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The complex symplectic geometry of the
deformation space of complex projective structures

BRICE LOUSTAU

This article investigates the complex symplectic geometry of the deformation space
of complex projective structures on a closed oriented surface of genus at least 2. The
cotangent symplectic structure given by the Schwarzian parametrization is studied
carefully and compared to the Goldman symplectic structure on the character variety,
clarifying and generalizing a theorem of S Kawai. Generalizations of results of
C McMullen are derived, notably quasifuchsian reciprocity. The symplectic geom-
etry is also described in a Hamiltonian setting with the complex Fenchel–Nielsen
coordinates on quasifuchsian space, recovering results of I Platis.
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1 Introduction

Complex projective structures on surfaces are rich examples of geometric structures.
They include in particular the three classical homogeneous Riemannian geometries
on surfaces (Euclidean, spherical, hyperbolic) and they extend the theory of complex
structures on surfaces, ie Teichmüller theory. They also have a strong connection to
hyperbolic structures on 3–manifolds. Another feature is their analytic description using
the Schwarzian derivative, which turns the deformation space of complex projective
structures into a holomorphic affine bundle modeled on the cotangent bundle of the
Teichmüller space. A natural complex symplectic geometry shows through these
different perspectives, which has been discussed by various authors, eg Kawai [19],
Platis [32] and Goldman [15]. This article attempts a unifying picture of the complex
symplectic geometry of the deformation space of complex projective structures on
surfaces, one that carefully relates the different approaches.

Let S be a closed oriented surface of genus g > 2. A complex projective structure on
S is given by an atlas of charts mapping open sets of S into the projective line CP1

such that the transition maps are restrictions of projective linear transformations. The
deformation space of projective structures CP.S/ is the space of equivalence classes
of projective structures on S , where two projective structures are considered equivalent
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1738 Brice Loustau

if they are diffeomorphic.1 Any projective atlas is in particular a holomorphic atlas,
therefore a projective structure defines an underlying complex structure. This gives a
forgetful projection pW CP.S/! T .S/, where T .S/ is the Teichmüller space of S ,
defined as the deformation space of complex structures on S .

The Schwarzian derivative is a differential operator that turns the fibers of p into
complex affine spaces. Globally, CP.S/ is a holomorphic affine bundle modeled on
the holomorphic cotangent bundle T �T .S/. This yields a noncanonical identification
CP.S/Š T �T .S/; it depends on the choice of the “zero section” � W T .S/! CP.S/.
There are at least two natural choices of sections to be considered. The Fuchsian
section �F assigns to a Riemann surface X its Fuchsian projective structure given by
the uniformization theorem. However, �F is not holomorphic. The other natural choice
is that of a Bers section, given by Bers’ simultaneous uniformization theorem. Bers
sections are a family of holomorphic sections parametrized by Teichmüller space. Like
any holomorphic cotangent bundle, T �T .S/ is equipped with a canonical complex
symplectic form !can . Each choice of a zero section � thus yields a symplectic structure
!� on CP.S/, simply by pulling back the canonical symplectic form of T �T .S/. A
first natural question is: How is !� affected by � ? A small computation shows:

Proposition 3.3 For any two sections �1 and �2 to pW CP.S/! T .S/,

!�2 �!�1 D�p�d.�2� �1/:

A significantly different description of CP.S/ is given by the holonomy of complex
projective structures. Holonomy is a concept defined for any geometric structures and
in this situation it gives a local identification holW CP.S/!X .S;PSL2.C//, where the
character variety X .S;PSL2.C// is defined as a quotient of the set of representations
�W �1.S/! PSL2.C/. By a general construction of Goldman, X .S;PSL2.C// enjoys
a natural complex symplectic structure !G . How does this symplectic structure compare
to the cotangent symplectic structures !� introduced above? A theorem of Kawai [19]
gives a pleasant answer to that question: If � is any Bers section, then !� and !G

agree up to some constant. Kawai’s proof is highly technical and not very insightful
though. Also, the conventions chosen in his paper can be misleading.2 Relying on
theorems of other authors, we give a simple alternative proof of Kawai’s result. In fact,

1More precisely, diffeomorphic by a homotopically trivial diffeomorphism; see Section 2.1.
2With the conventions chosen in his paper, Kawai finds !� D �!G while we get !� D �i!G .

Kawai’s choices imply that !G takes imaginary values when restricted to the Fuchsian slice, but Goldman
showed in [14] that (with appropriate conventions) !G is just the Weil–Petersson Kähler form on the
Fuchsian slice. For the interested reader, we believe that, even after rectifying the conventions, there is a
factor of 2 missing in Kawai’s result.
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we are able to do a little better and completely answer the question raised above. Our
argument is based on the observation that there is an intricate circle of related ideas:

(i) pW CP.S/! T .S/ is a Lagrangian fibration (with respect to !G ).

(ii) Bers sections T .S/! CP.S/ are Lagrangian (with respect to !G ).

(iii) If M is a 3–manifold diffeomorphic to S �R, then the Bers simultaneous
uniformization map ˇW T .@1M /! CP.@1M / is Lagrangian (with respect to
!G ).

(iv) !G restricts to the Weil–Petersson Kähler form !WP on the Fuchsian slice.

(v) If � is any Bers section, then d.�F � �/D�i!WP .

(vi) McMullen’s quasifuchsian reciprocity (see [31] and Theorem 6.18).

(vii) For any Bers section � , !� D�i!G .

Let us briefly comment on these. Item (iv) is a result of Goldman; see [14]. Items
(v) and (vi) are closely related and due to McMullen; see [31]. Steven Kerckhoff
discovered that (iii) easily follows from a standard argument; we include this argument
in our presentation, Theorem 4.3, for completeness. Item (vii) appears to be the
strongest result, as it is not too hard to see that it implies all other results.3 However,
using Proposition 3.3 written above and a simple analytic continuation argument
(Theorem 6.7) we show that (iv) and (v) imply (vii). In fact, we give a characterization
of sections � such that !� agrees with ! :

Theorem 6.8 Let � W T .S/! CP.S/ be a section of p . Then !� agrees with the
standard complex symplectic structure !G on CP.S/ if and only if �F�� is a primitive
for the Weil–Petersson metric on T .S/:

!� D !G , d.�F � �/D !WP:

(vii) then follows from McMullen’s theorem (v):

Theorem 6.10 If � W T .S/! CP.S/ is any Bers section, then

!� D�i!G :

We also get the expression of the symplectic structure pulled back by the Fuchsian
identification:

3 This is not entirely true per se, but we do not want to go into too much detail here.
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Corollary 6.13 Let �F W T .S/! CP.S/ be the Fuchsian section. Then

!�F D�i.!G �p�!WP/:

Generalizing these ideas in the setting of convex cocompact 3–manifolds, we prove a
generalized version of Theorem 6.10, by indirectly bootstrapping from Theorem 6.10
and relying on a result of Takhtajan–Teo [35]:

Theorem 6.15 Let � W T .S/! CP.S/ be a generalized Bers section. Then

!� D�i!G :

We derive a generalization of McMullen’s result (v):

Corollary 6.17 Let � W T .S/! CP.S/ be a generalized Bers section. Then

d.�F � �/D�i!WP:

And a generalized version of McMullen’s quasifuchsian reciprocity:

Theorem 6.18 Let f W T .Sj / ! CP.Sk/ and gW T .Sk/ ! CP.Sj / be reciprocal
generalized Bers embeddings. Then DXj f and DXk

g are dual maps. In other words,
for any � 2 TXj T .Sj / and � 2 TXk

T .Sk/,

hDXj f .�/; �i D h�;DXk
g.�/i:

Finally, we discuss the symplectic geometry of CP.S/ in relation to complex Fenchel–
Nielsen coordinates on the quasifuchsian space QF.S/. These are global holomorphic
coordinates on QF.S/ introduced by Kourouniotis [24] and Tan [36] that are the com-
plexification of the classical Fenchel–Nielsen coordinates on Teichmüller space T .S/,
or rather the Fuchsian space F.S/. In [39; 40; 41], Wolpert showed that the Fenchel–
Nielsen coordinates on F.S/ encode the symplectic structure. For any simple closed
curve 
 on the surface S , there is a hyperbolic length function l
 W F.S/!R and a
twist flow tw
 W R�F.S/!F.S/. Given a pants decomposition ˛D .˛1; : : : ; ˛N / on
S (ie a maximal collection of nontrivial distinct free homotopy classes of simple closed
curves; see Section 5.1), choosing a section of l˛ D .l˛1

; : : : ; l˛N
/ yields the classical

Fenchel–Nielsen coordinates on Teichmüller space, .l˛; �˛/W F.S/! .R>0/
N
�RN .

Wolpert showed that the twist flow associated to a curve 
 is the Hamiltonian flow of
the length function l
 . He also gave formulas for the Poisson bracket of two length
functions, which show in particular that the length functions l˛i

associated to a pants
decomposition ˛ define an integrable Hamiltonian system, for which the functions l˛i
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The complex symplectic geometry of the deformation space 1741

are the action variables and the twist functions �˛i
are the angle variables. In [32],

Platis shows that this very nice “Hamiltonian picture” remains true in its complexified
version on the quasifuchsian space for some complex symplectic structure !P , giving
complex versions of Wolpert’s results. This Hamiltonian picture is also extensively
explored on the SL2.C/–character variety by Goldman in [15]. Independently from
Platis’ work, our analytic continuation argument shows that complex Fenchel–Nielsen
coordinates are Darboux coordinates for the symplectic structure on QF.S/:

Theorem 6.19 Let ˛ be any pants decomposition of S . Complex Fenchel–Nielsen
coordinates .lC

˛ ; ˇ
C
˛ / on the quasifuchsian space QF.S/ are Darboux coordinates for

the standard complex symplectic structure

!G D

NX
iD1

dlC
˛i
^ d�C

˛i
:

This shows in particular the following, which was mentioned as “apparent” in [32] and
is implied in [15], but does not seem to have been formally proved:

Corollary 6.20 Platis’ symplectic structure !P is equal to the standard complex
symplectic structure !G on the quasifuchsian space QF.S/.

We thus recover Platis’ and some of Goldman’s results, in particular that the complex
twist flow is the Hamiltonian flow of the associated complex length function. Although
in the Fuchsian case it would seem unnecessarily sophisticated to use this as a definition
of the twist flow, this approach might be fruitful in the space of projective structures.
This transformation relates to what other authors have called quakebends or complex
earthquakes discussed by Epstein–Marden [11], McMullen [30] and Series [33] among
others.

