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A ‘Darboux theorem’ for shifted symplectic structures
on derived Artin stacks, with applications

OREN BEN-BASSAT
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DoOMINIC JOYCE

This is the fifth in a series of papers on the ‘k —shifted symplectic derived algebraic
geometry’ of Pantev, Toén, Vaquié and Vezzosi. We extend our earlier results from
(derived) schemes to (derived) Artin stacks. We prove four main results:

(a) If (X,wy) is a k—shifted symplectic derived Artin stack for k < 0, then near
each x € X we can find a ‘minimal’ smooth atlas ¢: U — X, such that (U, ¢*(wx))
may be written explicitly in coordinates in a standard ‘Darboux form’.

(b) If (X,wy) is a (—1)-shifted symplectic derived Artin stack and X = #9(X)
the classical Artin stack, then X extends to a ‘d—critical stack’ (X, s), as by Joyce.
(c) If (X,s) is an oriented d—critical stack, we define a natural perverse sheaf 15)‘( s
on X, such that whenever T is a scheme and ¢: T — X is smooth of relative
dimension n, T is locally modelled on a critical locus Crit(f: U — A'), and
t*(Py ,)[n] is modelled on the perverse sheaf of vanishing cycles PV, s of f.

(d) If (X,s) is a finite-type oriented d—critical stack, we can define a natural motive
MFx s in aring of motives /\7;’“ on X, such thatif 7 isaschemeand t: T — X
is smooth of dimension 7, then 7" is modelled on a critical locus Crit(f: U — Al),
and L™/2 © t*(MFy ) is modelled on the motivic vanishing cycle MFg?;;qS of f.

Our results have applications to categorified and motivic extensions of Donaldson—
Thomas theory of Calabi—Yau 3—folds.

14A20; 14F05, 14D23, 14N35, 32530

1 Introduction

This is the fifth in a series of papers [3; 4; 5; 14] on the subject of the ‘k—shifted
symplectic derived algebraic geometry’ of Pantev, Toén, Vaquié and Vezzosi [28] and
its applications to generalizations of Donaldson—Thomas theory of Calabi—Yau 3—folds
and to complex and algebraic symplectic geometry.
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Pantev et al [28] defined notions of k —shifted symplectic derived schemes and stacks
(X, ), a new geometric structure on derived schemes and derived stacks X in the
sense of Toén and Vezzosi [30; 31]. They proved that any derived moduli stack M of
(complexes of) coherent sheaves on a Calabi—Yau m—fold Y carries a (2 — m)-shifted
symplectic structure.

We are particularly interested in Calabi—Yau 3—folds, in which case k = —1. Pantev
et al [28] also proved that the derived critical locus Crit(f: U — A') of a regular
function f on a smooth K-scheme U is —1-shifted symplectic, and that the derived
intersection L N M of two algebraic Lagrangian submanifolds L, M in an algebraic
symplectic manifold (S, @) is —1-shifted symplectic.

The first paper by Joyce [14] in our series defined and studied ‘algebraic d—critical loci’
(X, s), aclassical K—scheme X with a geometric structure s which records information
on how X may Zariski locally be written as a classical critical locus Crit( f: U — Al
of a regular function f on a smooth K—scheme U . It also discussed ‘d—critical stacks’
(X,s), a generalization to Artin K—stacks.

The second paper by Bussi, Brav and Joyce [4] proved a ‘Darboux theorem’ for the
k—shifted symplectic derived schemes (X, w) of [28] when k < 0, writing (X, w)
Zariski locally in a standard form, and defined a truncation functor from —1—shifted
symplectic derived schemes (X, w) to algebraic d—critical loci (X, s). By [28], this
implies that moduli schemes M of simple (complexes of) coherent sheaves on a
Calabi—Yau 3—fold Y can be made into d—critical loci (M, s).

The third paper by Bussi, Brav, Dupont, Joyce and Szendr&i [3] proves that if (X, s) is
an algebraic d—critical locus with an ‘orientation’, then one can define a natural perverse
sheaf P;(’ | Z-module Dy ,, and (over K = C) a mixed Hodge module My ¢ over
X, such that if (X, s) is locally modelled on Crit(f: U — A!) then P)}’S is locally
modelled on the perverse sheaf of vanishing cycles PVZI, f of f, and similarly for
Dy s, Mx . We hope to apply this to the categorification of Donaldson—-Thomas theory
of Calabi—Yau 3—folds, as in Kontsevich and Soibelman [18].

The fourth paper by Bussi, Joyce and Meinhardt [5] proves that if (X, s) is a finite-type,
oriented algebraic d—critical locus then one can define a natural motive MFy s in a ring
of motives ./\71; on X, such that if (X, s) is locally modelled on Crit(f: U — A')
then MFy  is locally modelled on the ‘motivic vanishing cycle’ MF rgo}q’ of f. We
hope to apply this to motivic Donaldson—Thomas invariants of Calabi—Yau 3—folds, as
in Kontsevich and Soibelman [17].

The goal of this paper is to extend the results of [3; 4; 5] from K—schemes to Artin
K —stacks, using the notion of d—critical stack from [14]. The next four theorems
summarize the main results of Sections 2-5 below, respectively:
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Theorem 1.1 Let K be an algebraically closed field of characteristic zero, (X ,wx) a
k —shifted symplectic derived Artin K —stack as in [28] for k <0, and p € X (K) be a
K —point of X . Then we can construct the following data:

(a) Affine derived K—schemes U = Spec A, V = Spec B, where A, B are commu-
tative differential graded K —algebras (cdgas) in degrees less than or equal to 0,
of an explicit ‘standard form’ defined in Section 2.3.

(b) A morphism of derived stacks ¢: U = Spec A — X which is smooth of the
minimal possible relative dimension n = dim H' (L x |).

(¢) Aninclusion t: B A of B as adg-subalgebraof A, sothati =Speci.: U —V
is a morphism of derived K —schemes; on classical schemes, i = ty(i): U =
to(U) — V =1ty(V) is an isomorphism.

(d) A K—point p € Spec H°(A) with @(p) = p, such that the ‘standard form’
cdgas A, B have the minimal possible numbers of generators dim H/ (L | 7))
dimHj(]LV|,-(17)) in each degree j =0,—1,...,k, k—1.

(e) An equivalence of relative (co)tangent complexes Ly jy ~ Ty x[1 —k]; hence
Ly v is a vector bundle of rank n in degree k — 1.

(f) A k-—shifted symplectic structure wpg = (wg, 0,...) on V = Spec B which is in
‘Darboux form’ in the sense of [4, Section 5] and Section 2.4, with ¢* (wyx ) ~
i *(wp) in k —shifted closed 2—forms on U .

For example, if k = —2d — 1 ford =0, 1, ... then the ‘standard form’ and ‘Darboux
form’ conditions above mean the following. The degree 0 part B® of B is a smooth K —
algebra of dimension m, and we are given x?, . ,x,%0 € B such that (x?, e ,x,(;,o

are étale coordinates on all of V(0) = Spec B®. As a graded commutative algebra, B

is freely generated over B® by variables
in degree —i fori =1,...,d,

yi_zd_l, ... y’-_z“’_1 in degreei —2d — 1 fori =0,1,...,d.

s JSm;

We have 0 = Y4, > dar y;I—Zd—l darx;t in (A2QL)=24=1. The differen-
tial d on the cdga B is db = {H,b} for b € B, where {-,-}: Bx B — B is the
Poisson bracket defined using the inverse of a)g, and H € B~2% is a Hamiltonian
function satisfying the classical master equation {H, H} = 0. Also B C A, and A
is freely generated as a graded commutative algebra over B by additional variables

—2d=2 w2472 in degree —2d —2.

W] e

Theorem 1.1 says that given a k—shifted derived Artin stack (X, wy ) for k <0, near
each p € X(K) we can find a smooth atlas ¢: U — X with U = Spec A an affine
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derived scheme, such that (U, ¢*(wx)) is in a standard ‘Darboux form’. Although
(U, ¢*(wx)) is not k—shifted symplectic, as ¢*(wx ) is not nondegenerate, we can
build from (U, ¢*(wx)) in a natural way a ‘Darboux form’ k—shifted symplectic
derived scheme (V, wpg), which is equivalent to (U, ¢*(wx)) except in degree k — 1.

Theorem 1.2 Let (X,wyx) be a —1—shifted symplectic derived Artin K —stack in the
sense of [28] over K algebraically closed of characteristic zero, and X = ty(X) the
corresponding classical Artin K —stack. Then X extends naturally to a d—critical stack
(X, s) in the sense of [14]. If T is a K—scheme and t: T — X a smooth 1 -morphism,
this gives a d—critical structure s(T,t) on T making (T, s(T,t)) into an algebraic
d—critical locus, in the sense of [14].

Theorem 1.2 implies that Artin moduli stacks M of (complexes of) coherent sheaves
on a Calabi-Yau 3—fold Y extend naturally to d—critical stacks (M, s).

Theorem 1.3 Let (X, s) be an oriented d—critical stack over an algebraically closed
field K with charK # 2. Fix a theory of perverse sheaves or % —-modules over
K —schemes and Artin K —stacks, for instance Laszlo and Olsson’s [ —adic perverse
sheaves [20; 21; 22]. Then there is a natural perverse sheaf or ¥ —module 15)‘( s on X
with Verdier duality and monodromy isomorphisms

. pe e . pe e
EX,S' PX,s ” DX(PX,S)’ TX,S' PX,s PX,s’

such that if T is a K—scheme and t: T — X a 1-morphism smooth of relative
dimension n, then t*(]v’)’(’s)[n], t*(Zx s)[n), t*(Tx s)[n] are isomorphic to the perverse
sheaf or ¥ -module P;,s(T, n on the oriented algebraic d—critical locus (T, s(T,t))
defined in [3, Section 6], and its Verdier duality and monodromy isomorphisms
X1.5(T.0) TT,5(T,r)- So in particular, if (T, s(T,t)) is locally modelled on a criti-
cal locus Crit(f: U — A') for U a smooth K —scheme, then t*(}v’/",’s)[n] is locally
modelled on the perverse sheaf or 2 —module of vanishing cycles of f .

Theorem 1.4 Let (X, s) be an oriented d—critical stack over K algebraically closed of
characteristic zero, with X of finite type and locally a global quotient. Then there exists
a unique motive MFy ¢ in a certain ring My * of fi—equivariant motives on X , such
that if T is a finite-type K —scheme and t: T — X is smooth of relative dimension n,
so that (T, s(T,t)) is an oriented algebraic d—critical locus over K, then

t*(MFyx ) =L"? O MFr 41y in MF n

where MFT g(T,1) € M7 * is as in [5, Section 5]. So in particular, if (T, s(T,1)) is
locally modelled on Crit(f: U — A') for U a smooth K—scheme, then L2 o
t*(MFy x) is locally modelled on the motivic vanishing cycle MF r{}o;d’ of f.
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We expect that Theorems 1.3 and 1.4 will have applications in categorified and motivic
extensions of Donaldson—Thomas theory of Calabi—Yau 3—folds, as in Kontsevich and
Soibelman [17; 18].

Conventions and notation Throughout K will be an algebraically closed field with
char K = 0, except that we allow K algebraically closed with char K # 2 in Section 4.
Classical K—schemes and Artin K—stacks will be written W, X, Y, Z, ..., and derived
K —schemes and derived Artin K—stacks inboldas W, X,Y ., Z,....

Basic references for IK—schemes are Hartshorne [11], for Artin KK—stacks Laumon and
Moret-Bailly [23], and for derived K—schemes and derived Artin K—stacks Toén and
Vezzosi [30; 31].

All (classical) K—schemes and Artin K—stacks X are assumed locally of finite type,
except in Section 5 when we assume they are of finite type. All derived K—schemes and
derived K—stacks X are assumed to be locally finitely presented. We write Schk for
the category of K—schemes, Artg for the 2—category of Artin K —stacks, dSch for the
oo—category of derived K—schemes, and dArtk for the co—category of derived Artin
K—stacks, and ¢y: dSchg — Schi, o: dArtg — Artkx for the classical truncation
functors. Other notation generally follows the prequels [3; 4; 5; 14] to this paper.

Acknowledgements We would like to thank Tom Bridgeland, Sven Meinhardt, Balazs
Szendrdi, and Bertrand Toén for helpful conversations, and a referee for careful proof-
reading and useful comments. This research was supported by EPSRC Programme
Grant EP/1033343/1. The first author acknowledges the support of the European
Commission under the Marie Curie Programme which awarded him an IEF grant. The
contents of this article reflect the views of the authors and not the views of the European
Commission.

2 Local models for atlases of shifted symplectic stacks

Sections 2.1 and 2.2 give background on derived algebraic geometry [30; 31] and Panteyv,
Toén, Vaquié and Vezzosi’s shifted symplectic structures [28], and Sections 2.3-2.4
recall the main definitions of [4, Sections 4—5]. Then Sections 2.5-2.7, the new material
in this section, generalize Sections 2.3-2.4 to derived Artin stacks.

2.1 Derived algebraic geometry

We work in the context of Toén and Vezzosi’s derived algebraic geometry [30; 31],
and Pantev, Toén, Vaquié and Vezzosi’s theory of k—shifted symplectic structures
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1292 O Ben-Bassat, C Brav, V Bussi and D Joyce

on derived schemes and stacks [28]. This is a complex subject, and we give only a
brief sketch to fix notation. A longer explanation suited to our needs can be found
in [4, Sections 2-3].

Fix an algebraically closed base field K, of characteristic zero. Toén and Vezzosi define
the co—category dStx of derived K—stacks (or D™ —stacks) [31, Definition 2.2.2.14;
30, Definition 4.2]. All derived K—stacks X in this paper are assumed to be locally
finitely presented. There is a spectrum functor

Spec: {commutative differential graded K—algebras, degrees less than or equal to 0}

— dStk .

All cdgas in this paper will be in degrees less than or equal to 0. A derived K—stack X
is called an affine derived K—scheme if X is equivalent in dStg to Spec A for some
cdga A over K. As in [30, Section 4.2], a derived K—stack X is called a derived
K—scheme if it may be covered by Zariski open ¥ € X with Y an affine derived
K-scheme. Write dSchy for the full co—subcategory of derived K —schemes in dStx .

We call a derived K—stack X a derived Artin K—stack if it is m—geometric for
some m [31, Definition 1.3.3.1] and the underlying classical stack is 1-truncated (that
is, just a stack, not a higher stack). Any such X admits a smooth surjective morphism
¢: U — X, an atlas, with U a derived K—scheme. Write dArtg for the full co—
subcategory of derived Artin K—stacks in dStg . Then dSchkg C dArtgx C dStgk.

Write Schi for the category of K—-schemes X', and Artg for the 2—category of Artin
K-stacks X . By an abuse of notation we regard Schi as a discrete 2—subcategory
of Artg, so that Schx C Artg. As in [31, Proposition 2.1.2.1], there is an inclusion
functor i: Artg — dArtgx mapping Schg — dSchy, and a classical truncation functor
to: dArtg — Artg mapping dSchix — Schy .

A derived Artin K—stack X has a cotangent complex ILx of finite cohomological
amplitude [—m, 1] and a dual tangent complex T x [31, Section 1.4; 30, Sections 4.2.4—
4.2.5] in a stable co—category Lqcon(X') defined in [30, Sections 3.1.7,4.2.4]. When X
is a classical scheme or stack, then the homotopy category of Lgcon(X) is nothing but
the triangulated category Dgcon(X). These have the usual properties of (co)tangent
complexes. Forinstance, if f: X — Y is a morphism in dArtg there is a distinguished
triangle

f

1 FHLy)—L oLy —Lyjy— f* Lyl

where L x /y is the relative cotangent complex of f . Here f is smooth of relative
dimension 7 if and only if IL x /)y is locally free of rank 7, and f is étale if and only
if Ly,y =0.
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2.2 Shifted symplectic derived schemes and derived stacks

Let X be a derived stack. Pantev, Toén, Vaquié and Vezzosi [28] defined k—shifted
p—forms, k—shifted closed p—forms and k—shifted symplectic structures on X for
k € Z and p = 0. One first defines these notions on derived affine schemes and then
defines the general notions by smooth descent. Since our main theorems are statements
about the local structure of derived stacks endowed with shifted symplectic forms, it
suffices for us to describe the affine case. The basic idea is this:

(a) Define the exterior powers A’IL y in Lgcon(X) for p=0,1,.... Regard ALy
as a complex, with differential d:

o APLy ) L (AP L (APL )R L

Then a k —shifted p—form, or p—form of degree k , is an element w° of (APL x )¥
with dw® = 0. Mostly we are interested in the cohomology class [w°] €
H*(APLY).

(b) There are de Rham differentials dgg: APLx — APT!Lx with djgodyg =
dodygp +dggrod=0. Then a k—shifted closed p form or closed p—form of
degree k, is a sequence 0= (0% o', w?, ...) with o in (APHLx)k for
i =0, satisfying dw® = O and dgpw’ —i—da)’+1 =0fori=0,1,....

That is, ® = (0° @', w?,...) is a k—cycle in the negative cyclic complex

((lo_o[(Ap+i]LX)k—i)

,d+ ddR)-
i=0 keZ

Mostly we are interested in the cohomology class [w] = [0®, @!,...] in the
cohomology of this complex. We will write @ ~ o’ if w,’ are k —shifted
closed p—forms with the same cohomology class [w] = [w’]. There is a map
(0% 0!, w?,..)— o° from k-shifted closed p—forms to k—shifted p—forms.

() A k—shifted symplectic structure on X is a k—shifted closed 2—form (w?,...)
on X whose induced morphism w°-: T y — LLx[k] is an equivalence.

If a derived K—scheme X has a O-shifted symplectic structure then X is a smooth K-
scheme X with a classical symplectic structure. Pantev et al [28] construct k —shifted
symplectic structures on several classes of derived moduli stacks. If Y is a Calabi—Yau
m—fold and M a derived moduli stack of coherent sheaves or perfect complexes on Y,
then M has a (2 —m)-shifted symplectic structure. We are particularly interested in
the case m =3, s0 k = —1.
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2.3 ‘Standard form’ affine derived schemes
The next definition summarizes [4, Example 2.8, Definitions 2.9 and 2.13].

Definition 2.1 We will explain how to inductively construct a sequence of commutative
differential graded algebras (cdgas) A(0), A(1),..., A(n) = A over K with A(0) a
smooth K-algebra and A(k) having underlying commutative graded algebra free
over A(0) on generators of degrees —1, ..., —k. We will call A a standard form cdga.
We will write U (i) = Spec A(i) for i =0,...,n and U = U (n) = Spec 4 for the
corresponding affine derived K —schemes, where U (0) = U(0) is a smooth classical
K —scheme, which contains Spec H%(A) as a closed K—subscheme.

Begin with a commutative algebra A(0) smooth over K. Choose a free A(0)-—
module M ~! of finite rank together with a map 7w~ ': M~1 — A4(0). Define a
cdga A(1) whose underlying commutative graded algebra is free over A4(0) with
generators given by M ! in degree —1 and with differential d determined by the map
a7~ M~1 — A4(0). By construction, we have H°(A(1)) = A(0)/I, where the ideal
I € A(0) is the image of the map 7~ ': M~ — A(0).

Note that A(1) fits in a homotopy pushout diagram of cdgas

Sym 4(g) (M 1) A(0)

e Lo
A(0) / A(1),

with morphisms 77, !, 04 induced by 71, 0: M~1 — A(0). Write f~1: A4(0) — A(1)
for the resulting map of algebras.

Next, choose a free A (1)-module M ~2 of finite rank and a map 7 —2: M ~2[1]— A(1).
Define a cdga A(2) whose underlying commutative graded algebra is free over A(1)
with generators given by M ~2 in degree —2 and with differential d determined by the
map w2 M ~2[1]— A(1). Write f~2 for the resulting map of algebras A (1) — A(2).

As the underlying commutative graded algebra of A(1) was free over A(0) on gen-
erators of degree —1, the underlying commutative graded algebra of A(2) is free
over A(0) on generators of degrees —1, —2. Since A(2) is obtained from A(1) by
adding generators in degree —2, we have H°(A(1)) = H°(A(2)) = A(0)/1.

Note that A(2) fits in a homotopy pushout diagram of cdgas

A(1)

= e

A(1) A(2),
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with morphisms 7,2, 04 induced by 7=2,0: M ~2[1] — A(1).

Continuing in this manner inductively, we define a cdga A(n) = A with A% = 4(0) and
H%(A) = A(0)/1, whose underlying commutative graded algebra is free over 4(0)
on generators of degrees —1,...,—n. We call any cdga A constructed in this way a
standard form cdga.

If A is of standard form, we will call a cdga A" a localization of A if A’ = A® 40
A°[f~1] for f € A°, thatis, A’ is obtained by inverting f in A. Then A’ is also of
standard form, with 4’% =~ A°[ f~1]. If p € Spec H°(A) with f(p) # 0, we call A’
a localization of A around p.

Let A be a standard form cdga. We call A minimal at p € Spec H°(A) if for all
k =1,...,n the compositions

H™* gty a0—1) — H L g-1)) — H L a1y 40—2))

in the cotangent complexes restricted to Spec H°(A) vanish at p. (For more on this
point, see [4, Proposition 2.12].)

