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A new gauge slice for the relative Bauer–Furuta invariants

TIRASAN KHANDHAWIT

In this paper, we study Manolescu’s construction of the relative Bauer–Furuta in-
variants arising from the Seiberg–Witten equations on 4–manifolds with boundary.
The main goal of this paper is to introduce a new gauge fixing condition in order to
apply the finite-dimensional approximation technique. We also hope to provide a
framework to extend Manolescu’s construction to general 4–manifolds.

57R57; 57R58

1 Introduction

Stable homotopy invariants arising from gauge theory have provided many interesting
results in low-dimensional topology. One of the first examples is Furuta’s proof [5]
of the 10=8–theorem, which provides constraints on intersection forms of smooth 4–
manifolds. Later, Bauer and Furuta [3] constructed an invariant for a closed 4–manifold
as an element in a certain stable cohomotopy group (see also Bauer [2]).

The basic idea of this construction is to consider the Seiberg–Witten map, rather
than its moduli space of solutions, and then consider approximated maps between
finite-dimensional vector spaces to obtain a stable map between spheres. One useful
observation for this construction is that the Seiberg–Witten map can be written as a
sum of linear and compact operators.

In 2003, Manolescu [14] constructed a Floer spectrum for a rational homology 3–sphere.
Roughly speaking, the construction comes from finite-dimensional approximation of
the Seiberg–Witten flow on an infinite-dimensional space. This allows one to extend
the notion of Bauer–Furuta invariants to 4–manifolds with a rational homology sphere
as a boundary.

Let X be a smooth, compact, connected, oriented 4–manifold with boundary @X D Y

and equip X with a spinc structure whose restriction induces a spinc structure on Y .
Conceptually, one can view the construction of the relative Bauer–Furuta invariant
as a combination of finite-dimensional approximation on both X and Y using the
Seiberg–Witten map and the restriction map

M.X /! B.Y /
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from the moduli space of Seiberg–Witten solutions of X to the quotient configuration
space of Y as a boundary term. An important step is to instead consider spaces of
configurations with a certain gauge fixing condition so that we have a map with the
Fredholm property between vector spaces.

The main purpose of this paper is to introduce a new gauge fixing for a 4–manifold
with boundary. An advantage of our gauge fixing condition, called the double Coulomb
condition, is that the restriction map from the corresponding slice on X to the Coulomb
slice on Y is linear. In contrast, the restriction map from the previously used Coulomb–
Neumann slice on X to the Coulomb slice on Y is not linear and its nonlinear part
is not compact. In fact, the boundary condition of our double Coulomb condition is
motivated by this situation.

In Section 2, we give a definition of the double Coulomb condition and prove its basic
properties. In Section 3, we show that the double Coulomb slice has several properties
analogous to the Coulomb–Neumann slice. In Section 4, we apply finite-dimensional
approximation to this slice. At the end, we specialize to the case when b1.Y /D 0 and
reproduce Manolescu’s construction of the relative Bauer–Furuta invariant, denoted by
SWF.X /.

Theorem 1.1 When b1.Y /D 0, the Seiberg–Witten map with boundary term on the
double Coulomb slice gives an S1 –equivariant stable homotopy class of maps

(1) SWF.X /W †�bC.X /ThDir.X /! SWF.Y /;

where SWF.Y / is the Floer spectrum associated to Y and ThDir.X / is the Thom
spectrum associated to a family of Dirac operator on X parametrized by the Picard
torus of X . In the special case when b1.X /D 0, we have

(2) SWF.X /W S�bC.X /R�.�.X /=8/C
! SWF.Y /;

where S is the sphere spectrum.

In particular, when X is a cobordism between two 3–manifolds, one can use duality
and reinterpret the relative Bauer–Furuta invariant as a morphism between Floer spectra.

Corollary 1.2 Suppose that @X D xY1qY2 and b1.X /D b1.Y1/D b1.Y2/D 0. Then
we also have an S1 –equivariant stable homotopy class of maps

SWF.X /W SWF.Y1/! S bC.X /RC.�.X /=8/C
^SWF.Y2/:
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We point out that the construction can be applied directly to give a stable homotopy
class of Pin.2/–equivariant maps when all manifolds are spin. This Pin.2/–version
of Corollary 1.2 plays a crucial role in the recent applications of Pin.2/–equivariant
stable homotopy invariants to low-dimensional topology; see eg Manolescu [13; 15]
and J Lin [12].

Another goal of the paper is to provide a framework to extend Manolescu’s construction
to a 4–manifold whose boundary can be any 3–manifold. The case b1.Y /D 1 was
studied by Kronheimer and Manolescu [8]. We also hope that this new slice will help
prove other important properties of the relative Bauer–Furuta invariant.

In the Appendix, we provide some background in Conley index theory. We also
include the result regarding independence of index pairs in the construction (see
Proposition A.5), which, we believe, has not appeared before.
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supporting during the graduate study. The author would like to thank Mikio Furuta and
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2 Preliminaries: The double Coulomb condition

In this section, let M be a compact, connected, oriented, Riemannian manifold with
boundary @M D

`
Ni . We will describe a variant of the Hodge decomposition of

1–forms in order to set up an appropriate slice for finite-dimensional approximation of
the Seiberg–Witten map.

The inclusion @M !M gives a decomposition of a differential form of M at the
boundary to the tangential part and normal part

!j@M D t!Cn!:

Thus t! is the restriction of ! to the boundary. When @M has more than one connected
component, we also denote by ti the restriction to the i th component.

Let ? be the Hodge star and d� be the codifferential. With this notation, we recall the
formula for integration by parts (namely, Green’s formula)

(3)
Z

M

hd!; �i D

Z
M

h!; d��iC

Z
@M

t! ^?n�

and the identity ?.n!/D t.?!/.
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We now introduce a space of 1–forms with double Coulomb condition.

Definition 2.1 We say that a 1–form ˛ satisfies the double Coulomb condition if

(1) ˛ is coclosed (d�˛ D 0);

(2) its restriction to the boundary is coclosed, ie d�.t˛/D 0 on @M ;

(3) for each i ,
R

Ni
ti.?˛/D 0.

Denote by �1
CC.M / the space of all 1–forms satisfying the double Coulomb condition.

When the metric of M is cylindrical near the boundary, ie the neighborhood of the
boundary is isometric to .��; 0�� @M , one can decompose a 1–form ! in the collar
neighborhood as

(4) ! D ˛.t/Cˇ.t/C 
 .t/dt;

where ˛.t/; ˇ.t/ and 
 .t/ are an exact 1–form, a coclosed 1–form and a 0–form
on @M respectively and each of them is time dependent. One can see that the Neumann
condition n! D 0 simply means 
 .0/ D 0, while the condition d�.t!/ D 0 means
˛.0/D 0 and the last condition in Definition 2.1 is a condition on the integral of 
 .0/.

