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The invariant measures of some
infinite interval exchange maps

W PATRICK HOOPER

We classify the locally finite ergodic invariant measures of certain infinite interval
exchange transformations (IETs). These transformations naturally arise from return
maps of the straight-line flow on certain translation surfaces, and the study of the
invariant measures for these IETs is equivalent to the study of invariant measures for
the straight-line flow in some direction on these translation surfaces. For the surfaces
and directions to which our methods apply, we can characterize the locally finite
ergodic invariant measures of the straight-line flow in a set of directions of Hausdorff
dimension larger than 1

2
. We promote this characterization to a classification in some

cases. For instance, when the surfaces admit a cocompact action by a nilpotent group,
we prove each ergodic invariant measure for the straight-line flow is a Maharam
measure, and we describe precisely which Maharam measures arise. When the
surfaces under consideration are of finite area, the straight-line flows in the directions
we understand are uniquely ergodic. Our methods apply to translation surfaces
admitting multitwists in a pair of cylinder decompositions in nonparallel directions.

37E05; 37E20, 37A40

1 Introduction

An interval exchange transformation (IET) is a bijective piecewise isometry from
the interval Œ0; 1� to itself which is orientation preserving and has only finitely many
discontinuities. These maps are natural generalizations of rotations, and interesting
because they are simple systems of low symbolic complexity but nonetheless many
phenomena that appear in these systems are not yet fully understood. Perhaps the
most well-studied problem in the subject is the classification of the ergodic invariant
measures. For instance, there are many results which guarantee unique ergodicity.
See for instance Veech [45; 46, Theorem 8.2], Masur [30], Cheung and Eskin [11,
Theorem 1.1], and Treviño [42, Theorem 4]. Relevant surveys of the subject include
Matsuzaki and Taniguchi [31], Zorich [51] and Yoccoz [49].

For our purposes, an infinite interval exchange transformation is an orientation pre-
serving bijective piecewise isometry of an interval in R of possibly infinite length

Published: 29 July 2015 DOI: 10.2140/gt.2015.19.1895

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=37E05, 37E20, 37A40
http://dx.doi.org/10.2140/gt.2015.19.1895


1896 W Patrick Hooper

with a countably infinite collection of discontinuities. Here many related questions
become interesting. Is the Lebesgue measure ergodic? Is there an invariant probability
measure? If so, is it unique? An interval of continuity is an interval on which the map is
continuous. We call a measure locally finite if it is finite on the intervals of continuity of
the map. What are the locally finite ergodic invariant measures? Questions of this type
were first answered by Aaronson, Nakada, Sarig and Solomyak [2, Theorem 1.4], where
the locally finite ergodic invariant measures of certain skew products were classified.

This article contributes to the subject of infinite interval exchange transformations in
several ways. Foremost, we introduce methods to characterize (and in many cases clas-
sify) the locally finite ergodic invariant measures of some infinite IETs. Our approach
draws inspiration from the intimate connection between finite interval exchange maps
and Teichmüller theory, and the inherent connection to translation surfaces. (Section 3.1
defines translation surface.) This point of view reveals that many infinite interval
exchange maps are unexpectedly interesting. Finally, we develop an interpretation
of certain infinite interval exchange maps as “deterministic random walks”, and our
results draw connections between these systems and corresponding random walks. Our
strongest measure classification results are corollaries to our measure characterization
theorem, which utilizes the theory of random walks (on graphs and discrete groups) to
promote a characterization to a classification.

2 Organization and overview of this article

The main result of this paper is a characterization of the invariant measures of a class
of infinite IETs. This class arises from return maps of the straight-line flow on a class
of infinite translation surfaces produced using a construction of Thurston. Section 3
introduces translation surfaces, the straight-line flow, affine automorphism groups, and
Thurston’s construction. The main idea of this paper is to use the affine automorphism
group of such surfaces to renormalize the straight-line flow.

In Section 4, we state the main results of this paper. Our results hold for straight-line
flows in “renormalizable directions” and the section begins by defining these directions.
Section 4.2 contains the first of our two main results: an orbit equivalence result for
straight-line flows on surfaces produced using Thurston’s construction. In Section 4.4,
we describe the second of our main results. We describe a characterization of locally
finite ergodic invariant measures for these straight-line flows. In the applicable cases,
all ergodic measures arise by pulling back Lebesgue measure under orbit equivalences
described by the first main result.

In Section 5, we provide an abbreviated history of the subject of infinite IETs and
infinite translation surfaces.
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The remaining sections of the paper are devoted to the proof of our two main results.
The beginning of Section 6 provides a birds eye view of the proof of these results.
We fill in the details in the subsections of Section 6, where we describe a sequence
of results which build up to the proofs of these main results. The logic of the proofs
of two main results is entirely contained in this section, but we state many results
in this section which require substantial further work to prove. The proofs of these
auxiliary results are contained in the remaining Sections 7–13. In addition, three of the
appendices survey relevant aspects of mathematical theories related to the proof:
� Appendix A surveys the use of coding to understand the invariant measures of

IETs. This well developed topic is described in the context of this work, and in
particular discusses IETs coming from infinite translation surfaces.

� Appendix B discusses a known generalization of the duality theorem of Farkas.
� Appendix C discusses the Martin boundary of a graph as it relates to the positive

eigenfunctions of the adjacency operator.

The topics in these appendices play a role in our proofs, but we only contextualize known
results. In order to fully understand the proof of our main results, the reader should
read Section 6 and should refer to Sections 7–13 and Appendices A–C as necessary.

To further aid the reader, at the end of the paper, we provide a list of notations introduced.

This article includes five additional appendices which are used to provide context for
our main results and to describe some relevant special cases. In these special cases, we
are often able to promote our measure characterization results to measure classification
results which give a complete description of the ergodic measures.
� Appendix D provides a more geometric view of from Thurston’s construction.

Briefly, any surface admitting distinct decompositions into cylinders which sup-
port an affine multitwist can be viewed as arising from Thurston’s construction.

� Appendix E describes some infinite IETs which appear. We stress skew product
transformations and define Maharam measures.

� Appendix F describes some results which hold for surfaces built from Thurston’s
construction using a hyperbolic graph. In some cases, we can obtain ergodic
measure classifications which seem unlike others that have appeared in the study
of infinite IETs.

� Appendix G describes results which pertain to surfaces with nilpotent symmetry
groups. We show that when our main results apply in this setting, the ergodic
measures are always Maharam measures. This gives a generalization of a measure
classification result of Aaronson, Nakada, Sarig and Solomyak [2, Theorem 1.4].

� Appendix H gives unique ergodicity results for both infinite IETs and straight-line
flows that are studied in this paper.
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3 Background on translation surfaces

3.1 Translation surfaces

Let † be a connected topological surface. A translation atlas on † is an atlas of local
homeomorphisms from open sets of † to the plane so that the transition functions are
translations. Such an atlas specifies local coordinates to the plane which are canonical
up to translation. Formally, a translation surface is a connected topological surface
together with a maximal translation atlas.

We will now give a more utilitarian viewpoint. A translation surface S can be formed
from a disjoint collection of convex polygons fPi �R2gi2ƒ with edges glued in pairs
by translations. Let V � S denote the collection of (equivalence classes of) vertices
of polygons in S . We consider the points of V to be singularities. Formally, we only
have a translation structure on S XV , but we will abuse our definition by calling S

a translation surface and we will work with the points in V . For example, a closed
translation surface can be formed by identifying edges of a finite collection of polygons.
In this case, the points of V are cone singularities, whose cone angle is an integral
multiple of 2� . In this paper, our surfaces will be built from countably many polygons,
so we will see more exotic singularities but their structure will not concern us. (See [7]
for an analysis some of the singularities that can appear.)

3.2 The straight-line flow

Let S1 denote the collection of unit vectors in R2 . Given a translation surface S , it is
commonplace to study the family fF t

�
W S ! Sg�2S1 of straight-line flows, which are

parametrized by a unit vector (a direction) � 2 S1 �R2 . In local coordinates, these
flows are given by

(3-1) F t
�.x;y/D .x;y/C t�:

A primary goal of this article will be to understand the invariant measures of F t
�

. This
flow also gives rise to infinite IETs. The union of the boundaries of the polygons
making up S form a section for the flow, and the return map to this section (equipped
with the Lebesgue transverse measure to the foliation in � direction) is conjugate to an
infinite IET.

3.3 The affine automorphism group

An affine automorphism of a translation surface S is a homeomorphism �W S ! S so
that in local coordinates near every nonsingular point, there are constants a, b , c , d ,
t1 and t2 so that

�.x;y/D .axC byC t1; cxC dyC t2/:
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Because S is connected and a translation surface, the values of a, b , c and d are
independent of the coordinate chart. We say that the matrix

D.�/D

�
a b

c d

�
2 GL.2;R/

is the derivative of � . The collection Aff.S/ of all affine automorphisms form a group,
called the affine automorphism group of S . The collection of derivatives of affine
automorphisms forms a group called the Veech group of S .

3.4 Thurston’s construction

We will now describe a variant of a construction due to Thurston which produced the first
examples of pseudo-Anosov homeomorphisms. See Thurston’s [41, Section 6], which
was long preceded by an earlier preprint. Following Veech, we note that the closed
translation surfaces admitting two noncommuting parabolic affine automorphisms can
be characterized in terms of eigenvectors of graphs Veech [46, Section 9]. We will make
use of some simplifying ideas introduced by McMullen [33, Section 4] in the closed
surface case. (The author’s article [22, Section 3] carefully describes this construction
in the closed surface case.) Here we extend these ideas to infinite graphs.

We begin by describing some graph theoretic terminology. Throughout this paper, G is
an infinite, connected, bipartite, ribbon graph with bounded valence. These terms are
defined below.

(1) (Infinite) The vertex set V is countably infinite.

(2) (Connected) For every v;w 2 V , there is a sequence of vertices

vD v0; v1; : : : ; vk D w

so that every viviC1 lies in the edge set E .

(3) (Bipartite) The vertex set V decomposes into a disjoint union of two sets,
V DA[B , and the edge set E consists only of edges of the form ab with a 2A
and b 2 B . Thus we have natural maps ˛W E!A and ˇW E! B given by the
maps

˛W ab 7! a and ˇW ab 7! b:

(4) (Bounded valence) The sets ˛�1.a/ and ˇ�1.b/ are finite sets whose sizes are
bounded from above.

(5) (Ribbon structure) For every v 2 V , the ribbon graph structure specifies a cyclic
permutation pv of the edges that contain v as an endpoint.

We use RV to denote the collection of all functions from V to R.
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Definition 3.1 The adjacency operator is the operator AW RV !RV defined by

(3-2) A.f /.v/D
X
w�v

f.w/;

where the sum is taken over edges wv with v as one endpoint. An eigenfunction of A

is a function w 2RV which satisfies A.w/D �w for some � 2R.

Definition 3.2 (East and north edge permutations) Given the above structure on G ,
we define bijections E;NW E! E . These are given by

E.ab/D pa.ab/ and N.ab/D pb.ab/:

Since the permutations pv are cyclic, these maps satisfy

(3-3) fEk.e/gk2ND˛
�1.˛.e// and fNk.e/gk2NDˇ

�1.ˇ.e// for each e 2 E .