Note The study of Taubes’ symplectic structure [37] on the deformation space of
minimal hyperbolic germs (in restriction to almost-Fuchsian space, which embeds as an
open subspace of quasifuchsian space QF.S/) is addressed in a forthcoming paper [26].
Both that article and the current one are based on the author’s PhD thesis [27].

Structure of the paper Section 2 reviews complex projective structures, Fuchsian and
quasifuchsian projective structures, the relation between complex projective structures
and hyperbolic 3–manifolds, (generalized) Bers sections and embeddings. Section 3 in-
troduces the affine cotangent symplectic structures given by the Schwarzian parametriza-
tion of CP.S/. Section 4 reviews the character variety, holonomy of projective struc-
tures, Goldman’s symplectic structure and some of its properties. In Section 5, we

Geometry & Topology, Volume 19 (2015)



1742 Brice Loustau

briefly review Wolpert’s “Hamiltonian picture” of Teichmüller space, then describe the
complex Fenchel–Nielsen coordinates in quasifuchsian space and Platis’ symplectic
structure. In Section 6, we describe an analytic continuation argument then discuss
and compare the different symplectic structures previously introduced. Our results are
essentially contained in that last section.

Acknowledgements This paper is based on part of the author’s PhD thesis, which
was supervised by Jean-Marc Schlenker. I wish to express my gratitude to Jean-Marc
for his kind advice. I would also like to thank Steven Kerckhoff, Francis Bonahon, Bill
Goldman, David Dumas, Jonah Gaster, Andy Sanders, Cyril Lecuire, Julien Marché,
among others with whom I have had helpful discussions.

The research leading to these results has received funding from the European Research
Council under the European Community’s seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement.

2 Teichmüller space and the deformation space of complex
projective structures

2.1 T .S / and CP.S /

Let S be a surface. Unless otherwise stated, we will assume that S is connected4,
oriented, smooth, closed and with genus g > 2.

A complex structure on S is a maximal atlas of charts mapping open sets of S into the
complex line C such that the transition maps are holomorphic. The atlas is required to
be compatible with the orientation and smooth structure on S . A Riemann surface X

is a surface S equipped with a complex structure.

The group DiffC.S/ of orientation-preserving diffeomorphisms of S acts on the set
of all complex structures on S in a natural way: a compatible complex atlas on S is
pulled back to another one by such diffeomorphisms. Denote by DiffC

0
.S/ the identity

component of DiffC.S/; its elements are the orientation-preserving diffeomorphisms
of S that are homotopic to the identity. The quotient T .S/ of the set of all complex
structures on S by DiffC

0
.S/ is called the Teichmüller space of S ; its elements are

called marked Riemann surfaces.

In a similar fashion, define a complex projective structure on S as a maximal atlas
of charts mapping open sets of S into the complex projective line CP1 such that

4In some sections (eg Section 2.3), we will allow S to be disconnected to be able to consider the case
where S is the boundary of a compact 3–manifold. This does not cause any issue in the exposition above.
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the transition maps are (restrictions of) projective linear transformations (ie Möbius
transformations of the Riemann sphere). The atlas is also required to be compatible
with the orientation and smooth structure on S . A complex projective surface Z

is a surface S equipped with a complex projective structure. In terms of geometric
structures (see eg [38]), a complex projective structure is a .CP1;PSL2.C//–structure.

Again, DiffC.S/ naturally acts on the set of all complex projective structures on S . The
quotient CP.S/ by the subgroup DiffC

0
.S/ is called the deformation space of complex

projective structures on S ; its elements are marked complex projective surfaces.

T .S / and CP.S / are complex manifolds Kodaira–Spencer deformation theory
(see [10; 21]) applies and shows that T .S/ is naturally a complex manifold whose
holomorphic tangent space is T

1;0
X

T .S/ D LH 1.X; ‚X /, where ‚X is the sheaf of
holomorphic vector fields on X . Denote by K the canonical bundle over X (the holo-
morphic cotangent bundle of X ). By Dolbeault’s theorem, LH 1.X; ‚X / is isomorphic
to the Dolbeault cohomology space H�1;1.X /. Elements of H�1;1.X / are Dolbeault
classes of smooth sections of K�1 ˝ xK and are called Beltrami differentials. In a
complex chart zW U � S!C , a Beltrami differential � has an expression of the form
�D u.z/dz

dz
, where u is a smooth function. The fact that we only consider (Dolbeault)

classes of Beltrami differentials can be expressed as follows: if V is a vector field
on X of type .1; 0/, then the Beltrami differential @V induces a trivial (infinitesimal)
deformation of the complex structure X . Recall that X carries a unique hyperbolic
metric within its conformal class (called the Poincaré metric) by the uniformization
theorem. By Hodge theory, every Dolbeault cohomology class has a unique harmonic
representative �. The tangent space TX T .S/ is thus also identified with the space
HB.X / of harmonic Beltrami differentials.

We can also derive a nice description of the Teichmüller cotangent space using cohomo-
logical machinery. Because dimCX D1 we have LH 1.X; ‚X /DH 1.X;K�1/ and this
space is dual to H 0.X;K2/ by Serre duality. An element ' 2Q.X / WDH 0.X;K2/

is called a holomorphic quadratic differential. In a complex chart zW U � S ! C ,
' has an expression of the form ' D �.z/dz2 , where � is a holomorphic function.
The holomorphic cotangent space T �

X
T .S/ is thus identified with the space Q.X / of

holomorphic quadratic differentials. The duality pairing Q.X /�H�1;1.X /!C is
just given by .'; �/ 7!

R
S ' ��. Note that we systematically use tensor contraction

(when dealing with line bundles over X ): ' �� is a section of K˝ xK Š jKj2 , so it
defines a conformal density and can be integrated over S . With the notations above,
' �� has local expression �.z/u.z/jdzj2 .

An easy consequence of the Riemann–Roch theorem is that dimCQ.X /D 3g� 3, so
that T .S/ is a complex manifold of dimension 3g� 3.
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Similarly, Kodaira–Spencer deformation theory applies to show that CP.S/ is naturally
a complex manifold with tangent space TZCP.S/D LH 1.Z; „Z /, where „Z is the
sheaf of projective vector fields on Z (see also [18]). It follows that CP.S/ is a
complex manifold of dimension 6g� 6.

Unlike Teichmüller tangent vectors, there is no immediate way to describe tangent
vectors to CP.S/ in a more tangible fashion. However, note that a complex projective
atlas is in particular a holomorphic atlas, so that a complex projective surface Z has
an underlying structure of a Riemann surface X . This yields a forgetful map

pW CP.S/! T .S/

which is easily seen to be holomorphic. We will see in Section 3.1 that the fiber
p�1.X / is naturally a complex affine space whose underlying vector space is Q.X /.
In particular dimC CP.S/D dimC T .S/� dimC Q.X /D 6g� 6 as expected.

The Weil–Petersson Kähler metric on T .S / The Weil–Petersson product of two
holomorphic quadratic differentials � and  is given by

h'; iWP D�
1

4

Z
X

' � ��1
� 

where ��1 is the dual current of the area form � for the Poincaré metric.5 It is a
Hermitian inner product on the complex vector space Q.X /.

By duality, this gives a Hermitian product also denoted by h � ; � iWP on H�1;1.X / and
globally a Hermitian metric h � ; � iWP on the manifold T .S/. It was first shown to be
Kähler by Ahlfors [1] and Weil. The Kähler form of the Weil–Petersson metric on
T .S/ is the real symplectic form

!WP D�Imh � ; � iWP:

2.2 Fuchsian and quasifuchsian projective structures

Note that whenever a Kleinian group � (ie a discrete subgroup of PSL2.C/) acts freely
and properly on some open subset U of the complex projective line CP1 , the quotient
surface U=� inherits a complex projective structure. This gives a variety (but not all)
of complex projective surfaces, called embedded projective structures.

Fuchsian projective structures are a fundamental example of embedded projective
structures. Given a marked complex structure X , the uniformization theorem provides

5In a complex chart with values in the upper half-plane z D xC iy WU �X !H2 , the tensor product
�

1
4
' � ��1 � reduces to the classical expression y2'.z/ .z/dx ^ dy .
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a representation �W �1.S/! PSL2.R/ such that X is isomorphic to H2=�.�1.S//

as a Riemann surface (where H2 is the upper half-plane). H2 can be seen as an open
set (a disk) in CP1 and the Fuchsian group �.�1.S// � PSL2.R/ is in particular
a Kleinian group, so the quotient X Š H2=�.�1.S// inherits a complex projective
structure Z . This defines a section

(1) �F W T .S/! CP.S/

to p , called the Fuchsian section. It shows in particular that the projection p is
surjective. We call F.S/ WD �F .T .S// the (deformation) space of (standard) Fuchsian
(projective) structures on S , it is an embedded copy of T .S/ in CP.S/.

Quasifuchsian structures are another important class of embedded projective structures.
Given two marked complex structures .XC;X�/ 2 T .S/� T .S/6 (where S is the
surface S with reversed orientation), Bers’ simultaneous uniformization theorem states
that there exists a unique representation �W �1.S/

��!� � PSL2.C/ up to conjugation
such that:

� The limit set7 ƒ is a Jordan curve. The domain of discontinuity � is then the
disjoint union of two simply connected domains �C and �� . Such a � is
called a quasifuchsian group.

� As marked Riemann surfaces, XC Š�C=� and X� Š��=� .

Again, both Riemann surfaces XC and X� inherit embedded complex projective
structures ZC and Z� by this construction. This defines a map

ˇ D .ˇC; ˇ�/W T .S/� T .S/! CP.S/� CP.S/

which is a holomorphic section of p�pW CP.S/� CP.S/! T .S/� T .S/ by Bers’
theorem. The map ˇ has the obvious symmetry property:

ˇ�.XC;X�/D ˇC.X�;XC/:

In particular, when X� 2 T .S/ is fixed, the map �X� WDˇ
C. � ;X�/W T .S/! CP.S/

is a holomorphic section of p , called a Bers section, and its image �X�.T .S// in
CP.S/ is called a Bers slice. On the other hand, when XC 2 T .S/ is fixed, the map
fXC D ˇ

C.XC; � / is an embedding of T .S/ in the fiber P .XC/ WD p�1.XC/ �

6 Note that T .S/ is canonically identified with T .S/ , which denotes the manifold T .S/ equipped
with the opposite complex structure. The same remark holds for CP.S/ and CP.S/ .