Hodge theory on manifolds with boundary has been studied by many authors (see
Iwaniec, Scott and Stroffolini [6] and Schwarz [17]). However, the double Coulomb
condition and the following decomposition appear to be new.

Proposition 2.2 Any 1–form ˛ can be written uniquely as a sum ˛ D !C d� where
! 2�1

CC.M / and � is a 0–form. In other words, there is an isomorphism

(5) �1.M /Š�1
CC.M /˚ d�0.M /:

Remark This decomposition is not orthogonal as opposed to the standard Hodge
decomposition �1.M /Š�1

CN.M /˚d�0.M /, where �1
CN.M / is a space of coclosed

1–form with vanishing normal component (n˛D 0). If the condition
R

Ni
ti.?˛/D 0 is

omitted, a decomposition exists but not unique with ambiguity of dimension b0.@M /�1.

Proof Let ˛ be a 1–form. We will first find a function �1 such that ˛� d�1 satisfies
(1) and (2) of Definition 2.1, that is

(6) d�.d�1/D d�˛; d�.td�1/D d�.t˛/:

Since d and t commute, we see that d�.td�1/D�t�1 . We can instead consider

��1 D d�˛; t�1 DGd�.t˛/;
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where G is a Green’s operator of the Laplacian of the boundary @M . This equation is
precisely the Dirichlet problem for the Poisson equation and is uniquely solvable (cf
Scharz [17]). As a result, one can always find such �1 as claimed.

Next, consider a function � which satisfies

(7) �� D 0; ti� D ci ;

where ci are constants. This is a homogeneous solution of (6). Since this equation is also
the Dirichlet problem, there is a unique solution � for each vector cD .c1; : : : ; cb0.@M //.

Denote by K the space of functions � satisfying (7) for all possible c . This is a vector
space of dimension b0.@M / and � is a constant function when the ci ’s are all equal.
Let us consider a map evW K!Rb0.@M / by assigning the value

R
Ni

ti.?d�/ to the i th

component. When �D d� and ! is a nonzero constant function, Green’s formula (3)
implies that

0D

Z
M

��C
XZ

Ni

ti.?d�/:

Then, we see the image of ev is in the hyperplane H0 WD f.ri/ 2Rb0.@M / j
P

ri D 0g.
By plugging .!; �/D .�; d�/ in Green’s formula, we find that the kernel of ev consists
of the constant functions. Thus, the map ev gives an isomorphism between K0 WD f� 2

K j
P

ci D 0g and the hyperplane H0 .

Finally, we notice that any coclosed 1–form ! satisfies 0D
PR

Ni
ti.?!/ by pairing !

with a nonzero constant function in Green’s formula. Note that this makes condition (3)
of Definition 2.1 trivial when @M has just one component. From the previous paragraph,
we can now pick �2 2K0 so that

R
Ni

ti.?.˛�d�1�d�2//D 0. Hence ˛�d�1�d�2 2

�1
CC.M /. The uniqueness of the decomposition follows from the fact that the kernel

of ev consists of the constant functions.

Note For a coclosed 1–form ˛ , the condition
R

Ni
ti.?˛/D 0 is equivalent to ˛ being

orthogonal to d� for all � 2K . Indeed, we haveZ
M

hd�; ˛i D
X

ci

Z
Ni

ti.?˛/:

3 The Seiberg–Witten map with boundary terms

From now on, let X be a compact, connected, oriented, Riemannian 4–manifold with
nonempty boundary @X D Y . We choose a metric so that a neighborhood of the
boundary is isometric to the cylinder I � Y for some interval I D .�C; 0�. Let sX
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be a spinc structure on X and s be the induced spinc structure on Y . Denote by
SX D SC˚S� the spinor bundle of X and by S the spinor bundle of Y .

Denote by AX the space of spinc connection on SX and by �.S˙/ the space of
sections of the spinor bundles and by �2

C.X / the space of self-dual 2–forms. The
Seiberg–Witten map is given by

SWW AX ˚�.S
C/! i�2

C.X /˚�.S
�/;

.A; ˆ/ 7! .1
2
FC

At � �
�1..ˆˆ�/0/; =D

C

Aˆ/;

where FC
At is the self-dual part of the curvature of the associated connection on the

determinant bundle ƒ2SC , =DCA is the Dirac operator, .ˆˆ�/0 is the trace-free part
of the endomorphism ˆˆ� , and � is the Clifford multiplication.

The gauge group G WD Map.X;S1/ acts on the above spaces so that SW is G–
equivariant. The action is given by u � A 7! A � u�1du on connections and by
pointwise multiplication on spinors whereas the action is trivial on 2–forms. There
is also the gauge subgroup G? WD fe� j � 2 C1.X I iR/ and

R
X � D 0g, which lies in

the connected component of G .

With a reference connection A0 , the quotient of AX ˚�.S
C/ by G? can be identified

with a global slice with the double Coulomb condition

CoulCC.X /D f.a; �/ 2 i�1.X /˚�.SC/ j a 2�1
CC.X /g:

This is a consequence of the decomposition (5) from Proposition 2.2. The Seiberg–
Witten map then becomes

SWW CoulC C .X /! i�2
C.X /˚�.S

�/;

.a; �/ 7! .dCa� ��1..���/0/C
1
2
FC

At
0

; =D
C

A0
�C �.a/�/;

and we can write SWD yDC yQ where yDD .dC; =DCA0
/ and yQ is the sum of a quadratic

map and the constant term 1
2
FC

At
0

.

On the 3–manifold side, we also have the Coulomb slice

Coul.Y /D f.b;  / 2 i�1.Y /˚�.S/ j d�b D 0g

which arises from the quotient of a configuration space by a gauge subgroup. For
a 2�1

C C
.X /, its restriction to the boundary is already coclosed, so that the restriction

induces a map between the slices

r W CoulC C .X /! Coul.Y /:
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A new gauge slice for the relative Bauer–Furuta invariants 1637

This gives a Seiberg–Witten map with boundary terms

SW˚ r W CoulCC.X /! .i�2
C.X /˚�.S

�//˚Coul.Y /:

As usual, we will extend the above maps to maps between appropriate Sobolev spaces.
For a fixed real number1 k > 3, we consider the L2

kC1
completion of the domain

of SW, the L2
k

completion of the codomain of SW, and the L2
kC1=2

completion of
Coul.Y / so that yQ is compact and the restriction map r is bounded.