Here are [4, Theorems 4.1 and 4.2]. They say that any derived scheme X is locally
modelled on Spec A for a (minimal) standard form cdga A, and give us a way to
compare two such local models f: Spec A — X, g: Spec B — X.

Theorem 2.2 Let X be a derived K—scheme, and x € X . Then there exist a standard
form cdga A over K which is minimal at a point p € Spec H°(A), in the sense of
Definition 2.1, and a morphism f: U = Spec A — X in dSchg which is a Zariski
open inclusion with f (p) = x.

Theorem 2.3 Let X be a derived K—scheme, A, B be standard form cdgas over K,
and f:SpecA — X, g: Spec B — X be Zariski open inclusions in dSch . Sup-
pose p € Spec H°(A) and q € Spec H°(B) with f(p) = g(q) in X. Then there
exist a standard form cdga C over K which is minimal at r in Spec H°(C) and
morphisms of cdgas a: A — C, B: B — C which are Zariski open inclusions, such
that Speca: r — p, Specf: r — ¢, and f o Speco >~ g o Spec 8 as morphisms
Spec C — X in dSchi .

Ifinstead f, g are étale rather than Zariski open inclusions, the same holds with o, 8
étale rather than Zariski open inclusions.

One important advantage of working with derived schemes U = Spec 4 for 4 a
standard form cdga, is that the cotangent complex Ly and its exterior powers AP Ly
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can be written simply and explicitly in terms of A. As in [4, Sections 2, 3.3] the

differential-graded module of Kdhler differentials Q 1{1 is amodel for Ly . If U(0) =

Spec A° admits global étale coordinates (x?, ...,x2 ), then Qil is a finitely-generated

mo
free A-module, generated by

ddel_l, e dde,;f,
in degree —i for i =0,...,n, where xl_i, . ,x,;f are A(i — 1)-bases for the free
finite rank A(i — 1)-modules M~ for i =1, ..., n, in the notation of Definition 2.1.

Because of this, on U = Spec 4, the k—shifted (closed) p—forms from [28] discussed in
Section 2.2 can be written down explicitly in coordinates. Here is [4, Proposition 5.7].
Part (a) implies that for a k—shifted symplectic form o = (0° !, w?,...) on a
standard form U = Spec 4, up to equivalence we may take w! = w? = --- =0, which
simplifies calculations a lot. (Let us note here that the proof of [4, Proposition 5.7]
uses the interpretation of shifted symplectic forms as representing classes in negative
cyclic homology.)

Proposition 2.4 (a) Let w = (0°, !, w?,...) be a closed 2—form of degree k < 0

on U = Spec A, for A a standard form cdga over K. Then there exist ® € Akt
and ¢ € (Q1)¥ such that d® = 0 in A**2 and dyg® + d¢ = 0 in (2)**! and
o ~ (dgr¢,0,0,...).

(b) In the case k = —1 in (a) we have ® € A° = A(0), so we can consider the restric-
tion ®|yra of ® to the reduced K —subscheme U™ of U = ty(U) = Spec H°(A).

Then ®|ywa is locally constant on U™, and we may choose (®,¢) in (a) such
that @'Ured - 0

(c) Suppose (P, ¢) and (®’, ¢') are alternative choices in part (a) for fixed w, k, U, A,
where if k = —1 we suppose ®|yws = 0 = ®'|yrea as in (b). Then there exist ¥ € A¥
and ¥ € (2})* with ® — &' =d¥ and ¢ — ¢’ = dggr ¥ +dy.

2.4 ‘Darboux form’ shifted symplectic derived schemes

The next definition summarizes [4, Examples 5.8-5.10].

Definition 2.5 Fix d =0, 1,.... We will explain how to define a class of explicit
standard form cdgas (A4,d) = A(n) for n = 2d + 1 with a very simple, explicit k—
shifted symplectic form w = (0?,0,0,...) on U = Spec A4 for k = —2d —1. We will
say that 4, @ are in Darboux form.

First choose a smooth K —algebra A(0) of dimension m1. Localizing A(0) if necessary,

we may assume that there exist x?, . ,x,?m € A(0) such that dde?, ey dde,?m
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form a basis of Q1 4(0) Over A(0). Geometrlcally, U(0) = Spec A4(0) is a smooth K-

scheme of dimension m, and ()c1 . ) U(0) — A0 are global étale coordinates
on U(0).
Next, choose m1,...,mg € N={0,1,...}. Define A as a commutative graded algebra

to be the free algebra over A(0) generated by variables

xio x,;i, in degree —i fori =1,...,d,

2
yi= 2d—- 1,...,y;n 2d=1 in degree i —2d — 1 fori =0,1,....d.
So the upper index i in xJ’:, yJ’: always indicates the degree. We will define the differ-

ential d in the cdga (4, d) later.

The spaces (A? Qll)k and the de Rham differential d ;g upon them depend only on
the commutative graded algebra A4, not on the (not yet defined) differential d. Note
that Qil is the free 4—-module with basis djgrx; ", dgr y’ —2d=1 for j =0,...,d and
j=1,...,m;. Define

d m;

3) @ =" dgryi T dgpx;’ in (A2QY) 2N

i=0j=1
Then dygrw® = 0 in (A3QL)724-1.
Now choose H in A=24  which we will call the Hamiltonian, and which we require
to satisfy the classical master equation

d m;

@) ZZ TR Y

l_lj_l J

The classical master equation can be expressed invariantly as { H, H} =0, where {-,-}
is a certain shifted Poisson bracket. For more on this, consult [4, Section 5.7].

Note that (4) is trivial when d = 0, so that k = —1, as A' = 0. Define the differential d
on 4 by d=0 on A(0), and

; oH ; dH
—1 l—Zd—l — 5 — ;] — .
(5) dx] W, dy] ——axj_l., l-O,...,d,]—l,...,m,.
Then dod =0, and (4, d) is a standard form cdga A = A(n) as in Definition 2.1 for
n=2d +1, defined using free modules M~ = (xl_i, s X ag—n Tori=1,....d
and M12d-1 = (y; 2d— 1,...,yin12d I)A(zd_,«) fori =0,...,d.
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Then o = (0°,0,0,...) is a k—shifted symplectic structure on U = Spec A for

k =—2d —1. Define ® € A2 and ¢ € (})729"! by ® = —5' 7 H and
d m;

© ¢= 2d+1ZZ[(2d+1 DY dgpx;t i x7  dgpy 2.
i=0j=1

Then d® =0, djr® + d¢ = 0, and w°® = dyg¢, as in Proposition 2.4(a). We say
that A, w are in Darboux form for k = —2d — 1.

In [4, Examples 5.9 and 5.10] we give similar Darboux forms for k = —4d and
k=—4d —2 with d =0,1,2,.... We will not give all the details. In brief, when
k = —4d , rather than (2), A is freely generated over A(0) by the variables

—i

xl_i,--- X, in degree —i fori =1,...,2d —1,
xl_zd, xmij,yl d,...,ymig in degree —24d,
yi 4d,...,y;nl4d in degree i —4d fori =0,1,...,2d —1,

and w° € (AZQL)_M with dgrw® = 0 is given by

2d m;

=Y daryiT*dgpx in (A2Q) 7,
i=0j=1

and d on A4 is defined as in (5) using H € A'~* satisfying the analogue of (4). We
then say that A, U = Spec A, w are in Darboux form for k = —4d .

Similarly, when k = —4d —2, A is freely generated over A(0) by the variables

—i —i

X1 Xy in degree —i fori =1,...,2d,

—2d—1 —2d—1 .
z; v Zmyg in degree —2d — 1,
y’i_4d_2,...,y;nl4d 2 in degree i —4d —2 fori =0,1,...,2d,

and w° € (AZQ‘{l)_“d_2 with djrw® = 0 is given by

2d m; maq+1
—4d—2 -1 —2d—1
@° =" "dagyi Tt P dgrx; + E darz 247" dagrz; ,
i=0j=1

and d is defined as in (5) using H € A=*?~! satisfying

2d m; mad+1 2

| oH . _4d
ZZax_,a pry z+4 > (W) =0 in A
i=1j= Yj j=1 J
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We then say that A, w are in strong Darboux form for k = —4d — 2. There is also a
weak Darboux form [4, Example 5.12] in this case, which we will not discuss.

Here is [4, Theorem 5.18], the main result of [4]. We consider it to be a shifted
symplectic analogue of Darboux’ theorem, as it shows that we can choose ‘coordinate
systems’ on a k—shifted symplectic derived scheme (X, ®) in which w assumes a
standard form.

Theorem 2.6 Let X be a derived K —scheme with k —shifted symplectic form @ for
k <0, and x € X . Then there exists a standard form cdga A over K which is minimal
at p € Spec H%(A), a k —shifted symplectic form @ on Spec A, and a morphism
f:U =Spec A — X with f(p)=x and f*(®) ~ w, such that:

(i) If k is odd or divisible by 4, then f is a Zariski open inclusion, and A, @ are in
Darboux form, as in Definition 2.5.

(i) If k =2 mod4, then f is étale, and A, w are in strong Darboux form, as in
Definition 2.5.

Bouaziz and Grojnowski [2] also independently prove a similar theorem.

2.5 ‘Standard form’ atlases for derived stacks

We first generalize Definition 2.1 and Theorems 2.2-2.3 to derived Artin stacks:

Definition 2.7 Let X be a derived Artin K—stack, and p a point of X . By this we
mean a morphism p: Spec K — X ; we may also call p a K—point of X . A standard
form open neighbourhood (A, @, p) of p, in the smooth topology, means a standard
form cdga A over K in the sense of Definition 2.1, so that U = Spec 4 is an affine
derived K-scheme, and a morphism ¢: U — X which is smooth of some relative
dimension n = 0, and a K—point p in U with p = ¢@(p), that is, there is an equivalence
of morphisms p >~ @ o p: Spec K — X . If we do not specify p, p, we just call (4, )
a standard form open neighbourhood in X .

For such X, p, (4, ¢, p),n, as for (1) we have the standard fibre sequence

Lo
(7 ¢*(Ly) Ly Ly,x —¢*(Lx)[1].

where Ly /x is locally free of rank 7. Restricting (7) to p and taking cohomology,
we have the following:
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(a) There are isomorphisms H'(Lx |p) = H (Ly |5) for i <O0.

(b) Since U is not stacky, H!'(Ly| 5) = 0 and so there is an exact sequence of
K —vector spaces

0—H°(Lx|p)—H"Lylp)—H’Lyx|p)—H"(Lx|p)—0,

where H®(Ly /x |5) = K". Therefore n > dim H'(Lx [5).

Note that H!(Ly |p) = Jsox (p)*, where Jsox (p) is the Lie algebra of the
isotropy group Isox (p) of X at p, which is an algebraic K—group.

In particular, the minimal possible relative dimension n = rank(Ly,x ) of a
neighbourhood ¢: U — X of p is n =dim H' (L ).

(c) If ¢ is smooth of minimal relative dimension n = dim H'(Ly| p), then

(8) H(Lxlp) = H°(Lyly) and H°(Ly,x|p) = H'(Lx|p).

We call a standard form open neighbourhood (A4, ¢, p) minimal at p if A is minimal
at p in the sense of Definition 2.1 and n = dim H'(Lx|,). Then parts (a), (c)
imply that 4(0) is smooth of dimension mo = dim H®(Lx|,), and 4 has m; =
dim H(Lx |p) generators in degree —i fori =1,2,....

Theorem 2.8 Let X be a derived Artin K—stack, and p a point of X . Then there
exists a minimal standard form open neighbourhood (A, ¢, p) of p, in the sense of
Definition 2.7.

Proof Since X has a smooth atlas for any p € X there exists an affine nelgh—
bourhood @: U— X of p, Where U is an affine derived K—scheme, pE U with
#(p) = p, and @ is smooth of some relative dimension 7, with 77 > dim H' (L x Ip)
by Definition 2.7(b). Let r = 7 —dim H' (L x|p), so that r is the dimension of the
kernel of H° (]LU/X l5) — H'(Ly |p) — 0. We shall use this kernel to cut down

: U — X to the minimal dimension n = dim H' (Lxlp).

Localizing U around P, by Theorem 2.2 we may take U = SpecA where 4 is
a standard form cdga minimal at p € U. Then the natural map H° (ILU(O)| p) —
HO(]LU| ) is an isomorphism. Since HO(]LU|A) — HO(ILU/X|A) — H'(Lx|p) is
exact, we may choose (after localization) functions xi,...,x, on U (0) vanishing
at p so that dygxy,...,dggX, at p map to a basis of the kernel of H®(Lg/x |5) —
H'(Lx|p) under the composition HO(Lﬁ(0)|ﬁ) — H°(Lg l5) — H(Lg/x 15).

The functions x1, ..., x, define amap g: 6(0) — A" and hence a map f: U— A"
with f(p) =0. We let U denote the (homotopy) fibre f~1(0), so that we have the
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following diagram in which the square is a pullback:

U ~ ~
lf J lf (4
X

Let p be the preimage of p in U. We will show that after localizing U around p,
the composition ¢ = @ o J: U — X is smooth of relative dimension n =7 —r =
dim H'(Lx |p). Consider the fibre sequence Ly /5 [—1]— J*(Li/x) — Ly, x . We
claim Ly ;g[—1] is free of rank r and that the map Ly /g [—1]— 7*(Lg/x) is injec-
tive at p and hence, by Nakayama’s lemma, in a neighbourhood of p. Localizing U
around p, it will follow immediately that L7, x is locally free of rank n =7 —r.
Thus ¢: U — X is the desired neighbourhood of p of minimal relative dimension.

To sustain the claim, note that since the cotangent complex of * = SpecK is zero, we
have an equivalence L;[—1] ~ j*(Q}y). Thus L;[—1] is free of rank r and hence
sois f*(ILj)[—1] ~ Ly,g[—1]. Furthermore, the map in question Ly, [—1] —
(Lo, x) factors as Ly /g[—1]~ f*o j*(Q4r) ~ J*o f*(QLr) — T'Lg) —
7L O/ x)- But f* was constructed precisely so that the composition f *(Qhr) —
Lg = Lg /X should be injective at p. Thus, we may choose an affine neigh-
bourhood ¢: U — X, p of p which is smooth of the minimal relative dimension
n=dim H'(Lx|p). Applying Theorem 2.2 to U at p, we may take U = Spec A4,
where A is a standard form cdga minimal at p € U . |

Theorem 2.9 Let X be a derived Artin K —stack and (A, ¢), (B, ¥) standard form
open neighbourhoods in X , and write U = Spec A, V = Spec B. Then for each
p € U xx V there exist a standard form cdga C over K minimal at g € W = Spec C,
an étale morphism i : W — U xx V with i (¢) = p, and cdga morphisms a: A — C,
B: B— C with nry oi ~Speca: W — U and y oi >~ Spec: W — V.

Proof Since U,V are derived K-schemes, U xx V is a derived algebraic K-
space, and étale locally equivalent to a derived K—scheme Thus glven pelUxxV
we may choose an affine derived K—scheme W a point ¢ € W and an étale map
TW U xx V with 1(q) =

Write W = tO(W), U(0) = Spec A° and V(0) = Spec B° for the classical schemes.
The compositions

W SUxx VS UUO and W W SUxx V2LV <10
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give maps WU (0), W — V(0). Choose a map W — AN such that the product
map WU (0)x V(0)x AN is a locally closed embedding. Localizing W, W at q if
necessary, we can choose a locally closed K—subscheme W (0) of U(0) x V(0) x AN
containing the image of W as a closed K —subscheme, such that W(0) is smooth of
dimension dim Taﬁ\/. For instance, W(0) can be obtained as an intersection of an
appropriate regular sequence of hypersurfaces.

Following the proof of Theorem 2.2 in [4, Section 4.1], we can construct a standard
form cdga C minimal at ¢ € W = Spec C with Spec C® = W(0) and an equiva-
lence j: W — W with j(q) =q. Setting i =70 j, we now have morphisms of
derived schemes wy oi: W — U, ny oi: W — V whose classical truncations
nyoi: W —U, nyoi: W — V extend to morphisms of the ambient smooth schemes
W(0) = Spec C® — U(0) = Spec A%, W(0) = Spec C° — V(0) = Spec B®. As A, B
are freely generated in negative degrees, it follows that we may write wy oi >~ Spec«
and my oi =~ Spec B for morphisms of cdgas «: 4 — C, B: B — C. This completes
the proof. |

2.6 ‘Darboux form’ atlases for shifted symplectic stacks

Here is the main result of this section, a stack analogue of Theorem 2.6. Note that
(a)(1)—(v) are modelled closely on the first part of Definition 2.5, and equations (9)—(13)
are analogues of or identical to (2)—(6).

Theorem 2.10 (a) Let (X,wyx) be a k —shifted symplectic derived Artin K —stack,
where k = —2d — 1 ford = 0,1,2,..., and p € X. Then we can construct a
minimal standard form open neighbourhood (A,¢@: U — X, p) of p in the sense
of Definition 2.7, and a k —shifted closed 2—form o = (0°,0,...) on U = Spec A
for w° € (A2S21 )k, such that *(wx) ~  in k—shifted closed 2—forms on U =
Spec A. Furthermore, A, ® are in a standard ‘Darboux form’, a modified version of
Definition 2.5, as follows:

(i) The degree-0 part A° of A is a smooth K —algebra of dimension m, and we
are given x?, . ,x,?,o € A° such that dde?, .. dde form a basis of Q

over A°.

(ii) As a graded commutative algebra, A is freely generated over A° by variables

xl_i,...,x,;f in degree —i fori =1,...,d,
) y’1 2d— 1,...,y,’,12d U indegreei —2d —1 fori =0,1,....,d,
wl—zd—z’ e, wn_Zd_2 in degree —2d — 2,
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for mg,...,mg = 0 with mq as in (i) and n=dimH'(Ly|p) the relative
dimension of ¢ . The upper index i in w y] is the degree. Then
d m;
(10) 0" =" daryi T2 dagx; in (A2QY) T2
i=0j=1

(iii)) We are given H in A2 called the Hamiltonian, which satisfies the classical
master equation

d m;
_ . 1-2d
(11) Zzaxlay’ 7 =0 in4 )
i=1j=
The differential d on A satisfies d =0 on A°, and
. oH : oH
—i i—2d—1 __ - - X
(12) dXJ W, dy] _ax,_l l—O,...,d,]—l,...,m,.
J
Note that (12) does not specify du)J._Zd_2 for j =1,...,n, and so does not

completely determine d on 4.

(iv) Define ® € A=2¢ and ¢ € (Qil)_z‘i_1 by ® =— 2a,JrlH and
d m;

13 ¢= 2d+122[(zd+1 Dy dar” 4157 daryy 2471,
i=0j=1

Then d® =0, dyr® +d¢ =0, and w° = d 9.
(v) Minimality of (A, ¢, p) means that dw;” ~2d— 2| =0forj=1,...,n and

. oH ; oH
dx._l|~:.— :O:dyl._zd_1|~: - l:Odj:lm
j D — — Jj D _ ’ ’ ’ ’ ’ ’ 1
gyi=2d-1 |5 ;' |p

(b) In part (a) let B be the graded subalgebra of A generated by A° and the vari-
ables xj’yj’ in (ii) for all i, j, with inclusion t: B < A. Then B is closed under d,
and so is a dg-subalgebra of A. For degree reasons H,® above cannot depend on
the wj—zd—z, so H,® e B. Also the data w, w®, ¢ in Q1 AZQ}‘I above are the images
under ¢ of wp, a)%, ¢p in Q! ,Azﬂ}g. Then wp is a k —shifted symplectic structure
on V = Spec B, and B, wp is in Darboux form as in Definition 2.5, and B is minimal
at p as in Definition 2.1.

Geometrically, we have a diagram of morphisms in dArtg

i =Spect @
V = Spec B U = Spec 4 X,
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where (X,wx), (V,wp) are k—shifted symplectic, with ¢*(wx) ~ i *(wp) in k—
shifted closed 2—forms on U . We can think of ¢: U — X as a ‘submersion’, and
i: U —V asanembedding of U as a derived subscheme of V' . On classical schemes,
i=1to(i):U=1ty(U)—V =ty(V) is an isomorphism. There is a natural equivalence
of relative (co)tangent complexes

(14) ]LU/VZTU/X[l—k].

(¢c) The obvious analogues of (a), (b) also hold if (X, wyx) is a k —shifted symplectic
derived Artin K —stack for k < 0 with k = 0 mod 4 or kK = 2 mod 4. In each case,
the algebra A is the corresponding algebra from Definition 2.5, modified by adding
generators wlf_l, ey w,’,‘_1 in degree k — 1.

Proof For (a), let (X, wyx) be a k—shifted symplectic derived Artin K—stack with
k=-2d—1ford=>=0,and p € X. By Theorem 2.8 we may choose a minimal
standard form open neighbourhood (4, ¢, p) of p, which we may localize further
during the proof. Then by Definition 2.7, ¢ is smooth of relative dimension n =
dim H'(Lx|p), and A(0) is smooth of dimension mo = dim H°(Lx [,), and A4 has
m; = dim H_i(LX|p) generators in degree —i fori =1,2,....

