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Lawrence–Krammer–Bigelow representations
and dual Garside length of braids

TETSUYA ITO

BERT WIEST

We show that the span of the variable q in the Lawrence–Krammer–Bigelow repre-
sentation matrix of a braid is equal to twice the dual Garside length of the braid, as
was conjectured by Krammer. Our proof is close in spirit to Bigelow’s geometric
approach. The key observation is that the dual Garside length of a braid can be read
off a certain labeling of its curve diagram.

20F36; 20F10, 57M07

1 Introduction

The question whether the braid group Bn is linear or not was a long-standing problem.
At the end of the 20th century, the problem was solved affirmatively by Krammer [7]
and Bigelow [1] independently. They showed that a certain linear representation of the
braid group first constructed by Lawrence [8] and now called the Lawrence–Krammer–
Bigelow representation (LKB representation for short) is faithful. Interestingly, the
two proofs of the faithfulness of the LKB representations are completely different:
Bigelow’s proof is geometric whereas Krammer’s proof is algebraic.

Our main result (Theorem 1.1) is that the span of the variable q in the image of the
LKB representation of a braid ˇ is equal to twice the dual Garside length of ˇ , as
conjectured by Krammer in [6]. This is an analogue of Krammer’s theorem [7] that the
span of the variable t in the image of the LKB representation is equal to the classical
Garside length. It is remarkable that, despite the analogy with Krammer’s result, our
proof is rather based on Bigelow’s techniques.

One of our main tools is a labeling of curve diagrams of braids called the wall crossing
labeling. In Theorem 3.3, we will prove that the wall crossing labeling tells us the
dual Garside length of braids. On the other hand, in Lemma 4.1 we will observe
that the wall crossing labeling is also related to the variable q in the noodle-fork
pairing, a homological intersection pairing appearing in the LKB representation. Thus
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wall crossing labelings of curve diagrams serve as a bridge connecting two seemingly
unrelated objects, namely the LKB representation and the dual Garside structure.

In order to state our main theorem, we set up some notation. In this paper we denote
the LKB representation by

LW Bn! GL
�

n.n�1/

2
IZŒq˙1; t˙1�

�
:

The matrix representative L.ˇ/ depends on the choice of the basis, and there are
variations of the matrices of the LKB representation: all matrices given in the three
papers [1; 6; 7] are different!

In this paper we use Bigelow’s expression of the matrices given in [1, Theorem 4.1],
with his correction of a sign error from [2]. This expression has geometric origin, and is
essentially the same as the matrices in [6], except that the variable t of [6] corresponds
to �t of [1].

Let us take the basis fFi;j g1�i<j�n of Rn.n�1/=2 defined by the standard forks;
see Section 2 for details. Using this basis, the matrix representative of the LKB
representative is given as

ŒL.�i/�.Fj ;k/D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

Fj ;k i 62 fj � 1; j ; k � 1; kg;

qFi;k C .q
2� q/Fi;j C .1� q/Fj ;k i D j � 1;

FjC1;k i D j ¤ k � 1;

qFj ;i C .1� q/Fj ;k C .q� q2/tFi;k i D k � 1¤ j ;

Fj ;kC1 i D k;

�q2tFj ;k i D j D k � 1:

The image L.ˇ/ is an ..n.n � 1//=2 � .n.n � 1//=2/–matrix whose entries are in
ZŒq˙1; t˙1�. For a nonzero Laurent polynomial a 2 ZŒq˙1; t˙1�, let Mq.a/ and
mq.a/ be the maximal and the minimal degree of the variable q , respectively. As a
convention, we define Mq.0/D�1 and mq.0/DC1. For a matrix AD .a�;�/ 2

GL..n.n� 1//=2IZŒq˙1; t˙1�/ we define

Mq.A/D max
16�;�6

n.n�1/
2

fMq.a�;�/g; mq.A/D min
16�;�6

n.n�1/
2

fmq.a�;�/g:

We denote the supremum, the infimum and the length function of a braid ˇ for the dual
Garside structure by inf†�.ˇ/, sup†�.ˇ/ and l†�.ˇ/, respectively; see Section 2.1
for precise definitions.

The main result in this paper is the following, which was already conjectured by
Krammer in [6].
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Theorem 1.1 (Variable q in the LKB representation and the dual Garside length)
For ˇ 2 Bn ,

(1) 2 sup†�.ˇ/DMq.L.ˇ//,

(2) 2 inf†�.ˇ/Dmq.L.ˇ//,

(3) 2l†�.ˇ/Dmaxf0;Mq.L.ˇ//g�minf0;mq.L.ˇ//g.

Acknowledgements This research was supported by the JSPS Institutional Program
for Young Researcher Overseas Visits and by the Agence Nationale de Recherche
project LAM (ANR-10-JCJC-0110).

2 Preliminaries

First of all we set up our notation and conventions. Let D2 D fz 2C j jzj6 1g be the
unit disc in the complex plane and Dn DD2�fp1; : : : ;png be the n–punctured disc,
where each puncture pi is put on the real line so that �1 < p1 < p2 < � � � < pn < 1

holds. The braid group Bn is identified with the mapping class group of Dn .