However, the linear part yD˚r is not Fredholm. To obtain a Fredholm map, we need to
consider the above operator with spectral boundary condition as in the Atiyah–Patodi–
Singer boundary-value problems. On the boundary 3–manifold Y , we have a first-order
self-adjoint elliptic operator D acting on the Coulomb slice,

(8)
DW i Ker.d�/˚�.S/! i Ker.d�/˚�.S/;

.b;  / 7! .�db; =DB0
 /;

where the connection B0 is the restriction of A0 . Denote by H�
0

its nonpositive
eigenspace and by …�

0
the projection onto H�

0
. We now consider a map of the form

(9) yD˚ .…�0 ı r/W CoulCC.X /! .i�2
C.X /˚�.S

�//˚H�0 :

We will show that this map, extended to the Sobolev completion, is Fredholm with an
elliptic estimate. The proof resembles that of Kronheimer and Mrowka [9, Proposi-
tion 17.3.2].

Proposition 3.1 The map yD˚ .…�
0
ı r/ in (9) is Fredholm and its index is equal to

2 IndC. =D
C

A0
/C b1.X /� bC.X /� b1.Y /. In addition, we have an estimate

(10) kxkL2
kC1
� C.k yDxkL2

k
Ck.…�0 ı r/xkL2

kC1=2
CkxkL2/:

Proof The main idea is to apply the Atiyah–Patodi–Singer boundary-value problem [1]
to the extended operator coming from the gauge fixing condition. Then, we will compare
projections onto different semi-infinite subspaces in the boundary terms. One subspace
arises from a spectral boundary condition of the extended operator while another is a
sum of an eigenspace on Coul.Y / and a subspace characterizing the double Coulomb
condition.

We will also make use of the following observation: suppose that an operator zD arises
from two operators D1W V !W1 and D2W V !W2 , in the sense that

zD D .D1;D2/W V !W1˚W2:

1 This k corresponds to a half-integer kC 1=2 in Manolescu [14].
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It is not hard to check that

(11)

Ker. zD/D Ker.D1jKer.D2//D Ker.D2jKer.D1//;

Coker. zD/D Coker.D1/˚Coker.D2jKer.D1//

D Coker.D1jKer.D2//˚Coker.D2/:

Consequently, the map D1jKer.D2/W Ker.D2/!W1 is Fredholm if zD is Fredholm.

Let us start by considering an elliptic operator zD given by

zDW i�1.X /˚�.SC/! i�2
C.X /˚�.S

�/˚ i�0.X /;

.a; �/ 7! .dCa;DC
A0
�; d�a/:

This is the map yD together with the summand d� for gauge fixing. Then, we write
zD DD0CK , where K extends to an operator of order 0 and D0 has the form

D0 D
d

dt
C zL;

in the collar neighborhood (up to isomorphisms) and the operator zL is a first-order,
self-adjoint elliptic operator given by

zLW i�1.Y /˚�.S/˚ i�0.Y /! i�1.Y /˚�.S/˚ i�0.Y /;

.b;  ; c/ 7! .�db� dc; =DB0
 ;�d�b/:

Using the Hodge decomposition, the restriction of zL to i�1.Y /˚i�0.Y /D i Im.d/˚
i Ker.d�/˚ i�0.Y / can be written as a block24 0 0 �d

0 �d 0

�d� 0 0

35 :
One can also rearrange and view the domain (and the codomain) of zL as Coul.Y /˚
i Im.d/˚ i�0.Y /, so that zLDD˚L1 where D is the operator from (8) and L1 is
an operator on i Im.d/˚ i�0.Y / with a block form�

0 �d

�d� 0

�
:

We now apply the Atiyah–Patodi–Singer boundary-value problem to the operator zD .
Consequently, we have that the map

zD˚ . z…� ı r/W i�1.X /˚�.SC/! i�2
C.X /˚�.S

�/˚ i�0.X /˚ zH�
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is Fredholm, where z…� is the projection onto the nonpositive eigenspace of zL, denoted
by zH� � Coul.Y /˚ i Im.d/˚ i�0.Y /.

Let H�
1
� i Im.d/˚ i�0.Y / be the nonpositive eigenspace of L1 and …�

1
be its

spectral projection and we see that z…�D…�
0
˚…�

1
. Let W � i�0.Y / be the subspace

of locally constant functions and let …2 be the projection from i Im.d/˚ i�0.Y /

onto i Im.d/˚W whose kernel is f0g ˚ ff j
R

Yi
f D 0g. We would like to apply

the earlier observation (11) to the map zD˚ ..…�
0
˚…2/ ı r/ because the kernel of

d�˚ .…2 ı r/ is precisely CoulCC.X /.

We start comparing Im.…�
1
/ and Ker.…2/ by observing that dd� is positive on

i Im.d/. Consequently, the pairs .b; d�.dd�/�1=2b/ and .0; c/ lie in H�
1

for any
b 2 i Im.d/ and for any locally constant function c . Moreover, the intersection
of H�

1
and f0g˚ ff j

R
Yi
f D 0g is the zero set, so we can see that any element in

i Im.d/˚ i�0.Y / can be written uniquely as the sum of elements from these two
subspaces.

Consequently, the kernel of …�
0
˚…2 is complementary to the image of …�

0
˚…�

1
.

From [9, Proposition 17.2.6], we can conclude that the operator

zD˚ ..…�0 ˚…2/ ı r/W i�1.X /˚�.SC/

! i�2
C.X /˚�.S

�/˚ i�0.X /˚ .H�0 ˚ i Im.d/˚W /

is Fredholm. From (11), we set D1 D
yD˚ .…�

0
ı r/ and D2 D d�˚ .…2 ı r/ and

deduce that the map yD˚ .…�
0
ı r/ is Fredholm with index

Ind. yD˚ .…�0 ı r//D Ind. zD˚ ..…�0 ˚…2/ ı r//C dim Coker.D2/:

To find a formula for the index, one can observe that the operators zD˚ . z…� ı r/ and
zD˚..…�

0
˚…2/ır/ have the same index (see [9, Proposition 17.2.6]). From the proof

of Proposition 2.2, one can deduce that the cokernel of D2 is isomorphic to the space of
constant functions on Y . Hence, we obtain Ind. yD˚.…�

0
ır//D Ind. zD˚. z…�ır//C1.