7The limit set ƒ D ƒ.�/ is defined as the complement in CP1 of the domain of discontinuity � ,
which is the maximal open set on which � acts freely and properly. Alternatively, ƒ is described as the
closure in CP1 of the set of fixed points of elements of � .
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CP.S/ (which has the structure of a complex affine space as we will see in Section 3.1),
fXC is called a Bers embedding. Also note that

�F .X /D ˇ
C.X; xX /D ˇ�.X; xX /D � xX .X /:

This shows that the Fuchsian section �F is real analytic but not holomorphic, in fact it
is a maximal totally real analytic embedding; see Section 6.1.

QF.S/ WD ˇC.T .S/�T .S//� CP.S/ is called the (deformation) space of (standard)
quasifuchsian (projective) structures on S . It is an open neighborhood of F.S/ in
CP.S/ (this is a consequence of general arguments mentioned in the next paragraph),
and it follows from the discussion above that Bers slices and Bers embeddings define
two transverse foliations of QF.S/ by holomorphic copies of T .S/.

2.3 Complex projective structures and hyperbolic 3–manifolds

In this paragraph, we briefly review the relation between complex projective structures
on the boundary of a compact 3–manifold yM and hyperbolic structures on its interior.
The quasifuchsian projective structures presented in the previous section occur as
a particular case of this discussion. We then define generalized Bers sections and
generalized Bers embeddings, and fix a few notations for later sections.

Let M be a connected complete hyperbolic 3–manifold. The universal cover of M

is isometric to hyperbolic 3–space H3 , this defines a unique faithful representation
�W �1.M /! IsomC.H3/ Š PSL2.C/ up to conjugation such that � WD �.�1.M //

acts freely and properly on H3 and M Š H3=� . Let � � CP1 be the domain of
discontinuity of the Kleinian group � , it is the maximal open set on which � acts
freely and properly. Here CP1 is seen as the “ideal boundary” of H3 , also denoted
@1H3 . The possibly disconnected surface @1M WD�=� is called the ideal boundary
of M and it inherits an embedded complex projective structure as the quotient of
� � CP1 by the Kleinian group � . Conversely, any torsion-free Kleinian group �
acts freely and properly on H3 t� (where � is the domain of discontinuity of � ),
and the quotient consists of a 3–manifold yM DM t @1M , where M DH3=� is a
complete hyperbolic 3–manifold and @1M D�=� is its ideal boundary. In general
the manifold yM is not compact, if it is then yM is topologically the end compactification
of M . In that case we say that the hyperbolic structure on M is convex cocompact.
The convex core of M is the quotient of the convex hull of the limit set ƒ in H3 by
� . It is well-known that M is convex cocompact if and only if its convex core is a
compact deformation retract of M .
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Consider now a smooth 3–manifold with boundary yM with the following topological
restrictions: yM is connected, oriented, compact, irreducible (every embedded 2–
sphere bounds a ball) atoroidal (it contains no embedded, non-boundary parallel,
incompressible tori) and with infinite fundamental group. Let M D yM n@ yM denote the
interior of yM . For simplicity, we also assume that the boundary @ yM is incompressible
(the map ��W �1.@ yM / ! �1. yM / induced by the inclusion map � is injective) and
contains no tori, so that it consists of a finite number of surfaces S1; : : : ;SN of
genera at least 2. The Teichmüller space T .@ yM / is described as the direct product
T .@ yM /D T .S1/� � � � � T .SN /, similarly CP.@ yM /D CP.S1/� � � � � CP.SN / and
there is a holomorphic “forgetful” projection pD p1�� � ��pN W CP.@ yM /! T .@ yM /.
Let prk W CP.@ yM /! CP.Sk/ denote the k th projection map. Let us consider the space
HC.M / of convex cocompact hyperbolic structures on M up to homotopy. In other
words, we define HC.M / as the quotient of the set of convex cocompact hyperbolic
metrics on M by the group of orientation-preserving diffeomorphisms of M that are
homotopic to the identity. Let us mention that Marden [28] and Sullivan [34] showed
that HC.M / is a connected component of the interior of the subset of discrete and
faithful representations in the character variety X .M;PSL2.C//. By the discussion
above, any element of HC.M / determines a marked complex projective structure
Z 2 CP.@ yM /. We thus have a map 'W HC.M /! CP.@ yM / that is holomorphic; that
is a straightforward consequence of the fact that the holonomy map is holomorphic
(see Section 4.3). Considering the induced conformal structure on @ yM , define the map
 D p ı' as in the following diagram:

HC.M /
' //

 

%%

CP.@ yM /

p
��

T .@ yM /

We now recall a version of a powerful theorem mainly due to Ahlfors, Bers, Kra,
Marden, Maskit, Sullivan and Thurson (see [7, Chapter 7] for a detailed exposition of
this theorem; also [2; 3; 6; 25; 28; 29; 34]):

Theorem 2.1 The map  W HC.M /! T .@ yM / is bijective.

Let us mention that this statement has to be slightly modified if yM has compressible
boundary. A consequence of this theorem is the following.

Proposition 2.2 The map

ˇ D ' ı �1
W T .@ yM /! CP.@ yM /

is a holomorphic section of pW CP.@ yM /! T .@ yM /.
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We call ˇ the (generalized) simultaneous uniformization section. This map allows us
to define “generalized Bers sections” and “generalized Bers embeddings” by letting
only one of the boundary components’ conformal structure vary and by looking at the
resulting complex projective structure on some other (or the same) boundary component.
This idea is made precise as follows. If an index j 2 f1; : : : ;N g and marked complex
structures Xi 2 T .Si/ are fixed for all i ¤ j , we denote by �.Xi / the injection

�.Xi /W T .Sj /! T .@ yM /;

X 7! .X1; : : : ;Xj�1;X;XjC1; : : : ;XN /:

Let f.Xi /;k D prk ıˇ ı �.Xi / as in the following diagram:

T .@ yM /
ˇ // CP.@ yM /

prk

��
T .Sj /

�.Xi /

OO

f.Xi /;k // CP.Sk/

If j D k , then �.Xi / WD f.Xi /;j is a holomorphic section of pj W CP.Sj /! T .Sj /

that we call a generalized Bers section. On the other hand, if j ¤ k , then f.Xi /;k

maps T .Sj / into the affine (see Section 3.1) fiber P .Xk/ � CP.Sk/ and we call a
f.Xi /;k a generalized Bers embedding. We apologize for this misleading terminology:
a “generalized Bers embedding” is not an embedding in general.

Note that quasifuchsian structures discussed in the previous paragraph just correspond
to the case where M DS�R. Let us also mention that this discussion is easily adapted
when @M contains tori or is no longer assumed incompressible, with a few precautions.
When yM only has one boundary component, this gives the notion of a Schottky section.

3 The cotangent symplectic structures

3.1 CP.S / as an affine holomorphic bundle over T .S /

The Schwarzian derivative Given a locally injective holomorphic function f W Z1!

Z2 where Z1 and Z2 are complex projective surfaces, define the osculating map zf
to f at a point m 2 Z1 as the germ of a (locally defined) projective map that has
the best possible contact with f at m. In some sense, one can take a flat covariant
derivative r zf and identify it as holomorphic quadratic differential Sf 2Q.X /, called
the Schwarzian derivative of f . We refer to [4] and [9] for details.
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In local projective charts, the Schwarzian derivative of f has the classical expression
Sf D Sf .z/dz2 , where

Sf .z/D
f 000.z/

f 0.z/
�

3

2

�
f 00.z/

f 0.z/

�2

:

The Schwarzian operator enjoys the following properties:

Proposition 3.1 � If f is a projective map, then Sf D 0 (and conversely).

� If f W Z1!Z2 and gW Z2!Z3 are locally injective holomorphic functions
between complex projective surfaces, then

S.g ıf /D S.f /Cf �S.g/:

The Schwarzian derivative also satisfies an existence theorem:

Proposition 3.2 If U �C is simply connected and ' 2Q.U /, then Sf D ' can be
solved for f W U !CP1 .

An elementary and constructive proof of this fact is given in [9], see also [4] for a more
abstract argument.

Schwarzian parametrization of a fiber Recall that there is a holomorphic “forgetful”
map pW CP.S/! T .S/. Let X be a fixed point in T .S/ and P .X / WD p�1.fX g/

the set of marked projective structures on S whose underlying complex structure is X .

Given Z1 , Z2 2 P .X /, the identity map idS W Z1 ! Z2 is holomorphic but not
projective if Z1 ¤ Z2 . Taking its Schwarzian derivative accurately measures the
“difference” of the two projective structures Z1 and Z2 . Let us make this observation
more precise. A consequence of Proposition 3.2 is that given Z12P .X / and '2Q.X /,
there exists Z2 2 P .X / such that S.idS W Z1 ! Z2/ D ' . This defines a map
Q.X / � P .X / ! P .X /, which is now easily seen to be a freely transitive action
of Q.X / on P .X / as a consequence of Proposition 3.1. In other words, P .X / is
equipped with a complex affine structure, modeled on the vector space Q.X /.

Recall that Q.X / is also identified with the complex dual space T �
X
T .S/. As a result

of this discussion, CP.S/ is an affine holomorphic bundle modeled on the holomorphic
cotangent vector bundle T �T .S/.

Consequently, CP.S/ can be identified with T �T .S/ by choosing a “zero section”
� W T .S/! CP.S/. Explicitly, we get an isomorphism of complex affine bundles
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�� W Z 7!Z � �.p.Z// as in the following diagram:

CP.S/p

$$

�� // T �T .S/

�zz
T .S/

�� is characterized by the fact that �� ı� is the zero section of � W T �T .S/! T .S/.
It is an isomorphism of holomorphic bundles whenever � is a holomorphic section of
p , such as a (generalized) Bers section (see Sections 2.2 and 2.3).

3.2 Complex symplectic structure on T �T .S /

A basic fact is that if M is any complex manifold (in particular when M D T .S/), the
total space of its holomorphic cotangent bundle T �M is equipped with a canonical
complex symplectic structure. We briefly recall this and a few useful properties.

The canonical 1–form � is the holomorphic .1; 0/–form on T �M defined at a point
' 2 T �M by �' WD ��' , where � W T �M !M is the canonical projection and ' is
seen as a complex covector on M in the right-hand side of the equality. The canonical
complex symplectic form on T �M is then simply defined by !can D d� .8 If .zk/

is a system of holomorphic coordinates on M so that an arbitrary .1; 0/–form has
an expression of the form ˛ D

P
wkdzk , then .zk ; wk/ is a system of holomorphic

coordinates on T �M for which � D
P
wkdzk and !can D

P
dwk ^ dzk .