Definition 3.3 (The surface S.G;w/) Let G be a graph as above. Let w 2RV be a
positive eigenfunction of A . Using the associated data, we will construct a translation
surface S.G;w/. This surface will be a union of rectangles Re with e 2 E , with each
Re given by

Re D Œ0;w ıˇ.e/�� Œ0;w ı˛.e/�:

We glue the rectangles so that the right (east) side of Re is glued isometrically to the
left side of RE.e/ , and the top (north) side of Re is glued isometrically to the bottom
of RN.e/ . (This explains the notation for the bijections E;NW E! E .)

Note that the surface S.G;w/ admits horizontal and vertical cylinder decompositions
which intersect in the given rectangles. For each a 2A and each b 2 B , we have the
cylinders

(3-4) cyla D
[

e2˛�1.a/

Re and cylb D
[

e2ˇ�1.b/

Re:

Each cylinder cyla is horizontal and each cylinder cylb is vertical. The modulus of a
cylinder is the ratio width=circumference. Therefore the condition that all horizontal
and vertical cylinders have equal moduli is equivalent to saying that our function
w 2 RV is an eigenfunction of the adjacency operator. (The modulus is given by
1=�, where � is the eigenvalue.) In particular, by remarks of Veech [46, Section 9]
this guarantees the existence of two noncommuting parabolic automorphisms of our
surface. The eigenvalue of a positive eigenfunction of an infinite connected graph
satisfies �� 2. For these values of �, the two parabolics generate a free subgroup of
SL.2;R/. Throughout this paper, we will denote the free group with two generators by
G D hh; vi, with the choice of generators names representing horizontal and vertical.
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Definition 3.4 (Group representations to SL.2;R/) For each � > 0, let ��W G !
SL.2;Z/ denote the representation generated by

(3-5) �h
� D

�
1 �

0 1

�
and �v� D

�
1 0

� 1

�
:

This representation is faithful so long as �� 2.

We have the following from work of Thurston [41, Section 6] and Veech [46, Section 9].

Proposition 3.5 (Automorphisms of S.G;w/) Suppose w is a positive eigenfunction
for the adjacency operator with eigenvalue � > 0. Then there is an endomorphism
from the free group on two generators into the affine automorphism group, ˆW G!
Aff.S.G;w//, so that D.ˆg/ D �

g

�
for all g 2 G . Moreover, we can take ˆh (and

respectively, ˆv ) to preserve all horizontal (resp. vertical) cylinders in the horizontal
(resp. vertical) cylinder decomposition and to act as a single Dehn twists on each
preserved cylinder.

The main idea of this paper is to use the subgroup ˆG � Aff.S.G;w// to renormalize
straight-line flows on these surfaces.

Remark 3.6 (Dihedral group action) The dihedral group of order eight generated by�
0 �1

1 0

�
and

�
�1 0

0 1

�
acts on the collection of surfaces obtainable from Thurston’s construction. If the matrix
A lies in this group, the surface A.S.G;w//D S.G0;w/ with G0 arising from G by
changing the bipartite and ribbon graph structures on G in a way that depends on A.
Note that this matrix group also acts on directions, and on the group G through its
action on the representation �G

�
by conjugation. We will use this dihedral group action

to reduce the number of cases we need to consider in several proofs in this paper.

4 Main results

In this section, we describe our main results: Theorems 4.4 and 4.5. We will also
introduce several ideas needed to state these results.

4.1 Renormalizable directions

Fix a real constant �� 2. We will define what it means for a direction � 2 S1 to be
�–renormalizable.
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The constant � determines a representation ��W G! SL.2;R/, where G D hh; vi is
the free group on two generators. See Definition 3.4. The group SL.2;R/ acts on the
real projective line, RP1 D .R2 X f0g/=R in the standard (linear) way. Recall that the
limit set for the action of a subgroup of SL.2;R/ on RP1 is the set of accumulation
points of an orbit. (Because �G

�
is a nonelementary Fuchsian group, the limit set is

independent of the choice of the orbit.)

We say a direction � is �–renormalizable if the following two statements are satisfied:

(1) The projectivization of � lies in the limit set of �G
�

.

(2) � is not an eigendirection of any matrix �g

�
where g is conjugate in G to an

element of the set fh; v; v�1hg.

We use R� � S1 to denote the set of all �–renormalizable directions.

Remark 4.1 (The size of the set of �–renormalizable directions) We note that since
�G
�

is a nonelementary subgroup of SL.2;R/, the limit set of �G
�

is always uncountable,
and statement (2) of our definition removes only countably many direction from this
set. When �D 2, R� is S1 with the vectors of rational slope removed. When � > 2,
then the limit set of �G

�
is a Cantor set. The Hausdorff dimension of the limit set varies

continuously in �� 2 and is strictly monotone decreasing. At �D 2, the dimension is
1, the dimension has a limiting value of 1

2
as �!C1. These results on Hausdorff

dimension are due to Sato [37, Section 2].

We will now explain how to relate �–renormalizable directions as we vary �. Consider
the Cayley graph of the free group G D hh; vi. This is the graph where elements of G

are the vertices, and two elements g1;g2 2G are joined by an edge if g2g�1
1

lies in
the symmetric generating set fh; v; h�1; v�1g. In particular, we have the notion of a
geodesic ray in G , which we characterize now:

Proposition 4.2 A sequence hg0;g1;g2; : : :i is a geodesic ray in G if and only if it
satisfies the following two statements:

(1) gnC1g�1
n 2 fh; v; h

�1; v�1g for all n� 0.

(2) gnC2 ¤ gn for all n� 0.

This follows from the fact that the Cayley graph of G is homeomorphic to the 4–valent
tree. We use geodesic rays to relate the �–renormalizable directions as we vary �.
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Lemma 4.3 Let �1 � 2 and let �1 2R�1
. Then:

(1) There is a unique geodesic ray hg0;g1; : : :i with g0 D e so that the length
k�

gi

�1
.�1/k decreases strictly monotonically as i!1. We call hg0;g1; : : :i the

�1 –shrinking sequence of �1 .
(2) For any �2 � 2, there is a unique pair of antipodal vectors ˙�2 2R�2

so that
the �1 –shrinking sequence of �1 coincides with the �2 –shrinking sequence of
either of the vectors ˙�2 .

Renormalizable directions are the topic of Section 7, and we prove this lemma at the
end of this section. Statement (2) has the consequence that the �–shrinking sequences
that arise from �–renormalizable directions are independent of the choice of �� 2. So
we call a geodesic ray hg0;g1; : : :i with g0 D e a renormalizing sequence if it is the
�–shrinking sequence for some �–renormalizable direction. We write ˙�.hgni; �/

when we determine an antipodal pair in this way.

4.2 Orbit equivalence

Definition 3.4 produced a surface based on an infinite graph G and a positive eigen-
function w. It is worth observing that fixing a graph satisfying our conditions, there
are uncountably many positive eigenfunctions. (See [34, Theorem 6.3] or our treatment
in Appendix C.) We will describe a result which shows how surfaces determined by
the same graph but differing eigenfunctions have similar dynamical properties.

If S is a translation surface and � 2 S1 , then we can consider the foliation F� of the
surface S by orbits of the straight-line flow F t

�
of Equation (3-1).

Theorem 4.4 (Orbit equivalence) Let G be an infinite, connected, bipartite, ribbon
graph with bounded valence as in Section 3.4. Suppose w1;w2 2 RV are positive
functions satisfying A.wi/D �iwi for i D 1; 2. Let hgni be a renormalizing sequence,
and let ˙�i D ˙�.hgni; �i/ be associated pairs of antipodal �i –renormalizable
directions (as in statement (2) of Lemma 4.3). Then there is a homeomorphism
�W S.G;w1/ ! S.G;w2/ such that �.F�1

/ D F�2
. Moreover, � can be taken to

preserve the decomposition of the surfaces into labeled rectangles as in Definition 3.3,

S.G;w1/D
[
e2E

R1
e and S.G;w2/D

[
e2E

R2
e ;

and so that the restricted maps �jR1
e
W R1

e !R2
e sends the bottom (resp. top, left, right)

edge of R1
e to the bottom (resp. top, left, right) edge of R2

e for all e 2 E . In this case,
the restriction of � to a map from

S
e2E @R

1
e to

S
e2E @R

2
e is uniquely determined.

This theorem is proved in Section 6, with the final step in the proof appearing in
Section 6.4.
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4.3 Extremal positive eigenfunctions

Before discussing the ergodic measures, we need to further analyze the positive eigen-
functions of the adjacency operator of an infinite connected graph G with bounded
valence. For � > 0, consider the set

E� D fnonnegative f 2RV satisfying A.f /D �f g:

The set E� is a closed convex cone in the topology of pointwise convergence. Further-
more, every f 2E� is positive except for the zero function 0 2RV . We call a positive
eigenfunction f 2E� extremal if f D f1Cf2 for f1;f2 2E� implies f1 D cf

for some real number c with 0� c � 1.

4.4 Ergodic measure characterization

Let S be a translation surface and � 2 S1 . Such a choice of direction determines a
foliation F� of S by orbits of the straight line flow in direction � . This foliation is
singular in the sense that some leaves hit singularities. There is a standard method of
constructing a nonsingular leaf space from such a foliation; we split all singular leaves
into two leaves. These leaves are then joined up to make continuous leaves: one split
leaf moves leftward around each singularity it hit and the other leaf moves rightward
around each the singularity. We use bF� to denote this nonsingular leaf space, which
we call the split leaf space. In our setting, bF� is a lamination. See Appendix A for a
more rigorous description of this construction.

A locally finite bF�–transverse measure is one which assigns finite measure to every
compact transversal to the leaf space. An example of such a measure is the Lebesgue
transverse measure on S . If 
 W Œ0; 1�! S is a differentiable transversal path, the
Lebesgue bF�–transverse measure satisfies


 7!

Z
t

j
 0.t/^�j dt;

where ^ denotes the usual wedge product between vectors in the plane;

(4-1) ^W R2
�R2

!R defined by .a; b/^ .c; d/D ad � bc:

We allow our transverse measures to be atomic. An atomic measure could be supported
on a single leaf for instance. We will be only be considering locally finite transverse
measures, so a leaf supporting an atomic measure can not accumulate in the surface.
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Theorem 4.5 (Ergodic measure characterization) Assume G , w1 , and �1 are as in
Theorem 4.4. Additionally assume G has no vertices of valence one. Then the locally
finite ergodic bF�1

–transverse measures on S D S.G;w1/ are precisely those measures
which arise from pulling back the Lebesgue bF�2

–transverse measure on S.G;w2/

under the homeomorphisms � given in Theorem 4.4, where w2 is an extremal positive
eigenfunctions of A .

Section 6 culminates in a proof of this theorem.

Remark 4.6 (Valence one) The author conjectures that the condition that G has no
vertices of valence one is unnecessary here. It is needed to verify some combinatorial
conditions (Definitions 6.30, 6.38 and 6.39), which we believe are still true in the
valence-one case, but which we could not prove. Indeed, the theorem holds with
the valence-one condition removed if these conditions can be proved to hold in the
valence-one case. See Theorem 6.57.