The index of zD˚. z…�ır/ can be computed from the index formula of the two operators
dCC d� and =D

C

A0
with the spectral boundary condition. For instance, the index for

dCC d� is given by

Ind.dCC d�/D�
1

2

Z
X

�
p1.X /

3
C e.X /

�
C
�sign�ksign

2
;

where p1.X /, e.X / are the Pontryagin class and the Euler class of X and �sign , ksign

are the eta invariant and the dimension of the kernel of the odd signature operator on Y

respectively. The kernel of the odd signature operator is the space of harmonic 0–forms
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and 1–forms of Y . Using the signature theorem and the Gauss–Bonnet theorem, we
have

�.X /C�.X /D

Z
X

�
p1.X /

3
C e.X /

�
� �sign;

which gives
Ind.dCC d�/D�

�.X /C�.X /Cb0.Y /Cb1.Y /

2
:

One can extract from the cohomology long exact sequence of the pair .X;Y / that

�.X /C�.X /C b0.Y /C b1.Y /D 2.b0.X /� b1.X /C bC.X /C b1.Y //:

Putting everything together, we have the desired quantity

(12) Ind. yD˚ .…�0 ı r//D 2 IndC. =D
C

A0
/� .b0.X /�b1.X /CbC.X /Cb1.Y //C1

D 2 IndC. =D
C

A0
/C b1.X /� bC.X /� b1.Y /:

Finally, there is an elliptic estimate for zD˚ . z…� ı r/ as a consequence of the Atiyah–
Patodi–Singer theorem. Since …�

0
˚…2 is an isomorphism on the image of …�

0
˚…�

1
,

we also have an estimate for the operator zD˚ ..…�
0
˚…2/ ı r/:

kxkL2
kC1
� C.k zDxkL2

k
Ck..…�0 ˚…2/ ı r/xkL2

kC1=2
CkxkL2/:

Restricting x to Ker.D2/D CoulCC.X /, we obtain the desired estimate.

Remark We can also replace …�
0

by any projection …� commensurate to …�
0

, ie
a projection such that …��…�

0
is compact. The index will change according to the

formula Ind. yD˚…�/ D Ind. yD˚…�
0
/C Ind.…�…�

0
/, where …�…�

0
denotes the

Fredholm operator …�…�
0
W Im.…�

0
/! Im.…�/. Furthermore, the constant in the

estimate (10) can be fixed for all such commensurate projections.

4 Finite-dimensional approximation for the Seiberg–Witten
map with boundary

We briefly recall the construction of finite-dimensional approximation on the boundary
3–manifold Y . Throughout the section, we work on a general setting with no restriction
on b1.Y / as in Khandhawit [7]. At the very end, we will specialize to the case b1.Y /D0

(see Manolescu [14]).

On the Coulomb slice Coul.Y /, we have a Seiberg–Witten vector field F given by

F.b;  /D .�dbC ��1.  �/0C
1
2
�FBt

0
� dx�. /; =DB0

 C b � � x�. / /;

Geometry & Topology, Volume 19 (2015)
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where x�. / is a unique function that satisfies �x�. /D d�.��1.  �/0C
1
2
�FBt

0
/

and
R

Y
x�. /D 0. This vector field arises from a (nonlinear) projection of the gradient

of the Chern–Simons–Dirac functional onto the Coulomb slice. Note that F can also
be decomposed as a sum F D DCQ where D D .�d; =DB0

/ is the linear operator
from (8) and the nonlinear term Q has nice compactness properties.

When necessary, we pick a perturbation q on the 3–manifold Y . This induces a
perturbation on the cylinder I � Y . On the 4–manifold X , we will also pick a
perturbation yp supported in the collar neighborhood of Y such that the restriction to
f0g �Y is q. In addition, as in Kronheimer and Mrowka [9, Section 24.1], we assume
that yp is of the form

ypD ˇqCˇ0p0;

where ˇ is a cutoff function with value 1 near the boundary, ˇ0 is a bump function
supported in .�C; 0/, and p0 is another perturbation on Y . We will always choose q; p0

from the Banach space of tame perturbations (cf [9, Section 11]). For the rest of the
paper, it is understood that the Seiberg–Witten map and the Chern–Simons–Dirac
functional are perturbed. We will continue to write SWD yDC yQ and F DD CQ as
we keep the linear parts the same and we add terms from perturbation to the nonlinear
parts. When the perturbations are tame, the nonlinear terms yQ and Q retain appropriate
compactness properties.

Choose a closed and bounded subset R in the L2
kC1=2

completion of Coul.Y / with
the following property: if a trajectory y.t/ satisfies

�
@

@t
y.t/D F.y.t//

and lies in R for all time t 2R, then y.t/ in fact lies in the interior of R for all time.
This subset R can be viewed as an isolating neighborhood for the Seiberg–Witten flow.
A key result for constructing the Floer spectrum is that a compact subset R\W of a
sufficiently large finite-dimensional subspace W is an isolating neighborhood for a
compressed flow on W given by a projected vector field

�
@

@t
y.t/D �W F.y.t//;

where �W is a projection onto W (cf [7, Proposition 11]). When b1.Y / D 0, a
large ball B.2R/ in Coul.Y / can be chosen for such an isolating neighborhood
(cf [14, Proposition 3]). For the construction of R, we refer to Kronheimer and
Manolescu [8] for the case b1.Y /D 1 and to [7, Section 4.4] for a general case.

As a result, one can obtain Conley index I.R\W / with respect to this compressed
flow (see the Appendix for a background in Conley index theory). This will allow us
to construct the Floer spectrum later on.
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Now, we consider a map

SW˚ .…� ı r/W CoulCC.X /! i�2
C.X /˚�.S

�/˚H�;

where …� is a projection onto a semi-infinite subspace H� commensurate to H�
0

as introduced in Proposition 3.1 and in the subsequent remark. For convenience, we
denote the 4–dimensional part of the codomain, i�2

C.X /˚�.S
�/, by VX .

Notice that there is a residual action on CoulCC.X / by the quotient

G=G? 'H 1.X IZ/D Zb1.X /;

which can be viewed as a group of harmonic maps H1
CC.X / with double Coulomb

condition. By Proposition 2.2, there is a unique map u with u�1du 2�1
CC for each

cohomology class. Elements of H1
CC.X / span a subspace of dimension b1.X / in the

slice CoulCC.X / and we will denote by UX its orthogonal complement. This gives a
decomposition CoulCC.X /' UX ˚Rb1.X / and one may view UX as a fiber of this
(trivial) bundle.

Note If X is closed or the Coulomb–Neumann condition is used, the subspace UX

can be identified with Im.d�/� Ker.d�/.

The rest of the construction will closely follow the construction of the relative Bauer–
Furuta invariant in Manolescu [14]. First, we pick a sufficiently large ball B.R/ of UX

in L2
kC1

topology. The image of this ball under the restriction map is bounded. We can
pick a bounded isolating neighborhood R containing this image in the slice Coul.Y /.
The choices of B.R/ and R will depend on universal constants in Corollary 4.3.

For each positive integer n, let H�n be a semi-infinite subspace of Coul.Y / such that
its projection …�n is commensurate to …�

0
. Since yD˚ .…�n ı r/ is Fredholm, we pick

a finite-dimensional subspace Vn˚Wn of the codomain VX ˚H�n such that it contains
the cokernel this map. We will require that H�n , Vn and Wn are sequences of increasing
subspaces approaching the whole spaces. For a sufficiently large n, a compact set
R\Wn will be an isolating neighborhood of the compressed Seiberg–Witten flow on
Wn . See Section 4.2 for more details regarding these subspaces.

