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On the Kashaev invariant and
the twisted Reidemeister torsion of two-bridge knots

TOMOTADA OHTSUKI

TOSHIE TAKATA

It is conjectured that, in the asymptotic expansion of the Kashaev invariant of a
hyperbolic knot, the first coefficient is represented by the complex volume of the
knot complement, and the second coefficient is represented by a constant multiple
of the square root of the twisted Reidemeister torsion associated with the holonomy
representation of the hyperbolic structure of the knot complement. In particular, this
conjecture has been rigorously proved for some simple hyperbolic knots, for which
the second coefficient is presented by a modification of the square root of the Hessian
of the potential function of the hyperbolic structure of the knot complement.

In this paper, we define an invariant of a parametrized knot diagram as a modification
of the Hessian of the potential function obtained from the parametrized knot diagram.
Further, we show that this invariant is equal (up to sign) to a constant multiple of the
twisted Reidemeister torsion for any two-bridge knot.

57M27;

1 Introduction

In [11; 12], Kashaev defined the Kashaev invariant hLiN 2 C of a link L for
N D 2; 3; : : : by using the quantum dilogarithm at q D e2�

p
�1=N . In [13], he

conjectured that, for any hyperbolic link L, 2�
N

loghLiN goes to the hyperbolic volume
of S3�L as N!1 and verified the conjecture for some simple knots by formal calcu-
lations. In [15], H Murakami and J Murakami proved that the Kashaev invariant hLiN
of any link L is equal to the N–colored Jones polynomial JN .LI e

2�
p
�1=N / of L

evaluated at q D e2�
p
�1=N . Further, as an extension of Kashaev’s conjecture, they

conjectured that for any knot K , 2�
N

log jJN .KI e
2�
p
�1=N /j goes to the (normalized)

simplicial volume of S3�K . This is called the volume conjecture. As a complexifica-
tion of the volume conjecture, it is conjectured by H Murakami, J Murakami, Okamoto,
Takata and Yokota [16] that for a hyperbolic link L, JN .LI e

2�
p
�1=N /� eN&.L/ as

N !1, where we set

&.L/D
1

2�
p
�1
.cs.S3

�L/C
p
�1 vol.S3

�L//;
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and “cs” and “vol” denote the Chern–Simons invariant and the hyperbolic volume;
we call it the complex hyperbolic volume (we use the SL2C Chern–Simons invariant).
Furthermore, it was conjectured by Gukov [9] (see also Dimofte, Gukov, Lenells
and Zagier [4], Gukov and H Murakami [10] and Zagier [33]) from the viewpoint of
SL2C Chern–Simons theory that the asymptotic expansion of JN .KI e

2�
p
�1=k/ of a

hyperbolic knot K is presented by the form

(1) JN .KI e
2�
p
�1=k/ �

N;k!1
uDN=kjfixed

eN&N 3=2! �

�
1C

1X
iD1

�i �

�
2�
p
�1

N

�i
�

as N; k!1 for uDN=k fixed and for some scalars &; !; �i depending on K and u.
These authors do not discuss the Jones polynomial of Chern–Simons theory in the case
of vanishing quantum dimension, which Witten does in [29]. We note that the colored
Jones polynomial is defined at generic q , while the Kashaev invariant is defined only
at q D e2�

p
�1=N . Andersen and Hansen [1] proved the semiclassical approximation

(ie the “eN&N 3=2!” part) of the above expansion is proved for the figure-eight knot
at q D e2�

p
�1=N and H Murakami proved it in [14] at generic q around e2�

p
�1=N .

As for rigorous proofs for other hyperbolic knots, it is shown by the first author in [17;
18] and the first author and Yokota [20] that for any hyperbolic knot K with up to 7

crossings, the asymptotic expansions of the Kashaev invariant of K is represented by

(2) hKiN D eN&.K /N 3=2!.K/ �

�
1C

dX
iD1

�i.K/ �
�

2�
p
�1

N

�i
CO

�
1

N dC1

��
;

for any d , where the !.K/ and �i.K/ are some scalars. In another approach to this
problem, Dimofte and Garoufalidis [3], motivated by the above mentioned conjectures,
constructed a formal power series as an invariant of a hyperbolic knot by using the
canonical simplicial decomposition of the hyperbolic knot complement; it is conjectured
that this power series is equal to the expansion (2).

We consider the second coefficient of the semiclassical approximation (ie the “!”
part) of the above expansions. As explained in Witten [28], such a coefficient of the
semiclassical approximation of the Chern–Simons path integral is calculated as the
regularized determinant of the Laplacian, and it is represented by the square root of
the Ray–Singer torsion at a flat connection, which is equal to the twisted Reidemeister
torsion. Further, by similar arguments, it is conjectured in [9; 10; 14] that the ! of (1)
is a scalar multiple of the square root of (the Ray-Singer torsion at a flat connection
or) the twisted Reidemeister torsion of the cochain complex of the knot complement
with the sl2C coefficient twisted by the adjoint action of the holonomy representation
of the hyperbolic structure of the knot complement; this conjecture is confirmed for
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the figure-eight knot in [1; 14], and numerically checked for some knots in Dubois [5].
Furthermore, the “!” part of the power series of [3] is conjectured (and confirmed in
many cases) to be a constant multiple of the square root of the twisted Reidemeister
torsion. Hence we conjecture that !.K/ of (2) is equal to a constant multiple of the
square root of the twisted Reidemeister torsion. In the proof of (2) in [17; 18; 20],
we use the Poisson summation formula and the saddle point method (see Section 4.2
and [17; 18; 20]), and we must check many technical concrete inequalities to calculate
such procedures. Because of such technical difficulties, it is difficult at the present stage
to prove (2) rigorously for general knots. However, by assuming the inequalities from
the saddle point method hold, we can guess the resulting form of (2). In particular, by a
formal calculation based on such assumptions, !.K/�2 is represented by a modification
of the Hessian of the potential function obtained from a knot diagram parameterized
by hyperbolicity parameters.

In this paper, we formulate !2.D/ of a parameterized diagram D of a knot K such
that !2.D/D˙!.K/

2 , ie we define !2.D/
�1 to be a modification of the Hessian of

the potential function obtained from D (Definition 4.4). Further, from a parameterized
knot diagram, we construct a monodromy representation of a knot group into PGL2C
(Section 3.1), and we can consider the twisted Reidemeister torsion associated with
such a monodromy representation. The following theorem is the main theorem of this
paper, which confirm the above mentioned conjecture of !.K/ for any two-bridge
knot assuming the above mentioned technical assumptions of the Poisson summation
formula and the saddle point method.

Theorem 1.1 Let K be any two-bridge knot, and let D be an appropriate parameter-
ized diagram of K . Then

!2.D/D˙
�.K/

2
p
�1
;

where �.K/ is the twisted Reidemeister torsion associated with the monodromy repre-
sentation obtained from the parameterization of D .

We remark (see Remark D.14) that for any hyperbolic two-bridge knot,1 the holonomy
representation of the complete hyperbolic structure of the knot complement can always
be constructed from a parameterized knot diagram, and we can apply the theorem to
such a case.

1 In general, for many hyperbolic two-bridge knots, all parabolic representations can be constructed
from parameterized knot diagrams, but there are some exceptional cases; see Remark D.12 for details.
For the case of nonhyperbolic two-bridge knots, we can also apply Theorem 1.1 to many parabolic
representations; see Appendix E for details.
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We apply the theorem in Examples 3.4, 3.5, 4.10 and 4.11 for the 52 knot and the 61

knot with the holonomy representations of the hyperbolic structures, and obtain that
the values of !.K/ and �.K/ are numerically given by

!.52/D 0:09019057740 : : :C
p
�1 � 0:6499757866 : : : ;

�.52/D�0:2344867659 : : :�
p
�1 � 0:8286683659 : : : ;

!.61/D�0:5213883634 : : :C
p
�1 � 0:07173228265 : : : ;

�.61/D 0:1496015098 : : :C
p
�1 � 0:5334006103 : : : ;

where we can confirm that the values of !.52/ and !.61/ are equal to the values given
in [17; 20], and the values of �.52/ and �.61/ are equal to the values obtained from
Tran [26] (see Examples 3.4 and 3.5). Hence, we can numerically verify the theorem
by

!.52/
2
D�0:4143341829 : : :C

p
�1 � 0:1172433829 : : :D

�.52/

2
p
�1
;

!.61/
2
D 0:2667003051 : : :�

p
�1 � 0:07480075491 : : :D

�.61/

2
p
�1
:

Further, by results in [17; 18; 20], the theorem means that the above mentioned
conjecture on !.K/ is confirmed, as

!.K/2 D˙
�.K/

2
p
�1

for any hyperbolic knot with up to 7 crossings, since they are two-bridge knots.

The theorem means that the Hessian of the potential function is related to the twisted
Reidemeister torsion. We explain how they are related, roughly speaking, as follows. As
mentioned above, the twisted Reidemeister torsion of the problem is the Reidemeister
torsion of the cochain complex of the knot complement with the sl2C coefficient twisted
by the adjoint action of the holonomy representation of the hyperbolic structure of the
knot complement. This Reidemeister torsion is determined by the alternating product
of the determinants of the coboundary maps of this cochain complex; in particular, its
essential factor is the determinant of the coboundary map d1W C

1! C 2 with respect
to an appropriate basis. Further, it is well known that H 1 of this cochain complex is
naturally isomorphic to the tangent space of the space of conjugacy classes of PGL2C
representations of the knot group. Hence, roughly speaking, the twisted Reidemeister
torsion is given by the determinant of the matrix whose entries are the coefficients of the
defining equations of the tangent space of the representation space. On the other hand,
we can reconstruct the representation space by using an ideal tetrahedral decomposition
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of the knot complement. The shape of an ideal tetrahedron is parameterized by the cross-
ratio of the coordinates of its four vertices, and the representation space is parameterized
by solutions of hyperbolicity equations of such parameters. Further, the hyperbolicity
equations are given by differentials of the potential function. Hence, the tangent space
of the representation space is presented by the Hesse matrix of the potential function,
and its determinant (ie the Hessian of the potential function) is expected to be related
to the twisted Reidemeister torsion, as mentioned above.

We explain an outline of the proof of the theorem. We consider a parameterized
knot diagram of an open two-bridge knot, where an open knot is a 1–tangle whose
closure is a knot. We decompose such a knot diagram into elementary tangle diagrams.
Further, we reformulate �.K/ and !2.D/ as compositions of operator invariants of
such elementary diagrams. In other words, regarding an open two-bridge knot as a plat
closure of a 3–braid, we reformulate �.K/ and !2.D/ in terms of “representations”
of parameterized 3–braids. Finally, we prove the theorem by comparing recursive
formulas of both sides of the required formula of the theorem.

The paper is organized as follows. In Section 2, we review some basic facts used in
this paper, such as the definition of the Kashaev invariant and a parameterization of a
knot diagram by hyperbolicity parameters. In Section 3, we explain how we calculate
the twisted Reidemeister torsion for two-bridge knots. We construct a monodromy
representation of a knot group into PGL2C from a parameterized knot diagram, and
calculate the twisted Reidemeister torsion associated with this monodromy representa-
tion by decomposing a two-bridge knot diagram into elementary tangle diagrams. In
Section 4, we define !2.D/ for an oriented parameterized open knot diagram D , and
show a relation of it to the Kashaev invariant, and calculate it for two-bridge knots.
In Section 5, we show a proof of Theorem 1.1, by comparing recursive formulas of
both sides of the required formula of the theorem. In the appendices, we explain some
supplementary topics.

The authors would like to thank Stavros Garoufalidis, Sergei Gukov, Kazuo Habiro,
Rinat Kashaev and Hitoshi Murakami for helpful comments. The authors would also
like to thank the referees for helpful suggestions and careful reading of the manuscript.

2 Preliminaries

In this section, we review some basic facts used in this paper. In Section 2.1, we review
the definition of the Kashaev invariant. In Section 2.2, we review a parameterization of
a knot diagram by hyperbolicity parameters.
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2.1 Kashaev invariant

In this section, we review the definition of the Kashaev invariant following Yokota [32],
and review some related formulas.

Let N be an integer � 2. We set q D exp.2�
p
�1=N /, and let

.x/n D .1�x/.1�x2/ � � � .1�xn/

for n� 0. It is known [15] that for any n;m with n�m,

.q/n.xq/N�n�1 DN;(3) X
n�k�m

1

.q/m�k.xq/k�n
D 1:(4)

Following Faddeev [7], we define a holomorphic function '.t/ on ft 2C j 0<Re t < 1g

by

'.t/D

Z 1
�1

e.2t�1/xdx

4x sinh x sinh.x=N /
;

noting that this integrand has poles at n�
p
�1 (n 2 Z), where, to avoid the pole at 0,

we choose the following contour for the integral:

.�1;�1�[fz 2C j jzj D 1; Im z � 0g[ Œ1;1/:

It is known (see Faddeev, Kashaev and Volkov [8] and Woronowicz [30]) that

(5)
.q/n D exp

�
'
�

1
2N

�
�'

�
2nC1
2N

��
;

.xq/n D exp
�
'
�
1� 2nC1

2N

�
�'

�
1� 1

2N

��
:

Further, it is also known [8; 30] (see also [17]) that

(6)
1
N
'.t/D 1

2�
p
�1

Li2
�
e2�
p
�1t
�
CO

�
1

N 2

�
;

1
N
'0.t/D� log

�
1� e2�

p
�1t
�
CO

�
1

N 2

�
:

Furthermore, it is known (due to Kashaev; see [17]) that

(7)
'
�

1
2N

�
D

N

2�
p
�1

�2

6
C

1
2

log N C �
p
�1

4
�
�
p
�1

12N
;

'
�
1� 1

2N

�
D

N

2�
p
�1

�2

6
�

1
2

log N C �
p
�1

4
�
�
p
�1

12N
:
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Following Yokota [32]2, we review the definition of the Kashaev invariant. We set

N D f0; 1; : : : ;N � 1g:

For i; j ; k; l 2N , we set

R
ij

kl
D

N q�1=2Ci�k�
ij

kl

.q/Œi�j �.xq/Œj�l�.q/Œl�k�1�.xq/Œk�i�

;

xR
ij

kl
D

N q1=2Cj�l�
ij

kl

.xq/Œi�j �.q/Œj�l�.xq/Œl�k�1�.q/Œk�i�

;

where Œm� 2N denotes the residue of m modulo N , and we set

�
ij

kl
D

�
1 if Œi � j �C Œj � l �C Œl � k � 1�C Œk � i �DN � 1;

0 otherwise.

Let K be an oriented knot. We consider a 1–tangle whose closure is isotopic to K

such that its string is oriented downward at its endpoints; abusing the notation, we also
denote this 1–tangle by K , and call such a 1–tangle an open knot. Let D be a diagram
of this 1–tangle. We present D by a union of elementary tangle diagrams shown in (8).
We decompose the string of D into edges by cutting it at crossings and critical points
with respect to the height function of R2 . A labeling is an assignment of an element
of N to each edge. Here, we assign 0 to the two edges adjacent to the endpoints of D .
We define the weights of labeled elementary tangle diagrams by

(8)

W

 i j

k l

!
DR

ij

kl
; W

 i j

k l

!
D xR

ij

kl
;

W

 
k l

!
D q�1=2ık;l�1; W

 
k l

!
D ık;l ;

W

 i j !
D q1=2ıi;jC1; W

 i j !
D ıi;j :

2 We make a minor modification of the definition of weights of critical points from the definition
in [32], in order to make hKiN invariant under Reidemeister moves.
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Then the Kashaev invariant hKiN of K is defined by

hKiN D
X

labelings

Y
crossings

of D

W .crossings/
Y

critical
points of D

W .critical points/ 2C:

2.2 Knot diagrams parameterized by hyperbolicity parameters

In this section, we review a parameterization of an open knot diagram by hyperbol-
icity parameters, following Yokota [31]. Further, we review a potential function of a
parameterized open knot diagram.

We parameterize edges of an open knot diagram by parameters in C[f1g, for example,
as follows.

(9)

1 1 1

x1

x2 1

1
x3 1

0 1

We parameterize edges adjacent to unbounded regions by 1. We parameterize edges
next to the terminal edges by 0 or 1 as shown above; we parameterize such an
edge by 1 (resp. 0) if it is connected to the terminal edge by an underpath (resp. an
overpath). We parameterize the other edges in such a way that the parameters belong
to C�f0g, and satisfy the hyperbolicity equations, which are given by

u0

u

x
v0

v

�
1�

x

u

��
1�

v0

x

�
D

�
1�

x

u0

��
1�

v

x

�
;

u0

u

x
v0

v

�
1�

x

u

��
1�

x

v0

�
D

�
1�

x

u0

��
1�

x

v

�
;

u0

u

x
v0

v

�
1�

u

x

��
1�

v0

x

�
D

�
1�

u0

x

��
1�

v

x

�
;
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where we assume that the values of both sides of the equations are nonzero. We call
such parameters hyperbolicity parameters. For example, for the knot diagram (9), the
hyperbolicity equations are given by

1�
x2

x1
D .1�x1/

�
1�

1

x1

�
;�

1�
x2

x1

��
1�

1

x2

�
D .1�x2/

�
1�

x3

x2

�
;�

1�
x3

x2

��
1�

1

x3

�
D 1�x3:

We can verify by concrete calculation that each solution of the above equations is isolated
(ie 0–dimensional).3 Further, as we explain in Section 3.1, such a parameterization
gives a monodromy representation of the knot group into PGL2C .

We consider an open knot diagram parameterized by hyperbolicity parameters. We
consider an angle consisting of two adjacent edges at a crossing. We associate such an
angle with the value

x y

 Li2
�x

y

�
�Li2.1/

x y

 Li2.1/�Li2
�y

x

�
where we consider the orientation of an angle from the overpath to the underpath, the
left case is when this orientation is counterclockwise, and the right case is when this
orientation is clockwise. We recall that Li2.1/D �2=6. For a parameterized open knot
diagram, we define the potential function V to be the sum of such values for all angles
except for the constant terms, regarding V as a function of hyperbolicity parameters:

1 1 1

x1

x2 1

1
x3 1

0 1

3 For any two-bridge knot, the system of hyperbolicity equations can be rewritten as a single polynomial
equation of x1 as we explain in Section 5. Hence each solution of it is isolated, for any two-bridge knot. On
the other hand, for a general knot, the space of solutions of hyperbolicity equations might not necessarily
be 0–dimensional; see Remark 4.3.
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For example, for the above knot diagram, the potential function V is given by

(10) V .x1;x2;x3/D Li2.x1/�Li2
� 1

x1

�
CLi2

�x2

x1

�
�Li2.x2/

�Li2
� 1

x2

�
CLi2

�x3

x2

�
�Li2.x3/�Li2

� 1

x3

�
C 2 Li2.1/:

We note that

(11) x
@

@x
Li2
�x

y

�
D� log

�
1�

x

y

�
; y

@

@y
Li2
�x

y

�
D log

�
1�

x

y

�
:

We also note that the hyperbolicity equations are given by

@

@xi
V D 0 for all i ,

and, hence, a solution of the hyperbolicity equations gives a critical point of V .

3 Calculation of the twisted Reidemeister torsion

In this section, we explain how we calculate the twisted Reidemeister torsion for two-
bridge knots. In Section 3.1, we explain how we calculate the monodromy representation
of a knot group into PGL2C when a knot diagram is parameterized by hyperbolicity
parameters. In Section 3.2, we explain how we calculate the twisted Reidemeister
torsion for the 52 knot, as the simplest example among two-bridge knots; the calculation
is reduced to the calculations of

det

 
yE2

yD1
yE1

!
and det. {D1

{E1/;

where we introduce this notation in Section 3.2. In Section 3.3, we decompose open two-
bridge knot diagrams into elementary tangle diagrams, to formulate such calculations
for any two-bridge knot. In Sections 3.4 and 3.5, we calculate

det

 
yE2

yD1
yE1

!
and det. {D1

{E1/

respectively for any two-bridge knot. By using the results, we calculate the twisted
Reidemeister torsion for any two-bridge knot in Section 3.6. See also Dubois, Huynh
and Yamaguchi [6] and [26] for the calculation of the Reidemeister torsion for twist
knots.
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3.1 The monodromy representation

In this section, we explain how we calculate the monodromy representation of a knot
group into PGL2C from a parameterized knot diagram.

We review how to make an ideal tetrahedral decomposition of S3 �K from a knot
diagram, following Thurston [25; 31]. There are four tetrahedra at each crossing of
the knot diagram, and, by making an octahedron as the union of such four tetrahedra
at each crossing, we obtain an octahedral decomposition of S3�K . As in [31], we
associate a complex parameter to each edge of the knot diagram, and consider the
hyperbolicity equations with respect to the parameters. Then the shape of an ideal
octahedron at each crossing is determined as follows:

(12)

x

yz

w

x
y

z

w

1

0

We can glue ideal tetrahedra at each face of a knot diagram. For example, we can make
the polyhedron of the following right picture by gluing 5 tetrahedra at the face of the
left picture:

(13)

x1

x2

x3

x4

x5

0

x1

x2 x3 x4

x5

1
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Here, we note that the edge x1x2 of the tetrahedron “10x1x2 ” at the crossing of the
edges of x1 and x2 in the left picture corresponds to the edge 10 of the tetrahedron
“01x1x2 ” of the right picture.

We consider the following left picture as a part of a knot diagram:

u0

u

x
v0

v

Xu0

X

Xu

Xv0

X 0

Xv

In the right picture, we consider tetrahedra at each crossing as in (12), and move them
to tetrahedra at each face as in (13) by the maps Xu;Xu0 ;Xv;Xv0 2 PGL2C , and
calculate X and X 0 by using these maps4 as follows. As mentioned in Section 2.2,
the hyperbolicity equation of these parameters is�

1�
x

u

��
1�

v0

x

�
D

�
1�

x

u0

��
1�

v

x

�
:

We consider tetrahedra at each crossing as in (12), and consider tetrahedra at each face
as in (13). Further, we consider maps taking such tetrahedra to each other as in the
right picture; for example, the map Xu in the right picture takes a tetrahedron at the
left crossing placed as in (12) to a tetrahedron at the lower face placed as in (13). Such
maps take vertices of the tetrahedra as follows:

x

0

u !