Throughout this paper, we adopt the following conventions. Braids acts on the left. A
positive standard generator �i is identified with the left-handed, that is, the clockwise
half Dehn-twist which interchanges the punctures pi and piC1 . Also, when calculating
winding numbers, the positive direction of winding is taken as the clockwise direction.
This convention is the opposite of Bigelow’s.

2.1 The dual Garside length

First we review the definition of the supremum, the infimum and the length functions
of the dual Garside structure. We do not need detailed Garside-theory such as normal
forms or algorithms. We only need a length formula from Proposition 2.1 below.

Recall that the braid group Bn is presented as

Bn D h�1; : : : ; �n�1 j �i�j�i D �i�j�i ; ji � j j D 1; �i�j D �j�i ; ji � j j> 1i:

The elements of the generating set †D f�1; : : : ; �n�1g are called Artin generators or
Garside generators.

In the dual Garside structure, we use a slightly different generating set which contains †
as a subset. For 1 6 i < j 6 n, let ai;j be the braid

ai;j D .�i�iC1 � � � �j�2/�j�1.�i�iC1 � � � �j�2/
�1:
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The generating set †� D fai;j j 1 6 i < j 6 ng was introduced by Birman, Ko and
Lee in [4], and its elements are called the dual Garside generators, or band generators,
or Birman–Ko–Lee generators. In our conventions, the braid ai;j is represented by the
left-handed half Dehn-twist along an arc connecting pi and pj in the lower half of the
disc fz 2D2 j Im z < 0g.

A dual-positive braid is a braid which is written by a product of positive dual Garside
generator †� . The set of dual-positive braids is denoted by BC�n . The dual Garside
element is a braid ı given by

ı D a1;2a2;3 � � � an�1;n:

Let 4†� be the subword partial ordering with respect to the dual Garside generating
set †� : ˇ1 4†� ˇ2 if and only if ˇ�1

1
ˇ2 2 BC�n . For a given braid ˇ , the supremum

sup†�.ˇ/ and the infimum inf†�.ˇ/ are defined by

sup
†�
.ˇ/Dminfm 2 Z j ˇ 4†� ım

g;

inf
†�
.ˇ/DmaxfM 2 Z j ıM 4†� ˇg;

respectively. A dual-simple element is a dual-positive braid s which satisfies 1 4†�
s 4†� �. The set of dual-simple elements is denoted by Œ1; ı�. The Garside length l†�

is the length function with respect to the generating set Œ1; ı�.

The next formula relates the supremum, infimum and the length.

Proposition 2.1 (Dual Garside length) For a braid ˇ 2 Bn we have

l†�.ˇ/Dmaxf0; sup†�.ˇ/g�minfinf†�.ˇ/; 0g:

See [4] for a proof.

2.2 The Lawrence–Krammer–Bigelow representation of the braid groups

We review a definition of the Lawrence–Krammer–Bigelow representation. Our de-
scription of the LKB representation is homological and mainly follows Bigelow, but it
is slightly modified so as to agree with our conventions. For details, see [1; 2].

Let C Df.z1; z2/2Dn�Dn j z1¤ z2g=S2 be the configuration space of two unordered
points of Dn . We take base points d1D exp.3

2
� i�"/ and d2D exp.3

2
� iC"/ in @Dn

so that d2 lies on the right side of d1 ; see Figure 1. We take fd1; d2g as a base point
of C .
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Let hq; ti be the free abelian group of rank two generated by t and q , and define
a homomorphism �W �1.C /! hq; ti as follows: Let f;  0gW Œ0; 1�! C be a loop
representing an element x 2�1.C /. We define the number a as the sum of the winding
numbers along each puncture pj :

aD�
1

2� i

nX
jD1

�Z


dz

z�pj
C

Z
 0

dz

z�pj

�
:

We define the number b as twice the winding number of the path  �  0 (ie as twice
the relative winding number of the points):

b D�
1

� i

Z
� 0

dz

z
:

Now we define �.x/ D qatb . (Here we add the minus signs since we adopted the
convention that the positive winding direction is the clockwise direction.)

Let � W zC ! C be the covering of C associated to ker� . Fix the lift of the base point
fd1; d2g. By abuse of notation, we use the same symbol fd1; d2g to represent the base
point both in C and zC . Then q and t are regarded as deck translations and the second
homology group H2. zC IZ/ is a ZŒq˙1; t˙1�–module.

To treat homology classes geometrically, we need to consider a slightly technical
modification since zC is not compact. For " > 0, let �" be the set of points fx;yg 2 C

such that the distance of x and y is at most ", or such that x or y are contained
in a "–neighborhood of a puncture. Let z�" D ��1.�"/ and put H2. zC ; z�IZ/ D
lim"!0 H2. zC ; z�"IZ/. This homology group H2. zC ; z�IZ/ is often called a Borel–
Moore homology (or homology of locally finite chains).