The canonical 1–form satisfies the following reproducing property. If ˛ is any .1; 0/–
form on M , it is in particular a map M ! T �M and as such it can be used to pull
back differential forms from T �M to M . It is then not hard to show that ˛�� D ˛
and as a consequence ˛�!can D d˛ .

Note that if u is a vertical tangent vector to T �M , ie ��uD 0, then u can be identified
with an element of the fiber containing its base point ˛ (since the fibers of the projection
are vector spaces). Under that identification, the symplectic pairing between u and any
other tangent vector v 2 T˛T �M is just given by !can.u; v/D hu; ��vi, where h � ; � i
is the duality pairing on T�.˛/M .

Note that the fibers of the projection � W T �M !M are Lagrangian submanifolds
of T �M , ie � is a Lagrangian fibration. The zero section s0W M ,! T �M is also a
Lagrangian embedding. These are direct consequences of the previous observation.

8Some authors take the opposite sign convention for !can .
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3.3 Affine cotangent symplectic structures

As we have seen in Section 3.1, any choice of a “zero section” � W T .S/! CP.S/
yields an affine isomorphism �� W CP.S/ ��! T �T .S/. We can use this to pull back
the canonical symplectic structure of T �T .S/ on CP.S/; define

!� WD .�� /�!can:

It is clear that !� is a complex symplectic form on CP.S/ whenever � is a holomorphic
section of p . Otherwise, it is just a complex-valued non-degenerate 2–form on CP.S/,
whose real and imaginary parts are both real symplectic forms.

How is !� affected by the choice of the “zero section” � ? The following statement is
both straightforward and key to our arguments:

Proposition 3.3 For any two sections �1 and �2 to pW CP.S/! T .S/,

!�2 �!�1 D�p�d.�2� �1/:

Here �2��1 is the “affine difference” between �2 and �1 ; it is a 1–form on T .S/. In
particular, the symplectic structures induced by the respective choices of two sections
agree if and only if their affine difference is a closed 1–form.

Proof This is an easy computation as

�p�d.�2� �1/D�p�..�2� �1/
�!can/

D .�.�2� �1/ ıp/�!can

D .��2 � �
�
1 /
�!can D .�

�2/�!can� .�
�1/�!can;

where the first equality follows from Section 3.2. The last step is not as trivial as it
would seem because one has to be careful about base points. Also, note that in

��2.Z/� ��1.Z/D .Z � �2 ıp.Z//� .Z � �1 ıp.Z//D�.�2� �1/ ıp.Z/

some minus signs are “affine” ones (hiding the Schwarzian derivative) and others are
“genuine” minus signs, but this can be ignored in computation.

A straightforward calculation also gives an explicit expression of !� .u; v/ whenever
u is a vertical tangent vector to CP.S/, it is exactly the same as the one obtained for
the symplectic structure on T �T .S/:

Proposition 3.4 Let � W T .S/ ! CP.S/ be a section of p . Let Z be a point in
CP.S/, and u, v be tangent vectors at Z such that u is vertical, ie p�uD 0. Then

!� .u; v/D hu;p�vi:
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In this expression, u is seen as an element of TX
�T .S/ (where X D p.Z/) under the

identification TZ P .X /DQ.X /D TX
�T .S/. Note that this expression not involving

� is compatible with the previous proposition, which implies that !�2 � !�1 is a
horizontal 2–form.

As a consequence, just like for the cotangent space, we have the following.

Proposition 3.5 Let � W T .S/! CP.S/ be any section. The projection pW CP.S/!
T .S/ is a Lagrangian fibration for !� . Also, � is a Lagrangian embedding.

4 The character variety and Goldman’s symplectic structure

4.1 The character variety

References for this section include [9; 14; 15; 17].

Let GD PSL2.C/ and R.S/ be the set of group homomorphisms from � WD�1.S/ to
G . It has a natural structure of a complex affine algebraic set as follows. Choose a finite
presentation � D h
1; : : : ; 
N j .ri/i2I i of � . Evaluating a representation � 2R.S/
on the generators 
k embeds R.S/ as an algebraic subset of GN . This gives R.S/
an affine structure indeed because of the identification PSL2.C/Š SO3.C/ (given by
the adjoint representation of PSL2.C/ on its Lie algebra gD sl2.C/). One can check
that this structure is independent of the presentation.

G acts algebraically on R.S/ by conjugation. The character variety X .S/ is defined
as the quotient in the sense of invariant theory. Specifically, the action of G on R.S/
induces an action on the ring of regular functions CŒR.S/�. Denote by CŒR.S/�G the
ring of invariant functions, it is finitely generated because R.S/ is affine and G is
reductive.

Lemma 4.1 [17] The ring CŒR.S/�G is generated in this case (G D PSL2.C/) by
a finite number of the complex valued functions on R.S/ of the form � 7! tr2.�.
 //,
where 
 2 � .

X .S/ is the affine set such that CŒX .S/� D CŒR.S/�G , it is called the character
variety of S . A consequence of the lemma is that the points of X .S/ are in one-to-one
correspondence with the set of characters, ie complex-valued functions of the form

 2 � 7! tr2.�.
 //.

The affine set X .S/ splits into two irreducible components X .S/l [X .S/r , where
elements of X .S/l are characters of representations that lift to SL.2;C/.
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The set-theoretic quotient R.S/=G is rather complicated, but G acts freely and properly
on the subset R.S/s of irreducible9 (“stable”) representations, so that the quotient
R.S/s=G is a complex manifold. Furthermore, an irreducible representation is deter-
mined by its character, so that X .S/s WDR.S/s=G embeds (as a Zariski-dense open
subset) in the smooth locus of X .S/. Its dimension is 6g�6. Let us mention that more
generally, X .S/ is in bijection with the set of orbits of “semistable” (ie reductive10)
representations.

It is relatively easy to see that the Zariski tangent space at a point � 2 R.S/ is
described as the space of crossed homomorphisms Z1.�; gAdı�/ (ie 1–cocycles in the
sense of group cohomology), specifically maps uW �! sl2.C/ such that u.
1
2/D

u.
1/CAd�.
1/u.
2/ (where of course AdW G! Autg is the adjoint representation).
The subspace corresponding to the tangent space of the G–orbit of � is the space of
principal crossed homomorphisms B1.�; gAdı�/ (ie 1–coboundaries in the sense of
group cohomology), specifically maps uW �! sl2.C/ such that u.
 /DAd�.
/u0�u0

for some u0 2 sl2.C/. Hence for (at least) smooth points Œ�� 2 X .S/, the tangent
space is given by TŒ��X .S/DH 1.�; gAdı�/.

4.2 The complex symplectic structure on the character variety

By the general construction of [14], the character variety enjoys a complex symplectic
structure defined in this situation as follows.

Recall that the Lie algebra gD sl2.C/ is equipped with its complex Killing form B . It
is a non-degenerate complex bilinear symmetric form preserved by G under the adjoint
action. Let zB D 1

4
B , it is explicitly given by zB.u; v/D tr.uv/, where u; v 2 sl2.C/

are represented by trace-free 2� 2 matrices.

One can compose the standard cup-product in group cohomology with zB 11 as “coeffi-
cient pairing” to get a dual pairing

H 1.�; gAdı�/�H 1.�; gAdı�/
[
!H 2.�; gAdı�˝ gAdı�/

zB
!H 2.�;C/ŠC:

This pairing defines a non-degenerate complex bilinear alternate 2–form on the complex
vector space H 1.�; gAdı�/Š TŒ��X .S/. It globalizes into a non-degenerate 2–form

9 A representation �W �! PSL2.C/ is called irreducible if it fixes no point in CP1 .
10A nontrivial representation �W �! PSL2.C/ is called reductive if it is either irreducible of it fixes a

pair of distinct points in CP1 .
11It would look somewhat more natural to use the actual Killing form B instead of zB D 1

4
B , but

we choose to go with zB because it is the convention used by most authors. Moreover, it gives a slightly
simpler expression of our Theorems 6.10, 6.15 and 6.19.
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!G on X .S/s . By arguments of Goldman [14] following Atiyah–Bott [5] this form
is closed, in other words it is a complex symplectic form on the smooth quasi-affine
variety X .S/s . (In fact, it defines an algebraic tensor on the whole character variety;
see [14].)

4.3 Holonomy of projective structures

Just like any geometric structure, a complex projective structure Z defines a developing
map and a holonomy representation (see eg [38]). The developing map is a locally
injective projective map f W zZ!CP1 and it is equivariant with respect to the holonomy
representation �W �! PSL2.C/ in the sense that f ı 
 D �.
 / ıf for any 
 2 � .

Holonomy of complex projective structures defines a map

holW CP.S/! X .S/:

It is differentiable and its differential is “the identity map” in the sense that it is the
canonical identification

d holW TZCP.S/D LH 1.Z; „Z /
��!H 1.�; gAdı�/D TŒhol.Z/�X .S/:

A consequence of this observation is that hol is a local biholomorphism.

The holonomy representation � of a complex projective structure satisfies the following
properties:

� � is liftable to SL2.C/ (a lift is provided by the monodromy of the Schwarzian
equation). The image of the holonomy map thus lies in the irreducible component
X .S/l of X .S/.

� The action of � WD�.�/ on hyperbolic 3–space H3 does not fix any point or ideal
point, nor does it preserve any geodesic. Representations having this property
are called non-elementary. They are in particular irreducible representations,
hence smooth points of the character variety as expected.

Conversely, Gallo, Kapovich and Marden [13] showed that any non-elementary liftable
representation is the holonomy of a complex projective structure.

Although the holonomy map holW CP.S/! X .S/ is a local biholomorphism, it is
neither injective nor a covering onto its image [16]. Nonetheless, we get a complex
symplectic structure on CP.S/ simply by pulling back that of X .S/s by the holonomy
map. Abusing notations, we will still call this symplectic structure !G . Alternatively,
one could directly define !G on CP.S/ in terms of the exterior product of 1–forms
with values in some flat bundle (recall that TZCP.S/D LH 1.Z; „Z /, where „Z is
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the sheaf of projective vector fields on Z ; see Section 2.1). We will consider !G as the
standard complex symplectic structure on CP.S/ (notably because it does not depend
on any choice).