Let Un be the preimage of Vn˚Wn under the linear map yD˚ .…�n ı r/. Consider a
projected Seiberg–Witten map

�Vn˚Wn
ı .SW˚ .…�n ı r//W Un! Vn˚Wn

and this gives a map
B.R;Un/! Vn � .R\Wn/
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when restricting to the ball. Let �n be a sequence of positive numbers approaching 0,
then we will try to show that, for n sufficiently large, this induces a map of the form

B.R;Un/=S.R;Un/! Vn=B.�n;Vn/
C
^Nn=Ln;

where B.�n;Vn/
C is an element in Vn outside the small ball and .Nn;Ln/ is an

index pair for R\Wn with respect to the compressed Seiberg–Witten flow on Wn .
Consequently, this will give a map from a sphere to a suspension of the Conley index

SUn ! SVn ^ I.R\Wn/:

A crucial part in the construction is to assure that we can find such an index pair for
which the induced map is well defined.

There are three main ingredients to establish such maps. First, we recall results regarding
the moduli space of Seiberg–Witten solutions on a 4–manifold with boundary.

4.1 Boundedness of X –trajectories

Let X � WD X [Y .Œ0;1/ � Y / be a manifold with cylindrical ends. A Seiberg–
Witten solution on X � , also known as an X –trajectory, can be viewed as a pair
of a solution on X and a half-trajectory on Y with compatibility condition. In
particular, there is a homeomorphism between moduli spaces (cf Kronheimer and
Mrowka [9, Lemma 24.2.2])

(13) M.X �/'M.X /�B.Y /M.Œ0;1/�Y /:

For an X –trajectory 
 , one can define its topological energy E.
 / (cf [9, Section 24]).
When 
 is asymptotic to a on the cylindrical end, we have that

(14) E.
 /D CX �L.a/;

where L is the (perturbed) Chern–Simons–Dirac functional on Y and CX is a constant
which depends only on X , a spinc structure, a metric and a perturbation. We now state
the compactness result in Seiberg–Witten theory.

Proposition 4.1 [9, Proposition 24.6.4] For C > 0, the space of (broken) X –
trajectories with energy less than C is compact in the topology defined in [9].

Next, we will show that an X –trajectory with finite energy actually has its energy
bounded by a universal constant.

Lemma 4.2 There is a uniform bound for an energy of any X –trajectory with finite
energy. When the spinc structure s of Y is nontorsion, we further require that the
perturbation is regular in the sense that all moduli spaces of trajectories are regular.
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Proof First, we observe that an X –trajectory with finite energy is always asymptotic
to a critical point of L on the cylindrical ends. By (14), we only need to consider the
value of L at its critical points. When s is torsion, one could see that the statement is
trivial by compactness of the solutions to the 3–dimensional Seiberg–Witten equations
modulo gauge.

When s is nontorsion, we also have to control the gauge action, which can be viewed
as a homotopy class of an X –trajectory on the quotient configuration space. When
the perturbation is regular, the set of critical points modulo gauge is a finite set. The
following argument will be similar to the finiteness result in monopole Floer homology.

Let Œa� be a class of critical points and fix an X –trajectory Œ
0� asymptotic to Œa� with
homotopy class �0 . Suppose that Œ
 � is an arbitrary element of a moduli space of
X –trajectories asymptotic to Œa� with a homotopy class � . When this moduli space is
regular, its dimension is given by a quantity gr� .X; Œa�/ with a relation

(15) gr� .X; Œa�/D gr�0
.X; Œa�/C .Œu�[ c1.s//ŒY �;

where Œu� 2H 1.Y IZ/ corresponds to a class ���1
0

.

On the other hand, the difference of energies of Œ
 � and Œ
0� is given by

E.
 /� E.
0/D L.a/�L.u � a/

D�2�2.Œu�[ c1.s//ŒY �:

Since the dimension gr� .X; Œa�/ is nonnegative, equation (15) implies that

E.
 /� E.
0/C 2�2 gr�0
.X; Œa�/:

This finishes the proof as there are finitely many classes of critical points.

Remark For the Pin.2/–equivariant case, we will also use equivariant perturbations
as in the upcoming work of F Lin [11]. In this context, one considers the Morse–
Bott version of Floer homology, where a critical point a is replaced by a critical
submanifold C. There are analogous compactness and transversality results as well as
the relative grading gr� .X; ŒC�/.

The argument above can be directly applied to a nonexact perturbation which is either
balanced or positively monotone (cf [9, Section 29]).

We now deduce the uniform boundedness result for X –trajectories with finite energy2

with respect to a particular gauge fixing.

2This is analogous to the finite type condition in [14]. However, the finite energy condition implies the
finite type condition (cf [9, Section 5]).
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Corollary 4.3 A pair .x;y/ of a solution x 2 UX with SW.x/ D 0 and a half-
trajectory yW Œ0;1/!Coul.Y / satisfying � @

@t
y.t/DF.y.t// and r.x/D y.0/ gives

rise to an X –trajectory. Moreover, there are constants Bk and Ck such that, for any
such pair .x;y/ with finite energy, we have

� kxkL2
kC1
� Bk ;

� for each t � 0, there is a harmonic gauge transformation ut 2H 1.Y IZ/ such
that kut �y.t/kL2

kC1=2
� Ck .

Note The gauge transformation ut comes from a residual gauge action on Coul.Y /.
For any yD .˛;  /2Coul.Y /, there is a unique gauge transformation (up to constant) u

such that ˛ � u�1du satisfies the period condition
R

ǰ ^ .˛ � u�1du/ 2 Œ0; 2�/,
where f ǰ g is a dual basis of H1.Y IZ/. This condition was used in the proof of
compactness results in [9].

Proof For the first part we will proceed similarly to the construction of the home-
omorphism (13), that is we will glue a solution on X and a half-trajectory on Y to
obtain a solution on X � . Recall that y is a Coulomb projection of a Seiberg–Witten
trajectory xy with xy.0/D y.0/ (cf [7, Section 4.2]). We can write a solution x near
the boundary of X and xy in cylindrical coordinates as in (4):

x D .˛1.t/Cˇ1.t/C 
1.t/dt;  1.t//;

xy.t/D .˛2.t/Cˇ2.t/C 
2.t/dt;  2.t//:

The hypotheses x 2 UX and r.x/D y implies that ˛1.0/D ˛2.0/, ˇ1.0/D ˇ2.0/D 0

and  1.0/D  2.0/.

The only thing we need to concern ourselves with is that xy is in temporal gauge, particu-
larly 
2.0/D 0, but 
1.0/ is not necessarily zero. Let f W Œ0;1/! Œ0;1/ be a smooth
compactly supported function with f 0.0/ D 1 and consider a gauge transformation
U.t/D e

R t

0 f .s/
1.0/ds on Œ0;1/�Y . We see that U�1dU D
R t

0 f .s/dY .
1.0//dsC

f 0.t/
1.0/dt and U.0/ D id, so that x and U.t/xy.t/ now agree on the boundary
f0g�Y . Note that the resulting solution on X � is in a mixed gauge condition: the part
on X is in the double Coulomb gauge and the part on Œ0;1/�Y has dt component
of the form f 0.t/� , where f is the chosen bump function, and � is a fixed function
on Y . One can always turn a solution on X � to a solution in this mixed gauge in a
unique way.