Xu

0

x

1

!

Xv

v

1

x

Hence

Xu.x/D 0; Xu.0/D x; Xu.u/D1;

Xv.v/D 0; Xv.1/D x; Xv.x/D1;

4 This means that Xu;Xu0 ;Xv and Xv0 transform coordinates of (12) to coordinates of (13), and X

and X 0
�1 transform the coordinates of (13) in the upper face to the coordinates of (13) in the lower face.
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where PGL2C acts on C[f1g by the Möbius transformation. It follows that

Xu �

�
1 �x

1=u �1

�
;

Xv �

�
1 �v

1=x �1

�
;

where “�” means the equality in PGL2C . Similarly, we have that

Xu0 �

�
1 �x

1=u0 �1

�
;

Xv0 �

�
1 �v0

1=x �1

�
:

Therefore,

X DXuX�1
u0 �

 
x
u0
� 1 0

1
u0
�

1
u

x
u
� 1

!
;

X 0 DXv0X
�1
v �

�
v0

x
� 1 v� v0

0 v
x
� 1

�
:

We note that, from the construction, X fixes 0 and x , and X 0 fixes 1 and x by the
Möbius transformation.

By using such matrices, we can calculate the monodromy representation �1.S
3�K/!

PGL2C from a knot diagram with parameters.

3.2 Calculation of the twisted Reidemeister torsion for the 52 knot

In this section, we explain how we calculate the twisted Reidemeister torsion for the 52

knot, before we explain the calculation for any two-bridge knot later. We calculate it in
the following 6 steps. In Step 1, we calculate the monodromy representation of the
knot group of the 52 knot. In Step 2, we give the cochain complex C � of the knot
complement with the sl2C coefficient twisted by the monodromy representation of
Step 1. In Step 3, we give a subcomplex yC � of C � , and we set {C � D C �= yC � . In
Steps 4 and 5, we calculate the Reidemeister torsions of yC � and {C � respectively. In
Step 6, we present the Reidemeister torsion of the knot as the product of the Reidemeister
torsions of yC � and {C � .

Step 1 In this step, we calculate the monodromy representation of the knot group of
the 52 knot.
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The 52 knot is the knot presented by the following picture; it is the mirror image of
the 52 knot:

1 11

x1

1 x2 1

0 1

W0
X0

X 0
0

Z0

X 01
X1

X2

X 0
2

W1
Z2

X3

X 0
3

Z3

We calculate Xi ;X
0
i ;Wi ;Zi 2 PGL2C as follows; we note that we do not use the

notation W2;W3 and Z1 here, while we also use them in the general case later.
As in [31], the parameters of the knot diagram is given as in the left picture. The
hyperbolicity equations are

.1�x1/
�
1�

1

x1

�
D 1�

x2

x1

;
�
1�

x2

x1

��
1�

1

x2

�
D 1�x2:

Hence,

x2 D x2
1 �x1C 1; x2C 1�

x2

x1

D 0:

We calculate Xi and X 0i by the way of Section 3.1; for example,

X 00 �

�
1 x1� 1

0 1

�
; X1 �

�
1 0

1 1�x1

�
; X 01 �

 
1

x1
� 1 x2� 1

0 x2

x1
� 1

!
;

X2 �

 
x2� 1 0

1� 1
x1

x2

x1
� 1

!
; X 02 �

 
1� 1

x2
1

0 1

!
; X3 �

 
1 0

1
x2
� 1 1

!
:

By using them, we can calculate the other matrices; for example,

Z2 �X�1
2 X1X 01X2 �

�
0 1

�1 2

�
; X 03 �X�1

3 X 02
�1

Z2X 02 �

�
1 0

0 1

�
;

W1 �X 03
�1

Z�1
3 X 03 �

�
2 �1

1 0

�
; X0 �X 00

�1
X�1

1 W1X1 �

�
1 0

0 1

�
:
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In similar ways, we can show that

Wi �

�
2 �1

1 0

�
; Zi �

�
0 1

�1 2

�
for each i .

Step 2 In this step, we give the cochain complex C � of the knot complement with
the sl2C coefficient twisted by the monodromy representation of Step 1.

We consider a cellular decomposition of the knot complement as follows. The (large)
0–cell is a shaded region of the following left picture. The 1–cells are the arrows of
the following left picture. The 2–cells are given as in the right two pictures:

r1

r3 r4

r6

r2

r5

r7

r8

Here the base points of the 0–cell and the 2–cells are depicted by dots in the pictures,
and the base points of the 1–cells are the tops of the arrows. This cellular decomposition
is a modification of the dual of the ideal tetrahedral decomposition mentioned in
Section 3.1; see Appendix A for details.

We consider the cochain complex C � of this cellular decomposition with the sl2C
coefficient twisted by the monodromy representation of Step 1. The relator given by
the 2–cell r1 is presented by

W0X0Z0X�1
0 :

Its perturbation is given by

.1C "eW0
/W0 � .1C "eX0

/X0 � .1C "eZ0
/Z0 �X

�1
0 .1� "eX0

/CO."2/

for eW0
, eX0

, eZ0
2 sl2C . Its coefficient of " is presented by

er1
D eW0

C .W0� 1/eX0
CW0eZ0

;
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where we set Wi D ad.Wi/;Xi D ad.Xi/;Zi D ad.Zi/; : : :. Similarly, from the relator
W0X 0

0
�1

X�1
1

X 0
1
�1

X 0
0

of the 2–cell r2 , we obtain

er2
D eW0

�X 00
�1X 01eX1

:

Further, from the relator X0X�1
1

W �1
1

X1X 0
0

of the 2–cell r3 , we obtain

er3
D eX0

�X 00
�1X�1

1 eW1
CX�1

1 .W�1
1 � 1/eX1

:

By calculating similarly, the coboundary map D1W C
1! C 2 is presented by

D1 D

0BBBBBBBBBBB@

1 W0� 1 W0 0 0 0 0 0 0

1 0 0 0 �X 00
�1X 0

1 0 0 0 0

0 1 0 �X 0
0
�1X�1

1
X�1

1
.W�1

1
� 1/ 0 0 0 0

0 0 0 0 1 X1X 01� 1 �X2 0 0

0 0 1 0 0 �X 0
1

0 0 0

0 0 0 0 0 1 0 X2X 02� 1 �X3

0 0 0 0 0 0 1 �X 0
2

0

0 0 0 1 0 0 0 0 Z�1
3

1CCCCCCCCCCCA
;

with respect to the basis .eW0
; eX0

; eZ0
; eW1

; eX1
; eX2

; eZ2
; eX3

; eZ3
/ of C 1 and the

basis .er1
; er2

; er3
; : : : ; er8

/ of C 2 . Further, the coboundary map D0W C
0! C 1 is

presented by a matrix of the form

D0 D

0BBBBBBBBBBBBB@

.W0� 1/X 0
0
�1X 0

1

.X0�X 0
0
�1
/X 0

1

.Z0� 1/X 0
1

W1� 1

X1X 01� 1

X2X 02� 1

.Z2� 1/X 0
2

X3X 03� 1

.Z3� 1/X 0
3

1CCCCCCCCCCCCCA
D

0BBBBBBB@

:::
:::
:::

X3� 1

Z3� 1

1CCCCCCCA
;

with respect to the basis .eW0
; eX0

; eZ0
; eW1

; eX1
; eX2

; eZ2
; eX3

; eZ3
/ of C 1 .

Step 3 In this step, we give a subcomplex yC � of C � .

Since Xi and X 0i have fixed points (Section 3.1), modify D1 by multiplying by

diag
�

ad
�

1 1

1 0

��1

ad
�

1 1

1 0

��1

1 ad
�

x1 1

1 0

��1

ad
�

1 1

1 0

��1

ad
�

x2 1

1 0

��1

ad
�

1 1

1 0

��1

ad
�

1 1

1 0

��1�
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from the left, and multiplying by

diag
�

ad
�

1 1

1 0

�
1 ad

�
1 1

1 0

�
ad
�

1 1

1 0

�
ad
�

x1 1

1 0

�
ad
�

x2 1

1 0

�
ad
�

1 1

1 0

�
ad
�

0 1

1 0

�
ad
�

1 1

1 0

��
from the right, where diag. � / denotes the diagonal matrix whose diagonal entries are
these entries. See Appendix B for a motivation of this modification. By the above
modification, the modified D1 has entries of the form

ad
�

1 1

1 0

��1

� .W0� 1/D

0B@ �1 0 �1

1 2 �1

0 0 0

1CA ;

ad
�

1 1

1 0

��1

�W0 � ad
�

1 1

1 0

�
D

0B@ 1 �2 �1

0 1 1

0 0 1

1CA ;

ad
�

1 1

1 0

��1

� .�X 00
�1X 01/ � ad

�
x1 1

1 0

�
D

0B@ x1� 1 0 0

0 �1 0

0 0 1
x1�1

1CA ;
:::

with respect to the basis

(14)
��

0 1

0 0

�
;

�
1 0

0 �1

�
;

�
0 0

1 0

��
of sl2C , and we can verify that any entry of the modified D1 is of the form0B@ � � �� � �

0 0 �

1CA :
Further, we modify D0 by multiplying by

diag
�

ad
�

1 1

1 0

��1

1 ad
�

1 1

1 0

��1

ad
�

1 1

1 0

��1

ad
�

x1 1

1 0

��1

ad
�

x2 1

1 0

��1

ad
�

1 1

1 0

��1

ad
�

0 1

1 0

��1

ad
�

1 1

1 0

��1 �
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from the left. Then the modified D0 has entries of the form

:::

ad
�

0 1

1 0

��1

� .X3� 1/D

0@ � � 0

1=x2� 1 0 0

0 0 0

1A ;
ad
�

1 1

1 0

��1

� .Z3� 1/D

0@ �1 �4 3

�1 �2 1

0 0 0

1A ;
and we can verify that any entry of the modified D0 is of the form0B@ � � �� � �

0 0 0

1CA :
We define yC 1 to be the vector subspace of C 1 consisting of vectors of the form

.�� 0 j � � 0 j � � � j � � � j � � 0/T :

We define yC 2 to be the vector subspace of C 2 consisting of vectors of the form

.�� 0 j � � 0 j � � � j � � 0/T :

We set yC 0 D C 0 . Since the modified D0 and D1 preserve these subspaces, yC �

forms a subcomplex of C � by these modified D0 and D1 . We let yD0 and yD1 be the
restrictions of these modified D0 and D1 to yC � .

We let {C � D C �= yC � . By definition, {C 0 D 0. We define {D1 to be the map on {C 1

induced by the modified D1 :

yC 2

��

yC 1
yD1oo

��

yC 0
yD0oo

��
C 2

��

C 1oo

��

C 0

��

oo

{C 2 {C 1
{D1oo 0oo

It is known that the calculation of the Reidemeister torsion of C � is reduced to the
calculations of the Reidemeister torsions of yC � and {C � ,

(15) �.C �/D �. yC �/�. {C �/:
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We can verify5 that H 2.C �/ŠH 2. yC �/ŠC and H 1.C �/ŠH 1. {C �/ŠC and the
other cohomology groups of these cochain complexes vanish.

Step 4 In this step, we calculate the Reidemeister torsion of yC � .

We define the map yD2W
yC 2! C to be the map evaluating 2–cochains by the coho-

mology class Œ@EK � of the boundary of the knot exterior EK , where we choose the
base point of @EK to be the base point of the 2–cell r3 . Then the following complex
forms an acyclic complex,

0 �C
yD2
 �� yC 2

yD1
 �� yC 1

yD0
 �� yC 0

 � 0:

The Reidemeister torsion of yC � is presented by

�. yC �/D

0BB@det

0BB@ yE1
yD0

1CCA det. yD2
yE2/

1CCA
,

det

0BB@ yE2
yD1
yE1

1CCA ;
where we set

yE2 D

0BBBBBBBBBBBB@

0

0

0

0

1

0
:::

0

1CCCCCCCCCCCCA
; yE1 D

0BBBBBBBBBBBB@

1

1
: : :

1

1

0

0

0

1CCCCCCCCCCCCA
:

We note that we can choose other yE2 and yE1 in such a way that the determinants of
the defining formula of �. yC �/ are nonzero. It is known (see Turaev [27]) that the value
of �. yC �/ does not depend on the choice of such yE2 and yE1 .

5 For any two-bridge knot, it is known (see Riley [22]) that the space of conjugacy classes of PGL2C
representations of the knot group is 1–dimensional, and we can describe this space by a concrete
polynomial (3). Since H 1.C�/ is naturally isomorphic to the Zariski tangent space of this space,
we can show (see Lemma D.1) that it is 1–dimensional. It follows by counting dimensions of C�

that H 2.C�/ is also 1–dimensional. Further, as mentioned above, we consider a subcomplex yC�

of C� , and we set {C� D C�= yC� . By counting dimensions of these cochain groups, we can verify that
H 2.C�/ Š H 2. yC�/ Š C and H 1.C�/ Š H 1. {C�/ Š C and the other cohomology groups of these
cochain complexes vanish for any two-bridge knot.
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By definition, we have that

det

0BB@ yE1
yD0

1CCA :
D det

 
the lowest
three rows

of yD0

!
D det

0@ 1
x2
� 1 0 0

�1 �4 3

�1 �2 1

1A :
D 2

�
1�

1

x2

�
;

where “ :D” means that the left-hand side is equal to the right-hand side up to ˙1. For
a general two-bridge knot, this value becomes 2.1� 1=.xm�1//.

Further, we calculate det. yD2
yE2/, as follows. As mentioned above, yD2 is the map

evaluating 2–cochains by Œ@EK � of the boundary @EK of the knot exterior EK . We
regard K as a 1–tangle in a 3–ball B3 . Then @EK consists of the boundary @N.K/
of a tubular neighborhood of K and a 2–holed @B3 . Since @N.K/ is obtained by
connecting 2–cells r3; r8; r6; : : : in the form of a tube along the monodromy, the
contribution of @N.K/ to yD2 is given by

er3
CX 0

0
�1X1

�1er8
CX 0

0
�1X1

�1Z3
�1X3

�1er6
CX 0

0
�1X1

�1Z3
�1X3

�1X 0
1
�1

er5

�X 00
�1X1

�1Z3
�1X3

�1X 01
�1W0

�1er1
CX 00

�1X1
�1Z3

�1X3
�1X 01

�1W0
�1er2

CX 00
�1X1

�1Z3
�1X3

�1X 01
�1W0

�1X 00
�1X 01er4

CX 00
�1X1

�1Z3
�1X3

�1X 01
�1W0

�1X 00
�1X 01X2er7

:

Further, the contribution of a 2–holed @B3 to yD2 is given by

�er1
C .er2

CW0er3
/CW0.X1

�1er4
C er5

/CW0X1
�1.er6

CX2er7
/CX 00

�1X 01er8
:

How to obtain this formula We consider the following 2–chains r23 , r45 , r67 :

r23

r67

r45

The relator around r23 is W0X0X�1
1

W�1
1

X 0
1
�1X 0

0
, and its differential is given by

er23
D eW0

CW0eX0
�X 00

�1X 01eW1
�X 00

�1X 01W1eX1
D er2

CW0er3
:
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Similarly, we can show that er45
Der4

CX1er5
and er67

Der6
CX2er7

. The contribution
of the 2–holed @B3 is obtained by connecting them along the monodromy,

�er1
C er23

CW0X1
�1er45

CW0X1
�1er67

CX 00
�1X 01er8

;

and this gives the aforementioned formula. Furthermore, recalling that the base point
of @EK is the base point of r3 , the adjoint action of the meridian at this base point is
given by

X0X 00 D ad.X0X 00/D ad
�

1 x1� 1

0 1

�
D

0@1 � �

0 1 �

0 0 1

1A ;
with respect to the basis (14) of sl2C , noting that we do not modify the basis vectors eX0

and er3
in Step 3 unlike the other basis vectors. We choose .0 0 1/ as an invariant

vector of this action, noting that we consider the action of multiplying the above matrix
to a row vector from the right. Hence D2W C

2!C is represented by

D2 D
�
0 0 1

�
� ..�X 00

�1X1
�1Z3

�1X3
�1X 01

�1W0
�1;

X 00
�1X1

�1Z3
�1X3

�1X 01
�1W0

�1; 1; : : :/� .�1; 1;W0; : : ://;

with respect to the basis er1
; er2

; er3
; : : :. Further, yD2 is the restriction of the modi-

fied D2 to yC 2 . Moreover, by definition, yE2 is given by0@1

0

0

1A
in the part of er3

2 sl2C with respect to the basis (14) of sl2C . Hence only the er3

part contributes to yD2
yE2 , and

yD2
yE2 D

�
0 0 1

�
.1�W0/

0@1

0

0

1AD �0 0 1
�0@�3 �4 1

2 2 0

1 0 1

1A0@1

0

0

1AD 1:

Therefore,

det. yD2
yE2/D 1:

We note that this holds for any two-bridge knot, since only the top 2–cell r3 contributes
to the resulting value, independently of the other part of the knot, as shown above.
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Hence we have that

(16) �. yC �/D 2
�
1�

1

xm�1

�,
det

0BB@ yE2
yD1
yE1

1CCA :
Step 5 In this step, we calculate the Reidemeister torsion of {C � .

The Reidemeister torsion of {C � is presented by

�. {C �/D det

0BB@ h1 {E1

1CCA
,

det. {D1
{E1/;

where we set

h1 D

0BBBBBBB@

�

1

�

�

:::

�

1CCCCCCCA
; {E1 D

0BBBBBBB@

1

0 0

1

1
: : :

1

1CCCCCCCA
:

Here h1 presents a cohomology class whose eX0
part in C � is0@��

1

1A :
We note that this class is invariant under the action of multiplying X0X 00 from the left,
and it is dual to the vector .001/ which we used in the definition of D2 in Step 4. By
definition, we have that

det

0BB@ h1 {E1

1CCAD 1:

Hence

(17) �. {C �/D
1

det. {D1
{E1/

:
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Step 6 By (15), (16) and (17), the Reidemeister torsion of K is presented by

(18)
2

�.K/
D

1

1� 1
xm�1

det. {D1
{E1/ det

0BB@ yE2
yD1
yE1

1CCA :
It is a problem to calculate the latter two factors in the right-hand side. We calculate
them for any two-bridge knot in Sections 3.4 and 3.5.

3.3 Decomposing two-bridge knot diagrams into elementary diagrams

In this section, we decompose open two-bridge knot diagrams into elementary diagrams,
and describe the hyperbolicity equations among parameters of such knot diagrams.

Any open two-bridge knots can be presented by a plat closure of a 3–braid of a product
of copies of �1 and ��1

2
, ie any open two-bridge knot diagram (or its mirror image)

can be obtained by gluing copies of the following tangle diagrams, which we call
elementary diagrams:

(19)

1

1

1

x1 1

1

1

xi

xiC1

1

1

1

1

xi

xiC1

1

1

1 xm�1

0

1

1

1 xm�1

0

1

1

To describe the hyperbolicity equations among these parameters, we consider the
parameters ˛i and ˛iC1 at the ends of middle strands of �1 and ��1

2
, as follows:

1

1

˛i

xi

xiC1

˛iC1

1

1

˛i D
1� 1

xi

1�
xiC1

xi

; ˛iC1 D
1�xiC1

1�
xiC1

xi

;
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1

1

˛i

xi

xiC1

˛iC1

1

1

˛i D
1�

xiC1

xi

1� 1
xi

; ˛iC1 D
1�

xiC1

xi

1�xiC1

:

In general, for a parameterized tangle, we consider the parameter ˛ at the end of a
strand of the tangle diagram, as follows:

˛

x

u0

u

˛ D
1� u

x

1� u0

x

;

˛

x

u0

u

˛ D
1� x

u

1� x
u0
;

u

u0
x

˛

˛ D
1� u

x

1� u0

x

;

u

u0
x

˛

˛ D
1� x

u

1� x
u0
:

When we glue two tangle diagrams, we require that these parameters coincide at each
connecting point, which implies the hyperbolicity equation among parameters of the
resulting tangle diagram.

3.4 Calculation of det. yE2 j
yD1
yE1/

In this section, we calculate

det

 
yE2

yD1
yE1

!

for any two-bridge knot. We calculate it using a “representation” of parameterized
3–braids as we show in Lemma 3.1 below. The aim of this section is to prove this
lemma.