Since (X,wy) is k—shifted symplectic for k = —2d — 1 we have H (L] p) =
HK(Ly |p)*, so dim H ' (Ly |p) =dim HK(Ly |p). Thus, A is freely generated
over A° by m; generators in degree —i fori =1,...,d, and m; generators in degree
i—2d—1fori=0,1,...,d, and n generators in degree —2d — 2, which is the same
number of variables as in (9).

The pullback ¢*(wy ) is a k—shifted closed 2—form on U = Spec A4, so Proposition 2.4
gives w° € (Qfl)k with dw® = dyjrw® = 0 and @*(wy) ~ (®°,0,0,...). Consider
the morphism w°-: T 4 — Q[k] given by contraction with °, and its restriction
to p on cohomology, which gives morphisms

(15) H(0°|5): H(T 4l5) = H/(QY15)* — HT(QL15).

On cohomology »°- factorizes as T4 — ¢*(Tx) — ¢*(Lx)[k] — Qi[k]. Here
0* (T x)— @™ (Lx)[k] is the pullback of wx -: T x — L x [k], which is an equivalence
as wy is nondegenerate. Also @* (L x)[k] — Qil[k] is Ly[k] as in (7), and so as in
Definition 2.7, on cohomology H' at p is an isomorphism for i < —k, and zero for
i=1—k. Themap T 4 — ¢*(T x) is the dual of L, and so on cohomology H'
at p is an isomorphism for 7 = 0, and zero for i = —1. Combining these, (15) is an
isomorphism for 0 < i < —k and zero otherwise.

We can now prove (a)(i)—(iv) by following the proof of the k& odd case of Theorem 2.6
in [4, Section 5.6]. Localizing A at p if necessary, this chooses étale coordinates
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x?,...,x&o on U° = Spec AO, and generators xl_i, ...,x;,i in degree —i for i =
1,...,d and y;_2d_1,...,y;n_izd_l indegree i —2d —1 fori =0,1,...,d for A4,

such that @ is given by (10), and also constructs H, @, ¢ satisfying (11)—(13). The

proof in [4, Section 5.6] does not choose the generators w1_2d_2, R wn_z“'_2 for A
in degree —2d — 2, but as these are not required to satisfy any conditions, they can
be chosen arbitrarily. Note that w®, H, ®, ¢ do not involve w1_2d_2, co Wy, 2d=2 for

degree reasons. Part (a)(v) follows from Definition 2.7 and (12). This completes (a).

The first parts of (b) are immediate, comparing (a) with Definition 2.5. To construct the
equivalence (14), consider the following diagram, in which the rows are the standard
fibre sequences and the vertical arrow is induced by an inverse of ¢*(wx):

Ly/x[-1] ——— ¢*(Lx) Ly
(16) | =
Ty[-k] ———— ¢*(Tx)[-k] ——— Ty x[l1 —k]
Since Ly x and Ty, x can be assumed to be free, we have
Ext™ Ly x[~1]. Ty x[1 —k]) = Ext' *(Ly/x, Ty,x) =0,
Hom(Ly/x[~1], Ty x [l —k]) = Ext * T2 (Ly,x. Ty x) = 0.

Applying RHom(Ly ;x[—1], —) to the bottom row of (16) and taking cohomology,
we find that Hom(Ly ) x [-1], T y[—k]) = Hom(L gy, x [-1], ¢*(T x )[—k]). Thus (16)
can be filled in to a commutative diagram

Ly/x[-1] ——— ¢*(Lx) Ly

a7 I=
Tyl—k] ———— ¢*(Tx)[-k] ——— Ty x[1 -kl

and such a filling is unique up to homotopy.
Restricting (17) to p and taking cohomology gives a commutative diagram:
H*Y(Lx|p) H*'(Ly|p)

(18) | = !
H=Y(T x| ,[—k]) HY Ty x |51 — k)

12

Since the morphism

H (Tx|p) = H (T x |p[1 k) = H* ' (Tyx|50-k]) = H(Ty,x|5)
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is dual to H° Ly,x|p) — H'(Ly |p), which is an isomorphism by (8), we see from
(18) that H*~(Ly |5) — Hk1 (Ty,x|5[1 —k]) is also an isomorphism.

Next, consider the fibre sequence 1*(Ly) — Ly — Ly p . Note that Ly /p [k — 1]
is free of rank dim H*~!(Ly |p) = dim H'(Lx|,) = n and that the natural map
H-1(Ly| 5 —H =1Ly /v | ) is an isomorphism by the minimality of the inductive
construction of U = Spec A4 in Definition 2.1.

Since (*(Ly) has amplitude in [k,0] and Ty, x is locally free, the composition
*(Ly) = Ly — Ty x[1 — k] is homotopic to zero, and we can therefore choose
a factorization Ly — Ly,y — Ty, x[1 —k] of Ly — Ty x[l — k]. Restrict-
ing this factorization to p and taking cohomology, we see that the induced map
Hk_l(ILU/V|17) — Hk_l(TU/X|5[1 — k]) is an isomorphism. By Nakayama’s
lemma, the map Ly, — Ty, x[1 — k] is an equivalence in a neighbourhood of
P. So localizing U, V if necessary, equation (14) holds, proving part (b).

For (c), we follow the same method, using the ‘Darboux form’ in [4, Example 5.9] for
k =0 mod 4, and the ‘strong Darboux form’ in [4, Example 5.10] for k =2 mod 4. As
in the proof of [4, Theorem 5.18(iii)], in the case k =2 mod 4, as well as modifying 4
by localizing at p (ie restricting to a Zariski open neighbourhood of p in U = Spec A4),
we also need to modify A4 by adjoining square roots of some nonzero functions in 4°
(ie taking a finite étale cover of U = Spec 4). As the result is still a minimal standard
form open neighbourhood (4, ¢, p) of p, this does not affect the statement of the
theorem. d

In the case k = —1, as in [4, Example 5.15] the classical K—schemes U =~ V in
Theorem 2.10(a),(b) are isomorphic to Crit(H: U(0) — A'). Also, that ¢: T — X
smooth implies ¢ =ty(@): T =1o(T) - X =1t9(X) is smooth. So changing notation
from U(0), H, p to U, f,u, using Hi(LX|p) o~ Hi(LX|p) for X =1(X) and i =
0, 1, and applying Proposition 2.4(b) to get f|rrs = 0, we deduce:

Corollary 2.11 Let (X,wx) be a —1—shifted symplectic derived Artin K —stack,
and X = to(X) the corresponding classical Artin K—stack. Then for each p € X
there exist a smooth K —scheme U with dimension dim H°(LLx|,), a pointt € U, a
regular function f: U — A' with dgg f|; =0, so that T := Crit(f) C U is a closed
K —subscheme with t € T', and a morphism ¢: T — X which is smooth of relative
dimension dim H'(Ly |,), with ¢(t) = p. We may take f|gwi = 0.

Here the derived critical locus Crit(f: U — A'), as a —1—shifted symplectic derived
scheme, agrees with (V, wp) in Theorem 2.10, and ¢: T — X corresponds to to(@) o
to(i)~! in Theorem 2.10.
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Thus, the underlying classical stack X of a —1—shifted symplectic derived stack
(X,wx) admits an atlas consisting of critical loci of regular functions on smooth
schemes.

Now let Y be a Calabi—Yau 3—fold over K, and M a classical moduli stack of coherent
sheaves F on Y, or complexes F* in D? coh(Y) with Ext=°(F*, F*) = 0. Then
M = ty(M), for M the corresponding derived moduli stack. The (open) condition
Ext=%(F*, F*) = 0 is needed to make M I-truncated (that is, a derived Artin stack,
in our terminology), and so make M = fy(M) an ordinary, and not higher, stack.
Pantev et al [28, Section 2.1] proved M has a —1—shifted symplectic structure w4 .
Applying Corollary 2.11 and using H' (I y alE Ext!™(F, F)* yields a new result
on classical 3—Calabi—Yau moduli stacks, the statement of which involves no derived
geometry:

Corollary 2.12 Suppose Y is a Calabi—Yau 3—fold over K, and M a classical moduli
K —stack of coherent sheaves F, or more generally of complexes F*® in D coh(Y)
with Ext<0(F*®, F*) = 0. Then for each [F] € M, there exist a smooth K —scheme U
with dim U = dimExt! (F, F), a point u € U, a regular function f: U — Al with
dgr flu =0, and a morphism ¢: Crit( f) — M which is smooth of relative dimension
dimHom(F, F), with ¢(u) = [F].

This is an analogue of [4, Corollary 5.19]. When K = C, a related result for coherent
sheaves only, with U a complex manifold and f a holomorphic function, was proved
by Joyce and Song [15, Theorem 5.5] using gauge theory and transcendental complex
methods.

2.7 Comparing ‘Darboux form’ atlases on overlaps

Let (X, wx ) be a k—shifted symplectic derived Artin K —stack for £ <0. Theorem 2.10
gives a minimal standard form open neighbourhood (A4, ¢, p) of each p in X with
0*(wy) ~ w, where the k—shifted closed 2—form @ = (°,0,...) on U = Spec 4 is
in a standard ‘Darboux form’, and ® € A¥*1! ¢ e (Q}‘l)k with d® =0, djgd+d¢ =0,
dgro = 0P, satisfying ®|yws = 0 if k = —1, as in Proposition 2.4(a),(b). We think
of A,¢,w, P, ¢ as like coordinates on X near p in the smooth topology, which write
X,wx in a nice way.

It is often important in geometric problems to compare different choices of coordinates
on the overlap of their domains. So suppose A, U, @, w,®,¢ and A',U’, ¢’ &', ¥, ¢’
are two choices as above, and g € U X x o U’. We would like to compare the
presentations 4,U,¢@,w,®,¢ and A", U’,¢',w’',®', ¢’ for X near ¢q. Here is a
method for doing this, following [4, Section 5.8] in the scheme case:
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(i) Apply Theorem 2.9 to (4, ¢),(A’,¢’),q. This gives a standard form cdga B
minimal at » € ¥ = Spec B, an etale map i: V — U xx U’ with i (r) = ¢, and
morphisms of cdgas a: A — B, «’: A’ — B with wy oi ~ Speca: V — U and
wyroi ~Speca’: V - U’.

(ii) The pullbacks ax (@) = (ax(?),0,...), ok (w') = (a (™), 0, ...) are k—shifted
closed 2—forms on ¥ = Spec B, which are equivalent as

() ~ (Speca)” 0™ (wx) ~i* oy 0 9™ (wx)
~i*omp 09" (wx) ~ (Speca’) 0 o™ (wx) ~ et} ().

Since B is minimal at r, a«(w), & (®") satisfy nondegeneracy properties near r. Also
dor(®) =0, dgrer(®) +das (¢) = 0, do’ (@) = 0, dgrets(¢) = otx (0°), dgret’ (@) +
dal(¢') =0, dypax () = ax(w®), and if k = —1 then a(®)|prs = 0 = &' (P')|prrea.
Therefore Proposition 2.4(c) applies, yielding ¥ € B¥ and v € (Q}g)k ~1 with

a(®) — o (9') = d¥ in B+,

0x($) 04 (¢) = dar ¥ +dy in (2p)~.
The data B,V ,i,a,o,r, W, ¥ compare the Darboux presentations 4,U, ¢, w, ®, ¢
and A", U’, ¢, 0, @, ¢ for X near q.

Using this method in the case k = —1 yields the following comparison result for the
critical atlases of Corollary 2.11. We have replaced 79(U), U(0), to(U"), U’ (0), to(V),
V(0), Spec a®, Spec a’® above by T, U, T',U’, R, V,0,6’. The conclusion f o6 —
flof e 112“, is proved as in [4, Example 5.35].

Proposition 2.13 Let (X,wyx) be a —1—shifted symplectic derived Artin K —stack,
and X =ty(X) the corresponding classical Artin K —stack. Suppose U, f: U — A1,
¢: T=Crit(f)— X and U’, f": U' — A", ¢': T' =Crit(f’) — X are two choices of
the data constructed in Corollary 2.11 for points p, p’ € X, with f|gwea =0 = f"'|pmea.
Letq e T %y x, T'. Then there exist a smooth K —scheme V , a closed K —subscheme
R C V, apoint r € R, and morphisms 0: V — U, 0" V — U’ with 6(R) C T,
0'(R) € T’ so the following diagram 2—commutes (homotopy commutes) in Arty :

1% U’ Al
0/ /7
. inc f
0 mc R T,
0'|r
U 6|r 7 @
¢/ \
lf inc @
A T X,
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and the induced morphism R — T xy T’ is étale and maps r + ¢. Furthermore
fob —f’OG’EIIz{, y» Where Ig y COy is the ideal of functions vanishingon R C V.

3 A truncation functor to d—critical stacks

Section 3.1 summarizes the theory of algebraic d—critical loci (on classical K—schemes)
from [14], and the truncation functor from —1—shifted symplectic derived K —schemes
to algebraic d—critical loci from [4, Section 6]. Section 3.2 explains the generalization
of d—critical loci to Artin stacks from [14], called d—critical stacks. Our main result
Theorem 3.18, extending the truncation functor of [4, Section 6] to (derived) Artin
stacks, is stated in Section 3.3 and proved in Section 3.4.

3.1 Algebraic d—critical loci, the K-scheme case

We now review the main ideas and results in the last author’s theory [14] of (alge-
braic) d—critical loci. Readers are referred to [14] for more details. Throughout K
is an algebraically closed field with char K # 2, though we will take char K = 0 in
Theorem 3.18 and its corollaries.

Let X be a K—scheme. Then [14, Theorem 2.1 and Proposition 2.3] define a natural
sheaf of K—algebras Sy on X in either the Zariski or étale topologies (we will use
the étale version for the extension to Artin stacks), with the following properties:

(a) Suppose R C X is Zariski open, U is a smooth K—scheme, and i: R— U a
closed embedding. Define an ideal /gy C i ~1(Oy) by the exact sequence

it
1
0 IrU i~1(Oy) Ox|r 0,

where Oy, Oy are the sheaves of regular functions on X, U . Then there is an
exact sequence on R, where d: f + 112? g df+ Iry-i Y (T*U)

U TN Oy) 4 i—W(T*U)
IR’U~Z'_1(T*U)'

0—=Sx|r ,

(b) Let RC § C X be Zariski open, U, V' be smooth K—schemes, i: R — U,
j: S <= V closed embeddings, and ®: U — V a morphism with ®oi =

Geometry € Topology, Volume 19 (2015)



1310 O Ben-Bassat, C Brav, V Bussi and D Joyce

jlr: R — V. Then the following diagram of sheaves on R commutes:

svle jTHOp) e j~HT*Y)
0= Sxlz 2 ‘R Isy-j~(T*V)Ir
Iy s,y j N (T*V)
(19) id Jiml@H l i~1(d®)
LR.U i~H(Oy d i~Y(T*U
0 — Syl (Ov) (T*U)

2, Iry i~ (T*0)
(c) There is a natural decomposition Sy = S @ Ky, where Ky is the constant
p X
sheaf on X with fibre K, and S)? C Sy is the kernel of the composition
T

Ix

SX OX OXred,

with iy: X™ < X the reduced K—subscheme of X .

(d) Let ¢: X — Y be a morphism of K—schemes. Then there is a unique mor-
phism ¢*: ¢71(Sy) — Sx of sheaves of K-algebras on X, which maps
¢~ (Sy) — Sy, such thatif R € X, S CY are Zariski open with ¢(R) C S,
U,V are smooth schemes, i: R— U, j: S — V are closed embeddings, and
®: U — V is a morphism with ®oi = jo¢p|g: R — V, then as for (19) the
following diagram of sheaves on R commutes:

el ¢~ 1oj =1 (OV)Ir ¢~ G—UT* M)k
0~¢ (SY”R(,,A([S e P@EDIR i ¢ sy TR
(20) 61 l i~1(0%) i1 (a®) l
0 — Sxlg —— s o L)

1%y IR, ui=1(T*U)

(e) If X i>Yl>Z are smooth morphisms of K-schemes, then

(Yod) =¢* o L (Y*): (Woop) '(Sz)=¢ oy 1 (Sz) — Sx.
If ¢: X - Y isidy: X — X then id}y =ids,: idy' (Sx) = Sx — Sx.

Following [14, Definition 2.5] we define algebraic d—critical loci:

Definition 3.1 An (algebraic) d—critical locus over a field K is a pair (X, s), where X
is a K—scheme and s € H° (S)(}), such that for each x € X, there exists a Zariski open
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neighbourhood R of x in X, a smooth K—scheme U, a regular function f: U —
Al = K, and a closed embedding i: R < U, such that i(R) = Crit(f) as K—
subschemes of U, and (g y(s|Rr) =i_1(f)+112€’U. We call the quadruple (R, U, f,i)
a critical chart on (X, s).

Let (X, s) be an algebraic d—critical locus, and (R, U, f,i) a critical chart on (X, s).
Let U’ C U be Zariski open, and set R' =i~ '(U') C R, i’ =i|g: R’ — U’, and
f"= flu’. Then (R, U’, f’,i’) is a critical chart on (X, s), and we call it a subchart
of (R,U, f,i). As a shorthand we write (R’,U’, f’,i") C (R, U, f,i).

Let (R,U, f,i),(S,V,g,j) be critical charts on (X,s), with R< S C X. An
embedding of (R,U, f,i) in (S,V, g, j) is alocally closed embedding ®: U — V
such that ®oi = j|g and f = g o ®. As a shorthand we write ®: (R, U, f,i) —
(S, V,g,j). If &: (R, U, f,i) — (S,V,g,j) and ¥: (S, V,g,j) — (T,W,h, k)
are embeddings, then W o ®: (R,U,i,e) — (T, W, h, k) is also an embedding.

A morphism ¢: (X,s) — (Y, t) of d—critical loci (X, s), (Y,?) is a K—scheme mor-
phism ¢: X — Y with ¢*(¢) = 5. This makes d—critical loci into a category.

There is also a complex analytic version, but we will not discuss it. Here are Propo-
sitions 2.8 and 2.30, Theorems 2.20 and 2.28, Definition 2.31, Remark 2.32 and
Corollary 2.33 from [14]:

Proposition 3.2 Let ¢: X — Y be a smooth morphism of K —schemes. Suppose
te HO(S?,), and set s :=¢*(t) € HO(S)(}). If (Y, t) is a d—critical locus, then (X, s) is
a d—critical locus, and ¢: (X, s) — (Y, t) is a morphism of d—critical loci. Conversely, if
also ¢: X — Y is surjective, then (X, s) a d—critical locus implies (Y, t) is a d—critical
locus.

Theorem 3.3 Suppose that (X, s) is an algebraic d—critical locus, and (R, U, f,i),
(S,V,g,j) are critical charts on (X,s). Then for each x € RN S C X there exist
subcharts (R, U’, f',i") C (R, U, f,i), (S",V',g’,j)) S (S,V,g.j) withx € R'N
S’ C X, acritical chart (T, W, h,k) on (X,s), and embeddings ®: (R',U’, f’,i’) —
(T, W, h, k), V: (S8".V',g",j)y—> (T,W,h,k).

Theorem 3.4 Let (X,s) be an algebraic d—critical locus, and X™% C X the associated
reduced K —subscheme. Then there exists a line bundle Ky g on X red which we call
the canonical bundle of (X, s), which is natural up to canonical isomorphism, and is
characterized by the following properties:
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(a) Foreach x € X" there is a canonical isomorphism
= 2
@n kxt Ky slx— (AT
where Ty X is the Zariski tangent space of X at x.
(b) If (R,U, f,i) is acritical chart on (X, s), there is a natural isomorphism
. 2
(22) LR, £t Kt sl gres —> i*(KE )| grea,

where Ky = AY™UT*U js the canonical bundle of U in the usual sense.

(c) In the situation of (b) let x € R. Then we have an exact sequence

di|x Hess;(x) f di|%
23) 0——=TxX—=T;(x)U T .U TrXX 0,

i(x) X

and the following diagram commutes:

Kxslx - (APT* X)®
X
Ox R.U.f.i l
LR.U.f.ilx
®2
KU|,'(X)’

where ax g U, f,; 1s induced by taking top exterior powers in (23).

Proposition 3.5 Suppose ¢: (X,s) — (Y,t) is a morphism of d—critical loci with
¢: X — Y smooth, as in Proposition 3.2. The relative cotangent bundle T; /Y is a
vector bundle of mixed rank on X in the exact sequence of coherent sheaves on X :

*

d¢
(24) 0 ¢*(T*Y) T*X Ty 0

There is a natural isomorphism of line bundles on X™9,

(25) Ty dlyea(Ky,e) ® (A PTy ) y)

such that for each x € X™ the following diagram of isomorphisms commutes:

®> =
X red _)KX,S P

2
KY,I|¢(X) ® (AtOPT;’/Y|x)® T, KX,S|X
¢ lx
(26) \L K (x)®id o Kx l
2 2
(APTF  Y)® @ (APT [ )® (APTF X)®
where Kx,Kg(x) are as in (21), and vy: A“’PTg(x)Y ® A‘°pT;/Y|x — A°PTYX is

obtained by restricting (24) to x and taking top exterior powers.
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Definition 3.6 Let (X,s) be an algebraic d—critical locus, and Ky ; its canonical
bundle from Theorem 3.4. An orientation on (X, s) is a choice of square root line
bundle Ky / for Ky s on X red “That is, an orientation is a line bundle L on X",
together W1th an isomorphism L® =L®L = Kx,. A d—critical locus with an
orientation will be called an oriented d—critical locus.