5 Historical remarks

Infinite translation surfaces were first studied in the context of billiards, because when a
polygon has angles which are irrational multiples of � , the Zemljakov–Katok unfolding
construction [50] produces an infinite translation surface. See for instance Vorobets and
Gal 0perin [47]. Recently however, there has been interest in infinite translation surfaces
which arise from other constructions. In the author’s [23] and Bowman’s [6], infinite
translation surfaces have been studied which arise from geometric limits. Additionally,
there are now many papers concerned with geometric questions about infinite covers
of translation surfaces. See Hubert and Schmithüsen [27], the author and Weiss [25],
and Schmoll [39] in addition to papers on the popular Ehrenfest wind-tree model (see
Section G3). Other recent work on infinite translation surfaces has included Chamanara,
Gardiner and Lakic [10] and Przytycki, Schmithüsen and Valdez [36].

Dynamicists have long been interested in skew products, and skew rotations have been
studied since the papers Schmidt [38] and Conze and Keane [15]. The greatest influence
on this paper was Theorem 1.4 of Aaronson, Nakada, Sarig and Solomyak [2] (which
we restate as Theorem E.1). Other papers in this area include Conze [12], Conze and
Frączek [13], Conze and Gutkin [14]. While interval exchange transformations have
been studied in close connection with translation surfaces since at least the 1970s, only
recently have skew rotations been studied using ideas from the theory of translation
surfaces. (Perhaps Hubert, Weiss and the author’s [24] was the first such example.)
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Now it appears quite natural to use translation surfaces to study dynamical questions
about skew products created using Z–valued cocycles over an interval exchange.

Recently the ergodic theory of straight line flows on infinite covers of translation
surfaces has been rapidly developing. In addition to this paper, work of Hubert and
Weiss shows that if a Z–cover of a translation surface has a Veech group which is a
lattice and the surface contains a strip, then the straight-line flow is ergodic in almost
every direction [25]. Since the first draft of this paper appeared, it has become apparent
from work of Frączek and Ulcigrai that typically we should not expect many ergodic
directions for the straight-line flow on a Z–cover of a translation surface. For instance,
it is shown in Frączek and Ulcigrai [19] that for any (unbranched) Z–cover of a genus
two translation surface the straight-line flow is not ergodic in almost every direction,
even though many of these surfaces have recurrent straight-line flows in almost every
direction.

The philosophy of the proofs in this paper come from Teichmüller theory. In particular,
we follow the spirit of a criterion of Masur [30] which guarantees unique ergodicity of
an interval exchange transformation involving finitely many intervals. Masur’s criterion
uses the Teichmüller flow on moduli space to demonstrate unique ergodicity. Rather
than using the Teichmüller flow directly, we make use of the inherent symmetries (affine
automorphisms) of surfaces produced using Thurston’s construction to renormalize the
space of invariant measures. This idea goes back to work of Veech [46]. This iterative
process was inspired by Smillie and Ulcigrai’s work on the regular octagon [40], which
produced detailed information about the trajectories of the straight-line flow. Our
techniques give weaker information about the behavior of trajectories than explicit
coding, but the information we extract is sufficient for classifying invariant measures.

6 Proofs of main results

The orbit equivalence theorem and ergodic measure characterization theorem (Theorems
4.4 and 4.5) are the main results of this paper. We prove these results in this section,
though we rely on work in later sections to flesh out many of the details.

We will now give an overview of the proofs of the main results. As in the statements
of these results, G will be an infinite, connected, bipartite, ribbon graph with bounded
valence. We let w be a positive eigenfunction of the adjacency operator AW RV !RV

with eigenvalue �. Our surface S D S.G;w/ is built as in Definition 3.3. We let
� D �.hgni; �/ be a �–renormalizable direction.

� In Section 6.1, we explain that there is a linear embedding of the space of locally
finite bF� –transverse measures into a cohomological space, H 1 . We derive a necessary

Geometry & Topology, Volume 19 (2015)



The invariant measures of some infinite interval exchange maps 1907

and sufficient criterion for an m 2H 1 to arise from a transverse measure in terms of
pairings of m with homology classes of saddle connections.

� In Section 6.2, we consider the affine action of the sequence of group elements
hgn 2Gi. This paper uses these group elements as renormalization operators. These
group elements act on H 1 . We give a necessary and sufficient criterion for m 2H 1 to
arise from a transverse measure in terms of the images of m under the action of hgni.

� In Section 6.3, we observe that there is a natural linear embedding of RV into H 1 .
The action of G on H 1 leaves invariant this image of RV , and the induced action of
the generators on RV is quite simple (see Equations (6-2) and (6-3)). We describe
necessary and sufficient conditions for the image of f 2RV in H 1 to come from a
transverse measure.

� In Section 6.4, we prove the orbit equivalence theorem (Theorem 4.4). Suppose
w2 is another eigenfunction of A with eigenvalue �2 and consider the direction
�2D �.hgni; �2/ on the surface S2DS.G;w2/. Since S and S2 are built in the same
combinatorial way, there is a natural isotopy class of homeomorphisms between them.
We use this to pull the cohomology class associated to the bF �2

–Lebesgue transverse
measure back to S . We use our understanding of transverse measures to observe that
this pullback cohomology class came from such a measure. By integrating this measure,
we improve our identification between these surfaces to a canonical homeomorphism
S ! S2 which carries F� to F�2

. This is the desired orbit equivalence.

� In Section 6.5, we introduce a hypothesis called the subsequence decay property.
We show that under this hypothesis all cohomology classes arising from transverse
measures lie in the image of RV inside H 1 . Going forward, we will consider the cone
of transverse measures as linearly embedded in RV .

� In Section 6.6, we introduce the action of the adjacency operator, A . We make
some more hypotheses: the critical decay property and the adjacency sign property.
We note these properties as well as the subsequence decay property hold for surfaces
built from graphs with no vertices of valence one. Under these hypotheses, we show
that A2 restricts to a bijection preserving the cone of transverse invariant measures.
Furthermore, we show that if f 2RV arises from an ergodic transverse measure, then
there is a �2 > 0 so that A2.f /D �2

2
f .

� In Section 6.7, we use Martin boundary theory to finish the proof of the ergodic
measure characterization theorem (Theorem 4.5). The prior section left us to consider
precisely which functions f satisfying A2.f /D �2

2
f arise from ergodic transverse

measures. It turns out that for each �2 , the set of f arising from transverse measures
and satisfying A2.f /D �2

2
f is the image under a linear map of the set of positive
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solutions to A.g/D �g . Via the Poisson–Martin representation theorem, the extreme
points of this latter space are understood in terms of the minimal Martin boundary.

6.1 Reinterpretation of invariant measures

Let S be an infinite translation surface constructed as a union of polygons as in
Section 3.1, and let V be the collection of all points in S which are (identified) vertices
of those polygons. Let � 2 S1 be a direction and bF� be the leaf space of orbits of the
straight line flow in direction � , with singular leaves split. Let M� denote the space
of all locally finite transverse measures for bF� .

Let H1.S;V;R/ denote the real homology classes of closed curves in S=V (ie S

with the points in V collapsed to a single point). Here we only allow such curves to
visit finitely many polygons in the decomposition of S into polygons. We will always
use H 1 to indicate the dual space to H1.S;V;R/. That is, H 1 is the collection of all
linear maps from H1.S;V;R/!R. We choose this notation because H 1 will be the
only cohomological space we consider.

A transverse measure � 2M� determines a linear map ‰�.�/W H1.S;V;Z/! R.
This map is defined to be JxK 7! �.x/ if x is a curve in S joining a point in V

to a point in V and everywhere crossing the leaf space bF� with positive algebraic
sign. (To be precise, if the leaves of bF� are upward pointing, then the transversals
moving rightward across the leaf space cross with positive algebraic sign.) This map
can be uniquely extended to a linear map ‰�.�/W H1.S;V;Z/!R, since the map is
determined on a basis. Note that ‰�.�/ is a cohomology class in H 1 . So ‰� defines
a linear map M�!H 1 .

Recall F t
�

denoted the flow on a translation surface in direction � . We call the flow
F t
�
W S!S conservative if given any subset A�S of positive measure and any T > 0,

for Lebesgue ae x 2 S there is a t > T for which F t
�
.x/ 2A. We have the following.

Lemma 6.1 Let S be a translation surface with nonempty singular set V . The map
‰�WM�!H 1 is injective if the straight-line flow F t

�
has no periodic trajectories and

is conservative.

This statement is proved in Appendix A3.

We can apply this result because we have the following three results for the transla-
tion surface S D S.G;w/ constructed as in Definition 3.3, with w 2 RV a positive
eigenfunction for the adjacency operator with eigenvalue �.

A saddle connection is an oriented geodesic segment � � S which visits only finitely
many polygons making up S and intersects V precisely at its endpoints. The holonomy
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of a saddle connection, hol.�/ 2 R2 , is the vector difference between the end and
starting points of a developed image of � into the plane.

Theorem 6.2 (No saddle connections) No saddle connection of S.G;w/ has a holo-
nomy vector which points in a �–renormalizable direction.

This theorem is proved in Section 8. Note that in any translation surface, a periodic
trajectory of the straight-line flow lies in a maximal Euclidean cylinder whose core
curves are parallel to the trajectory. The obstruction to further enlarging such a cylinder
is the presence of vertices in the boundary, so such a cylinder is bounded by a finite
number of saddle connections. So as a consequence of the above theorem, we see:

Corollary 6.3 (Aperiodicity) The surface S.G;w/ admits no periodic straight-line
trajectories in �–renormalizable directions.

Finally, in Section 9, we prove the following:

Theorem 6.4 (Conservativity) The straight-line flow on S.G;w/ in a �–renormaliz-
able direction is conservative.

So, by the lemma above, we have the following:

Corollary 6.5 If � is a � renormalizable direction on the surface S.G;w/, then the
map ‰�WM�!H 1 is injective.

The first idea in the proof of our main results is to work with the convex cone ‰�.M�/

rather than working directly with measures. In order to do this, we give a criterion for
a cohomology class to come from a measure.

Lemma 6.6 Given m 2 H 1 , we have m 2 ‰�.M�/ if and only if for all saddle
connections � with m.J�K/¤ 0 we have

sgn.m.J�K//D sgn.hol.�/^�/:

Here sgnW R! f�1; 0; 1g is the signum function, which assigns to a real number the
element of f�1; 0; 1g with the same sign.

The proof of this lemma is in Appendix A3.

Remark 6.7 (Awkward inequalities) The construct “a¤ 0 implies sgn.a/D sgn.b/”
is equivalent to the longer statement “if b > 0 then a � 0 and if b < 0 then a � 0”.
We will repeatedly use this more compact construct in this paper.

Geometry & Topology, Volume 19 (2015)



1910 W Patrick Hooper

6.2 Action of the affine automorphism group

For the remainder of Section 6, we will let S D S.G;w/ be a translation surface as
constructed in Section 3.4. Let E denote the set of horizontal and vertical edges of the
rectangles making up S , and V denotes the set of vertices of rectangles. By definition,
the edges in E are all saddle connections, since they join a point in V to a point in V .
We orient the horizontal saddle connections in E rightward, and the vertical saddle
connections upward. We have the following.

