /, where h.0/i

belongs to the quadratic part, we have that .xi ;xj / 2Ed .�1/ and so xj 2A.h.0/.�//
for every base � from the quadratic part. Thus, '0.h

.0/
j / 2 K. We conclude that

�0.Œ�i ; h
.0/
j �/D 1. This shows that �0 is a homomorphism.
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Lemma 6.7 The homomorphism �0W G�0
! T0 makes diagram (11) commutative.

Proof Notice that any solution that factors through the branch is the composition of an
automorphism associated to the vertex v0 , the epimorphism �.v0; v1/ and a solution
of �1 . Since by [14, Lemma 7.12], all the automorphisms fix the subgroup NQ of G�0

generated by the items covered by quadratic-coefficient bases and the nonactive items,
it follows that the restriction of any solution H .0/ that factors through the branch to
this subgroup coincides with a solution H .1/ on the subgroup �.v0; v1/.NQ/ of G�1

,
ie for all items h

.0/
i 2NQ we have that H .0/

i DH .0/.h.0/i /DH .1/.�.v0; v1/.h
.0/
i //.

By induction hypothesis, there exists a homomorphism H .1/0 from T1 that makes
diagram (11) commutative. We define H .0/0 on the subgroup T1 of T0 to be H .1/0

and set H .0/0.x
.0/
i /DH .0/.�i/, where �i 2N .

It suffices to show that H .0/0 is a homomorphism. In this case, the commutativity of
the diagram follows by construction. Let us show that H .0/0.Œx.0/i ;CT1

.K?/�/ D 1.
From the definition of K and the induction hypothesis on the tower .T1;H1/, we have
that

H .1/0.'0.�//DH .1/.�.v0; v1/.�//�H .1/0.K/:

Since every solution H .0/ that factors through the branch is obtained from a solu-
tion H .1/ that factors through the branch by precomposing it with a canonical automor-
phism (and �.v0; v1/), we conclude that ai� fH .0/.�/; �2N g for all solutions H .0/

that factor through the branch if and only if ai� fH .1/.�.v0; v1/.h.�///; � 2N g for
all H .1/ that factor through the branch, where ai 2G . It follows that

H .0/.�i/DH .0/0.x
.0/
i /�H .1/0.K/DH .0/0.K/

and so
H .0/0.x

.0/
i / 2 halph.H .0/0.K//?i:

By the induction hypothesis, halph.H .1/0.K//?i D halph.H .1/0.K?//i and hence we
have that ŒH .0/0.x.0/i /;CG.H

.0/0.K?//�D 1.

Finally, direct computation shows that H .0/0.W /DH .0/.W /D 1. This proves H .0/0

is a homomorphism.

Lemma 6.8 The group H0 satisfies (IH1): for every xi ;xj 2 H0 , we have that
.xi ;xj /2Ed .�0/ if and only if H .0/0.xi/�H .0/0.xj / for all homomorphisms H .0/0

induced by a solution H .0/ that factors through the branch. Furthermore, we have that
if .xi ;xj / 2 Ec.�0/, then H .0/0.xi/;H

.0/0.xj / belong to a cyclic subgroup for all
homomorphisms H .0/0 induced by a solution H .0/ that factors through the branch.
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Proof If xi ;xj 2H1 <H0 , then the statement follows by the induction hypothesis
(IH1) for H1 .

By definition .x
.0/
i ;x

.0/
j / 62 Ed .�0/, for all 1 � i < j � n. Let us show that

H .0/0.x
.0/
i / 6� H .0/0.x

.0/
j /. Notice that by definition, H .0/0.x

.0/
i / D H.�i/, where

�i 2N . Since all the bases from N belong to the same tribe, it follows that H .0/.�i/ 6�
H .0/.�j /.

By definition .x.0/i ;x
.1/
j / 2 Ed .�0/, for all x

.1/
j 2 K, i D 1; : : : ; n. From the def-

inition of K and the induction hypothesis (IH1) for the graph tower .T1;H1/, we
have that H .1/0.'0.�//DH .1/.�.v0; v1/.�//�H .1/0.K/. As we have already seen
in Lemma 6.7, we have that ai � fH .0/.�/; � 2 N g for all solutions H .0/ that
factor through the branch if and only if ai� fH .1/.�.v0; v1/.h.�///; � 2N g for all
solutions H .1/ that factor through the branch, where ai 2G .

Assume that for x
.1/
j 2H1 we have H .0/0.x

.1/
j /�H .0/0.x

.0/
i / for some i D 1; : : : ; n.

Since by definition H .0/0.x.0/i /DH .0/.�i/ and all the quadratic bases belong to the
same minimal tribe, it follows that H .0/0.x

.1/
j /� H .0/0.x

.0/
i / for all i D 1; : : : ; n.

Since the sets f�.v0; v1/.h.�//; � 2N g and fh.�/; � 2N g define the same minimal
tribe, we conclude that

H .0/0.x
.1/
j /DH .1/0.x

.1/
j /

�H .0/.�.v0; v1/.h.�i///DH .0/0.'0.h.�i///DH .1/0.'.h.�i///

for all i D 1; : : : ; n. By the induction hypothesis (IH1) on H1 , it follows that x
.1/
j 2

A.'.h.�i///DK. Therefore, .x.1/j ;x.0/i / 2Ed .�0/.

Finally, since all the edges .xi ;xj / from Ec.�0/ belong to Ec.�1/, by induction
on H1 and definition of H .0/0 , we conclude that for every solution H .0/ that factors
through the branch, H .0/0.xi/DH .1/0.xi/ and H .0/0.xj /DH .1/0.xj / belong to the
same cyclic subgroup.

Lemma 6.9 The homomorphism �0 satisfies the induction hypothesis (IH2): for
all h

.0/
i , if �0.h

.0/
i / D yi1 � � �yik , then we have that A.H .0/0.yij // � A.H .0/

i / andTk
jD1 A.H .0/0.yij //DA.H .0/

i / for solutions that factor through the branch.

Proof If the item h
.0/
i is covered by a quadratic-coefficient base or it is nonactive, then

�0.h
.0/
i / D �1�.v0; v1/.h

.0/
i /. By construction, the epimorphism �.v0; v1/ satisfies

the statement of the lemma, and by induction hypothesis so does �1 . It follows that the
statement of the lemma holds for �0.h

.0/
i /.
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We are left to consider the case when h.0/i belongs to a quadratic base and is not
covered by a quadratic-coefficient base. In this case, h.0/i is covered by two long bases
and, hence belongs to a minimal tribe. Then, by definition, �0.h

.0/
i /D � 0

0
. .h.0/i //. If

 .h.0/i /Dwi.N ;C / where C is the set of items covered by quadratic-coefficient bases,
then �0.h

.0/
i /Dwi.x

.0/
i ; '0.C //D yi1 � � �yik . Since we have that H .0/0.�0.h

.0/
i //D

wi.H
.0/.�i/;H

.0/.C // and all the bases and items of the quadratic part belong to tribes
that dominate the minimal tribe, it follows that A.H .0/0.yij //�A.H .0/

i /. Furthermore,
since the item h.0/i belongs to a quadratic base, it follows that yil D x.0/i for some
l D 1; : : : ; k and some i D 1; : : : ; n. Since x.0/i belongs to the minimal tribe, we have
that

Tk
jD1 A.H .0/0.yij //DA.H .0/

i /.

Let us now deal with the exceptional cases.

Rank one Assume that W corresponds to a torus, ie W D Œ�1; �2�D 1. Define the
graph �0 as follows. If K? is nonabelian, set

� V .�0/D V .�1/[fx
.0/
1
;x
.0/
2
g;

� Ec.�0/DEc.�1/[f.x
.0/
1
;x
.0/
2
/g;

� Ed .�0/DEd .�1/[f.x
.0/
i ;x

.1/
j / j for all x

.1/
j 2K; i D 1; 2g.

If K? is abelian, then set

� V .�0/D V .�1/[fx
.0/
1
;x
.0/
2
g;

� Ec.�0/DEc.�1/[f.x
.0/
1
;x
.0/
2
/g[f.x

.0/
i ;x

.1/
j / j for all x

.1/
j 2K?; i D 1; 2g;

� Ed .�0/DEd .�1/[f.x
.0/
i ;x

.1/
j / j for all x

.1/
j 2K; i D 1; 2g.

If T1D hy
.1/ j S1i, then we set T0 to be the quotient of H0 by the set of relations S1

and the set of basic relations S :

ŒCT1
.K?/;x.0/i �D 1; i D 1; 2:

Lemma 6.10 The map � 0
0
W �i 7! x

.0/
i , i D 1; 2, extends via the isomorphism  

(see Lemma 4.4) to a homomorphism �0 from G�0
to T0 that makes diagram (11)

commutative. Furthermore, T0 , H0 and �0 satisfy the induction hypotheses (IH), (IH1)
and (IH2).

Proof The proof is analogous to the proofs of Lemmas 6.6, 6.7, 6.8, 6.9.

Notice that other quadratic equations of rank one do not define an infinite family of
homomorphisms. Indeed, by Remark 6.1, any solution of a generalised equation is
induced by a solution of the corresponding generalised equation over the free group.
Now the claim follows from the description of the radical ideal for quadratic equations
in the free group; see [37].
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Other cases Finally, let us consider the remaining cases. Notice that if the image of
the surface under the retraction is commutative, then the minimal solution is atom-
commutative. Hence, without loss of generality, we assume that the minimal solution
is atom-commutative.

Define the graph �0 as follows. If K? is nonabelian, set

� V .�0/D V .�1/[fx
.0/
1
; : : : ;x

.0/
n g;

� Ec.�0/DEc.�1/[f.x
.0/
i ;x

.0/
j / j 1� i < j � ng;

� Ed .�0/DEd .�1/[f.x
.0/
i ;x

.1/
j / j for all x

.1/
j 2K; i D 1; : : : ; ng.

If K? is abelian, then set

� V .�0/D V .�1/[fx
.0/
1
; : : : ;x

.0/
n g;

� Ec.�0/DEc.�1/[f.x
.0/
i ;x

.0/
j / j1� i < j �ng[f.x

.0/
i ;x

.1/
j / jx

.1/
j 2K?; iD

1; : : : ; ng;

� Ed .�0/DEd .�1/[f.x
.0/
i ;x

.1/
j / j for all x

.1/
j 2K; i D 1; : : : ; ng.

If T1D hy
.1/ j S1i, then we set T0 to be the quotient of H0 by the set of relations S1

and the set of relations S defined as follows:

� If one of the elements '0.�1 � � � �2g/; '0.�i/, i D 2gC 1; : : : ;m is nontrivial,
then the set of relations S is defined as

S D fx
.0/
1
� � �x

.0/
2g
D '0.�1 � � � �2g/; Œx

.0/
i ;C �D 1; i D 1; : : : ; ng;

where

C D CT1
.'0.�2gC1/

'0.�2gC1/; : : : ; '0.�m/
'0.�m/; '0.�1 � � � �2g//:

� Otherwise, S D fx
.0/
1
� � �x

.0/
2g
D 1g[ fthe set of basic relationsg.

In these cases, define the map � 0
0

as follows:8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�j ! x
.0/
j �j 2N ; j D 1; : : : ; 2g;

�.�j /! x
.0/
j

�
�j 2N ; �j D�.�j /

�; � D˙1; j D 1; : : : ; 2g;

�j ! x
.0/
j '0.�j / �j 2N ; j D 2gC 1; : : : ; n;

�.�j /! x
.0/
j '0.�j /

"
�j 2N ; �j D�.�j /

�; � D˙1; j D 2gC 1; : : : ; n;

�! '0.h.�// if � is a quadratic-coefficient base,

h
.0/
i ! '0.h

.0/
i / if h

.0/
i is a nonactive item:
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Lemma 6.11 The map � 0
0

extends via the isomorphism  ( see Lemma 4.4) to a
homomorphism �0 from G�0

to T0 that makes diagram (11) commutative. Further-
more, T0 , H0 and �0 satisfy the induction hypotheses (IH), (IH1) and (IH2).

Proof By Corollary 4.7, the group G�0
is isomorphic to the group K . We show � 0

0

induces a homomorphism from K to T0 .

It is immediate to check that � 0
0
.r/D 1 if r is either the relation W , a relation of the

type �".�/ D�.�/".�.�// or a relation from R0 .

Therefore, we are left to show that � 0
0

is trivial on the set of commutators „; see (6).
The proof is analogous to the proof of Lemma 6.6.

Let us now show that diagram (11) is commutative. Any solution that factors through
the branch is the composition of an automorphism associated to the vertex, the epi-
morphism �.v0; v1/ and a solution of �1 that factors through the branch. Since
by [14, Lemma 7.12] all the automorphisms fix the subgroup NQ of GR.�0/ generated
by the items covered by quadratic-coefficient bases and the nonactive items, it follows
that the restriction of any solution H .0/ that factors through the branch onto this
subgroup coincides with a solution H .1/ on the subgroup �.v0; v1/.NQ/ of G�1

,
ie for all items h

.0/
i 2 NQ we have that H .0/.h

.0/
i / D H .1/.�.v0; v1/.h

.0/
i //. By

induction hypothesis, there exists a homomorphism H .1/0 from T1 that makes diagram
(11) commutative. We define H .0/0 on the subgroup T1 of T0 to be H .1/0 and we
define H .0/0.x

.0/
j / D H .0/.�j /, if �j 2 N and j D 1; : : : ; 2g , and H .0/0.x

.0/
j / D

H .0/.�j /H
.0/.'0.�j //

�1 , if �j 2N and j D 2gC 1; : : : ; n.

It suffices to show that H .0/0 is a homomorphism. In this case, the commutation of dia-
gram (11) follows by construction. Since, by assumption, the minimal solution '0.�i/

is atom-commutative and since any solution that factors through the branch is obtained
from the minimal solution by precomposing it with an automorphism, it follows that
any solution that factors through the branch is also atom-commutative. Furthermore,
notice that by Remark 6.4, the image of any item under the homomorphism H .0/ is a
block element such that A.H .0/.�i//DA.GK?/, for all i D 1; : : : ; n. By Lemma 6.5,
there exists an element U so that H .0/.U / is irreducible. Hence, the images of all the
atoms under H .0/ belong to the same cyclic subgroup:Dq

H .0/.�
�2gC1

2gC1
/
E
D � � � D

Dq
H .0/.�

�n
n /

E
D

Dq
H .0/.�1 � � � �2g/

E
:

We conclude that H .0/.Œx
.0/
i ;C �/D 1. Therefore, diagram (11) is commutative.

The proofs that the induction hypotheses (IH1) and (IH2) hold, are analogous to the
proofs of Lemmas 6.8 and 6.9, correspondingly.
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Notice that since H .0/.x1/ is cyclically reduced, the argument given above shows that
if the quadratic equation is nonorientable (ie it contains an atom x2

1
), then the word

H .0/.cxi / is cyclically reduced. Hence, we conclude that in this case the retraction of
the surface is abelian.

We summarise the results of this section in the proposition below.

Proposition 6.12 Let �0!�1! � � � !�q be a branch of a tribal solution tree and
assume that �1 satisfies the induction hypotheses (IH), (IH1) and (IH2); see page 784.
If �0 D h‡;<‡ i is a tribal generalised equation of type 12, then there exists a graph
tower .T0;H0/ and a homomorphism �0 from G�0

to T0 such that for every solution
that factors through the branch, there exists a homomorphism from T0 to G that makes
diagram (11) commutative.

6.6 Singular and strongly singular periodic structures

In this and the following sections we use the notation and results from [14, Chapter 6],
of which we now give a very brief and informal summary.

Informally, a periodic structure P is a set of items, bases and sections of a generalised
equation � that imposes restrictions on the set of solutions of �, namely that solutions
are P –periodic and the image of items, bases and section from the periodic structure
are “long” (they are subwords of Pn of length greater than 2jP j).

Given a periodic structure on �, we study the corresponding coordinate group by
introducing a new set of generators and exhibiting the corresponding presentation. In
order to define the new set of generators, one constructs a graph � D �.P/, whose
edges are labelled by items that belong to a section of the periodic structure. Without
loss of generality, one can assume that � is connected. One then chooses a maximal
subforest of � so that the edges are labelled by items that belong to a section from P ,
but the items themselves do not belong to P . We then complete the forest to a maximal
subtree T of � . The free group generated by the items that label edges of � is
generated by the items that label edges of T and cycles ce , where e 2 � XT .