As mentioned in Section 3.3, any open two-bridge knot can be obtained by gluing
copies of elementary diagrams.
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Lemma 3.1 Let D be a diagram of any open two-bridge knot, obtained by gluing
copies of elementary diagrams. Then

det

0BB@ yE2
yD1
yE1

1CCADˆ2.D/;

where we define ˆ2.D/ to be the composition of ˆ2 of elementary diagrams whose
values are given as follows:

ˆ2

 
1

1

1

x1 1

!
D�

1

x1.x1� 1/

�
1 2x1 0

�
;(20)

ˆ2

 
1

1

xi

xiC1

1

1

!
D�

1

xiC1

0@1 2xiC1 1

0 �xiC1 �1

0 0 1

1A ;(21)

ˆ2

 
1

1

xi

xiC1

1

1

!
D

1

1�˛iC1

0@ 1 0 0

�1 �xiC1 0

1 2xiC1 1

1A ;(22)

ˆ2

 1 xm�1

0

1

1

!
D

xm�1

xm�1� 1

0@ 1

�1

2

1A ;(23)

ˆ2

 1 xm�1

0

1

1

!
D�

0@ 2

�1

1

1A :(24)

To prove Lemma 3.1, we consider the contribution of �1 to

det

 
yE2

yD1
yE1

!
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given by:

(25)

Wi

WiC1

Xi

X 0i

XiC1

X 0
iC1

Zi

ZiC1

As explained in Section 3.1, we have that

X 0i �

 
xiC1

xi
� 1 1�xiC1

0 1
xi
� 1

!
; XiC1 �

 
xiC1

xi
� 1 0

1
xi
� 1 xiC1� 1

!
:

The relators among these matrices are given by

WiX
0
i
�1

X�1
iC1X 0iC1

�1
X 0i ; XiX

�1
iC1W �1

iC1XiC1X 0i ; ZiZ
�1
iC1;

and, as explained in Section 3.2, their differentials are given by

eWi
�X 0i

�1X 0iC1eXiC1
;

eXi
�X 0i

�1X�1
iC1eWiC1

CX 0i
�1X�1

iC1.1�WiC1/eXiC1
;

eZi
� eZiC1

:

Hence, the corresponding part of D1 is presented by

D1 D

0BBBBBBB@

: : :
: : :

: : : 0 0 0

1 0 0 0 �X 0i
�1X 0

iC1
0

0 1 0 �X 0i
�1X�1

iC1
X 0i
�1X�1

iC1
.1�WiC1/ 0

0 0 1 0 0 �1

0 0 0
: : :

: : :
: : :

1CCCCCCCA
with respect to the basis .eWi

; eXi
; eZi

; eWiC1
; eXiC1

; eZiC1
/. We consider to calculate

the determinant of a matrix of the following form for a given value of .AiBiCi/,

(26)

0BBBBBB@

Ai Bi Ci 0 0 0

1 0 0 0 �X 0i
�1X 0

iC1
0

0 1 0 �X 0i
�1X�1

iC1
X 0i
�1X�1

iC1
.1�WiC1/ 0

0 0 1 0 0 �1

0 0 0
: : :

: : :
: : :

1CCCCCCA ;
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by modifying it by elementary transformations (where “elementary transformations”
include suppression of rows and columns), noting that elementary transformations do
not change the determinant. That is, the strategy is to show that (26) is related to the
form below by elementary transformations, and, when the value of .Ai Bi Ci/ is given,
the value of .AiC1BiC1CiC1/ of the following formula can be obtained from the value
of .Ai Bi Ci/, which enables us to calculate the required determinant recursively. The
matrix (26) can be modified by elementary transformations as follows:

(26)�

0BBBBBBB@

1 0 0 0 �X 0i
�1X 0

iC1
0

0 1 0 �X 0i
�1X�1

iC1
X 0i
�1X�1

iC1
.1�WiC1/ 0

0 0 1 0 0 �1

Ai Bi Ci 0 0 0

0 0 0
: : :

: : :
: : :

1CCCCCCCA

�

0BBBBBBB@

1 0 0 0 �X 0i
�1X 0

iC1
0

0 1 0 �X 0i
�1X�1

iC1
X 0i
�1X�1

iC1
.1�WiC1/ 0

0 0 1 0 0 �1

0 0 0 AiC1 BiC1 CiC1

0 0 0
: : :

: : :
: : :

1CCCCCCCA

�

 
AiC1 BiC1 CiC1

: : :
: : :

: : :

!
;

where “�” means that the matrices of both sides are related by elementary transforma-
tions (hence they have equal determinants), and we set

�
AiC1 BiC1 CiC1

�
D
�
Ai Bi Ci

�0BB@
0 X 0i

�1X 0
iC1

0

X 0i
�1X�1

iC1
X 0i
�1X�1

iC1
.WiC1� 1/ 0

0 0 1

1CCA :
Hence, �1 is taken by the “representation” by

(27)
1

1

xi

xiC1

1

1

7�!

0BB@
0 X 0i

�1X 0
iC1

0

X 0i
�1X�1

iC1
X 0i
�1X�1

iC1
.WiC1� 1/ 0

0 0 1

1CCA :
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We consider the subcomplex yC � as in Section 3.2, and consider the matrix that
corresponds to the one of (27). We multiply the matrix of (27) by

diag

 
ad
�

1 1

1 0

��1

ad
�

xi 1

1 0

��1

ad
�

1 1

1 0

��1
!

from the left, and by

diag
�

ad
�

1 1

1 0

�
ad
�

xiC1 1

1 0

�
ad
�

1 1

1 0

��
from the right. Then the entries of the resulting matrix are presented by

ad
�

1 1

1 0

��1

�X 0i
�1X 0iC1 � ad

�
xiC1 1

1 0

�
D

0BB@
�

xi .xiC1�1/

xi�1
0 0

0 1 0

0 0 � xi�1
xi .xiC1�1/

1CCA ;

ad
�

xi 1

1 0

��1

�X 0i
�1X�1

iC1 � ad
�

1 1

1 0

�
D

0BB@
�

xiC1�1

.xi�1/xi

2
xi

�

0 1 �

0 0 �
.xi�1/xi

xiC1�1

1CCA ;

ad
�

xi 1

1 0

��1

�X 0i
�1X�1

iC1.WiC1� 1/ � ad
�

xiC1 1

1 0

�

D

0BB@
�
.xiC1�1/2.2xiCxiC1�1/

.xi�1/xi

2.xiC1�1/.2xiCxiC1�2/

.xi�1/xi
�

�.xiC1� 1/2 2.xiC1� 1/ �

0 0 0

1CCA :

Hence the restriction of the matrix of (27) to the subcomplex yC � is presented by

(28)

0BBBBBBBBBB@

0 0 �
xi .xiC1�1/

xi�1
0 0 0

0 0 0 1 0 0

�
xiC1�1

.xi�1/xi

2
xi
�
.xiC1�1/2.2xiCxiC1�1/

.xi�1/xi

2.xiC1�1/.2xiCxiC1�2/

.xi�1/xi
0 0

0 1 �.xiC1� 1/2 2.xiC1� 1/ 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CCCCCCCCCCA
:
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We consider the contribution of ��1
2

to

det

 
yE2

yD1
yE1

!
:

given by:

Wi

WiC1

Xi

X 0i

XiC1

X 0iC1

Zi

ZiC1

As explained in Section 3.1, we have that

X 0i �

 
1
xi
� 1 xiC1� 1

0
xiC1

xi
� 1

!
; XiC1 �

 
xiC1� 1 0

1� 1
xi

xiC1

xi
� 1

!
:

The relators among these matrices are given by

WiW
�1

iC1; XiX
0
i XiC1Z�1

iC1X�1
iC1; ZiX

0
i X 0iC1

�1
X�1

iC1X 0i
�1
:

Hence, similarly as the case of �1 , the corresponding part of D1 is presented by

D1 D

0BBBBBBB@

: : :
: : :

: : : 0 0 0

1 0 0 �1 0 0

0 1 0 0 XiX 0i � 1 �XiC1

0 0 1 0 �X 0i 0

0 0 0
: : :

: : :
: : :

1CCCCCCCA
with respect to the basis .eWi

; eXi
; eZi

; eWiC1
; eXiC1

; eZiC1
/. Further, ��1

2
is taken

by the “representation” by

(29)
1

1

xi

xiC1

1

1

7�!

0B@1 0 0

0 1�XiX 0i XiC1

0 X 0i 0

1CA :
We consider its restriction to the subcomplex yC � , similarly as the case of �1 . We
multiply the matrix of (29) by

diag

 
ad
�

1 1

1 0

��1

ad
�

xi 1

1 0

��1

ad
�

1 1

1 0

��1
!
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from the left, and multiply by

diag
�

ad
�

1 1

1 0

�
ad
�

xiC1 1

1 0

�
ad
�

1 1

1 0

� �
from the right. Then the entries of the resulting matrix are presented by

ad
�

xi 1

1 0

��1

� .1�XiX 0i / � ad
�

xiC1 1

1 0

�

D

0BBB@
.2xi�xiC1C1/.xiC1�1/

x2
i

2.xi�xiC1C1/.xiC1�1/

x2
i
.xi�xiC1/

�

.xi�xiC1/.xiC1�1/

xi

2.xiC1�1/

xi
�

0 0 0

1CCCA ;

ad
�

xi 1

1 0

��1

�XiC1 � ad
�

1 1

1 0

�
D

0BB@
�

xiC1�1

xi .xi�xiC1/
2.xi�1/

xi .xi�xiC1/
�

0 1 �

0 0
xi .xiC1�xi /

xiC1�1

1CCA ;

ad
�

1 1

1 0

��1

�X 0i � ad
�

xiC1 1

1 0

�
D

0B@
xi�xiC1

xi�1
0 0

0 1 0

0 0 xi�1
xi�xiC1

1CA :
Hence the restriction of the matrix of (29) to the subcomplex yC � is presented by:

(30)

0BBBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0
.2xi�xiC1C1/.xiC1�1/

x2
i

2.xi�xiC1C1/.xiC1�1/

x2
i
.xi�xiC1/

�
xiC1�1

xi .xi�xiC1/

2.xi�1/

xi .xi�xiC1/

0 0
.xi�xiC1/.xiC1�1/

xi

2.xiC1�1/

xi
0 1

0 0
xi�xiC1

xi�1
0 0 0

0 0 0 1 0 0

1CCCCCCCCCA
The matrices (28) and (30) give a 6–dimensional “representation” of parameterized 3–
braids. In fact, as we show in the proof of Lemma 3.1 below, only a 3–dimensional sub-
space contributes to the calculation of the required value. A basis of this 3–dimensional
subspace is given by

e1 D
�
0 0 �˛i.xi � 1/xi 1�˛i Cxi C˛ixi �.˛i � 1/.xi � 1/ .˛i � 1/.xi � 3/

�
;

e2 D
�
0 �˛i ˛i.xi � 1/xi �1C˛i � 2˛ixi 0 �1

�
;

e3 D
�
.˛i � 1/.xi � 1/ .˛i � 1/.xi C 1/ �˛i.xi � 1/xi 1�˛i �xi C 3˛ixi 0 0

�
:
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Remark 3.2 We explain how to obtain this basis concretely, though we give a proof
of Lemma 3.1 below without using this remark: .�1�2/

3 is a central element of the
3–braid group. For any open two-bridge knot, when we insert .�1�2/

3 at any place
of a 3–braid, the knot type of the open two-bridge knot does not change. Further,
the values of xi and ˛i are invariant under the action of .�1�2/

3 . Hence, only the
1–eigenspace with respect to the action of .�1�2/

3 contributes to the required value.
Let M be the matrix of the action of .�1�2/

3 . A concrete calculation shows M has
eigenvalue 1 of multiplicity 6. Let M 0 be M � .identity matrix/. The 1–eigenspace
is the kernel of the multiplication of M 0 from the right, noting that we consider an
“eigenspace” as an eigenspace with respect to the action of multiplying matrices to row
vectors from the right. We consider the vector space spanned by the column vectors of
M 0 . We can show by concrete calculation that this vector space is the 3–dimensional
vector space spanned by�

1 0 �
1�˛i C 2˛ixi

˛ix
2
i

�
xi � 1

xi
1 0

�T

;

�
0 1 �

2.1�˛i C˛ixi/

˛i.xi � 1/xi
�1

2

xi � 1
�1

�T

;

�
0 0

1�˛i �xi C 3˛ixi

˛ix
2
i

xi � 1

xi
1� 3˛i �xi C˛ixi .˛i � 1/.xi � 1/

�T

:

Hence, we can show by concrete calculation that the 1–eigenspace is the 3–dimensional
vector space spanned by e1 , e2 and e3 . In this 1–eigenspace, we obtain e3 as an
eigenvector of the action of �1 , we obtain e1 as an eigenvector of the action of �2 ,
and we obtain e2 as an eigenvector of the action of �1�2�1 .

Proof of Lemma 3.1 We can show by concrete calculation that the matrices (28) and
(30) are rewritten as the matrices (21) and (22) with respect to the basis .e1; e2; e3/.
By these matrices, we define a “representation” ˆ2 of parameterized 3–braids, as
we mention in the statement of the lemma. In particular, this 3–dimensional space is
preserved by the actions of �1 and �2 . Further, we will show below that the vector
corresponding to the elementary diagram of the top part belongs to this 3–dimensional
space. Hence, only this 3–dimensional space contributes to the required value of the
lemma.

In the following, we calculate the vectors of (20), (23) and (24), which are contributions
from elementary diagrams of the top and bottom parts to the required value.
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Calculation of (20) We calculate the contribution from the top part of an open two-
bridge knot to the required value, as follows:

1 1

1 x1

1

W0

W1

X0

X 00

X1

X 01

Z1

As explained in Section 3.1, we have that

X0 �

�
1 0

0 1

�
; X 00 �

�
1 x1� 1

0 1

�
; X1 �

�
1 0

1 1�x1

�
; X 01 �

 
1

x1
�x1

0 1
x1
� 1

!
:

As explained in Section 3.2, the corresponding part of D1 is presented by

(31)

0BBBB@
1 W0� 1 0 0 Z�1

1

1 0 0 �X 0
0
�1X 0

1
0

0 1 �X 0
0
�1X�1

1
X 0

0
�1X�1

1
.1�W1/ 0

: : :
: : :

: : :

1CCCCA
with respect to the basis .eW0

; eX0
; eW1

; eX1
; eZ1

/. We multiply the above matrix by

diag

 
ad
�

1 1

1 0

��1

ad
�

1 1

1 0

��1

1

!
from the left, and by

diag
�

ad
�

1 1

1 0

�
1 ad

�
1 1

1 0

�
ad
�

x1 1

1 0

�
ad
�

1 1

1 0

��
from the right. Then the entries of the resulting matrix are presented by

ad
�

1 1

1 0

��1

� .W0� 1/D

0@ �1 0 �1

1 2 �1

0 0 0

1A ;
ad
�

1 1

1 0

��1

�Z�1
1 � ad

�
1 1

1 0

�
D

0@ 1 �2 �1

0 1 1

0 0 1

1A ;
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ad
�

1 1

1 0

��1

� .�X 00
�1X 01/ � ad

�
x1 1

1 0

�
D

0B@ x1� 1 0 0

0 �1 0

0 0 1
x1�1

1CA ;

.�X 00
�1X�1

1 / � ad
�

1 1

1 0

�
D

0B@ 1�x1 0 0

0 �1 0

0 0 1
1�x1

1CA ;
X 00
�1X�1

1 .1�W1/ � ad
�

x1 1

1 0

�
D

0B@ � � x1� 1

.x1� 1/2 2.1�x1/ �1

0 0 0

1CA :
Hence, the restriction of the matrix (31) to the subcomplex yC � is presented by0BBBBBBBBBB@

1 0 �1 0 0 0 0 0 1 �2

0 1 1 2 0 0 0 0 0 1

1 0 0 0 0 0 x1� 1 0 0 0

0 1 0 0 0 0 0 �1 0 0

0 0 1 0 1�x1 0 � � 0 0

0 0 0 1 0 �1 .x1� 1/2 2.1�x1/ 0 0
: : :

: : :
: : :

: : :
: : :

: : :

1CCCCCCCCCCA
:

When we calculate

det

 
yE2

yD1
yE1

!
;

we remove the fifth row of yD1 from the definition of yE2 . The matrix obtained from
the above matrix by removing the fifth row is equivalent to the following matrix by
elementary transformations: 

0 �2 2x2
1
� 3x1C 1 �4x1C 3 �1 1

: : :
: : :

: : :
: : :

: : :
: : :

!
:

Further, the vector �
0 �2 2x2

1
� 3x1C 1 �4x1C 3 �1 1

�
belongs to the vector space spanned by e1 , e2 , e3 , and it is rewritten as the vector (20)
with respect to the basis .e1; e2; e3/. Hence, we define ˆ2 of the top part of an open
two-bridge knot by (20).
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Calculation of (23) We calculate the contribution from a bottom part of an open
two-bridge knot to the required value as follows:

1

xm�1

0

1

1

Wm�1

Xm�1

X 0
m�1

Xm

X 0m

Zm�1

Zm

As explained in Section 3.1, we have that

Xm�1 �

 
xm�1� 1 0

�
1

xm�1
xm�1

!
; X 0m�1 �

 
1� 1

xm�1
1

0 1

!
;

Xm �

 
1 0

1
xm�1

� 1 1

!
; X 0m �

�
1 0

0 1

�
;

noting that xm D 0. By calculating D1 at the bottom of an open two-bridge knot
similarly as above, the corresponding part of D1 is presented by

(32)

0BBBB@
: : :

: : :
: : :

1 0 0 0 Z�1
m

0 1 0 Xm�1X 0m�1
� 1 �Xm

0 0 1 �X 0
m�1

0

1CCCCA
with respect to the basis .eWm�1

; eXm�1
; eZm�1

; eXm
; eZm

/. We multiply the matrix
(32) by

diag

 
ad
�

1 1

1 0

��1

ad
�

xm�1 1

1 0

��1

ad
�

1 1

1 0

��1
!

from the left, and by

diag
�

ad
�

1 1

1 0

�
ad
�

xm�1 1

1 0

�
ad
�

1 1

1 0

�
ad
�

0 1

1 0

�
ad
�

1 1

1 0

��
from the right. Then the entries of the resulting matrix are presented by

ad
�

1 1

1 0

��1

�Z�1
m � ad

�
1 1

1 0

�
D

0B@ 1 �2 �1

0 1 1

0 0 1

1CA ;
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ad
�

xm�1 1

1 0

��1

� .Xm�1X 0m�1� 1/ � ad
�

0 1

1 0

�
D

0BB@
2xm�1C1

x2
m�1

� �

1 � �

0 0 0

1CCA ;

ad
�

xm�1 1

1 0

��1

� .�Xm/ � ad
�

1 1

1 0

�
D

0BB@
�

1

x2
m�1

� �

0 �1 �

0 0 �x2
m�1

1CCA ;

ad
�

1 1

1 0

��1

� .�X 0m�1/ � ad
�

0 1

1 0

�
D

0BB@
xm�1

1�xm�1
0 0

0 �1 0

0 0 1�xm�1

xm�1

1CCA :
Hence, the restriction of the matrix (32) to the subcomplex yC � is presented by0BBBBBBBBBBBBB@

: : :
: : :

: : :
: : :

: : :
: : :

1 0 0 0 0 0 0 0 1 �2

0 1 0 0 0 0 0 0 0 1

0 0 1 0 0 0 2xm�1C1

x2
m�1

� � �

0 0 0 1 0 0 1 � � �

0 0 0 0 1 0 xm�1

1�xm�1
0 0 0

0 0 0 0 0 1 0 �1 0 0

1CCCCCCCCCCCCCA
:

When we calculate

det

 
yE2

yD1
yE1

!
;

we remove the rightmost three columns of yD1 from the definition of yE1 . We remove
the rightmost three columns from the above matrix, and insert each of e1; e2; e3 into
the first row. Then putting

˛m�1 D
xm�1

xm�1� 1
;

their determinants are equal to

xm�1

xm�1� 1
; �

xm�1

xm�1� 1
; 2 �

xm�1

xm�1� 1

respectively. Hence, we define ˆ2 of the bottom part of an open two-bridge knot
by (23).
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Calculation of (24) We calculate the contribution from the other bottom part of an
open two-bridge knot to the required value, as follows.

1

xm�1

0

1

1

Wm�1

Wm

Xm�1

X 0
m�1

Xm

X 0m

Zm�1

As explained in Section 3.1, we have that

Xm�1 �

 
xm�1 0

1
xm�1

xm�1� 1

!
; X 0m�1 �

 
�1 1

0 1
xm�1

� 1

!
;

Xm �

 
1 0

1� 1
xm�1

1

!
; X 0m �

�
1 0

0 1

�
;

noting that xm D 0. By calculating D1 at the bottom of an open two-bridge knot
similarly as above, the corresponding part of D1 is presented by

(33)

0BBBB@
: : :

: : :
: : :

1 0 0 �X 0�1
m�1

0

0 1 0 X 0�1
m�1

X�1
m .1�Wm/ �X

0�1
m�1

X�1
m

0 0 1 0 Zm�1

1CCCCA
with respect to the basis .eWm�1

; eXm�1
; eZm�1

; eXm
; eWm

/. We multiply the matrix
(33) by

diag

 
ad
�

1 1

1 0

��1

ad
�

xm�1 1

1 0

��1

ad
�

1 1

1 0

��1
!

from the left, and by

diag
�

ad
�

1 1

1 0

�
ad
�

xm�1 1

1 0

�
ad
�

1 1

1 0

�
ad
�

0 1

1 0

�
ad
�

1 1

1 0

��
from the right. Then the entries of the resulting matrix are presented by

ad
�

1 1

1 0

��1

� .�X 0m�1
�1
/ � ad

�
0 1

1 0

�
D

0B@
xm�1

1�xm�1
0 0

0 �1 0

0 0 1�xm�1

xm�1

1CA ;
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ad
�

xm�1 1

1 0

��1

� .�X 0m�1
�1X�1

m / � ad
�

1 1

1 0

�
D

0B@ � � 2
xm�1

�

0 �1 �

0 0 xm�1.1�xm�1/

1CA ;
ad
�

xm�1 1

1 0

��1

�X 0m�1
�1X�1

m .1�Wm/ � ad
�

0 1

1 0

�

D

0B@ 2xm�1�1
xm�1.xm�1�1/

4
xm�1

�

1 2 �1

0 0 0

1CA ;
ad
�

1 1

1 0

��1

�Zm�1 � ad
�

1 1

1 0

�
D

0@ 1 2 �1

0 1 �1

0 0 1

1A :
Hence, the restriction of the matrix (33) to the subcomplex yC � is presented by0BBBBBBBBBBB@

: : :
: : :

: : :
: : :

: : :
: : :

1 0 0 0 0 0 xm�1

1�xm�1
0 0 0

0 1 0 0 0 0 0 �1 0 0

0 0 1 0 0 0 2xm�1�1
xm�1.xm�1�1/

� � �

0 0 0 1 0 0 1 � � �

0 0 0 0 1 0 0 0 1 2

0 0 0 0 0 1 0 0 0 1

1CCCCCCCCCCCA
:

Similarly as the above case, we remove the rightmost three columns from the above
matrix, and insert each of e1; e2; e3 into the first row. Then setting ˛m�1D1�1=xm�1 ,
their determinants are equal to �2; 1;�1, respectively. Hence, we define ˆ2 of this
bottom part of an open two-bridge knot by (24).

Therefore, by defining ˆ2 as in the statement of the lemma, the required value is
calculated as mentioned in the lemma. This completes the proof of the lemma.

3.5 Calculation of det. {D1
{E1/

In this section, we calculate det. {D1
{E1/ for any two-bridge knot. We calculate it by

using a “representation” of parameterized 3–braids as we show in Lemma 3.3 below.
The aim of this section is to prove this lemma.