Proposition 6.8 Homology classes of saddle connections in E span H1.S;V;Z/.

The proof is to simply note that by cutting along the horizontal and vertical saddle
connections, we decompose S into rectangles. In particular, an m 2H 1 is determined
by what it does to E .

Let �W S ! S be an orientation preserving affine automorphism of S . Then � acts
on the space of transverse measures by pushing forward the measure. For all � 2 S1 ,
� induces a bijection

��WM�!MD.�/.�/; � 7! � ı��1:

Now suppose that � preserves the singular set V . (It may not, since we allow removable
singularities.) Then this action on measures is compatible with the pushforward action
on H 1 . We abuse notation by also denoting this pushforward by ��W H 1!H 1 . For
m 2H 1 , we define ��.m/ by

(6-1) .��.m//.JxK/Dm ı��1.JxK/

for all JxK 2H1.S;V;Z/. For all � 2M� we have

�� ı‰�.�/D‰D.�/.�/ ı��.�/:

We now recall Proposition 3.5. If w is a positive eigenfunction for G with eigenvalue �,
we have an action ˆ of the free group GDhh; vi by affine automorphisms of S.G;w/.
This group action preserves the vertex set V . The action induced on homology is
independent of the choice of such a positive eigenfunction w. The following proposition
will explain the action on the generating set E of H1.S;V;Z/.

For each saddle connection � 2E , we use J�K 2H1.S;V;Z/ to denote its homology
class. Recall that vertices v 2 V correspond to cylinders cylv as in Equation (3-4). If
v 2 A, this cylinder is horizontal. Otherwise it is vertical. We use JcylvK to denote
the homology class of a core curve. As with J�K we orient JcylvK either rightward or
upward. Note that any � 2E traverses exactly one cylinder cylv .
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Proposition 6.9 (Action on homology) Given any � 2E , we have

ˆhk

.J�K/D
�
J�K if � is horizontal,
J�KC kJcylaK if � is vertical and traverses cyla with a 2A,

ˆv
k

.J�K/D
�
J�KC kJcylbK if � is horizontal and traverses cylb with b 2 B,
J�K if � is vertical.

Recall that a �–renormalizable direction � has a �–shrinking sequence of elements
of G , hgni. We also call hgni a renormalizing sequence. See Section 4.1 and, in
particular, Lemma 4.3.

Definition 6.10 We say that an m 2H 1 is a .�; n/–survivor if for all saddle connec-
tions � 2ˆg�1

n .E/ we have m.J�K/¤ 0 implies

sgn.m.J�K//D sgn.hol.�/^�/:

The collection of .�; n/–survivors m 2H 1 is a closed convex cone by Remark 6.7.
Note that this definition verifies the conditions of Lemma 6.6 on a subset of saddle
connections depending on n. But it turns out that checking each of these subsets is
sufficient for concluding that m arises as ‰.�/ for some � 2M� .

Theorem 6.11 (Survivors and measures) Let � be a �–renormalizable direction. For
any m 2H 1 , m 2‰�.M�/ if and only if m is a .�; n/–survivor for all n� 0.

The proof follows from analyzing the action of the sequence �gn

�
on S1 . We show that

if m is a .�; n/–survivor for all n, then m satisfies Lemma 6.6. Note that Theorem 6.2
implies we do not need to worry about saddle connections in the direction of � . See
the end of Section 10 for the proof.

We can derive an equivalent definition of being a .�; n/–survivor by acting by ˆgn

on H 1 . This action was described in Equation (6-1), and we denote this G action by
ˆG
� W H

1!H 1 .

Proposition 6.12 The condition that m be a .�; n/–survivor is equivalent to the
statement that for all � 2E , we have .ˆgn

� .m//.J�K/¤ 0 implies

sgn.ˆgn
� .m//.J�K/D sgn.hol.�/^ �gn

�
.�//:

Remark 6.13 (Renormalization argument) The interpretation of being a .�; n/–
survivor provided in by Proposition 6.12 allows for a renormalization argument in
the following sense. The conditions on being a .�; 0/–survivor are relatively weak,
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and depend only on the quadrant containing � . Observe that m is a .�; n/–survivor
if and only if ˆgn

� .m/ is a .�gn

�
.�/; 0/–survivor. By Theorem 6.11, the cohomology

classes associated to invariant measures are precisely those for which ˆgn
� .m/ is a

.�
gn

�
.�/; 0/–survivor for all n. In that sense, we are utilizing the action of the shrinking

sequence hgn 2 Gi on the space of straight-line flows of S.G;w/ to understand the
invariant measures for these flows.

6.3 Operators on graphs

In addition to the adjacency operator, A , defined in Definition 3.1, we will be studying
the following linear operators on RV :

H k.f /.x/D
�
f.x/C k

P
y�x

f.y/ if x 2A,

f.x/ if x 2 B,
(6-2)

V k.f /.x/D
�
f.x/ if x 2A,
f.x/C k

P
y�x

f.y/ if x 2 B.
(6-3)

We define the group action ‡ W G�RV!RV by extending the definition ‡hDH and
‡v D V . As long as G is an infinite connected graph, the group action ‡ is a faithful
action of the free group with two generators. The operators relate to the adjacency
operator, A , by the equations

(6-4) AH D VA and AV DHA:

There is a natural linear embedding „W RV ! H 1 . Given f 2 RV , and JxK 2
H1.S;V;Z/ we define

(6-5) „.f /.JxK/D
X
v2V

i.JxK; JcylvK/f.v/:

Here i W H1.S;V;Z/�H1.S X V;Z/! Z denotes the usual algebraic intersection
number, and JcylvK is as defined above Proposition 6.9. This sum is well defined,
because i.JxK; JcylvK/D 0 for all but finitely many v 2 V .

It is not difficult to see that the image „.RV/ is invariant under the action of the affine
automorphism group. In fact, we have the following.

Proposition 6.14 For all g 2G we have ˆg
� ı„D„ ı‡

g .

This proposition is proved in Section 11.

Suppose that f 2RV is a positive function. Then we can think of „.f / as the element
of H 1 arising from the Lebesgue transverse measure to the foliation in direction of angle
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�=4 on the surface S.G;f /. Similar interpretations arise from considering an f 2RV

where the signs of f on the subsets of vertices A and B are fixed. This idea is what
gives rise to the notions of quadrants, which we are about to introduce. We will show
that ‰�.M�/�„.R

V/. Moreover, we will show that the set of transverse measures
to the split leaf space bF� (see Section 4.4 and Appendix A) all can be interpreted as
such Lebesgue transverse measures on S.G;f / with f satisfying survivor conditions,
as defined below.

Definition 6.15 (Survivors in RV ) Assume � 2 S1 is a �–renormalizable direction
with �–shrinking sequence hgni. We say that f 2RV is a .�; n/–survivor if „.f /
is a .�; n/–survivor. We say f is a � –survivor if it is a .�; n/–survivor for all n� 0.
We use S� �RV to denote the set of all � –survivors.

We will introduce an equivalent definition which is intrinsic to RV . For this, we need a
few more definitions.

Definition 6.16 (Sign pairs) The set of sign pairs is the set of four elements SPD
f.˙1;˙1/g. We abbreviate these elements by writing

CCD .1; 1/; C�D .1;�1/; �CD .�1; 1/; ��D .�1;�1/:

We will use �1 and �2 to denote the projection functions. For instance �1.�C/D�1

and �2.�C/D 1.

Definition 6.17 (Quadrants in R2 ) The four open quadrants in R2 are naturally in
bijection to the elements s 2 SP. We define

Qs D f.x;y/ 2R2
W sgn x D �1.s/ and sgn y D �2.s/g:

We use cl.Qs/ to denote the closure Qs .

Definition 6.18 (Quadrants in RV ) The four quadrants in RV are

bQs D

�
f 2RV

W
f.a/D 0 or sgnf.a/D �1.s/ for all a 2A
f.b/D 0 or sgnf.b/D �2.s/ for all b 2 B

�
:

Recall that the orbit under �G
�

of a �–renormalizable direction does not include the
horizontal or vertical directions.

Definition 6.19 (Sign sequence of � ) Suppose � has �–shrinking sequence hgni.
We define the corresponding (�–) sign sequence of � to be the sequence hs0; s1; s2; : : :i

with sn 2 SP so that �gn

�
.�/ 2Qsn

for all i .
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The �–sign and �–shrinking sequences turn out to uniquely determine � .

Proposition 6.20 (Quadrant sequences) Let � 2 R� with �–shrinking sequence
hgni and sign sequence hsni. The only v 2 S1 for which �gn

�
.v/ 2 Qsn

for all n is
v D � .

This proposition is proved in Section 10.4.

Recall from Section 4.1 that a renormalizing sequence hgni and a � � 2 determine
an antipodal pair of unit vectors ˙�.hgni; �/ 2 S1 for which hgni is the �–shrinking
sequence. The quadrants containing these vectors do not change as we vary �.

Proposition 6.21 If hgni is a renormalizing sequence and �; �0�2, then the antipodal
pairs ˙�.hgni; �/ and ˙�.hgni; �

0/ lie in the same pair of quadrants.

This proposition is proved at the end of Section 7.3. Because of this, given a choice
of � 2R� with �–shrinking sequence hgni, we can let �.hgni; �

0/ denote the choice
from the antipodal pair ˙�.hgni; �

0/ which lies in the same quadrant as � .

We will need the following result in the proof of the orbit equivalence (Theorem 4.4).

Proposition 6.22 The �–sign sequence of � is the same as the �0–sign sequence of
�.hgni; �

0/.

This proposition will be proved at the end of Section 10.1. The sign sequence gives us
a more natural definition of being a .�; n/–survivor.

Proposition 6.23 (Equivalent notion of survivors) Let f 2RV . Then f is a .�; n/–
survivor if and only if ‡gn.f / 2 bQsn

.

Proof By Proposition 6.14, ˆgn
� ı„.f /D„ı‡

gn.f /. Showing that f is a .�; n/–
survivor is equivalent to showing that „ı‡gn.f / is a .�gn

�
.�/; 0/–survivor. Therefore,

it is enough to consider the case when nD 0.

Write � D .x;y/ and set sx D sgn x and sy D sgn y . As � is �–renormalizable,
sx; sy 2f�1; 1g. If �v2E is a vertical saddle connection, then sgn.hol.�v/^�/D�sx .
If �v 2E is horizontal, then sgn.hol.�h/^�/D sy . Assuming �v crosses the horizontal
cylinder a 2A and �h crosses the vertical cylinder b 2 B , we have

„.f /.�v/D�f.a/ and „.f /.�h/D f.b/:

Therefore, „.f / is a .�; 0/–survivor if and only if sgnf.a/ 2 f0; sxg and sgnf.b/ 2
f0; syg for all a 2A and b 2 B . The conclusion of the proposition follows.
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6.4 The topological conjugacy

In this subsection, we will prove Theorem 4.4. Throughout this subsection w1;w22RV

will be positive functions satisfying A.wi/ D �iwi . The sequence hgni will be a
renormalizing sequence, and �i D �.hgni; �i/ 2 S1 will be chosen from the pairs of
antipodal �i –renormalizable directions with �i –shrinking sequence hgni so that �1

and �2 lie in the same quadrant. We write �i D .xi ;yi/.