4.4 Fuchsian structures and a theorem of Goldman

Let F.S/ be the space of marked hyperbolic structures on S (we abusively use the
same notation as for the Fuchsian space). More precisely, F.S/ is the space of
complete hyperbolic metrics on S quotiented by DiffC

0
.S/. In terms of geometric

structures, F.S/ is the deformation space of .H2;PSL2.R//–structures on S (this
is a consequence of Cartan–Hadamard’s theorem). Holonomy identifies F.S/ as the
connected component of the character variety X .S;PSL2.R// corresponding to faithful
and discrete representations. F.S/ is sometimes called the Fricke space of S .

The uniformization theorem states that there is a unique hyperbolic metric in each
conformal class of Riemannian metrics on S . Since S is oriented, the choice of a
conformal structure on S is equivalent to that of a complex structure on S . The
uniformization theorem thus provides a bijective map

uW T .S/! F.S/:

By definition of the Fuchsian section �F , the map u is precisely identified as �F
if hyperbolic structures are considered as special examples of complex projective
structures. Putting it differently, the following diagram commutes:

CP.S/ hol // X .S;PSL2.C//

T .S/ u //

�F

OO

F.S/ ,! X .S;PSL2.R//

�

OO

It is derived from this diagram that �F is a maximal totally real (see Section 6.1 for a
definition of this notion and a different argument for this fact) analytic embedding of
T .S/ in CP.S/.

By Goldman’s general construction in [14] (described above in the case of G D

PSL2.C/), X .S;PSL2.R// is equipped with a real symplectic structure !G;PSL2.R/ .
Of course it is just the restriction of the symplectic structure !G D !G;PSL2.C/ on
X .S;PSL2.R//. Recall that T .S/ is also equipped with a symplectic structure, the
Weil–Petersson Kähler form !WP . In the same paper, Goldman shows that they are the
same. More precisely, this is expressed in our setting as follows:
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Theorem 4.2 (Goldman [14])

(2) .�F /
�!G D !WP:

4.5 A Lagrangian embedding

Let yM be a compact 3–manifold as in Section 2.3. We will use here the same notations
as in Section 2.3, let us briefly recall these. The boundary @ yM is the disjoint union of
N surfaces Sk of genera at least 2. The Teichmüller space of the boundary is given by
T .@ yM /DT .S1/�� � ��T .SN /, and similarly CP.@ yM /DCP.S1/�� � ��CP.SN /. The
forgetful projection is the holomorphic map p D p1 � � � � �pN W CP.@ yM /! T .@ yM /,
and ˇW T .@ yM /! CP.@ yM / is the “simultaneous uniformization section”.

By Goldman’s construction discussed above, CP.@ yM / is equipped with a complex
symplectic structure !G , which is obtained here as

!G D pr1
�!G

.1/
C � � �C prN

�!G
.N /;

where !G
.k/ is the complex symplectic structure on CP.Sk/ and prk is the k th

projection map CP.@ yM /! CP.Sk/.

There is a general argument, discovered in this setting by Steven Kerckhoff, which
shows the following.

Theorem 4.3 ˇW T .@ yM /! CP.@ yM / is a Lagrangian embedding.

Although this is a consequence of our Theorem 6.14, we briefly explain this nice
argument, based on Poincaré duality in cohomology. This could be done directly on the
manifolds HC.M / and CP.@ yM /, but we prefer to transport the situation to character
varieties, where it is simpler.

Recall that the simultaneous uniformization section ˇ was defined as the composition
ˇ D  ı '�1 , where  W HC.M /! CP.@ yM / is the map which assigns the induced
projective structure on @ yM to each cocompact hyperbolic structure on the interior
M of yM , and ' D p ı W HC.M /! T .@ yM / is a biholomorphism. By definition,
the embedding ˇ is Lagrangian if it is isotropic (ˇ�!G D 0) and dim CP.@ yM / D

2 dim T .@ yM /. We already know the second statement to be true (see Section 2.1). It
remains to show that ˇ is isotropic, but since � is a diffeomorphism, this amounts to
showing that  W HC.M /! CP.@ yM / is isotropic.
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Let us have a look at the equivalent statement on holonomy: there is a commutative
diagram

HC.M /

hol
��

 // CP.@ yM /

hol
��

yX .M;PSL2.C//
f // X .@ yM ;PSL2.C//;

where f W X .M;PSL2.C//!X .@ yM ;PSL2.C// is the map between character varieties
induced by the “restriction” map ��W �1.@ yM /!�1. yM /.12 Since the property of being
isotropic is local, it is enough to show the following proposition:

Proposition 4.4 The map f W X . yM ;PSL2.C//! X .@ yM ;PSL2.C// is isotropic.

Proof Let Œ�� 2 X . yM ;PSL2.C//. The map

df W TŒ��X . yM ;PSL2.C/! TŒ�ı���X .@ yM ;PSL2.C//

is the map ˛ that appears in long exact sequence in cohomology of the pair .M; @M /

as follows. This exact diagram shows a piece of this sequence written in terms of group
cohomology, where vertical arrows are given by Poincaré duality:

H 1.�1. yM /; gAdı�/
˛ //

��

H 1.�1.@ yM /; gAdı�/
ˇ //

��

H 2.�1. yM /; �1.@ yM /I gAdı�/

��
H 2.�1. yM /; �1.@ yM /I gAdı�/

�
ˇ� // H 1.�1.@ yM /; gAdı�/

� ˛� // H 1.�1. yM /; gAdı�/
�

Note that if u 2H 1.�1.@ yM /; gAdı�/, the Poincaré dual of u is defined by the relation
hu�; vi D zB.u [ v/ \ Œ@ yM � for all v 2 H 1.�1.@ yM /; gAdı�/, where Œ@ yM � is the
fundamental class of @ yM . This is precisely saying that hu�; vi D !G.u; v/. It follows
that ˛ is isotropic: using the commutativity and exactness of the diagram, we can write

!G.˛.u/; ˛.v//D h˛.u/
�; ˛.v/i D hˇ�.u�/; ˛.v/i D hu�; ˇ ı˛.v/i D 0:

Remark 4.5 Note that in the quasifuchsian situation M D S �R, Theorem 4.3 is
trivial, or rather its formulation in terms of holonomy (cf Proposition 4.4). Indeed,
the map f W X . yM ;PSL2.C//! X .@ yM ;PSL2.C// in that case is just the diagonal
embedding of X .�;PSL2.C// (where � D �1. yM /D �1.S/) into X .�;PSL2.C//�

12Note that if @ yM is disconnected, we define its fundamental group �1.@ yM / as the free product
of the fundamental groups of its components, so that a representation �W �1.@ yM /! PSL2.C/ is just a
N –tuple of representations �k W �1.Sk/! PSL2.C/ .
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X .�;PSL2.C//. (Here X .�;PSL2.C//�X .�;PSL2.C// is equipped with the com-
plex symplectic structure pr1

�!G � pr2
�!G (the minus sign is due to the opposite

orientation of @C yM and @� yM ). The fact that the diagonal is Lagrangian is a par-
ticular case of the following general fact: if .X; !/ is a symplectic manifold and
X �X is equipped with the symplectic structure pr1

�! � pr2
�! , then the graph of

a function hW X ! X is a Lagrangian submanifold of X �X if and only if h is a
symplectomorphim.)

5 Complex Fenchel–Nielsen coordinates and Platis’
symplectic structure

5.1 Fenchel–Nielsen coordinates and Wolpert theory

Pants decomposition and Fenchel–Nielsen coordinates In this paragraph, we con-
sider the Fuchsian (or Fricke) space F.S/ of marked hyperbolic structures on S (or
marked Fuchsian projective structures) rather than Teichmüller space of T .S/ (see
Section 4.4). Let us first briefly recall the construction of the classical Fenchel–Nielsen
coordinates on F.S/, as it will be useful for the subsequent paragraphs. These depend
on the choice of a pants decomposition of S , ie an ordered maximal collection of
distinct, disjoint (in the sense that for j ¤ k , there exists disjoint representatives of j̨

and ˛k ) nontrivial free homotopy classes of simple (meaning that there exist simple
representatives) closed curves ˛ D .˛1; : : : ; ˛N /.

The following are classical facts:

� N D 3g� 3.

� If c1; : : : ; cN are disjoint representatives of ˛1; : : : ; ˛N (respectively), then
S n

SN
iD1 ci is a disjoint union of M D 2g � 2 topological pair of pants Pk

(thrice-punctured spheres).

� If X is a hyperbolic structure on S , every nontrivial free homotopy class of
simple closed curves 
 is uniquely represented by a simple closed geodesic 
X .

Given a hyperbolic structure X on S , denote by l
 .X / the hyperbolic length of

X. This defines a length function l
 W F.S/ ! R>0 . In particular, given a pants
decomposition ˛ , one gets a function l˛W F.S/! .R>0/

N . The components l˛i
of

l˛ are called the Fenchel–Nielsen length parameters.
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Any hyperbolic structure X on S induces a hyperbolic structure (with geodesic bound-
ary) on each one of the closed pair of pants Pk in the decomposition

S n

N[
iD1

˛X
i D

MG
kD1

Pk :

It is well-known that a hyperbolic structure on a closed pair of pants is uniquely
determined by the lengths of its three boundary components. This follows from the
observation that a hyperbolic pair of pants is obtained by gluing two isometric oppositely
oriented right-angled hexagons in H2 and the following elementary theorem in plane
hyperbolic geometry.

Proposition 5.1 Up to isometry, there exists a unique right-angled hexagon in H2

with prescribed lengths on every other side.

As a consequence, a hyperbolic structure on S is completely determined by the lengths
of the curves ˛i , and the parameters �i that prescribe how the gluing occurs along
these curves, ie by which amount of “twisting”. However, these parameters �i are not
very well defined: there is no obvious choice of the hyperbolic structure obtained by
“not twisting at all before gluing”. Also, note that assuming that such a choice is made,
each of these parameters should live in R indeed and not R=2�Z: although there is
a natural isometry f W X ! Y , where Y is obtained by 2� –twisting X along some
curve ˛i , f is not homotopic to the identity.

Let us make this more precise. For any nontrivial free homotopy class of simple closed
curves 
 , there is a flow (an R–action) called twisting along 


tw
 W R�F.S/! F.S/:

The flow is freely transitive in the fibers of l
 . Let us mention that twist deformations
along simple closed curves are naturally generalized first to weighted multicurves, then
to the completion ML.S/ of measured laminations. This generalization is the notion
of earthquake introduced by Thurston (see eg [20]).