Remark 3.7 In view of equation (21), one might hope to define a canonical orienta-
tion Ky / for a d—critical locus (X, s) by Ky 1/2 ‘ = AYPT*X for x € X4, However,
this does not work, as the spaces A"PT* X do not vary continuously with x € xTed
if X is not smooth. An example in [14, Example 2.39] shows that d—critical loci need
not admit orientations.

In the situation of Proposition 3.5, the factor (A'PT /Y)
square root (A"PT; /Y)| xrd. Thus we deduce:

Xred in (25) has a natural

Corollary 3.8 Let ¢: (X, s)— (Y, t) be amorphism of d—critical loci with ¢: X — Y
smooth. Then each orientation K IY t2 for (Y, t) lifts to a natural orientation K /

1/2
Bles (K D) ® (ATT3 )y for (X, 5).

The following result from [4] will be generalized to stacks in Theorem 3.18.

Theorem 3.9 (Bussi, Brav and Joyce [4, Theorem 6.6]) Suppose (X,w) isa —1—
shifted symplectic derived scheme in the sense of Pantev et al [28] over an algebraically
closed field K of characteristic zero, and let X = to(X) be the associated classical
K —scheme of X . Then X extends naturally to an algebraic d—critical locus (X, s). The
canonical bundle Ky ¢ from Theorem 3.4 is naturally isomorphic to the determinant
line bundle det(IL x )|y of the cotangent complex Lx of X .

3.2 Extension to Artin stacks, and d—critical stacks

In [14, Sections 2.7-2.8] we extend the material of Section 3.1 from K—schemes to Artin
K -stacks. We work in the context of the theory of sheaves on Artin stacks by Laumon
and Moret-Bailly [23, Sections 12, 13, 15, 18], including quasicoherent, coherent
and constructible sheaves, and their derived categories. Unfortunately, Laumon and
Moret-Bailly wrongly assume that 1-morphisms of algebraic stacks induce morphisms
of lisse-étale topoi, so parts of their theory concerning pullbacks, etc, are unsatisfactory.
Olsson [27] rewrites the theory, correcting this mistake. Laszlo and Olsson study
derived categories of constructible sheaves, and perverse sheaves, on Artin stacks, in
more detail [20; 21; 22].
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All of [20; 21; 22; 23; 27] work with sheaves on Artin stacks in the lisse-étale topology.
We will not define these directly, but instead quote an alternative description from
Laumon and Moret-Bailly [23] that we find more convenient.

Proposition 3.10 (Laumon and Moret-Bailly [23]) Let X be an Artin K —stack. The
category of sheaves of sets on X in the lisse-étale topology is equivalent to the category
Sh(X') defined as follows.

(A) Objects A of Sh(X') comprise the following data:

(a) For each K—scheme T and smooth 1-morphism t: T — X in Artg, we are
given a sheaf of sets A(T,t) on T, in the étale topology.

(b) For each 2—commutative diagram in Artg
U

o) / i \

T X,
t

where T, U are schemes and t: T — X, u: U — X are smooth 1-morphisms
in Arty , we are given a morphism A(¢,n): ¢~ (AU, u)) — A(T,t) of étale
sheaves of sets on T'.

This data must satisfy the following conditions:

(1) If¢: T — U in (b) is étale, then A(¢, n) is an isomorphism.

(i) For each 2—commutative diagram in Artg

v
/;ﬂ \
U X,
oo
¢

with T, U,V schemes and t,u,v smooth, we must have

AW o, (¢ xidg) ©n) = A(p.n) o™ '(A(Y. L)) as morphisms
(Y od) AWV, v)) =9 oy AV, V) — A(T.1).
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(B) Morphisms o: A— B of Sh(X') comprise a morphism «(T,t): A(T,t)— B(T,1)
of étale sheaves of sets on a scheme T for all smooth 1-morphisms t: T — X, such
that for each diagram (27) in (b) the following commutes:

(AU, u A(T, 1)
¢~ (AU, u)) o

| o7 @@y a() |
B(¢,m)

¢~ (B(U, u)) B(T.1)

(C) Composition of morphisms Aiﬂ’)’i)(? in Sh(X) is (Boa)(T,t) = B(T,t) o
a(T,t). Identity morphisms id o: A — A are id o(T', t) = id 4(1,r)-

The analogue of all the above also holds for (étale) sheaves of KK —vector spaces, sheaves
of K—algebras, and so on, in place of (étale) sheaves of sets.

Furthermore, the analogue of all the above holds for quasicoherent sheaves, (or coherent
sheaves, or vector bundles, or line bundles) on X, where in (a) A(T,t) becomes a
quasicoherent sheaf (or coherent sheaf, or vector bundle, or line bundle) on T', in (b)
we replace ¢~ (A(U, u)) by the pullback ¢* (A(U, u)) of quasicoherent sheaves (etc),
and A(¢,n),a(T,t) become morphisms of quasicoherent sheaves (etc) on T .

We can also describe global sections of sheaves on Artin K —stacks in the above
framework: a global section s € H°(A) of A in part (A) assigns a global section
s(T,t) € HY(A(T,t)) of A(T,t) on T forall smooth t: T — X from a scheme T,
such that A(¢,n)*(s(U,u)) =s(T,t) in H°(A(T,t)) for all 2—commutative diagrams
(27) with t,u smooth.

In the rest of the paper we will use the notation of Proposition 3.10 for sheaves of all
kinds on Artin K—stacks. In [14, Corollary 2.52] we generalize the sheaves Sy, S)(} in
Section 3.1 to Artin K—stacks:

Proposition 3.11 Let X be an Artin K —stack, and write Sh(X)k _a1 and Sh(X)K _yect
for the categories of sheaves of K —algebras and K —vector spaces on X defined in
Proposition 3.10. Then:

(a) We may define canonical objects Sx in both Sh(X) g _ae and Sh(X) K _yece by
Sx(T,t) := St for all smooth morphisms t: T — X for T € Schg, for St
as in Section 3.1 taken to be a sheaf of K —algebras (or K —vector spaces) on
T in the étale topology, and Sx (¢, 1) := ¢*: ¢ 1 (Sx(U,u)) = ¢ 1 (Sy) —
St = 8x(T,t) for all 2—commutative diagrams (27) in Artg with t, u smooth,
where ¢* is as in Section 3.1.
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(b) There is a natural decomposition Sy = Ky & S)(} in Sh(X) K _vect induced by
the splitting Sy (T,t) =St =Kr & S% in Section 3.1, where Kx is a sheaf of
K —subalgebras of Sx in Sh(X)g a1, and Sf‘), a sheaf of ideals in Sy .

Here [14, Definition 2.53] is the generalization of Definition 3.1 to Artin stacks.

Definition 3.12 A d—critical stack (X, s) is an Artin K—stack X and a global section
se H° (S)(}), where S)(} is as in Proposition 3.11, such that (7', s(7',¢)) is an algebraic
d—critical locus in the sense of Definition 3.1 for all smooth morphisms ¢: 77 — X
with T € Schi .

In [14, Proposition 2.54] we give a convenient way to understand d—critical stacks
(X, s) in terms of d—critical structures on an atlas ¢: 7 — X for X .

Proposition 3.13 Suppose we are given a 2—commutative diagram in Artg,

U—r T
(28) | m oo |
T X,

where X is an Artin K —stack, T, U are K —schemes, t, 71, my are smooth 1-morph-
isms, t: T — X is surjective, and the 1-morphism U — T x; x ; T induced by (28)
is surjective. For instance, this happens if U = T is a groupoid in K —schemes, and
X =[U = T] the associated groupoid stack. Then:

(i) Let Sy be as in Proposition 3.11, and ST, Sy be as in Section 3.1, regarded
as sheaves on T, U in the étale topology, and define 7}: m;” 1(S7) — Sy asin
Section 3.1 for i = 1,2. Consider the map t*: H*(Sy) — H°(S7) mapping
t*: s+ s(T,t). This is injective, and induces a bijection

(29) 1*: HO(Sx)—{s’ € HO(S7) : w1 (s') = 73 (s') in H(Sp)}.
The analogue holds for 89, S%, Sloj.

(ii) Suppose s € HO(S)(}), so that t*(s) € HO(S%) with o t*(s) = 7y o t*(s).
Then (X, s) is a d—critical stack if and only if (T, t*(s)) is an algebraic d—critical
locus, and then (U, 7t} ot*(s)) is also an algebraic d—critical locus.

In [14, Example 2.55] we consider quotient stacks X = [T/ G].
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Example 3.14 Suppose an algebraic K—group G acts on a K—scheme 7' with action
w: GxT — T, and write X for the quotient Artin K—stack [7/G]. Then as in (28)
there is a natural 2—Cartesian diagram

GxT p T
\L]TT 77{}\ . [\1/
T X =[T/G],

where t: T — X is a smooth atlas for X. If 5" € HO(Sg) then 77" (s") = 73 (s”) in (29)
becomes 77.(s") = ju*(s") on Gx T, thatis, 5" is G—invariant. Hence, Proposition 3.13
shows that d—critical structures s on X = [7/G] are in one-to-one correspondence
with G —invariant d—critical structures s" on 7.

Here [14, Theorem 2.56] is an analogue of Theorem 3.4.

Theorem 3.15 Let (X, s) be a d—critical stack. Using the description of quasicoherent
sheaves on X™¢ in Proposition 3.10 there is a line bundle K x,s on the reduced K —
substack X™ of X called the canonical bundle of (X, s), unique up to canonical
isomorphism, such that:

(a) For each point x € X red € X we have a canonical isomorphism
(30) xt Kasle— (NPT X)® @ (AT Is0, (X)),
where Ty X is the Zariski cotangent space of X at x, and Jsox(X) the Lie
algebra of the isotropy group (stabilizer group) Iso(X) of X at x.
(b) IfT isaK-scheme andt: T — X asmooth 1-morphism, so that gred; red

X js also smooth, then there is a natural isomorphism of line bundles on T":

>~ ® 2
3D Cre Kx s (TG 1°) = Krsr.0) @ (NPTF ) ) [ -

Here (T, s(T,t)) is an algebraic d—critical locus by Definition 3.12, and from
Theorem 3.4, K 4(1,1) = T js its canonical bundle.

(c) Ift: T — X is a smooth 1-morphism, then we have a distinguished triangle
in Dgeon(T') :

*(Ly)[1],

where L7, Ly are the cotangent complexes of T, X, and TT’E /X the relative
cotangent bundle of t: T — X, a vector bundle of mixed rank on T. Let

L
(32) *(Lx) Lr Ty
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peT™ CT,sothatt(p):=tope X. Taking the long exact cohomology
sequence of (32) and restricting to p € T gives an exact sequence

(33) O—>T(p)X—>T T—>T;‘/X|p—>350t(p)(X)*—>O.

Then the following diagram commutes:

KX,S (Tred’ lred) |p

KX,s|t(p) —_—

®—2
Krsanlp ® (APTfx) |,

T.tip
l Kt(p) kp®id ¢
2

2 ~ 2 “p
(APT% X)® @ (AT 350,y (X)® —= (AT T) @ (AT}, ) 2
where kp,k:(py, and I'r, are as in (21), (30) and (31), respectjvely, and
e APTY X ® At"pﬁso,(p)(X)iAmPT;T ® A“’PT*/X|p is induced by

t(p)
takmg top exterior powers in (33).

Here [14, Definition 2.57] is the analogue of Definition 3.6:

Definition 3.16 Let (X, s) be a d—critical stack, and Ky s its canonical bundle from
Theorem 3.15. An orientation on (X, s) is a choice of square root line bundle Ky /
for Ky on X red That is, an orientation is a line bundle L on X™¢, together w1th
an isomorphism L® =L ®L = Ky . A d—critical stack with an orientation will be
called an oriented d—critical stack.

Let (X, s) be an oriented d—critical stack. Then for each smooth ¢: T"— X we have
a square root Ki,/’f(Tred, t*d) . Thus by (31), K1 2(Tred ) ® (ATILT/X)|Tred is a
square root for K7 4(r,s). This proves [14, Lemma 2.58]:

Lemma3.17 Let (X,s) be a d—critical stack. Then an orientation K y 1/ 2 for (X,s) de-
termines a canonical orientation K T/ 2(T 0 for the algebraic d—critical locus (T,s(T,t)),
for all smooth t: T — X with T a K—scheme.

3.3 From —1-shifted symplectic stacks to d—critical stacks

Here is the main result of this section, the analogue of Theorem 3.9 from [4].

Theorem 3.18 Let K be an algebraically closed field of characteristic zero, (X, wx)
a —1—shifted symplectic derived Artin K —stack, and X = t((X) the corresponding
classical Artin K —stack. Then there exists a unique d—critical structure s € H° (S)(})
on X, making (X, s) into a d—critical stack, with the following properties:
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(@) Let U, f: U — A', T = Crit(f) and ¢: T — X be as in Corollary 2.11,
with f|rwa = 0. As in Section 3.1, there is a unique s € H°(SY) on T with
iru(s) =i N(f) + I%’U, and (T, sT) is an algebraic d—critical locus. Then
s(T,p) =sT In HO(S%).

(b) The canonical bundle Kx s of (X,s) from Theorem 3.15 is naturally isomorphic
to the restriction det(IL x )| yrea to X red C X C X of the determinant line bundle
det(Lx ) of the cotangent complex Ly of X .

We can think of Theorem 3.18 as defining a truncation functor

F: {oo—category of —1—shifted symplectic derived Artin K—stacks (X, wx )}
— {2—category of d—critical stacks (X, s) over K}.

Let Y be a Calabi—Yau 3—fold over K, and M a classical moduli K —stack of coherent
sheaves in coh(Y), or complexes of coherent sheaves in D? coh(Y). There is a
natural obstruction theory ¢: £* — L on M, where £°* € Dyeon(M) is perfect
in the interval [—2, 1], and 4%(£®)|F = Ext!™/(F, F)* for each K—point F € M,
regarding F as an object in coh(Y') or D coh(Y). Now in derived algebraic geometry
M = tg(M) for M the corresponding derived moduli K—stack, and ¢: £° — L x4
is Lsy: La|amg — Laog. Pantev et al [28, Section 2.1] prove M has a —1—shifted
symplectic structure @. Thus Theorem 3.18 implies:

Corollary 3.19 Suppose Y is a Calabi—Yau 3—fold over K of characteristic zero,
and M a classical moduli K —stack of coherent sheaves F in coh(Y'), or complexes of
coherent sheaves F* in D? coh(Y) with Ext=C(F*, F*) = 0, with obstruction theory
¢: E* — L rq. Then M extends naturally to an algebraic d—critical locus (M, s). The
canonical bundle Ky s from Theorem 3.15 is naturally isomorphic to det(£®)| ed .

3.4 Proof of Theorem 3.18

Let (X, wx) be a —1—shifted symplectic derived Artin K—stack, with char K =0, and
X =1y(X). For each p € X, Corollary 2.11 gives data 7 = Crit(f: U — A!) with
Slrea =0, ¢t €T and a smooth ¢: T"— X with ¢(¢) = p. Choose Uj, f;, T, ¢j
from Corollary 2.11 for j in an indexing set J, such that ]_[jej @j: [ies Tj — X is

J

surjective. Then [ [;e; ¢j: [[jes Tj — X is a smooth atlas for X. As in Section 3.1,
there is a unique s; € HO(S%) with (7, y; (57) = z'j_l(fj) + I%,-,Uj ,and (7j,s;) is an

algebraic d—critical locus for each j € J.

Let j,k € J, and q € Tj Xy, x,0. Tk- Applying Proposition 2.13 gives a smooth
K—scheme Vji, a closed K—subscheme Rj; € Vji, a point r € R, and morphisms
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1320 O Ben-Bassat, C Brav, V Bussi and D Joyce

Oik: Vik = Uj, Q;k: Vik = Ui with 0, (Rjx) € Tj, Q}k(Rjk) C Ty, such that the
following diagram 2—commutes in Art :

Vik Ug Al
\ 0;/{ . Ji
lg
ik e}klek
0k Rk Tk
Uj Ojk|R Nk Pk

lj @Qj

where ij, iy, ij; are the inclusions, and the induced morphism R;; — T xx Ty is
8 0. — ’ 2
étale and maps r +— ¢, and fj o0k fkoejkelek,ij‘

As we can do this for each g € T x x Ty, we can choose a family of such Vl Rjk, ij,
0% ik 7' kol L, for I € Kjj, where K is an indexing set, such that the induced
morphlsm e K Rl ik = Tj xx Ty 1s étale and surjective. We apply Proposition 3.13
to the 2—c0mmutat1ve diagram

I I ® L 7

jkeJ ek L ke 9;'lk|Rl4k ket
J
. I I
l]‘[”k’[ 9jk|R5<k ]_[j,kq] njkf}\ L[k Pic
' L ¢j
[ 7 X.
jeJ

Here [ [; ;: [[; Tj — X is smooth and surjective, and [ ; 4, Rj.k — [ T xx Tk
étale and surjective, so the hypotheses of Proposition 3.13 hold.

Now for all j,k € J and / € K, in the notation of Section 3.1, we have

‘Rl L }Rl () = (if)~ (9”) 01 ‘Rl (1,05 (7))

= jk|Rl. (ij_l(ff')JrlTj,Uj)z("jk)_ (fi o 0fx + I L)

1 2 Y/ Bl SPTE | 2
= ()™ a0 Ok + T 1) =0 [, Gk (fk)+1Tk,U,€>
= (i )‘1(9””) ekt (Do 00 = gt 1 00 [ (s%)
= ik k IR!, Tie; U k) = *RE VP Yk R!, k)
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A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks 1321

using (20) in the first and seventh steps, the definitions of s;, sx in the second and
sixth, and fj o Q}k — fxo 9]’2 € Ilzi’fk,lfjlk in the fourth. As (gl ! is injective, this
implies that

Okl ke, (/) = 0 Rr, (5%)
in H° (S%j/_k). Since this holds for all j,k,/, we see that

(L hts) (L) = (L1 o0m. ) (L1

J

in H O(SU i R, ) Therefore Proposition 3.13(i) shows that there exists a unique
element s in the group H%(Sy) with

(LI Ller) =11

that is, with s(7},¢;) = s;j forall j € J. Also, as ([[; 7j,[[; sj) is an algebraic
d—critical locus, Proposition 3.13(ii) shows that (XX, s) is a d—critical stack.

To show s € HO(SX) is independent of the choice of data J, U;, f;, T;, ¢j, K k. ij»

jk,ij,Q/k njk, ]k> suppose J',Us, fjr,... is another set of choices yielding
s' € H%(Sy) with s'"(Tr @) = sy for all j" € J'. Applying the same argument
with J" = J 10 J’ anddata Uj, 1j. Tj,¢j, j €J and Up, fi, Tjr @y, j € J', with
K//k—K k> VJ,%—VZ .. forj kEJCJ// andK /k/—K k! s V/k/—V//k/ .
for j’,k" € J' C J”, and the remaining K7y, VJ”,g . arbltrary, yields a third section
s" € H(Sy) satisfying s”(Tj,¢;) = s; forall j € J and s"(T}, @) = s for all
j' € J'. So the uniqueness property of s, s’ gives s =s” =s’, and s is independent
of the choice of data J, Uj, f,....

Let U, f: U — A', T = Crit(f) and ¢: T — X be as in Corollary 2.11, with
f|rea = 0. By defining s € H°(Sx) above using data J,Uj, f;,... chosen such
that Uy = U, fj = f, Tj =T, ¢j = ¢ for some j € J, which is allowed as s
is independent of this choice, we see that s(7,¢) = s in H° (S%). This proves
Theorem 3.18(a).

For part (b), let U, f: U — A', T =Crit(f) and ¢: T — X be as in Corollary 2.11,
with i: T < U the inclusion, so that s(7,¢) = st in HO(S%) with (7 y(sT) =
iY(H+IT % y by (@). Then (T, U, f,i) is a critical chart on the algebraic d—critical
locus (7T, sT), so Theorem 3.4(b) gives an isomorphism

. 2
(34) iU, £t Krsy —> i* (K|,

The data in Corollary 2.11 come from Theorem 2.10(a),(b) with £ = —1, but with
different notation. To distinguish the two, we write <~ over notation from Theorem 2.10.
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Then Theorem 2. 10(a) (b) give affine derlved K schemes U V a —1—shifted symplec-
tic structure wp on V., and morphlsms U—V, 0 U — X such that o*(wx) ~
7*(&p), and T = to(): U = 1o(U) — V = 15(V) is an isomorphism on the classical
schemes. These are related to the data of Corollary 2.11 by V is the derived crit-
ical locus Crit(f U— Al), and V the classical critical locus T = Crit(f), and
p=¢gol L. T= V- X.

We have standard fibre sequences on U:

¢*(Lx)——Lyg Li,/x o*(Lx)[1],
*(Ly)——Lg L (L)1),

1
Taking determinants gives natural isomorphisms of line bundles on U:

35) detLy >~ ¢*(detLy) ® detL,x,
detLy >~ i*(detLy) ® detLg,p.