As mentioned in Section 3.3, any open two-bridge knot can be obtained by gluing
copies of elementary diagrams.
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Lemma 3.3 Let D be a diagram of any open two-bridge knot, obtained by gluing
copies of elementary diagrams. Then det. {D1

{E1/
:
D ŷ 1.D/, where we recall that “ :D”

means that the left-hand side is equal to the right-hand side up to ˙1, and we define
ŷ

1.D/ to be the product of ŷ 1 of elementary diagrams whose values are:

ŷ
1

 
1

1

1

x1 1

!
D

1

.x1� 1/2
;

ŷ
1

 
1

1

xi

xiC1

1

1

!
D

xi.xi � 1/

xiC1� 1
;

ŷ
1

 
1

1

xi

xiC1

1

1

!
D

.xi � 1/2

.xiC1� 1/2
;

ŷ
1

 1 xm�1

0

1

1

!
D xm�1.xm�1� 1/;

ŷ
1

 1 xm�1

0

1

1

!
D .xm�1� 1/2:

Proof Similarly as in Section 3.4, we can see that at the top part of an open two-bridge
knot diagram, {D1 is presented by0BBBB@

1 0 0 0 1

1 0 0 1
x1�1

0

0 1 1
1�x1

0 0

0 0
: : :

: : :
: : :

1CCCCA
with respect to the basis eW0

; eX0
; eW1

; eX1
; eZ1

. Further, at the part of �1 , {D1 is
presented by 0BBBBBBBB@

: : :
: : :

: : :

1 0 0 0 xi�1
xi .xiC1�1/

0

0 1 0 xi .xi�1/
xiC1�1

0 0

0 0 1 0 0 �1
: : :

: : :
: : :

1CCCCCCCCA
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with respect to the basis eWi
; eXi

; eZi
; eWiC1

; eXiC1
; eZiC1

. At the part of ��1
2

, {D1 is
presented by 0BBBBBBBB@

: : :
: : :

: : :

1 0 0 �1 0 0

0 1 0 0 0
xi .xi�xiC1/

xiC1�1

0 0 1 0 xi�1
xiC1�xi

0

: : :
: : :

: : :

1CCCCCCCCA
with respect to the basis eWi

; eXi
; eZi

; eWiC1
; eXiC1

; eZiC1
. At the bottom parts of an

open two-bridge knot diagram, {D1 are presented by0BBBB@
: : :

: : :
: : :

1 0 0 0 1

0 1 0 0 �x2
m�1

0 0 1 1�xm�1

xm�1
0

1CCCCA ;
0BBBB@
: : :

: : :
: : :

1 0 0 1�xm�1

xm�1
0

0 1 0 0 xm�1.1�xm�1/

0 0 1 0 1

1CCCCA ;
respectively, with respect to the bases eWm�1

; eXm�1
; eZm�1

; eXm
; eZm

and eWm�1
,

eXm�1
; eZm�1

; eXm
; eWm

. The matrix of {D1 is a union of copies of the above mentioned
matrices.

From the definition of {E1 , the matrix of {D1
{E1 is the matrix obtained from {D1 by

removing the second column. Its determinant is equal to the product of some entries
of {D1 , since most of the entries of {D1 are equal to 0. The choice of entries which
contribute to the determinant depends on the orientations of strands; more concretely,
we choose the following values depending on the orientations of strands, whose product
presents the value of the required determinant:

ˆ1

 
1

1

1

x1 1

!
D

�1

.x1� 1/2
; ˆ1

 
1

1

1

x1 1

!
D

1

1�x1

;

ˆ1

 
1

1

xi

xiC1

1

1

!
D

xi.xi�1/

xiC1�1
; ˆ1

 
1

1

xi

xiC1

1

1

!
D

xi.xi�xiC1/

xiC1�1
;
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ˆ1

 
1

1

xi

xiC1

1

1

!
D

xi � 1

xi.xiC1� 1/
; ˆ1

 
1

1

xi

xiC1

1

1

!
D

xi � 1

xiC1�xi
;

ˆ1

 
1

1

xi

xiC1

1

1

!
D

.xi � 1/2

.xiC1� 1/2
; ˆ1

 
1

1

xi

xiC1

1

1

!
D�

xi.xi � 1/

xiC1� 1
;

ˆ1

 1
xm�1

0

1

1

!
D xm�1.xm�1� 1/; ˆ1

 1 xm�1

0

1

1

!
D

1�xm�1

xm�1

;

ˆ1

 1
xm�1

0

1

1

!
D .xm�1� 1/2; ˆ1

 1
xm�1

0

1

1

!
D

1�xm�1

xm�1

:

For a diagram D of any open two-bridge knot, by decomposing D into a union of
elementary diagrams, we define ˆ1.D/ to be the composition of ˆ1 of such elementary
diagrams, whose values are given above. Then by the above arguments, we have that

det. {D1
{E1/

:
Dˆ1.D/:

For an elementary tangle diagram T , we can obtain ŷ 1.T / of the lemma from ˆ1.T /

(ignoring the difference of sign) by multiplying by

xi

1
˛i
� 1

when the top of T is parameterized by 1

˛i

xi 1

and multiplying by

1
˛iC1
� 1

xiC1

when the bottom of T is parameterized by
1

˛iC1

xiC1 1

:

In particular, we can verify that ŷ 1.T / does not depend on the orientation of T

ignoring the difference of sign. Hence, we obtain the required formula of the lemma.

3.6 Calculation of the twisted Reidemeister torsion for any two-bridge
knot

In this section, we calculate the twisted Reidemeister torsion �.K/ for any two-bridge
knot K , by applying Lemmas 3.1 and 3.3 to (18).
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We define ˆ. � / by ˆ. � /D ŷ 1. � /ˆ2. � /. Its concrete values are given by

ˆ

 
1

1

1

x1 1

!
D

1

x1.x1� 1/3

�
1 2x1 0

�
;

ˆ

 
1

1

xi

xiC1

1

1

!
D

.xi � 1/2

xiC1.xiC1� 1/2

0@1 2xiC1 1

0 �xiC1 �1

0 0 1

1A ;
ˆ

 
1

1

xi

xiC1

1

1

!
D

x2
i

xiC1

0@ 1 0 0

�1 �xiC1 0

1 2xiC1 1

1A ;
ˆ

 1 xm�1

0

1

1

!
D x2

m�1

0@ 1

�1

2

1A ;

ˆ

 1 xm�1

0

1

1

!
D .xm�1� 1/2

0@ 2

�1

1

1A ;
ignoring the difference of sign.

For an elementary tangle diagram T , we define ŷ .T / from ˆ.T / by multiplying by

1

.˛i � 1/2.xi � 1/4
when the top of T is parameterized by 1

˛i

xi 1 ,

multiplying by

.˛iC1�1/2.xiC1�1/4 when the bottom of T is parameterized by
1

˛iC1

xiC1 1

and dividing the value of the bottom part by 1� 1
xm�1

. Its concrete values are given by

ŷ

 
1

1

1

x1 1

!
D x1.x1� 1/

�
1 2x1 0

�
;

ŷ

 
1

1

xi

xiC1

1

1

!
D xiC1

0@1 2xiC1 1

0 �xiC1 �1

0 0 1

1A ;
Geometry & Topology, Volume 19 (2015)



894 T Ohtsuki and T Takata

ŷ

 
1

1

xi

xiC1

1

1

!
D xiC1

0@ 1 0 0

�1 �xiC1 0

1 2xiC1 1

1A ;
ŷ

 1 xm�1

0

1

1

!
D

x3
m�1

.xm�1� 1/3

0@ 1

�1

2

1A ;
ŷ

 1 xm�1

0

1

1

!
D

x3
m�1

.xm�1� 1/3

0@ 2

�1

1

1A :
By the above construction, ˆ.D/=.1� 1

xm�1
/
:
D ŷ .D/ for a diagram D of any open

two-bridge knot.

Hence, for a diagram D of any open two-bridge knot K , we have that

(34)
2

�.K/
D ŷ .D/:

Example 3.4 We numerically calculate the twisted Reidemeister torsion for the 52

knot, which is the knot shown in Section 3.2. As shown in Section 3.2, the hyperbolicity
equations are presented by

x2 D x2
1 �x1C 1; x2C 1�

x2

x1

D 0:

Hence,
x3

1 � 2x2
1 C 3x1� 1D 0:

Corresponding to the holonomy representation of the hyperbolic structure of the knot
complement, we choose a solution

x1 D 0:784920145 : : :C
p
�1 � 1:307141278 : : : ;

which gives the complex hyperbolic volume by

&.52/D
1

2�
p
�1

V .x1;x2/D 0:450109610 : : :�
p
�1 � 0:4813049796 : : : :

Therefore, by (34),

2

�.52/
D x1.x1� 1/

�
1 2x1 0

�
�x2

0@ 1 0 0

�1 �x2 0

1 2x2 1

1A � x3
2

.x2� 1/3

0@ 1

�1

2

1A
D�0:6323164993 : : :C

p
�1 � 2:2345852998 : : : ;
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and hence the value of the twisted Reidemeister torsion of the 52 knot is given by

�.52/D�0:2344867659 : : :�
p
�1 � 0:8286683659 : : : :

We can confirm that the above value is also obtained from [26], by transforming the
Reidemeister torsion associated with the longitude (of [26]) to the Reidemeister torsion
associated with the meridian (the above value) as mentioned in [14].

Example 3.5 We numerically calculate the twisted Reidemeister torsion for the 61

knot, which is the knot shown in Section 2.2. As shown in Section 2.2, the hyperbolicity
equations are presented by

x2 D x2
1 �x1C 1; x3 D x2C 1�

x2

x1

D 0; x3C 1�
x3

x2

D 0:

Hence
x4

1 � 3x3
1 C 6x2

1 � 5x1C 2D 0:

Corresponding to the holonomy representation of the hyperbolic structure of the knot
complement, we choose a solution

x1 D 0:8951233822 : : :C
p
�1 � 1:5524918200 : : : ;

which gives the complex hyperbolic volume by

&.61/D
1

2�
p
�1

V .x1;x2;x3/D 0:5035603876 : : :�
p
�1 � 1:0807800768 : : : :

Therefore, by (34),

2

�.61/
D x1.x1� 1/

�
1 2x1 0

�
�x2

0@ 1 0 0

�1 �x2 0

1 2x2 1

1A
�x3

0@ 1 0 0

�1 �x3 0

1 2x3 1

1A � x3
3

.x3� 1/3

0@ 1

�1

2

1A
D 0:9749303264 : : :�

p
�1 � 3:4760907942 : : : ;

and, hence, the value of the twisted Reidemeister torsion of the 61 knot is given by

�.61/D 0:1496015098 : : :C
p
�1 � 0:5334006103 : : : :

We can confirm that the above value is also obtained from [26], by transforming the
Reidemeister torsion associated with the longitude (of [26]) to the Reidemeister torsion
associated with the meridian (the above value) as mentioned in [14].
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4 Definition and calculation of !2

In this section, we define !2.D/ for an oriented parameterized open knot diagram D

in Section 4.1, and show that it is (formally, in general) equal (up to sign) to the square
of !.K/ of the asymptotic expansion (2) of the Kashaev invariant in Section 4.2.
Further, we calculate !2.D/ for open two-bridge knot diagrams in Section 4.3.

4.1 Definition of !2

In this section, we define !2.D/ for an oriented parameterized open knot diagram D

in Definition 4.4, motivated by the square of !.K/ of the asymptotic expansion (2) of
the Kashaev invariant. We show that !2.D/ is invariant under the RII and RIII moves
under a certain assumption on the values of hyperbolicity parameters in Proposition 4.5.

For a parameterized knot diagram D , we slice D by horizontal lines in such a way that
each region has a crossing or a critical point, we define �1 of each region as follows,
and we set �1.D/ to be the product of them:

�1

 
x

x0

y

y0

!
D

�
1�

x

x0

��
1�

y0

y

�
;

�1

 
1

1

y

y0

!
D 1�

y0

y
;

�1

 
x

x0

1

1

!
D 1�

x

x0
;

�1

 
x

x0

y

y0

!
D

�
1�

x0

x

��
1�

y

y0

�
;

�1

 
1

1

y

y0

!
D 1�

y

y0
;

�1

 
x

x0

1

1

!
D 1�

x0

x
;

�1

 
˛ ˛�1

!
D ˛;
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�1

 
˛ ˛�1 !

D ˛;

where the parameter ˛ at an end of a strand is defined as in Section 3.3.

Lemma 4.1 For a parameterized knot diagram D , the value of �1.D/ is determined
independently of the way of slicing D .

Proof It is sufficient to show that �1.D/ is invariant under the following moves:

 !  !

 !  !

We obtain the invariance under the moves of the first line from the definition of �1 .

We obtain the invariance under the moves of the second line from the definition of �1

and hyperbolicity equations among parameters.

For an oriented parameterized knot diagram D , define �2 of each crossing as follows,
and let �2.D/ be the product of them:

�2

 
x

x0

y

y0

!
D

x0
2

x2
; �2

 
x

x0

y

y0

!
D

y0
2

y2
:

For a parameterized open knot diagram D , we recall that the potential function V is
defined as in Section 2.2, which is a function of hyperbolicity parameters xi ’s. We
also recall that a solution of hyperbolicity equations gives a critical point of V . We
define the Hesse matrix at a critical point of V by

H D
��

xi
@

@xi

��
xj

@

@xj

�
V
�

i;j
:

We note that �
x
@

@x

�2
Li2
�

x

y

�
D

�
y
@

@y

�2
Li2
�

x

y

�
D

x

y �x
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and �
x
@

@x

��
y
@

@y

�
Li2
�

x

y

�
D�

x

y �x
;

which we obtain from (11). Hence, for example, the Hesse matrix of the potential
function of (10) is given by

HD

0B@
x1

1�x1
�

1
x1�1
C

x2

x1�x2
�

x2

x1�x2
0

�
x2

x1�x2

x2

x1�x2
�

x2

1�x2
�

1
x2�1
C

x3

x2�x3
�

x3

x2�x3

0 �
x3

x2�x3

x3

x2�x3
�

x3

1�x3
�

1
x3�1

1CA
D

0B@
1Cx1

1�x1
C

x2

x1�x2
�

x2

x1�x2
0

�
x2

x1�x2

x2

x1�x2
C1C x3

x2�x3
�

x3

x2�x3

0 �
x3

x2�x3

x3

x2�x3
C1

1CA :
In order to define !2.D/, we consider the following assumption. In the proof of
Theorem 1.1 in Section 5, we consider an open two-bridge knot diagram obtained as a
plat closure of a product of copies of �1 and ��1

2
. We show later in Lemma 4.13 that

such a diagram with hyperbolicity parameters satisfies this assumption.

Assumption 4.2 We assume that, for an oriented parameterized knot diagram D ,
�1.D/, �2.D/ and det H are nonzero.

In other words, from the definition of �1 , �1.D/ is nonzero if parameters of adjacent
edges at each crossing are distinct except for the case where both edges are adjacent to
an unbounded region. From the definition of �2 , �2.D/ is nonzero if parameters in
the defining formula of �2 are nonzero at each crossing. Further, det H is nonzero
if H is nondegenerate; in this case, the corresponding solution of the hyperbolicity
equations is isolated.

Remark 4.3 In this remark, we explain when Assumption 4.2 is not satisfied. We
have the following two cases.

Case 1: The knot diagram is “bad” For example, we consider a knot diagram D

having a loop of the RI move. Then it has a crossing with adjacent edges whose
parameters are the same, and hence, �1.D/ is zero. In general, when a knot diagram
has a “redundant” part, such a diagram might not satisfy Assumption 4.2.

Case 2: The knot is “bad” For example, we consider a satellite knot. Then the space
of conjugacy classes of parabolic representations of the knot group into PGL2C might
be higher-dimensional, since we can “bend” a representation along the fundamental
group of an essential torus in the knot complement. Since parabolic representations are
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related to solutions of hyperbolicity equations as mentioned in Section 3.1, the space
of solutions of hyperbolicity equations might be higher-dimensional. Hence, in such a
case, H might be degenerate and Assumption 4.2 might not be satisfied.

Definition 4.4 For an oriented parameterized open knot diagram D which satisfies
Assumption 4.2, we define !2.D/ by

!2.D/D
1

p
�1�1.D/�2.D/ det H

:

As we show in Proposition 4.9 later, !2.D/ (formally, in general) presents .˙1/ times
the square of !.K/ of the asymptotic expansion (2) of the Kashaev invariant. Hence,
we expect that this gives an invariant of an oriented parameterized open knot. The
following proposition is a partial evidence of this expectation.

Proposition 4.5 For an oriented parameterized open knot diagram D satisfying
Assumption 4.2, !2.D/ is invariant under the RII and RIII moves if the values of
the hyperbolicity parameters at the moves are generic.

Here, “generic” means that both sides of the hyperbolicity equations of the knot
diagrams appearing in the RII and RIII moves are always nonzero.

Proof We show the invariance under the RII move, as follows (the following proof
works when x0 ¤ x ¤ y ¤ y0 ):

x

x0

x

y

y0

y

 !

x y

We calculate !2 of the left-hand side. By definition,

�1.LHS/D
�
1�

x

x0

�2�
1�

y0

y

�2
:

Further, we can verify by definition that

�2.LHS/D
x0

2
y2

x2y02
;
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independently of a choice of orientations of the strands. The Hesse matrix for the
left-hand side is given by the following form:0BBBBBBBBBBB@

x
y�x
�

x
x0�x
Ca1 �

x
y�x
Ca2

x
x0�x

0 c1 c2

�
x

y�x
Ca2

x
y�x
�

y0

y�y0
Ca3 0 y0

y�y0
c3 c4

x
x0�x

0 0 0 �
x

x0�x
0

0 y0

y�y0
0 0 0 �

y0

y�y0

c1 c3 �
x

x0�x
0 x

x0�x
�

x
y�x
Cb1

x
y�x
Cb2

c2 c4 0 �
y0

y�y0
x

y�x
Cb2

y0

y�y0
�

x
y�x
Cb3

1CCCCCCCCCCCA
This matrix can be transformed into the following form by elementary transformations:

 �
a1 a2

a2 a3

�
C

�
b1 b2

b2 b3

�
C

�
c1 c2

c3 c4

�
C

�
c1 c3

c2 c4

�!
˚

0BBBB@
0 0 x

x0�x
0

0 0 0 y0

y�y0

x
x0�x

0 0 0

0 y0

y�y0
0 0

1CCCCA
The first direct summand gives the Hesse matrix of the right-hand side. The determinant
of the second direct summand is the error term, and it cancels with �1.LHS/�2.LHS/.
Hence, !2.D/ is invariant under the RII move.

We show the invariance under the RIII moves, as follows (the following proof works
when both sides of hyperbolicity equations appearing in the knot diagrams in the proof
are always nonzero):

˛ ˇ 


x y z

u
v

w

x0 y0 z0

 !

˛ ˇ 


x y z

u0

v0

w0

x0 y0 z0

When we give values of ˛ , ˇ , 
 , x , y , z , the values of the other parameters are
determined by

uD
xy

˛xCy �˛y
; v D

x�yCˇy

ˇ
;

w D
xz

˛xCy �˛y �ˇyC˛ˇyCˇz�˛ˇz
;

u0 D
yz

ˇyC z�ˇz
; w0 D

y � zC 
 z



;
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v0 D
ˇxyCxz�ˇxz� 
xzCˇ
xz�yzC 
yz

ˇ
y
;

x0 D
xyz

˛ˇxyC˛xz�˛ˇxzCyz�˛yz
;

y0 D
x.y � zC 
 z/


 .˛xCy �˛y/
; z0 D

x�yCˇy �ˇzCˇ
 z

ˇ

;

noting that the values of x0 , y0 , z0 do not change as functions of ˛ , ˇ , 
 , x , y , z

under the RIII move. By definition,

�1.LHS/D
�
1�

x

u

��
1�

v

y

��
1�

v

w

��
1�

z0

z

��
1�

u

x0

��
1�

y0

w

�
;

�1.RHS/D
�
1�

y

u0

��
1�

w0

z

��
1�

x

x0

��
1�

v0

u0

��
1�

v0

y0

��
1�

z0

w0

�
:

Further, we can verify by definition that

�2.LHS/
�2.RHS/

D
y2w2v0

2

v2y02u02
;

independently of a choice of orientations of the strands. The Hesse matrix of the
left-hand side is given by the form0BB@

� � � CA1 B1 C1C � � �

BT
1

D1 E1

� � � CC T
1

ET
1

F1C � � �

1CCA ;
where

A1 D

0B@
x

y�x
�

x
u�x

�
x

y�x
0

�
x

y�x
x

y�x
�

v
y�v

0

0 0 v
z�v
�

z0

z�z0

1CA ;
B1 D

0@ x
u�x

0 0

0 v
y�v

0

0 �
v

z�v
0

1A ;
C1 D

0@0 0 0

0 0 0

0 0 z0

z�z0

1A ;
D1 D

0@ v
u�v
�

x
u�x
C

u
w�u
�

u
x0�u

�
v

u�v
�

u
w�u

�
v

u�v
v

u�v
�

v
y�v
C

v
z�v
�

v
w�v

v
w�v

�
u

w�u
v

w�v
z0

w�z0
�

v
w�v
C

u
w�u
�

y0

w�y0

1A;
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E1 D

0B@
u

x0�u
0 0

0 0 0

0 y0

w�y0
�

z0

w�z0

1CA ;

F1 D

0B@
y0

x0�y0
�

u
x0�u

�
y0

x0�y0
0

�
y0

x0�y0
y0

x0�y0
�

y0

w�y0
0

0 0 z0

w�z0
�

z0

z�z0

1CA :
Further, the Hesse matrix of the right-hand side is given by the form0BB@

� � � CA2 B2 C2C � � �

BT
2

D2 E2

� � � CC T
2

ET
2

F2C � � �

1CCA ;
where

A2 D

0B@
x

u0�x
�

x
x0�x

0 0

0 y
z�y
�

y
u0�y

�
y

z�y

0 �
y

z�y
y

z�y
�

w0

z�w0

1CA ;

B2 D

0B@�
x

u0�x
0 0

y
u0�y

0 0

0 0 w0

z�w0

1CA ;
C2 D

0@ x
x0�x

0 0

0 0 0

0 0 0

1A ;
D2

D

0@ w0

u0�w0
�

y
u0�y
C

x
u0�x
�

v0

u0�v0
v0

u0�v0
�

w0

u0�w0

v0

u0�v0
v0

x0�v0
�

v0

u0�v0
C

v0

w0�v0
�

v0

y0�v0
�

v0

w0�v0

�
w0

u0�w0
�

v0

w0�v0
w0

u0�w0
�

w0

z�w0
C

v0

w0�v0
�

z0

w0�z0

1A;

E2 D

0B@ 0 0 0

�
v0

x0�v0
v0

y0�v0
0

0 0 z0

w0�z0

1CA ;

F2 D

0B@
v0

x0�v0
�

x
x0�x

0 0

0 z0

y0�z0
�

v0

y0�v0
�

z0

y0�z0

0 �
z0

y0�z0
z0

y0�z0
�

z0

w0�z0

1CA :
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These two Hesse matrices can be transformed into the following form (i D 1; 2) by
elementary transformations:0BB@

� � � CAi �BiD
�1
i BT

i 0 Ci �BiD
�1
i Ei C � � �

0 Di 0

� � � CC T
i �ET

i D�1
i BT

i 0 Fi �ET
i D�i

i Ei C � � �

1CCA
Here, the parts of “ � � � ” are the contributions from the outside of the RIII move, and
they are invariant under the RIII move. Further, we can verify by direct calculation that

A1�B1D�1
1 BT

1 DA2�B2D�1
2 BT

2 ;

C1�B1D�1
1 E1 D C2�B2D�1

2 E2;

F1�ET
1 D�1

1 E1 D F2�ET
2 D�1

2 E2:

(We can verify the first two formulas by direct calculations. Then the third formula can
be obtained from the first formula by the symmetry of � rotation of the RIII move.)
Hence, the change of the determinants of the Hesse matrices is equal to the ratio of
det.D1/ and det.D2/. Since we can verify by direct calculation that

det.D1/�1.LHS/�2.LHS/D det.D2/�1.RHS/�2.RHS/;

it is shown that !2 is invariant under the RIII move.