For any positive f 2RV with A.f /D �f , there is a naturally related parameterized
plane in RV :

(6-6) Pf W R
2
!RV ; Pf.x;y/.v/D

�
xf.v/ if v 2A,
yf.v/ if v 2 B.

This plane is invariant under the action of H and V :

Proposition 6.24 (Invariant planes) Let v 2 R2 . Then, for all g 2 G , we have
‡g.Pf.v//D Pf.�

g

�
.v//.

The proof is a simple calculation.

We will be considering the parametrized planes Pw1
and Pw2

. For i D 1; 2, let �i

be the Lebesgue bF �i
–transverse measures on S.G;wi/. These measures are closely

connected to the planes constructed above.

Proposition 6.25 For i D 1; 2, we have ‰�i
.�i/D„.Pwi

.�i//.

Proof Let a 2 A and b 2 B . Let �v be a vertical saddle connection crossing the
horizontal cylinder cyla and oriented upward. Let �h be a rightward oriented horizontal
saddle connection crossing the vertical cylinder cylb . By definition of ‰�i

.�i/ and
the Lebesgue transverse measure, we have

‰�i
.�i/.J�vK/D .0;wi.a//^�i D�xiwi.a/;

‰�i
.�i/.J�hK/D .wi.b/; 0/^�i D yiwi.b/:

Similarly, by definition of „ we have

„.Pwi
.�i//.J�vK/D i.J�vK; JcylaK/Pwi

.�i/.a/D�xiwi.a/;

„.Pwi
.�i//.J�hK/D i.J�hK; JcylbK/Pwi

.�i/.b/D yiwi.b/:

Proposition 6.26 Pw2
.�2/ is a �1 –survivor. Moreover v D �2 is the unique v 2 S1

for which Pw2
.v/ is a �1 –survivor.
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Proof We show that Pw2
.�2/ is a .�1; n/–survivor for all n. Let sn be the nth entry

in the sign sequences of �1 and �2 . (These are the same by Proposition 6.22.) By
Proposition 6.24, we have that

‡gn.Pw2
.�2//D Pw2

.�
gn

�2
.�2//:

We know �
gn

�2
.�2/ 2Qsn

. So by definition of Pw2
, we have Pw2

.�
gn

�2
.�2// 2 bQsn

and
we may apply Proposition 6.23.

Uniqueness of the choice �1 –survivor follows by combining the above argument with
Proposition 6.20.

Let Mi denote the locally finite bF �i
–transverse measures on S.G;wi/. We can

observe the following from Theorem 6.11 and Definition 6.15.

Corollary 6.27 There is an unique measure �0
2
2M1 with ‰�1

.�0
2
/D„.Pw2

.�2//.

This measure �0
2

is our candidate pull-back measure. It remains to build our homo-
morphism. We begin by building a continuous map from �1W S.G;w1/! S.G;w2/.
For e 2 E , let Ri

e be the rectangles of S.G;wi/ associated to the edge of the graph
e D ab. We define the map on these rectangles. Recall we may view each Ri

e as the
rectangular subset of the plane, Œ0;wi.b/�� Œ0;wi.a/�. (See Definition 3.3.) We define
the restriction map �1j@R1

e
W @R1

e ! @R2
e along the edges by integrating the measure

�0
2

and rescaling appropriately. For instance along the bottom edge B �R1
e , which is

identified with the interval Œ0;w1.b/�� f0g, we use the formula

�1jB.t; 0/D
�

1

jy2j
�02.Œ0; t �� f0g/; 0

�
2R2

e :

(Recall y2 is the y –coordinate of �2 .) We must check that this map sends the bottom
edge of R1

e to the bottom edge of R2
e . This follows from the fact that ‰�1

.�0
2
/ D

„.Pw2
.�2//, because the bottom edge of R1

e is a saddle connection, �hD Œ0;w1.b/��
f0g. We evaluate the x–coordinate of the lower right endpoint as

(6-7) �1jB.wi.b/; 0/D
1

jy2j
�02.�h/D

1

jy2j
j„.Pw2

.�2//.J�hK/j

D
1

jy2j
jPw2

.�2/.b/j D
1

jy2j
jy2w2.b/j Dw2.b/:

This shows that �1jL maps to the lower edge, but it may not be surjective or continuous
if �0 contains atoms. For the left, top and right edges (L, T and R respectively), we
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use the following formulas:

(6-8)

�1jL.0; t/D
�
0;

1

jx2j
�02.f0g � Œ0; t �/

�
;

�1jT .t;w1.a//D
�

1

jy2j
�02.Œ0; t �� fw1.a/g/;w2.a/

�
;

�1jR.w1.b/; t/D
�
w2.b/;

1

jx2j
�02.fw1.b/g � Œ0; t �/

�
:

Together these define the map �1j@R1
e
W @R1

e ! @R2
e . A similar check for each edge

shows that �1j@R1
e

sends the respective vertices of R1
e to the respective vertices of R2

e .

Proposition 6.28 The map �1j@R1
e

sends points on the same connected component of
a leaf of bF�1

inside R1
e to points on the same connected component of a leaf of bF�2

inside R2
e .

Proof We can assume without loss of generality that �1 and �2 are in the first quadrant.
We must check that if the points P;Q 2 @R1

e satisfy
��!
PQ k �1 , then

���!
P 0Q0 k �2 where

P 0 D �1j@R1
e
.P / and Q0 D �1j@R1

e
.Q/. We will check this in case P lies on the left

edge L and Q lies on the top edge T . We leave the remaining cases to the reader. In
this case via the identification of R1

e with the rectangle Œ0;wi.b/�� Œ0;wi.a/�, there
is a r > 0 so that P D .0;w1.a/� ry1/ and QD .rx1;w1.a//. Let O D .0;w1.a//.
We note that the transversals OP and OQ cross the same collection of leaves. Let
s D �0

2
.OP /. Then by this observation s D �0

2
.OQ/. We compute

P 0 D
�
0;

1

x2
�02.f0g � Œ0;w1.a/� ry1�/

�
D

�
0;

1

x2
.�02.f0g � Œ0;w1.a/�/��02.OP //

�
D

�
0;

1

x2
.x2w2.a/� s/

�
D

�
0;w2.a/�

s

x2

�
;

Q0 D
�

1

y2
�02.OQ/;w2.a/

�
D

�
s

y2
;w2.a/

�
:

Indeed,
���!
P 0Q0 D s

x2y2
�2 , with �2 D .x2;y2/.

By the proposition, we can extend definition of �1j@R1
e

to a map �1jR1
e
W R1

e ! R2
e .

If fP;Qg is the boundary of a connected component of a leaf of bF �1
inside R1

e , then
by the proposition we know P 0Q0 is a connected component of a leaf of bF�2

inside
R2

e , where P 0 D �1j@R1
e
.P / and Q0 D �1j@R1

e
.Q/. Then we can define �1 onto PQ

by defining PQ!P 0Q0 affinely (so it scales distance linearly). Thus we have defined
�1jR1

e
W R1

e !R2
e .
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We similarly define �1jR1
e
W R1

e!R2
e for all e2E . These maps agree on the boundaries

of rectangles, so we have defined the map �1W S.G;w1/! S.G;w2/. We must show
that �1 is continuous. Discontinuities of �1 can only arise from atoms of �0

2
. For each

atom A of �0
2

there is a strip in S.G;w2/X�1.S.G;w1// whose width is the measure of
the atom. Note that each vertex of each rectangles R2

e is in �1.S.G;w1//. Therefore for
each atom A we have an isometrically embedded strip �W .0; �0

2
.fAg//�R!S.G;w2/

which sends the vertical foliation of the strip to the foliation bF �2
. But the vertical flow

in the strip is not conservative, and so the existence of this strip contradicts the fact that
the straight-line flow in direction �2 on S.G;w2/ is conservative. See Theorem 6.4.
Thus �1W S.G;w1/! S.G;w2/ is indeed continuous and surjective.

It remains to show that �1 is invertible. We can construct a map �2W S.G;w2/!

S.G;w1/ by switching the rolls of 1 and 2. The composition �2 ı �1W S.G;w1/!

S.G;w1/ preserves the Lebesgue measures of transversals to bF �1
, and it preserves

all vertices of rectangles R1
e . Therefore, the composition must act trivially on the

boundaries of rectangles R1
e . Moreover, the composition acts affinely on connected

components of leaves intersected with R1
e , and so must act trivially on each such

connected component of a leaf. Therefore, �2 ı�1 is the identity map.

Finally, we consider the uniqueness statement. Now suppose there were �0
2
; �00

2
2M1

so that there are homeomorphisms �0
1
; �00

1
W S.G;w1/! S.G;w2/ which send R1

e to
R2

e and respect the names of the boundary edges of the rectangles (bottom, top, left and
right) and which push the measures �0

2
; �00

2
forward to the Lebesgue bF �2

–transverse
measure on S.G;w2/. Then we notice that the cohomology classes ‰�1

.�0
2
/ and

‰�1
.�00

2
/ must be the same. Therefore, �0

2
D �00

2
by Lemma 6.1 and Theorem 6.4.

Finally, we see that the restrictions of �0
1

and �00
1

to the boundaries of rectangles are
determined by �0

2
and �00

2
. (In fact they must be determined as in equations (6-7) and

(6-8).) Thus the restrictions of �0
1

and �00
1

to the boundaries of rectangles must be the
same. This concludes the proof of Theorem 4.4.

We have the following corollary to the topological conjugacy theorem, which will be
useful later. It is stated in the context of Theorem 4.4.

Corollary 6.29 The pullback of the Lebesgue bF �2
–transverse measure on S.G;w2/

under the homeomorphism �W S.G;w1/ ! S.G;w2/ (which was denoted �1 and
constructed above) is ‰�1

�1
ı„.Pw2

.�2//.

6.5 Surviving functions and measures

We will now continue the discussion from Section 6.3. Recall that if f was a � –
survivor, then we obtain an invariant measure ‰�1

�
ı„.f / by Theorem 6.11 and
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Definition 6.15. It turns out that under a “reasonable” assumption all measures arise in
this way. Recall that S� denotes the set of all � –survivors in RV .

Definition 6.30 (Subsequence decay property) We say that S.G;w/ has the subse-
quence decay property, if for any � 2 R� and any f 2 S� there is a subsequence
hgni
i of the �–shrinking sequence of � for which

lim
i!1

‡gni .f /.v/D 0 for all v 2 V .

Recall that by Theorem 6.11, m 2H 1 is the cohomology class of a bF�–transverse
measure if and only if m is a .�; n/ survivor for all n� 0.

Theorem 6.31 Suppose S.G;w/ has the subsequence decay property, and let � 2R� .
If m 2H 1 is a .�; n/–survivor for all integers n� 0, then mD„.f / where f 2 S� .

We prove Theorem 6.31 in Section 11. In Section 13, we will show that if G has no
nodes of valence one, then S.G;w/ has the subsequence decay property. (In fact, we
prove that S.G;w/ has a stronger property. See Definition 6.38 and Theorem 6.40,
below.)

By combining Theorems 6.31 and 6.11, we have the following.