Let Y be the Y–shaped graph shown in Figure 1, having one distinguished external
vertex r , two other external vertices v1 and v2 , and one internal vertex c . We orient
the edges of Y as shown in Figure 1.

A fork F is an embedded image of Y into D2 such that

� all points of Y n fr; v1; v2g are mapped to the interior of Dn ;

� the distinguished vertex r is mapped to the base point d1 ;

� the other two external vertices v1 and v2 are mapped to two different puncture
points;

� the edge Œr; c� and the arc Œv1; v2�D Œv1; c�[ Œc; v2� are both mapped smoothly.
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v1 v2

c

r
d1 d2 d1 d2

F

F 0

N

Figure 1: Fork and standard fork Fi

The image of the edge Œr; c� is called the handle of F . The image of Œv1; v2� D

Œv1; c�[ Œc; v2�, regarded as a single oriented arc, is called the tine, denoted T .F /. The
image of c is called the branch point of F .

A parallel fork F 0 is a fork as depicted by a dotted line in Figure 1: F 0 is parallel to F

and the distinguished vertex is mapped to d2 .

A noodle is an oriented smooth embedded arc which begins at d1 and ends at d2 .

Let ;  0W Œ0; 1�! Dn be the handles of the forks F and of its parallel F 0 , respec-
tively. Let fe;  0gW Œ0; 1�! zC be the lift of the path f;  0gW Œ0; 1�! C taken so that
fe;  0g.0/D fd1; d2g.

Consider the surface †.F /Dffx;yg2C jx 2T .F /;y 2T .F 0/g in C . Let z†.F /� zC
be the component of ��1†.F / which contains the point fe;  0g.1/. The surface z†.F /
in zC defines an element of H2. zC ; z�IZ/. By abuse of notation, we will use the same
symbol F to represent the 2nd homology class defined by the surface z†.F /. In a similar
way, a noodle N defines a surface z†.N / which defines an element of H2. zC ; @ zC IZ/.
Again, by abuse of notation we denote the homology class Œz†.N /� by N .

For 1 6 i < j 6 n, let us take a fork Fi;j as shown in Figure 2. These forks are
called standard forks. We call a standard fork of the form F D Fi;iC1 a straight fork.
Similarly, let Ni be the noodle which encloses the i th puncture point pi as shown in
Figure 2. We call such a noodle a standard noodle.

The braid group Bn acts on the covering zC so that it commutes with the deck trans-
lations t and q . Hence we get a representation Bn ! GL.H2. zC ; z�IZ//. Bigelow
showed in [3, Section 3.1] (cf [2, Conjecture 5.7]) that this representation agrees with
the Lawrence–Krammer–Bigelow (LKB) representation, given in Section 1.

Remark 2.2 As shown by Paoluzzi and Paris in [9], the LKB representation does
not coincide with the action on H2. zC IZ/, although the natural map H2. zC IZ/!
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pi

Fi;j

pj

pi

Ni

Figure 2: Standard forks and standard noodles

H2. zC ; z�IZ/ induces an isomorphism of the representations H2. zC IZ/˝Q.q; t/ and
H2. zC ; z�IZ/˝Q.q; t/, where Q.q; t/ denotes the quotient field of QŒq˙1; t˙1�.

2.3 Noodle-fork pairings

The noodle-fork pairing is the natural homology intersection pairing H2. zC ; @ zC / �

H2. zC ; z�/!ZŒq˙1; t˙1� (see [2, Section 4]). As Bigelow showed in his so-called basic
lemma [1, Lemma 2.3], the pairing between an element of H2. zC ; @ zC / represented
by a noodle N and an element of H2. zC ; z�/ represented by a fork F is calculated as
follows.

Let z1; : : : ; zm be the intersection points of T .F / with N , and let z0i be the intersection
of T .F 0/ with N which corresponds to zi .

Observe that a pair of intersection points fzi ; z
0
j g 2

zC corresponds to an intersection
point of the surfaces z†.N / and z†.F /. Hence it contributes to the total intersection
pairing of N and F as a monomial "i;j mi;j D "i;j qai;j tbi;j , where "i;j denotes the
sign of the intersection at fzi ; z

0
j g.

The monomial "i;j mi;j is computed as follows. First we define ci;j by

ci;j D

�
C1 if d2 and z0j belong to the same component of N � zi ;

�1 if d1 and z0j belong to the same component of N � zi :

Take three paths A;B and C in Dn as follows:

� A is a path from d1 to the branch point of F along the handle of F .

� B is a path from the branch point to zi along the tine T .F /.

� C is a path from zi to dk along the noodle N . Here k D 1 if ci;j DC1 and
k D 2 if ci;j D�1. In other words, C goes along N starting from zi , choosing
the direction so as to avoid z0j .
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Similarly, we take three paths A0;B0 and C 0 as follows:

� A0 is a path from d 0
1

to the branch point of F 0 along the handle of F 0 .

� B0 is a path from the branch point to z0j along the tine T .F 0/.