Under the assumption that � is periodised with respect to P (ie words defined by
cycles of � based at a given point commute), one can choose a basis C .1/[C .2/ of
the subgroup generated by the cycles ce . For each edge ei 2 T labelled by an item that
belongs to P , we consider two families of cycles ui;e , zi;e defined by edges e 62 T

labelled by items that do not belong to P . The cycles ui;e , zi;e are based at the origin
and the terminus of ei , correspondingly. We prove that the set

Geometry & Topology, Volume 19 (2015)



800 Montserrat Casals-Ruiz and Ilya Kazachkov

� xt of items that do not belong to sections from P ,
� fh.e/; e 2 T; h.e/ 62 Pg,
� fh.e1/; : : : ; h.em/; ei 2 T; h.ei/ 2 Pg,
� fuie; zie; i D 1; : : : ;m; e 62 T; h.e/ 62 Pg,
� C .1/;C .2/ ,

is a generating set of the group G� and in this generating set, the system of equations ‡
is equivalent to the union of the two systems of equations8̂<̂

:
u

h.ei /
ie D zie where e 2 T; e 2 Sh; 1� i �m;

Œuie1
;uie2

�D 1 where ej 2 T; ej 2 Sh; j D 1; 2; 1� i �m;

Œh.c1/; h.c2/�D 1 where c1; c2 2 C .1/[C .2/;

and a system
‰.fh.e/ j e 2 T; e 2 Shg; h.C .1//;xt ; xu;xz;A/D 1;

such that neither h.ei/, 1 � i � m, nor h.C .2// occurs in ‰ ; see [14, page 81] for
details and notation.

Recall that a generalised equation � is called periodised (with respect to a given
periodic structure) if for every two cycles c1 and c2 based at the same vertex in the
graph � commute in the coordinate group; see [14, Definition 6.9].

Definition 6.13 Let � be a generalised equation and let hP;Ri be a connected
periodic structure on �. We say that the generalised equation � is strongly singular
with respect to the periodic structure hP;Ri if one of the following conditions holds.

(a) The generalised equation � is not periodised with respect to the periodic struc-
ture hP;Ri.

(b) The generalised equation � is periodised with respect to the periodic structure
hP;Ri and there exists an automorphism ' of the coordinate group GR.‡/ of
the form described in parts [14, Lemma 6.14(2) and (3)], such that ' does not
induce an automorphism of GR.�/ .

We say that the generalised equation � is singular with respect to the periodic structure
hP;Ri if � is not strongly singular with respect to the periodic structure hP;Ri and
one of the following conditions holds.

(a) The set C .2/ has more than one element.

(b) The set C .2/ has exactly one element, and (in the above notation) there exists a
cycle ce0

2 hC .1/i, h.e0/ 62 P such that h.ce0
/¤ 1 in GR.�/ .
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Otherwise, we say that � is regular with respect to the periodic structure hP;Ri. In
particular, if � is singular or regular with respect to the periodic structure hP;Ri,
then � is periodised.

When no confusion arises, instead of saying that � is (strongly) singular (or regular)
with respect to the periodic structure hP;Ri, we say that the periodic structure hP;Ri
is (strongly) singular (or regular).

Suppose that v0 is of type 2, ie solutions that factor through the branch are P –periodic
and �v0

is either singular or strongly singular with respect to the corresponding periodic
structure hP;Ri.

To simplify the notation, set �iD�vi
Dh‡i ;<‡i

i. Recall that G�i
Dhh.i/i, i D 1; 2,

H1 D hx
.1/i, and T1 D hy

.1/i.

If the periodic structure hP;Ri is strongly singular, then we set T0 D T1 and �0 to
be �.v0; v1/�1 , where �1 is the homomorphism from G�1

to T1 that makes diagram
(11) commutative. By [14, Lemma 6.17], any homomorphism that factors through
the branch also factors through GR.�1/ and so �0 , T0 and H0 make diagram (11)
commutative and satisfy the induction hypothesis.

Let us now assume that the periodic structure hP;Ri is singular.

The set of elements

(12) fh.0/.e/ j e 2 T g[ fh.0/.ce/ j e 62 T g

forms a basis of the free group F.h.0// generated by

fh
.0/

k
j h
.0/

k
2 �; � 2 Pg:

Suppose first that the periodic structure is singular of type (a), ie the set C .2/ has more
than one element. Denote by '0 the composition of �.v0; v1/ and �1 .

Since the periodic structure is singular of type (a), the cardinality n of the set C .2/

is greater than or equal to 2 and there exists an element c 2 C .2/ so that the image
�.v0; v1/.h

.0/.c// in GR.�1/ is nontrivial. Let w.y.1//Dw.'0.h
.0/.c/// be the image

of h.0/.c/ in T1 , and consider the word w.x.1// in H1 . Set K to be AH1
.w.x.1///.

Let x.0/ D fx
.0/
1
; : : : ;x

.0/
n g, where nD jC .2/j. Define the graph �0 as follows. If the

canonical parabolic subgroup K? is nonabelian, set

� V .�0/D V .�1/[fx
.0/
1
; : : : ;x

.0/
n g,

� Ec.�0/DEc.�1/[f.x
.0/
i ;x

.0/
j / j 1� i < j � n/g,

� Ed .�0/DEd .�1/[f.x
.0/
i ;x

.1/
j / j for all x

.1/
j 2K; i D 1; : : : ; ng.
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If the canonical parabolic subgroup K? is abelian, set

� V .�0/D V .�1/[fx
.0/
1
; : : : ;x

.0/
n g;

� Ec.�0/DEc.�1/[f.x
.0/
i ;x

.0/
j / j1� i < j �ng[f.x

.0/
i ;x

.1/
j / jx

.1/
j 2K?; 1�

i � ng;

� Ed .�0/DEd .�1/[f.x
.0/
i ;x

.1/
j / j for all x

.1/
j 2K; i D 1; : : : ; ng.

Then the group H0 is defined to be H.�0/. Let S 0
0

be the set of relations

Œx
.0/
i ;CT1

.'0.h
.0/.c///�D 1; for all 1� i � n;

and set T0 to be the quotient H0=S0 , where S0 D S1[S 0
0

.

Recall that, by definition of the generating set xx associated to the periodic structure
and since the generalised equation is periodised (the periodic structure being singular),
the set fh.e/ j e 2 T g[fh.0/.C .1//; h.0/.C .2//g is a basis of the free group F.fh.0/

k
2

�; � 2Pg/. Furthermore, any h.0/
k
2 �; � 2P such that h.0/

k
D h.e/, e 62 T , eW v! v0 ,

is expressed in the generating set fh.e/ j e 2 T g[ fh.0/.C .1//; h.0/.C .2//g as

h
.0/

k
D h.0/.p.v0; v//

�1vk1.C
.1//vk2.C

.2//h.0/.p.v0; v
0//;

where

vk1.C
.1// 2 hh.0/.C .1//i; vk2.C

.2// 2 hh.0/.C .2//i;

p.v0; v/; p.v0; v
0/ 2 hh.e/ j e 2 T i:

Lemma 6.14 The map �0 ,

h
.0/

k
7!

8̂̂̂̂
<̂
ˆ̂̂:
'0.h

.0/

k
/ for all h

.0/

k
2 �; � 62 P ,

'0.h
.0/

k
/ for all h

.0/

k
D h.e/; e 2 T ,

'0.h
.0/.p.v0; v//

�1/'0.vk1.C
.1///vk2.x

.0//

'0.h
.0/.p.v0; v

0/// for all h
.0/

k
D h.e/; e 62 T ,

extends to a homomorphism from G�0
to T0 .

Proof By [14, Lemma 6.14], the set

(13) fh
.0/

k
j h
.0/

k
2 �; � 62 Pg[ fh.0/

k
j h
.0/

k
2 T g[ h.0/.C .1/

[C .2//

is a generating set of G�0
.

Notice that, by definition, the map �0 on the set

S D fh
.0/

k
j h
.0/

k
2 �; � 62 Pg[ fh.0/

k
j h
.0/

k
2 T g[ h.0/.C .1//;
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coincides with the homomorphism '0 . It follows that �0 extends to a homomorphism
on the subgroup hSi of G�0

.

We have that, by [14, Lemma 6.14], since the generalised equation is periodised,
that is, Œh.0/.c1/; h

.0/.c2/� D 1 for all cycles c1; c2 2 C .1/ [ C .2/ , all the relations
h.0/.�/�".�/h.0/.�.�//".�.�// belong to the subgroup generated by S and thus
�0.h

.0/.�/�".�/h.0/.�.�//".�.�///D 1.

Therefore, in order to show that the map �0 induces a homomorphism from G‡0
to T0

we need to show that �0.Œh
.0/.c1/; h

.0/.c2/�/D 1 in T0 for all c1; c2 2 C .1/[C .2/ . If
c1; c2 2 C .1/ , then

�0.Œh
.0/.c1/; h

.0/.c2/�/D '0.Œh
.0/.c1/; h

.0/.c2/�/D 1:

If c1; c2 2 C .2/ , then, by definition of �0 ,

�0.Œh
.0/.c1/; h

.0/.c2/�/D Œx
.0/
i ;x

.0/
j �D 1:

Finally, assume that c1 2C .1/ and c2 2C .2/ . Since Œh.0/.c1/; h
.0/.c/�D 1 in G�0

, for
all c1 2 C .1/ , and the nontrivial cycle c 2 C .2/ that defines the subgroup K, we have
that Œ'0.h

.0/.c1//; '0.h
.0/.c//�D 1 in T1 and so '0.h

.0/.c1// 2 CT1
.'0.h

.0/.c//. We
conclude from the definition of S0 that �0.Œh

.0/.c1/; h
.0/.c2/�/D 1 in T0 .

To prove that �0 extends to a homomorphism from G�0
to T0 it is left to show that

�0.Œh
.0/
i ; h.0/j �/D 1, for all h.0/i ; h.0/j such that <‡0

.h.0/i ; h.0/j /. In fact, since the map
extends to a homomorphism on the subgroup generated by S , we only need to check
that we have �0.Œh

.0/
i ; h.0/j �/D1, for all h.0/j 2P so that <‡0

.h.0/i ; h.0/j /. For every P –
periodic solution H .0/ , we have that alph.H .0/

i /� alph.H .0/
j /, for all h.0/i 2 �; � 2P ,

h.0/j 2 P . Recall that if <‡0
.h.0/i ; h.0/j /, then for all solutions H .0/ of �0 we have

that H .0/
i �H .0/

j . Therefore, if <‡0
.h.0/i ; h.0/j / and h.0/j 2 P , then h.0/i 2 �; � 62 P .

Furthermore, since the periodic structure is not strongly singular and the set <‡0
is

completed, it follows that for all h.0/j 2P and for every h.0/i such that <‡0
.h.0/i ; h.0/j /,

one has that <‡0
.h.0/i ; h.0/

k
/, for all h.0/

k
2 �; � 2 P .

By the properties of the elementary transformations, <‡1
.h.1/r ; h.1/s / for all h.1/r from

�.v0; v1/.h
.0/
i / and all h.1/s 2 �.v0; v1/.h

.0/
k
/, h.0/

k
2 �; � 2 P . By the induction

hypothesis (IH2) on �1 , we have A.H .1/0.y.1/m // � A.H .0/
i / and A.H .1/0.y.1/n // �

A.H .0/
k
/ for any y.1/m in '0.h

.0/
i /, y.1/n in '0.h

.0/
k
/ and any solution H .1/ of �1 that

factors through the branch, hence

H .1/0.y.1/m /�H .1/0.y.1/n /:

By the induction hypothesis (IH1) on H1 , we have that .x.1/n ;x.1/m / 2Ed .�1/ and so
'0.h

.0/
i /� '0.h

.0/
k
/ in H1 , for all h.0/

k
2 �; � 2 P and, hence, in particular, '0.h

.0/
i /
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belongs to the subgroup K of H1 . Therefore, if <‡0
.h.0/i ; h.0/j / and h.0/j 2 P , then

�0.Œh
.0/
i ; h.0/j �/D 1.

Lemma 6.15 The homomorphism �0W G�0
! T0 makes diagram (11) commutative.

Proof By [14, Lemma 6.18], for any solution H .0/ that factors through the branch,
there exist a solution H .1/ of �1 and an automorphism � from the group A.�0/

(see [14, Definition 6.16]) such that H .0/ D ��.v0; v1/H
.1/ . Furthermore, if

S D fh
.0/

k
j h
.0/

k
2 �; � 62 Pg[ fh.0/

k
j h
.0/

k
2 T g[ h.0/.C .1//;

then we have that H .0/.h
.0/
i / D H .1/.�.v0; v1/.h

.0/
i //, where h

.0/
i 2 hSi. By the

induction hypothesis, there exists a homomorphism H .1/0 from T1 to G that makes
diagram (11) commutative. We define H .0/0 on the subgroup T1 of T0 to be H .1/0 and
we define H .0/0.y

.0/
i /DH .0/.c2i/, where c2i 2 C .2/ is so that �0.h

.0/.c2i//D y
.0/
i .

If we show that H .0/0 is a homomorphism, then the commutativity of the diagram
follows by construction. Since all solutions are P –periodic, it follows that

H .0/0.y
.0/
i /DH .0/.c2/D Pn and H .0/0.'0.h

.0/.c///D Pk ; k ¤ 0:

Therefore, H .0/0 is a homomorphism and it makes diagram (11) commutative.

Lemma 6.16 The subgroup KDA.w.x.1/// of H1 is Ed .�1/–coirreducible.

Proof Since items of generalised equations have associated parabolic subgroups, there
exists a canonical parabolic subgroup GK <G such that for any solution that factors
through the branch we have that halph.H .0/0.K//iDGK . By definition of K and by the
induction hypothesis (IH1), we have that H .1/0.w.x.1///�GK . Furthermore, if ai�
H .1/0.w.x.1///, where a2A, GDG.A/, again, by the induction hypothesis (IH1), we
have that ai 2K and so ai 2GK , hence we have that halph.H .1/0.w.x.1////?i DGK .

Let us now address the statement of the lemma. By definition the group K is closed, ie
KDK?? . We only need to show that K? is Ed .�1/–directly indecomposable.

Assume the contrary, then K?DK1�� � ��Kr , where r > 1 (with respect to the edges
from Ed .�1/). Without loss of generality, we may assume that r D 2. Since items
of generalised equations have associated parabolic subgroups, there exist canonical
parabolic subgroups GKi

< G , i D 1; 2, such that for solutions H .0/ that factor
through the branch we have H .0/0.Ki/DGKi

, i D 1; 2. Furthermore, by the induction
hypothesis (IH1), one has that GK1

�GK2
.
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Since we have that halph.H .1/0.w.x.1////?i DGK , it follows that H .1/0.w.x.1/// 2

G?K <GK1
�GK2

. Furthermore, it follows that H .1/0.w.x.1/// contains at least one
GK1
�GK2

–alternation.

Since every solution is P –periodic, it follows that H .1/0.w.x.1///D Pn and P con-
tains at least one GK1

�GK2
–alternation. By the description of solutions of generalised

equations periodised with respect to a periodic structure (see [14, Chapter 6]) for every
m 2N , there exists a solution H .0/ of �0 so that H .0/.c2/

:
D Pm0 , where m0 �m,

c2 2 C .2/ . Hence, H .0/.c2/ contains at least m0 many GK1
�GK2

–alternations. This
derives a contradiction, since, by Remark 6.1, H .0/.c2/ is a subword of a word in the
normal form and, by Lemma 2.3, it contains only a bounded number of alternations.
Hence, we conclude that P is a cyclically reduced irreducible root element and so
r D 1 and K? is Ed .�1/–directly indecomposable.

Remark 6.17 Solutions of generalised equations define graphical equalities, so if
solutions that factor through the branch are P –periodic, then the period P is cyclically
reduced. Furthermore, as we have shown above, the period P is an irreducible root
element from GK? DG?K .

Lemma 6.18 The group H0 satisfies the induction hypothesis (IH1): for every
xi ;xj 2 H0 , we have that .xi ;xj / 2 Ed .�0/ if and only if H 0.xi/� H 0.xj / for
all homomorphisms H 0 induced by solutions H that factor through the branch; fur-
thermore, we have that if .xi ;xj / 2 Ec.�0/, then H 0.xi/ and H 0.xj / belong to the
same cyclic subgroup for all homomorphisms H 0 induced by solutions H that factor
through the branch.

Proof If xi ;xj 2H1 <H0 , then the statement follows by the induction hypothesis
on H1 .

By definition, .x.0/i ;x.0/j /2Ec.�0/ for all 1� i < j �n. Let us show that H .0/0.x.0/i /

and H .0/0.x.0/j / belong to the same cyclic subgroup. Indeed, since solutions that factor
through the branch are P –periodic, it follows that H .0/0.x.0/i /DH .0/.c2i/D Pk for
all i D 1; : : : ; n.