Corollary 6.32 If S.G;w/ has the subsequence decay property, then ‰�.M�/ D

„.S�/. Moreover, both ‰� and „ are injective, so this yields a linear isomorphism
between M� and S� .

In other words, we have reduced the problem of classifying locally finite transverse
measures to the study of � –survivors in RV .

6.6 The action of the adjacency operator

In this section, we introduce the adjacency operator A to our arguments.

Let x� W R2!R2 denote the involution .x;y/D .y;x/. The action of x� permutes the
quadrants. We define the action of x� on pairs of signs so that Qs DQxs . The action of
x� conjugates � h

�
to � v

�
and vice versa. The induced action on G is given by the group

homomorphism x� W G! G defined so that xh D v and xv D h. It follows that for all
g 2G and all v 2R2 , we have

� xg� .v/D �
g
�
.xv/:

Recall from (6-4) that AH D VA and AV DHA . Thus, for g 2G , we have

(6-9) A‡g
D ‡ xgA:
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Corollary 6.32 indicated that in the presence of the subsequence decay property, „�1 ı

‰� is a bijective correspondence between M� , the space of transverse measures for
the foliation in direction � , and the space S� of � –survivors in RV . We have the
following.

Proposition 6.33 If f 2RV is a � –survivor then A.f / is a x� –survivor.

Proof Let hgni and hsni denote the shrinking and sign sequences of � , respectively.
Then the shrinking sequence of x� is hxgni and the sign sequence is hxsni. By the notion
of survivors given in Proposition 6.23, as f is a � –survivor, we have ‡gn.f / 2 bQsn

for all n. By Equation (6-9), we know

‡ xgn ıA.f /DA ı‡gn.f / 2A.bQsn
/� bQxsn

for all n. Hence A.f / is a x� –survivor by Proposition 6.23.

We will show that A is a bijection from the cone of �–survivors to the cone of
x� –survivors. First we will discuss injectivity. Note that A is not injective when
considered on RV . We have the following description of the group action ‡ on
kerA D fk 2RV W AkD 0g. For any subset U � V we define �U W R

V !RV by

(6-10) �U .f /.v/D
�
f.v/ if v 2 U ;

0 otherwise.

Proposition 6.34 (Kernel of A ) For all f 2RV and all k 2 Z, we have

H k.f /D f C k�B ıA.f / and V k.f /D f C k�A ıA.f /:

In particular, if k 2 kerA then ‡g.k/D k for all g 2G .

The proof is trivial, and follows from comparing the definitions of A , H and V . (See
Definition 3.1 and equations (6-2) and (6-3), respectively.)

Proposition 6.35 (Injectivity of A ) Suppose S.G;w/ has the subsequence decay
property. Then the restriction of A to the cone of all � –survivors is injective.

Proof Suppose that f1;f2 are both � –survivors and that A.f1/ D A.f2/. Then
f2Df1Ck with k2 kerA . We will show k.x/D 0 for all x2V . By Proposition 6.34,
for all g 2G we have

kD ‡g.k/D ‡g.f2/�‡
g.f1/:
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By the subsequence decay property, we know that there is a subsequence gni
of the

�–shrinking sequence for � so that limi!1‡
gi .fj /D 0 coordinatewise for j D 1; 2.

For all x 2 V ,

k.x/D lim
i!1

‡gni .k/.x/D lim
i!1

�
‡gni .f2/�‡

gni .f1/
�
.x/D 0:

We will now discuss why A surjectively maps the �–survivors onto the space of
x� –survivors. To do this we need to be able to find inverses under the adjacency
operator.

We use RV
c to denote the finitely supported functions V!R. There is a natural bilinear

pairing h ; iW RV �RV
c !R given by

(6-11) hf ;xi D
X
v2V

x.v/f.v/:

This sum is well defined because x is only nonzero at finitely many v 2 V . The
operators A , H and V restrict to actions on RV

c . Furthermore,

(6-12) hAf ;xi D hf ;Axi; hHf ;xi D hf ;Vxi and hVf ;xi D hf ;Hxi

for all f 2 RV and all x 2 RV
c . We define the group automorphism 
 W G ! G by

extending the definition on generators

(6-13) 
 .h/D v�1 and 
 .v/D h�1:

Note 
 2 is trivial. The natural extension of Equation (6-12) to all g 2G is

(6-14) h‡gf ; ‡
.g/xi D hf ;xi:

We have the following variation of a theorem of Farkas [18]. (See [3, Corollary 3.46],
for a more modern treatment.)

Lemma 6.36 (Farkas’ theorem for the adjacency operator) Let f 2 bQCC . The
following two statements are equivalent.

(1) There is a g 2 bQCC with Ag D f .

(2) For all x 2RV
c , if Ax 2 bQCC then hf ;xi � 0.

This lemma is proved in Appendix B; it follows from a generalized form of Farkas’
theorem. We will use criterion (2) to check for surjectivity. We will simplify this
criterion. First, we introduce a more strict version of the subsequence decay property.
In order to define this property, we need the following useful fact about renormalizable
directions.
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Lemma 6.37 (Critical times) Suppose � is a �–renormalizable direction. Then
there are infinitely many n 2N such that if f 2RV is a .�; n/–survivor, then f is a
.�;m/–survivor for all m� n.

This lemma is proved in Section 11.2. We prove this lemma, by showing that there a
sequence of values of n which are guaranteed to have the property above. These values
of n satisfy a simple combinatorial criterion related to the shrinking sequence, and we
call them critical times. See Definition 10.7.

Definition 6.38 (Critical decay property) S.G;w/ has the critical decay property,
if for any � 2 R� and any f 2 S� the sequence of critical times, hgni

i, of the
�–shrinking sequence of � satisfies

lim
i!1

‡gni .f /.v/D 0 for all v 2 V .

The critical decay property implies the subsequence decay property of Definition 6.30.

Definition 6.39 (Adjacency sign property) The graph G has the adjacency sign
property, if for any � 2QCC\R� , any f 2 S� , any x 2RV

c such that Ax 2 bQCC
and any critical time t for the �–shrinking sequence hgni we have˝

‡gt .f /; ‡
.gt /.x/�x
˛
� 0:

In Section 13, we prove the following.

Theorem 6.40 (Graphs without vertices of valence one) If G is an infinite connected
bipartite graph with no vertices of valence one and w is a positive eigenfunction for
the adjacency operator, then S.G;w/ has the critical decay property and G has the
adjacency sign property.

Remark 6.41 The author believes that these properties should hold even when G has
vertices of valence one.

Proposition 6.42 Assume S.G;w/ has the critical decay property and G has the
adjacency sign property. Let � 2R� and f 2 Sx� . Then there is a .�; 0/–survivor g

with Ag D f .

Proof Without loss of generality, we may assume f 2 bQCC . The statement that g

is a .�; 0/–survivor is equivalent to saying g 2 bQCC . We show the existence of such
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a g using Farkas’ theorem for the adjacency operator. Let x 2RV
c with Ax 2QCC .

By Equation (6-14), for any g 2G ,

hf ;xi D
˝
‡g.f /; ‡
.g/.x/�x

˛
C
˝
‡g.f /;x

˛
:

Let hgni
i be the critical subsequence of the �–shrinking sequence of � . By the critical

decay property, we see h‡gni .f /;xi ! 0 as i !1. By the adjacency sign property,
we have h‡gni .f /; ‡
.gni

/.x/�xi is always nonnegative. Thus

hf ;xi D lim
i!1

˝
‡gni .f /; ‡
.gni

/.x/�x
˛
C
˝
‡gni .f /;x

˛
� 0

as needed to apply Farkas’ theorem (Lemma 6.36).

Given Proposition 6.42, the proof that there is a � –survivor, g , with Ag D f is not
difficult. Roughly, the proof carefully combines this proposition with the critical times
lemma. Let n be a critical time. Then we can find a .�gn

�
.�/; 0/–survivor gn such that

A.gn/D ‡
gn.f /. Let g D ‡ xg

�1
n .gn/. By Lemma 6.37, g is a .x�;m/–survivor for

all mD 0; : : : ; n. Thus the main technical difficulty is showing that the sets of all such
candidates of the form ‡ xg

�1
n .gn/ for each critical time n have a nontrivial intersection.

This argument is fully explained in Section 11.4 in the proof of the following lemma.

Lemma 6.43 (Surjectivity) Assume S.G;w/ has the critical decay property and G
has the adjacency sign property. Let � 2R� and f 2 Sx� . Then there is a g 2 S� with
A.g/D f .

Combining Lemma 6.43 with Proposition 6.35, we observe the following.

Theorem 6.44 Assume S.G;w/ has the critical decay property and G has the adja-
cency sign property. If � is a �–renormalizable direction, then the adjacency operator
restricts to bijection between the set of � –survivors and the set of x� –survivors.

Proposition 6.45 If f 2 S� , then A2.f /�f 2 S� .

Proof We consider the operator A2 � I . First observe that for all s 2 SP, we have
.A2 � I/.bQs/ � bQs . To see this, we may take s D CC without loss of generality.
Then, if v 2 V , we can find an w� v. Then by definition of A we have

A2.f /.v/�A.f /.w/� f.v/;

and therefore A2.f /.v/�f.v/� 0 as desired.

Second, we may observe that A2� I commutes with ‡g for all g 2G . This follows
from linearity and Equation (6-9). Since we assumed f was a .�; n/ survivor, we
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know ‡gn.f / 2 bQsn
. Therefore, by our first observation, we see

‡gn ı .A2
� I/.f /D .A2

� I/ ı‡gn.f / 2 bQsn

as well. Thus .A2� I/.f / is a .�; n/–survivor for all n.

Our main theorem is really a corollary of Theorem 6.44. The ergodic measures theorem
(Theorem 4.5) follows by combining the theorem below with Theorem 6.40 and some
Martin boundary theory as described in the next subsection.

Theorem 6.46 Assume S.G;w/ has the critical decay property and G has the adja-
cency sign property. If f 2 S� is extremal, then A2.f /D �2

2
.f / for some positive

�2 2R.

Proof If f is extremal, then A2.f / must be extremal, since A2W S�!S� is a linear
bijection. But A2.f / D f C .A2.f /� f / and both f ;A2.f /� f 2 S� . These
two functions are linearly independent (contradicting extremality of A2.f /) unless
A2.f /D �2

2
.f / for some positive �2 2R.

6.7 Martin boundary theory

In this subsection, we use Martin boundary theory to finish the proof of the ergodic
measures theorem. We formally define the Martin boundary in Appendix C. Here we
will only introduce the facts we need to use to prove our main theorem.

Choose any vertex o 2 V called the root. Given an eigenvalue � of A with positive
eigenfunctions, the Martin compactification V� is a compactification of the vertex
set V . The Martin boundary is the set M� D V� XV . Points � 2M� correspond to
positive functions k� 2RV so that A.k�/D �k� and k�.o/D 1. The function � 7!k�
is continuous when RV is given the topology of pointwise convergence. The subset

Mmin
� D f� 2M� W k� is an extremal positive eigenfunctiong

is called the minimal Martin boundary, and is a Borel subset of M� .