Remark 4.6 As we mentioned in Remark 4.3, Definition 4.4 does not work well for
some kinds of knot diagrams. It might be difficult to show that !2.D/ gives a knot
invariant by showing its invariance under the Reidemeister moves.

4.2 Relation to the Kashaev invariant

In this section, we explain that !2.D/ is (formally, in general) equal (up to sign)
to the square of !.K/ of the asymptotic expansion (2) of the Kashaev invariant
(Proposition 4.9). We explain this in the following 3 steps. In Step 1, we explain how
the calculation of the Kashaev invariant is related to the potential function. In Step 2,
by using this relation, we calculate the asymptotic expansion of the Kashaev invariant
for the 61 knot. In Step 3, we extend this case to a general case (Proposition 4.9).

Step 1 In this step, we explain how the calculation of the Kashaev invariant is related
to the potential function.

We consider an oriented open knot diagram whose ends are downward oriented. We
slice such a knot diagram by horizontal lines in such a way that each region has a

Geometry & Topology, Volume 19 (2015)
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crossing or a critical point. We consider a section of a knot diagram by such a horizontal
line, and associate the i th strand on the horizontal line with the following color:

ki�1�
n� i

2
C

� the number of upward-oriented strands
in the right of the i th strand

�
where n is the number of strands on the horizontal line. Here, we put k0 D kn�1 D 0.
For example, strands are colored by

0 k1C
1
2

k2 k3�
1
2

k4 k5�
1
2 0

and

�1 k1�
1
2

k2� 1 k3�
3
2

k4� 1 k5�
1
2 0

depending on the orientations of the strands. We regard ki as an integer parameter for
even i , and regard ki as a half-integer parameter for odd i .

Around a maximal point, strands are colored by

ki C cC 1
2

kiC1C c
or

ki C c � 1
2

kiC1C c

and, in any case, ki �
1
2
D kiC1 . Further, around a minimal point, strands are colored

by

ki C c � 1
2

kiC1C c or ki C cC 1
2

kiC1C c

and, in any case, ki C
1
2
D kiC1 . These error terms of 1

2
correspond to the values of

�1. � /
�1=2 of critical points defined in Section 4.1 putting qkj D xj .

Around a positive crossing, strands are colored by

ki C c � 1
2

k 0i C c � 1
2

kiC1C c

k 0
iC1
C c

ki C c � 1
2

k 0i C cC 1
2

kiC1C c

k 0
iC1
C c

ki C cC 1
2

k 0i C c � 1
2

kiC1C c

k 0
iC1
C c

ki C cC 1
2

k 0i C cC 1
2

kiC1C c

k 0
iC1
C c

Geometry & Topology, Volume 19 (2015)
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and the corresponding R matrices are given by

ki C c � 1
2

k 0i C c � 1
2

kiC1C c

k 0
iC1
C c

R
kiCc�1=2 kiC1Cc

k0
i
Cc�1=2 k0

iC1
Cc
�

N qki�k0
i

.q/ki�kiC1�1=2.xq/kiC1�k0
iC1
.q/k0

iC1
�k0

i
�1=2.xq/k0

i
�ki

;

ki C c � 1
2

k 0i C cC 1
2

kiC1C c

k 0
iC1
C c

xR
kiC1Cc k0

iC1
Cc

kiCc�1=2 k0
i
CcC1=2

�
N qk0

iC1
�k0

i

.xq/kiC1�k0
iC1
.q/k0

iC1
�k0

i
�1=2.xq/k0

i
�ki
.q/ki�kiC1�1=2

;

ki C cC 1
2

k 0i C cC 1
2

k 0i C c � 1
2

kiC1C c

kiC1C cC 1

k 0
iC1
C c

xR
k0

i
CcC1=2 kiCcC1=2

k0
iC1
Cc kiC1CcC1

�
N qki�kiC1

.xq/k0
i
�ki
.q/ki�kiC1�1=2.xq/kiC1�k0

iC1
.q/k0

iC1
�k0

i
�1=2

;

ki C cC 1
2

k 0i C cC 1
2

kiC1C c

k 0
iC1
C c

R
k0

iC1
Cc k0

i
CcC1=2

kiC1Cc kiCcC1=2
�

N qk0
iC1
�kiC1

.q/k0
iC1
�k0

i
�1=2.xq/k0

i
�ki
.q/ki�kiC1�1=2.xq/kiC1�k0

iC1

:

The contributions of the “q�” part of the numerators of the right-hand sides to the
Kashaev invariant are presented by �2. � /

�1=2 defined in Section 4.1, putting qkj Dxj

and qk0
j D x0j . The contributions of the denominators of the right-hand sides to

the Kashaev invariant are equal, and their contributions to the Kashaev invariant are
presented by

exp
�
� � �C'.ti�tiC1/�'

�
1�tiC1Ct 0iC1�

1
2N

�
C'.t 0iC1�t 0i/�'

�
1�t 0iCti�

1
2N

�
C� � �

�
;

Geometry & Topology, Volume 19 (2015)



906 T Ohtsuki and T Takata

setting tj D kj=N and t 0j D k 0j=N . Further, since

'
�
1� tiC1C t 0iC1�

1
2N

�
D '.1� tiC1C t 0iC1/�

1
2N
'0.1� tiC1C t 0iC1/CO

�
1

N 2

�
D '.1� tiC1C t 0iC1/C

1
2

log
�
1�

x0
iC1

xiC1

�
CO

�
1

N 2

�
;

'
�
1� t 0i C ti �

1
2N

�
D '.1� t 0i C ti/C

1
2

log
�
1� xi

x0
i

�
CO

�
1

N 2

�
;

the contributions from the “'.� � � � 1=2N /” parts to the Kashaev invariant are the
multiples of .1 � xi=x

0
i/
�1=2 and .1 � x0

iC1
=xiC1/

�1=2 , putting xj D e2�
p
�1tj

and x0j D e2�
p
�1t 0

j , and they are presented by �1. � /
�1=2 of a crossing defined

in Section 4.1. By using the remaining part, we let {V be the sum of the following
form:

{V D
1

N
.� � � C'.ti � tiC1/�'.1� tiC1C t 0iC1/C'.t

0
iC1� t 0i/�'.1� t 0i C ti/C � � � /

D
1

2�
p
�1

�
� � � CLi2

� xi

xiC1

�
�Li2

�x0
iC1

xiC1

�
CLi2

�x0
iC1

x0i

�
�Li2

�xi

x0i

�
C � � �

�
CO

� 1

N 2

�
;

where we obtain the second equality by (6). By using this {V , we can calculate the
asymptotic expansion of the Kashaev invariant, as we explain in Steps 2 and 3 below.

Step 2 In this step, we explain how we calculate the asymptotic expansion of the
Kashaev invariant for the 61 knot, before we explain a general case in Step 3.

The 61 knot is the following knot, which is the mirror image of the 61 knot.

0
�1

�1 k0�
1
2 0

k1�
1
2

k2C
1
2 0

0
k3�

1
2 0

k4C
1
2

0

�1
0

As mentioned in Step 1, the Kashaev invariant of the 61 knot is presented by the
following form, ignoring the qconstant terms:
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h61iN �

X
k0;:::;k4

xR0 0
k0�1=2 0

xR
k0�1=2 k1�1=2
�1 0

R0 0
k1�1=2 k2C1=2R

k3C1=2 k2C1=2
0 1

�R0 0
k3�1=2 k4C1=2R

0 k4C1=2
0 1

�

X
k0;:::;k4

N

.xq/N�k0�1=2.q/k0�1=2

�
N qk1

.xq/k0�k1
.q/k1�1=2.q/N�k0�1=2

�
N q�k1

.xq/N�k2�1=2.q/k2�k1
.xq/k1�1=2

�
N qk3

.q/k3�k2
.xq/k2�1=2.xq/N�k3�1=2

�
N q�k3

.xq/N�k4�1=2.q/k4�k3
.xq/k3�1=2

�
N

.q/N�k4�1=2.xq/k4�1=2

D

X
k1;k2;k3

N 4
� qk1 � q�k1 � qk3 � q�k3

ı �
.q/k1�1=2.xq/k1�1=2.q/k2�k1

� .xq/N�k2�1=2.xq/k2�1=2.q/k3�k2
.xq/N�k3�1=2.xq/k3�1=2

�
;

where we obtain the last equality by (3) and (4). Hence, by (5),

h61iN �N 4
X

k1;k2;k3

qk1 � q�k1 � qk3 � q�k3 � exp
�
N � yV

�k1

N
;
k2

N
;
k3

N

��
;

where we set

yV .t1; t2; t3/D
1
N

�
'.t1/�'.1� t1/C'

�
t2� t1C

1
2N

�
�'.t2/�'.1� t2/

C'
�
t3� t2C

1
2N

�
�'.t3/�'.1� t3/� 3'

�
1

2N

�
C 5'

�
1� 1

2N

��
:

Further, the “'.� � � C 1
2N
/” parts are calculated as

'
�
t2� t1C

1

2N

�
D '.t2� t1/C

'0.t2� t1/

2N
CO

�
1

N 2

�
D '.t2� t1/�

1

2
log
�
1�

x2

x1

�
CO

� 1

N 2

�
;

'
�
t3� t2C

1

2N

�
D '.t3� t2/�

1

2
log
�
1�

x3

x2

�
CO

�
1

N 2

�
:

Geometry & Topology, Volume 19 (2015)



908 T Ohtsuki and T Takata

Hence,

h61iN � e�
p
�1=2

X
k1;k2;k3

x1 �x
�1
1 �x3 �x

�1
3

��
1�

x2

x1

��
1�

x3

x2

���1=2

� exp
�
N � {V

�k1

N
;
k2

N
;
k3

N

��
;

where we set

{V .t1; t2; t3/D
1
N
.'.t1/�'.1� t1/C'.t2� t1/�'.t2/

�'.1� t2/C'.t3� t2/�'.t3/�'.1� t3//C 2 � 1

2�
p
�1
�
�2

6

D
1

2�
p
�1

V .x1;x2;x3/CO
�

1
N 2

�
;

putting xi D e2�
p
�1ti . As shown in [17; 18; 20], for hyperbolic knots with up to 7

crossings, we can calculate the asymptotic expansion of the sum of the above form as

h61iN � e�
p
�1=2N 3

Z
�1.D/

�1=2�2.D/
�1=2(35)

� exp.N � {V .t1; t2; t3// dt1 dt2 dt3;

� e�
p
�1=2N 3�1.D/

�1=2�2.D/
�1=2eN&.61/

.2�/3=2

N 3=2
.det.� {H //�1=2;(36)

where D is a diagram of the 61 knot mentioned above, the first approximation is an
approximation of a sum by an integral which is shown by the Poisson summation
formula, and the second approximation is obtained by the saddle point method at an
appropriate critical point .t1Ic ; t2Ic ; t3Ic/ of {V , letting {H be the Hesse matrix at this
critical point:

{H D
�

@2

@ti@tj
{V
�

i;j
:

Hence, we can obtain that

h61iN � eN&.61/ �N 3=2
�!.61/;

where

&.61/D {V .t1Ic ; t2Ic ; t3Ic/;

!.61/D e�
p
�1=2�1.D/

�1=2�2.D/
�1=2.2�/3=2.det.� {H //�1=2:
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We note that &.61/ presents the complex hyperbolic volume of the complement of the
61 knot. By the above formula, we have that

1

!.61/2
D��1.D/�2.D/

1

.2�/3
det.� {H /

:
D
p
�1�1.D/�2.D/ det H;

where we obtain the second equality, since xi
@
@xi
D

1

2�
p
�1

@
@ti

and hence

{H � 2�
p
�1H:

Therefore, from the definition of !2 ,

!.61/
2
D !2.D/:

This formula is the required formula in this step. See Example 4.11 below, for numerical
verification of this formula.

Remark 4.7 In this above calculation of the asymptotic expansion of the Kashaev
invariant, we have the following nontrivial two steps in (35) and (36) respectively.

(i) In (35), we approximate a sum by an integral. In fact, in a formal sense, such
an approximation is a standard method (and we can guess the form of the resulting
formula by formal calculation) but to be precise, this approximation is nontrivial since
there is a large parameter N in the exponent of the summand of the sum. As shown in
[17; 18; 20], we can rigorously justify this approximation for hyperbolic knots with up
to 7 crossings by using the Poisson summation formula, where we must check some
technical inequalities of the assumption of the Poisson summation formula; see [17;
18; 20] for details. In a general case, it is necessary to check such technical inequalities
to justify the approximation of (35).

(ii) In (36), we use the multivariable saddle point method. In fact, we can guess the
form of the resulting formula by formal calculation but to be precise, a nontrivial point
is to make a concrete homotopy between the original domain of the integral and a
new domain containing a critical point of the potential function, which satisfies the
assumption of the saddle point method. For hyperbolic knots with up to 7 crossings,
such a homotopy is concretely given in [17; 18; 20]. But in general, it is a technically
complicated step to make such a homotopy concretely when we have many variables
(ie when the knot diagram has many crossings).

Step 3 In this step, we extend the calculation of Step 2 to a general case. The aim of
this step is to show Proposition 4.9 below.
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We recall that in the calculation of the asymptotic expansion of the Kashaev invariant,
we have nontrivial two steps in (35) and (36). As mentioned in Remark 4.7, we can
guess the form of the resulting formula by formal calculation in each of these steps,
though, to be precise, we must check some technical inequalities of the assumptions of
the Poisson summation formula and the saddle point method to justify these steps; for
details see [17; 18; 20]. In the general case, we assume these as follows.

Assumption 4.8 We assume that, a knot diagram D satisfies the above mentioned
assumptions of the Poisson summation formula and the saddle point method.

Proposition 4.9 Let K be an open hyperbolic knot, and let D be a parameterized
diagram of K satisfying Assumptions 4.2 and 4.8. Then

!.K/2
:
D !2.D/:

Proof We show the proposition by extending the calculation of Step 2 to a general case,
calculating the asymptotic expansion of the Kashaev invariant (by formal calculation
in (35) and (36) by Assumption 4.8).

We consider an oriented open knot K , and consider a parameterized diagram D of K :

1

x1

x2 1

1
x3 1

We let n1 be the number of counterclockwise angles, let n2 be clockwise angles, let n

be the number of hyperbolicity parameters, let nc be the number of crossings (ignoring
dotted lines), and let n0 be the number of edges parameterized by 1 (ignoring dotted
lines). Since n0 is equal to the number of angles marked by dots in the above picture,
we have that

(37) n1C n2C n0 D 4nc � 4; 2.n0C n/D 4nc � 2:
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Similarly as in the case of the 61 knot, we can obtain that

hKiN � e.n2�n1/�
p
�1=4N ncCn�.n1Cn2/=2

�

Z
�1.D/

�1=2�2.D/
�1=2 exp.N � {V .t1; : : : ; tn//dt1 � � � dtn;

where
{V .t1; : : : ; tn/D

1

2�
p
�1

V .x1; : : : ;xn/CO
�

1

N 2

�
;

putting xi D e2�
p
�1ti . We note that ncCn�.n1Cn2/=2D .nC3/=2 by (37). Hence,

we obtain the following approximations (formally, in general):

hKiN � e.n2�n1/�
p
�1=4N .nC3/=2

�

Z
�1.D/

�1=2�2.D/
�1=2 exp.N � {V .t1; : : : ; tn//dt1 � � � dtn

� e.n2�n1/�
p
�1=4N .nC3/=2�1.D/

�1=2�2.D/
�1=2eN&.K / .2�/

n=2

N n=2

� .det.� {H //�1=2

� e.n2�n1/�
p
�1=4N 3=2�1.D/

�1=2�2.D/
�1=2eN&.K /.2�/n=2

� .det.� {H //�1=2:

Therefore

(38) hKiN � eN&.K /
�N 3=2

�!.K/;

where

&.K/D {V .t1Ic ; : : : ; tnIc/;

!.K/D e.n2�n1/�
p
�1=4�1.D/

�1=2�2.D/
�1=2.2�/n=2.det.� {H //�1=2:

Further,

1

!.K/2
D e.n1�n2/�

p
�1=2�1.D/�2.D/

1

.2�/n
det.� {H /

D e.n1�n2�n/�
p
�1=2�1.D/�2.D/ det H

:
D
p
�1�1.D/�2.D/ det H;

since n1 � n2 � n is odd by (37). Hence, from the definition of !2 , we obtain the
required formula of the proposition.
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Example 4.10 We numerically verify Proposition 4.9 for the 52 knot, which is the knot
shown in Section 3.2. As shown in Example 3.4, we obtain the values of hyperbolicity
parameters and the complex volume. Further, from the definition of !2 , we have that

H D

 
1Cx1

1�x1
C

x2

x1�x2
�

x2

x1�x2

�
x2

x1�x2

x2

x1�x2
C 1

!
; �1.D/D 1�

x2

x1

;

!2.D/D
1

p
�1�1.D/ det H

D�0:4143341829 : : :C
p
�1 � 0:117243382 : : : ;

where D is the 52 knot diagram shown in Section 3.2. Hence,

!.52/D !2.D/
1=2
D 0:09019057740 : : :C

p
�1 � 0:6499757866 : : : ;

where we choose the sign of the square root depending the orientation of the domain of
the integral of the saddle point method; for details, see [17]. Further, from the definition
of the Kashaev invariant, we have that

h52iN D

X
0�i�j<N

N 3q�1

.q/i.xq/i.q/j�i.xq/j .xq/N�j�1

I

see [17]. By calculating this sum concretely as shown in the following table, we
can numerically observe that the limit of h52iN e�N&.52/N�3=2 tends to the above
mentioned value of !.52/, noting that q! 1 as N !1:

N qh52iN e�N&.52/N�3=2

50 0:09574104848 : : :C
p
�1 � 0:6581517399 : : :

100 0:09297541546 : : :C
p
�1 � 0:6540225631 : : :

200 0:09158517383 : : :C
p
�1 � 0:6519891312 : : :

Example 4.11 We numerically verify Proposition 4.9 for the 61 knot, which is the knot
shown in Section 2.2. As shown in Example 3.5, we obtain the values of hyperbolicity
parameters and the complex volume. Further, by using the Hesse matrix shown in
Section 4.1, we have that

!2.D/D
1

p
�1�1.D/ det H

D�0:2667003051 : : :C
p
�1 � 0:07480075491 : : : ;

where D is the 61 knot diagram shown in Section 2.2. Hence

!.61/D .�!2.D//
1=2
D�0:5213883634 : : :C

p
�1 � 0:07173228265 : : : ;

where we choose the sign of !2.D/ depending the sign of the formula of Proposition 4.9,
and choose the sign of the square root depending the orientation of the domain of the
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integral of the saddle point method; for details, see [20]. Further, from the definition of
the Kashaev invariant, we have that

h61iN D

X
0�i�j�k<N

N 4q�1

.q/i.xq/i.q/j�i.xq/j .xq/N�j�1.q/k�j .xq/k.xq/N�k�1
;

as shown before in this section. By calculating this sum concretely as shown in the
following table, we can numerically observe that the limit of h61iN e�N&.61/N�3=2

tends to the above mentioned value of !.61/:

N h61iN e�N&.61/N�3=2

50 �0:5121772692 : : :C
p
�1 � 0:1473909514 : : :

100 �0:5181425383 : : :C
p
�1 � 0:1096254180 : : :

200 �0:5201050838 : : :C
p
�1 � 0:09068263776 : : :

4.3 Calculation of !2 for open two-bridge knot diagrams

In this section, we calculate !2 for open two-bridge knot diagrams. To calculate it, we
introduce an operator invariant ‰ and present !2 in terms of ‰ in Lemma 4.14 below.
The aim of this section is to show this lemma.