� C 0 is a path from z0j to dk0 along the noodle N . Here k 0 D 2 if ci;j DC1 and
k 0 D 1 if ci;j D�1.

Now the concatenation of the three paths fC;C 0gfB;B0gfA;A0g defines a loop l

in C . The monomial mi;j is given by �.l/. Then ci;j D�1 if and only if the loop l

exchanges the position of two points. The sign of the intersection "i;j is given by

"i;j D�ss0ci;j ;

where s (respectively s0 ) is the sign of the intersection of N and T .F / (respectively
T .F 0/) at zi (respectively z0j ).

In summary, the noodle-fork pairing is given by the following sum, where we recall
that m denotes the number of intersections of T .F / with N :

hN;Fi D
X

16i;j6m

"i;j mi;j 2 ZŒq˙1; t˙1�:

z1

z0
1

z2

z02

hN;Fi D qt C 1� t � q�1

fz1; z
0
1
g 8<:

a1;1 D 1

b1;1 D 1

"1;1 D 1

fz2; z
0
1
g 8<:

la2;1 D 0

b2;1 D 1

"2;1 D�1

fz1; z
0
2
g 8<:

la1;2 D 0

b1;2 D 0

"1;2 D 1

fz2; z
0
2g 8<:

la2;2 D�1

b2;2 D 0

"2;2 D�1

Figure 3: Calculation of the noodle-fork pairing: an example
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By direct computations we observe the following, which will play an important role in
the proof of main theorems.

Lemma 2.3 Let N be a standard noodle and let F be a standard fork. Then

Mq.hN;Fi/6 1; mq.hN;Fi/> �1:

Proof Here we give the calculation of the pairing hN;Fi, for the most complicated
case; the other cases are treated similarly. Let F DFi;j and N DNk be a standard fork
and noodle and assume that i < k < j . Then T .F / and N intersect at two points, z1

and z2 , hence the two surfaces z†.N / and z†.F / intersect at four points. Now ai;j ; bi;j

and "i;j are calculated as shown in Figure 3. The paths CBA and C 0B0A0 are depicted
by a black and gray line, respectively. Thus, we conclude hN;FiD qtC1�t�q�1 .

3 The wall crossing labeling of curve diagrams

In this section we introduce the wall crossing labeling on curve diagrams and show
that this labeling reflects the dual Garside length of braids. This result is interesting in
its own right.

3.1 Curve diagrams

Let xE be the diagram in Dn consisting of the real line segment between the point �1

(the leftmost point of @D2 ) and pn (the rightmost puncture). Similarly, let E be the
diagram in Dn consisting of the real line segment between p1 (the leftmost puncture)
and pn (the rightmost puncture). Both line segments xE and E are oriented from left
to right. Let Wi be a vertical line segment in Dn , oriented upwards, which connects
the puncture pi and the boundary of Dn in the upper half-disk fz 2D2 j Im z > 0g;
see Figure 4. The lines Wi are called the walls, and their union

S
Wi is denoted W .

For ˇ 2 Bn , the total curve diagram and the curve diagram of ˇ is the image of the
diagrams xE and E , respectively, under a diffeomorphism � representing ˇ which
satisfies the following conditions.

(1) The number of intersections of �. xE/ with the walls is as small as possible within
the diffeotopy class of � relative to the boundary and punctures.

(2) Near the puncture points, the image �. xE/ coincides with the real line.

We denote the curve diagram of ˇ by Dˇ and the total curve diagram by xDˇ . See the
right side of Figure 4 for an example.
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xE and E
W

�1. xE/

Figure 4: Curve diagram and walls

To introduce the wall-crossing labeling and make the correspondence between fork
and curve diagram explicit, we use a modified version of the curve diagrams. For each
puncture pi other than ˇ.pn/, we take a small disc neighborhood Bi of pi , and let
B D

S
i Bi . Around each puncture pi , we modify the curve diagram Dˇ as shown in

Figure 5. We denote the resulting (total) curve diagram by MDˇ .MDˇ/, and call it
the (total) modified curve diagram. The right side of Figure 5 shows the total modified
curve diagram of �1 .

pi

Bi

pi

Bi MD�1

Figure 5: Modified curve diagrams

Take a smooth parametrization of MDˇ , viewed as an image of  W Œ0; 1�!Dn . Then
we define the wall crossing labeling as follows.

Definition 3.1 To each connected component ˛ of MDˇ � .W [B/, we assign the
algebraic intersection number of W and the arc  .Œ0; s�/, where s 2 Œ0; 1� is taken so
that  .s/ 2 ˛ . We call this integer-valued labeling Wcr.˛/ the wall crossing labeling.

An arc segment of the curve diagram Dˇ (or the total curve diagram xDˇ ) is a com-
ponent of Dˇ � .W [B// (or of xDˇ � .W [B/, respectively). Since MDˇ and xDˇ

Geometry & Topology, Volume 19 (2015)



Linear representations and dual Garside length of braids 1371

coincide except on B , an arc segment is identified with the subarc of xDˇ . Using this
correspondence, we assign the wall crossing labeling for each arc segment of the curve
diagram; see Figure 6.