Theorem 6.47 (Poisson–Martin representation [48, Part IV, Theorems 24.7–24.9])
For each nonnegative f 2RV with A.f /D �f , there is a unique Borel measure �f
on M� with �f.M� XMmin

�
/D 0 and

f.v/D
Z
M�

k�.v/ d�f.�/

for all v 2 V . Furthermore, if f is an extremal positive eigenfunction, then f D ck�
for some c > 0 and � 2Mmin

�
, and �f is the Dirac measure with mass c at � .
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Now we will study those f 2 bQs with s a sign pair and for which A2.f /D �2.f /.
We let G2 denote the graph with vertex set V and edge set E2 , where each path of
length two in E corresponds to an edge of G2 . We allow loops in the graph G2 , which
arise from moving forward along an edge in E and then back to the starting point along
the same edge or another edge with the same endpoints. Since G is connected and
bipartite, the graph G2 consists of two connected components with vertex sets A and
B . We denote these two components by GA and GB . We will let AA and AB be the
adjacency operators on these two graphs and they satisfy the equations

A2.f /.a/DAA.f jA/.a/ and A2.f /.b/DAB.f jB/.b/

for all f 2RV and all a 2A and b 2 B .

As in Section 4.3, we let E� be the collection of nonnegative f 2 RV such that
A.f / D �f . For s 2 SP, define bE s D ff 2 bQs W A2.f / D �2f g. Note that
E� ¨ yECC . For f 2RV we define the functions fA;fB 2RV according to the rule

(6-15) fA.v/D
�
f.v/ if v 2A,
1
�

A.f /.v/ if v 2 B,
and fB.v/D

�1
�

A.f /.v/ if v 2A,
f.v/ if v 2 B.

Observe that if f 2RV is a nonnegative function satisfying A2.f /D �2f , then we
have A.fA/D �fA and A.fB/D �fB . In fact,

Proposition 6.48 For all s D .s1; s2/ 2 SP, the function f 7! .fA;fB/ restricts to a
linear bijection bE s! s1E� � s2E� . Here siE� denotes nonnegative eigenfunctions
with eigenvalue � when si D 1 and the nonpositive eigenfunctions when si D �1.
The inverse map is given by .fA;fB/ 7! �A.fA/C �B.fB/, with �� defined as in
Equation (6-10).

This means that we can use the Poison–Martin representation theorem to express those
f 2 bE s for s 2 SP. For this it is natural to consider signed measures on the Martin
boundary. For � a Borel measure on M� , we let �C and �� be the mutually singular
unsigned Borel measures satisfying �D �C��� obtained via the Hahn decomposition
theorem. We let M be the space of signed Borel measures � on M� such that

(1) �.A/D 0 for all measurable A�M� XMmin
�

,

(2)
R
M�

k�.v/d�.�/ is defined and finite for all v 2 V .

Note the space M is a real vector space. We also define the subsets

MC
D f� 2M W ��.M�/D 0g and M�

D f� 2M W �C.M�/D 0g:

We have the following corollary to the Poisson–Martin representation theorem.
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Corollary 6.49 Let sD .s1; s2/ 2 SP and f 2 bE s . Then there is a unique .�A; �B/ 2
M 2 DM �M for which

f.a/D
Z
M�

k�.a/ d�A.�/ and f.b/D
Z
M�

k�.b/ d�B.�/

for all a 2A and all b 2 B . Moreover, �A 2M s1 and �B 2M s2 .

Proof We first prove existence. Given f , we may consider fA;fB defined as in
Equation (6-15). We have that s1fA; s2fB 2E� . Therefore using the notation from the
Poisson–Martin representation theorem, we may set �A D s1�s1fA and �B D s2�s2fB .
The pair .�A; �B/ satisfy the equations of the corollary and we have �A 2M s1 and
�B 2M s2 .

Now assume that .�A; �B/ 2M 2 is a second pair of measures satisfying the statement
of the corollary. We will prove that �A D �A . Define the unsigned measures �1 D

�CA C�
�
A and �2 D �

�
A C�

C
A . Define g1;g2 2RV by

gi.v/D
Z
M�

k�.v/ d�i.�/ for all v 2 V .

Note that for all a 2A we have g1.a/D g2.a/ since

f.a/D
Z
M�

k�.a/ d�A.�/D

Z
M�

k�.a/ d�A.�/:

So that g1.a/Dg2.a/Df.a/C
R
M�

k�.a/d��A.�/C
R
M�

k�.a/d��A.�/. Now observe
that both g1 and g2 satisfy A.gi/D �gi , since each k� is such an eigenfunction. It
follows that for all b 2 B ,

gi.b/D
1

�
A.gi/.b/D

1

�

X
a�b

gi.a/:

Since the expression on the right only depends on vertices a 2 A, we see g1 D g2 .
Therefore, the uniqueness part of the Poisson–Martin representation theorem implies
�1 D �2 . Finally, observe that if s1 DC1 then ��A � 0. Therefore, �CA C�

�
A D �

C
A .

But the fact that ��A ? �
C
A implies that ��A � 0 and �CA D �

C
A . Similarly, if s1 D�1

then �CA � 0, and so �CA � 0 and ��A D �
�
A . In either case, �A D �A . An identical

argument shows �B D �B , concluding the uniqueness part of the proof.

Corollary 6.49 defines a linear map N W
S

s2SP
bE s!M 2 according to the rule N .f /D

.�A; �B/ with .�A; �B/ the unique pair of signed measures guaranteed to exist by the
corollary.
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The group of matrices GL.2;R/ acts on M 2 by matrix multiplication. Namely,�
a b

c d

� �
�A
�B

�
D

�
a�AC b�B
c�AC d�B

�
:

Therefore our representation ��W G! SL.2;R/ induces an action on M 2 .

Proposition 6.50 (Adjacency operation on measures) Let f 2RV and suppose there
exists .�A; �B/ 2M 2 so that

f.a/D
Z
M�

k�.a/ d�A.�/ and f.b/D
Z
M�

k�.b/ d�B.�/

for all a 2A and b 2 B . Then

A.f /.a/D �
Z
M�

k�.a/ d�B.�/ and A.f /.b/D �
Z
M�

k�.b/ d�A.�/:

Proof Define fA;fB 2RV according to the rule that

f�.v/D
Z
M�

k�.v/ d��.�/ for all v 2 V and � 2 fA;Bg.

Then A.f�/ D �f� since each k� satisfies A.k�/ D �k� . Then we have f D
�A.fA/C�B.fB/. It follows that

A.f /DA.�A.fA/C�B.fB//D�B ıA.fA/C�A ıA.fB/D�B.�fA/C�A.�fB/:

Therefore the conclusion follows.

Proposition 6.51 (Group operation on measures) Suppose that f 2 RV satisfies
A2.f /D �2f and there exist .�A; �B/ 2M 2 so that

f.a/D
Z
M�

k�.a/ d�A.�/ and f.b/D
Z
M�

k�.b/ d�B.�/

for all a2A and b2B . Let g 2G , and set .�A; �B/D �
g

�
�.�A; �B/ and yf D‡g.f /.

Then A2. yf /D �2 yf and

yf .a/D
Z
M�

k�.a/ d�A.�/ and yf .b/D
Z
M�

k�.b/ d�B.�/

for all a 2A and b 2 B .

Proof First, the statement that A2. yf /D �2 yf follows from Equation (6-9). Namely,

A2. yf /D ‡g
ıA2.f /D �2‡g.f /D �2 yf :
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We prove the remainder of the statement by induction. In fact, it is sufficient to prove
it for g the identity and a collection of generators. The case of the identity is trivial.
We consider the case of g D hk and k 2 Z. Then .�A; �B/D .�AC k�B; �B/. We
know that

yf DH k.f /D f C k�A ıA.f /D f C k�A ıA.f /:

Now the conclusion follows from Proposition 6.50. The case of g D vK is similar.

Corollary 6.52 Let f 2 bE s for some s 2 SP. Suppose for some g 2 G we have
‡g.f / 2 bQs0 for some s0 2 SP. Then ‡g.f / 2 bE s0 and

N .‡g.f //D �
g

�
�N .f /:

Proof Let yf D ‡g.f /. Proposition 6.51 implies that A2. yf / D �2 yf . Therefore
yf 2 bE s0 . Set .�A; �B/D �

g

�
�N .f / 2M 2 . Proposition 6.51 also indicates that

yf.a/D
Z
M�

k�.a/ d�A.�/ and yf.b/D
Z
M�

k�.b/ d�B.�/

for all a 2 A and b 2 B . By Corollary 6.49, the pair of measures that satisfy this
statement are uniquely determined by yf . Therefore it must be that N . yf /D .�A; �B/

as desired.

This corollary allows us to prove the following important lemma.

Lemma 6.53 Suppose f 2 RV satisfies A2.f / D �2f and is a � –survivor with
� D .x;y/ 2R� . Let .�A; �B/DN .f /. Then, 1

x
�A D

1
y
�B .

Proof Let hgni be the �–shrinking sequence of � , and let hsni be the shrinking
sequence. Since f is a � –survivor, ‡gn.f / 2 bQsn

. Moreover, by Equation (6-9),

A2.‡gn.f //D �2‡gn.f /:

Therefore ‡gn.f / 2 bE sn
for all n. Let .�A;n; �B;n/ D N ı‡gn.f /. Write sn D

.sn;1; sn;2/. By Corollary 6.49, we have �A;n 2M sn;1 and �B;n 2M sn;2 . Then by
Corollary 6.52, we have

.�A;n; �B;n/D �
gn

� � .�A;0; �B;0/:

Now let A �M� be any measurable subset. Let v D .�A;0.A/; �B;0.A//. Then
we know .�A;n.A/; �B;n.A// D � gn

�
.v/ for all n. Moreover, since �A;n 2 M sn;1

and �B;n 2 M sn;2 , we have � gn

�
.v/ 2 cl.Qsn

/ for all n. Since hgni and hsni are
�–shrinking and sign sequences for a �–renormalizable � , by Proposition 6.20, we see
that v must be a nonnegative scalar multiple of � . Equivalently, 1

x
�A.A/D

1
y
�B.A/.

Since this is true for all measurable sets A, it must be that 1
x
�A D

1
y
�B .
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A converse to Lemma 6.53 follows from Proposition 6.26. If � is any Borel measure on
M� with

R
M�

k�.v/d�.�/ defined and finite for all v 2 V , then the pair .x�;y�/D
N .f / for a � –survivor f 2RV . Indeed, if we define g 2RV according to the rule
that g.v/D

R
M�

k�.v/d�.�/ for all v 2 V , then we see that f D Pg.�/, where Pg

denotes the parametrized plane defined in Section 6.4. Therefore we have the following
two results.

Corollary 6.54 (Survivors and the Martin boundary) The linear map N restricts to a
bijection from the space of � –survivors f 2RV satisfying A2.f /D �2f to pairs of
measures of the form .x�;y�/ with � an unsigned Borel measure on M� satisfying
�.M� XMmin

�
/D 0 and so that

R
M�

k�.v/d�.�/ is defined and finite for all v 2 V .

We have been working in the specific case when � is a �–renormalizable direction
and A.f / D �f . But the statements of our main results in Section 4 concern two
eigenfunctions with possibly different eigenvalues. In the context of the statements of
these theorems we have the following.