As we explain in Section 3.3, any open two-bridge knot diagram can be obtained by
gluing copies of elementary diagrams (19), ie as a plat closure of a product of copies
of �1 and ��1

2
. We consider such a diagram with hyperbolicity parameters. The

hyperbolicity equation at the strand of xi is given by

(39)

8̂<̂
:
.1�xi/.1�

xiC1

xi
/D .1� xi

xi�1
/.1� 1

xi
/ if the strand of xi is between �1

and �1 or ��1
2

and ��1
2

,

.1�xi/.1�
1
xi
/D .1� xi

xi�1
/.1�

xiC1

xi
/ otherwise.

As mentioned in the definition of a parameterized diagram, we set x0D1 and xmD 0,
and assume that xi 2C�f0g for any i D 1; 2; : : : ;m� 1.

Lemma 4.12 We consider a solution6 of the system of the equations in (39) for
i D 1; 2; : : : ;m � 1 which satisfies that x1 ¤ 0; 1. Then xi�1 ¤ xi ¤ 1 for any
i D 1; 2; : : : ;m.

6 When we introduced the hyperbolicity equation in Section 2.2, we assumed that the values of
both sides of the equation are nonzero. In Lemma 4.12, we consider a solution without supposing this
assumption.
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Proof If x2 were equal to 1, it follows from (39) that

.1�x1/
�
1�

1

x1

�
D 1�

1

x1

;

which contradicts the assumption that x1 ¤ 0; 1. Hence, x2 ¤ 1.

We show the lemma by induction on i . Assuming that the lemma holds for any j � i ,
we show the lemma for the case of i C 1.

If xiC1 was equal to 1, it follows from (39) that

.1�xi/
�
1�

1

xi

�
D

�
1�

xi

xi�1

��
1�

1

xi

�
:

Hence, xi D 1 or xi�1 D 1, which contradicts the assumption of the induction.
Therefore, xiC1 ¤ 1.

If xi was equal to xiC1 , we can show by (39) that xi�1Dxi or xiD1. This contradicts
the assumption of the induction. Hence, xi ¤ xiC1 , as required.

For a solution satisfying Lemma 4.12, it follows from (39) that the values of hyperbol-
icity parameters xi are recursively determined from x1 (and x0 D1) by

(40) xiC1 D

8̂<̂
:

xi C 1� xi

xi�1
if the strand of xi is between �1

and �1 or ��1
2

and ��1
2
;

xi C
.xi�1/2

1�xi=xi�1
otherwise.

Putting x1D x (and x0D1), we can regard xi as a rational function of x . We define
this rational function fi.x/ by f1.x/D x (and f0.x/D1) and

(41) fiC1 D

8̂<̂
:
fi C 1� fi

fi�1
if the strand of xi is between �1

and �1 or ��1
2

and ��1
2

,

fi C
.fi�1/2

1�fi=fi�1
otherwise.

See Sakuma and Weeks [24] for another construction of this function, and see Appen-
dix C for a construction of the numerator and the denominator of this function. The
system of hyperbolicity equations is rewritten fm.x/D 0.

We choose a root x1 of fm.x/ D 0. Then by Lemma D.9, x1 ¤ 1. Hence, by
Lemma 4.12, the values of xi are recursively determined by (40), assuming7 that
xi 2C�f0g for each i D 1; 2; : : : ;m� 1, as we did in the definition of hyperbolicity
parameters.

7 For many two-bridge knots, any root of fm.x/D 0 gives xi 2C�f0g for any i D 1; 2; : : : ;m� 1 ,
but there exist some exceptional cases; see Remark D.12 for details.
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Lemma 4.13 The above values of xi satisfy Assumption 4.2.

Proof By Lemma 4.12 and the definition of hyperbolicity parameters, xi�1¤xi¤0; 1.
Hence, from the definition of �1.D/ and �2.D/, they are nonzero.

It is sufficient to show that the Hesse matrix H is nondegenerate. We recall that entries
of H are equal to differential coefficients of hyperbolicity equations. We consider the
tangent space of the space determined by each hyperbolicity equation at the root given
by the xi . The nondegeneracy of H means the transversality of the family of such
tangent spaces. This condition is equivalent to the nondegeneracy of fm.x/ D 0 at
the root x . Since the equation fm.x/D 0 has no repeated root by Lemma D.8, this
condition holds. Hence H is nondegenerate as required.

By Lemma 4.13, we can define !2.D/ of the above mentioned diagram D of an open
two-bridge knot.

Lemma 4.14 Let D be a diagram of any open two-bridge knot, obtained by gluing
copies of elementary diagrams. Then

1
p
�1!2.D/

D‰.D/;

where we define ‰.D/ to be the composition of ‰ of elementary diagrams whose
values are given as follows:

‰

 
1

1

1

x1 1

!
D

�
1 x1

1�x1

�
;(42)

‰

 
1

1

xi

xiC1

1

1

!
D

xiC1

xi

0@�xi .xiC1�1/

.xi�1/xiC1
1

xi�xiC1

xiC1
�

xi�1
xiC1�1

1A ;(43)

‰

 
1

1

xi

xiC1

1

1

!
D

xiC1

xi

0@xi .xiC1�1/

.xi�1/xiC1
1

xi�xiC1

xiC1

xi�1
xiC1�1

1A ;(44)

‰

 1 xm�1

0

1

1

!
D

 
1

1�xm�1

1

!
;(45)

‰

 1 xm�1

0

1

1

!
D

 
1

xm�1�1

1

!
:(46)
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Proof By Definition 4.4, !2.D/ is defined from �1.D/, �2.D/ and the determinant
of the Hesse matrix H . We calculate each of them in terms of elementary diagrams in
the following of this proof.

From the definition of �1 , �1.D/ is equal to the product of �1 of elementary
diagrams, whose values are given as follows:

�1

 
1

1

1

x1 1

!
D 1;

�1

 
1

1

xi

xiC1

1

1

!
D 1�

xiC1

xi
;

�1

 
1

1

xi

xiC1

1

1

!
D 1�

xiC1

xi
;

�1

 1 xm�1

0

1

1

!
D 1;

�1

 1 xm�1

0

1

1

!
D 1:

Further, from the definition of �2 , �2.D/ is equal to the product of �2 of elementary
diagrams, whose values are given as follows:

�2

 
1

1

1

x1 1

!
D 1; �2

 
1

1

1

x1 1

!
D

1

x2
1

;

�2

 
1

1

xi

xiC1

1

1

!
D

1

x2
iC1

; �2

 
1

1

xi

xiC1

1

1

!
D

1

x2
iC1

;

�2

 
1

1

xi

xiC1

1

1

!
D x2

i ; �2

 
1

1

xi

xiC1

1

1

!
D x2

i ;
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�2

 
1

1

xi

xiC1

1

1

!
D 1; �2

 
1

1

xi

xiC1

1

1

!
D 1;

�2

 1
xm�1

0

1

1

!
D 1; �2

 1
xm�1

0

1

1

!
D x2

m�1;

�2

 1
xm�1

0

1

1

!
D 1; �2

 1
xm�1

0

1

1

!
D x2

m�1:

For an elementary tangle diagram T , we define y�2.T / from �2.T / by multiplying

1

x2
j

when the top of T is parameterized by 1 xj 1

and multiplying

x2
jC1 when the bottom of T is parameterized by 1 xjC1 1 :

Then we can verify y�2.T /D 1 for each elementary diagram T . Hence, �2.D/D 1.

We calculate the contribution of each elementary diagram to the Hesse matrix. The
contribution of the diagram

1

1

xi

xiC1

1

1

to the potential function is given by

� � � CLi2
� 1

xi

�
�Li2

�xiC1

xi

�
CLi2.xiC1/C � � � :

Hence its contribution to the Hesse matrix is given by0BBBBBB@

: : :
: : :

: : : � � � C
1

xi�1
�

xiC1

xi�xiC1

xiC1

xi�xiC1

xiC1

xi�xiC1
�

xiC1

xi�xiC1
C

xiC1

1�xiC1
C � � �

: : :

: : :
: : :

1CCCCCCA :
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We calculate the determinant of a matrix of the above form recursively, as follows. For
an indeterminant y , we let

det

0@: : : : : :

: : : � � � Cy

1ADAiyCBi ;

det

0BBB@
: : :

: : :

: : : � � � C
1

xi�1
�

xiC1

xi�xiC1

xiC1

xi�xiC1

xiC1

xi�xiC1
�

xiC1

xi�xiC1
C

xiC1

1�xiC1
Cy

1CCCADAiC1yCBiC1:

Then we have that�
AiC1 BiC1

�
D
�
Ai Bi

�
�

0@ 1
xi�1
�

xiC1

xi�xiC1

�
1

xi�1
�

xiC1

xi�xiC1

��
�

xiC1

xi�xiC1
C

xiC1

1�xiC1

�
�

�
xiC1

xi�xiC1

�2

1 �
xiC1

xi�xiC1
C

xiC1

1�xiC1

1A :
Including the contribution of �1 , we set

‰

 
1

1

xi

xiC1

1

1

!

D

�
1�

xiC1

xi

�
�

0@ 1
xi�1
�

xiC1

xi�xiC1

�
1

xi�1
�

xiC1

xi�xiC1

��
�

xiC1

xi�xiC1
C

xiC1

1�xiC1

�
�
� xiC1

xi�xiC1

�2
1 �

xiC1

xi�xiC1
C

xiC1

1�xiC1

1A
D

xiC1

xi

0@�xi .xiC1�1/

.xi�1/xiC1
1

xi�xiC1

xiC1
�

xi�1
xiC1�1

1A ;
as in (43). Similarly, the contribution from the diagram

1

1

xi

xiC1

1

1
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to the Hesse matrix is given by0BBBBBB@

: : :
: : :

: : : � � � �
1

xi�1
C

xiC1

xi�xiC1
�

xiC1

xi�xiC1

�
xiC1

xi�xiC1

xiC1

xi�xiC1
�

xiC1

1�xiC1
C � � �

: : :

: : :
: : :

1CCCCCCA :

Hence, similarly as above, we set

‰

 
1

1

xi

xiC1

1

1

!
D .1�

xiC1

xi
/

�

0@� 1
xi�1
C

xiC1

xi�xiC1

�
1

xi�1
�

xiC1

xi�xiC1

��
�

xiC1

xi�xiC1
C

xiC1

1�xiC1

�
�
� xiC1

xi�xiC1

�2
1

xiC1

xi�xiC1
�

xiC1

1�xiC1

1A
D

xiC1

xi

0@xi .xiC1�1/

.xi�1/xiC1
1

xi�xiC1

xiC1

xi�1
xiC1�1

1A ;
as in (44). Further, the contribution from the diagram

1

1

1

x1 1

to the Hesse matrix is given by 0@ x1

1�x1
C � � �

: : :

: : :
: : :

1A :
Hence we define ‰ of this diagram by (42). Furthermore, by similar arguments as
above, we define ‰ of elementary diagrams of the bottom part by (45) and (46). For
an open two-bridge knot diagram D obtained by gluing copies of elementary diagrams,
‰.D/ is defined to be the product of ‰ of such elementary diagrams as in the statement
of the lemma.

Therefore, by the above construction of ‰ , we have that

‰.D/D�1.D/�2.D/ det H:

Hence, from the definition of !2 , we obtain the required formula of the lemma.
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5 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We introduce {̂ , {‰ and �m ,  m modify-
ing ŷ , ‰ , and reduce the proof of the theorem to Proposition 5.1.

For an open two-bridge knot diagram D , we define {̂ .D/ to be ŷ of the diagram
obtained from D by � rotation and by exchanging the positive and negative crossings:

{̂

0BBBBBBBBBBBBB@

1 1

1

1 x1

x2

x3 11

1CCCCCCCCCCCCCA
D ŷ

0BBBBBBBBBBBBB@

1 1y3

y2

1
y1 1

0 1

1CCCCCCCCCCCCCA
:

In other words, {̂ is defined by the following formulas:

{̂

 
1

1

1

x1 1

!
D

1

.x1� 1/3

�
1 �1 2

�
;

{̂

 
1

1

1

x1 1

!
D

1

.x1� 1/3

�
2 �1 1

�
;

{̂

 
1

1

xi

xiC1

1

1

!
D

1

xi

0@1 �1 1

0 � 1
xi

2
xi

0 0 1

1A ;

{̂

 
1

1

xi

xiC1

1

1

!
D

1

xi

0@ 1 0 0
2
xi
�

1
xi

0

1 �1 1

1A ;

{̂

 1 xm�1

0

1

1

!
D

xm�1� 1

x2
m�1

0@ 1
2

xm�1

0

1A :
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Further, similarly as the calculation in Section 3, we can show that

{̂

 1 xm�1

0

1

1

!
D

1�xm�1

x2
m�1

0@ 0
2

xm�1

1

1A :
Without assuming that xm D 0, we can set

{̂

 
1 xm 1

!
D {̂

 
1 xm 1

!
D

xm�1� 1

xm�1

0@ 1

0

�1

1A ;
consistent with the above definition.

We define {‰ by the formulas

{‰

 
1

1

1

x1 1

!
D

�
1 x1

1�x1

�
;

{‰

 
1

1

1

x1 1

!
D

�
1 x1

x1�1

�
;

{‰

 
1

1

xi

xiC1

1

1

!
D

xiC1

xi

0@�xi .xiC1�1/

.xi�1/xiC1
1

xi�xiC1

xiC1
�

xi�1
xiC1�1

1A ;

{‰

 
1

1

xi

xiC1

1

1

!
D�

xiC1

xi

0@xi .xiC1�1/

.xi�1/xiC1
1

xi�xiC1

xiC1

xi�1
xiC1�1

1A ;

{‰

 1 xm�1

0

1

1

!
D

 
1�xm

1�xm�1

1

!
;

{‰

 1 xm�1

0

1

1

!
D

 
xm�1

1�xm�1

1

!
;

without assuming that xm D 0. When xm D 0, this definition is equal to the definition
of ‰ except for the sign of {‰.��1

2
/. Hence, ‰.D/ :D {‰.D/ when xm D 0.
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Without assuming that xm D 0, we can set

{‰

 
1 xm 1

!
D {‰

 
1 xm 1

!
D�

xm�1.xm� 1/

xm.xm�1� 1/

�
0

1

�
;

consistent with the above definition.

We recall that our diagram of an open two-bridge knot is a plat closure of a product of
copies of �1 and ��1

2
. By the hyperbolicity equations, the values of xi are recursively

determined by (40). Putting x1 D x (and x0 D1), we can regard xi as a rational
function of x ; we let it be fi.x/. The hyperbolicity equation of the knot is given by
fm.x/D 0.

Without assuming that xm D 0, we set

�m.x/D .xm� 1/2 {̂ .D/;  m.x/D
1� xm

xm�1

1�xm

{‰.D/;

as rational functions of x .

Proof of Theorem 1.1 The required formula of the theorem is rewritten as

2

�.K/
D

1
p
�1!2.D/

for a diagram D of an open two-bridge knot K . By (34), the left-hand side is equal
to ŷ .D/. By Lemma 4.14, the right-hand side is equal to ‰.D/. They are equal
to {̂ .D/ and {‰.D/ respectively, as we explained above. Further, they are equal
to �m.c/ and  m.c/ respectively, for a root xD c of fm.x/D 0. Since they are equal
by Proposition 5.1 below, we obtain the required formula of the theorem.

As mentioned above, the proof of the theorem is reduced to the following proposition.

Proposition 5.1 �m.x/D  m.x/

Proof We recall that our diagram of an open two-bridge knot is a plat closure of
a product of copies of �1 and ��1

2
. We let the end of this product be � � � b3b2b1b0 ,

where b3; b2; b1; b0 D �1 or ��1
2

. We note that the knot type does not depend on the
choice of b0 . Further, by the symmetry of Lemma 5.2 below, we can assume that
b1 D �

�1
2

. In the following of this proof, we prove the proposition by induction on m,
in the four cases of the choices of b3 and b2 . The initial cases of the induction (the
cases where m� 3) hold by Example 5.3 below. In the following proof, we show the
required formula of the case of m, assuming the case of m0 for m0 <m.
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We note that fk.x/ is not equal to 1. (Because, the equation fk.x/ D 0 is the
hyperbolicity equation of some two-bridge knot, which is a hyperbolic knot or the
.2; n/ torus knot. In any case, fk.x/ is a nontrivial rational function of x . In particular,
it is not equal to 1.)

We further note that fk.x/ and fkC1.x/ are not equal. (Because, if fk.x/ and fkC1.x/

were equal, we can show by the recursive formula of xi that fj .x/D 1 for some j ,
which contradicts the above claim.)

For simplicity, we denote �i.x/,  i.x/, fi.x/ by �i ,  i , fi . By definition, fi D xi ,
without assuming that xm D 0. We set

Pi D
fiC1

fi

0@�fi .fiC1�1/

.fi�1/fiC1
1

fi�fiC1

fiC1
�

fi�1
fiC1�1

1A ;
Qi D�

fiC1

fi

0@fi .fiC1�1/

.fi�1/fiC1
1

fi�fiC1

fiC1

fi�1
fiC1�1

1A ;
vm D

fm�1�fm

fm.fm�1� 1/

�
0

1

�
;

P 0i D
1

fi

0B@1 �1 1

0 � 1
fi

2
fi

0 0 1

1CA ;
Q0i D

1

fi

0B@ 1 0 0
2
fi
�

1
fi

0

1 �1 1

1CA ;
v0m D

.fm�1� 1/.fm� 1/2

fm�1

0@ 1

0

�1

1A :
By definition, fi satisfies the recursive formula (41). For simplicity, in the following of
this proof, we write formulas of the case of mD 10. (We can easily obtain the formulas
of general m from them by replacing 10; 9; 8; 7 with m;m� 1;m� 2;m� 3.)

Case 1: b3 D b2 D �
�1
2

In this case, we have that

(47) f10 D f9C 1�
f9

f8

; f9 D f8C 1�
f8

f7

:

In the definition of {‰ , the differences among  8 ,  9 ,  10 are presented by

v8; Q8v9; Q8Q9v10:
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These vectors are linearly dependent. By calculating their coefficient concretely, we
have that

.f7� 1/f9

.f7�f8/.f9� 1/
�v8�

f8Cf9�f8f9�f8f10

.f8�f9/.f10� 1/
�Q8v9C

f9

f9�f10

�Q8Q9v10 D 0:

This is rewritten as the following linear relation among  8 ,  9 ,  10 :

.f7� 1/f9

.f7�f8/.f9� 1/
� 8�

f8Cf9�f8f9�f8f10

.f8�f9/.f10� 1/
� 9C

f9

f9�f10

� 10 D 0:

By (47), this is rewritten as

(48)
f9

f8

 8� 2f8 9Cf8f9 10 D 0:

Similarly as above, we can show the following linear relation among  7 ,  8 ,  9 :

(49) �
.f6� 1/.f7�f8/f8

.f6�f7/.f8� 1/
 7� 2f7 8Cf7f8 9 D 0;

noting that, in this case, we can not use f8 D f7C 1� f7

f6
at the present stage.

Similar to the case of {̂ , we show the following linear relation among �7 , �8 , �9 , �10 :

f6.f9� 1/

.f6� 1/.f7� 1/2f7

�7C
f7.f9� 2/

.f7� 1/.f8� 1/
�8

�
f 2

8
.2f8� 1/

.f8� 1/.f9� 1/
�9C

f8f
3

9
.f8� 1/

.f9� 1/.f10� 1/2
�10 D 0:

By (47), this is rewritten as

(50)
f6f8.f8� 1/

.f6� 1/f 3
7

�7C .f9� 2/�8�f8.2f8� 1/�9Cf
2

8 f9�10 D 0:

Since  7 D �7;  8 D �8;  9 D �9 by the assumption of the induction, we can elimi-
nate �7 ,  8 , �8 ,  9 , �9 by using (48), (49), (50). Then we obtain

.
.f6� 1/.f7�f8/f8

.f6�f7/f7.f8� 1/
C
f6f8.f8� 1/

.f6� 1/f 3
7

/ 7 D f
2

8 f9. 10��10/:

To show the proposition, it is sufficient to show that  10 D �10 . Hence, it is sufficient
to show that

.f6� 1/.f7�f8/f8

.f6�f7/f7.f8� 1/
C
f6f8.f8� 1/

.f6� 1/f 3
7

D 0:
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This is rewritten as

(51)
�
�f8Cf7C 1�

f7

f6

��
�f8Cf7C

.f7� 1/2

1�f7=f6

�
D 0;

which holds by the recursive formula of fi . Therefore, we obtain the proposition in
this case.

Case 2: b3 D �1 and b2 D �
�1
2

In this case, we have that

(52) f10 D f9C 1�
f9

f8

; f9 D f8C
.f8� 1/2

1�f8=f7

:

In the definition of {‰ , the differences among  8 ,  9 ,  10 are presented by

v8; Q8v9; Q8Q9v10:

These vectors are linearly dependent. By calculating their coefficient concretely, simi-
larly as in Case 1, we have that

.f7� 1/f9

.f7�f8/.f9� 1/
 8�

f8Cf9�f8f9�f8f10

.f8�f9/.f10� 1/
 9C

f9

f9�f10

 10 D 0:

By (52), this is rewritten as

(53)
f7.f8� 1/

f8.f7�f8/
 8�

2f8

f9

 9Cf8 10 D 0:

Similarly, by calculating the coefficients of the linear dependence among

v7; P7v8; P7Q8v9;

we have that

�
.f6� 1/f8

.f6�f7/.f8� 1/
 7C

f7�f8Cf7f8�f7f9

.f7�f8/.f9� 1/
 8C

f8

f8�f9

 9 D 0:

By (52), this is rewritten as

(54)
f6� 1

f6�f7

 7C
f7f8� 2f7Cf8

.f7�f8/f8

 8C
f7�f8

f7.f8� 1/
 9 D 0:

Further, in the definition of {̂ , by calculating the coefficients of the linear dependence
among

v07; P 07v
0
8; P 07Q08v

0
9; P 07Q08Q09v

0
10;
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we have that

f6.f9� 1/

f7.f6� 1/.f7� 1/2
�7�

f7.1� 2f8Cf8f9/

.f7� 1/.f8� 1/2
�8

C
f 2

8
.2f8� 1/

.f8� 1/.f9� 1/
�9�

f8f
3

9
.f8� 1/

.f9� 1/.f10� 1/2
�10 D 0:

By (52), this is rewritten as

(55)
f6.f8� 1/3

f7.f6� 1/.f7�f8/2
�7�

f7.1� 2f8Cf8f9/

f8.f7�f8/
�8C.2f8�1/�9�f8f9�10D0:

Since  7 D �7;  8 D �8;  9 D �9 by the assumption of the induction, we obtain the
following relation from (53) and (55):

f6.f8� 1/3

f7.f6� 1/.f7�f8/2
 7�

f7.1� 2f8Cf9/

f8.f7�f8/
 8� 9 D f8f9.�10� 10/:

To show the proposition, it is sufficient to show that  10 D �10 . Hence, it is sufficient
to show that

f6.f8� 1/3

f7.f6� 1/.f7�f8/2
 7�

f7.1� 2f8Cf9/

f8.f7�f8/
 8� 9 D 0:

By using (52), this is rewritten as

f6.f8� 1/3

f7.f6� 1/.f7�f8/2
 7�

f7.f8� 1/.f7f8� 2f7�f8/

f8.f7�f8/2
 8� 9 D 0:

Further, by using (54), we can eliminate  8 and  9 . Then we obtain�
f6.f8� 1/3

f7.f6� 1/.f7�f8/2
C
.f6� 1/f7.f8� 1/

.f6�f7/.f7�f8/

�
 7 D 0:

Since the coefficient is  7 is rewritten as (51), this formula holds similarly as in Case 1.
Therefore, we obtain the proposition in this case.