Equation (14) gives L7/ >~ T ¢7/x [2]. So taking determinants we have
(36) detLg v ~det Ty /x = (detLg x)*.
Combining (35)—(36) and restricting to U= to(lj' ) C U yields

(37) §*(detLy |x) =7 (detLi| ) ® (det L x |5)® -

Since ¢: U — X is smooth, so is ¢: U — X, and

’\./T*

(38) Lg/xlg =Ly x = U/x

AsT: U — V =T is an isomorphism, we may apply (i~1)* to (37). Using (38) and
(T H*oi*=id, (TH)*o@g*=¢*asp=¢goi ! gives

(39) p*(detLy|y) = (et Ly|r) ® () (APTE ).

Since V = Crit(f: U — A'), we have

21l
]LV|T—[TU|T—‘T_>T Ulrl.

with TU |7 in degree —1 and T*U |7 in degree 0. Therefore
(40) detLy|r =i *(KE").
Also,as i~V T — U is an isomorphism, we have

1) @HNTE ) =Ty
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Combining (39)—(41), restricting to T4 and using (34) gives
-2
(42) (@D * (et Lx [xro) = K757 @ (NPTF ) 3) | Frca -

Substituting in the isomorphism I'7, in Theorem 3.15(b) from the smooth morphism
¢: T — X gives a canonical isomorphism of line bundles on 7779:

(43) (™) * (det L x |yra) = Ky s(T™, ™).

This establishes the isomorphism Ky ¢ = det(IL x )|y in Theorem 3.18(b) evaluated
on (T4, ¢™) forany U, f, T, ¢ coming from Corollary 2.11. Such ¢™d: 77d . xred
form an open cover of X™ in the smooth topology. To prove the isomorphism K X, =
det(IL x )| xra globally and complete the proof, there are two possible methods. Firstly,
we could prove that given two choices U, f,T,¢ and U’, f',T’, ¢’ in Corollary 2.11,
the corresponding isomorphisms (43) agree on the overlap 7! Xgred ¥, grea T red,

But as we are dealing with line bundles on a reduced stack X red there is a second, easier
way: we can show that for each ¢ € T™¢ with ¢™4() = x € X", the isomorphism
detL x|x = Ky s|x from restricting (43) to ¢ depends only on x € X red "and not on
the choice of U, f, T, ¢, t. This holds as by Theorem 3.15(a) we have an isomorphism

(44) Kx.slx = (APT*X)® @ (APJso, (X))®”.

Since Ly is perfect in the interval [—2, 1], we have

1

(45) detLy |y = ) (AP H (Lx )",
i=—2

where we have canonical isomorphisms

H(Lx|y) =TFX, H'(Ly|x)= Jsox(X)*,

(46)
H_I(LX |x) = Tx X, H_z(]LXlx) = Jsox(X),

the first line holding for any derived Artin stack X, and the second line holding from
H (Lyl|x)= H "7 (Lxl|x)* as (X,wy) is —1—-shifted symplectic.

Combining (44)—(46) gives a canonical isomorphism detL x |x = Ky s|» depending
only on x € X4, Following through (34)—(43) restricted to t € 7™ with ¢™4(¢) = x,
we find that the restriction of (43) to ¢ gives the same isomorphism. This completes
the proof of Theorem 3.18(b).
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4 Perverse sheaves on d—critical stacks

In [3, Theorem 6.9], given in Theorem 4.4 below, we constructed a natural perverse
sheaf Py _ on an oriented algebraic d—critical locus (X, s). The main result of this
section, Theorem 4.8, generalizes this to oriented d—critical stacks.

We begin in Section 4.1 with some background on perverse sheaves on schemes.
Section 4.2 recalls results from [3], and proves in Proposition 4.5 a smooth pullback
property of the Py . in Theorem 4.4. Section 4.3 discusses perverse sheaves on Artin
stacks. Once we have set up all the notation, Theorem 4.8 in Section 4.4 follows almost
immediately from Theorem 4.4 and Proposition 4.5. In this section the base field K
may be algebraically closed with char K # 2, except in Corollaries 4.9 and 4.10 when
we require char K = 0 to apply the results of Section 3.

4.1 Perverse sheaves on schemes

We will assume the reader is familiar with the theory of perverse sheaves on C—schemes
and K —schemes. An introduction to perverse sheaves on schemes suited to our purposes
can be found in [3, Section 2], and our definitions and notation follow that paper. Here
is a brief survival guide:

e We work throughout this section over an algebraically closed field K with
charK # 2, for instance K = C. All K-schemes X, Y, Z,... are assumed
separated and of finite type.

¢ We work with constructible complexes and perverse sheaves over a commutative
base ring A. The allowed rings A depend on the field K. For K = C one can
define perverse sheaves using the complex analytic topology as in Dimca [7],
and then A can be essentially arbitrary, eg 4 = Q or Z.
If K # C then one must define perverse sheaves using the étale topology, as
in Beilinson, Bernstein and Deligne [1]. Then the allowed possibilities are A
with char 4 > 0 coprime to charK, or the /—adic integers Z;, or the /—adic
rationals Q;, or its algebraic closure Q;, for / a prime coprime to char K. We
will refer to all these possibilities as [ —adic perverse sheaves.

e For a K—scheme X, one defines the derived category Dé’ (X) of constructible
complexes of A—modules on X . There is a natural ¢—structure on Dé’ (X), with
heart the abelian category Perv(X') of perverse sheaves on X .

¢ An example of a constructible complex on X is the constant sheaf Ay with
fibre A at each point. If X is smooth then Ax[dim X] € Perv(X).
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L
» Grothendieck’s “six operations on sheaves” f*, f 'R fx, Rfi, RHom, ® act
on the categories Df (X). There is a functor Dy : Dé’ (X) —> Dé’ (X)°P with
Dy oDy = id: D?(X) — D2(X), called Verdier duality.

o Let U be a K—scheme and f: U — A! a regular function, and write U,

for the subscheme f~!(0) C U. Then one can define the nearby cycle functor

p Db U)— Db (Up) and the vanishing cycle functor ¢f Db U)— Db (Uy).
Both map Perv(U) — Perv(Up).

e Let U be a smooth K—scheme and f: U — A! a regular function, and write
X =Crit( f). Then we have a decomposition X = ]_[cef(X) X¢,where X, C X
is the open and closed subscheme of points p € X with f(p) = c. It turns out
that q)p(AU[dim U)) is supported on Xy € X C U.

Followmg [3, Section 2.4], define the perverse sheaf of vanishing cycles PV
of U, f in Perv(X) or Perv(U) tobe PV, Uf= =®cerx) ¢>f . (Ay[dim U])|Xc-
We also define a canonical Verdier duality isomorphism

ou,s: PVy, s—Dx (PVy /)
and twisted monodromy operator

TU’f: PV;],fiPV;j’f

Some references are [3, Section 2], Dimca [7] for perverse sheaves on C—schemes,
and Beilinson, Bernstein and Deligne [1], Ekedahl [8], Freitag and Kiehl [9], and Kiehl
and Weissauer [16] for perverse sheaves on K—schemes.

The theories of Z-modules on K—schemes, and Saito’s mixed Hodge modules on
C —schemes, also share this whole package of properties, and our results also generalize
to Z-modules and mixed Hodge modules, as in [3].

Here are some results connecting perverse sheaves and smooth morphisms. Theorem 4.2
(proved in [1, Theorem 3.2.4], see also [20, Section 2.3]) is the reason why perverse
sheaves extend to Artin stacks, as we discuss in Section 4.3.

Proposition 4.1 Let ®: X — Y be a scheme morphism smooth of relative dimen-
sion d. Then the (exceptional) inverse image functors ®*, ®': Dé’(Y) — Dé’ (X)
satisfy ®*[d] = ®'[—d], where ®*[d], ®'[—d] are ®*, &' shifted by +d . Furthermore
®*[d], ®'[—d] map Perv(Y) — Perv(X).

Theorem 4.2 Let X be a scheme. Then perverse sheaves on X form a stack (a kind
of sheaf of categories) on X in the smooth topology.
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Explicitly, this means the following. Let {u;: U; — X };c; be a smooth open cover
for X', so that u;: U; — X is a scheme morphism smooth of relative dimension d; for
i €1, with [ [; u; surjective. Write U;j = U; Xy; xu; Uj fori, j € I with projections

”zij‘Uii—>Ui’ ;i Uij — Uj, ”ij=ui07T]—u]On Uij — X.
Similarly, write U;jx = U; x U; x Uy for i, j,k € I with projections
U, s U Tk U s U k. U
ijk Yijk ijs ijk* Yijk ik> ijk+ Yijk = Yjk>
i . J . k . .
”iljk' Uijk = Ui, 7350 Uijke — UJ" ik Uijk = Uk, uiji: Uije = X,

S0 thatnl]k—n onl]k, Ujjk = Ujj onl = u,onl]k,andsoon All thesemorphzsms

Ui, j, ..., U;j are smooth of known relat1ve dimensions, so u*[d | = u; [ d;] maps
Perv(X) — Perv(U;) by Proposition 4.1, and similarly for nlj, ... ujji . With this
notation:

(i) Suppose P*, Q* € Perv(X), and we are given ;: u}[d;](P®) — u}[d;](Q%) in
Perv(Uj;) forall i € I such that forall i, j € I we have

(el "Ly V@) = (o)) i) ey): wfylds + dy)(P*) —> uflds + d;)(Q°).
Then there is a unique a: P* — Q° with a; = u}|[d;](a) foralli € I.
(ii) Suppose we are given P; € Perv(U;) forall i € I and isomorphisms
aij: (T )(P]) — () *[di)(P})
in Perv(U;j) forall i, j € I with o;; = id and
(N,Jk) [di)(tji) o (] k) [di)@ij) = (eifo) *[dj)ein): (o)) *1d; + di)(P)
- (ﬂijk) [di +d;]1(Pk)

in Perv(U;jy) for all i, j,k € I. Then there exists P* in Perv(X), unique up to
canonical isomorphism, with isomorphisms B;: u* (P®) — P; foreachi €I, satisfying
aij o (ehp)* (Bi) = () *(By): u}; (P*) = () *(P}) forall i, j € 1.

Proposition 4.3 Let ®: U — V be a scheme morphism smooth of relative dimen-
siond and g: V — A' be regular, and set f = go ®: U — A'. Then:
(a) There are natural isomorphisms of functors Perv(V) — Perv(Uy) :
47) d5[d]o vE = w;’ o ®*[d] and ®§[d] o) = qﬁj‘,’ o ®*[d],
where Uy = f~1(0) CU, Vo =g 1(0) SV and ®y = Dly,: Up = V.
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(b) Write X = Crit(f) and Y = Crit(g), so that ®|y: X — Y is smooth of
dimension d . Then there is a canonical isomorphism

(48) o BYdI(PV}, ) —>PVy, ;  inPerv(X),

which identifies ®|%[d](oy,¢). ¥ [d|(ty,g) With oy, ¢, 1y, 1.
4.2 Perverse sheaves on d—critical loci

Here is [3, Theorem 6.9], which we will generalize to stacks in Theorem 4.8 below.
We use the notation of Sections 3.1 and 4.1 throughout.

Theorem 4.4 Let (X, s) be an oriented algebraic d—critical locus over C, with orien-
tation K i,/ Sz Then for any well-behaved base ring A, such as Z.,Q or C, there exists a
perverse sheaf P)’(’ , in Perv(X) over A, which is natural up to canonical isomorphism,
and Verdier duality and monodromy isomorphisms

Sy P)’(’S — ID)X(P)}’S), Tx P)'(’s — PI{,’S,
which are characterized by the following properties:
(1) If(R,U, f,i) is a critical chart on (X, s), there is a natural isomorphism
or.U.fit Py s|R—> 1" (PVy ) ®z/22 ORU. 1

where ng y, ri: Or,U,fi — R is the principal 7 /27 —bundle parametrizing
local isomorphisms o: K;,/f — i*(Ky)|ges Witha @@ =gy, £ for ig u, f.i
as in (22). Furthermore the following commute in Perv(R):

P% IR i*(PVYy. f) ®z/22 QR,U, £i

WR.U.f.i

(49) l Exalr eun®ioR b |

D&(P |%) Dr@r.v.ri) i* (Do ) (PVy, £) ®z/22 OR.U. £
? =Dgr(*(PVy, f) ®z/22 QR,U, £0)-

Py slr oo i*(PVy ) ®z/2z QR,U, £i

(50) lTX.is i*(TU,f)®idQR,U!fJ l
. OR.U.f.i ) .

Py sIr i*(PVy, £) ®z/2z QRU, fi-

(i) If®: (R, U, f,i) — (S,V,g,j) is an embedding of critical charts on (X, s),
there is a compatibility condition [3, Theorem 6.9(ii)] between wg y, f,i» WS V,g, j
which we will not give.
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Analogues hold for oriented algebraic d—critical loci (X, s) over general fields K in
the settings of [ —adic perverse sheaves and of % —modules, and for oriented algebraic
d—critical loci (X, s) over C in the setting of mixed Hodge modules.

We prove a proposition on the behaviour of the perverse sheaves Py . of Theorem 4.4
under smooth pullback, which will be the main ingredient in the proof of our main
result Theorem 4.8.

Proposition 4.5 (a) Let ¢: (X,s) — (Y,t) be a morphism of algebraic d—critical
loci over C, in the sense of Section 3.1, and suppose ¢: X — Y is smooth of relative
dimension d. Let KY/ , be an orientation for (Y,1), and let K / be the induced
orientation that Corollary 3.8 defines for (X, s). Theorem 4.4 deﬁnes perverse sheaves

P)'( - P}.’z on X,Y . Then there is a natural isomorphism

(51) Ag: 9*dI(P},)—>Py, inPerv(X)

which is characterized by the property thatif (R, U, f,i),(S,V, g, j) are critical charts
on (X,s),(Y,t) with p(R) € S and ®: U — V is smooth of relative dimension d
with f = go® and ®oi = j o¢, then the following commutes:
$I%ld)(Py) GIRld)(* PV}, ) ®2/22 Os.1.g.)
oIRldl(ws,v.g.j)
(52) | Aslr i*(Ee)8as |
WR.U.f.i

Py IR I*(PVy, ) ®z/22 QR,U, fii

where B¢ is as in (48) and ag: ¢|Rd(Os,v,e.j) = OR,U, s, is the natural isomor-
phism. Also Ay identifies ¢*[d|(Zy,), ¢*[d](Ty,) with Zx 5, Tx .

(b) If ¥: (Y,t) — (Z,u) is another morphism of algebraic d—critical loci over C
smooth of relative dimension e, then

(53) Ayos = Ay 0d™[dl(Ay): (¥ 0$)"[d +eJ(PY ,)—> Py .

(c) Analogues of (a), (b) hold for algebraic d—critical loci (X, s) over general fields K
in the settings of | —adic perverse sheaves and of % —modules, and for algebraic d—
critical loci (X, s) over C in the setting of mixed Hodge modules.

Proof Let ¢: (X.5) > (Y.1), d. Ky/} Ky/2. Py . Py, beasin (a). If x € X with
¢(x) = y € Y then the proof of [14, Proposition 2.8] shows that we may choose
critical charts (R, U, f,i),(S,V,g,j) on (X,s),(Y,t) withx e R, ye¢p(R)Z S of
minimal dimensions dimU =dim7x X, dimV =dim 7,Y, and ®: U — V smooth
of relative dimension d with f = go® and ®oi = jo¢.
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Choose such data (R, Ug, fa,ia), (Sa, Va, &a» ja), @a for a € A, an indexing set, such
that { R, :a € A} is an open cover for X . For each a € A4, define an isomorphism A, :
¢|}<€a [d ](P; )= P)'(,s |r, to make the following diagram of isomorphisms commute,
the analogue of (52):

ol [dI(Py) — Bl (IS PVY, ) ®2/27 OSuisgass)

(54) l/ Aa ¢|Ra[d](wsu,Va,ga.ja) i;(E'fDa)@aCDa \l/
@Ra.Uqg.fa.ia

P sIR, ig(PVy, 1) ®2/22 QRyUs, fusia-

Combining the last part of Proposition 4.3(b) with (49)—(50) shows that this A,
identifies ¢*[d](Zy,/)| R, ¢*[d](Ty,e)|R, With Zx s[R, Tx.s|R,-

We claim that for all a,b € A we have A4lgr,nr, = Aplr,nR,- To prove this,
let x € Rz N Ry, with y = f(x) € S4 N Sp. By Theorem 3.3 we can choose
subcharts (R}, U}, f,.i}) S (Ra,Uya, fa.ia), (R’,Ué,fé,il’)) C (Rp, Uy, fp,ip),
Sy Var8arJa) S (Sa. Var ga- ja)» (Sp. V. 84 Jp) S (Sh. Vi, gb. jp) With x € R[N
Ry, y € S,NS,, critical charts (Rap, Uap fab»iab)s (Sabs Vab €abs Jab) on (X, 5),
(Y,t), and embeddings

lIla: (R;v Ué’ fa,7 lc,z) — (Rab’ Uab’ fab’ iab)7

Wp: (Ry, Uy, fysip) = (Rab, Uabs Jabs lab),

Qa3 (Stlza Va,v g;7 J(;) — (Sabv Vab? 8ab; jab)’

Qp: (S, Vi 8 Jp) = (Sabs Vabs Eabs Jab)-
By combining the proofs of Proposition 3.2 and Theorem 3.3 in [14], we can show that
we can choose this data such that ®,(U,) € V,, ®,(U;) € V}/, and with a morphism
®,p: Uyp — Vap smooth of relative dimension d such that

Jab = &ab © Pab, DQap Olgh = Jab © Pab-
DPyp o Wa = Qa0 Paly;, PapoVp = Qp o Paly;.

As for (54) we have a commutative diagram

¢|>§eah [d](PI.’,t) > ¢|4I<2ab [d](j;b (Pv;/ub,gab) ®z/22Z QSup Vav-gabsian)

(55) \L Agp ¢|Rab[ ](wsabJ/ab’gabJab) i;b(E':l)ab)@a@ab \L

PRyb-Uab-fab-iab
. -k .
PX,S |Rab Lab (PVUab,fab) ®Z/2Z QRabaUabafabaiab :
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Using [3, Theorem 6.9(ii)] for the embeddings ¥,, 2, gives commutative diagrams

[ ] . /% [ ]
Py sl&, ————la PV, 1) @222 QR,,UL, 11
RY.UL.fh.il
l a)Rab’Uub’fabJablR(/; l';*(@\pa)@id l
(56)
- % ° id®A 1% (s % °
Lab (,PVUabsfab)lR& ' ‘I/Ea la (\Ija (PVUab,fab) ®Z/2Z P\P”)
®2/22Q RapUab. fav-ian | R, ®2/22 O R, Uy firily:
Py .ls; Ja"(PVy; o) @222 Os} Vi g4
> 4 wWer oo il as8a
Sa-Va-8asia
(57) l DSap-Yab-Cab-Jab |S£; J;(®Qa)®id l
Pk . id®A e * [
]ab(’PvVab’th)lS; 14®Aqq Ja (Qa(,PVVab,gah) ®z/27 PS'Za)
®2/22.Q Sap Vav-8ab-iav |, ®2/22.98,.Vi.gh.j4"

Here Py, Pg, are principal Z/2Z-bundles on R/, S) from [3, Definition 5.2],
and Oy, , Og, are isomorphisms of perverse sheaves from [3, Theorem 5.4(a)], and
Ag,, Aq, are isomorphisms of principal Z/2Z-bundles from [3, Theorem 6.9(ii)].

From the definitions of Py, Pq,,Oy,, Oq,, Aw,, Ag, one can show that there is a
natural isomorphism B,: @ [d](Pg,) — Py, such that the following commute:

OHAIPVS, ) OAANQL(PYS, ) ®z2z Pa,) =

V8 pr1d)(00,) Ya © Pupldl(PVY,, . ) ®z/2z Paldl(Pe,)
58 =
%) l Bea ;i (Ba,,)®ba |

. Oy, N
,PVUa/zsfz; q]; (PVUab:fab) ®Z/2Z P\Il‘”

oI, [0 (Pa,)
®2/22958,.V,.g4.74)

¢|>‘1}ab [d](QSabaVabagabvjab)

ol%  [dl(Aay)
(59) jep Rap TT08 i (Bu)@as, |
Awy .
O Ry, Uty fubian | RL ig (Pw,) ®z/22 OR,.U,. f1.il-

Combining (54)—(59) we see that Ag| g, = Agp| g, - Similarly Ap| R, = Agp| R} SO
Aalr,nr, = Dbl Ry R » Where R}, N R}, is an open neighbourhood of x in Rz N Rp.
As we can cover R, N Ry by such open R/, N RZ, and (iso)morphisms of perverse
sheaves form a sheaf, it follows that Ag|g,nr, = AplR.NR, -

By the Zariski topology version of Theorem 4.2(i), there exists a unique isomor-
phism Ay in (51) such that Ag|g, = A, for all @ € A. As each A, identifies
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¢*[dl(Zy,) R, ¢*[d](Ty,)|r, With Xx|r,. Tx,s|r, from above, Ay identifies
¢*[d](Zy,;). ¢*[d](Ty,) with Ey s, Ty . By our usual argument involving taking
disjoint union of two open covers, we see that Ay is independent of the choice of data A
and (Rgq, Ug, fa,ia), (Sa, Va, ga, ja), @a for a e A. Let (R, U, f,i),(S,V,g,j),®
be as in (a). By defining A4 using data A, (Rq. Uq. fa.1a). (Sa. Va, ga, ja), Pa with
(R, U, £,1),(S.V,g,j), ® equal to (Rq,Uq, fa.ia),(Sa. Va. &a, Ja), Pa for some
a € A, we see that part (a) holds.