Denote by tw˛ the RN –action tw˛ D .tw˛1
; : : : ; tw˛N

/W RN �F.S/! F.S/. The
fact that a hyperbolic structure on S is uniquely determined by the lengths parameters
l˛i

and the amount of twisting along each ˛i is precisely stated as: The RN–action
tw˛ is freely transitive in the fibers of l˛ , and the reunion of these fibers is the whole
Fricke space F.S/. In particular, we get the following.

Theorem 5.2 Choosing a smooth section of l˛ determines a diffeomorphism

.l˛; �˛/W F.S/! .R>0/
N
�RN:
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The function � above is naturally defined by tw˛.�˛; � ı l˛/ D idF.S/ , where �
is the chosen section. The components �˛1

; : : : ; �˛N
of � are called the Fenchel–

Nielsen twist parameters. The theorem above thus says that Fenchel–Nielsen length
and twist parameters are global coordinates on F.S/. In particular, one recovers
dimR T .S/ D dimR F.S/ D 2N D 6g � 6. It also appears that T .S/ Š F.S/ is
topologically a cell, and it follows that CP.S/ is also a cell.

Note that although the coordinates �˛i
depend on the choice on a section of l˛ , the

1–forms d�˛i
and the vector fields @=@�˛i

do not. In fact, @=@�
 is well-defined for
any nontrivial free homotopy class of simple closed curve 
 , and its flow is of course
the twist flow tw
 W R�F.S/! F.S/.

Wolpert theory We recall a few notions of symplectic geometry and the language
of Hamiltonian mechanics. If .M 2N ; !/ is a symplectic manifold, ! determines
an bundle map ![W TM ! T �M defined by ![.u/ D !.u; � /. Since ! is non-
degenerate, ![ is an isomorphism, its inverse is denoted by !]W T �M ! TM . If
˛ is a one-form on M , !].˛/ is thus the unique vector field X such that iX! D ˛ .
If f is a function on M , the vector field Xf WD !

].df / is called the Hamiltonian
(or symplectic gradient) of f . Note that a vector field X is Hamiltonian is and only
if the 1–form iX! is exact, it follows that X satisfies LX! D 0 by Cartan’s magic
formula. Vector fields X such that LX!D 0 are the vector fields whose flows preserve
! , they are called symplectic vector fields. The Poisson bracket of two functions f
and g is defined by ff;gg D !.Xf ;Xg/. f and g are said to Poisson-commute (or
to be in involution) if ff;gg D 0. It is easy to see that f and g Poisson-commute
if and only if f is constant along the integral curves of Xg (and vice-versa). If
f D .f1; : : : ; fN /W M ! RN is a regular map such that the fi Poisson-commute,
then f is a Lagrangian fibration. Moreover, the flows of the �Xfi

(if they are complete)
define a transitive RN–action that is transverse to the fibers of f (the reason for the
choice of this minus sign will be apparent shortly). Notice already the analogy with
the lengths functions and twist flows above. Such functions fi are said to define a
(completely) integrable Hamiltonian system on .M; !/. As in Theorem 5.2, choosing a
section of f yields coordinates g D .g1; : : : ;gN /W M !RN (to be accurate, g takes
values in RN�k�Tk in general, where k is some integer and Tk is the k –dimensional
torus) such that the RN–action is given by the flows of the @=@gi , in other words
@=@gi D�Xfi

. In general though, .fi ;gi/ is not a system of Darboux coordinates for
! , but the classical Arnold–Liouville theorem states that such a choice of coordinates
is possible in a way that is compatible with the Lagrangian fibration and the RN–action
(see [8] for a precise statement and proof of this theorem). The Darboux coordinates
obtained by Arnold–Liouville’s theorem are called action-angle coordinates.
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In [39; 40; 41], Wolpert developed a very nice theory describing the symplectic geometry
of F.S/ in relation to Fenchel–Nielsen coordinates. Let us present some of his results.
In the following, F.S/ is equipped with its standard symplectic structure !G (D !WP

under the identification T .S/Š F.S/; see Section 4.4).

Theorem 5.3 (Wolpert) Let 
 be any nontrivial free homotopy class of simple closed
curves on S . The flow of the Hamiltonian vector field �Xl
 is precisely the twist flow
tw
 .

In other words, @
@�

D�Xl
 .

Theorem 5.4 (Wolpert) Let 
 and 
 0 be distinct nontrivial free homotopy classes of
simple closed curves on S . Then at any point X 2 F.S/,

!G

�
@

@�

;
@

@�
 0

�
D

X
p2.
X\
 0X /

cos �p;

where �p is the angle between the geodesics 
X and 
 0X at p .

A direct consequence of these two theorems is the following.

Theorem 5.5 If ˛ is a pants decomposition of S , then Fenchel–Nielsen length
functions l˛i

define an integrable Hamiltonian system. The Hamiltonian RN–action
associated to this system is the twist flow tw
 .

Wolpert also shows the next result.

Proposition 5.6 (Wolpert) If ˛ is a pants decomposition of S , then for any i; j 2

f1; : : : ;N g,

!G

�
@

@l˛i

;
@

@l
j̨

�
D 0:

It follows that we are in the best possible situation:

Theorem 5.7 (Wolpert) Let ˛ be a pants decomposition of S . Fenchel–Nielsen
length and twist parameters associated to ˛ are respectively action and angle variables
for the integrable Hamiltonian system defined by the functions l˛i

. In particular,
Fenchel–Nielsen coordinates are Darboux coordinates for the symplectic structure:

!G D

NX
iD1

dl˛i
^ d�˛i

:

It is remarkable in particular that this does not depend on the choice of the pants
decomposition ˛ .
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5.2 Complex Fenchel–Nielsen coordinates

Kourouniotis [24] (see also [22; 23]) and Tan [36] introduced a system of global
holomorphic coordinates .lC; �C/W QF.S/! CN �CN that can be thought of as
a complexification of Fenchel–Nielsen coordinates on the Fuchsian slice F.S/. We
outline this construction and refer to [24; 36; 33] for details.

Complex distance and displacement in hyperbolic space Let ˛ and ˇ be two
geodesics in the hyperbolic space H3 . The complex distance between ˛ and ˇ is
the complex number � D �.˛; ˇ/ (defined modulo 2i�Z) such that Re.�/ is the
hyperbolic distance between ˛ and ˇ and Im.�/ is the angle between them (meaning
the angle between the two planes containing their common perpendicular and either ˛
or ˇ ). In the upper half-space model H3 D C �R�C , after applying an isometry so
that ˛ has endpoints .u;�u/ and ˇ has endpoints .p;�p/ (where u;p 2CP1 ), � is
determined by e�uD p . Note that one has to be careful about orientations and sign to
define � unambiguously; see [24] and [33] for details.

Let f be a non-parabolic isometry of H3 different from the identity, and ˇ a geodesic
perpendicular to the axis of f . The complex displacement of f is the complex distance
' between ˇ and f .ˇ/. If f is represented by a matrix A 2 SL2.C/, the complex
displacement of f is given by

2 cosh
�'

2

�
D tr.A/:

The complex displacement and oriented axis of a non-parabolic isometry determine it
uniquely.

Right-angled hexagons and pair of pants in hyperbolic space An (oriented skew)
right-angled hexagon in H3 is a cyclically ordered set of six oriented geodesics ˛k

indexed by k 2Z=6Z, such that ˛k intersects ˛kC1 orthogonally. Define the complex
length of the “side” ˛k by �k D �.˛k�1; ˛kC1/.

Proposition 5.8 [12] (Sine rule)

sinh �1

sinh �4

D
sinh �3

sinh �6

D
sinh �5

sinh �2

:

(Cosine rule)

cosh �n D
cosh �nC3� cosh �nC1 cosh �n�1

sinh �nC1 sinh �n�1

:
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Using these formulas, one shows that assigning complex lengths on every other side
determines a unique right-angled hexagon in H3 up to (possibly orientation-reversing)
isometry. In [24] and [36], it is showed that the construction of a hyperbolic pair of
pants by gluing two right-angled hexagons can be extended to H3 . Such a pair of pants
is thus uniquely determined by the complex lengths of its boundary components. In
terms of holonomy [24] we have:

Proposition 5.9 Let P be a topological pair of pants and �1 , �2 , �3 2 CC (ie with
Re.�i/ > 0/. There is a unique representation up to conjugation

�W �1.P /D hc1; c2; c3 j c1c2c3 D 1i ! PSL2.C/

such that tr.�.ci//D�2 cosh �i .

Complex lengths and complex twisting in the quasifuchsian space Let Z 2

QF.S/ be a quasifuchsian structure on S and �W �1.S/! PSL2.C/ its holonomy
representation. For any nontrivial free homotopy class of simple closed curves 
 ,
define the complex length of 
 as the complex displacement of the hyperbolic isometry
�.
 /. This defines a holomorphic function

lC

 W QF.S/!CC:

In the quasifuchsian 3–manifold M , �.
 / corresponds to a geodesic of complex
length lC


 , ie of hyperbolic length Re.lC

 / and torsion Im.lC


 /. It is easy to see that
if Z is a Fuchsian structure, then lC


 .Z/D l
 .Z/. If ˛ D .˛1; : : : ; ˛N / is a pants
decomposition of S , we call

lC
˛ D .l

C
˛1
; : : : ; lC

˛N
/W QF.S/! .CC/

N

the complex Fenchel–Nielsen length parameters.

As a consequence of the previous discussion, if the complex lengths lC
˛1
; : : : ; lC

˛N
are

fixed, a quasifuchsian structure on S is determined by how the gluings of pair of
pants occur along their common boundaries. Analogously to the Fuchsian case, this is
prescribed by a complex parameter �C

˛i
that we will call a complex twist parameter ,

that describes both the amount of twisting (by Re.�C
˛i
/) and the amount of bending

(by Im.�C
˛i
/) before gluing. The parameter �C

˛i
can be more or less well defined as the

complex distance between two adequate geodesics in H3 , but the definition is clearer
in terms of the effect of complex-twisting by �C

˛i
on the holonomy of the glued pairs

of pants (see [24] and [15]).

As in the Fuchsian case, it is the complex twist flow twC

 along a simple closed curve 


that is well defined rather than the twist parameter �C
˛i

itself, although the complex twist
vector field @=@�C


 is well-defined.
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Let us mention this flow is called bending by Kourouniotis and corresponds to (or is a
generalization of) what other authors have called quakebends or complex earthquakes
discussed by Epstein–Marden [11], Goldman [15], McMullen [30] and Series [33]
among others. It is not hard to see that starting from a Fuchsian structure Z , complex
twisting by t D t1C i t2 2C is described as the composition of twisting by t1 on F.S/
and then projective grafting by t2 (see eg [9] for a presentation of projective grafting).