For the second part, Proposition 4.1 combined with Lemma 4.2 gives universal bounds
on the Sobolev norms of X –trajectories with finite energy in the above mixed gauge.
Since the restriction and Coulomb projection are continuous, we have universal bounds
for the Sobolev norms of a pair .x;y/ described above as desired.
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4.2 Approximated solutions

Secondly, we will need a convergence result for approximated X –trajectories. The idea
is to combine finite-dimensional approximation arguments for both closed 4–manifolds
and closed 3–manifolds.

For the rest of the section, we let fy�ng be a sequence of L2
k

–orthogonal projection
onto a finite-dimensional subspace Vn of VX such that y�n! id strongly in L2

k
. This

means k.1� y�n/xkL2
k
! 0 for each x 2L2

k
.VX /.

Similarly, let f…�n g be a sequence of L2 –orthogonal projection onto a semi-infinite
subspace H�n of Coul.Y / and let f�ng be a sequence of L2 –orthogonal projection
onto a finite-dimensional subspace Wn of Coul.Y /. We will assume that both f…�n g
and f�ng converge to the identity strongly in L2

s for each s � 0. In addition, we
require that a norm of the commutator kD�n��nDkL2

s
! 0 as a bounded operator

on L2
s .Coul.Y // for each s � 0.

The following conditions are not necessary for the statement of Lemma 4.4, but are
assumed for constructions in Section 4.3:

� Vn contains cokernel of yD .

� …�n is commensurate to …�
0

, the projection onto the nonpositive eigenspace
of D .

� Wn is a subspace of H�n .

Note that we could simply let Wn and H�n be eigenspaces of D , but we could also
take eigenspaces of nearby operators for nontrivial examples. Let Dn DDCKn be
a sequence of first-order elliptic self-adjoint operators where Kn is an operator of
order zero and Kn ! 0. We then let Wn be the subspace spanned by eigenvectors
of Dn with eigenvalues in an interval Œ�n; �n� and let H�n be the subspace spanned by
eigenvectors of Dn with eigenvalues in an interval .�1; �n�. It is not hard to check
that Wn and H�n satisfy the above conditions. In particular, when �n! id strongly
in L2 , one can deduce that �n! id in L2

s using an elliptic estimate.

A choice of Vn is more flexible as we can use any orthonormal basis of the separable
Hilbert space L2

k
.VX /. We then choose any increasing subspaces containing the

cokernel of yD , which is finite-dimensional since yD˚.…�
0
ır/ is Fredholm and …�

0
ır

is surjective.

The following proof will be almost the same as Manolescu [14, Proposition 6], except
that there is a slight simplification because we do not need to consider a nonlinear
Coulomb projection in the argument.
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Lemma 4.4 Let fxng be a bounded sequence in the L2
kC1 –completion of UX such

that yDxn 2 Vn and .…�n ı r/xn 2Wn . Suppose . yDC y�n
yQ/xn! 0 in L2

k
and there

is a sequence of half-trajectories ynW Œ0;1/!Wn uniformly bounded in the L2
kC1=2

completion of Coul.Y / such that

�
@

@t
yn.t/D �nFyn.t/;

together with yn.0/ D .…�n ı r/xn . Then, after passing to a subsequence, the se-
quence fxng converges to a Seiberg–Witten solution x in L2

kC1
and there exists

a Seiberg–Witten half-trajectory y with y.0/ D r.x/ and yn.t/ converges to y.t/

in L2
kC1=2

for all t � 0.

Proof Since fxng is bounded, there is a subsequence of xn converges to x weakly
in the L2

kC1
norm. After passing to this subsequence, we have strong convergence

xn! x in L2
k

by Rellich lemma. Since a linear map preserves weak limits and yQ
is continuous in L2

k
, we also see that . yDC yQ/xn converges to . yDC yQ/x weakly in

the L2
k

norm.

On the other hand, we have

k. yDC yQ/xnkL2
k
� k. yDC y�n

yQ/xnkL2
k
Ck.1� y�n/ yQxnkL2

k
:

The first term goes to 0 by the hypothesis while the second term also goes to 0 because
.1 � y�n/ converges to 0 uniformly on a compact set (the image of a bounded set
under yQ). Hence, . yDC yQ/x must be equal to 0. Moreover, we have

(16) k yD.xn�x/kL2
k
� k. yDC yQ/xnkL2

k
Ck yQx� yQxnkL2

k
! 0:

Next, we move on to the 3–dimensional part. Similar to the proof of [14, Proposition 3],
there is a half-trajectory yW Œ0;1/! Coul.Y / such that yn.t/! y.t/ in L2

kC1=2

uniformly on any compact subset of the open half-line .0;1/ but the convergence
holds only in L2

k�1=2
on a compact subset of the closed half-line Œ0;1/. In addition, y

is a Seiberg–Witten trajectory

�
@

@t
y.t/D Fy.t/:

We now try to obtain convergence

…�0 yn.0/!…�0 y.0/

in L2
kC1=2

. Applying the fundamental theorem of calculus to etD…�
0

 .t/, we have

eD…�0 
 .1/�…
�
0 
 .0/D

Z 1

0

etD…�0

�
D
 .t/C

@

@t

 .t/

�
dt;
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where we use the fact that D and …�
0

commute. We will consider the integrand when

 D y �yn and use a decomposition

(17)
�
DC

@

@t

�
.yn�y/D .D�n��nD/ynC�n.Qy �Qyn/C .1��n/Qy:

For the last two terms, we use the fact that eD…�
0

and Q are bounded maps on L2
kC1=2

,
so that, for some constant R0 ,

(18) ketD…�0 .�n.Qy.t/�Qyn.t//C .1��n/Qy.t//kL2
kC1=2

�R0;

uniformly on t 2 Œ0; 1�. Note that eD…�
0

is bounded because we consider the expo-
nential of D restricted to its negative eigenspace.