For (b), let x € X with y =¢(x) € Y and z =¥ (z) € Z. The proof of Proposition 3.2
in [14] shows we may choose critical charts (R, U, f,i),(S,V,g,j),(T,W,h,k) on
(X,s),Y,t),(Z,u) with x e R, ye p(R) S S, z € ¥(S) S T of minimal dimen-
sions dimU =dim7x X, dmV =dim7,Y, dmW =dim7,Z,and ®: U -V,
V: ¥V — W smooth of relative dimensions d,e with f = go®, g = hoW and
®oi=jo¢, Vo j=koy. Consider the diagram of isomorphisms:

(Y o) |gld +e] (Y op)|gld +e]
(P2 ) wop)sld+elwrw.n )K" (PViy 1) @222 Q1w k)

i IR (Ay) A RG*(Bw)®ay) i
Byoslr | SIRII(PY,) IRl *(PVY, ) @222 Osvgs) | - v
o Rldl(@s.v.q.j) Oawod
l Aglr i*(Eo)®aq l
o OR,U.f.i . .
P% IR I*(PVy, ) ®z/22 QR,U. f.i

The two inner and the outer rectangles commute by (52). Also ayop = 0@ © ¢|;(0(\11)
is immediate and Eyop = E¢ 0 D] ém( f) [d](Ey) follows from the definition of E ¢
in Proposition 4.3(b), so the right hand semicircle commutes. Therefore the left hand
semicircle commutes. This proves the restriction of (53) to R € X . As we can cover X
by such open R, equation (53) follows.

For part (c), all the facts we have used about perverse sheaves on C—schemes above
also hold in the other settings of /—adic perverse sheaves on K—schemes, Z-modules,
and mixed Hodge modules. This completes the proof. a

4.3 Perverse sheaves on Artin stacks

We first note that because of Proposition 4.1 and Theorem 4.2, any of the theories
of perverse sheaves on C—schemes or K—schemes mentioned in Section 4.1 can be
extended to Artin C—stacks or Artin K—stacks X in a naive way, using the philosophy
discussed in Section 3.2 and [14, Section 2.7] of defining sheaves on X in terms of
sheaves on schemes 7' for smooth #: T — X, in particular Proposition 3.10:
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Definition 4.6 Fix one of the theories of perverse sheaves on K—schemes discussed
in Section 4.1, over an allowed base ring 4, where we include the special case K = C
and A is general as in Dimca [7]. Let X be an Artin K—stack, always assumed locally
of finite type. We will explain how to define an abelian category Pervp,;(X) of naive
perverse sheaves on X :

(A) Define an object P of Pervp,;(X) to assign

(a) for each K—scheme 7" and smooth 1-morphism ¢: T"— X, a perverse sheaf
P(T,t) € Perv(T) on T in our chosen K—scheme perverse sheaf theory;

(b) for each 2—commutative diagram in Artg
U

(60) / i X

T X7
t

where T, U are K—schemes and ¢, ¢, u are smooth with ¢ of dimension d,
an isomorphism P(¢, n): ¢*[d](P(U,u)) — P(T,t) in Perv(T).

This data must satisfy the following condition:

(i) For each 2—commutative diagram in Artg
" |4
v
U
u n
| ¢/%
T t

with T,U,V K-schemes and ¢, ¥, t,u,v smooth with ¢, of dimen-
sions d, e, we must have

Py og. (§xidg) On) =P($,n) o ¢*[d](P(¥.{)) as morphisms
(¥ 0$)*[d +e](P(V.v)) = ¢ x[d]oy*[e](P(V.v)) — P(T.1).

X,

(B) Morphisms «: P — Q of Pervy,;(X) comprise a morphism «(7,¢): P(T,t) —
Q(T,t) in Perv(T) for all smooth 1-morphisms ¢: 7 — X from a scheme 7', such
that for each diagram (60) in (b) the following commutes:

¢*[d1(P(U, u)) P(T,1)
| o[ Pi(b’"; T |
ANV 1)) ——" oT.1)
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(C) Composition of morphisms PLQLR in Pervp,;(X) is (B o) (T,t) =
B(T,t)oa(T,t). Identity morphisms idp: P — P are idp(T, 1) = idp(r ).

We can also define a category of naive Z—modules on X in the same way.

Remark 4.7 Definition 4.6 for P is modelled on Proposition 3.10 for A, with the
following differences:

(i) P(¢,n) is an isomorphism always, but .A(¢, n) need only be an isomorphism
if ¢ is étale. Now A in Proposition 3.10(A) is called a Cartesian sheaf on X if
A(¢, n) is an isomorphism always. So P is the perverse analogue of a Cartesian
sheaf A on X.

(i) P(¢,n) is defined only when ¢ is smooth, but A(¢,n) is defined without
requiring ¢ smooth. For Cartesian sheaves .4 on X, it is enough to give the data
A(T,t), A(¢, n) and check the conditions for ¢ smooth; the remaining A(¢, )
for nonsmooth ¢ are then determined uniquely.

(iii) Definition 4.6 uses shifted pullbacks ¢*[d] where Proposition 3.10 uses sheaf
pullbacks ¢~!. This is because of Proposition 4.1.

Using Proposition 4.1, Theorem 4.2 and formal arguments, we can deduce:

(a) For any Artin stack X', Pervp,;(X) is an abelian category, and if X is a scheme,
the functor Pervy,;(X) — Perv(X) mapping P — P(X,idy) is an equivalence
of categories with the category Perv(X') discussed in Section 4.1.

(b) If &: X — Y is a l-morphism of Artin stacks smooth of relative dimension d
then as in Proposition 4.1 there is a natural functor ®*.[d]: Pervy;(Y) —
Pervy,;(X).

(©) The analogue of Theorem 4.2 holds for the categories Pervy,; and pullbacks

~ild], taking the U;, Ujj, U;jk to be either schemes or stacks.

nai [

l’lal

This ‘naive’ model of perverse sheaves on Artin stacks follows from the scheme case
in an essentially trivial way, and is sufficient to prove the first part of the main result of
this section, Theorem 4.8 below.

However, for a satisfactory theory of perverse sheaves on Artin stacks, we want more:
we would like the category Perv(X') of perverse sheaves on X to be the heart of a
t—structure on a triangulated category Db (X) of ‘constructible complexes’, which may
not be equivalent to D Perv(X), and we would like Grothendieck’s “six operations
on sheaves” f*, f', Rfx, Rfi, RHom, ® and Verdier duality operators Dy, to act
on these ambient categories Dg (X). Other than pullbacks f™*, f by smooth 1-
morphisms f: X — Y and operators Dy, none of this is obvious using the definition
of perverse sheaves Pervy,;(X) above.
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Thus, the main issue in developing a good theories of perverse sheaves on Artin
stacks X is not defining the categories Perv(X) or Pervy,;(X) themselves, but defin-
ing the categories Dé’ (X) and the six operations upon them, and then defining a
perverse ¢ —structure on D? (X)) with heart Perv(X). If (a)—(c) above hold for these
Dé’ (X), Perv(X), it will then be automatic [22, Section 7] that Perv(X') >~ Pervy,;(X)
for Pervp,i(X) as in Definition 4.6.

Here are the foundational papers on perverse sheaves and Z—-modules on Artin stacks
known to the authors:

e Laszlo and Olsson [20; 21; 22] generalize the Beilinson—Bernstein—Deligne
theory of perverse sheaves on K —schemes with finite and /—adic coefficients [1]
to Artin stacks. In [22, Section 7] they show that Perv(X) is equivalent to the
category Pervy,;(X) in Definition 4.6.

¢ Liu and Zheng [24; 25] develop a theory of perverse sheaves on higher Artin
stacks using Lurie’s co—categories, and show it is equivalent to Laszlo and
Olsson’s version for ordinary Artin stacks.

¢ QGaitsgory and Rozenblyum [10] construct a theory of crystals on (derived)
schemes and stacks X . For classical schemes X, the categories of crystals
and Z-modules on X are equivalent, so the authors argue that 2 -modules on
(derived) stacks should be defined to be crystals. The six functor formalism for
crystals was not complete at the time of writing.

e In a brief note, for an Artin C—stack X, Paulin [29] proposes definitions of
constructible complexes Dé’ (X) over A = C, with its perverse ¢—structure, and
(for smooth X') of the derived category Df’h(X ) of Z—modules on X with #—
structure, claims the six functor formalism holds, and proves a ‘Riemann—Hilbert’
equivalence of these categories with 7—structures.

4.4 The main result

Here is the main result of this section, the analogue of Theorem 4.4 from [3]. Apart
from the material in our previous papers [3; 14] and general properties of perverse
sheaves on Artin stacks, the only extra ingredient is Proposition 4.5.

We state Theorem 4.8 and Corollaries 4.9, 4.10 using Laszlo and Olsson’s /—adic
perverse sheaves on Artin stacks [20; 21; 22], but they would also work for any other
theory of perverse sheaves, or Z-modules, or mixed Hodge modules, on Artin stacks,
which has the expected package of properties discussed in Section 4.3.
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Theorem 4.8 Let (X, s) be an oriented d—critical stack over K (allowing K = C ) with
orientation Ky / 2. Fix a theory of perverse sheaves on K —schemes from Section 4.1,
and let Pervndl(X ) be the corresponding category of naive perverse sheaves on X
from Definition 4.6. Then we may define Py s € Pervy,i(X) and Verdier duality and
monodromy isomorphisms

YXxs: Pxs—>Dx(Px,s), Tx,s: Px,s—> Px.s,

as follows:

(@) Ift: T — X is smooth with T a K—scheme, so that (T,s(T,t)) is an alge-
braic d—critical locus with natural orientation K T.s(T.r) 3 in Lemma 3.17, then
Pxs(T,t) = P;",S(T,t) in Perv(T), where P},S(T,t) is the perverse sheaf on the
oriented algebraic d—critical locus (T, s(T,t)) over K given by Theorem 4.4.
Also Zx (T, 1) = Zr5(1,r) and Tx s(T' 1) = Trg(1,1) -

(b) For each 2—commutative diagram in Artg
U

T

T X

t

with T, U K—schemes and ¢, t,u smooth with ¢ of dimension d, we have

’PX,S(d)? n = A(,b: ¢*[d](PX,s(U» u)) = ¢*[d](P(.j,s(U,u)) — 7)X,s(Ta 1) = P;‘,s(T,t)’

where Ay is as in Proposition 4.5.

If we work with perverse sheaves on K —schemes in the sense of [1] over a base ring A
with either char A > 0 coprime to charK, or A = Z;,Q; or Q; with [ coprime to
char K, then Pervy,;(X) >~ Perv(X) as in Section 4.3, where Perv(X) C Df,’ (X) is the
category of perverse sheaves on X over A defined by Laszlo and Olsson [20; 21; 22].
Thus Py g corresponds to ID/)'( , € Perv(X) unique up to canonical isomorphism, and
Yx,s. Tx,s correspond to isomorphisms

Sxsi Py, —Dx(Py,). Txs Py, —> Py, inPerv(X).

The analogue of the above will also hold in any other theory of perverse sheaves or
2% —modules on schemes and Artin stacks with the package of propert1es discussed
in Section 4.3, including the six operations f*, f*, Rfx, Rfi, RHom, ® Verdier
duality Dy, and descent in the smooth topology as in Theorem 4.2.
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Proof Proposition 4.5(b) implies that the data Py (7', 1), Px,s(¢, ) in (a), (b) satisfy
Definition 4.6(A)(i). Thus Py s is an object of Pervp,;(X). Similarly, the last part of
Proposition 4.5(a) implies that Xy s, Tx s are morphisms in Pervp,;(X). The last part
is immediate from the discussion of Section 4.3. O

Combining Theorems 2.10, 3.18 and 4.8 and Corollary 3.19 yields:

Corollary 4.9 Let K be an algebraically closed field of characteristic zero, (X, w) a
—1—shifted symplectic derived Artin K —stack, and X = ty(X) the associated classical
Artin K —stack. Suppose we are given a square root det(IL x ) |;(/2.

Then Working in [/ —adic perverse sheaves on stacks [20; 21; 22], we may define a per-
verse sheaf PX wonX umquely up to canonical 1som01ph1sm and Verd1er duahty and
monodromy isomorphisms Z‘X w* PX P ID)X(PX ) and TX w" PX 0= PX -

These are characterized by the fact that given a diagram

U =Crit(f: U — Al) ' 14 X

such that U is a smooth K —scheme, ¢ smooth of dimension n, Ly jy ~ Ty x[2],
0*(wx) ~ i *(wy) for wy the natural —1—shifted symplectic structure on U =
Crit(vf: U— Al),imd (p*(det(]LX)|)l(/2) ~i*(Ky)® A"Ty,x , then (p*(P;(’w)[n],
P* (X% Inl, ¢*(Tg )In] are canonically isomorphic to i*(PVy,r), i*(oy,s),
i*(ty,f). for PVy, r.oy, r.tu, 5 as in Section 4.1.

Corollary 4.10 Let Y be a Calabi—Yau 3—fold over an algebraically closed field K
of characteristic zero, and M a classical moduli K —stack of coherent sheaves F in
coh(Y), or of complexes F* in D? coh(Y) with Ext=°(F*, F*) = 0, with obstruction
theory ¢: £* — L v, Suppose we are given a square root det(£%)/2.

Then working in [ —adic perverse sheaves on stacks [20; 21; 22], we may define a natural
perverse sheaf PX/t € PerV(./\/l) and Verdier duality and monodromy isomorphisms
EM P — ID)M(PM) and TM P — P’ . The pointwise Euler characteristic
of P/'Vt is the Behrend function v x4 of M from Joyce and Song [15, Section 4], so
that P]A is in effect a categorification of the Donaldson—Thomas theory of M.

Example 4.11 Suppose an algebraic K—group G acts on a K—scheme 7" with action
w: GxT — T, and write X for the quotient Artin K—stack [7/G],and ¢t: T — [T/ G]
for the natural quotient 1—-morphism.

As in Example 3.14, there is a one-to-one correspondence between d—critical structures s
on X =[T/G] and G-invariant d—critical structures s" on 7, such that s’ = s(7, 7).
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Also, from Lemma 3.17 we see that there is a one-to-one correspondence between
orientations K i,/ Sz for (X,s), and G —invariant orientations K IT/ 52, for (T,s’), given by
1/2 1/2 d red T
KT,S/ = KX,S (]11‘e s lre ) ® (A ]LT/X)|Tred.

Choose such s, s, K )1(/ Sz K;W/ sz/’ so that Theorems 4.4 and 4.8 give perverse sheaves
P}’ 5 P)’(’ s on T, X'. We would like to relate the hypercohomologies H*(T, P}’ )
and H*(X, Py ). We have 1*(Py ()[dim G] = P; , and thus

Rt Py, = Rit,t*(Py )ldim G] = Py | ®4, Ritx(Ar)[dim G,

where At is the constant sheaf on 7" with fibre the base ring A. Therefore, the Leray—
Serre spectral sequence for the fibration #: 7 — X with fibre G, twisted by Py , can
be interpreted as a spectral sequence

E®* = H*(T, P}.,) with E}?=HP(X, 15;“ ®4y Rityx(A7)[dim G)),
where R9t,(A7)[dim G] is locally constant on X with fibre H1~9mG (G, 4).

We also have a projection w: X =[T/G]— [*/G] for * = Spec K with fibre 7". The
Leray—Serre spectral sequence for m gives a spectral sequence

E** = H*(X,Py,) with EP9=HP(x/G.HIT™C(T, P ).

If G is finite we can consider the H* (7', P7 ) as G-modules and H*([*/G],—) as
group cohomology Hg‘rp(G, —), giving a spectral sequence

HP (G HY(T, P} ) = HPT(X, 13;“).

Example 4.12 Suppose that (X, wy ) is an oriented —1—shifted symplectic derived
Artin K—stack, and a finite group G acts on X preserving wy and the orientation.
Let Y be the derived Artin K—stack [X /G| equipped with the natural quotient —1—
shifted symplectic structure wy and orientation, and write f: X — Y for the étale
quotient morphism of derived Artin K—stacks. Then we have f*(wy) ~ wx and
*( P ) =~ P} , and therefore

Y oy WX
RYfiPy oy = RS f*(Py ) 2= Py ®4y R fu(Ax).

Therefore, the Leray—Serre spectral sequence for the fibration f: X — Y with fibre G
can be interpreted as a spectral sequence

E®* = H*(X. Py, ) with EP!=HP(Y, P}, ®4, RIfe(Ax)).
Since G is finite, only ¢ = 0 contributes and we get isomorphisms

HP (X, Py, )=H (Y, P}, ®4y fx(Ax)).
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We also have a projection n: ¥ =[X /G]— [*/G] for * = Spec K with fibre X . The
Leray—Serre spectral sequence for m gives a spectral sequence

E** = H*(Y.Py ) with EJ9=HP(*/Gl.HI(X, Py, ).

We consider H*(X, ﬁi, 0y) @ G-modules and observe that H*([*/G],—) is the
same as group cohomology Hg”;p(G, —), giving a spectral sequence

HgI;p(G, HY(X, P;(,wx)) — H°*(Y, P;,wy).

5 Motives on d—critical stacks

We now extend the results of [5] to d—critical stacks. Our main result Theorem 5.14 in
Section 5.4, proved in Section 5.5, states that an oriented d—critical stack (X, s) which
is of finite type and locally a global quotient carries a natural motive in a certain ring

of motives /\_/lf% # defined in Section 5.3.

In this section, K is an algebraically closed field of characteristic zero, and all K—
schemes and Artin K—stacks will be assumed to be of finite type unless we explicitly
say otherwise. From after Proposition 5.10, all Artin K—stacks will also be assumed to
have affine geometric stabilizers.

5.1 Rings of motives on K-schemes

We begin by defining rings of motives Kq(Schy), My, Kg(SchX), M?( for a K-
scheme X . Some references are Denef and Loeser [6], Looijenga [26], and Joyce [13].
Our notation follows Bussi, Joyce and Meinhardt [5].

Definition 5.1 Let X be a K—scheme (always assumed of finite type). Consider
pairs (R, p), where R is a K—scheme and p: R — X is a morphism. Call two pairs
(R, p), (R, p') equivalent if there is an isomorphism ¢: R — R’ with p = p’ o¢.
Write [R, p] for the equivalence class of (R, p). If (R, p) is a pair and S is a closed
K —subscheme of R then (S, p|s), (R\ S, p|g\s) are pairs of the same kind. Define
the Grothendieck ring Ko(Schy) of the category Schy of K—schemes over X to be
the abelian group generated by equivalence classes [R, p], with the relation that for
each closed K—subscheme S of R we have

(61) [R.pl =I[S. pls]+[R\ S, plr\s].
Define a product ‘- * on K(Schy) by
(62) [R.pl-[S.0]=[Rxpx0S.ponR].
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This is compatible with (61), and extends to a biadditive, commutative, associative prod-
uct -: Ko(Schy) x Ko(Schy) — Ky(Schy). It makes Ky(Schy) into a commutative
ring, with identity 1y = [X,idy].

Define L =[A! x X, my] in Ko(Schy). We denote by
(63) My = Ko(Schy)[L™']

the ring obtained from K((Schy) by inverting .. When X = SpecK we write
Ko(Schg), Mk instead of Ky(Schy), My .

The external tensor products X: Ko(Schy) x Ko(Schy) — Ky(Schxxy), X: My x
My —> Mxxy are

(64) (ZC,’[R,‘,,O,’])@(Zdj[Sj,Uj])= Z Cidj[RiXSj,piXO‘j],
iel jeJ iel, jeJ
for finite 7, J. They are biadditive, commutative, and associative. Taking ¥ = Spec K,

we see that X makes Kq(Schy), My into modules over Ko (Schg), M.

Let ¢: X—Y be a morphism of K—schemes. Define the pushforwards ¢y: Ko(Schy)—
Ko(Schy) and ¢«: My — My by

(65) $x: Y cilRi, pil— Y cilRis ¢ o pil.

i=1 i=1

Define pullbacks ¢*: Ko(Schy) — Ko(Schy) and ¢*: My — My by

n n
(66) ¢*: Y cilRi.pil — Y cilRi % v, X, x].
i=1 i=1
Pushforwards and pullbacks have the obvious functoriality properties. As in [13, Theo-
rem 3.5], pushforwards and pullbacks commute in Cartesian squares, that is, if

w n Y is a Cartesian square Mw N+ My
©67) l 6 ¥ L in the category Schik T 0* W T
¢ then the square n
commutes and the analogue holds for Ky(Schy), ..., Ko(Schz).
Definition 5.2 Forn=1,2,..., write u, for the group of all n™ roots of unity in K,

which is assumed algebraically closed of characteristic zero, so that u, = Z,. The u,
form a projective system, with respect to the maps w,; — 1n mapping x +— x4,

Define the group i to be the projective limit of the .