ˇ

Dˇ

0 1

�1

0

0

�2

2
1

1

�1 2
1

0

Figure 6: The total curve diagram of the braid ˇ D .��1
2
�1/

2 , and its wall
crossing labeling: among the labels of the solid (not dashed) arcs, the smallest
one is �2 and the largest one is 2 .

Definition 3.2 For a braid ˇ , we define LWcr.ˇ/ and SWcr.ˇ/ as the largest and the
smallest wall crossing number labelings occurring in the curve diagram Dˇ .

Notice that in Definition 3.2 we used the largest and smallest labels only of the curve
diagram Dˇ , not the total curve digram xDˇ . However, in order to determine the wall
crossing labelings we need to consider the total curve diagram.

We now show that the dual Garside (Birman–Ko–Lee) length of a braid can be read off
the wall crossing labeling of its curve diagram.

Theorem 3.3 For a braid ˇ 2 Bn we have the following equalities:

(1) sup†�.ˇ/D LWcr.ˇ/.

(2) inf†�.ˇ/D SWcr.ˇ/.

(3) l†�.ˇ/Dmax.LWcr.ˇ/; 0/�min.SWcr.ˇ/; 0/.

Example 3.4 Let us consider the braid ˇD .��1
2
�1/

2D .a�1
2;3a1;2/

2 ; see Figure 6. The
dual normal form of ˇ is ı�2a2;3:a2;3:a1;2:a1:2 so inf†�.ˇ/D�2 and sup†�.ˇ/D 2.
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Now Theorem 3.3 asserts that the smallest and largest wall crossing labelings occurring
in the curve diagram of ˇ should be �2 and 2, respectively, and Figure 6 shows that
this indeed the case.

Proof of Theorem 3.3 First of all, we show that for a dual-positive braid ˇ the
equality LWcr.ˇ/D l†�.ˇ/ holds.

To treat the dual Garside structure, we temporarily isotope our curve diagram and
walls so that the all punctures sit on the circle jzj D 1

2
and walls are disjoint from the

subdisc jzj6 1
2

as shown on the left side of Figure 7. This isotopy does not affect the
wall crossing labelings, since the wall crossing labeling is defined by using algebraic
intersection of arcs and walls.

As shown in [4], the set Œ1; ı� of dual-simple braids is in bijection with the set of disjoint
collections of convex polygons in Dn whose vertices are punctures. This bijection
is given as follows: to any such collection of polygons we can associate a dance of
the puncture points, moving each puncture which belongs to some polygon P in the
clockwise direction along the boundary of P , to the position of the adjacent vertex.
In this way, each dual-simple element can be represented by some disjoint convex
polygons in Dn ; see Figure 7.

We remark that polygons may be degenerate, having only two vertices; in the associated
braids, the two corresponding punctures are interchanged by a clockwise half Dehn-
twist.

p1

p2pn

P

P1

P2

Figure 7: The left picture shows the basic curve diagram (bold lines) and the
walls (thin dashed lines). The pictures in the middle and on the left illustrate
the action of a dual-simple braid P given by two disjoint polygons P1

and P2 .

Given a curve diagram Dˇ , equipped with the wall crossing labeling, and given
a collection P D fP1; : : : ;Pkg of disjoint polygons with vertices in the punctures
representing some dual-simple braid ˇC , let us describe in detail how to obtain the

Geometry & Topology, Volume 19 (2015)
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curve diagram DˇCˇ and its wall crossing labeling. Consider the disjoint collection of
annuli A1; : : : ;Ak in Dn as follows (see Figure 8):

(1) The outer and inner boundary component of Ai are both homotopic in Dn to
the boundary of a regular neighborhood of Pi .

(2) The boundary components of Ai are in reduced relative position (no bigons)
with respect to the walls W and also with respect to the curve diagram Dˇ .

(3) Among all collections of annuli satisfying (1) and (2), we choose the one where
the annuli contain as many intersection points Dˇ \W as possible. Roughly
speaking, we push as much twisting of the curve diagram around the polygons
as possible into the annuli.

Let us denote the component of Dn nAi containing the polygon Pi by N.Pi/. Note
that the intersection of Dˇ with Ai is simply a spiral, and that the labels on this spiral
interpolate linearly between the labels on the outer and inner boundary component.

Now the ˇC–action on Dˇ is simple to describe: On Dn n .
Sk

iD1.Ai [N.Pi///, the
diagram and its labeling is unchanged. On N.Pi/ the diagram is turned one notch in
the clockwise sense, and all labels are increased by one. On the annuli, we have some
twisting, but the labels still just interpolate; see Figure 8.

4

3

3

2

1

0

1

Pi

Ai
4

3

4
3

2

1

0

1
ˇC

Figure 8: Action of dual-simple elements

The action of a negative dual-simple braid ˇ� is similar, the only difference being that
the twisting is in the counterclockwise direction and labels are decreased by one.