Furthermore, if K? is abelian, then .x.0/i ;x.1/j / 2Ec.�0/ for all x.1/j 2K? . By the
induction hypothesis (IH1), for all solutions the subgroup hH .0/0.K?/iD hH .1/0.K?/i
is a cyclic subgroup of G . Since, by Remark 6.17, the period P is an irreducible
element from halph.H .0/0.K?//i, it follows that H .0/0.x.0/i /DH .0/.c2i/D Pk and
H .0/0.x.1/j / belong to the same cyclic subgroup.
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By definition .x.0/i ;x
.1/
j /2Ed .�0/, for all x

.1/
j 2K, i D 1; : : : ; n. From the definition

of K and the induction hypothesis on the tower .T1;H1/, we have that

H .1/0.'0.c//DH .1/.�.v0; v1/.c//D Pk�H .1/0.K/:

Since solutions are P –periodic, it follows that

H .0/0.x
.0/
i /DH .0/.c2i/D P l �H .1/0.K/DH .0/0.K/;

where �0.c2i/D x
.0/
i , i D 1; : : : ; jC .2/j D n.

Assume that for x
.1/
j 2H1 we have H .0/0.x

.1/
j /�H .0/0.x

.0/
i / for some i D 1; : : : ; n.

Since H .0/0.x.0/i /DH .0/.c2i/D P l , it follows that

H .0/0.x
.1/
j /DH .1/0.x

.1/
j /

�H .0/.�.v0; v1/.h.c///DH .0/0.'0.h.c///DH .1/0.'.h.c///D P l :

By the induction hypothesis (IH1) on H1 , it follows that x.1/j 2 A.'0.h.c/// D K.
Therefore, .x.1/j ;x.0/i / 2Ed .�0/.

Lemma 6.19 The homomorphism �0 satisfies the induction hypothesis (IH2): for
all h.0/i , if �0.h

.0/
i / D xi1 � � �xik , then we have that A.H 0.xij // � A.H 0

i / andTk
jD1 A.H 0.xij //DA.H .0/

i / for solutions that factor through the branch.

Proof Recall that if

S D fh
.0/

k
j h
.0/

k
2 �; � 62 Pg[ fh.0/

k
j h
.0/

k
2 T g[ h.0/.C .1//;

then, for h
.0/
i 2 hSi and for all solutions that factor through the branch H .0/ we have

that H .0/.h
.0/
i /DH .1/.�.v0; v1/.h

.0/
i //.

If h
.0/
i 2 hSi, then �0.h

.0/
i / D �1�.v0; v1/.h

.0/
i /. If �.v0; v1/.h

.0/
i / D h

.1/
i1
� � � h

.1/
im

,
then since solutions of the generalised equations define graphical equalities it fol-
lows that for every solution H .1/ that factors through the branch, we have that
H .1/.�.v0; v1/.h

.0/
i //DH .1/

i1
� � �H .1/

im
and so

A.H .1/.h
.1/
ij
//�A.H .1/.�.v0; v1/.h

.0/
i ///DA.H .0/

i /:

Since, by induction assumption, the statement of the lemma holds for �1 , we conclude
that the statement holds for �0.h

.0/
i /D �1�.v0; v1/.h

.0/
i /, for all h.0/i 2 hSi.

If h
.0/

k
62 hSi, then h

.0/

k
2 P and

h
.0/

k
D h.0/.p.v0; v//vk1.C

.1//vk2.C
.2//h.0/.p.v0; v

0//
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for some

vk1.C
.1// 2 hh.0/.C .1//i; vk2.C

.2// 2 hh.0/.C .2//i;

h.0/.p.v0; v//; h
.0/.p.v0; v

0// 2 hh.e/ j e 2 T i:

In this case,

�0.h
.0/

k
/D '0.h

.0/.p.v0; v//vk1.C
.1///vk2.x

.0//'0.h
.0/.p.v0; v

0//:

Since every solution H .0/ that factors through the branch is P –periodic, it fol-
lows that alph.H .0/

i / � alph.P /, for all h
.0/
i 2 �; � 2 P . Hence, for all xi in the

words '0.h
.0/.p.v0; v//vk1.C

.1/// and '0.h
.0/.p.v0; v

0///, by the induction hypoth-
esis (IH2) on �1 , we can conclude that

A.H .0/0.xi//�A.P /DA.H .0/

k
/:

Furthermore,

alph.H .0/0.x
.0/
i //D alph.H .0/.c2i//D alph.Pk/D alph.H .0/

k
/

and so A.H .0/0.x
.0/
i //DA.H .0/

k
/ and, in particular,\

xi in �0.h
.0/

k
/

A.H .0/0.xi//DA.H .0/

k
/:

Assume now that the periodic structure is singular of type (b), ie the set C .2/ has exactly
one element and there exists a cycle cD ce0

2C .1/ , h.0/.e0/ 62P such that h.0/.ce0
/D

w.h.0//¤ 1 in G�0
. Since c 2 C .1/ , for all solutions H .0/ D '�.v0; v1/H

.1/ of �0

we have that H .0/.c/DH .1/.�.v0; v1/.h.c///. Since GR.�0/ is separated by G , there
exists H .0/ so that 1¤H .0/.c/DH .1/.�.v0; v1/.h.c///, hence �.v0; v1/.h.c//¤ 1

in GR.�1/ . Let w.x0/D '0.h
.0/.ce0

// be the image of h.0/.ce0
/ in T1 , and consider

the word w.x.1// in H1 . Set K to be AH1
.w.x.1///.

Define the graph �0 as follows. If the canonical parabolic subgroup K? is non-
abelian, set

� V .�0/D V .�1/[fx
.0/g;

� Ec.�0/DEc.�1/;

� Ed .�0/DEd .�1/[f.x
.0/;x

.1/
j / j for all x

.1/
j 2Kg.

If the canonical parabolic subgroup K? is abelian, set

� V .�0/D V .�1/[fx
.0/g;
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� Ec.�0/DEc.�1/[f.x
.0/;x

.0/
j / j x

.1/
j 2K?g;

� Ed .�0/DEd .�1/[f.x
.0/;x

.1/
j / j for all x

.1/
j 2Kg.

Now, the group H0 is defined to be H.�0/.

Let S 0
0

be the set of relations

Œx.0/;CT1
.'0.h

.0/.ce0
///�D 1;

and set T0 to be the quotient H0=nclhS0i, where S0 D S1[S 0
0

.

Recall that, by definition of the generating set xx and since the generalised equa-
tion is periodised (the periodic structure being singular), the set fh.e/ j e 2 T g [

fh.0/.C .1//; h.0/.C .2//g is a basis of the free group on the alphabet fh.0/
k
2 �; � 2 Pg.

Furthermore, any h.0/
k
2 �; � 2 P so that h.0/

k
D h.e/, e 62 T , eW v! v0 , is expressed

in the generating set fh.e/ j e 2 T g[ fh.0/.C .1//; h.0/.C .2//g as

h
.0/

k
D h.0/.p.v0; v//

�1vk1.C
.1//vk2.C

.2//h.0/.p.v0; v
0//;

for some vk1.C
.1// 2 hh.0/.C .1//i and some vk2.C

.2// 2 hh.0/.C .2//i.

Lemma 6.20 The map �0 ,

h
.0/

k
7!

8̂̂̂̂
<̂
ˆ̂̂:
'0.h

.0/

k
/ for all h

.0/

k
2 �; � 62 P ,

'0.h
.0/

k
/ for all h

.0/

k
D h.e/; e 2 T ,

'0.h
.0/.p.v0; v//

�1/'0.vk1.C
.1///vk2.x

.0//

'0.h
.0/.p.v0; v

0///; for all h
.0/

k
D h.e/; e 62 T ,

extends to a homomorphism from G�0
to T0 .

Proof The proof is analogous to the proof of Lemma 6.14.

Lemma 6.21 The homomorphism �0W G�0
! T0 makes diagram (11) commutative.

Proof The proof is analogous to the proof of Lemma 6.15.

Lemma 6.22 The subgroup KDA.w.x.1/// of H0 is Ed .�0/–coirreducible.

Proof Proof is analogous to the proof of Lemma 6.16.

Lemma 6.23 The group H0 satisfies (IH1): for all xi ;xj 2 H0 , we have that
.xi ;xj / 2 Ed .�0/ if and only if H 0.xi/ � H 0.xj / for all homomorphisms H 0

induced by solutions H that factor through the branch. Furthermore, we have that
if .xi ;xj / 2 Ec.�0/, then H 0.xi/ and H 0.xj / belong to a cyclic subgroup for all
homomorphisms H 0 induced by solutions H that factor through the branch.
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Proof The proof is analogous to the proof of Lemma 6.18.

Lemma 6.24 The homomorphism �0 satisfies the induction hypothesis (IH2): For all
h
.0/
i , if �0.h

.0/
i /D xi1 � � �xik , then we have that

A.H .0/0.xij //�A.H .0/
i / and

k\
jD1

A.H .0/0.xij //DA.H .0/
i /;

for solutions that factor through the branch.

Proof The proof is analogous to the proof of Lemma 6.19.

We summarise the results of this section in the following

Proposition 6.25 Let �0!�1! � � � !�q be a branch of a tribal solution tree and
assume that �1 satisfies the induction hypotheses (IH), (IH1) and (IH2); see page 784.
If �0 D h‡;<‡ i is a generalised equation of type 2, then there exists a graph tower
.T0;H0/ and a homomorphism �0 from G�0

to T0 such that for each solution that
factors through the branch, there exists a homomorphism from T0 to G that makes
diagram (11) commutative.

6.7 Regular periodic structures

By [14, Lemma 6.19], given a generalised equation �D h‡;<‡ i with no boundary
connections, periodised with respect to a connected regular periodic structure hP;Ri
and any periodic solution H of � such that P.H;P / D hP;Ri and so that H is
minimal with respect to the trivial group of automorphisms, either for all k , 1� k � �

we have jHk j � 2�jP j, or there exists a cycle c2�1.�; v�/ so that H.c/DPn , where
1� n� 2� .

Suppose first that the solution that factors through the branch falls under the conditions
of the first assumption, ie all the items from the periodic structure are of bounded
length. Then, in a bounded number of steps c , all the items, bases and sections from
the periodic structure will be transferred onto the sections that do not belong to the
periodic structure. Let �c be the corresponding generalised equation. Then every
solution that factors through the branch is a solution of �c . In this case, the graph
tower for �, is the graph tower associated to �c .

Suppose now that solution that factors through the branch falls under the conditions of
the second assumption. Then there exists a cycle c 2 �1.�; v�/ so that H.c/D Pn ,
where 1� n� 2� . Let w D '0.h.c// be the image of h.c/ in T1 , w D w.y.1// and
consider the word w.x.1// in H1 . Set K to be AH1

.w.x.1///.
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Let x.0/Dfx
.0/
1
; : : : ;x

.0/
m g. Define the graph �0 as follows. If the canonical parabolic

subgroup K? is nonabelian, set

� V .�0/D V .�1/[fx
.0/
1
; : : : ;x

.0/
m g;

� Ec.�0/DEc.�1/[f.x
.0/
i ;x

.0/
j / j 1� i < j �m/g;

� Ed .�0/DEd .�1/[f.x
.0/
i ;x

.1/
j / j for all x

.1/
j 2K; i D 1; : : : ;mg.

If the canonical parabolic subgroup K? is abelian, set

� V .�0/D V .�1/[fx
.0/
1
; : : : ;x

.0/
m g;

� Ec.�0/ D Ec.�1/ [ f.x
.0/
i ;x

.0/
j / j 1 � i < j � mg [ f.x

.0/
i ;x

.1/
j / j x

.1/
j 2

K?; 1� i �mg;
� Ed .�0/DEd .�1/[f.x

.0/
i ;x

.1/
j / j for all x

.1/
j 2K; i D 1; : : : ;mg.

Then the group H0 is defined to be H.�0/.

Let S 0
0

be the set of relations defined as follows. For every equation u
h.ei /
ie D zie (we

use notation from [14, Chapter 6]), we write

Œx
.0/
i ;CT1

.'0.uie//�D 1; i D 1; : : : ;m

and set T0 to be the quotient H0=S0 , where S0 D S1[S 0
0

.

Recall that, by definition of the generating set xx associated to the periodic struc-
ture and since the generalised equation is periodised, any h.0/

k
2 �; � 2 P such

that h.0/
k
D h.e/, e 62 T , eW v ! v0 is expressed in the generating set fh.e/ j

e 2 T g[ fh.0/.C .1//; h.0/.C .2//g as

h
.0/

k
D h.0/.p.v0; v//

�1vk1.C
.1//vk2.C

.2//h.0/.p.v0; v
0//

for some vk1.C
.1// 2 hh.0/.C .1//i and some vk2.C

.2// 2 hh.0/.C .2//i. Further-
more, the paths p.v0; v/ and p.v0; v

0/ can be represented as p1ei1
p2 � � � pr eir

prC1 and
p0

1
ej1

p0
2
� � � p0r 0ejr 0

p0
r 0C1

, correspondingly, where ps; p
0
s0 are paths in T0 , 1� s � rC1,

1� s0 � r 0C 1 and eit
; ejt0
2 fe1; : : : ; emg, 1� t � r , 1� t 0 � r 0 .

Lemma 6.26 The map � 0
0

h
.0/

k
7!

8̂<̂
:
'0.h

.0/

k
/ for all h

.0/

k
2 �; � 62 P and h

.0/

k
2 T \Sh,

'0.h
.0/.c// for all c 2 C .1/[C .2/,

x
.0/
i '0.h.ei// for all h

.0/

k
D h.ei/, i D 1; : : : ;m,

induces a map �0 from the set fh.0/g which extends to a homomorphism from G�0

to T0 .
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Proof By [14, Lemma 6.14], the set

fh
.0/

k
j h
.0/

k
2 �; � 62 Pg[ fh.0/

k
j h
.0/

k
2 T \Shg

[ h.0/.C .1//[ h.0/.C .2//[fh.0/.e1/; : : : ; h
.0/.em/g

is a generating set of G�0
.

Notice that the map �0 on the set

S D fh
.0/

k
j h
.0/

k
2 �; � 62 Pg[ fh.0/

k
j h
.0/

k
2 T \Shg[ h.0/.C .1//[ h.0/.C .2//

coincides with the composition of the epimorphism �.v0; v1/ and the homomor-
phism �1 , and so it extends to a homomorphism on the subgroup hSi of G�0

. In
particular, the map �0 coincides with '0 on the subgroup generated by all the items
h
.0/

k
62 P .

By [14, Lemma 6.14], since �0 is periodised, ie Œh.0/.c1/; h
.0/.c2/�D 1 for all cycles

c1; c2 2 C .1/ [ C .2/ , it follows that all the words h.0/.�/�".�/h.0/.�.�//".�.�//

belong to the subgroup generated by S and so

�0.h
.0/.�/�".�/h.0/.�.�//".�.�///D 1:

We note that the words Œh.0/.c1/; h
.0/.c2/� are trivial elements in the subgroup generated

by S for all cycles c1; c2 2 C .1/[C .2/ . Therefore, in order to show that the map �0

extends to a homomorphism from G‡0
to T0 it suffices to show �0.u

h.0/.ei /
ei z�1

ei /D 1

in T0 , 1� i �m. Indeed,

�0.u
h.0/.ei /
ei z�1

ei /D '0.uei/
x
.0/

i
'0.h

.0/.ei //'0.z
�1
ei /:

Since from the definition of S0 , Œx.0/i ; '0.uei/�D 1, it follows that

�0.u
h.0/.ei /
ei z�1

ei /D '0.u
h.0/.ei /
ei z�1

ei /D 1:

To prove that �0 extends to a homomorphism from G�0
to T0 , it is left to show that

�0.Œh
.0/
i ; h.0/j �/D 1, for all h.0/i ; h.0/j such that <‡0

.h.0/i ; h.0/j /. In fact, since the map
extends to a homomorphism on the subgroup generated by S we only need to check
�0.Œh

.0/
i ; h.0/j �/ D 1, for all h.0/j 2 P so that <‡0

.h.0/i ; h.0/j /. For every P –periodic
solution H .0/ , alph.H .0/

i / � alph.H .0/
j /, for all h.0/i 2 �; � 2 P , h.0/j 2 P . Recall

that if <‡0
.h.0/i ; h.0/j /, then H .0/

i �H .0/
j for all solutions H .0/ of �0 . Therefore,

if <‡0
.h.0/i ; h.0/j / and h.0/j 2 P , then we have h.0/i 2 �; � 62 P .

Furthermore, since the periodic structure is not strongly singular and the set <‡0
is

completed, it follows that for all h.0/j 2P and for every h.0/i such that <‡0
.h.0/i ; h.0/j /,

one has that <‡0
.h.0/i ; h.0/

k
/, for all h.0/j 2 �; � 2 P .
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By properties of the elementary transformations, we have that <‡1
.h.1/r ; h.1/s /, for all

the items h.1/r which appear in the word �.v0; v1/.h
.0/
i / and all items h.1/s from the

word �.v0; v1/.h
.0/
k
/, h.0/

k
2 �; � 2 P . By the induction hypothesis (IH2) on �1 , for

any y.1/m which appears in the word '0.h
.0/
i /, any y.1/n from the word '0.h

.0/
k
/ and

any solution H .1/ of �1 that factors through the branch, we have A.H .1/0.y.1/m //�

A.H .0/
i / and A.H .1/0.y.1/n // � A.H .0/

k
/, hence H .1/0.y.1/m / � H .1/0.y.1/n /. By

the induction hypothesis (IH1) on H1 , we have that .x.1/n ;x.1/m / 2 Ed .�1/ and so
'0.h

.0/
i /� '0.h

.0/
k
/ in H1 , for all h.0/

k
2 �; � 2 P and, hence, in particular, '0.h

.0/
i /

belongs to the subgroup K of H1 . Therefore, if <‡0
.h.0/i ; h.0/j / and h.0/j 2 P , then

�0.Œh
.0/
i ; h.0/j �/D 1.