Choosing a holomorphic section of lC
˛ determines complex twist coordinates

�C
˛ D .�

C
˛1
; : : : ; �C

˛N
/W QF.S/!CN :

We will call .lC
˛ ; �

C
˛ / complex Fenchel–Nielsen coordinates. The conclusion of our

discussion is this theorem:

Theorem 5.10 (Kourouniotis, Tan) Complex Fenchel–Nielsen coordinates .lC
˛ ; �

C
˛ /

are global holomorphic coordinates on QF.S/. They restrict to the classical Fenchel–
Nielsen coordinates .l˛; �˛/ on the Fuchsian slice F.S/.

5.3 Platis’ symplectic structure

Platis [32] developed a complex version of Wolpert’s theory on the quasifuchsian space.
We present some of his results. First there is a complex version of Wolpert’s Theorem 5.4:

Theorem 5.11 There exists a complex symplectic structure !P on QF.S/ such that
if 
 and 
 0 are distinct nontrivial free homotopy classes of simple closed curves on S ,
then at any point Z 2QF.S/ with holonomy �

!P

�
@

@�C



;
@

@�C

 0

�
D

X
p2.
\
 0/

cosh �p;

where �p is the complex distance between the geodesics �.
 / and �.
 0/.

He also shows the complex version of Theorem 5.3 on the manifold .QF.S/; !P /:

Theorem 5.12 Let 
 be any nontrivial free homotopy class of simple closed curves on
S . The complex flow of the Hamiltonian vector field �XlC



is precisely the complex

twist flow twC

 .

As in the Fuchsian case, it follows from these two theorems that complex Fenchel–
Nielsen length functions associated to a pants decomposition define a complex Hamil-
tonian integrable system. Furthermore, he proves that the striking Theorem 5.7 is still
true in its complex version on .QF.S/; !P /:
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Theorem 5.13 If ˛ is any pants decomposition of S , complex Fenchel–Nielsen
coordinates are Darboux coordinates for the complex symplectic structure !P :

!P D

NX
iD1

dlC
˛i
^ d�C

˛i
:

6 Comparing symplectic structures

6.1 Analytic continuation

We are going to show the following proposition, which implies that two complex
symplectic structures agree on CP.S/ if and only if they agree in restriction to tangent
vectors to the Fuchsian slice F.S/:

Proposition 6.1 Let ! be a closed .2; 0/–form on CP.S/ and �F W T .S/! CP.S/
be the Fuchsian section (as in (1)). If �F�! vanishes on T .S/, then ! vanishes on
CP.S/.

The proof of this proposition is based on analytic continuation. In order to use this
argument, we recall a few definitions and show some elementary facts regarding totally
real submanifolds of complex manifolds.

Definition 6.2 Let M be a complex manifold and N �M be a real submanifold. N

is called totally real if for all x 2N ,

TxN \JTxN D f0g;

where J is the almost complex structure on M .

If moreover, N has maximal dimension dimR N D dimC M , we say that N is a
maximal totally real submanifold of M . There are several characterizations of maximal
totally real analytic submanifolds, seemingly stronger than the definition, as in the
following:

Proposition 6.3 Let M be a complex manifold of dimension n and N �M be a real
submanifold. The following are equivalent:

(1) N is a maximal totally real analytic submanifold of M .
(2) N �M locally looks like Rn �Cn . More precisely: for any x 2N , there is a

holomorphic chart zW U ! V , where U is an open set in M containing x and
V is an open set in Cn , such that z.U \N /D V \Rn .

(3) There is an antiholomorphic involution �W M 0!M 0 , where M 0 is a neighbor-
hood of N in M , such that N is the set of fixed points of �.
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If N satisfies one (equivalently all) of these conditions, M is said to be a complexifi-
cation of N . Let us mention that any real-analytic manifold can be complexified.

Proof It is fairly easy to see that both .2/ and .3/ imply .1/, and that in fact .2/ and .3/
are equivalent. Let us show that .1/ implies .2/. Using holomorphic charts, it is clearly
enough to prove this in the case where N is a maximal totally real analytic submanifold
of Cn . Let m2N �Cn , there is a real-analytic parametrization 'W D!N , where D

is a small open disk centered at the origin in Rn , such that '.0/Dm and d'.0/¤ 0.
The map ' is given by a convergent power series '.x/D

P
j˛jDn a˛x˛ for all x 2D ,

where the sum is taken over all multi-indices ˛ of length n, and the a˛ are coefficients
in Cn . In order to extend ' to a holomorphic map ˆW D0!M where D0 is the disk
in Cn such that DDD0\Rn , we can just replace x 2D by z 2D0 in the expression
of ' : define ˆ.z/D

P
j˛jDn a˛z˛ . This power series converges in D0 because it has

the same radius of convergence as its real counterpart. Moreover, if D0 is small enough,
ˆ is a biholomorphism onto its image because dˆ.0/D d'.0/¤ 0. This shows that
.1/ implies .2/ (just take the chart given by ˆ�1 ). (Note that the simplicity of this
proof relies on a little trick: the actual complexification of ' is a map 'W D0!C2n

(and not Cn ), where a˛ is seen as a real vector in Cn .)

Keeping in mind that we want to consider the Fuchsian slice in CP.S/, we make this
last general observation on totally real submanifolds:

Proposition 6.4 Let V be a complex manifold. The diagonal � in V �V is a maximal
totally real analytic submanifold.

Proof This is a direct consequence of characterization .3/ in the previous proposition:
just take the antiholomorphic involution �W V �V ! V �V , .x;y/ 7! .y;x/.

An immediate application of this is that the Fuchsian slice F.S/ is a maximal totally
real analytic submanifold of CP.S/ (as was already pointed out in Section 4.4): it is
the image of the diagonal of T .S/� T .S/ (recall that T .S/ is canonically identified
with T .S/) by the holomorphic embedding ˇC (see Section 2.2). Another way to see
this is that the quasifuchsian space QF.S/ D Im.ˇC/ � CP.S/ is equipped with a
canonical antiholomorphic involution, which justs consists in “turning a quasifuchsian
3–manifold upside down”, and F.S/ is the set of fixed points of this involution.

Now, we prove this first elementary analytic continuation theorem:

Proposition 6.5 Let M be a connected complex manifold and N �M be a maximal
totally real submanifold. If f W M !C is a holomorphic function that vanishes on N ,
then f vanishes on M .
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Proof By the identity theorem for holomorphic functions, it is enough to show that
f vanishes on a small open neighborhood U of some point x 2N . If N is analytic,
this is an straightforward consequence of Proposition 6.3(2). Let us produce a proof
that does not assume analyticity of N . Since the restriction fjN vanishes identically,
we have .df /jTN D 0. Using the fact that TxM D TxN ˚JTxN for all x 2N and
the holomorphicity of f , it is easy to derive that df vanishes at all points of N . In
particular, if z D .zk/16k6nW U !Cn is a holomorphic chart, the partial derivatives
@f=@zk vanish on N . But those are again holomorphic functions, so we can use the
same argument: their partial derivatives must vanish on N . By an obvious induction,
we see that all partial derivatives of f (at any order) vanish at points of N . Since f
is holomorphic, this implies that f D 0.

Proposition 6.6 Let M be a connected complex manifold and � W N ! M be a
maximal totally real embedding. If ! is a closed .2; 0/–form on M such that ��!D 0,
then ! D 0.

Proof We can assume that N � M , so the hypothesis is that !jTN D 0. Since
TxM D TxN ˚JTxN for any x 2N and ! is of type .2; 0/, it is easy to see that
! vanishes at points of N . Now, recall that a closed .2; 0/–form is holomorphic. Let
z D .zk/16k6nW U !Cn be a holomorphic chart in a neighborhood of a point x 2N ,
! has an expression of the form ! D

P
j ;k fjkdzj ^ dzk where fjk are holomorphic

functions on U . Since ! vanishes at points of N , the functions fjk vanish on U \N ,
and we derive from the previous proposition that they actually vanish on U . We thus
have !jU D 0, and it follows once again from the identity theorem (taken in charts)
that ! vanishes on M .

An immediate consequence of this, together with (2), is that a complex symplectic
structure on CP.S/ agrees with the standard complex symplectic structure if and only
if it induces the Weil–Petersson Kähler form on the Fuchsian slice:

Theorem 6.7 Let ! be a complex symplectic structure on CP.S/. Then ! D !G if
and only if .�F /�! D !WP .

Proof By the previous proposition, ! D !G if and only if .�F /�.! �!G/D 0. But
by (2), ��F!G D !WP , therefore .�F /�.! �!G/D .�F /

�! �!WP .

6.2 The affine cotangent symplectic structures

Recall (see Section 3.3) that any section � W T .S/ ! CP.S/ determines an affine
identification �� W CP.S/ ��! T �T .S/ and thus a complex-valued non-degenerate 2–
form !� D .�� /�! on CP.S/. !� is a complex symplectic structure on CP.S/ if and
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only if � is a holomorphic section of p . We will now answer this question: For which
holomorphic sections � does !� agree with the standard symplectic structure !G ?

As a consequence of Theorem 6.7, together with Proposition 3.3, we show the following:

Theorem 6.8 Let � W T .S/! CP.S/ be a section of p . Then !� agrees with the
standard complex symplectic structure !G on CP.S/ if and only if �F�� is a primitive
for the Weil–Petersson metric on T .S/:

!� D !G , d.�F � �/D !WP:

More generally, if c is some complex constant,

!� D c!G , d.�F � �/D c!WP:

Proof By Theorem 6.7, !� D!G if and only if .�F /�!� D!WP . However, it follows
from Proposition 3.3 that

.�F /
�!� D .�F /

�Œ!�F �p�d.� � �F /�

D .�F /
�..��F /�!can/� .�F /

�.p�d.� � �F //

D .��F ı �F /
�
!can� .p ı �/

�d.� � �F /

D s0
�!can� id�d.� � �F /D�d.� � �F /:

Let us make a couple of comments on this calculation: recall that !can denotes the
canonical symplectic structure on T �T .S/; �� ı � D s0 is the characterization of �� ;
and s0

�!D 0 because the zero section s0 is a Lagrangian in T �T .S/ (see Section 3.2).
Of course, the proof of the apparently more general second statement is just the same.