From the above description for a dual-positive braid ˇ and a dual-simple element ˇC ,
we have the inequality LWcr.ˇCˇ/6 LWcr.ˇ/C 1. This implies the inequality

LWcr.ˇ/6 l†�.ˇ/:
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The converse inequality is now implied by the following lemma:

Lemma 3.5 Every dual-positive braid ˇ can be written as a product of LWcr.ˇ/

positive dual-simple braids.

Proof of Lemma 3.5 From the above description of the action of a dual-positive braid,
we see that SWcr.ˇ/> 0, as no negative labels can ever be created from nonnegative
ones.

In order to prove the lemma, we distinguish two cases. Firstly, if SWcr.ˇ/D LWcr.ˇ/,
then no arc of the modified curve diagram MDˇ crosses a wall. This implies that ˇ is
a power of ı , more precisely, ˇ D ıSWcr.ˇ/ , and the lemma is true.

Secondly, if 0 6 SWcr.ˇ/ < LWcr.ˇ/, then we proceed inductively. We shall construct
a negative dual-simple braid ˇ� such that LWcr.ˇ�ˇ/ < LWcr.ˇ/ and SWcr.ˇ�ˇ/>
SWcr.ˇ/.

Consider the arc segments having the maximal wall crossing labeling. Each such
segment connects two walls. Let I Df.i; j /g be the pairs of walls which are connected
by some maximally labeled arcs. Let P be the minimal (with respect to inclusion)
collection of convex polygons which contains all straight lines connecting pi and pj

for .i; j / 2 I . Let ˇ� be the inverse of the dual-simple braid that corresponds to P .
Garside-theoretically speaking, ˇ� D .

W
.i;j/2I ai;j /

�1 .

According to our description above of the ˇ�–action on the curve diagram Dˇ , the
action of ˇ� decreases all the maximal wall crossing labelings by one, so LWcr.ˇ�ˇ/D

LWcr.ˇ/� 1.

On the other hand, we claim that SWcr.ˇ�ˇ/ > SWcr.ˇ/, ie contrary to the largest
label, the smallest label does not decrease during the ˇ�–action.

Let us prove this claim. First we observe that, roughly speaking, minimally labeled arcs
are S–shaped, whereas maximally labeled arcs are S–shaped. More precisely, when
both endpoints of a minimally labeled arc lie in the interior of walls, then the initial
and terminal segment of the arc lie on the counterclockwise sides of the wall, whereas
maximally labeled arcs begin and terminate on clockwise sides of the respective walls
(see Figure 9(a)).

Now, in order to prove the claim, we have to rule out the existence of minimally labeled
arcs (ie arcs labeled SWcr.ˇ/) which, under the ˇ�–action, give rise to arcs with an
even smaller label.

First we observe that a minimally labeled arc ˛ cannot intersect the interior of any of
the polygons of P . Indeed, assume that an arc segment ˛ enters into the interior of
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one of these polygons, say P1 . Let us assume in addition that both endpoints of ˛
lie in the interior of walls, not in punctures. Then ˛ cuts P1 into two components,
and thus separates the vertex punctures of P1 into two families (drawn white and
black in Figure 9(a)). Now we observe that no maximally labeled arc can connect a
wall belonging to a black puncture to a wall belonging to a white puncture. But, by
construction of P , that means that the white and black punctures do not belong to the
same polygon P1 , which is a contradiction.

forbidden
˛

ˇ�.˛/

allowed: forbidden

Example of a
max. labeled arc

˛

(a) (b) (c)

Figure 9: Fat dashed lines indicate minimally Wcr–labeled arcs, and fat solid
lines indicate maximally Wcr–labeled arcs

Similarly, when a minimally labeled arc ˛ intersects the interior of P but has one or
both endpoints in punctures, then the same argument applies: we only have to decide
in which color to paint a puncture at the extremity of ˛ . The choice which works is
to group such a puncture with the following punctures in the clockwise direction; see
Figure 9(a).

Finally, we have to consider a minimally labeled arc segment ˛ which ends in a vertex
of P1 without intersecting the interior of P1 . Here we have to distinguish two cases. If
an extremal segment of ˛ lies on the counterclockwise side of the wall corresponding
to its terminal puncture, as in Figure 9(b), then there is nothing to worry about since the
ˇ�–action does not decrease its Wcr–label. If, on the other hand, a terminal segment
of ˛ lies on the clockwise side of the wall corresponding to its terminal puncture, as in
Figure 9(c), then this wall cannot be connected to a wall of any of the other punctures
of P1 by a maximally labeled arc. Again, this contradicts the construction of P1 .

In summary, no minimally labeled arc can generate an even smaller label under the
ˇ�–action. This proves the claim, and thus Lemma 3.5.

To summarize, we have now proved that for a dual-positive braid ˇ , the following
equality holds:

LWcr.ˇ/D l†�.ˇ/:
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For a dual-positive braid ˇ , inf†�.ˇ/> 0 so by Proposition 2.1 we conclude that

LWcr.ˇ/D sup†�.ˇ/:

In a similar way, we prove the equality SWcr.ˇ/ D inf†�.ˇ/ for any dual-negative
braid ˇ .