Lemma 6.27 The homomorphism �0W G�0
! T0 makes diagram (11) commutative.

Proof The proof is analogous to the one of Lemma 6.15.

Lemma 6.28 The subgroup KDA.w.x.1/// of H1 is Ed .�0/–coirreducible.

Proof The proof is analogous to the one of Lemma 6.16.

Lemma 6.29 The group H0 satisfies the induction hypothesis (IH1): for every
xi ;xj 2 H0 , we have that .xi ;xj / 2 Ed .�0/ if and only if H 0.xi/� H 0.xj / for
all homomorphisms H 0 induced by solutions H that factor through the branch. Fur-
thermore, if .xi ;xj / 2Ec.�0/, then H 0.xi/;H

0.xj / belong to a cyclic subgroup for
all homomorphisms H 0 induced by solutions H that factor through the branch.

Proof The proof is analogous to the one of Lemma 6.18.

Lemma 6.30 The homomorphism �0 satisfies the induction hypothesis (IH2): for
all h

.0/
i , if �0.h

.0/
i / D xi1 � � �xik , then we have that A.H .0/0.xij // � A.H .0/

i / andTk
jD1 A.H .0/0.xij //DA.H .0/

i /, for all solutions that factor through the branch.

Proof The proof is analogous to the one of Lemma 6.19.

We summarise the results of this section in the following.

Proposition 6.31 Let �0!�1! � � � !�q be a branch of a tribal solution tree and
assume that �1 satisfies the induction hypotheses (IH), (IH1) and (IH2); see page 784.
If �0 D h‡;<‡ i is a generalised equation regular with respect to a periodic structure,
then there exists a graph tower .T0;H0/ and a homomorphism �0 from G�0

to T0

such that for each solution that factors through the branch, there exists a homomorphism
from T0 to G that makes diagram (11) commutative.
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6.8 Case 15

Suppose that �0 is tribal of type 15. Let �0!�1! � � � !�N be a branch of the
tribal tree T0.�0/ such that all the epimorphisms �.vi ; viC1/W GR.�i /!GR.�iC1/ are
isomorphisms, i D 0; : : : ;N �2 and �.vN�1; vN /W GR.�N�1/!GR.�N / is a proper
epimorphism. It follows by construction of the tribal tree T .�0/, that one can subdivide
the branch �0!�1! � � � !�N as follows. Choose 0< n0 < n1 < � � �< nk DN

so that:

� The quadratic part of �j is nontrivial for all j <n0 and �n0
has trivial quadratic

part, ie in the process the quadratic part of �0 is transferred to the nonquadratic
part of �n0

and the generalised equation �n0
is the first one in the branch with

trivial quadratic part.
� Every solution H that factors through the branch is Pl –periodic in the sec-

tion Œ1; il � of the generalised equation �nl
and �nl

is periodised with respect
to a regular periodic structure P.H;Pl/. Furthermore, the section Œ1; il � is
transferred in the process from �nl

to �nlC1
, k D 0; : : : ;N � 1.

We now use induction on nk to show there exists a graph tower T0 and homomorphisms
making diagram (11) commutative for all solutions that factor through the branch.

Suppose first that k D 1. Then the existence of the graph tower T0 for G�0
and

the required homomorphisms follows by Proposition 6.12. Assume now that k > 1.
By construction, declaring the section Œ1; ik�1� to be the active section of �nk�1

, the
generalised equation �nk�1

is periodised with respect to a regular periodic structure
P.H;Pk�1/. Hence, by Proposition 6.31, there exists a graph tower Tk�1 for �nk�1

that satisfies the required properties. This proves the base of induction.

Assume by induction that there exists a graph tower T2 for G�n2
. Then, again using

Proposition 6.31, we conclude that there exists a graph tower T1 and the required
homomorphisms for G�n1

.

Finally, since there exists a tower T1 for G�n1
, by Proposition 6.12, there exists a

graph tower T0 satisfying the required properties for the group G�n0
.

We arrive at the following:

Proposition 6.32 Let �0!�1! � � � !�q be a branch of a tribal solution tree and
assume that �1 satisfies the induction hypotheses (IH), (IH1) and (IH2); see 784. If
�0 D h‡;<‡ i is a tribal generalised equation of type 15, then there exists a graph
tower .T0;H0/ and a homomorphism �0 from G�0

to T0 such that for each solution
that factors through the branch, there exists a homomorphism from T0 to G that makes
diagram (11) commutative.
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6.9 Linear case

Suppose that �0 is tribal of linear type. In this case, the generalised equation �1 is
simply the kernel of �0 , Ker.�0/D�1 .

By induction, let T1 and �1 be the corresponding tower and homomorphism for �1 .
Then, by Corollary 4.9,

GR.�0/ 'GŒh.1/
1
; : : : ; h.1/��1

; z1; : : : ; zl �
ı

R.x�1[K/;

Let i be the corresponding isomorphism.

Define the graph �0 by

� V .�0/D V .�1/[fx
.0/
1
; : : : ;x.0/

l
g;

� Ec.�0/DEc.�1/;

� Ed .�0/DEd .�1/[K1[K2 , where K1 D f.x
.0/
i ;x.0/j / j Œzi ; zj � 2Kg and K2

is the set of all pairs .x.0/i ;x.1/
k
/, so that x.1/

k
appears in the image of a free

variable zm under the word map �1�.v0; v1/ and Œzi ; zm� 2 K .

The group H0 is defined to be the partially commutative group H.�0/. We now
define the tower T0 as follows: T0 D hT1;x

.0/
1
; : : : ;x

.0/

l
j K1;K2i (recall that, by

definition, there is a canonical epimorphism � from H1 to T1 , which defines a natural
correspondence between the generators of T1 and H1 ).

We now show that the triple T0 , H0 and i�0 is a graph tower associated to G� . Since
i is an isomorphism, it implies that diagram (11) is commutative. We are left to show
that i�0 satisfies the induction hypotheses (IH1) and (IH2). Since H1 satisfies the
condition (IH1) for the homomorphisms induced by solutions of �0 and since every
solution of �1 induces a solution of �0 , it follows that H0 satisfies the assumption
(IH1) for the family of solutions of �1 . Let zm D hm be any item of �0 which has
been eliminated. It suffices to prove that for all x.1/

k
in i�1�.v0; v1/ and any solution

that factors through the branch we have that

A.H .1/.x.1/k //�A.H .0/
m /:

The latter follows since hm D w� , hm belongs to the tribe t.�i/, any hk in w� domi-
nates the tribe t.�i/ (ie for any solution that factors through the branch A.H .1/.x.1/

k
//�

A.H .0/
m /) and �1 satisfies the induction hypothesis (IH2) for the items zi , i D 1; : : : ; l

in �0 .

Finally, we summarise the results of this whole section in the theorem below.
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Theorem 6.33 Let �0! � � � ! �q be a branch of the tribal solution tree Tsol.�/.
Then there exists a homomorphism from G�0

to a graph tower T0 which makes
diagram (11) commutative. Furthermore, the graph tower T0 and the corresponding
homomorphism can be constructed effectively.

7 Graph towers are fully residually partially commutative

In Section 6, we proved that given a branch �0! � � � !�q of the tribal solution tree,
one can effectively construct a graph tower T0 and a homomorphism �0W G�0

! T0

that makes diagram (11) commutative. In this section, we show that the graph tower T0

is discriminated by G by the family of homomorphisms that factor through the branch.

Theorem 7.1 Let .T;H/ be the graph tower associated to a branch of a tribal solution
tree. Then the graph tower T is discriminated by G by the family of homomorphisms
induced by solutions that factor through the branch.

Proof We prove the statement by induction on the height of the graph tower. Suppose
that the height of the graph tower is 0. Then T is the partially commutative group
associated to a leaf of the tree Tsol.�/ for some generalised equation � and so,
by [14, Proposition 9.1], the graph tower T is discriminated by G by the family of
solutions of the generalised equation.

Suppose that if T is a graph tower of height less than or equal to l � 1, then T is
discriminated by G by the family of homomorphisms induced by solutions that factor
through the branch.

Let T0 be a graph tower of height l . By Lemma 5.3, the graph tower T0 has a
decomposition as an amalgamated product (or HNN–extension). We now analyse each
of the possible decompositions.

Notice that if T0 is of type (a1), then it only appears in the construction of the
leaves of Tsol , ie the graph tower T1 coincides with the associated partially commu-
tative group H.�1/. In this case, since K? is directly indecomposable, it follows
from [14, Corollary 2.11] that the family of solutions H that factor through the branch
and which map the variables x.0/ into irreducible elements of the subgroup K? is a
discriminating family.

Assume now that the graph tower T0 is of type (a2). This case appears either in the
construction of a leaf, in the presence of a periodic structure or in the particular case
when the quadratic equation in the normal form does not satisfy the properties ~ and
~~; see Definition 5.2 (and K? is Ec.�/–abelian).
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If it appears in the construction of a leaf, the result follows analogously to case (a1).

Let us now consider the remaining cases. We begin with an observation. Let GK be
the canonical parabolic subgroup such that for solutions H that factor through the
branch we have that halph.H 0.K//i DGK (recall that the group GK is well defined
since items of generalised equations have associated parabolic subgroups). Since
G?K�GK , by the induction hypothesis (IH1), it follows that G?K <K? . Since K?

is Ec.�1/–abelian, so is G?K . Since for the discriminating family of solutions the
subgroup which is defined by H 0.K?/ is cyclic and halph.H 0.G?K//iDG?K , it follows
that G?K is a cyclic canonical parabolic subgroup generated by the generator a. Let
CG.a/ D hai �A.a/. Since hai D GK? � GK , we have that GK < A.a/. On the
other hand, since A.a/�H 0.K?/, by the induction hypothesis (IH1), it follows that
A.a/ < K and so A.a/ < GK . Hence GK D A.a/ and GK? D hai. Furthermore,
since CG.a/ <H 0.CT1

.K?// < CG.H
0.K?// < CG.a/ for all homomorphisms H 0

induced by the discriminating family, we conclude that CG.a/DGCT1
.K?/ .

Since T0 is an amalgamated product, it follows that every nontrivial element e of T0

can be written in the reduced form as a1b1a2b2 � � � akbkakC1 , where a2; : : : ; akC1 62

CT1
.K?/ and b1; : : : ; bk are words in the generators fxl

1
; : : : ;xl

ml
g. Hence, there

exist wi 2K? such that Œai ; wi �¤ 1, i D 2; : : : ; kC 1.

Since, by induction hypothesis, T1 is discriminated by G by the family of homomor-
phisms induced by the set of solutions, there exists a homomorphism H .1/0 which is
injective on the finite set fŒai ; wi � j i D 2; : : : ; kC 1g. Therefore

H .1/0.Œai ; wi �/D ŒH
.1/0.ai/; a

li �¤ 1:

Hence H .1/0.ai/ 62 CG.a/ and, in particular, using the above observation, H .1/0.ai/ 62

GCT1
.K?/ .

The homomorphism H .1/0 induces a homomorphism H .1/00 from T0 to the group

ADG �G
CT1

.K?/
.GCT1

.K?/ � hx
l
1; : : : ;x

l
ml
j Œxl

i ;x
l
j �; 1� i < j � ni/;

ie H .1/00 is a homomorphism from T0 to the extension of the centraliser of the
element a:

ADG �CG.a/ hCG.a/;x
l
1; : : : ;x

l
ml
j ŒCG.a/;x

l
i �D 1; Œxl

i ;x
l
j �D 1i:

Moreover, the image H 0.a1/b1 � � � bkH 0.akC1/ of e in G , is a reduced element of the
amalgamated product A since H 0.ai/ 62GCT1

.K?/ , i D 2; : : : ; kC 1.

Furthermore, in all the cases under consideration (for periodic structures and for
exceptional subcases of the quadratic case), we have that any solution H .0/ that factors

Geometry & Topology, Volume 19 (2015)



Limit groups over partially commutative groups 817

through the branch is the composition of a canonical automorphism � of GR.�0/ ,
the epimorphism �.v0; v1/ and a solution H .1/ . Moreover, notice that any such
automorphism � induces an automorphism of A that fixes G . Hence the family of
solutions H .0/ that factor through the branch defines a family of homomorphisms
from A to G that are obtained from a (nontrivial) solution (induced by �.v0; v1/H

.1/ )
by precomposing with canonical automorphisms.

By [13, Lemma 4.17; 14, Corollary 2.11], the group A (an extension of a centraliser
of the canonical generator a) is discriminated by G by this family of homomorphisms.
Therefore, we conclude that T0 is discriminated by G by the family of homomorphisms
induced by the solutions that factor through the branch.

Assume that T0 is of type (b1) or (b2). These cases occur in the presence of a periodic
structure or in the particular case when the quadratic equation in the normal form does
not satisfy the properties ~ and ~~ from Definition 5.2. By Remarks 6.17 and 6.4,
the homomorphisms H 0 induced by solutions that factor through the branch (only in
the case (b1)) satisfy that H 0.u/ and H 0.xl

i / are irreducible elements of GK? . Now
the proof is analogous to the case (a2).

Suppose that T0 is of type c). This case only occurs when the quadratic equation
satisfies properties ~ and ~~ from Definition 5.2.

Claim The subgroup of T1 which is generated by CT1
.K?/ and '0.�i/, where �i

is a quadratic-coefficient base, i D 2gC 1; : : : ;m is the direct product

hCT1
.K?/; '0.�2gC1/; : : : ; '0.�m/i D CT1

.K?/� h'0.�2gC1/; : : : ; '0.�m/i:

Let us prove the claim. In fact, we show that the subgroup C generated by K? and
CT1

.K?/ is a direct product. Then, since '0.�i/ 2 K? , the claim will follow. By
Remark 6.4, for the family of homomorphisms H 0 induced by the set of solutions that
factor through the branch, we have that for all minimal items hi , the image H 0i is a
block element of GK? and A.H 0i /DA.GK?/. In particular, it follows that GK? is a
(nonabelian) directly indecomposable canonical parabolic subgroup. By the description
of centralisers in partially commutative groups, it follows that GK? \CG.GK?/D 1

and so GK?�GCT1
.K?/ . By induction hypothesis, we have that the subgroup C is

discriminated by the subgroup GK? �GCT1
.K?/ and so C is the direct product of K?

and CT1
.K?/. Indeed since C DK? �CT1

.K?/ and ŒK?;CT1
.K?/�D 1, we are left

to show that K?\CT1
.K?/D 1. Suppose that there exist u 2K? and v 2 CT1

.K?/
so that u D v in C . Then H 0.u/ 2 GK? , H 0.v/ 2 GCT1

.K?/ and H 0.u/ D H 0.v/.
Since GK? � GCT1

.K?/ , so H 0.u/ D H 0.v/ D 1 for all homomorphisms H 0 . It
follows that uD v D 1.
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Our strategy to prove that T0 is discriminated by G is as follows. As above, to prove
that T0 is discriminated, it suffices to prove that so is

M DG �H 0.CT1
.K?//�E .hE;x

l
1; : : : ;x

l
n jW i �H 0.CT1

.K?///;

where EDH 0.h'0.�2gC1/; : : : ; '0.�m/i/. To prove the latter, we follow the standard
argument for limit groups over free groups.

In short, a key statement to prove that a retracting surface into a limit group L is
discriminated is the existence of a simple closed curve (scc) which is mapped nontrivially
by the retraction; see [52, Lemma 5.13]. This scc induces a decomposition of the surface
as an amalgamated product or an HNN–extension. The homomorphisms obtained from
the retraction by precomposing it with Dehn twists along this curve map the curve to
big powers of the image of the curve under the retraction. Since limit groups have
the BP property (see Wilton [58, Lemma 4.13]) and are CSA, a standard argument
shows that the group is discriminated by L; see [52, Theorem 5.12]. In our case, we
prove in Lemma 6.5 that there exists a nontrivial curve U which is mapped not only
nontrivially, but to irreducible elements for all solutions that factor through the branch.
Furthermore, we prove in [14, Lemma 4.17] that partially commutative groups have
the BP property with respect to irreducible elements and so M is discriminated by G .