Theorem 6.9 (McMullen [31]) If � is any Bers section, then

d.�F � �/D�i!WP:

Using this result, we eventually obtain the next theorem as a corollary of Theorem 6.8.

Theorem 6.10 If � W T .S/! CP.S/ is any Bers section, then

!� D�i!G :

In particular, we can deduce from this identification the following properties.

Corollary 6.11 Consider the space CP.S/ equipped with its standard symplectic
structure !G .

(1) The canonical projection pW CP.S/! T .S/ is a Lagrangian fibration.

(2) Bers slices are leaves of a Lagrangian foliation of the quasifuchsian space QF.S/.
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We also derive an explicit expression of !G.u; v/ when u is a vertical tangent vector
(by Proposition 3.4):

Corollary 6.12 Let u, v be tangent vectors at Z 2 CP.S/ such that u is vertical, ie
p�uD 0. Then

!G.u; v/D ihu;p�vi:

Looking back at Proposition 3.3, we also get the expression of the 2–form !�F obtained
under the Fuchsian identification:

Corollary 6.13 Let �F W T .S/! CP.S/ be the Fuchsian section. Then

!�F D�i.!G �p�!WP/:

It should not come as a surprise that we see from this equality that !�F vanishes on
the Fuchsian slice. Notice the equality between real symplectic structures,

Re.!�F /D Im.!G/;

and that Re.!�F / is (half) the real canonical symplectic structure on T �T .S/ pulled
back by the Fuchsian identification.

Finally, we note that McMullen’s quasifuchsian reciprocity theorem showed in [31]
can be seen as a consequence of Theorem 6.10. We will give a precise statement and
proof of a generalized version of this theorem in the setting of convex cocompact
3–manifolds (Theorem 6.18).

Generalizations in the setting of convex cocompact hyperbolic 3–manifolds Let
yM be a compact 3–manifold as in Section 2.3. We will use here the same notations

as in Section 2.3. Recall that we have defined there a canonical holomorphic section
ˇW T .@ yM /! CP.@ yM /.

McMullen and Takhtajan–Teo gave generalized versions of quasifuchsian reciprocity,
which they called Kleinian reciprocity, notably in [31, Appendix] and [35]. In particular,
[35, Theorem 6.3] says the following:

Theorem Let �F W T .@ yM /! CP.@ yM / denote the Fuchsian section. Then

d.�F �ˇ/D�i!G :

Since our Theorem 6.8 above does not assume that S is connected, we obtain this:
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Theorem 6.14 Let !G be the standard complex symplectic structure on CP.@ yM /

and !ˇ D .�ˇ/
�
! be the complex symplectic structure obtained by the identification

�ˇW CP.@ yM / ��! T �T .@ yM / as in Section 3.3. Then

(3) !ˇ D�i!G :

A first corollary is that we recover Theorem 4.3: ˇ is a Lagrangian embedding.

Another consequence of this theorem and of the fact that the projections pk W CP.Sk/!

T .Sk/ are Lagrangian (Corollary 6.11) is a generalization of Theorem 6.10:

Theorem 6.15 Let � W T .S/! CP.S/ be a generalized Bers section (see Section 2.3).
Then

!� D�i!G :

Proof By definition, � is map defined by � Df.Xi /;j as in Section 2.3, where S DSj

and Xi is a fixed point in T .Si/ for i ¤ j . Recall that

!G D .pr1/
�!G

.1/
C � � �C .prN /

�!G
.N /

where !G
.k/ is the standard complex symplectic structure on CP.Sk/, and similarly

! D .pr1/
�!.1/C � � �C .prN /

�!.N /

where !.k/ is the canonical complex symplectic structure on T �T .Sk/. Beware that in
this equality, prk stands for the k th projection map T �T .@ yM /! T �T .Sk/ (whereas
it stood for the k th projection map CP.@ yM /! CP.Sk/ in the previous equality). We
apologize for these (slightly) misleading notations.

The equality (3) can thus be rewritten as�
pr1 ı�

ˇ
��
!.1/C � � �C

�
prN ı�

ˇ
��
!.N / D�i

�
.pr1/

�!G
.1/
C � � �C .prN /

�!G
.N /

�
:

Fix Zi 2 P .Xi/ for i ¤ j and let us pull back this equality on CP.Sj / by the map

z�.Zi /W CP.Sj /! CP.@ yM /;

Z 7! .Z1; : : : ;Zj�1;Z;ZjC1; : : : ;XN /:

For k ¤ j , the map prk ı�
ˇ ız�.Zi / takes values in the fiber TXk

�T .Sk/, so that

.z�.Zi //
�
��

prk ı�
ˇ
��
!.k/

�
D 0:

Similarly, the map prk ız�.Zi / maps into the fiber P .Xk/� CP.Sk/, so that

.z�.Zi //
�
��

prk

��
!G

.k/
�
D 0
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because pk is a Lagrangian fibration. For k D j , prk ı�
ˇ ız�.Zi / is the map

�� W CP.Sj /! T �T .Sj /

and prk ız�.Zi / is the identity in CP.Sj /. We therefore obtain the desired equality
.�� /�!.j/ D�i!G

.j/ .

Corollary 6.16 Generalized Bers sections T .S/! CP.S/ are Lagrangian embed-
dings.

Another corollary of Theorem 6.15 and Theorem 6.8 is a generalization of McMullen’s
Theorem 6.9:

Corollary 6.17 Let � W T .S/! CP.S/ be a generalized Bers section. Then

d.�F � �/D�i!WP:

Finally, we show a generalized version of McMullen’s “quasifuchsian reciprocity”. To
this end, we introduce the notion of “reciprocal generalized Bers embeddings”: with the
notations of Section 2.3, we say that f W T .Sj /! CP.Sk/ and gW T .Sk/! CP.Sj /

are reciprocal generalized Bers embeddings if f D f.Xi /i¤j ;k and g D f.Xi /i¤k ;j for
some fixed X D .X1; : : : ;XN / 2 T .@ yM /. Since f and g take values in affine spaces,
one can consider their derivatives

DXj f W TXj T .Sj /! T �Xk
T .Sk/ and DXk

gW TXk
T .Sk/! T �Xj T .Sj /:

Theorem 6.18 Let f W T .Sj / ! CP.Sk/ and gW T .Sk/ ! CP.Sj / be reciprocal
generalized Bers embeddings as above. Then DXj f and DXk

g are dual maps. In other
words, for any � 2 TXj T .Sj / and � 2 TXk

T .Sk/,

hDXj f .�/; �i D h�;DXk
g.�/i:

Proof The fact that ˇW T .@ yM /! CP.@ yM / is Lagrangian is written as

ˇ�!G D .pr1 ıˇ/
�!G

.1/
C � � �C .prN ıˇ/

�!G
.N /
D 0;

where !G
.i/ is the standard complex symplectic structure on the component CP.Si/.

Let � 2 TXj T .Sj / and � 2 TXk
T .Sk/, and define U;V 2 TX T .@ yM / by

Ui D

�
0 for i ¤ j ;

� for i D j ;
and Vi D

�
0 for i ¤ k;

� for i D k:

Note that .pri ıˇ/�U is vertical in CP.Si/ whenever i ¤ j (resp. .pri ıˇ/�V is
vertical in CP.Si/ whenever i ¤ k ). Since the fibers of CP.Si/ are isotropic (see
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Corollary 6.11), it follows that ..pri ıˇ/
�!G

.i//.U;V /D 0 whenever i 62 fj ; kg. For
i D k , .pri ıˇ/�U DDXj f .�/ is still vertical and .pk/�..pri ıˇ/�V /D � so we can
derive from Corollary 6.12 that ..prk ıˇ/

�!G
.k//.U;V /D ihDXj f .�/; �i. Similarly,

for i D j we have

..prj ıˇ/
�!G

.j//.U;V /D�..prj ıˇ/
�!G

.j//.V;U /D�ihDXk
g.�/; �i:

In the end, 0D .ˇ�!G/.U;V /D ihDXj f .�/; �i � ihDXk
g.�/; �i as desired.

Note that Corollary 6.17 is not an immediate consequence of “Kleinian reciprocity”: the
proof requires Lagrangian information. On the other hand, Steven Kerckhoff pointed
out to me that Theorem 6.18 can be derived from Kleinian reciprocity without using
our previous results, rightly so (the proof is easily adapted taking !ˇ instead of !G ,
avoiding the use of the symplectic structure on CP.S/).

6.3 Darboux coordinates

It is an immediate consequence of the analytical continuation property (Theorem 6.7)
and Wolpert’s Theorem 5.7 that complex Fenchel–Nielsen coordinates are Darboux
coordinates for the standard symplectic structure on the quasifuchsian space:

Theorem 6.19 Let ˛ be any pants decomposition of S . Complex Fenchel–Nielsen
coordinates .lC

˛ ; ˇ
C
˛ / on the quasifuchsian space QF.S/ are Darboux coordinates for

the standard complex symplectic structure:

!G D

NX
iD1

dlC
˛i
^ d�C

˛i
:

Proof Of course, Theorem 6.7 is still true when replacing CP.S/ by any con-
nected neighborhood of the Fuchsian slice F.S/, such as the quasifuchsian space
QF.S/. Let ! D

PN
iD1 dlC

˛i
^ d�C

˛i
. Since lC

˛i
and �C

˛i
are holomorphic, ! is

a complex symplectic structure on QF.S/. In restriction to the Fuchsian slice,
��! D

PN
iD1 dl˛i

^ d�˛i
, where .l˛; �˛/ are the classical Fenchel–Nielsen coordinates.

By Wolpert’s Theorem 5.7, it follows that .�F /
�
! D !WP . This proves that ! D !G

according to Theorem 6.7.

Of course, this shows in particular:

Corollary 6.20 Platis’ symplectic structure !P is equal to the standard complex
symplectic structure !G in restriction to the quasifuchsian space QF.S/.
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Notice how the analytic continuation argument provides a very simple alternative proof
of Platis’ result that the symplectic structure

PN
iD1 dlC

˛i
^ d�C

˛i
does not depend on a

choice of a pants decomposition (relying, of course, on Wolpert’s result).

In [15], Goldman gives a fairly extensive description of the complex symplectic structure
!G on the character variety X .S;SL2.C//, discussing in particular the “Hamiltonian
picture”. We recover that the Hamiltonian flow of a complex length function is the
associated complex twist flow.
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