Geometry € Topology, Volume 19 (2015)



1340 O Ben-Bassat, C Brav, V Bussi and D Joyce

Let R be a K—scheme. A good [,—action on R is a group action r,: iy X R - R
such that such that each orbit is contained in an open affine subscheme of R and
pory(y) = p forall y € uy,. A good fi—action on R is a group action 7: i Xx R — R
which factors through a good p,—action, for some 7. We will write 7: ji X R — R for
the trivial fi—action on R, which is automatically good.

Consider triples (R, p,7), where R is a K—scheme, p: R — X a morphism, and
7: A x R — R agood fi—action on R. Call two such triples (R, p,7), (R, p',7’)
equivalent if there exists a jI—equivariant isomorphism ¢: R — R’ with p = p' o.
Write [R, p, 7] for the equivalence class of (R, p, 7).

The monodromic Grothendieck group K(’; (Schy) is the abelian group generated by
such equivalence classes [R, p, 7], with the relations:

(i) For each closed ji—invariant K—subscheme S of R, we have
[R,p.F1=1[S.pls.7|s]+[R\ 'S, plr\s-TIR\S]

(ii) Given [Ry, p1,71],[R2, p2, 2] with 7: Ry — Ry a [i—equivariant vector bundle
of rank d over Ry and p; = p; o, then

[Ry, pa] = [Ry x A, py o, 71 xT].

There is a natural biadditive product ‘-’ on K g (Schy) given by
(68) [R,p,7]-[S,0,5]=[R xp,x,6 S, pompR, 7 X5],
making Kg“ (Schy) into a commutative ring, with identity 1y = [X,idy,7].
Define L =[A! x X, 7y,T] in Kg(SchX). We denote by
ME = K (Schy)[L™"]

the ring obtained from K“ (Schy) by inverting L. When X = SpecK we write
K“(SchK) Mﬁé instead of K“(SchX) M“

The external tensor products X: Kg“ (Schy) x Kg (Schy) — Kg“ (Schyxy), X: Mg, X
./\/l‘; — .M;Xy are

(69) (Z ¢i[Ri, pi,?i]) X (Z d;lS;, Ujﬁj])
iel jeJ
= Z Cidj[Ri X Sj,p,' XOj,;'\i X’S\j],
iel, jeJ

for finite I, J. Pushforwards ¢4 and pullbacks ¢* are defined for Kg (Schy), /\/lg,
in the obvious way, and the analogue of (67) holds.
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There are natural morphisms of commutative rings

ix: Ko(Schy) — K™ (Schy), ix: My — M~
My: K¥(Schy) — Ko(Schy), Tyx: M2 — My,
given by ix: [R, p]—~ [R, p,7] and TIx: [R, p, 7]+ [R, p].

(70)

Following Looijenga [26, Section 7] and Denef and Loeser [6, Section 5], we introduce
a second multiplication ‘©” on Kf'(Schy), M& (written ‘*’ in [26; 6]).

Definition 5.3 Let X be a K-scheme and [R, p,7] and [S,0,5] be generators of
K(’f (Schy). Then there exists n = 1 such that the ji—actions 7,5 on R, S factor
through w,—actions ry, s,. Define J, to be the Fermat curve

Jp={(t, u) e AT\ {OH? : " +u" =1}.
Let py Xty acton J, X (R xy S) by
(a0, &) - ((t, 1), (v, w)) = (@ -1,&" -u), (rp(@) (v), s (@) (W))).

Write J, (R, S) = (Ju X (Rxx S))/(tn X ttn) for the quotient K—scheme, and define
a [p—action v, on J,(R,S) by

Un(()[)((t, I/l), v, U))(l,Ln X /’Ln) = ((O[ loe I/l), v, U))(Mn X /’Ln)
Let U be the induced good fi—action on J,(R, S), and set
(71) [R,p.F]1O[S,0.5]= (L =1 [(Rxx S)/pn,t]=[Jn(R, S), V]

in K, g (Schy) and M; This turns out to be independent of #, and defines commutative,
associative products ® on Kg (Schy) and M;

Let X,Y be K-schemes. As for Definitions 5.1 and 5.2, we define products
0: K2 (Schy) x K (Schy) — KX (Schywy), ©: MEx ME 5 ME

by following the definition above for ©, but taking products R x .S rather than fibre
products R xx S. These [ are commutative and associative. Taking ¥ = SpecK,
we see that [ makes K“ (Schy), M“ into modules over K“ (Schg), M“

For generators [R, p,7] and [S, 0,7]=ix ([S,0]) in Kg(SchX) or Mé‘( where [S, 0,7]
has trivial fi—action 7, one can show that

[R,p,7]O[S,0,7]=[R, p,7]-[S,0,7].
Thus iy is a ring morphism

(Ko(Schy),-) — (KE(Schy),®) and (My,-) = (ME,0).
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However, I1y is not a ring morphism
(Kf (Schy), ©) — (Ko(Schy),-) or (M§,©) > (Mx,).
Since L = [A! x X, 7y, 7] this implies that
M-L=MOL
for all M in KZ(Schy), ME.

Definition 5.4 Define the element L'/? in Kg (Schy) and /\/lg( by
(72) LY2 = [X,idy, 7] = [X x 12, 7],

where [X,idy,7] with trivial fi—action 7 is the identity 1y in K(’)L (Schy), ./\/lf{, and
X x py = X x{1,—1} is two copies of X with nontrivial fi—action 7 induced by the
left action of u, on itself, exchanging the two copies of X'. Applying (71) with n =2,
we can show that LY20 ]LAI/2 = L. Thus, LY2 in (72) is a square root for IL in the
rings (Kg(SchX), 0), (MY, ®). Note that LY/2.1/2 # L.

Equivalently, we could have defined

(73) LY? = [X,idy, 7] BLY? € K (Schy),
where ]L]%/ 2e Kg (Schx). We can now define
L"? € K¥(Schy) forn >0 and
L”/ZGM?( forneZ

in the obvious way, such that Lm/2 /2 = Lmtn/2

Next, following [5, Section 2.5], which was motivated by ideas in Kontsevich and
Soibelman [17, Section 4.5], we define principal Z/2Z-bundles P — X, associated
motives Y(P), and a quotient ring of motives M ; in which Y(P ®z/27 Q) =
T(P)OTY(Q) forall P, Q.

Definition 5.5 Let X be a K—scheme. A principal 7 /27 —bundle P — X is a proper,
surjective, étale morphism of K—schemes 7: P — X together with a free involution
o: P — P, such that the orbits of Z/27Z = {1,c} are the fibres of . The trivial
7/2Z~bundle is wxy: X x Z./27 — X . We will use the ideas of isomorphism of
principal bundles . P — Q, section s: X — P, tensor product P ®z/,7 Q, and
pullback f*(P) — Y under a 1-morphism of stacks f: Y — X, all of which are
defined in the obvious ways.
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Write (Z/27,)(X) for the abelian group of isomorphism classes [ P] of principal Z /27—
bundles P — X, with multiplication [P]-[Q] =[P ®z/,z Q] and identity [X X Z /2Z].
Since P ®z/27 P = X x Z/27 for each P — X, each element of (Z/27)(X) is
self-inverse, and has order 1 or 2.

If 7: P — X is a principal Z/27Z-bundle over X, define a motive
Y(P)=L"Y20 (X,id,7]—[P, 7, 7]) € M2,

where 7 is the fi—action on P induced by the py—action on P from the principal
7. /27 -bundle structure, as puy = Z/27. If P = X xZ /27 is trivial then

Y(X xZ/22) =L"Y? o (X,id.7] - [X X Z/2Z, 7, 7))
=L"'"2oL"20[X,id,7] = [X,id, 1],

using (72). Note that [X,1id,7] is the identity in the ring /\/lg(

As Y (P) only depends on P up to isomorphism, Y factors via (Z/27Z)(X), and we
may consider Y as a map (Z/27)(X) — M;

For our applications, we want Y: (Z / 27)(X) — Mﬁ to be a group morphism with
respect to the multiplication © on M, but we cannot prove that it is. Our solution is to
pass to a quotient ring ./\/l of M“ such that the induced map Y: (Z/27Z)(X ) — M“
is a group morphism. If we 51mp1y defined /\/l to be the quotient ring of M“ by the
relations

T(P®z/2z Q) =T (P)OT(Q)=0

forall [P],[Q] in (Z/2Z)(X) then pushforwards ¢: /\_/lf;‘(—> ./\_/l’% would not be defined
for general ¢: X — Y. So we impose a more complicated relation.

For each K—scheme Y, define 7§ £ to be the ideal in the commutative ring (/\/lA ©) gen-
erated by elements ¢, (Y (P ®Z/2Z 0)—T(P)OT(Q)) forall K-scheme morphisms
¢: X — Y and principal Z/2Z-bundles P, Q — X, and define M% = MHE v/ 1y i
to be the quotient, as a commutative ring with multiplication ‘©’, with pI'OJeCtIOIl
H“ M“ — M“ Kontsevich and Soibelman [17, Section 4.5] introduce a relation in
thelr motivic rings which has a similar effect.

Note that in /\71’)‘} we do not have the second multiplication * - ’, since we do not require
I to be an ideal in (M4, -). Also

R and Hy: ME > My

on ./\/l‘;’; do not descend to /\711;3 Apart from this, all the structures on M’;‘; above
descend to /Vl‘;: operations © and [, pushforwards ¢, and pullbacks ¢*, and

Geometry € Topology, Volume 19 (2015)



1344 O Ben-Bassat, C Brav, V Bussi and D Joyce

elements L, L'/2, T (P). By definition, M‘;"( has the property that
Y(P®z/220)=T(P)OY(Q) in My
for all principal Z/2Z-bundles P, Q — X .

5.2 Motivic vanishing cycles, and d—critical loci

Following Denef and Loeser [6], we define motivic nearby cycles, motivic Milnor
fibres, and motivic vanishing cycles:

Definition 5. 6 Let U be a smooth K—scheme and f: U — A! a regular function, and
set Up = f~1(0) C U. Then Denef and Loeser [6, Section 3.5] and Loouenga [26, Sec-
tion 5] define the motivic nearby cycle of f, an element MF mo} of M“O or Mf;

has an intrinsic definition using arc spaces and the motivic zeta function, Wthh we
will not explain, but we will give a formula [6, Section 3.3; 26, Section 5] for MF ‘;}0}

involving choosing a resolution of f.

If f =0 then MF mo} =0, so suppose £ is not constant. By Hironaka’s theorem [12]
we can choose a resolution (U ) of f. That is, U is a smooth K-scheme and
U—>U a proper morphism, such that 7 |g\»~1(up): U\JT Y(Uy) = U\ Uy is an
isomorphism, and 71 (Up)™¢ has only normal crossings as a K—subscheme of U.

Write E;, i € J for the irreducible components of 7~!(Up). For each i € J, denote
by N; the multiplicity of E; in the divisor of fom on U, and by v; —1 the multiplicity
of E; in the divisor of *(dx), where dx is a local non vanishing volume form at any
point of 7(E;). For I C J, we consider the smooth K—scheme E} = (();¢; £i) \

(UjeJ\IE')-

Let my = gcd(NV;)jer. We introduce an unramified Galois cover E ; of E}, with
Galois group fi, , as follows. Let U’ be an affine Zariski open subset of U, such that,
on U’, fom=uv™  withu: U — A \ {0} and v: U’ — A'. Then the restriction
of E}’ above E7 N U’, denoted by E‘; NU’, is defined as

E;NU ={(z,w) e A' x (E;NT'): 2" = u(w)™'}.

Gluing together the covers E;’ N U’ in the obvious way, we obtain the cover E}’ of EY
which has a natural pm,,—action py, obtained by multiplying the z—coordinate by
elements of fiy, . This py, —action on EY induces a fi—action py on Ej. Then

(74) MF, = (1 —L)II=YES, ny,, 1] in M.
o#ICT
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It is independent of the choice of resolution (l7 , ). The fibre MF{; mot | x ateach x € Uy
is called the motivic Milnor fibre of f at x.

Now let X = Crit(f) C U, as a closed K—subscheme of U . Since f is constant on
the reduced scheme X™¢, f(X) is finite, and we may write X = ]_[ce f(x) Xc, where
X, € X is the open and closed K—subscheme with X = |1 e (€)

Consider the restriction MF{ | Uo\ X, 1N Miﬁo\ X, Of /\/l U\ X, - We can choose (U )
above with

]T|(7\7r—1(X0): ﬁ\ﬂ_l(XO) — U\ Xy

an isomorphism. Write Dy, ..., Dy for the irreducible components of 7 1(UO\XO) o~
Uop \ Xo. They are disjoint as 7~ (U \ Xo) is nonsingular. The closures D1, ..., Dy
(which need not be disjoint) are among the divisors E;, so we write Da = Ej;, for
a=1,...,k,with {iy,...,ig} € I.Clearly N;, =v;, =1fora=1,... k.

Then in (74) the only nonzero contributions to MF° |Uo\ X, are from I = {is} for
a=1,...,k, with E o~ E° >~ D,, and the M actlon on E{ n is trivial as it
factors through the actlon of 1 = {1}. Hence

k k
MFE lupxo = Y Eq 3 U\ X0 11 = D _[Da> Tup\xo- 11 = [Uo \ X, idyp\ x,. 7]

a=1 a=1
Therefore [Uy, idy,, 1] —MF 2"} is supported on Xy C Uy, and by restricting to X
we regard it as an element of Mk or Mk Xo-

Define the motivic vanishing cycle MFy; mo’ of f in Mg or M’ by
(75) MFP|x, =1L~ d'mU/ZQ([Uc,ldUC,L] MFE_)lx.

for each ¢ € f(X), where © and L~ 4m U/2 are as in Definitions 5.3 and 5.4.

Here is [5, Theorem 5.10], which we will generalize to stacks in Theorem 5.14.
Theorem 5.7 Let (X, s) be an algebraic d—critical locus with or1entat1on Ky 1/ 2 , for X
of finite type. Then there exists a unique motive MFy s € MY Y with the property that
if (R, U, f,i) is a critical chart on (X, s), then

(76) MFx s|g =i (MFmOtd))@T(QR v.ri) in Mg,
where Qg v, r,i — R is the principal 7./ 27 —bundle parametrizing local isomorphisms
o K |chd —>1i (KU)|chd

witha @ @ = tg y, 1, for tg y, fi asin(22).
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We prove a result on smooth pullbacks and pushforwards of the motives MFy ; of
Theorem 5.7, a motivic analogue of Proposition 4.5(a).

Proposition 5.8 Let ¢: (X,s) — (Y,t) be a morphism of (finite-type) algebraic d—
critical loci in the sense of Section 3.1, and suppose ¢: X — Y is smooth of relative
dimension n. Let Ky, 12 Y be an orientation for (Y, t), so Corollary 3.8 defines an induced
orientation Ky / for (X s). Theorem 5.7 now defines motives MFy s, MFy, on X, Y .
These are related by

(77 o*(MFy,) =" © MFx , € Mk,
(78) ¢« (MFx ) =L "> OMFy, ©[X.$.7] € My.

Proof If x € X with ¢(x) = y € Y then the proof of Proposition 3.2 above in [14]
shows we may choose critical charts (R, U, £,i),(S,V, g, j) on (X,s),(Y,t) with
x€R, ye¢(R)C S of minimal dimensions dimU =dim7x X, dim V' =dim 7)Y,
and ®: U — V smooth of relative dimension #n with f = go ® and ®oi = j o ¢.

Let r: V — V be an embedded resolution of singularities of g. Then U:=U X,V 1%
is an embedded resolution of singularities of f', since ® is smooth and f = go .
As in Definition 5.6, let F; for i € J be the irreducible components of 7 1(V()) SO
that 7=1 (Vo) = ;e Fi, with multiplicities N; in the divisor of g o7 on V, and
v; — 1 in the divisor of 7*(dx), and define F; = ((;¢; Fi)\ (UJGJ\I Fj) and covers
F°—>F° forall I C J.

Define E; = U X®,V,x|F, F;cn Y (Uy) C U. Then 7 Y (Uy) = U;ey Ei. The E;
need not be irreducible, or nonempty, but this is not important. Neglecting this, we can
treat the E;, i € J as the components for (l7 ) in Definition 5.6, and then they have
the same multiplicities N;, v; as the F; for (V n) and the E9, E ° for I € J defined
in Definition 5.6 satisfy E} = U xy F} and E°~Uxyp F° Thus we have

MFP = > (1=L)ED, my,. o]

o#ICS
= Z (1 —L)|1|—1[ﬁ; XJTVO,Van)|U0 U, Uy > 151]
o#ICT
— ol | X - gl = 0l a7
o#ICJ

So from (75) we deduce that

Loy 2 t,¢
(79) Q& MF?) =17 oMFy?,
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using
q)| *UC ([VC9 ldVC ”L\]) = [UC9 ldUc ’?]7

where the factor /2 is to convert the factor L~ 4mY/2 in MF r(r}o}’¢ to the factor

—dimV/2 mot,¢
[—¢m in MFV’g .

Combining (79) with (76) for (X, s), (R, U, f,i) and the pullback of (76) for (Y,¢),
(S,V,g,j)by ¢|gr: R— S, and noting that ¢p*o j* = i*ocblém(f) since jog = doi,
we deduce the restriction of (77) to R € X'. As we can cover X by such open R, this
proves (77). Equation (78) follows by applying ¢« and noting that ¢4 o ¢* (M) =
M@[X,¢,T]forall¢:X—>YandMeJWl;. |

5.3 Rings of motives over Artin stacks

We now generalize the material of Section 5.1 to Artin stacks. Our definitions are
new, but very similar to work by Joyce [13] on ‘stack functions’, and Kontsevich
and Soibelman [18, Sections 4.1—-4.2]. As in [13], we restrict our attention to Artin
K-stacks X (always assumed of finite type) with affine geometric stabilizers. In
Sections 5.4-5.5 we will restrict further, to stacks which are locally a global quotient.

Definition 5.9 An Artin K—stack X has affine geometric stabilizers if the stabilizer
group Isox (x) is an affine algebraic group for all points x € X .

An Artin K-stack X is locally a global quotient if we may cover X by Zariski open
K —substacks ¥ € X equivalent to global quotients [S/ GL(#n,K)], where S is a
K —scheme with a GL(#n, K)-action.

If X is locally a global quotient then it has affine geometric stabilizers, since the
stabilizer groups of [S/ GL(n, K)] are closed K—subgroups of GL(n,K), and so are
affine. The authors do not know any example of an Artin K —stack with affine geometric
stabilizers which is not locally a global quotient.

Deligne—-Mumford stacks have affine geometric stabilizers, and are locally a global
quotient if their stabilizers are generically trivial. If M is a moduli stack of coherent
sheaves F on a projective scheme Y, then using Quot-schemes one can show that M
is locally a global quotient. If M is a moduli stack of complexes F* in D? coh(Y)
with Ext=%(F®, F®) =0 then M has affine geometric stabilizers, since Iso,(F®) is
the invertible elements in the finite-dimensional algebra Hom(F'®, F'*), and so is affine.
We require affine geometric stabilizers to use a result of Kresch [19, Proposition 3.5.9]:
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Proposition 5.10 (Kresch) Let X be a (finite-type) Artin K —stack with affine geo-
metric stabilizers. Then X admits a stratification X = [[;; X;, for I a finite set and
Xi; € X alocally closed K —substack, such that X; is equivalent to a global quotient
stack [S;/ GL(n;,K)] for each i € I, where S; is a (finite-type) K —scheme with an
action of GL(n;,K). Conversely, any Artin K —stack X admitting such a stratification
has affine geometric stabilizers.

For the rest of this paper, all Artin K—stacks X are assumed to have affine geometric
stabilizers. Here are the analogues of Definitions 5.1 and 5.2:

Definition 5.11 Let X be an Artin K—stack (always assumed to be of finite type,
with affine geometric stabilizers). Consider pairs (R, p), where R is a K—scheme and
p: R — X a 1-morphism. Call two pairs (R, p), (R, p) equivalent if there exists
an isomorphism ¢: R — R’ such that p’ o and p are 2—isomorphic 1-morphisms
R — X . Write [R, p] for the equivalence class of (R, p). Define the Grothendieck ring
Ko(Schy) of the category of K—schemes over X to be the abelian group generated
by equivalence classes [R, p], such that as for (61) for each closed K-subscheme S
of R we have

[R.p]=1[S. pls]+[R\ S, plr\s]-
When X = SpecK we write Ky (Schi) instead of Ky(Schy).

Define a biadditive, commutative, associative product ‘-’ on Ko(Schy) as in (62).
It makes K((Schy) into a commutative ring, in general without identity. If X is a
K—scheme K(Schy) is as in Definition 5.1, with identity [X,idy].

For Artin K —stacks X, Y, define a biadditive, commutative, associative external tensor
product X: Ky(Schy) x Ko(Schy) — Ko(Schyxy) by (64). Taking ¥ = Spec K we
see that X makes Ko (Schy) into a module over K¢ (Schi).