A detailed proof in the free group case can be found in [58, Proposition 4.22]. We
now explain which statements need to be replaced in [58, Proposition 4.22] and how
in our context, the rest of the proof is verbatim. As we mentioned above, there
are two adjustments required for the argument in [58] to go through: firstly, free
groups satisfy the BP property (see [58, Lemma 4.13]) and secondly, limit groups over
free groups are CSA. In general, partially commutative groups do not have the BP
property (see Blatherwick [7]). In our case, since, by induction, we assume that T1 is
discriminated by the family of homomorphisms that factor through the branch, it follows
that the images of vi ; wj 2 T1 under the discriminating family are block elements (see
Remark 6.4). Furthermore, by Lemma 6.5, there exists a nontrivial curve U which is
mapped to irreducible elements for all solutions that factor through the branch. We
prove in [14, Lemma 4.17] that partially commutative groups have the BP property with
respect to irreducible elements. Therefore, the argument given in [58, Proposition 4.22]
goes through, using [14, Lemma 4.17] instead of [58, Lemma 4.13].

The argument of [58] uses the CSA property in [58, Example 4.21]. In general partially
commutative group do not have the CSA property, but we can apply the argument
from [58, Example 4.21] in our context as follows. Let †, � , S , S 0 and t be as
in [58, Example 4.21]. By assumption, we have that H 0.S/ is nonabelian and we want
to show that H 0.S 0/ is also nonabelian.
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Towards a contradiction, assume that H 0.S 0/ is abelian. By induction hypothesis, the
discriminating family of homomorphisms H 0 induced by the solutions has the property
that if hi is a minimal item, then H 0i is a block element and there exists an irreducible
element H.U / 2 H 0.S 0/. It follows that if the image H 0.S 0/ is abelian, then it is
cyclic. In partially commutative groups, cyclic subgroups satisfy the property that if
H 0.S 0/ \H 0.S 0/H

0.t/ is nontrivial, then H 0.t/ commutes with H 0.S 0/ and hence
H 0.S/ is abelian, deriving a contradiction.

Now the argument is identical to the one given in [58, Proposition 4.22].

8 Irreducible components

If a group G is equationally Noetherian, then every algebraic set V in Gn is a
finite union of its irreducible components. Using the duality between the categories
of algebraic sets and coordinate groups, one can conclude that if G is equationally
Noetherian, then any coordinate group is a subdirect product of coordinate groups of
the (finitely many) irreducible components, [3].

Since partially commutative groups are equationally Noetherian, any finitely generated
residually G group is a subdirect product of the direct product of finitely many limit
groups over G .

In the case of free groups, Kharlampovich and Miasnikov, [38], used the Makanin–
Razborov process to describe, on the one hand, an embedding of a finitely generated
fully residually free group into a graph tower and, on the other one, an embedding of
a finitely generated residually free group into the direct product of limit groups. In a
recent work on the structure of finitely presented residually free groups, Bridson, Howie,
Miller and Short [10] gave a different (canonical) construction of such embeddings.

The aim of this section is to generalise the aforementioned results and show that
given a limit group G over G , ie a finitely generated fully residually G group, one
can effectively construct an embedding of G into a graph tower; and given a finitely
generated residually G group G , one can effectively construct an embedding of G

into the direct product of limit groups over G .

Limit groups over G are subgroups of graphs towers

Theorem 8.1 Let G be a limit group over a partially commutative group G . Then G

is a subgroup of a graph tower .T;H/. Furthermore if G is given by its finite radi-
cal presentation, then the graph tower .T;H/ and the embedding can be effectively
constructed.
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Proof Let G be a limit group over G and Tsol be the tribal solution tree associated
to G . Since the tribal solution tree Tsol is finite, it follows by Lemma 2.6, that there
exists a branch of the solution tree Tsol so that the subfamily of homomorphisms that
factors through this branch is a discriminating family of G into G . We call this branch
a fundamental branch of G and any discriminating family of homomorphisms that
factors through the fundamental branch is called a fundamental sequence.

Let T be the graph tower associated to the fundamental branch. Since by Theorem 7.1
the graph tower T is discriminated by G by the family of homomorphisms induced
by a fundamental sequence of solutions associated to G and since diagram (11) is
commutative, it follows that ker.G� ! GR.�// < ker � . Hence, by the universal
property of the quotient, � induces a homomorphism � 0 from GR.�/ to T. Since the
fundamental sequence that discriminates G into G factors through T, it follows that
the composition of � W G!GR.�/ and � is an embedding of G into T.

We now record some properties of limit groups over partially commutative groups.

Proposition 8.2 (1) Every limit group over G is torsion free.

(2) Every 2–generated limit group is either free or free abelian.

(3) Every solvable subgroup of a limit group is abelian.

(4) Let G be an algebraic group over R in which G embeds. Then for any limit
group G over G there exists an embedding G ,! G . In particular, G embeds
into SLn.R/. The natural map G! PSLn.R/ is also an embedding.

(5) Let G be a partially commutative group and let .T;H/ be a graph tower associ-
ated to a limit group G over G . Then abelian subgroups of T (and thus of G )
are free, and there is a uniform bound on their rank.

Proof All but the last statement follow from definition using general arguments; see
for example [58]. To prove the last one we use the fact that every limit group over G
is a subgroup of a graph tower.

First notice that since, by Theorem 7.1, the group T is discriminated by G , then any
abelian subgroup of T is torsion free. Let A be an abelian subgroup of T. Let us
prove that the rank of A is uniformly bounded by induction on the height of T. If the
height is 0, then the graph tower coincides with the partially commutative group G
and hence the rank of an abelian subgroup is bounded by the number of vertices in
a maximal clique of the graph � or, more coarsely, it is bounded by the number of
generators of G .
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Let TD Tl be of height l . By Lemma 5.3, the group T admits a decomposition as an
amalgamated product. Let T be the Bass–Serre tree associated to the decomposition
of T. Notice that the rank of an abelian subgroup of Tl�1 is uniformly bounded
by Nl�1 by induction hypothesis. Furthermore, the other vertex group is a direct
product of a subgroup of Tl�1 and either a free, or a free abelian or a surface group.
Hence in all the cases, we conclude that the rank of an abelian subgroup of this vertex
group is uniformly bounded by Nl�1Cml . If the subgroup A fixes a vertex of T

then A is a subgroup of a (conjugate) of a vertex group and so its rank is uniformly
bounded by Nl�1 Cml . Otherwise, A fixes a line TA in T , on which it acts by
translations. The quotient �DAnTA is topologically a circle, after some collapses �
is an HNN–extension, so the rank of A is uniformly bounded by Nl�1Cml C 1.

Residually partially commutative groups

Our goal now is to prove that given a finitely generated residually G group G , one
can effectively construct an embedding of G into the direct product of limit groups
over G .

Theorem 8.3 Let G be a partially commutative group and let G be a finitely generated
residually G group. Then one can effectively construct finitely many fully residually G
graph towers T1; : : : ;Tk and homomorphisms pi from G to Ti , i D 1; : : : ; k , so
that any homomorphism from G to G factors through a graph tower Ti , for some
i D 1; : : : ; k , ie for any homomorphism 'W G ! G there exist i 2 f1; : : : ; kg and a
homomorphism 'i W Ti !G so that ' D pi'i . In particular, G is a subgroup of the
direct product of the graph towers Ti , i D 1; : : : ; k and a subdirect product of the direct
product of groups pi.G/ < Ti , i D 1; : : : ; k .

Notice that pi.G/ < Ti , i D 1; : : : ; k , are finitely generated subgroups of the graph
towers Ti . Since the graph towers Ti are discriminated by G , it follows that pi.G/,
i D 1; : : : ; k are limit groups over G .

Since partially commutative groups are equationally Noetherian, any finitely generated
residually G group admits a finite radical presentation.

Corollary 8.4 Let G be a finitely generated residually G group given by its finite
radical presentation. Then one can effectively construct an embedding of G into the
direct product of finitely many limit groups over G .

It is worthwhile mentioning that, in general, the decomposition we construct is not
minimal, ie G might be presented as the subdirect product of a direct product of
(strictly) less than k limit groups.
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Proof of Theorem 8.3 Let G be a finitely generated residually G group and let
Tsol.G/ be the tribal solution tree associated to G . For each branch BW �0;B !

�1;B ! � � � ! �n;B of the tree Tsol.G/, as in Section 6, we construct a graph
tower TB and a homomorphism �BW G�0;B

! TB that makes diagram (11) commuta-
tive. By Theorem 7.1, each graph tower associated to a branch of the tree Tsol.G/ is
discriminated by G .

Let �B be the homomorphism from G to G�0;B
constructed in [14, Section 3.3] and

set pBW G ! TB to be �B�B . Since the tree Tsol.G/ describes all the homomor-
phisms from G to G , by the commutativity of diagram (11), we conclude that every
homomorphism from G to G factors through some graph tower TB .

Furthermore, since the group G is residually G , it follows that the homomorphisms
pBW G! TB induce an embedding of G into the direct product of graph towers TB ,
where B runs over all the branches of the tree Tsol.G/.

We finish this section with the following:

Corollary 8.5 For any finite system of equations S.X /D 1 over a partially commu-
tative group G , one can find effectively a finite family of graph towers T1; : : : ;Tk ,
Ti DGŒYi �=Si and word mappings pi W V .Si/! V .S/ such that for every b 2 V .S/

there exist i and c 2 V .Si/ for which b D p.c/, ie

V .S/D p1.V .S1//[ � � � [pk.V .Sk//

and all sets pi.Si/ are irreducible; moreover, every irreducible component of V .S/

can be obtained as a closure of some pi.V .Si// in the Zariski topology.

9 Groups acting on real cubings and limit groups over par-
tially commutative groups

The goal of this section is to give a characterisation of the class of finitely generated
fully residually partially commutative groups in terms of their actions on real cubings.
In order to obtain such a description, we first need to define a class of spaces where
limit groups naturally act, that is, real cubings, as well as the type of action that
characterises limit groups over partially commutative groups, that is, essentially free
cospecial actions.

As CAT.0/ cube complexes (or cubings) are natural higher-dimensional generalisations
of simplicial trees, our goal is to define real cubings as higher-dimensional real trees.
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Although ideally one would like to have a geometric or metric description of real
cubings, for the purposes of this paper we define them as ultralimits of cubings.

It is clear that if one is to understand the algebraic structure of a group acting on a
real cubing, one needs to have a good understanding of the discrete case, namely the
structure of groups acting on cubings. Unfortunately, even this case is far from being
fully understood and structural results are known only for very specific type of actions,
namely free cospecial actions; see Corollary 9.5. Therefore, the lack of a satisfactory
(structural) theory of groups acting on cubings imposes a natural restriction on the
type of group actions on real cubings one can consider at this point; see Section 10
for further discussion. Having these limitations in mind, we define essentially free
cospecial actions on real cubings as actions which are faithful, nontrivial (without
global fixed point) and can be approximated by free cospecial actions on cubings (see
page 837 for a formal definition).

With these notions in place, we are able to prove the following theorem and corollary.

Theorem Let G be a finitely generated group. The group G acts essentially freely
cospecially on a real cubing if and only if it is fully residually partially commutative.

Corollary A finitely generated group G acts freely, essentially freely and cospecially
on a real cubing if and only if G is a subgroup of the graph product of free abelian and
(nonexceptional) surface groups.

In particular, if the real cubing is a real tree, then G is a (subgroup of) the free product
of free abelian groups and (nonexceptional) surface groups.

Furthermore, we naturally carry Sela’s definition of limit group over to the context of
partially commutative groups (see Definition 9.23) and prove:

Corollary A finitely generated group G is a (geometric) limit group over a partially
commutative group if and only if it is fully residually partially commutative.

9.1 Special cube complexes

In this section we review the theory of cospecial actions on CAT.0/ cube complexes;
see Haglund and Wise [31].

Definition 9.1 A cube complex X is a CW–complex where each n–cell � is a standard
Euclidean n–cube whose attaching map '� W @� ! X .n�1/ satisfies the following
conditions:
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(1) The restriction of 'e to every face of e is a linear homeomorphism onto a cube
of one lower dimension.

(2) '� is a homeomorphism onto its image.

We give X the standard CW–topology.

We refer to 1–cells as edges or as 1–cubes and to 0–cells as vertices or 0–cubes.

Let X denote a cube complex. The link link.�/ of a cube � is a simplicial complex
whose n–skeleta are defined inductively as follows:

� The set of vertices of link.�/ is f� 2X .nC1/ j � 2 @�g.

� The set of n–simplices, n� 1 of link.�/ is

f.�0; : : : ; �n/ j �i 2 link.�/0 and there is a cube � such that �i 2 @� g:

The cube complex X is combinatorially nonpositively curved if each vertex link is
flag (that is each complete subgraph is the 1–skeleton of a simplex). We say that X

is combinatorially CAT.0/ whenever X is combinatorially nonpositively curved and
simply connected. Following Sageev [51], we call a simply connected combinatorially
nonpositively curved cube complex a cubing.

Each cube of X can be given the metric of a standard unit Euclidean cube in Rn . One
can then put on a cubing X a pseudometric, which, in fact, turns X into a complete
CAT.0/ metric space .X; d/; see Bridson and Haefliger [9].

Lemma 9.2 (Gromov [27]) Let X be a cube complex. Then X is combinatorially
nonpositively curved if and only if the length metric d on X is locally CAT.0/. In par-
ticular, a cube complex is metrically CAT.0/ if and only if it is combinatorially CAT.0/.

Hence, the metric and combinatorial geometry of CAT.0/ cube complexes are closely
connected; see Haglund [29] for more details. We work with nonpositively curved cube
complexes from a combinatorial viewpoint and consider them as higher-dimensional
analogues of graphs. However, to introduce certain notions, it will be convenient to
think of the cube complex as a geometric object.

A midcube in the cube In D Œ0; 1�� � � � � Œ0; 1� is the subset obtained by restricting one
of the coordinates to 1

2
, so the midcube is parallel to two .n� 1/–faces of In . The

edges of In dual to this midcube are the edges perpendicular to it. The centre of an
n–cube in a cube complex is the image of .1

2
; : : : ; 1

2
/ from the corresponding n–cell.

The centre of an edge is its midpoint.
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Given a cube complex X , we form a new cube complex YX , whose cubes are the
midcubes of cubes of X . The vertices of YX are the midpoints of edges of X . The
restriction of a .k C 1/–cell of X to a midcube of IkC1 defines the attaching map
of a k–cell in YX . Each component of YX is a hyperplane of X . An edge of X is
dual to some hyperplane H if its midpoint is a vertex of H . Each edge e is dual to a
unique hyperplane, which we will denote by H.e/. Two hyperplanes A, B of a cube
complex X intersect if A\B ¤∅, they cross if they intersect but are not equal.

Set HDE=k and let Œe�; Œf �2H . Elements of H are sometimes called (unoriented) com-
binatorial hyperplanes. Combinatorial hyperplanes are in one-to-one correspondence
with hyperplanes. When no confusion arises we refer to combinatorial hyperplanes as
simply hyperplanes.

We will use a combinatorial metric defined on the set of vertices of X . Let E be the
set of oriented edges of X . An edge path or simply a path in X is a finite sequence of
oriented edges such that the end of each edge is the origin of its successor. The length
of a path is just the number of edges in the sequence. Given two vertices p; q 2X we
define the distance dist.p; q/ between p and q as the infimum of the lengths of paths
between them. One can check that dist is a metric, called the edge-path metric.

Sometimes, we shall consider cube complexes with the rescaled edge-path metric.
Let c 2 R and c > 0, then we define the rescaled edge-path metric distc on a cube
complex X as follows. For any p; q 2X , set

distc.p; q/D
dist.p; q/

c
:

As we have already mentioned, essentially, just as graphs, cube complexes are com-
binatorial objects. Just as any simplicial tree (graph) can be made into a metric tree
(graph) by identifying every edge with Œ0; 1�, given a cube complex X with a (rescaled)
edge-path metric distc , we shall make X into a metric cube complex. We identify every
edge of X with Œ0; c� and endow every cube of X with the `1 metric. We thereby
obtain a metric on X that we denote by dc . Observe that for any vertices p; q 2X we
have dc.p; q/D distc.p; q/. Furthermore, any combinatorial isometry of .X; distc/
induces an isometry of .X; dc/. We shall consider only combinatorial isometries of
cube complexes and for the most part identify .X; dc/ and .X; distc/, and abusing the
notation and terminology, refer to .X; dc/ as to .X; distc/, in particular, in Sections 9.3
and 9.4.

Let X be a cube complex and let E be the set of edges of X . We define the equivalence
relation k as follows: set e k f , e; f 2 E if and only if there exists a finite sequence of
edges e D e1; : : : ; en D f such that for each i D 1; : : : ; n� 1, the edges ei and eiC1

are opposite sides of some 2–cube in X oriented in the same direction.
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Special cube complexes were introduced by F Haglund and D Wise [31]. Following
Haglund and Wise, we define a special cube complex as a nonpositively curved cube
complex which does not have certain pathologies related to its immersed hyperplanes.
An immersed hyperplane D crosses itself if it contains two different midcubes from the
same cube of C . An immersed hyperplane D is 2–sided if the map D! C extends
to a map D � I ! C which is a combinatorial map of cube complexes. When D

is 2–sided, it is possible to consistently orient its dual 1–cubes so that any two dual
1–cubes lying (opposite each other) in the same 2–cube are oriented in the same
direction.