Let us fix ı > 0. By continuity of Q, we have that Qyn.t/! Qy.t/ in L2
kC1=2

uniformly on Œı; 1�. Moreover, ky.t/kL2
kC1=2

is uniformly bounded on this interval.
By compactness of Q, we can conclude that .1��n/Qy.t/! 0 in L2

kC1=2
uniformly

on Œı; 1� as well. As a result, for any � > 0, we can find a sufficiently large integer N0

depending on a fixed ı0 < �=2R0 so that the integralZ 1

ı0

ketD…�0 .�n.Qy.t/�Qyn.t//C .1��n/Qy.t//kL2
kC1=2

dt < �=2

when n>N0 . Using (18), we add the integral on Œ0; ı0� and obtain, for n>N0 ,Z 1

0

ketD…�0 .�n.Qy.t/�Qyn.t//C .1��n/Qy.t//kL2
kC1=2

dt < ı0R0C �=2< �:

For the first term on the right hand side of (17), we use the hypothesis that the com-
mutator D�n��nD! 0 as a bounded operator on L2

kC1=2
. Since fyng is uniformly

bounded, we see that .D�n��nD/yn.t/! 0 in L2
kC1=2

uniformly on Œ0;1/. Putting
everything together, we have

k…�0 .y.0/�yn.0//k

� keD…�0 .y.1/�yn.1//�…
�
0 .y.0/�yn.0//kCke

D…�0 .y.1/�yn.1//k

�

Z 1

0




etD…�0

�
DC

@

@t

�
.yn.t/�y.t//




dt CkeD…�0 .y.1/�yn.1//k

and we can conclude that …�
0

yn.0/!…�
0

y.0/ in L2
kC1=2

topology.

Since …�n r.xn/ D yn.0/, …�0…
�
n r.xn/ converges to …�

0
y.0/ weakly in L2

kC1=2
.

On the other hand, we see that …�
0

r.xn/ converges to …�
0

r.x/ weakly in L2
kC1=2

because xn converges to x weakly in L2
kC1

and …�
0

r is bounded linear. It is not
hard to check that the difference …�

0
.1�…�n /r.xn/ converges to 0 weakly in L2 as
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…�n ! id strongly. Thus we must have …�
0

r.x/D…�
0

y.0/. Together with (16), the
elliptic estimate (10) implies that xn converges to x in L2

kC1
.

Since r is bounded linear, we also have that r.xn/ converges to r.x/ in L2
kC1=2

. Then
we observe that

kyn.0/� r.x/k D k…�n r.xn/� r.x/k � k…�n .r.xn/� r.x//kCk.1�…�n /r.x/k

so that yn.0/ converges to r.x/ in L2
kC1=2 because …�n converges to the identity

strongly. Since yn.0/ converges to y.0/ in L2
k�1=2 , we must also have r.x/D y.0/

and the convergence yn.0/! y.0/ in L2
kC1=2 .

4.3 The main results

The last ingredient is a technical lemma from Conley index theory to guarantee existence
of an appropriate index pair. Recall that we want a map of the form

B.R;Un/=S.R;Un/! Vn=B.�n;Vn/
C
^Nn=Ln:

The situation is almost the same as the set up of Proposition A.5 in the Appendix except
that there is a map in the first factor. Since we are collapsing everything outside of the
ball in Vn , we can focus only on the second factor by considering

(19) …�n ı r W B.R;Un/\ .y�nSW/�1.B.�n;Vn//!R\Wn:

Note that the image of B.R;Un/ under …�n ı r is already in Wn by the choice of Un .
Then, it is left verify to that this map satisfies the hypotheses of Proposition A.5 with
ADB.R;Un/\ .y�nSW/�1.B.�n;Vn// and B D S.R;Un/\ .y�nSW/�1.B.�n;Vn//.

We now state the main result.

Proposition 4.5 Let us fix a sufficiently large radius R and a sufficiently large isolating
neighborhood R depending on the radius R. With the above notation, for n sufficiently
large, we obtain a map

(20) SUn ! SVn ^ I.R\Wn/

induced from the map �Vn˚Wn
ı .SW˚ .…�n ı r//W B.R;Un/! Vn � .R\Wn/.

Proof We will prove by contradiction. After passing to a subsequence, suppose
that there is a sequence of Vn;Wn , and �n such that the image of the map (19) does
not satisfy the hypotheses of Lemma A.4. This gives a sequence xn 2 B.R;Un/\

.y�nSW/�1.B.�n;Vn// with an image …�n ı r.xn/ that lies in the invariant set of the
compressed flow on R\Wn in positive time direction. In other words, we have a
sequence of approximated half-trajectories ynW Œ0;1/!R\Wn with � @

@t
yn.t/D

�nFyn.t/ and yn.0/D…
�
n ı r.xn/.

Geometry & Topology, Volume 19 (2015)



1650 Tirasan Khandhawit

We now arrive at the set up to apply Lemma 4.4. As a result, the sequence fxng

converges to a 4–dimensional solution x and fyng converges to a Seiberg–Witten
half-trajectory y with r.x/ D y.0/. Together, we have an X –trajectory with finite
energy and universal constants as in Corollary 4.3. There are two cases to consider.

Case 1: xn 2 S.R; Un/ Here, we choose R larger than the universal constant Bk .
From Corollary 4.3, this is a contradiction since we have an X –trajectory with
kxkL2

kC1
DR> Bk .

Case 2: There exist tn � 0 such that yn.tn/ 2 @R\Wn Here, we choose an
isolating neighborhood R arising from transverse cutoff of a union of balls Zb1.Y / �

B.R0;Coul.Y // in the L2
kC1

norm (cf [7; 8]) with R0 larger than the universal constant
Ck . The limit y.t/ is asymptotic to a critical point a on the cylindrical end with
a 2 Int.R/. This implies that tn! t0 � 0, so that y.t0/ 2 @R. This is a contradiction
as kut0

�y.t0/kL2
kC1=2

DR0 > Ck .

Let us try to keep track of choices made in the construction. The choice of �n does not
matter as long as it is sufficiently small. From Proposition A.5, the map is independent
of the choice of index pairs. After passing to stable maps, the map is also independent
of the choice of Vn .

For simplicity, we will specialize to the case when Wn D V
�n

�n
the sum of eigenspaces

of D with respect to eigenvalues in an interval Œ�n; �n� and H�n D V
�n
1 defined

similarly. One can show that there is an isomorphism between Conley indices

†�V 0
�nI.R\V

�n

�n
/'†

�V 0
�nC1I.R\V

�nC1

�nC1
/:

Consequently, we can desuspend the Conley index on the right hand side of (20) by
the corresponding negative eigenspace as above so that the resulting object, denoted
by E.R/, does not depend on the choice of V

�n

�n
. Applying the index formula (12) to

(20), we obtain

(21) S
.�bC.X /�b1.Y //RCIndC. =D

C

A0
/C
!E.R/;

where we note that UX is a subspace of CoulC C .X / of codimension b1.X /.

For the rest of the section, let us consider the case when b1.Y /D 0.

Proof of Theorem 1.1 The same argument in [14] shows that different choices of
sufficiently large radii R and sufficiently large isolating neighborhoods R (which can
be chosen to be the balls B.2R/ in Coul.Y /) give maps in the same stable homotopy
class. Note that, in this b1.Y /D 0 case, we do not require the perturbation to be regular,
so we can choose any q; p0 from the Banach space of tame perturbations together
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with any suitable bump functions ˇ0; ˇ . Consequently, the choice of connections,
metrics, and perturbations does not matter because the spaces of these choices are
all contractible, except that we need to desuspend E.B.2R// again by IndC. =D

C

A0
/C

.�.X /� c1.det SC/2/=8 complex dimensions to obtain the Floer spectrum SWF.Y /.