In order to prove the same results for arbitrary braids, we recall that the dual Garside
element ı acts as the clockwise 2�

n
–rotation of the n–gon with vertices in all punctures.

Thus the curve diagram Dıˇ is obtained from Dˇ simply by a 2�
n

–rotation, and the
wall crossing labeling on each arc segment of Dıˇ is obtained from the label of the
corresponding arc of Dˇ by adding one. On the other hand, by definition of inf and
sup, left multiplication by ı increases both inf and sup by one. Therefore for a general
braid ˇ , we get an equality

LWcr.ˇ/D LWcr.ı� inf†� .ˇ/ˇ/C inf†�.ˇ/

D sup†�.ı� inf†� .ˇ/ˇ/C inf†�.ˇ/D sup†�.ˇ/:

A similar calculation also yields

SWcr.ˇ/D inf†�.ˇ/

for a general braid ˇ . Finally, Proposition 2.1 implies the third equality claimed in
Theorem 3.3. This completes the proof of Theorem 3.3.

Remark 3.6 In [10] the second author defined another labeling on the curve diagram
called the winding number labeling, and proved the similar formula for the winding
number labeling and the usual Garside length (see [10, Theorem 2.1] and the au-
thors [5]). The proof of Theorem 3.3 given here is a direct generalization of the proof
of [10, Theorem 2.1].

4 Noodle-fork pairing and wall crossing labeling

In this section we make the observation (in Lemma 4.1) that the wall crossing labeling
reflects the exponents of the variable q in the noodle-fork pairing.

We need some technical preparation for this. We first show that for any straight
fork Fi;iC1 , and for any braid ˇ , the tine T .ˇ.Fi;iC1// can in a natural way be
equipped with the wall crossing labeling. For this, we will have to relate curve diagrams
and forks.

Let us consider the part of the curve diagram Dˇ that is the image of the line segment
between the i th and .i C 1/st punctures. We identify this part of the curve diagram
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with ˇ.T .Fi;iC1//, the image of the tine of the straight fork Fi;iC1 . Moreover, up to
moving the footpoint from �1 to d1 , part of the modified curve diagram can naturally
be regarded as the handle of ˇ.Fi;iC1/, as shown in Figure 10. This identification also
induces the desired wall crossing labeling on each arc segment of ˇ.Fi;iC1/.

MDid id.F3;4/

d1

Figure 10: Viewing a curve diagram as a union of tines of forks, and viewing
initial segments of modified curve diagrams as tines

Let N be a standard noodle, and let F be a straight fork with tine T .F /. Consider the
image ˇ.F / of a straight fork F . From now on, we always assume that ˇ.T .F // is
isotoped so that it intersects N minimally. For an intersection point zi 2ˇ.T .F //\N ,
we denote the wall crossing labeling of the arc segment of ˇ.T .F // containing zi by
Wcr.zi/. We recall that the union of the walls is denoted W . We also recall that the
intersection pairing of N and ˇ.F / is hN; ˇ.F /i D

P
16i;j6m "i;j qai;j tbi;j where

the sum ranges over all pairs of intersection points N \ˇ.T .F //.

Lemma 4.1 Let F be a straight fork and let N be a standard noodle. Let fzig be
the set of intersection points of ˇ.T .F // and N . Then ai;i , the exponent of q at the
intersection point fzi ; z

0
ig is given as follows:

ai;i D

�
2Wcr.zi/C 1 if zi and d1 belong to the same component of N �W;

2Wcr.zi/� 1 if zi and d2 belong to the same component of N �W:

Proof Recall that ai;i is defined as the sum of the winding numbers of the paths CBA

and C 0B0A0 around each puncture,

ai;i D�
1

2� i

nX
jD1

�Z
CBA

dz

z�pj
C

Z
C 0B0A0

dz

z�pj

�
;

where A;A0;B;B0;C;C 0 are the paths defined in Section 2.3. See Figure 11.

For a closed loop  in Dn , the winding number around the puncture pj ,

�
1

2� i

Z


dz

z�pj
;
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A A0

B

B0
C

C 0

zi

z0i

d1 d2

A A0

B

B0
C

C 0

zi

z0i

d1 d2

W W

Figure 11: Contribution of the noodle part

is equal to the algebraic intersection number of  and Wj . Thus, the fork part of the
path fCBA;C 0B0A0g, namely the subarc fBA;B0A0g, contributes to the total winding
number ai;i by 2Wcr.zi/. Finally, we observe that the rest of the loop fC;C 0g (the
noodle N part of the path fCBA;C 0B0A0g) contributes to the total winding number ai;i

by C1 (respectively �1) if zi and d1 belongs to the same (respectively to different)
components of N � .Z [W /; see Figure 11. This completes the proof.