An immersed 2–sided hyperplane D selfosculates if for one of the two choices of
induced orientations on its dual 1–cells, some 0–cube v of C is the initial 0–cube of
two distinct dual 1–cells of D . A pair of distinct immersed hyperplanes D;E cross
if they contain distinct midcubes of the same cube of C . We say D;E osculate, if
they have dual 1–cubes which contain a common 0–cube, but do not lie in a common
2–cube. Finally, a pair of distinct immersed hyperplanes D;E interosculate if they
both cross and osculate, meaning that they have dual 1–cubes which share a 0–cube
but do not lie in a common 2–cube. A cube complex is special if all the following hold
(see Haglund and Wise [32, Figure 1]):

(1) No immersed hyperplane crosses itself.

(2) Each immersed hyperplane is 2–sided.

(3) No immersed hyperplane selfosculates.

(4) No two immersed hyperplanes interosculate.

All cube complexes we consider are special and connected unless stated otherwise.

Central examples of special cube complexes are cube complexes associated to partially
commutative groups. Let G be a (perhaps infinitely generated) partially commutative
group. The 2–complex X of the standard presentation of G extends to a nonpositively
curved cube complex C.G/ by adding an n–cube (in the form of an n–torus) for each
set of n pairwise commuting generators. It is well known, see [31, Example 3.3], that:

� Every graph is a special 1–dimensional cube complex.

� Every CAT.0/ cube complex is special.

� For any (not necessarily finitely generated) partially commutative group G , the
complex C.G/ is a special cube complex.
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Given a partially commutative group, throughout this text we denote by C.G/ the
standard complex of G and by eC .G/ its universal cover. The universal cover eC .G/ is
a CAT.0/ cube complex whose 1–skeleton is the Cayley graph Cay.G/ of the standard
presentation of G .

As the following series of results show, not only C.G/ and eC .G/ are important
examples of special cube complexes, but essentially these examples are universal.

Proposition 9.3 [31, Theorem 4.2] A cube complex X is special if and only if it
admits a combinatorial local isometry to the cube complex C.G/ of a (not necessarily
finitely generated) partially commutative group G . Furthermore, if X is special, then
�1.X / is a subgroup of G .

As we have already discussed, cubings are a natural generalisation of simplicial trees.
While the structure of groups acting (without inversions) on simplicial trees is well
understood, the structure of groups acting (essentially) even freely on cubings may be
extremely complex, as shown by examples of Burger and Mozes [12]. Proposition 9.3
motivates the definition of a cospecial action. In the case of trees, if a group acts on a
tree freely and without inversions (and, therefore, in this case, cospecially), the group is
a subgroup of a free group. In the case of cospecial actions on cubings, Proposition 9.3
can be reformulated as follows.

Proposition 9.4 A group G acts freely cospecially on a (not necessarily finite-dimen-
sional) cubing C if and only if it is a subgroup of a (not necessarily finitely generated)
partially commutative group.

Furthermore, by construction of the A–typing maps (see [31, Sections 3 and 4]) one
can extract a more specific result.

Corollary 9.5 Let G be a group acting freely cospecially on a (not necessarily finite-
dimensional) cubing C . Then:

� There exists a combinatorial isometric embedding of C into the universal covereC .G/ of the standard complex of a (not necessarily finitely generated) partially
commutative group G .

� The action of G on C extends to a free cospecial action ˛ of G on eC .G/.
� The action ˛ is induced by the action of G by left multiplication on the Cayley

graph Cay.G/.

The following result is not hard to deduce from Proposition 9.4.
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Proposition 9.6 Let G be a finitely generated group. Then the group G acts freely
cospecially on a finite-dimensional cubing C if and only if it is a subgroup of a finitely
generated partially commutative group xG .

Proof Let G D hw1; : : : ; wki be a finitely generated subgroup of a (perhaps, in-
finitely generated) partially commutative group G . Then G is a subgroup of xG D
halph.w1/; : : : ; alph.wk/i, which in turn is a canonical parabolic subgroup of G . The
group G acts (freely) by left multiplication on the Cayley graph Cay.xG/ of xG . The
Cayley graph Cay.xG/ is the 1–skeleton of the universal cover of the standard complex
C.xG/ of xG , denoted eC .xG/, and the action of G on Cay.xG/ gives rise to a free
cospecial action on eC .xG/.
Conversely, if G is a finitely generated group acting freely and cospecially on a cubing,
using an A–typing map (see [31, Sections 3 and 4]) one obtains an embedding of G

into a (a priori infinitely generated) partially commutative group G . As above, we
conclude that as G is finitely generated, so it embeds into a finitely generated canonical
parabolic subgroup xG of G .

9.2 Cube complexes of finite width

Finitely generated partially commutative groups enjoy many nice properties, which are
not shared by infinitely generated ones. In our setting, it is crucial that the group G

acting cospecially on a cubing C be a subgroup of a finitely generated partially
commutative group. We have seen above that if one considers only finitely generated
groups, then one can make sure that G is indeed a subgroup of a finitely generated
partially commutative group. Alternatively, as is done by Haglund and Wise [31; 32]
one can impose the condition that the quotient of C by the action of G have finitely
many immersed hyperplanes.

However, both of these approaches have their limitations. On the one hand, requiring
that the quotient have only finitely many immersed hyperplanes, imposes strong re-
strictions not only on the group G , but also on the action of G on C , for instance,
one automatically excludes many noncocompact actions of subgroups of partially
commutative groups.

On the other hand, the assumption that the group G is finitely generated is not sufficient
in our setting. Suppose we are given a sequence of free actions of finitely generated
groups Gi on cubings Ci (we shall soon see that this is precisely the setting we work
with). Each of these actions defines an embedding of Gi into a partially commutative
group Gi . It may happen that the ranks of Gi tend to infinity as i tends to infinity
and therefore, we can not find a finitely generated universe for the groups Gi . In
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Section 10 we formulate a problem for partially commutative groups whose positive
solution would resolve this technical issue and allow one to consider arbitrary cubings.

Our next goal is to show that one can impose a natural geometric restriction of finite
width on the cubing C which is sufficient to avoid the aforementioned pathologies,
namely we are able to show that a group G acts freely cospecially on a cubing of finite
width if and only if G is a subgroup of a finitely generated partially commutative group.
In fact, it allows us to find a universal partially commutative group that contains all
groups G acting freely on cubings of bounded width. Moreover, we show that the free
cospecial action of a group G on a cubing of finite width extends to a free cospecial
action of G on the universal cover of the standard complex of a finitely generated
partially commutative group.

Let X be a special cube complex. Then, by Proposition 9.4, there always exists a
partially commutative group G so that there is a combinatorial local isometry from X

to C.G/. However, such an isometry is by far nonunique. For example, the A–typing
map for the Cayley graph of the free group F2 of rank 2 results in a free group of
countable rank, but, of course, the Cayley graph Cay.F2/ admits a combinatorial local
isometry onto C.F2/.

Definition 9.7 Let Œe�; Œf �2H be two hyperplanes of some cube complex. Set Œe�� Œf �
if and only if every hyperplane Œg� 2H crosses Œe� if and only if it crosses Œf �. One
can check that � is an equivalence relation. Denote by HD H.X / the quotient H=�.

We say that the cube complex X is n–wide or has width n if and only if there exists a
combinatorial local isometry from X to C.E/, where E is a partially commutative
group such that jH.C.E//j D n, n 2 N and n is minimal with this property, ie for
any E0 so that jH.C.E0//jDk<n, the cube complex X does not admit a combinatorial
local isometry onto C.E0/. In this case, we write w.X /D n. If jw.X /j D n for some
n 2N , we say that X is of finite width, otherwise, we call X infinitely wide.

Throughout this text, given a special cube complex X of width n, we denote by E.X /
a partially commutative group so that w.C.E.X ///D n and there is a combinatorial
local isometry from X to C.E.X //.

Remark 9.8 Let X be a special cube complex of width n, then there is a combina-
torial isometric embedding of the universal cover zX into eC .E/ for some partially
commutative group E, where w.C.E//D n.

Conversely, if X is a cubing which admits a combinatorial isometric embedding intoeC .G/ so that w.C.G//D n, and X ! Y is a covering map, then X;Y have finite
width and w.X /; w.Y /� n.
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We now record the following observations about the width of cube complexes, which
follow directly from the definition.

Lemma 9.9 (1) The width of any graph is one.

(2) The width of the standard cubulation of the euclidean space En is n.

(3) More generally, if X and Y are cube complexes, then w.X � Y / D w.X /C

w.Y /.

(4) If the width of X is finite, then X is finite-dimensional.

(5) The width of any compact cube complex is finite. If a cube complex contains
only finitely many embedded hyperplanes, then it has finite width.

(6) Let G be a partially commutative group with the underlying graph � and
w.C.G//DN ; then the deflation � 0 of � is a finite graph with N vertices and
w.C.G//D w.C.G.� 0//.

The main result of this section is the following free actions theorem for special cube
complexes of finite width. Viewing simplicial trees as 1–dimensional cubings and
graphs as 1–dimensional special cube complexes, the next theorem is a natural gener-
alisation of the free actions theorem for trees: a group acts freely without inversions
of edges (and hence cospecially) on a tree if and only if it is a subgroup of a finitely
generated free group.

Theorem 9.10 Let G be a group. Then G acts freely cospecially on a cubing of
width n if and only if G is a subgroup of a partially commutative group G and
w.C.G//D n.

Proof Let eC .G/ be the universal cover of C.G/ and w.eC .G// D n. Every sub-
group G of G acts (freely) by left multiplication on the Cayley graph Cay.G/ of G .
Since Cay.G/ is the 1–skeleton of eC .G/, we get a free cospecial action of G

on eC .G/.
Conversely, if X is a cubing of width n, then there exists a combinatorial local isometry
from X to C.E/, where w.C.E// D n. Therefore, by Proposition 9.3, G embeds
into E.

Let GDG.�/ be a partially commutative group so that w.C.G//D n<1. Let � 0 be
the deflation of � . Then, by Lemma 9.9, � 0 has exactly n vertices. Define the graph ��

as follows. The graph �� is a finite graph with exactly 2n vertices constructed from � 0 .
For every vertex v2� 0 , we introduce two vertices v1; v22�

� . We set .vi ;uj /2E.��/

if and only if .v;u/ 2E.� 0/, for all v;u 2 � 0 , i; j D 1; 2.
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Lemma 9.11 In the above notation, if G D G.�/ is a partially commutative group
so that w.C.G// D n < 1, then G is a subgroup of the 2n–generated partially
commutative group G.��/.

Proof In the above notation, observe that both G.�/ and G.��/ can be viewed as
a graph product of groups with the underlying graph � 0 and free vertex groups (see
Green [26] and Goda [25] for definition and basic properties of graph products). For
every vertex v 2 � 0 , let F.Œv�/ be the free group generated by fv0

1
; : : : ; v0

k
; : : :g D Œv�

associated to the corresponding vertex of the graph product G.�/ and let F.v1; v2/

be the free group generated fv1; v2g associated to the corresponding vertex of the
graph product G.��/. Let �v W F.Œv�/ ,! F.v1; v2/ be an embedding of F.Œv�/ into
F.v1; v2/.

The embeddings �v , v 2 � 0 , give rise to an embedding �W G.�/!G.��/. Thus G
is a subgroup of a 2n–generated partially commutative group G.��/.

Corollary 9.12 Let G be a group. Then G acts freely cospecially on a cubing of
finite width if and only if G is a subgroup of a finitely generated partially commutative
group.

Given a special cube complex X of width n, it follows from Lemma 9.11 that the cor-
responding partially commutative group E.X /DG.�/ embeds into the 2n–generated
partially commutative group G.��/. In this particular case, we denote the partially
commutative group G.��/ by P .X / to stress the fact that it is constructed from the
complex X .

As we have shown above, if a group G acts freely cospecially on a cubing of finite
width, then it is a subgroup of a finitely generated partially commutative group P . We
now show that there is a universal partially commutative group that contains all groups
that act freely cospecially on cubings of a given width.

By Lemma 9.9, for any N 2N there are only finitely many deflated graphs �1; : : : ; �k ,
so that w.C.G.�i///�N . Set �N to be the union of the graphs ��i ,

�N D �
�
1 [ � � � [�

�
k ;

and GN DG.�N /DG.��
1
/� � � � �G.��

k
/, where the graphs ��i ’s are defined as in

the proof of Lemma 9.11. Observe that �N is a finite graph.

We now arrive at the following:

Corollary 9.13 For every N 2N , there exists a partially commutative group GN D

G.�N / such that every group G acting freely cospecially on a cubing C of width N

is a subgroup of GN .
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Our next goal is to show that if a group G acts freely cospecially on a cubing C of
width n, then one can construct an embedding from G to P .C / so that it induces
an equivariant quasi-isometric embedding from C to the universal cover of C.P /.
Therefore, the study of groups acting freely cospecially on cubings of finite width
reduces to the study of groups acting freely cospecially on the universal covers of
standard complexes of partially commutative groups.

Let G D hSi, S D S�1 be a finitely generated group acting on a cubing C , and let
x 2 C . Define the displacement at x to be

@x Dmax
s2S

dist.s:x;x/:

If the cubing C has a designated based point b , then the number @b is called the
displacement of the action of G .

Lemma 9.14 Let F.A/DF.a1; : : : ; ar ; : : :/, F.B/DF.a1; : : : ; ar / and F.b; c/ be
free groups on the indicated alphabets. Let w1; : : : ; wr 2F.b; c/ be r words in F.b; c/

so that jwi j D r , wi ¤ w
˙1
j and wi does not begin or end with b�1 and contains the

letter c , i D 1; : : : ; r . Define the homomorphism  W F.a1; : : : ; ar ; : : : ; /!F.b; c/ as

 .ai/D wib
LCiaib

LCiwi ;

where L 2N , i D 1; : : : ; r and set

 .aj /D bLCrCj aib
LCrCj

for all j > r . Then the map  is an embedding of F.A/ into F.b; c/, the restriction
of  onto F.B/ is a bilipschitz embedding with constant 4r C 2LC 1.

Proof The proof that  is an embedding is standard and left to the reader. Abusing
the notation, we denote the restriction of  onto F.B/ by  . Since all subgroups of
free groups are quasiconvex, we only need to compute the bilipschitz constant.

By definition 2r C2LC3� j .ai/j � 4r C2LC1 and the equalities are attained for
i D 1 and i D r , correspondingly. On the other hand, by the definition of  , it follows
that for all v 2 F.a1; : : : ; ar / the length j .v/jF.b;c/ satisfies the inequality

2LjvjF.a1;:::;ar / � j .v/jF.b;c/ � .4r C 2LC 1/jvjF.a1;:::;ar /

and the statement follows.
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Lemma 9.15 Let F.A/ D F.a1; : : : ; al ; : : :/ and F.b; c/ be two free groups on
the indicated generators. Let H D hw1; : : : ; wki < F be a finitely generated sub-
group of F.A/. Reenumerating the generators of F.A/, let B D fa1; : : : ; ar g D

falph.w1/; : : : ; alph.wk/g. We view Cay.F.A//, Cay.F.B// and Cay.F.b; c// as
1–dimensional cube complexes based at the identity. The embedding of H into F.B/

defines a subcomplex C.H / in Cay.F.B//. We designate the identity as the basepoint
of C.H /.

Let ˛ be the action of H on Cay.F.B// by left multiplication, let  be the map
defined in Lemma 9.14, let ˇ be the corresponding action of H on F.b; c/ and
let @.˛/ and @.ˇ/ be the displacements of the corresponding actions. Then:

� The homomorphism  induces an equivariant bilipschitz embedding  � of
Cay.F.B// into Cay.F.b; c//, the constant of the embedding  � does not
exceed 6k@.˛/C 1.

� The following inequality holds: 2k@.˛/2 � @.ˇ/� 7k@.˛/2 .

� The homomorphism  induces an equivariant bilipschitz embedding  0 of
.F.B/; dist@.˛// into .Cay.F.b; c//; dist@.ˇ//, the constant of  0 does not ex-
ceed 7k .

Proof By Lemma 9.14, for LD k@.˛/, the homomorphism  induces the bilipschitz
embeddings  � and  0 . We only need to compute the constants.

By definition, the displacement of the action is the displacement of the basepoint of the
complex. Therefore, in this case, the displacement @.˛/ equals maxiD1;:::;kfjwi jF.B/g.
There are at most k@.˛/ different letters in the words w1; : : : ; wk , therefore r �k@.˛/.
By Lemma 9.14, it follows that the constant of  � does not exceed 6k@.˛/C 1.