Case 3: b3 D b2 D �1 In this case, we have that

(56) f10 D f9C
.f9� 1/2

1�f9=f8

; f9 D f8C 1�
f8

f7

:

In the definition of {‰ , the differences among  8 ,  9 ,  10 are presented by

v8; P8v9; P8Q9v10:
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These vectors are linearly dependent. By calculating their coefficient concretely, simi-
larly as in Case 1, we have that

�
.f7� 1/f9

.f7�f8/.f9� 1/
 8�

f8�f9Cf8f9�f8f10

.f8�f9/.f10� 1/
 9C

f9

f9�f10

 10 D 0:

By (56), this is rewritten as

(57) �
f9

f8

 8C
f8f9� 2f8Cf9

f9� 1
 9C

f9.f8�f9/
2

f8.f9� 1/2
 10 D 0:

Similarly, by calculating the coefficients of the linear dependence among

v7; P7v8; P7P8v9;

we have that

.f6� 1/f8

.f6�f7/.f8� 1/
 7C

�f7�f8Cf7f8Cf7f9

.f7�f8/.f9� 1/
 8C

f8

f8�f9

 9 D 0:

By (56), this is rewritten as

(58)
.f6� 1/.f7�f8/

.f6�f7/f7.f8� 1/
 7C

2

f8

 8� 9 D 0:

Further, in the definition of {̂ , by calculating the coefficients of the linear dependence
among

v07; P 07v
0
8; P 07P 08v

0
9; P 07P 08Q09v

0
10;

we have that

�
f6.f9� 1/

.f6� 1/f7.f7� 1/2.f8� 1/
�7�

f7.f9� 2/

.f7� 1/.f8� 1/2
�8

C
f 2

8
.1� 2f8Cf8f9/

.f8� 1/2.f9� 1/2
�9C

f8f
3

9

.f9� 1/.f10� 1/2
�10 D 0:

By (56), this is rewritten as

(59) �
f6.f8� 1/

f 3
7
.f6� 1/

�7�
f9� 2

f8

�8C
1� 2f8Cf8f9

f9� 1
�9C

f9.f8�f9/
2

f8.f9� 1/2
�10 D 0:

Since  7 D �7;  8 D �8;  9 D �9 by the assumption of the induction, we obtain the
following relation from (57) and (59),

f6.f8� 1/

f 3
7
.f6� 1/

 7�
2

f8

 8C 9 D
f9.f8�f9/

2

f8.f9� 1/2
.�10� 10/:
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To show the proposition, it is sufficient to show  10 D �10 . Hence, it is sufficient
to show

f6.f8� 1/

f 3
7
.f6� 1/

 7�
2

f8

 8C 9 D 0:

By this formula and (58), we can eliminate  8 and  9 . Then we obtain�
f6.f8� 1/

f 3
7
.f6� 1/

C
.f6� 1/.f7�f8/

.f6�f7/f7.f8� 1/

�
 7 D 0:

Since the coefficient of  7 is rewritten as (51), this formula holds similarly as in Case 1.
Therefore, we obtain the proposition in this case.

Case 4: b3 D �
�1
2

and b2 D �1 In this case, we have that

(60) f10 D f9C
.f9� 1/2

1�f9=f8

; f9 D f8C
.f8� 1/2

1�f8=f7

:

We set

 0k D
 k

.xk�1� 1/.xk � 1/2
; �0k D

�k

.xk�1� 1/.xk � 1/2

for k D 7; 8; 9; 10.

In the definition of {‰ , the differences among  8 ,  9 ,  10 are the same as in Case 3,
and we have that

�
.f7� 1/f9

.f7�f8/.f9� 1/
 8�

f8�f9Cf8f9�f8f10

.f8�f9/.f10� 1/
 9C

f9

f9�f10

 10 D 0:

By replacing  k with  0
k

and by using (60), this is rewritten as

(61) f7f9.f8� 1/ 08�f
2

8 .�2f8Cf9Cf8f9/ 
0
9�f8f

3
9 .f8� 1/ 010 D 0:

Similarly, by calculating the coefficients of the linear dependence among

v7; Q7v8; Q7P8v9;

we have that

�
.f6� 1/f8.f9� 1/

.f6�f7/.f8� 1/
 7C

f7�f8Cf7f8�f7f9

f7�f8

 8C
f8.f9� 1/

f8�f9

 9 D 0:
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By replacing  k with  0
k

and by using (60), this is rewritten as

(62)
.f6� 1/2.f7� 1/2f 2

8

.f6�f7/.f8� 1/.f9� 1/
 07C .�2f7Cf8Cf7f8/ 

0
8

C
f 2

8
.f7�f8/.f9� 1/

f7.f8� 1/
 09 D 0:

Further, in the definition of {̂ , by calculating the coefficients of the linear dependence
among

v07; Q07v
0
8; Q07P 08v

0
9; Q07P 08Q09v

0
10;

we have that

f6.f9� 1/

f7.f6� 1/.f7� 1/2
�7�

f7.1� 2f8Cf8f9/

.f7� 1/.f8� 1/2
�8

C
f 2

8
.1� 2f8Cf8f9/

.f8� 1/.f9� 1/2
�9C

f8f
3

9
.f8� 1/

.f9� 1/.f10� 1/2
�10 D 0:

By replacing �k with �0
k

and by using (60), this is rewritten as

(63)
f6.f9� 1/

f7

�07�f7.1� 2f8Cf8f9/�
0
8Cf

2
8 .1� 2f8Cf8f9/�

0
9

Cf8f
3

9 .f8� 1/�010 D 0:

Since  0
7
D �0

7
;  0

8
D �0

8
;  0

9
D �0

9
by the assumption of the induction, we obtain the

following relation from (61) and (63):

f6.f9� 1/

f7

 07�f7.1� 2f8Cf9/ 
0
8�f

2
8 .f9� 1/ 09 D f8f

3
9 .f8� 1/. 010��

0
10/:

To show the proposition, it is sufficient to show that  10 D �10 . Hence, it is sufficient
to show that

f6.f9� 1/

f7

 07�f7.1� 2f8Cf9/ 
0
8�f

2
8 .f9� 1/ 09 D 0:

By (60), this is rewritten as

f6.f7�f8/.f9� 1/

f 2
7
.f8� 1/

 07� .�2f7Cf8Cf7f8/ 
0
8�

f 2
8
.f7�f8/.f9� 1/

f7.f8� 1/
 09 D 0:
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By this formula and (62), we can eliminate  0
8

and  0
9

. Then we obtain�
.f6� 1/2.f7� 1/2f 2

8

.f6�f7/.f8� 1/.f9� 1/
C
f6.f7�f8/.f9� 1/

f 2
7
.f8� 1/

�
 07 D 0:

Since the coefficient of  7 is rewritten as (51), this formula holds similarly as in Case 1.
Therefore, we obtain the proposition in this case.

The following lemma is used in the proof of the above proposition.

Lemma 5.2 By the reflection of an open two-bridge knot diagram with respect to
a vertical line, �1 and ��1

2
are exchanged, and the values of �m and  m become

.�1/–multiples of the original values.

Proof In the definition of {̂ , {̂ .�1/ and {̂ .��1
2
/ are conjugate by

M1 D

0@0 0 1

0 1 0

1 0 0

1A :
Further, the value of {̂ of the top part of a two-bridge knot diagram becomes M1 –
multiple of the original vector. Furthermore, the value of {̂ of the bottom part of a
two-bridge knot diagram becomes .�M1/–multiple of the original vector. Hence, the
value of �m becomes a .�1/–multiple of the original value.

In the definition of {‰ , {‰.�1/ and {̂ .��1
2
/ are conjugate by

M2 D

�
1 0

0 �1

�
:

Further, the value of {‰ of the top part of a two-bridge knot diagram becomes M2 –
multiple of the original vector. Furthermore, the value of {‰ of the bottom part of a
two-bridge knot diagram becomes .�M2/–multiple of the original vector. Hence, the
value of  m becomes .�1/–multiple of the original value, as required.

Without assuming that x0 D1, we can set

{̂

 
1 x0 1

!
D {̂

 
1 x0 1

!
D

x0

.x1� 1/3

�
1 0 1

�
;

{‰

 
1 x0 1

!
D {‰

 
1 x0 1

!
D

x0

1�x1

�
1 0

�
;
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consistently with the definitions of {̂ and {‰ . Indeed, we can show Lemma 5.2 without
using these formulas, but these formulas are helpful to understand the symmetry of
Lemma 5.2.

In the following example, we show the initial cases of the induction of the proof of
Proposition 5.1.

Example 5.3 Proposition 5.1 holds for m� 3.

Proof By the symmetry of Lemma 5.2, it suffices to show the formula of Proposition 5.1
for the plat closures of �2

1
�b �b0 for bD 1; �1; �

�1
2
; �2

1
; �1�

�1
2
; ��1

2
�1; �

�2
2

, recalling
that the knot type does not depend on the choice of b0 D �1 or ��1

2
. We note that

some of them are not knots, but 2-component links. We calculate both sides of the
formula concretely for these cases.

For the plat closure of �2
1
� b0 ,

�1.x/D  1.x/D�
1

x� 1
:

For the plat closure of �2
1
� �1 � b0 ,

�2.x/D  2.x/D�
2

x.x� 1/
:

For the plat closure of �2
1
� ��1

2
� b0 ,

�2.x/D  2.x/D
x� 2

x
:

For the plat closure of �2
1
� �2

1
� b0 ,

�3.x/D  3.x/D�
3x� 1

x2.x� 1/.xC 1/
:

For the plat closure of �2
1
� �1�

�1
2
� b0 ,

�3.x/D  3.x/D
x.x2�xC 2/

.x� 1/.xC 1/
:

For the plat closure of �2
1
� ��1

2
�1 � b0 ,

�3.x/D  3.x/D�
2x.xC 1/

x2�xC 1
:
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For the plat closure of �2
1
� ��2

2
� b0 ,

�3.x/D  3.x/D
3x2� 5xC 1

x2.x2�xC 1/
:

Hence, Proposition 5.1 holds for m� 3.

Appendix A: Cellular decompositions of the knot complement

In this appendix, we explain that the cellular decomposition of the knot complement
given in Step 2 of Section 3.2 is a modification of the dual of the ideal tetrahedral
decomposition of [25; 31] mentioned in Section 3.1. We explain this for the 52 knot.

We briefly review the ideal tetrahedral decomposition of the 52 knot; for details on this,
see [25; 31]. As mentioned in Section 3.1, we consider 4 tetrahedra at each crossing,
and we obtain the knot complement by gluing them; see the left picture below, where
we show tetrahedra by triangles. As shown in [25; 31], this tetrahedral decomposition
has one ideal vertex and two ordinary vertices. Further, as in [25; 31], we collapse a
tetrahedron of each dark gray triangle to an interval, and collapse a tetrahedron of each
light gray triangle to a triangle. Then we obtain the ideal tetrahedral decomposition
of [25; 31], which describes the complete hyperbolic structure of the knot complement:

1 x0 1

x1

x2 1

x3 1

1

We consider to modify this collapsing, as in the right picture above, ie instead of
collapsing of the left picture, we collapse a tetrahedron of each gray triangle of the
right picture to a triangle. Then we obtain a tetrahedral decomposition T with one
ideal vertex and one ordinary vertex. These vertices are connected by a single edge e .
Further, as in (13), we glue tetrahedra at each region of the knot diagram. Then we
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obtain the following five (singular) polyhedra:

0

1

1 x0

0

1

x0
x1

1

0

1

1

x1

x2
x3

0

1

x2 1

0

1

x3 1

By regarding these polyhedra as 3–cells, we consider a cellular decomposition T 0 as
a modification of T . Further, we consider the dual decomposition T 0 of T 0 . This
decomposition has a 3–cell as the dual of the ordinary vertex of T 0 . By collapsing
this 3–cell along the edge e , we obtain a cellular decomposition T 00 with no 3–cell.
The 1–cells of T 00 are the arrows of the following picture, and the 0–cells are the gray
regions.

By connecting these 0–cells along X 0i , we obtain the cellular decomposition of Step 2
of Section 3.2 from T 00 .

Appendix B: Transformation of a basis of C �

In Section 3, we transform a basis of the chain complex C � to find a subcomplex yC �

of C � . In this appendix, we explain a motivation of this transformation.
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We explain the motivation, for example, for the basis eXi
, eWi

, eZi
of Xi , Wi , Zi

given in (25). We recall that the knot group is generated by meridians, which are taken
to XiX

0
i , Wi , Zi by the monodromy representation, in this case. By the construction of

these matrices, they are parabolic, and each of them fixes the value of the hyperbolicity
parameter of the corresponding strand by the Möbius transformation. For example,
XiX

0
i fixes xi , and hence, the 1–eigenvector of XiX

0
i is given by�

xi

1

�
:

Therefore, the following conjugation of XiX
0
i is equivalent (in PGL2C ) to an upper-

triangular parabolic matrix,�
xi 1

1 0

��1

XiX
0
i

�
xi 1

1 0

�
�

�
1 �

0 1

�
:

In similar ways, we have that�
1 1

1 0

��1

Wi

�
1 1

1 0

�
�

�
1 1

0 1

�
;

�
1 1

1 0

��1

Zi

�
1 1

1 0

�
�

�
1 �1

0 1

�
:

In such a way, we consider to transform a basis eXi
, eWi

, eZi
to

e0Xi
D ad

�
xi 1

1 0

��1

eXi
; e0Wi

D ad
�

1 1

1 0

��1

eWi
; e0Zi

D ad
�

1 1

1 0

��1

eZi
;

expecting that this new basis gives a better description of C � . Then the coboundary
operator Dd is transformed to the modified Dd as we mentioned in Section 3, and we
can find a subcomplex yC � with respect to this modified Dd as we showed by concrete
calculation in Section 3.

Appendix C: The numerators and the denominators of the fi

In Section 4.3, for a given two-bridge knot diagram, we consider hyperbolicity parame-
ters xi as a rational function of x determined by (40), and define it to be fi . In this
appendix, we characterize the numerator and the denominator of fi by a recursive
formula. We set x D uC 1, and regard fi as a rational function of u in this appendix.
We will use results of this appendix in Appendix D.

We explain how we formulate such a recursive formula by using the open two-bridge
knot diagram below as an example. For this diagram, the hyperbolicity parameters fi
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are determined by (40), as follows:

f1 D uC 1;

f2 D uC 2;

f3 D�u3
� 3u2

� 2uC 1;

f4 D�
.u2Cu� 1/.u2C 3uC 3/

uC 2
;

f5 D
u8C 7u7C 19u6C 22u5C 3u4� 14u3� 6u2C 4uC 1

uC 1
:

(1)

g0

(�) (�)g0 g1

1

C g2(�) (C)
�

(�) (C)g1 g3
g2

�
(�) (C)

(�)

g4

C

g4 g5

g3
(�)

We set8 the numerator of fi to be gi , and associate gi to the strand of fi . Further,
when two strands are connected by an overpath, we associate the same parameter to
them. For the above diagram, the values of gi are given by

g1 D uC 1;

g2 D uC 2;

g3 D u3
C 3u2

C 2u� 1;

g4 D .u
2
Cu� 1/.u2

C 3uC 3/;

g5 D u8
C 7u7

C 19u6
C 22u5

C 3u4
� 14u3

� 6u2
C 4uC 1:

We set g0D 1. Further, as shown in (1), we depict the strand of the upper end by a thick
line. Furthermore, we associate a sign to each crossing, and associate parenthesized
signs to the left and right edges as in (1); we determine these signs in the following way.

8 We redefine gi by a recursive formula (4) later, and show that gi gives the numerator of fi in
Lemma C.2.
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We express an open two-bridge knot diagram as a plat closure of a product of copies
of �1 and ��1

2
. We give signs to each copy of �1 or ��1

2
in either of the following

ways:

(2)

(�)

(�)
C

(C)

(�)

(�)

(�)
C

(�)

(C)

(C)

(C)
�

(�)

(�)

(C)

(�)
C

(�)

(�)

(�)

(C)
C

(�)

(�)

(�)

(�)
�

(C)

(C)

At the top of the two-bridge knot diagram, we give signs as in (1). When two copies
of �1 (or ��1

2
) appear successively, we give the same sign to their crossings, and choose

either of (2) in such a way that the parenthesized signs coincide at the connection points.
When �1 (resp. ��1

2
) appears after ��1

2
(resp. �1 ), we choose either of (2) in such a

way that the parenthesized signs coincide.

For an open two-bridge knot diagram with such signs, we give a recursive formula
of gi , as follows. When the i th copy of �1 or ��1

2
is labeled as in the following picture

or its mirror image

(3)
gi0 gi gi00

"

giC1
;

we set

(4) giC1 D �i�i00gigi00 C "gi0 ;

where we have

�j D

�
u if the strand of gj is a thick line,
1 otherwise.

By (4), we redefine the values of gi recursively.

Lemma C.1 When the top of the i th copy of �1 or ��1
2

are labeled as in the following
picture

."/ gi0 gi gi00 ."0/

we have that
"�i0g

2
i0 C �ig

2
i C "

0�i00g
2
i00 D ugi0gigi00 :
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Proof We show the lemma by induction on i . We show the case of i C 1, assuming
the case of i . The i th copy of �1 or ��1

2
is labeled as in the following picture or its

mirror image:
(") gi0 gi gi00 ("0 )

�"

(") gi giC1

gi00 (""0 )

Then
giC1 D �i�i00gigi00 � "gi0 :

Hence,
"�ig

2
i C �i0g

2
iC1C ""

0�i00g
2
i00 �ugigiC1gi00

D "."�i0g
2
i0 C �ig

2
i C "

0�i00g
2
i00 �ugi0gigi00/

D 0;

noting that �i0�i�i00 D u by definition. Therefore, we obtain the lemma.

When the i th copy of �1 or ��1
2

is labeled as in (3), we set

f 0iC1 D " �
giC1

gi0
:

Lemma C.2 We have f 0i D fi . That is, gi gives the numerator of fi .

Proof We show the lemma by induction on i . To simplify the notation, we write
the proof for i D 10, assuming the case of i < 10. We consider the 7th , 8th and 9th

copies of �1 or ��1
2

. Since the recursive formula is invariant under the mirror image
exchanging �1 and ��1

2
, it is sufficient to consider the case where the 8th copy is �1 .

Hence, there are the following 4 cases.

Case 1: � 3
1

The knot diagram of this part is labeled as in the following picture:

(") gj g7 gk
("0 )

�"

(") g8 (""0 )
�"

(") g9 ("0 )
�"

(") g10 (""0 )

By the definition of f 0i and (40),

f 08 D�" �
g8

gj
; f 09 D�" �

g9

g7

; f 010 D�" �
g10

g8

; f10 D f9C 1�
f9

f8

:
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Since f 0
8
D f8 and f 0

9
D f9 , we can express f10�f

0
10

using the g� . Further, by (4),

g8 D �9�kg7gk � "gj ; g9 D �8�kg8gk � "g7; g10 D �9�kg9gk � "g8;

noting that �7D �9 by definition. By removing gj , g7 , g10 from the above mentioned
expression of f10�f

0
10

, we can show by concrete calculation that

f10�f
0

10 D 1� "2
D 0:

Hence, the lemma holds for i D 10 in this case.

Case 2: � 2
1
��1

2
The knot diagram of this part is labeled as in the following picture:

(") gj g7 gk ("0 )
�"

(") g8 (""0 )

�"
(") g9 ("0 )

�"0

(""0 ) g10 ("0 )

By the definition of f 0i and (40),

f 08 D�" �
g8

gj
; f 09 D�" �

g9

g7

; f 010 D�"
0
�
g10

gk

; f10 D f9C
.f9� 1/2

1�f9=f8

:

Further, by (4),

g8 D �9�kg7gk � "gj ; g9 D �8�kg8gk � "g7; g10 D �8�9g8g9� "
0gk :

Similarly as the above case, we can show by concrete calculation that

.f10�f
0

10/
�
1�

f9

f8

�
g7 D "

0�8�9g9."�8g2
8C �9g2

9C "
0�kg2

k �ug8g9gk/D 0;

where we obtain the last equality by Lemma C.1. Hence, the lemma holds for i D 10

in this case.

Case 3: ��1
2
� 2

1
The knot diagram of this part is labeled as in the following picture:

(""0 ) gj g7
gk ("0 )
�"0

(") g8 ("0 )
�"

(") g9 (""0 )
�"

(") g10 ("0 )
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By the definition of f 0i and (40),

f 08 D�"
0
�
g8

gk

; f 09 D�" �
g9

gj
; f 010 D�" �

g10

g8

; f10 D f9C 1�
f9

f8

:

Further, by (4),

g8 D �9�7gj g7� "
0gk ; g9 D �7�8g7g8� "gj ; g10 D �7�9g7g9� "g8:

Similar to Case 1, we can show by concrete calculation that

f10�f
0

10 D 1� "2
D 0:

Hence, the lemma holds for i D 10 in this case.