Remark 4.2 For the winding number labeling introduced in [10], and for bi;i , the
exponent of t at the intersection fzi ; z

0
ig, one can get a similar formula by similar

arguments. Thus, schematically speaking, we have the following correspondence
among three objects in braid groups:

LKB representation Curve diagram Garside structure

Variable t Winding number labeling Usual Garside structure
Variable q Wall crossing labeling Dual Garside structure

Unfortunately, we did not manage to reprove Krammers result from [7], ie the analogue
of Theorem 1.1 for the variable t and the usual Garside length, using our geometric
techniques.

5 The dual Garside length formula

In this section we prove Theorem 1.1. For monomials qatb and qa0 tb0 we define the
lexicographical ordering 6q;t by

qatb 6q;t qa0 tb0 if a< a0; or if aD a0 and b 6 b0:

The next lemma is the crucial result in Bigelow’s proof of faithfulness.
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Lemma 5.1 [1, Key lemma 3.2 and Claim 3.4] Assume that a noodle N and a fork F

have the minimal geometric intersection. Then all intersection points fzi ; z
0
j g of N

with F which attain the <q;t –maximal monomial mi;j in hN;Fi have the same sign
"i;j .

Roughly speaking, Lemma 5.1 states that the <q;t –maximal contributions to hN;Fi
do not cancel.

Lemma 5.2 Let ˇ 2 Bn be a braid. Let F be a straight fork F such that ˇ.T .F //
contains an arc segment having the largest wall crossing labeling LWcr.ˇ/. Then there
exists a standard noodle N such that

Mq.hN; ˇ.F /i/> 2LWcr.ˇ/C 1:

Proof Throughout the proof, we assume that ˇ.T .F // intersects each standard noo-
dle Ni minimally. It is sufficient to show that there is a standard noodle Ni and an
intersection point z 2 ˇ.T .F //\Ni such that Wcr.z/D LWcr.ˇ/ and such that the
two points z and d1 lie in the same component of Ni � .Wi \Ni/: by Lemma 4.1,
the intersection point fz; z0g contributes to the pairing hNi ; ˇ.F /i by ˙q2LWcr.ˇ/C1tb

for some b 2 Z, and then Lemma 5.1 completes the proof.

z� z�

d1 d2

Ni

(a) (b)

(c) (d) (e)

z�

Ni NiC1

Figure 12: Intersections achieving q2LWcr.ˇ/C1 exist

Let  be an arc segment of ˇ.T .F // whose wall crossing labeling is LWcr.ˇ/. Take a
standard noodle Ni which intersects  in a point z . Assume that z and d1 lie on the two
different components of Ni � .Wi \Ni/. If  does not fall into the puncture pi , then
we can find another intersection point z� of  with Ni that lies on the same component
of Ni� .Wi\Ni/ as d1 (Figure 12(a)) and the proof is complete. Assume that  falls
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into the puncture pi . If  falls into the puncture from the left, the intersection point z�
nearest to the puncture provides the desired intersection (Figure 12(b)), so we assume
that  falls into the puncture from the right. Then  must pass under the adjacent
puncture piC1 because otherwise we either find another arc segment having strictly
larger wall crossing labeling (Figure 12(c)) or contradict the hypothesis that Ni and
ˇ.T .F // have the minimal intersection (Figure 12(d)). Then the standard noodle NiC1

and  have an intersection z� with the desired property (Figure 12(e)).

Proof of Theorem 1.1 For a braid ˇ , let us take a straight fork F and a standard
noodle N as in Lemma 5.2. Thus we have Mq.hN; ˇ.F /i/> 2LWcr.ˇ/C 1. Let us
write the fork ˇ.F / as the linear combination of the standard forks

ˇ.F /D
X

16i<j6n

xi;j Fi;j .xi;j 2 ZŒq˙1; t˙1�/:

Since F is a straight fork, xi;j is an entry of the matrix L.ˇ/. Now we have an equality

hN; ˇ.F /i D
X

16i<j6n

xi;j hN;Fi;j i:

By taking Mq of both sides, we get

Mq.hN; ˇ.F /i/DMq

� X
16i<j6n

xi;j hN;Fi;j i

�
6 max

16i<j6n
fMq.xi;j /CMq.hN;Fi;j i/g:

Since in Lemma 2.3 we observed that Mq.hN;Fi;j i/6 1,

Mq.hN; ˇ.F /i/6 max
16i<j6n

fMq.xi;j /gC 1:

Hence we conclude

max
16i<j6n

fMq.xi;j /g> Mq.hN; ˇ.F /i/� 1 > 2LWcr.ˇ/D 2 sup†�.ˇ/;

where the second inequality follows from Lemma 5.2 and the last equality from
Theorem 3.3. Thus we get an inequality

Mq.L.ˇ//> 2 sup†�.ˇ/:

On the other hand, for each dual-simple element s 2 Œ1; ı�,

Mq.L.s//6 2

holds by direct calculations. Hence we get the converse inequality

Mq.L.ˇ//6 2 sup†�.ˇ/:
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We conclude that
Mq.L.ˇ//D 2 sup†�.ˇ/:

The proof of (2) is similar, and (3) follows from Proposition 2.1.
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