The displacement of @.ˇ/ equals maxiD1;:::;kfj .wi/jF.b;c/g. Let ai 2 B , then
j .ai/j D 2.r C k@.˛/C i/C 1. Since jwi jF.B/ � @.˛/ and r � k@.˛/, we have

@.ˇ/D max
iD1;:::;k

fj .wi/jF.b;c/g � max
iD1;:::;k

fjwi jF.B/g � max
jD1;:::;k@.˛/

j .aj /jF.b;c/

� max
iD1;:::;k

fjwi jF.B/g � 7k@.˛/D 7k@.˛/2:

On the other hand, since there exists l , 1� l � k so that jwl jF.B/ D @.˛/, we have

@.ˇ/� j .wl/jF.b;c/ � .2k@.˛/C 1/@.˛/� 2k@.˛/2:

The last statement now follows from the first two.
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Proposition 9.16 Let ˛ be a free cospecial action of a k–generated group G on a
based cubing .C; b/ of width n. Let ED E.C / and P D P .C / be the corresponding
partially commutative groups. Let � W G ,! E.C / be the induced embedding and
let ˇ0 be the action of G induced by ˛ on eC .E/. Let G D hw1; : : : ; wki<E.C / and,
re-enumerating the generators of E.C /, let halph.w1/; : : : ; alph.wk/i D ha1; : : : ; ar i,
where ai are canonical generators of E.C /, i D 1; : : : ; r .

Let  be the embedding of E.C / into P .C / defined as in Lemma 9.11 using the
maps  v from Lemma 9.14, where LD k@.˛/. Denote by � the composition of �
and  and let ˇ be the action of G induced by ˛ on eC .P /. Endow C , eC .E/ andeC .P / with the edge-path metric and let the cubings eC .E/ and eC .P / be based at lifts
of the identity elements id0 and id of E and P , correspondingly. Then:

� The embedding � induces an equivariant, based, bilipschitz embedding  �

of .C; b/ into .eC .P /; id/.
� The following inequality holds 2k@.˛/2 � @.ˇ/� 7k@.˛/2 .
� The embedding � induces an equivariant, based, 7k –bilipschitz embedding from
.C; dist@.˛/; b/ to .eC .P /; dist@.ˇ/; id/.

Proof By Corollary 9.5, the embedding of G into E induces an equivariant, com-
binatorial isometric embedding of C into eC .E/. Hence, it suffices to show that the
embedding  of E into P and, consequently, the induced map  � from eC .E/ intoeC .P / can be chosen in such a way that the restriction  �jC of  � onto the image
of C in eC .E/ satisfies the statements of the proposition.

The statement now follows by the definition of  ; see the proof of Lemmas 9.11
and 9.15.

9.3 Real cubings

The aim of this section is to introduce and give examples of the main object of our
study, real cubings. We begin by recalling the notion of an ultralimit of metric spaces.
We refer the reader to Roe [50] for more details.

Let U be a nonprincipal ultrafilter on N . Let .Xn; dn/ be a sequence of metric
spaces with specified basepoints pn 2 Xn . We say that a sequence .xn/n2N , where
xn 2Xn , is admissible if the sequence of real numbers .dn.xn;pn//n2N is bounded.
Denote the set of all admissible sequences by A. It is easy to see from the triangle
inequality that, for any two admissible sequences xD .xn/n2N and y D .yn/n2N , the
sequence .dn.xn;yn//n2N is bounded and hence there exists a U–limit yd1.x;y/D
limU dn.xn;yn/.
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Define a relation � on the set A as follows. Set x � y if and only if yd1.x;y/D 0.
It is easy to show that � is an equivalence relation on A.

The ultralimit .X1; d1/ D limU.Xn; dn;pn/ with respect to U of the sequence
.Xn; dn;pn/n2N is a metric space .X1; d1/ defined as follows. As a set, we have
X1 D A=�. For two � equivalence classes Œx� and Œy � of admissible sequences x

and y , we set d1.Œx�; Œy �/ D yd1.x;y/ D limU dn.xn;yn/. It is not hard to see
that d1 is well-defined and that it is a metric on the set X1 .

An important class of ultralimits are the so-called asymptotic cones of metric spaces.
Let .X; d/ be a metric space, let U be a nonprincipal ultrafilter on N , let pn 2 X

be a sequence of basepoints and let fjng be a sequence of positive integers. Then
the U–ultralimit of the sequence .X; d=jn;pn/ is called the asymptotic cone of X

with respect to U, fjngn2N and fpng and is denoted ConeU.Xn; jn;pn/. The point
.pn/n2N is called the observation point and the sequence fjng is called the scaling
sequence. An asymptotic cone of a group G is simply an asymptotic cone of its Cayley
graph. Note that it is customary to require that limn!1 jn D1. In our setting, we
allow for the possibility that the asymptotic cone of a cubing be a (simplicial) metric
cubing.

The following properties of ultralimits of metric spaces are well known; see Kapovich
and Leeb [34] and [50].

(1) If .Xn; dn/n2N are geodesic metric spaces, then limU.Xn; dn;pn/ is also a
geodesic metric space.

(2) The ultralimit limU.Xn; dn;pn/ of metric spaces is a complete metric space.

(3) Let � � 0 and let .Xn; dn/n2N be a sequence of CAT.�/–metric spaces. Then
the ultralimit is also a CAT.�/–space.

(4) Let .Xn; dn/n2N be a sequence of CAT.�n/–metric spaces, where limU �nD�1.
Then limU.Xn; dn;pn/ is a real tree.

We recall that every cubing X can be turned into a metric cubing by endowing every
cube of X with the `1 metric.

Definition 9.17 Let .Xn; distcn
; bn/n2N , distcn

D dist =cn , be a sequence of cubings
with fixed based points bn endowed with the metric distcn

, and let U be a nonprincipal
ultrafilter on N . Suppose that the widths of Xi are uniformly bounded by a fixed
N 2N . Then we call the ultralimit C D limU.Xn; distcn

; bn/ a real cubing.

Let ! 2 U and suppose that w.Xn/ D N , for all n 2 ! . Then we say that C is a
real cubing of width N . Note that the width of a real cubing is well defined by the
properties of the ultrafilters.
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The following proposition follows from well-known results; see [9; 34; 50].

Proposition 9.18 Let C be a real cubing, then C is a complete contractible CAT.0/
space.

We now give some examples of real cubings, see Section 10 for further discussion.

Example 9.19 (1) Any asymptotic cone of a finitely generated partially commuta-
tive group is a real cubing since it is an ultralimit of the universal cover of the
standard complex of the partially commutative group.

(2) It is well known that SL2.R/ is quasi-isometric to the direct product of the
hyperbolic plane with the real line, hence every asymptotic cone of SL2.R/ is
bilipschitz equivalent to the direct product of a real tree and the real line, and,
in fact (see Kar [35]) every asymptotic cone of the universal cover of SL2.R/
endowed with the Sasaki metric is isometric to a real cubing.

(3) The asymptotic cone of any toral relatively hyperbolic group is bilipschitz
equivalent to a real cubing; see Osin and Sapir [48] and Sisto [55].

We shall need the following lemma, which is well known and easy to prove.

Lemma 9.20 Let .Xn; dn;xn/ and .Yn; d
0
n;yn/ be a sequence of based metric spaces

and let U be an ultrafilter. Suppose that .Xn; dn;xn/ and .Yn; d
0
n;yn/ are .qn;C /

quasi-isometric and limU qn D B . Then limU.Xn; dn;xn/ and limU.Yn; d
0
n;yn/ are

B –bilipschitz equivalent.

9.4 Groups acting on real cubings

At this point we begin our study of groups acting on real cubings.

It is clear that any (metric) cubing is a real cubing, hence, if one is to understand the
structure of groups acting on real cubings, one needs to have a good understanding
of group actions on cubings. As we discussed in Sections 2.2 and 9.1, free cospecial
group actions on cubings, essentially, are the only actions which are understood. We
therefore consider the class of essentially free cospecial actions on real cubings which
naturally generalises cospecial actions on (discrete) cubings.

Let G be a group acting cospecially by isometries on a cubing C . Let K D fg 2G j

g:x D x for all x 2 C g be the kernel of the action. We shall say that the action of G

on a cubing is essentially free if G ¤ K and the induced action of the group G=K

on C is free.
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Definition 9.21 Let C D limU.Ci ; bi ; distci
/ be a real cubing. Let f˛ig be a sequence

of group actions of a group G on the cubings fCig. Suppose that for all .xi/ 2 C and
all g 2G the sequence of elements .g:xi/ is admissible and thus represents an element
of C . Define an action ˛ of G on C by

˛.g:.xn//D .˛n.g:xn//:

We call such an action limiting and the actions of G on the Ci are called the components
of the limiting action.

Suppose further that we have a limiting action of G on the real cubing C . We say that G

acts essentially freely and cospecially on C if the action of G on C is faithful, nontrivial
(ie without a global fixed point) and the components of the action are essentially free
and cospecial actions.

In [28], Guirardel showed that, in fact, any stable action of a finitely presented group
on a real tree can be approximated by actions on simplicial trees. From this perspective,
the theory of (stable) actions on real trees is the theory of ultralimits of actions on
simplicial trees, [34; 50]. The main example of essentially free cospecial action on a
real tree (viewed as 1–dimensional real cubings) is the action of a limit group G via
the (discriminating) family of homomorphisms from G to F ; see [52].

We now give the central example of essentially free cospecial actions of finitely gener-
ated groups on real cubings.

Example 9.22 Let G be a finitely generated group and let G be a partially commuta-
tive group with trivial centre. Let S D S�1 be a finite set generating G and let dist
be the edge path metric on eC .G/. Given an infinite sequence of homomorphisms
f'nW G!Gg, one can associate to it a sequence of positive integers defined by

cn Dmax
x2G

min
a2S

dist.'n.a/:x;x/Dmax
g2G

min
a2S

dist.id;g�1'n.a/g: id/:

It is well known that if .'n/ are pairwise nonconjugate in G , since G is finitely
generated, then limn!1 cn D1. Since the image 'n.G/ is a subgroup of G , the
subgroup 'n.G/ acts by left multiplication on the Cayley graph Cay.G/ and thus every
homomorphism 'n defines an essentially free cospecial action of G on eC .G/.
Choose an ultrafilter U and let a 2 S , xn 2G be so that cn D dist.'n.a/:xn;xn/ for
U–almost all n. We then obtain a limiting action of G on the asymptotic cone (real
cubing) ConeU.GI .xn/; .cn//. By definition, if this action is faithful, then, as we show
in Proposition 9.29, it is essentially free and cospecial.
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Following Sela (see [52]) the above example brings us to the definition of a geometric
limit group over G .

Definition 9.23 In the notation of Example 9.22, let L be the quotient of G by the
kernel K of the action, that is, KDfg 2G j g:xD x for all x 2ConeU.GI .xn/; .cn//.
The group L is called a geometric limit group over G .

Note that, by definition, the limit group L over G acts faithfully on the asymptotic
cone of G . However, it is not immediate that this action is essentially free since, a
priori, there may not be any nontrivial homomorphisms from L to G .

Given a finitely generated group G D hSi acting on a space X , it is customary to
define the displacement of the action as supx2X mina2S dist.x; a:x/. As the following
lemma shows, if we are given an essentially free cospecial group action on a real cubing,
our definition of displacement and the usual one are basically equivalent. Furthermore,
this lemma allows us to change the basepoint of the real cubing.

Lemma 9.24 Let G D hSi be a finitely generated group acting essentially freely and
cospecially on a real cubing C D limU.Cn; bn distcn

/. Then for any x D .xn/ 2 C one
has that

lim
U

�@bn

cn

�
D p and lim

U

�@bn

@xn

�
D qx;

where p; qx 2R, p; qx > 0.

Proof By definition of the ultralimit, limU..@bn
/=cn/ always exists. We are to show

that p D limU..@bn
/=cn/¤ 0;1. Since the action of G on C (and, in particular, the

basepoint .bn/) is well defined, it follows that limU..@bn
/=cn/ ¤ 1. On the other

hand, since the action of G is essentially free and cospecial and therefore nontrivial,
we conclude that p ¤ 0.

The fact that qx 2R, qx > 0 follows from the first statement.

Let G be a finitely generated group acting essentially freely and cospecially on a real
cubing C by an action ˛Df˛ig and let the width w.C/ of C be N . Then, by Lemma 9.9
and Proposition 9.16, U–almost all components of the action ˛ define a subgroup G=Ki

of a partially commutative group PiDP .G=Ki/, where w.C.Pi//DN and Pi has 2N

generators. Since there are only finitely many such partially commutative groups, there
exists a partially commutative group G.C/ so that: G.C/ is 2N –generated, the width
w.C.G.C/// equals N and G=Ki is a subgroup of G.C/ for U–almost all i . Moreover,
by Proposition 9.16, there is a quasi-isometric embedding of Ci into eC .G.C//. Given
an essentially free cospecial action of G on C , we call the group G.C/DG.C;G; ˛/
the partially commutative group of C .
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Definition 9.25 Let G be a partially commutative group and let ConeU.G/ be its
asymptotic cone. An isometry t of ConeU.G/ is called a (left) translation if there exists
an admissible element w 2 GU , w D .wi/i2N so that for any point p D .pi/i2N 2

ConeU.G/ the image t.p/ equals .wipi/i2N . The element w is called the vector of the
translation t . Note that for a translation t , the vector w may be defined nonuniquely.

Lemma 9.26 Let �r be a translation of ConeU.G/ with translation vector r D

.ri/ 2 GU , where G is a partially commutative group with trivial centre. Then the
action �r is trivial on all the points of the asymptotic cone ConeU.G/ if and only if the
element r is the trivial element of GU .

Proof By definition, the i th component of �r is simply the action on eC .G/ defined
by the left multiplication by ri .

Assume by contradiction that the set fi 2 N j ri ¤ 1g belongs to the ultrafilter. For
every nontrivial ri 2G , we take a canonical generator yi of G such that yi does not
commute with ri and yi does not left-divide ri (see [24] for definition). Notice that
such a generator yi exists, since G has trivial centre.

Let yD .y
ci

i /i2N , where .ci/ is the sequence of the scaling constants, be an element of
ConeU.G/. Consider the distance dist.y; r:y/. Since the canonical generator yi neither
divides nor commutes with ri , it follows from [13, Corrollary 4.8] that y

�ci

i left-divides
y
�ci

i riy
ci

i , hence d.y; r:y/� 1 and so the action �r is nontrivial on ConeU.G/.

We now show that the sequence of quasi-isometric embeddings of Ci into eC .G.C//
induces an equivariant bilipschitz embedding of C into the asymptotic cone of G.C/.

Proposition 9.27 Let ˛ be an essentially free cospecial group action of a k–generated
group G on a real cubing C D limU.Cn; bn; distcn

/ and let f˛ng be the components
of this action. Let G.C/ be the partially commutative group of the real cubing C ,
let ˇn be the action of G on eC .G.C// induced by ˛n and let �n be the embedding
of G=Ker.˛n/ into G.C/ constructed in Proposition 9.16. Then there exists a G–
equivariant bilipschitz embedding  of C into ConeU.G.C/; 1; dist@.ˇn//.

Proof Let  n be the equivariant quasi-isometric embedding of .Cn; bn; dist@.˛n// into
.eC .G.C//; 1; dist@.ˇn// constructed in Proposition 9.16. Identifying the 1–skeleton ofeC .G.C// with the Cayley graph of G.C/, the embedding  n maps the basepoint bn

to the identity; the basepoint of eC .G.C//.
By Lemma 9.20, the sequence of maps f ng gives rise to a bilipschitz embedding  
of C into ConeU.G.C/; 1; dist@.ˇn// defined by

 ..yn//D . n.yn//:
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Furthermore, since the actions ˇn are translations, the sequence of actions fˇng defines
an action ˇ of G on ConeU.G.C/; 1; dist@.ˇn//:

ˇ.g:.xn//D .ˇn.g:xn//:

It now follows by Lemma 9.26, that the action ˇ is essentially free and cospecial. Since
the maps  n are equivariant, it follows that  is a G–equivariant embedding.

The corollary below follows by definition of a translation and by construction of the
action of G on ConeU.GN / given in Proposition 9.27:

Corollary 9.28 Let G be a finitely generated group acting essentially freely and
cospecially on a real cubing C . Then G acts essentially freely and cospecially by
translations on an asymptotic cone of a finitely generated partially commutative group.

Proof Observe that the action of G on ConeU.GN ; 1; dist@.ˇn// defined in the proof
of Proposition 9.27 is by left translations, hence the statement.

We have shown that essentially free cospecial actions on real cubings induce essentially
free cospecial actions by left translations on asymptotic cones of partially commutative
groups. As we have mentioned above, limit groups over partially commutative groups
act essentially freely and cospecially by translations on the corresponding asymptotic
cones. We now show that, basically, these are the only examples.