Putting everything together, we obtain (2) from (21). Moreover, we obtain (1) by
considering a family of the above maps parametrized by the Picard torus of X .

Appendix: Maps to Conley indices

In this appendix, we will briefly recall essential parts of Conley index theory. A
thorough treatment can be found in Conley [4] and Salamon [16].

Let � be a flow on a finite-dimensional manifold M (or more generally, a locally
compact Hausdorff topological space). Denote the flow action by �.x; t/ or x � t for
x 2M and t 2R.

Definition A.1 Let X be a subset of M .
(1) The invariant subset in the positive direction is given by

AC.X / WD fx 2X j x �RC �X g:

(2) The maximal invariant subset of X is given by Inv.X /D fx 2X j x �R�X g.
(3) A compact subset X of M is called an isolating neighborhood if Inv.X / is

contained in Int.X / the interior of X .
(4) A compact subset S of M is called an isolated invariant set if there is an

isolating neighborhood X so that Inv.X /D S .

Given an isolated invariant set or an isolating neighborhood, one will be able to extract
some topological data called Conley index, which can be viewed as a generalization of
a Morse index. Now, we introduce the important concept of an index pair.

Definition A.2 Let S be an isolated invariant set. A pair of compact subsets .N;L/
is called an index pair for S if the following conditions hold.

(1) S � Int.cl.N nL// and S D Inv.cl.N nL//.
(2) L is positively invariant relative to N , ie the condition x 2L and x � Œ0; t ��N

implies x � Œ0; t ��L.
(3) L is an exit set for N , ie if x 2N but x � Œ0;1/ª N , then there exists t > 0

such that x � Œ0; t ��N and x � t 2L.

For an isolating neighborhood X with Inv.X /D S , we will also call .N;L/ an index
pair for X if it is an index pair for S .
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Fundamental results in Conley index theory state that an index pair always exists and
that all such pairs are homotopy equivalent. As a result, one may view the Conley
index as an invariant which assigns a homotopy type of such index pairs to an isolated
invariant set. However, it is also important to consider the Conley index as a collection
of all index pairs and natural homotopy equivalences between them. One motivation
for this is to reduce ambiguity of the choice of index pairs in various constructions.

Definition A.3 For an isolated invariant set (or an isolating neighborhood) S , we
define its Conley index I.S/ as a collection of objects consisting of pointed spaces
.N=L; ŒL�/ arising from an index pair .N;L/ for S . For a pair of two index pairs,
we also have a collection of flow maps induced from the flow. These flow maps are
homotopy equivalences and are naturally homotopic to each other. Such a collection
of spaces and maps between them is also known as a connected simple system. See
Kurland [10] or Salamon [16] for details.

In this paper, we will also need to construct maps from spaces to Conley indices. Under
certain hypotheses, a map from a space to an isolating neighborhood can give rise to a
map to an index pair. We begin with a result from Manolescu [14].

Lemma A.4 [14, Theorem 4] Let X be an isolating neighborhood with Inv.X /DS .
If a pair .A;B/ of compact subsets of X satisfies

(1) if x 2AC.X /\A, then Œ0;1/ �x\ @X D∅;

(2) B \AC.X /D∅;

then there exists an index pair .N;L/ of S such that A�N �X and B �L.

Suppose we have a map f W A!X and a compact subset B of A. If .f .A/; f .B// sat-
isfies the hypotheses above, there exists an index pair .N;L/ containing .f .A/; f .B//
and we obtain a map f W A=B!N=L induced from the inclusion.

It remains to show that this map is independent (up to homotopy) of the choice of index
pairs so that it gives a well-defined map from A=B to the Conley index I.X /.

Given two index pairs .N1;L1/ and .N2;L2/ with f .A/ � N1 \N2 and f .B/ �
L1\L2 , we wish to show that the diagram

A=B N1=L1

N2=L2

F

f1

f2
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commutes up to homotopy, where f1; f2 are maps induced by inclusions and F is a
flow map from .N1;L1/ to .N2;L2/. We point out that this is straightforward when
.N1;L1/� .N2;L2/ because the inclusion N1=L1 ,!N2=L2 is homotopic to a flow
map F W N1=L1!N2=L2 (cf Kurland [10, Proposition 3.1]).

For a general case, we will construct a sequence of inclusions that relates .N1;L1/ and
.N2;L2/ through index pairs which contain .f .A/; f .B//. Since the subsets Ni and
Li are contained in X , we will consider a pair .Ni [P .Li ;X /;P .Li ;X //, where
P .Li ;X / WD fy � t j y 2 Y and y � Œ0; t � � X g is the minimal positively invariant set
of Li relative to X . It is not hard to see that these are index pairs. In addition, the
subsets Ni [P .Li ;X / and P .Li ;X / are positively invariant relative to X .

Furthermore, we claim that the intersection\
iD1;2

.Ni [P .Li ;X /;P .Li ;X //

is also an index pair. Let us suppose that x 2
T

iD1;2 Ni [P .Li ;X / and x �RC ª X .
By the exit set property of the pair .Ni [P .Li ;X /;P .Li ;X //, there exists ti such
that

x � Œ0; ti ��Ni [P .Li ;X / and x � ti 2 P .Li ;X /

for i D 1; 2. Without loss of generality, we may assume that t1 � t2 . Since the subsets
N2[P .L2;X / and P .L2;X / are positively invariant relative to X , we see that

x � Œ0; t1��N2[P .L2;X / and x � t1 2 P .L2;X /

as well. This implies that
T

iD1;2 P .Li ;X / is an exit set for
T

iD1;2 Ni[P .Li ;X /. It
is straightforward to check other properties and verify that the intersection

T
iD1;2.Ni[

P .Li ;X /;P .Li ;X // is an index pair. Note that, in general, the intersection of two
index pairs needs not be an index pair.

We now have a sequence of inclusions of index pairs containing .f .A/; f .B//. This
is shown in the diagram below (we abbreviate P .L/ for P .L;X / in the diagram):

.N1[P .L1/;P .L1// .N2[P .L2/;P .L2//

\
iD1;2

.Ni [P .Li/;P .Li//

.N1=L1/ .N2=L2/

From the above discussion, we can conclude the following.

Geometry & Topology, Volume 19 (2015)
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Proposition A.5 Let X be an isolating neighborhood and B�A be compact. Suppose
there is a map f W A! X so .f .A/; f .B// satisfies the hypotheses of Lemma A.4.
Then we have a well-defined map f W A=B! I.X / induced from the inclusion.
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