Case 4: ��1
2
�1�

�1
2

The knot diagram of this part is labeled as in the following
picture:

("0 ) gj g7
gk (""0 )

�""0
(") g8 (""0 )

�"
(") g9

("0 )
�"0

(""0 ) g10 ("0 )

By the definition of f 0i and (40),

f 08 D�""
0
�
g8

gk

; f 09 D�" �
g9

gj
; f 010 D�"

0
�
g10

g7

; f10 D f9C
.f9� 1/2

1�f9=f8

:

Further, by (4),

g8 D �9�7gj g7� ""
0gk ; g9 D �7�8g7g8� "gj ; g10 D �8�9g8g9� "

0g7:

Similar to Case 2, we can show by concrete calculation that

.f10�f
0

10/
�
1�

f9

f8

�
gj D "

0ug9."�8g2
8C �9g2

9C "
0�7g2

7 �ug8g9g7/D 0:

Hence, the lemma holds for i D 10 in this case, as required.

Appendix D: Representations of two-bridge knot groups

It is known [22] that parabolic representations of a two-bridge knot group are char-
acterized by roots of some polynomial equation. In this appendix, we describe this
polynomial equation in terms of 3–braids. An aim of this appendix is to show that
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the equation fm.x/D 0 has no repeated root (Lemma D.8), which means the nonde-
generacy of the Hesse matrix discussed in Section 4.3. Further, we see that we can
apply Theorem 1.1 to most roots of the equation fm.x/D 0 for the .˛; ˇ/ two-bridge
knot with any ˛ < 50 in Remark D.12, and to the root corresponding to the complete
hyperbolic structure of the knot complement in Remark D.14.

We briefly review the space of conjugacy classes of SL2C representations of a two-
bridge knot group; for details, see Riley [21; 22]. Let ˛ and ˇ be coprime integers
such that 0< ˇ < ˛ and ˛ is odd. It is known that the .˛; ˇ/ two-bridge knot group
is presented by

ha; b j waD bwi;

where we set w D a"1b"1 � � � a"˛�2b"˛�1 and "i D .�1/biˇ=˛c . Hence, the space of
conjugacy classes of SL2C representations of the .˛; ˇ/ two-bridge knot group can
be identified with

(1) f.A;B/ 2 SL2C �SL2C jWAD BW g=conjugation

where we set W DA"1B"1 � � �A"˛�2B"˛�1 . It is known [21; 22] that, by letting

(2) t D trace AD trace B; uD trace AB � 2;

we have that
WA�BW D P˛;ˇ.t2;u/.A�B/

with some polynomial P˛;ˇ.t2;u/ in t2 and u. Hence, the space (1) can be identified
with

(3) f.t;u/ 2C2
j P˛;ˇ.t2;u/D 0g:

In particular, parabolic representations are given by roots of the equation P˛;ˇ.4;u/D0.
It is known [21] that P˛;ˇ.4;u/ is a polynomial in u of degree .˛ � 1/=2, and the
equation P˛;ˇ.4;u/D 0 has .˛� 1/=2 distinct roots. Hence, .@P˛;ˇ=@u/.4;u0/¤ 0

for each root u0 , and the tangent space of (3) at .4;u0/ is 1–dimensional, which
implies the following lemma.

Lemma D.1 At each parabolic representation, H 1.C �/ is 1–dimensional.

Proof The cohomology H 1.C �/ is isomorphic to the Zariski tangent space of (3)
at .4;u0/, where u0 is a root of P˛;ˇ.4;u/ D 0. Since .@P˛;ˇ=@u/.4;u0/ ¤ 0 as
mentioned above, the total differential of P˛;ˇ does not vanish at .4;u0/. Hence, the
Zariski tangent space at .4;u0/ is 1–dimensional.
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We consider to reconstruct P˛;ˇ.4;u/ in terms of 3–braids, while the above construction
of P˛;ˇ.4;u/ is obtained from the normal form of the two-bridge knot. In our notation,
the parameter u is presented by

uD trace.W ˙1
0 �X0X 00/� 2D trace

�
0 1

�1 2

�˙1 �
1 x� 1

0 1

�
� 2(4)

D˙.x� 1/;

where we choose the sign in such a way that W ˙1
0

and X0X 0
0

correspond to conjugate
meridians, which depends on the orientations of strands in the top part of an open
two-bridge knot. We consider the continued fraction expansion of ˛=ˇ ,

˛

ˇ
D n1C

1

n2C : : :C 1
n`

D Œn1; n2; : : : ; n`�;

where we use the notation of the right-hand side to express this continued fraction
expansion. In the following of this appendix (and in Appendix C), we choose the sign
uD x� 1. (When uD�.x� 1/, the sign of u is changed in the following argument.)
It is known, see eg Burde and Zieschang [2], that the .˛; ˇ/ two-bridge knot can be
presented by the plat closure of �n1

1
��n2

2
� � � �n`

1
j if ` is odd, and �n1

1
��n2

2
� � � ��n`

2

if ` is even. For example, for 17=5 D Œ3; 2; 2�, the .17; 5/ two-bridge knot can be
presented by the following form:

(5)

w0 c0 z0

w1 c1 z1

w2
c2 z2

w3 c3 z3

w4
c4 z4

w5 c5 z5

We associate parameters wi , ci , zi to strands of the knot diagram as shown above;
we explain their meanings below. We recall that [22] that P˛;ˇ.4;u/ is obtained by
considering the representation � of the two-bridge knot group into SL2C determined
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by the following two generators:

(6)
AD

�
1 1

0 1

� B D

�
1 0

u 1

�

We note that u¤ 0, since A and B are conjugate. We define the values of wi , ci , zi

and c0i as polynomials in u by

wi D trace �

 !
� 2; ci D trace �

 !
� 2;

zi D trace �

 !
� 2; c0i D trace �

 !
� 2;

where each loop is at the height of each parameters. We note that the trace of � of a
loop does not depend on the base point and the orientation of the loop, since � is a
SL2C representation.

Lemma D.2 For each i we have

ci C c0i D 4� .wi C 2/.zi C 2/:

Proof We consider the following 3 elements of the fundamental group at the height
of ci , and define their images by � to be P , Q and R:

P
Q R

Then from the definitions of wi , ci , zi , c0i , we have that

trace PQD zi C 2; trace QRD wi C 2; trace PRD ci C 2;

trace PQRQ�1
D c0i C 2; trace PQRD trace

�
1 1

0 1

�
D 2:

Since Q is a parabolic matrix in SL2C , we have that Q2 � 2QCE D 0, where E

denotes the identity matrix. Hence,

c0i C 2D trace PQR.2E �Q/D 4� trace PQRQ:
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Further, since .QR/2�.wiC2/QRCED0, we have that QRQD .wiC2/Q�R�1D

.wi C 2/QCR� 2E . Therefore,

c0i C 2D 4� trace P ..wi C 2/QCR� 2E/D 4� .wi C 2/.zi C 2/� .ci C 2/C 4:

Hence, we obtain the required formula of the lemma.

Lemma D.3 The values of wi , ci , zi are determined by .w0; c0; z0/D .�u;u2;u/

and the recursive formula

.wiC1; ciC1; ziC1/

D

�
.ci ; 4�wi � .ci C 2/.zi C 2/; zi/ if �1 is between ci and ciC1,
.wi ; 4� zi � .ci C 2/.wi C 2/; ci/ if ��1

2
is between ci and ciC1.

Proof We show the recursive formula in the case where �1 is between ci and ciC1 .
In this case, the defining loops of the parameters are related, as follows:

Hence,
ziC1 D zi ; wiC1 D ci ; c0iC1 D wi :

Therefore, we obtain the required recursive formula by Lemma D.2.

In the case where ��1
2

is between ci and ciC1 , we can show the required recursive
formula in a similar way as above.

Lemma D.4 We assume that the strands are labeled as below in the sense of Lemma C.1
at the height of wi , ci , zi :

."/ gi0 gi gi00 ."0/

Then
wi D�"

0�i0ug2
i0 ; ci D�""

0�iug2
i ; zi D�"�i00ug2

i00 :

Proof We show the lemma by induction on i , proving that the statement holds for
i C 1 assuming that it does for i .
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When there is �1 between gi and giC1 , this part is labeled as in the following form:

(") gi0 gi gi00 ("0 )

�"

(") gi giC1

gi00 (""0 )

Since wiC1 D ci and ziC1 D zi by Lemma D.3, we obtain the required formulas
for wiC1 and ziC1 . Further, since ciC1 D 4�wi � .ci C 2/.zi C 2/ by Lemma D.3,
we have that

ciC1C "
0�i0ug2

iC1 D 4C "0�i0ug2
i0 � .�""

0�iug2
i C 2/.�"�i00ug2

i00 C 2/

C "0�i0u.�i�i00gigi00 � "gi0/
2

D 2""0u."�i0g
2
i0 C �ig

2
i C "

0�i00g
2
i00 �ugi0gigi00/D 0;

where we obtain the last equality by Lemma C.1. Hence, we obtain the required formula
for ciC1 , as required.

When there is ��1
2

between gi and giC1 , we can obtain the required formulas in a
similar way as above.

We consider the degrees of wi , ci , zi as polynomials in u. They are shown for the
example (5), as follows:

1 2 1

2 3 1

3 4 1

3 7 4 Œ1; 3�D 1C 1
3
D

4
3

3
10

7 Œ2; 3�D 2C 1
3
D

7
3

10 17 7 Œ1; 2; 3�D 1C 1

2C 1
3

D
10
7

In this picture, we can observe that the degrees of wi and zi can be presented in terms of
the numerator and the denominator of the continued fraction expansion corresponding
to the 3–braid from the top to the height of wi and zi . This observation can be justified
for a general case in the following lemma.
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Lemma D.5 We assume that the 3–braid from the top to the height of wi and zi is
presented by �n1

1
�
�n2

2
� � � �

n`
1

if ` is odd, and �n1

1
�
�n2

2
� � � �

�n`
2

if ` is even. Then

Œn`; n`�1; : : : ; n2; n1�D

8<:
degwi

deg zi
if ` is odd,

deg zi

degwi
if ` is even.

Proof We note that

(7) deg ci D degwi C deg zi ;

which can be shown by induction on i by Lemma D.3. We show the lemma by
induction on n1Cn2C� � �Cn` . In the following of this proof, we show the lemma for
�

n1

1
�
�n2

2
� � � �

n`
1
��1 and �n1

1
�
�n2

2
� � � �

n`
1
���1

2
, assuming the case of �n1

1
�
�n2

2
� � � �

n`
1

,
when ` is odd. (When ` is even, we can show this claim similarly.)

For �n1

1
�
�n2

2
� � � �

n`
1
� �1 , the continued fraction expansion is given by

Œn`C 1; n`�1; : : : ; n2; n1�D 1C Œn`; n`�1; : : : ; n2; n1�

D 1C
degwi

deg zi
D

degwi C deg zi

deg zi
D

degwiC1

deg ziC1

;

where we obtain the last equality by (7) and Lemma D.3. Hence, the lemma holds for
�

n1

1
�
�n2

2
� � � �

n`
1
� �1 .

For �n1

1
�
�n2

2
� � � �

n`
1
� ��1

2
, the continued fraction expansion is given by

Œ1; n`; : : : ; n2; n1�D 1C
1

Œn`; : : : ; n2; n1�

D 1C
deg zi

degwi
D

degwi C deg zi

degwi
D

deg ziC1

degwiC1

;

where we obtain the last equality by (7) and Lemma D.3. Hence, the lemma holds for
�

n1

1
�
�n2

2
� � � �

n`
1
� ��1

2
, as required.

As in the notation of Section 4.3 and Appendix C, we consider an open two-bridge
knot diagram whose lowest parameter is gm .

Lemma D.6 For the .˛; ˇ/ two-bridge knot, gm is of degree ˛�1
2

.

Proof Let Œn1; n2; : : : ; n`� be the continued fraction expansion corresponding to the
3–braid from the top to the height of gm . Then the .˛; ˇ/ two-bridge knot is given by
the plat closure of the 3–braid corresponding to Œn1; n2; : : : ; n`�1; n`C 1�D ˛

ˇ
. Since
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the continued fraction expansion of the converse order gives an equivalent two-bridge
knot,

˛

ˇ0
D Œn`C 1; n`�1; : : : ; n2; n1�D 1C Œn`; n`�1; : : : ; n2; n1�;

for some ˇ0 (see [2]). By Lemma D.5, its numerator is given by

˛ D degwmC deg zm D deg cm D 2 deg gmC 1;

where we obtain the second equality by (7), and obtain the third equality by Lemma D.4.
Hence, we obtain the lemma.

Lemma D.7 The parameter gm is equal to a nonzero scalar multiple of P˛;ˇ.4; "u/,
where we choose the sign "D˙1 as in (4). In particular, the equation gm D 0 has no
repeated root.

Proof Let u be a root of P˛;ˇ.4; "u/. Then we have a parabolic representation of the
knot group determined by (6). It follows from the definition of cm that cmD 0. Hence,
by Lemma D.4, gm D 0.

We recall [21] that P˛;ˇ.4;u/ is a polynomial in u of degree .˛ � 1/=2, and the
equation P˛;ˇ.4;u/D 0 has .˛�1/=2 distinct roots. Since gm is of degree .˛�1/=2

by Lemma D.6, we obtain the lemma.

We recall that in Section 4.3, we regarded xm as a rational function of x and defined
it to be fm.x/.

Lemma D.8 The equation fm.x/D 0 has no repeated root.

Proof By Lemma C.2, gm gives the numerator of fm . Since the equation gm D 0

has no repeated root by Lemma D.7, we obtain the lemma.

This lemma suggests a positive answer to [24, Conjecture II.5.10(1)].

Lemma D.9 The equation fm.x/D 0 does not have a root x D 1.

Proof Since u¤ 0 as mentioned at (6), the equation P˛;ˇ.4; "u/D 0 does not have
a root uD 0. Hence, by Lemma D.7, the equation gm D 0 does not have a root uD 0.
Since gm gives the numerator of fm , the equation fmD 0 does not have a root xD 1,
noting that uD˙.x� 1/.
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Example D.10 For the .7; 3/ two-bridge knot, we compare P˛;ˇ.4;u/ D 0 and
f3.x/D 0.

In this case, W D ABA�1B�1AB . Further, by (2), we have A2 � tAC E D 0,
B2� tBCED 0, .AB/2� .uC2/ABCED 0, where E denotes the identity matrix.
Hence, by calculating WA�BW concretely, we have that

P˛;ˇ.t2;u/D u3
C .5� t2/u2

C .6� t2/uC 1:

Therefore, parabolic representations are given by roots of the equation

P˛;ˇ.4;u/D u3
Cu2

C 2uC 1D 0:

On the other hand, since 7
3
D 2C 1

3
, this two-bridge knot is isotopic to the plat closure

of �2
1
��3

2
. Hence, by (40), the hyperbolicity equations can be rewritten as

x1 D x; x2 D x2
�xC 1; x3 D f3.x/D

x3�2x2C3x�1

x
D 0:

By setting x D uC 1, we can verify that the last equation is equivalent to the above
mentioned equation.

Example D.11 For 45=7D Œ6; 2; 3�, we consider the .45; 7/ two-bridge knot, which
is given by the plat closure of �6

1
��2

2
�3

1
. We can obtain by concrete calculation that

f9 D
x.x21C9x20C21x19�34x18�183x17C � � � �102x4�48x3�4x2C8xC1/

x9C4x8�13x6�3x5C15x4C2x3�x2�3x�1
:

The equation f9.x/D 0 has the root x D 0 and the other 21 roots.

When xD 0, we can show by concrete calculation that x0Dx3Dx8D1, x1Dx4D

x9D 0 and x2D x5D x6D x7D 1. In this case, we can not apply Theorem 1.1, since
there exist hyperbolicity parameters 0 and1 except for the first and the last parameters.
As we see in Remark D.12 below, the corresponding parabolic representation is not
faithful in this case.

For each of the other 21 roots, it is a root of an irreducible polynomial of degree 21.
As shown in Appendix C, xi (0< i < 9) can be presented by a rational function fi

of x whose numerator and denominator are polynomial of degree less than 21. Hence,
xi 2C�f0g for 0< i < 9. Therefore, we can apply Theorem 1.1 for each of these 21

roots.

Remark D.12 As we see in Example D.11, there might exist some exceptional cases
where we can not apply Theorem 1.1. We explain when such exceptional cases appear
for the .˛; ˇ/ two-bridge knot with ˛ < 50 in this remark.
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As observed by Riley in [23], for many two-bridge knots, P˛;ˇ.4;u/ is an irreducible
polynomial in u. In this case, we can show similarly as in Example D.11 that we can
apply Theorem 1.1 to each root of the equation fm.x/D 0.

There exist some exceptional cases where P˛;ˇ.4;u/ is reducible. A typical case is
a case where the two-bridge knot group has an epimorphism onto another smaller
two-bridge knot group (see the first author, Riley and Sakuma [19] for details); in such
a case, the SL2C representation space has an irreducible component consisting of
representations which factor through the smaller two-bridge knot group. By computer
search, we can show which two-bridge knot has reducible P˛;ˇ.4;u/, and check
whether xi 2C�f0g for the roots of the hyperbolicity equations for such a two-bridge
knot. We recall, see eg [2], that the .˛; ˇ/ two-bridge knot is equivalent (allowing the
mirror image) to the .˛0; ˇ0/ two-bridge knot if ˛ D ˛0 and ˇ0 D ˙ˇ˙1 in Z=˛Z
(for any choice of signs). We can show by concrete calculation that, for the .˛; ˇ/
two-bridge knot with ˛ < 50, there exists such a “bad” root only if ˛

ˇ
is equivalent (up

to the above equivalence) to one of

27
5
D Œ5; 2; 2�D Œ6;�2; 3�; 33

5
D Œ6; 1; 1; 2�D Œ6; 2;�3�;

39
7
D Œ5; 1; 1; 3�D Œ6;�2;�3�; 45

7
D Œ6; 2; 3�;

45
19
D Œ2; 2; 1; 2; 2�D Œ3;�2; 3;�2; 3�:

As shown in [19], these two-bridge knot groups have epimorphisms onto the knot group
of the trefoil knot (the .3; 1/ two-bridge knot). We can show by concrete calculation
similarly as in Example D.11 that the above two-bridge knot has one “bad” root x D 0

and the other “good” .˛�3/=2 roots. Hence, we can apply Theorem 1.1 to most cases
for the .˛; ˇ/ two-bridge knot with ˛ < 50.

Remark D.13 For a “bad” root of the above remark, there exists a continuous map �
from the complement of the .˛; ˇ/ two-bridge knot K to the complement of a smaller
two-bridge knot K0 ; see [19]. The parabolic representation corresponding to this root
can be induced from a parabolic representation of the knot group of K0 by pulling
back by �. Hence, the cochain complex of S3�K with the sl2C coefficient twisted
by this parabolic representation can be obtained from a cochain complex of S3�K0

by pulling back by �.

Remark D.14 In this remark, we explain that we can apply Theorem 1.1 to the root
corresponding to the holonomy representation of the complete hyperbolic structure9

of the knot complement. We assume that there existed xi D 0 or 1 for some i with

9 It is known that a two-bridge knot is hyperbolic unless it is the .2; n/ torus knot.
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0 < i <m. Then by the construction of a parabolic representation explained in this
appendix, we can show that the corresponding parabolic representation is not faithful
at the height of such xi . Since the holonomy representation of the complete hyperbolic
structure is faithful, this is a contradiction. Therefore, xi 2 C � f0g for any i with
0< i <m, and we can apply Theorem 1.1 to the root corresponding to the complete
hyperbolic structure.

Appendix E: The case of nonhyperbolic two-bridge knots

It is known that a nonhyperbolic two-bridge knot is a .2; n/ torus knot. In this appendix,
we explain about roots of the hyperbolicity equation and representations in the case of
the .2; n/ torus knot. We note that n is odd.

As a two-bridge knot, the .2; n/ torus knot is obtained as a plat closure of �n
1

, whose
diagram is parameterized by hyperbolicity parameters x0;x1; : : : ;xm , setting mDn�2.
As mentioned in Appendix C, we consider rational functions fi.x/, which is presented
by fi D gi=gi�2 , where the gi are given by g1 D x , g2 D xC 1 and

giC1 D

�
gi Cgi�1 if i is odd,
.x� 1/gi Cgi�1 if i is even.

Hence, setting x D � � 1C ��1 , we can verify the following formula by concrete
calculation,

gi D

8̂̂̂<̂
ˆ̂:

�iC2C 1

�.iC1/=2.�C 1/
if i is odd,

�iC2� 1

�i=2.�C 1/.� � 1/
if i is even.

Therefore, noting that m is odd, the roots of fm.x/D 0 are given by

(1) x D 2 cos
�

k�
n

�
� 1 for k D 1; 3; 5; : : : ; n� 2.

We can verify by concrete calculation that, if n and k are coprime, the roots (1) are
“good” roots in the sense of Remark D.12, and we can apply Theorem 1.1 to them.

We comment on the representation of the .2; n/ torus knot group induced from the
holonomy representation of the 2–dimensional hyperbolic structure of the basis of
Seifert fibration of the .2; n/ torus knot complement. The basis of this Seifert fibration
is a punctured 2–sphere with two cone singularities whose cone angles are � and 2�=n.
We consider the hyperbolic structure of this 2–orbifold such that the puncture is a
cusp; this hyperbolic structure is obtained by gluing two copies of a hyperbolic triangle
whose angles are �=2, �=n and 0. The holonomy representation of this hyperbolic

Geometry & Topology, Volume 19 (2015)
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structure induces a PSL2R representation of the .2; n/ torus knot group. We can show
by concrete calculation that the root (1) of k D n�2 gives this representation. Since n

and n� 2 are coprime, we can apply Theorem 1.1 to this root.
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