Proposition 9.29 Let G be a partially commutative group with trivial centre. Let G

be a finitely generated group acting faithfully by translations on ConeU.G/. Then G

embeds into the ultrapower GU of G and so G is fully residually G .

Conversely, let G be a finitely generated fully residually G group. Then G acts
essentially freely and cospecially by translations on the asymptotic cone ConeU.G/
of G .

Note that if G acts essentially freely and cospecially by translations, then G acts
faithfully and so G satisfies the assumptions of the above proposition.

Proof Let r D .ri/ 2GU be an admissible sequence representing an element of the
asymptotic cone ConeU.G/. Then the element r defines an isometry �r of ConeU.G/.
The i th component of �r is simply the action on eC .G/ defined by left multiplication
by ri .

Define the map  W G!GU by sending every generator of G to its translation vector.
The map  extends to a homomorphism from G ! GU . Indeed, since G acts on
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ConeU.G/, it follows that for any relation r of G and any point y 2 ConeU.G/ we
have that the action of r on y is trivial, ie dist.y; r:y/D 0. By Lemma 9.26, it then
follows that the translation vector r is, in fact, the trivial element of GU and hence  
is a homomorphism.

The homomorphism  gives rise to an action of G on GU . Since G acts faithfully on
ConeU.G/, the induced action of G on GU is faithful. Therefore, the homomorphism  

is injective. We conclude that G is fully residually G since so is every subgroup of GU ;
see Theorem 2.5.

On the other hand, any fully residually G group G can be viewed as a subgroup
of GU . Therefore, G acts faithfully on GU by left translations. Furthermore, since the
group G is finitely generated one can choose scaling constants so that every translation
vector corresponding to an element of G is admissible in the asymptotic cone and
hence the group G acts on ConeU.G/. Since the action of G on GU is faithful, the
translation vector .gi/ corresponding to a nontrivial element g of G is nontrivial. By
Lemma 9.26, the action of .gi/ on the asymptotic cone is nontrivial. It follows that
the action of G on ConeU.G/ is faithful.

Let G be the free abelian group of finite rank n and let ConeU.G/ be its asymptotic
cone. Then ConeU.G/ is isometric to Rn with the `1 metric. It is not hard to see that
if a finitely generated group G acts faithfully by translations on Rn , then G is free
abelian.

Corollary 9.30 Let G be an arbitrary partially commutative group and Z.G/ be
its centre, ie G D G0 � Z.G/ and Z.G/ D Zn . Let G be a finitely generated
group acting faithfully by translations on ConeU.G/ D ConeU.G0/ � Rn , then G

is a subgroup of a group of the form G0 �Zm , where G0 is a finitely generated group
acting faithfully by translations on ConeU.G0/. Hence, G 'G00 �Zl , where G00 is a
finitely generated group acting faithfully by translations on ConeU.G0/. Moreover, G

is fully residually G .

Proof Let G D hx1; : : : ;xki be a set of generators of G and let vi be the translation
vector of xi , i D 1; : : : ; k . Write vi D ..ui

n; w
i
n//n2N , where ui

n 2G0 and wi
n 2 Zn

for all i and n. Consider the subgroup H of isometries of ConeU.G/ generated
by the 2k translations f.u1

n/; : : : ; .u
k
n/; : : : ; .w

1
n/; : : : ; .w

k
n /g. It is clear that H D

h.u1
n/; : : : ; .u

k
n/i � h.w

1
n/; : : : ; .w

k
n /i and that G is a subgroup of H . Furthermore,

since if ui
n ¤ 1 for almost all n, by Lemma 9.26, there exists an element of the

asymptotic cone ConeU.G0/ which is not fixed by the action by .ui
n/. Therefore

G0D h.u1
n/; : : : ; .u

k
n/i acts faithfully by translations on ConeU.G0/. Finally, the group

h.w1
n/; : : : ; .w

k
n /i acts by translations on Rn and thus is free abelian.
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In the case of free groups, Sela introduced the notion of geometric limit group as the
quotient of a finitely generated group by the kernel of the action induced by a family
of homomorphisms on a real tree and proved that the class of geometric limit groups is
precisely the class of finitely generated fully residually free groups; see [52].

The above corollary gives a characterisation of the class of geometric limit groups over
partially commutative groups as the class of finitely generated fully residually partially
commutative groups.

Corollary 9.31 Geometric limit groups over partially commutative groups are pre-
cisely finitely generated fully residually partially commutative groups.

Proof It is easy to see that finitely generated fully residually partially commutative
groups are geometric limit groups; see Example 9.22.

Assume now that we have an infinite family of (nonpairwise conjugate) homomorphisms
'nW G!G . Then the group G has a natural action (perhaps unfaithful) by translations
on the asymptotic cone ConeU.G/ of G . Let L be a geometric limit group over G
defined as the quotient of G by the kernel of the action, ie L is the quotient of G by
the normal subgroup generated by elements g 2G that have trivial action, ie gx D x

for all x 2 ConeU.G/. By definition, the geometric limit group L acts faithfully
by translations on the asymptotic cone of G , hence, by Corollary 9.30, L is fully
residually G .

We summarise the results of this section in the following theorem.

Theorem 9.32 Let G be a finitely generated group. Then:

(1) The group G acts essentially freely and cospecially on a real cubing if and only
if G acts essentially freely and cospecially on an asymptotic cone of a partially
commutative group G if and only if G is fully residually G for some finitely
generated partially commutative group.

(2) The group G acts essentially freely and cospecially on a real cubing of width n

if and only if G acts essentially freely and cospecially on an asymptotic cone of
an n–wide and 2n–generated partially commutative group G if and only if G is
fully residually G .

Theorem 9.33 Let G be a finitely generated group. The group G acts essentially
freely cospecially on a real cubing if and only if it is a subgroup of a graph tower.

Proof The proof follows from Theorems 9.32 and 8.1.
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In the case of free actions, the above theorem results in the following corollary, which
can be likened to Rips’ theorem on free actions on real trees.

Corollary 9.34 A finitely generated group G acts freely, essentially freely and cospe-
cially on a real cubing if and only if G is a subgroup of the graph product of free
abelian and (nonexceptional) surface groups.

In particular, if the real cubing is a real tree, then G is a (subgroup of) the free product
of free abelian groups and (nonexceptional) surface groups.

10 Open problems and future directions

10.1 Partially commutative groups

The notion of tribes has played a key role in our analysis of the of coordinate groups
over partially commutative groups. In particular, in order to obtain a finite tribal solution
tree encoding all homomorphisms, it is essential that the lattice of tribes be finite. To
assure that this condition holds, we define real cubings as ultralimits of cubings of
bounded width. Although being a sufficient condition, it is by no means a necessary
one. An elegant way to overcome this technical obstacle would be giving by a positive
answer to the following question.

Question 1 Given k 2 N , does there exist a universal finitely generated partially
commutative group Gk that contains all k–generated subgroups of arbitrary partially
commutative groups?

Or, in a stronger form, given k 2 N , does there exist a finitely generated partially
commutative group Gk so that for any k–generated subgroup H of any partially
commutative group G there exists a homomorphism 'H from G to Gk which is
injective on H ?

We note that by Baudisch [2], every 2–generated subgroup of any partially commutative
group is either free or free abelian. Hence, there does exist a 2–universal partially
commutative group.

10.2 Real cubings

Real trees were introduced independently by Chiswell [16] and Tits [57], and, originally,
had the requirement that the space should be complete. Later, Alperin and Moss [1]
gave a more general definition of real trees as spaces where every two points can

Geometry & Topology, Volume 19 (2015)



844 Montserrat Casals-Ruiz and Ilya Kazachkov

be joined by a unique arc or, equivalently, as 0–hyperbolic spaces; hence nowadays
completeness of real trees is assumed only when necessary.

Similarly, our definition of real cubings via ultralimits implies that real cubings are
complete metric spaces. In order to pass to a more general class of spaces, one can
take the following approach. As real trees can be described as metric spaces that are
isometric to (convex) subspaces of the asymptotic cone of a free group (see Mayer,
Nikiel and Oversteegen [45] and Dyubina and Polterovich [23]) we suggest to define
real cubings as (convex) subspaces of the asymptotic cone of a finitely generated
partially commutative group (with the metric induced by the `1 –metric on the cubings).
The following problem now arises naturally.

Problem 1 Give a metric/geometric description of real cubings.

Once a geometric description of real cubings is achieved, it is natural to ask which of
the topological properties of real trees carry over to this setting. As an example, one
can ask if real cubings are injective metric spaces.

10.3 Limiting actions

An important connection between Bass–Serre theory and Rips’ theory was established
by Guirardel in [28]. Essentially, he proves that the theory of stable actions on real trees
is the theory of ultralimits of Bass–Serre actions on simplicial trees. As we already
stressed, if one seeks to establish robust structural results for groups acting on real
cubings, one must impose constraints on the type of actions under consideration.

In this paper we assumed that the action on the real cubing is essentially free and
cospecial, that is, a particular type of limit of discrete actions. This raises two natural
questions: what type of actions on real trees are covered by essentially free cospecial
actions and what type of actions on real cubings are approximated by simplicial ones?

More precisely, in the case of real trees (viewed as real cubings), one can show that
every very small action of a free group, every faithful, nontrivial action of an abelian
group and every small action of the fundamental group of an orientable surface is of
our type. If the following question had a positive answer, then we would be able to
show that any free (and every very small) action of a group on a real tree is in fact
essentially free cospecial.

Question 2 (cf discussion after Corollary 1 in [28]) Can every very small action of
the fundamental group of a nonorientable surface on real trees be approximated by
very small simplicial actions?
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In the setting of real cubings Guirardel’s work naturally raises the following:

Question 3 Is there a nice (geometric) description of actions on real cubings that can
be approximated by cospecial actions on cubings?

10.4 Actions of cubings

From this perspective, in order to analyse more general actions on real cubings (at least
those that are limits of discrete actions) one is to understand the discrete case, that
is, to develop a generalisation of the Bass–Serre theory for groups acting (nonfreely)
cospecially on cubings.

Problem 2 Develop a higher-dimensional analogue of the Bass–Serre theory, ie estab-
lish the structure of groups acting cospecially on cubings.

To clarify the statement we seek, let us mention that in the case when the stabilisers
of maximal (by inclusion) cubes are trivial, we expect to obtain the following type of
result. If a group G acts cospecially on a cubing with trivial stabilisers of maximal
cubes, then G is a subgroup of a graph product of groups. Conversely, if G is a
subgroup of a graph product of groups whose vertex groups have nontrivial cospecial
actions on cubings, then so does G .

10.5 Actions on real cubings

Trees have very simple geometry which translates to a very robust algebraic structure
of finitely generated groups acting (stably, minimally and nontrivially) on them. The
theory of groups acting on real trees has proven to be very rich and finding a higher-
dimensional generalisation of this theory is a very interesting open problem. Indeed, in
recent years, several attempts at finding such generalisation have been made, such as
median spaces and spaces with measured walls. The class of real cubings we introduced
is yet another such generalisation. Our expectation however is that by imposing some
natural constraints on the type of group action under consideration, one should be able
to develop a robust theory of groups acting on real cubings that fully and naturally
generalises the theory of groups acting on real trees.

As we discussed in the introduction, there is a very close relation between Rips’ machine
to analyse the dynamics of an action of a finitely generated group on a real tree and the
Makanin–Razborov process which describes homomorphisms from finitely generated
groups to free groups. Our hope is that good actions on real cubings can be encoded
into multifoliated band complexes, which can be interpreted as constrained generalised
equations and that the procedure we describe in this paper will guide the analysis of
the corresponding dynamics.
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Question 4 The dynamics of which class of actions of finitely generated groups on real
cubings can be encoded into constrained generalised equations? What is the structure
of such groups?

10.6 Coarse median algebras

There is a natural correspondence between median spaces and cubings, namely, any
cubing is a discrete median space and vice-versa. In [8], Bowditch introduced the
notions of a coarse median spaces and groups and showed, among other things, that
hyperbolic groups are coarse median groups. We expect that graph towers are coarse
median groups.

Problem 3 Prove that graph towers are coarse median groups.

However, if one drops the condition of discreteness, there is no such a direct geometrical
interpretation of median algebras; see [8]. It is clear that real cubings can be given a
natural structure of median spaces but the converse is not be true (for instance, median
spaces can be infinite-dimensional). Hence, a natural question to ask is under which
conditions does the converse hold, for instance:

Question 5 Is there an analogue of the concept of finite width for median spaces
which implies (or characterises) that a median space is a real cubing?

In particular, this approach can be helpful to further understand asymptotic cones of
coarse median groups such as, prominently, asymptotic cones of mapping class groups.

Indeed, in [8], Bowditch proves that mapping class groups are coarsely median and so
their asymptotic cones are median spaces. We hope that, in fact, asymptotic cones of
mapping class groups are real cubings:

Problem 4 Prove that asymptotic cones of mapping class groups are (bilipschitz
equivalent to) a real cubing.

10.7 Graph towers

Once a new class of groups is introduced and especially when this class has such a
robust algebraic structure as graph towers, one can ask if one’s favourite property holds
for this class of groups. We point out some of the properties we expect graph towers
to have.

One of the consequences of Wise’s work on groups with quasiconvex hierarchies is
that limit groups over free groups are virtually special. It is natural to expect that graph
towers (and so all limit groups over partially commutative groups) are virtually special.
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Problem 5 Prove that graph towers are virtually special.

Since any tower (and any limit group) is residually partially commutative, the word
problem for graph towers (and limit groups) is solvable. Naturally, the next decidability
question to ask is the decidability of the conjugacy problem in this class.

Problem 6 Prove that the conjugacy problem for graph towers is decidable.

More generally, in [46] Minasyan proved that partially commutative groups are hered-
itary conjugacy separable. Minasyan’s work leads us to believe that so are graph
towers.

Problem 7 Prove graph towers are hereditary conjugacy separable.

In [30], Haglund showed that quasiconvex subgroups of partially commutative groups
are separable. It seems to us that this result can be generalised to graph towers:

Problem 8 Prove quasiconvex subgroups of graph towers are separable and virtual re-
tracts.

In a different direction, the rank gradient and homology has been recently computed
for both partially commutative groups and limit groups over free groups; see Kar and
Nikolov [36] and Bridson and Kochloukova [11]. This raises an analogous problem for
graph towers.

Problem 9 Compute the rank gradient and homology of a graph tower.

Finally, one can ask if graph towers play a similar role in the model theory of partially
commutative groups as do !–residually free towers in the model theory of free groups.
The following question was suggested by the referee:

Question 6 Does the implicit function theorem hold for graph towers over G , cf
Kharlampovich and Myasnikov [40]? Equivalently, do there exist formal solutions in
covering closures of graph towers for 89–formulas in G , comparable with Sela [53]?

Answering this question would be the fist step towards understanding finitely generated
models of the 89–theory of G .
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10.8 Limit group over partially commutative groups

We would like to note that most of the problems given above (in Section 10.7) are
hopeless for limit groups over partially commutative groups, since, for instance, all
residually free groups are limit groups over some partially commutative group. In
particular, the conjugacy problem, the isomorphism problem, etc are undecidable for
the class of limit groups over partially commutative groups. Furthermore, while graph
towers are CAT.0/–groups (and so many of the techniques of CAT.0/–geometry can
be used to study them), limit groups over partially commutative groups in general are
not CAT.0/.

However, there is a number of very interesting problems for limit groups over partially
commutative groups, among them we only mention one. In his work [44], Louder
proved that limit groups (over free groups) have finite Krull dimension. As limit groups
over partially commutative groups can be extremely complicated, it is not clear if
partially commutative groups have finite Krull dimension and we would like to ask:

Question 7 Do limit groups over partially commutative groups have finite Krull
dimension?

Note that one of key tool’s of Louder’s proof is the abelian JSJ–decomposition, which
brings us to our last question.

10.9 JSJ–decomposition

The abelian JSJ–decomposition played a key role in Sela’s approach to limit groups and,
in fact, to Tarski problems. Recently, Guirardel and Levitt developed a general theory
of JSJ–decompositions for finitely presented groups over arbitrary classes of groups.
Furthermore, with additional hypothesis on either the class of groups in question (say,
abelian), or on the type of actions (say, acylindrical), one can extend the JSJ–theory to
all finitely generated groups. In this context, the results of this paper, in particular the
algebraic description of graph towers, seem to indicate that the splittings that arise in the
hierarchical construction of limit groups over partially commutative groups correspond
to the JSJ over the class of partially commutative groups (and their subgroups). Since
limit groups over partially commutative groups are not necessarily finitely presented,
one can ask if the JSJ–decomposition over partially commutative groups (and their
subgroups) exists for all finitely generated groups. Since a positive answer to this
question seems unlikely, following Sela’s ideas, one can ask if there is a condition on
the type of action (generalising acylindricity) which assures the existence of such a
JSJ–decomposition for finitely generated groups and which includes the actions of limit
groups over partially commutative groups.
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