Next we will define a stack analogue M;} of the motivic ring My of (63) for K—
schemes X . Since we have no identity in Ko(Schy) if X is not a scheme, and we
have not defined a Tate motive I in Ky(Schy), the analogue of (63) does not make
sense. Instead, we use the Ko (Schg)-module structure, and define

(80) M = Ko(Schy) ®ky(sehy) Ko(Schg)[L™L, (LF —1)71 k =1,2,.. ],

where I € K((Schg) is as in Definition 5.1. The product ‘ - > descends to M}} When
X = SpecK we write M]Sé instead of Mj}

Note that for X' a K—scheme, M;} is not isomorphic to My in (63), since we invert
L*—1in M}} but not in My . There is a natural projection My — M}} The reason
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we invert L% — 1 as well as L is that the motive of GL(n,K) in Mg is

n
[GL(n. K)] := [GL(n. K), 7speck] = L"®*~ D72 [T @k - 1),
k=1
so that [GL(n,K)] is invertible in M .

Let X be an Artin K—stack (as usual of finite type, with affine geometric stabiliz-
ers). Then Proposition 5.10 gives a finite stratification X = ]_[l-e 7 Xi with X; ~
[Si/ GL(n;,K)]. Write m;: S; — X for the composition of 1-morphisms S; —
[S;/ GL(n;, K)] — X; < X . Define elements 1y, € M by

Iy =) [GL(n;. K)] 7' ®[S;, 7],
iel
L =) [GL(7. K)] ' R[A" x S;. m; 0, ].

iel

(81)

where [GL(n;, K)]™! € M exists as above. It is easy to show that these 1y,IL are
independent of the choice of 7, X;, S;,n;, and 1y is the identity in (/\/lf,}, -).

Let ¢: X — Y be a 1-morphism of Artin K—stacks. Define the pushforwards
¢«: Ko(Schy) — Ko(Schy) and ¢«: M§ — M5, by (65). If ¢ is representable in K-
schemes we may also define pullbacks ¢*: Ko(Schy) — Ko(Schy) and ¢*: M$ —
M} by (66). (Here ¢ is representable in K—schemes if X X4y, U is a K—scheme
for all u: U — Y with U a K—scheme.) But if ¢ is not representable in K—schemes
then R; X,, vy, X in (66) may not be a K—scheme, so (66) does not make sense.

However, for general 1-morphisms ¢: X — Y we can still define a pullback morphism
o*: M%E — M;} as follows. Proposition 5.10 gives a finite stratification X = [ [;c; Xi
with X; ~[S;/ GL(n;,K)]. Let 7;: S; — X be as above, and define a group morphism
¢*: My — My by

n n
82 ¢*: ) ¢lRjpjl— D¢ ) [GLn K BIR; Xy, v g0m; Si.7x]
j=1 j=1 i€l

If ¢ is representable in K—schemes, this is the result of multiplying (66) by equation
(81) for 1y, and so the two definitions of ¢* agree. As for ly,IL one can show
that ¢* is independent of the choice of 7, Xj, S;, n;, and that pullbacks ¢* have the
usual functoriality properties. As in [13, Theorem 3.5], the analogue of (67) holds for
2—Cartesian squares in Artin K—stacks.

Definition 5.12 Let X be an Artin K—stack. Consider triples (R, p,7), where R is
a K—scheme, p: R — X a 1-morphism, and 7: ;i x R — R a good [i—action on R,
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in the sense of Definition 5.2. Call two such triples (R, p,7), (R', p',7’) equivalent if
there exists a fi—equivariant isomorphism ¢: R — R’ and a 2—isomorphism p == p’ 0.
Write [R, p, 7] for the equivalence class of (R, p, 7).

The monodromic Grothendieck group K (’f (Schy) is the abelian group generated by
such equivalence classes [R, p, 7], with relations (i), (ii) as in Definition 5.2, except
that we require a 2—isomorphism p, = p; o & rather than equality P2 = p1om in (ii).
Define a biadditive, commutative, associative product “on K§ i (Schy) as in (68).
As for Ko(Schy) in Definition 5.11, this makes K} i (SchX) into a commutative ring,
in general without identity. If X is a K—scheme K i (Schy) is as in Definition 5.2,
with identity [X,idy,7].

For Artin K —stacks X, Y, define a biadditive, commutative, associative external tensor
product R R .
X: Kg(SChX) X Kg’(SChy) — Kg(SChXxy)

by (69). Taking Y = Spec K, this makes K(‘;‘ (Schy) into a module over K(‘;‘ (Schi).
As for (80), using the Kﬁ‘ (Sch )—module structure on K(’? (Schy) define

MR = K (Schy) ® KX Schg)[L ™!, @ =17 k=1,2,..].

K[ (Schi)
The product -” descends to MSt” . When X = SpecK we write /\/lst instead

of /\/l L7t . Using the data Xj, S,,n, of Proposition 5.10, as in (81) deﬁne elements
ly, ]L € M“ Ay

Ix =) [GL(m; K)] ™' ®[S;, 7;.7],
iel
L =) [GL(n.K)| ' R[A" x S;, m; 0 7s;.T].

iel

(83)

These are independent of choices, and 1y is the identity in /\/lgt 2

Let ¢: X — Y be a 1-morphism of Artin K—stacks. Define the pushforwards
O K"‘(SchX) — K“(Schy) and ¢y: M““ — M$ E by the analogue of (65). If
¢ is representable in K—schemes we may also deﬁne pullbacks ¢*: K“ (Schy) —
K“ (Schy) and ¢*: M} LN M K by the analogue of (66). If ¢ is not representable
in K schemes, we can still deﬁne o*: /\/ls“‘ — ./\/ls“‘ by the analogue of (82).
Pushforwards and pullbacks have the usual functonahty properties, and the analogue
of (67) holds for 2—Cartesian squares in Artg .

As for (70), there are natural morphisms of commutative rings
ix: Ko(Schy) — K% (Schy),  ix: My — MR,
My: K*(Schy) — Ko(Schy), Tlyx: MEP — My,
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given by ix: [R, p] — [R, p,1 ] and Ily: [R,p,7] = [R, p]. If X is a K—scheme,
there is a natural projection M“ — My i

The analogue of Definition 5.3, defining another associative, commutative product ‘©®’
on K} K(Schy), My 2 and an external version ‘[1’, works essentially without change.
For the analogue of Definition 5.4, following (73) we define L'/2 in ./\/lSt 2 only by

L2 = 1y OLY? e M3H,

1/2

where 1y is asin (83),and L~ € Mﬁé’“ as in (72). Then we have that

LI/Z 0 ]LI/Z =L
in M$L%, and we define L"/2 in MS$¢% for all n € Z in the obvious way.

Here is the stack analogue of Definition 5.5:

Definition 5.13 For each Artin K—stack Y, define 7} 2 to be the ideal in the commu-
tative ring (M$ 2 ©) generated by elements ¢ (T (P ®7/22 Q)—T(P)*" OT(Q))
for all 1-morphisms ¢: X — Y with X a K—scheme and principal Z/2Z—bundles
P,Q — X, where T*(P), T*(Q), T*(P ®z/2z Q) are the images in M“ﬁ of
the elements T(P) T(Q) Y(P ®z/2z Q) in MV‘ from Definition 5.5. Deﬁne
My - =M% 2 /1y 2 to be the quotient, as a commutative ring with multiplication
‘®’, with prOJectlon Ma: ME — ME.

The second multiplication ° - ’, external product X, and projection
HY' Mst,ﬁ — MSI
on MS‘“ do not descend to My 2 The other structures o, 1y, L ¢*,¢*,iy,1Ll/2
do descend to My AT X isa K- scheme, we have a natural projection
Mk gt
So in particular, the motives MFy ; € M ; in Theorem 5.7 also make sense in M ;}’M
We will use this in Theorem 5.14.

5.4 The main result

Here is the main result of this section, the analogue of Theorem 5.7 from [5]. The
proof uses our previous results from [5; 14], the theory of rings of motives Mx* on
Artin stacks X from Section 5.3, and two new ingredients: Proposition 5.8, which says
that the motives MFx ¢ from [5, Theorem 5.10] pull back as one would expect under
smooth morphisms of d—critical loci, and Proposition 5.19, which is a cunning trick to
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get round the fact that motives do not have descent in the smooth topology, that is, we
do not have a motivic analogue of Theorem 4.2.

Theorem 5.14 Let (X,s) be an oriented d—critical stack, with orientation K i,/ f,
where X is assumed of finite type and locally a global quotient. Then there exists a
unique motive MFy g € My " such that if T is a finite-type K —scheme and ¢t: T — X
is smooth of relative dimension n, so that (T, s(T,t)) is an algebraic d—critical locus

over K with natural orientation K ;/ s2(T r a8 in Lemma 3.17, then
(84) t*(MFy ) =L"? @ MFrgrs) in MT",

where MFT g(1,1) € MP " s as in Theorem 5.7, projected from M l; in Section 5.1 to
M7 H in Section 5.3, and t*: Mx* — M7 " is the pullback.

We discuss how to relax the assumptions in Theorem 5.14 that X is of finite type, and
locally a global quotient.

Remark 5.15 (a) Let X be an Artin K—stack locally of finite type (but not necessarily
of finite type), with affine geometric stabilizers. Then one can define motivic rings
Ky(Schy), M3, K(’;(SchX), My H* Myt generalizing those in Section 5.3, using
the idea of ‘local stack functions” LSF(X') from Joyce [13, Definition 3.9].

Elements of K((Schy) are ~—equivalence classes of sums ) ;; ¢i[R;, p;] for I a
possibly infinite indexing set, R; a K—scheme locally of finite type, p;: R; — X a
finite-type 1-morphism, and ¢; € Z for i € I, such that for any finite-type K—substack
Y C X, wehave R; xy Y # @ for only finitely many i € I. We set > ;. ¢i[R;., pi] ~
>_jes dj[Sj.,o0;] if for all finite-type ¥ C X', we have } ;¢ ¢i[Ri Xp; x,inc ¥, Ty] =
ZjeJ dj[SjXs; x,inc Y, y] in Ko(Schy), where Ko(Schy) is as in Section 5.3 as ¥
is of finite type.

Then pushforwards ¢« on Ko(Schy), M%., ... can be defined only if ¢: X — Y isa
finite-type 1-morphism, but pullbacks ¢* can be defined for arbitrary ¢ (requiring ¢
representable in K—schemes for Ky (Schy), K(’)L (Schy)).

As was discussed in [5, Remark 5.11] for K—schemes, it is now easy to generalize
Theorem 5.14 to d—critical stacks (X, s) which are locally of finite type rather than
of finite type, giving a unique MFy ; € My H satisfying (84), where it is enough to
consider only finite-type K-schemes 7'. Note that we cannot push MFy s forward to
MiHif X is not of finite type, since : X — SpecK is not a finite-type 1-morphism,
and 4 MY " — My ™ is not defined.

Geometry & Topology, Volume 19 (2015)



A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks 1353

(b) The assumption in Theorem 5.14 that X is locally a global quotient is used to
prove Proposition 5.19 in Section 5.5. We would have preferred to make the weaker
assumption that X has affine geometric stabilizers.

The issue is this: we want to characterize MFy s € /\7118‘}'2 by prescribing t*(MFy ) €
MF ‘& whenever T is a K—-scheme and ¢: T — X is a smooth I—-morphism. However,
if X is notlocally a global quotient, it seems conceivable this may not determine MFy g
uniquely, as there might exist 0 % M € MY " with ¢* (M)=0forallsuch¢t: T — X.

One way to fix this might be to expand our whole set-up to include a suitable class
of formal schemes, and then prescribe ¢*(MFy ) when T is a formal scheme and
t: T — X asmooth 1-morphism. If X has affine geometric stabilizers, there should
be enough such 7: 7' — X to determine MFx ¢ uniquely.

Combining Theorems 2.10, 3.18 and 5.14 and Corollary 3.19, and noting as in
Section 5.1 that moduli stacks of coherent sheaves are locally global quotients, yields:

Corollary 5.16 Let (X,w) be a —1—shifted symplectic derived Artin K —stack in
the sense of Pantev et al [28], and X = ty(X) the associated classical Artin K —stack,
assumed of ﬁmte type and locally a global quotient. Suppose we are given a square root
det(]LX)|X for det(Lx )|x . Then we may define a natural motive MFx ,, € MY ¥ “,

which is characterized by the fact that given a diagram

U =Crit(f: U — A') : 4 X

such that U is a smooth K —scheme, ¢ is smooth of dimension n, Ly jy ~ Ty, x[2],
0*(wx) ~ i *(wy) for wy the natural —1—shifted symplectic structure on U =
Crit(f: U — A'), and ¢ (det(LX)|X )= i*(Ky) ® A"Ty x , then

0*(MFx o) =L"? 0 i*(MFy’}?)
in /\/lbt M

Corollary 5.17 Let Y be a Calabi—Yau 3—fold over K, and M a finite-type classi-
cal moduli K —stack of coherent sheaves in coh(Y'), with natural obstruction theory
¢: £* — Ly Suppose we are given a square root det(£%)'/2 for det(£*). Then we
may define a natural motive MF y, € M} LA

Corollary 5.17 is relevant to Kontsevich and Soibelman’s theory of motivic Donaldson—
Thomas invariants [17]. Our square root det(£°%)1/2 roughly coincides with their
orientation data [17, Section 5]. In [17, Section 6.2], given a finite-type moduli
stack M of coherent sheaves on a Calabi—Yau 3—fold Y with orientation data, they

Geometry € Topology, Volume 19 (2015)



1354 O Ben-Bassat, C Brav, V Bussi and D Joyce

define a motive [ m | inaring D isomorphic to our MK A We expect this should
agree with 74 (MF »4) in our notation, with : M — SpecK the projection. This [, 1 M
is roughly the motivic Donaldson—-Thomas invariant of M. Their construction involves
expressing M near each point in terms of the critical locus of a formal power series.
Kontsevich and Soibelman’s constructions were partly conjectural, and our results may
fill some gaps in their theory.

Example 5.18 As in [13, Definition 2.1], an algebraic K—group G is called special
if every étale locally trivial principal G—bundle over a K—scheme is Zariski locally
trivial. Any special K—group can be embedded as a closed K—subgroup G € GL(n, K),
and then GL(n,K) — GL(n,K)/G is a Zariski locally trivial principal G —bundle, so
taking motives in M gives [GL(n, K)] =[G]-[GL(n,K)/G]. Hence [G] is invertible
in M3, with [G]™! =[GL(n,K)/G]-[GL(n,K)] ™!

Some examples of special K—groups are G,,, GL(n, K), SL(n, K), Sp(2n, K), and the
group of invertible elements A of any finite-dimensional K-algebra A. Products
of special groups are special. Special K—groups are always affine and connected, so
nontrivial finite groups are not special.

Suppose a special K—group G of dimension 7 acts on a finite-type, oriented algebraic

d—critical locus (7,s’) over K preserving s’ € H O(S%) and the orientation KIT/ sz/

Write X = [T/ G] for the quotient stack and ¢: T — X for the projection. Then s’
descends to a unique d—critical structure s on X with s’ = s(7,¢) as in Example 3.14,
and using Theorem 3.15 we also find that the orientation K T/ ; descends to a unique
orientation K X/ 2 on the d—critical stack (X, s) with

K2 o) = K2 ® (WPTF ) | S
Theorem 5.14 gives MFx 5 € My  with

(*(MFy ) =L"? @ MFr.¢
in ./\7135’1 Applying t, and using tx, 0ot* (M) =[T,t,1]O M for M € ./\713}”2 gives
(85) MFy O[T, 1,7]=L"2 O tu(MFry).

Now 7: T — X is a principal G -bundle, and so Zariski locally trivial as G is special.
Therefore [T,¢,7] =[G, T]E 1y, where [G,T] = ig ([G]) € /\/lSt A As [G] is invertible,
so is [G,7]. Thus multiplying (85) by [G,7]™! gives

MFy, =[G 17 @ (L"? 0 t,(MFr)).
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5.5 Proof of Theorem 5.14

We begin with the following result, related to Proposition 5.10.

Proposition 5.19 Let X be a finite-type Artin K —stack which is locally a global
quotient. Then we can find a stratification X = [ ] jes Xj, for J a finite set and
Xj € X alocally closed K—substack, and 1-morphisms ¢;j: S; — X smooth of
relative dimension n; with Sj a K -scheme such that [S; xx Xj, mx;] is an invertible
element of M}j forall j €J.

Proof As X is of finite type and locally a global quotient, there exist Zariski open
K—substacks Y; € X and equivalences Y; ~ [S;/GL(n;,K)] for j =1,...,m,
where S; is a K—scheme with a GL(n;, K)—action, such that X = Y; U---UY,,.
Define ¢;: S; — X to be the composition S; — [S;/GL(n;,K)] — Y¥; < X . For
J=1,...,m,define alocally closed K—substack X; C X by X; =Y;\(Y U---UY;_).
Set J ={1,...,m}. Then X =[];c; Xjas X =Y, U---UYp,.

Since X; C Y; and ¢;: S; — Y; is a principal GL(n;,K)-bundle, we see that
mx;: Sj xx Xj — Xj is a principal GL(#n;, K)-bundle, which is automatically Zariski
locally trivial. Hence [Sj xx Xj, wx;] = [GL(n;, K)][J 1y, , which is invertible in M;}]
with inverse [GL(n;, K)]™! @ lx; . m|

We now prove Theorem 5.14. Suppose first that there exists MFy ¢ € /\_/lf%’ﬁ such

that (84) holds for all t: T — X smooth of dimension n with T a K—scheme. Let
J, Xj,Sj,¢j,n; be as in Proposition 5.19, and write ¢;: X; < X for the inclusion.
Then we have

(86) MFy=Y (1))«(](MFyx))
jeJ
= Z(Lj)*([Sj Xx X',]TX].,/L\]_I @[Sj Xx Xj,]‘[Xj,/L\]@L;(MFX’S))
jeJ
= > )+ (S xx Xj.7x; 77" © 1 (S). 9. 7] © MFx )))
jedJ
= > ()+(S) xx Xj. 7, 77" © (($))% 0 ¢} (MFx )
jeJ
= > " ()+(S) xx Xj. 7, 717 © ()L™ O MF s, 5(5,.6,))-
jeJ
using X = [[;c; Xj in the first step, [Sj xx Xj, mx;] invertible in M}J so that

[Sj Xx Xj,Jer,ﬂ Iin([Sj Xx /Y]’,”Xj])
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is invertible in /Vl;ju in the second, [S; xx Xj, nx;,1] = L;‘ ([S;.¢;.7]) and t;‘ multi-
plicative for © in the third, [Sj, $;.7]® = (¢;)+ o $; and

()x(M O (N) = ((t))x0 (M) ON

in the fourth, and (84) with Sj, ¢j,n; in place of T, ¢, n in the fifth. Equation (86)
proves MFy ; in Theorem 5.14 is unique if it exists, and gives a formula for it.

Now define MFy ¢ to be the bottom line of (86). Suppose 7: T — X is smooth
of dimension 7, with 7" a K—scheme. Define 7; = Xj Xy xg T ST and Uj =
Sj Xg¢;,x, T foreach j € J. Then Tj, U; are K-schemes as Xj < X and Sj — X
are representable in K—schemes, and we have 2—Cartesian squares

Tj T r Ui r T
(87) A A
X; ! X, S —j> X.

Then

(88) t*(MFx.)
— Z t*o (Lj)*([Sj X X}',]TXi ,/L\]_l) Ot*o (¢j)*(L”f/2 @MFSj,s(Sj,de))
jeJ
=D (rr)womy (1S) xx Xy, 7y, 717
= _
/€ O (IIr)xo0 sz (Ln]/z OMFg; 5(s;.4))
=Y )y, (S) x Xj, 7x;, D))
= _
o © (M) (L2 O MFy; sw; :¢j°HSj))
=Y (r)«(Sj xx X xx; Tj. 7y, 2] O (M) w0 (L2 OMF 7 (7.1)
jeJ
= Z(ﬂT)*([Uj xr Ty, 7, 017" © [Uj. 7, T O L2 @ MF1 (1)
jeJ
= Z(ﬂT)*(ﬂ;([Uj, M7, 1)~ 073 (U;, N7, 7)) O L2 0 M1 4(1.r)
jeJ
= (rr)«(17,) OL"? © MFr,5(,s)
jeJ
= (Z[Tj: NT,T]) OL"?®MFr4(r.p)
jeJ
= [7.idr, 71O L"? © MFr 41,0y = L"* @ MF 15109,
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using (86) and ¢* multiplicative for ® in the first step, the analogue of (67) for the
2—Cartesian squares (87) in the second, that ”X is a ring morphism for © and (77)
for the morphism I1g;: (U, s(Uj, ¢j o Ils;)) — (S, s(S;, ¢;)) of oriented d—critical
loci which is smooth of dimension # in the third, the definition of JTX and (77)
for Ilr: (Uj,s(Uj, ¢j o Ils;)) — (T, s(T, 1)) smooth of dimension 7; in the fourth,
Sixx Xjxx; Tj = Sj xx Tj = Uy x7 Tj and (I17)« o [}, = [U;, TI7,7]© in the
fifth, (m7)«(M) © N = (7)«(M © n;(N)) in the sixth, and 7" = [[; 7} in the
ninth.

Equation (88) proves (84) for all z: T'— X smooth of dimension n with 7" a K-
scheme, as we want, for MFy ; the bottom line of (86). The argument of (86) shows
MFx s is unique, and is in particular independent of the choice of J, X, S;, ¢;j,n; in
Proposition 5.19. This completes the proof. a
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