Corollary 6.55 (Extremal survivors) Suppose w1 2 RV satisfies A.w1/ D �1w1

and assume S.G;w1/ has the critical decay property and G has the adjacency sign
property. Let �1 be a �1 –renormalizable direction with �1 –shrinking sequence hgni.
Suppose f 2 S�1

is extremal. By Theorem 6.46, there is a �2 so that A.f /D �2
2
f .

Set �2 D .x2;y2/D �.hgni; �2/ as in Section 4.1 and define w2 2RV by

w2.a/D
1

x2
f.a/ and w2.b/D

1

y2
f.b/ for a 2A and b 2 B .

Then w2 is an extremal positive eigenfunction of A with eigenvalue �2 .

Note that f D Pw2
.�2/ by definition of Pw2

in Section 6.4. This is the connection
with the topological conjugacy construction.

Proof Let f 2 S�1
be extremal. The statement of the corollary defines w2 . We

only need to prove that w2 is an extremal positive eigenfunction. From the previous
corollary with �D �2 and � D �2 , we know that N .f /D .x2�;y2�/ for some Borel
measure � on M� satisfying �.M� XMmin

�
/ D 0. Moreover, since N is a linear

bijection, we know that since f is extremal, � is a Dirac measure supported on a
single point � 2Mmin

�
. Let c be the total mass of this atomic measure. Then, since

N .f /D .x2�;y2�/,

f.a/D cx2k�.a/ and f.b/D cy2k�.b/ for a 2A and b 2 B .

Therefore by definition of w2 , we have w2 D ck� . Since � 2Mmin
�

, we know w2 is
an extremal positive eigenfunction.
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We need to show that each measure associated to an extremal positive eigenfunction
w2 is ergodic. This is essentially a converse of the above corollary.

Lemma 6.56 Assume S.G;w1/ has the critical decay property and G has the ad-
jacency sign property. Let �1 be a �1 –renormalizable direction with �1 shrinking
sequence hgni. Suppose w2 is an extremal positive eigenfunction with eigenvalue �2 ,
and let �2 D �.hgni; �2/. Then the transverse measure �2 D ‰

�1
�1
ı„.Pw2

.�2// is
ergodic.

Proof By Proposition 6.26, the function f D Pw2
.�2/ is a �1 –survivor. Therefore,

by Lemma 6.1 and Theorem 6.4 there is a unique transverse measure �2D‰
�1
�1
ı„.f /.

By Corollary 6.29, we know that �2 arises from the pullback of a homomorphism
�W S.G;w1/! S.G;w2/ as described in the topological conjugacy Theorem 4.4. In
particular, Theorem 6.4 implies that the system consisting of the surface S.G;w1/ and
measure �2 is conservative. Hence the measure �2 has an ergodic decomposition.
See [1, Theorem 2.2.9]. Recall that M�1

denotes the collection of all locally finite
transverse measures to the straight-line foliation of S.G;w1/ in direction �1 . The
ergodic decomposition yields a space � equipped with a probability measure m and a
collection of ergodic transverse measures

f�! 2M�1
W ! 2�g

(all depending on �2 ) so that for any measurable transversal � � S.G;w1/ the map
! 7! �!.�/ is measurable and

�2.�/D

Z
�

�!.�/ dm.!/:

For each a 2A, let �a be a vertical saddle connection crossing cyla . Similarly for each
b2B , let �b be a horizontal saddle connection crossing the vertical cylinder cylb . Note
that since ‰�1

.�2/D„.f / we have jf.a/j D �2.�a/ and jf.b/j D �2.�b/, with a
sign depending only on the quadrant containing � . In particular,

jf.a/j D
Z
�

�!.�a/ dm.!/ and jf.b/j D
Z
�

�!.�b/ dm.!/:

For each ! 2 �, set g! D „
�1 ı‰�1

.�!/. Each g! is well defined and is a �1 –
survivor by Corollary 6.32. Then jg!.a/j D �!.�a/ and jg!.b/j D �!.�b/, with the
same sign considerations as before. Therefore we have

f.v/D
Z
�

g!.v/ dm.!/ for all v 2 V :
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The map „�1 ı‰�1
is a linear bijection M�1

! S�1
. Therefore, each g! is extremal

in S�1
, because �! is ergodic. From Theorem 6.46, it follows that there is an �! > 0

depending on ! for which A2.g!/D�
2
!g! . Moreover the map ! 7!�! is measurable,

since it can be computed as a ratio of sums of measures of saddle connections. Then
for any integer k we have

(6-16) �2k
2 f.v/DA2k.f /.v/D

Z
�

�2k
! g!.v/ dm.!/ for all v 2 V ;

where we make sense of negative of A powers by noting that A2 restricts to a bijection
S�1
! S�1

. See Theorem 6.44. Now suppose that

m.f! W �! > �2g/ > 0:

Then we observe from the right side of Equation (6-16) that

lim
k!C1

.A2k.f /.v//1=2k > �2;

but this contradicts the left side of the equation which says that this limit must be �2 .
Similarly, if

m.f! W �! < �2g/ < 0 then lim
k!�1

.A2k.f /.v//1=2k < �2;

which again is a contradiction. Thus m–almost everywhere we have �! D �2 . Then
as in Corollary 6.55, we may set

w!.a/D
1

x2
f.a/ and w!.b/D

1

y2
f.b/ for all a 2A and b 2 B .

Then by this corollary, w! is an extremal positive eigenfunction with eigenvalue �2

m–ae. Since f D Pw2
.�2/, we know that

w2.v/D
Z
�

w!.v/ dm.!/ for all v 2 V :

But since w2 is an extremal positive eigenfunction and almost every w! is an eigenfunc-
tion with the same eigenvalue, we have that w! is a scalar multiple of w2 m–almost
everywhere. Therefore m–ae, g! is a scalar multiple of f . Since �! D‰�1

�1
ı„.g!/

and �2D‰
�1
�1
ı„.f /, we know m–ae that �! is a scalar multiple of �2 . In particular,

each �! was known to be ergodic, so the measure �2 must be ergodic as well.

By combining the corollary and lemma above, we have the following.
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Theorem 6.57 Assume S.G;w1/ has the critical decay property and G has the ad-
jacency sign property. Let �1 be a �1 –renormalizable direction with �1 shrinking
sequence hgni. Then the collection of locally finite ergodic invariant measures is
given by

f‰�1
�1
ı„.Pw2

.�2//g;

where w2 varies over the extremal positive eigenfunctions of G , �2 D �.hgni; �2/ and
�2 is the eigenvalue of w2 .

Proof All locally finite ergodic invariant measures arise in this way by Corollary 6.55
and Corollary 6.32. Conversely, every such measure is ergodic by Lemma 6.56.

Finally, we can prove the ergodic measure classification theorem.

Proof of the ergodic measures theorem II (Theorem 4.5) Since G has no vertices of
valence one, by Theorem 6.40 we know that S.G;w1/ has the critical decay property
and G has the adjacency sign property. Therefore by Theorem 6.57 each ergodic
measure is of the form �2 D ‰

�1
�1
ı„.Pw2

.�2//, where w2 is an extremal positive
eigenfunction. Then it follows from Corollary 6.29 that �2 arises from a pullback
construction as described in the statement of the theorem.

7 Renormalizable directions

In this section, we revisit the idea of renormalizable directions which was introduced
in Section 4.1. We work out a number of their basic properties.

7.1 Shrinking sequences and directions

We begin by recalling some of the ideas from Section 4.1. We gave G a metric
structure coming from viewing G as a subset of its Cayley graph constructed from
the symmetric generating set fh; v; h�1; v�1g. In particular, an infinite (resp. finite)
sequence hg0;g1; : : :i of elements of G is a geodesic ray (resp. segment) in G if and
only if it satisfies the following statements:

(1) gnC1g�1
n 2 fh; v; h

�1; v�1g for all n� 0.

(2) gnC2g�1
n ¤ e for all n� 0.

Here we have restated Proposition 4.2.

Now consider the representation ��W G ! SL.2;R/ for � � 2 from Definition 3.4.
Because �� 2, the representations �� are always discrete and faithful.
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Definition 7.1 (Shrinking) Let � 2 S1 . A geodesic ray hgiii�0 with g0 D e is a
�–shrinking sequence of � if k�gi

�
.�/k is strictly monotone decreasing. We say hgii

is a �–shrinking sequence if it is the �–shrinking sequence of some � 2 S1 , and we
say the associated � 2 S1 is �–shrinkable.

Our main result of this subsection is the following:

Theorem 7.2 (The correspondence theorem) (1) If � 2 S1 is �–shrinkable, then
there is a unique geodesic ray hgii with g0D e which is a �–shrinking sequence
of � .

(2) Conversely, if hgii is a geodesic ray with g0 D e , then there is at most one
pair of antipodal �–shrinkable directions � for which hgii is its �–shrinking
sequence.

In addition to proving this result, in this subsection, we will also state a number of facts
which will be useful later about the action of a shrinking sequence.

Since the Cayley graph of G is a tree, for any g 2 G , there is a unique geodesic
segment (in the word metric) hg0; : : : ;gni in G which satisfies g0 D e and gn D g .
We begin by studying which unit vectors are shrunk or expanded along such a sequence.

Definition 7.3 (Shrinking and expanding sets) Let g 2 G and let hg0; : : : ;gni be
the unique geodesic segment with g0 D e and gn D g . Define Shr�.g/ and Exp�.g/
to be the sets

Shr�.g/D
˚
� 2 S1

W k�
gn

�
.�/k< k�

gn�1

�
.�/k< � � �< k�

g1

�
.�/k< k�k D 1

	
;

Exp�.g/D
˚
� 2 S1

W k�
gn

�
.�/k> k�

gn�1

�
.�/k> � � �> k�

g1

�
.�/k> k�k D 1

	
:

The next proposition follows from the observation that these two definitions are related
by switching the directions of the inequalities. We define the projection map �S1 W R2X

f0g ! S1 to be the map �S1.v/D v=kvk.

Proposition 7.4 For all g 2G , Shr�.g/D �S1 ı �
g�1

�
.Exp�.g

�1//.

Proof The geodesic segment joining e to g�1 is the sequence hg0i D gn�ig
�1i. Thus

Exp�.g
�1/ is given by either of the following two expressions:˚
� 2 S1

W k�
.

�g�1
�/k> k�

g1g�1

�
.�/k> � � �> k�

gn�1g�1

�
.�/k> k�k

	
;

�S1 ı �
g

�

�˚
� 0 2 S1

W k� 0k> k�
g1

�
.� 0/k> � � �> k�

gn�1

�
.� 0/k> k�

gn

�
.� 0/k

	�
:

We can therefore see that Exp�.g
�1/D �S1 ı �

g

�
.Shr�.g//, which is equivalent to the

version stated in the proposition.
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Proposition 7.5 We have the following descriptions of the shrinking sets of generators:

Shr�.h/D
n
.x;y/ 2 S1

W
�2

�
<

y

x
< 0

o
;

Shr�.h
�1/D

n
.x;y/ 2 S1

W 0<
y

x
<

2

�

o
;

Shr�.v/D
n
.x;y/ 2 S1

W �1<
y

x
<
��

2

o
;

Shr�.v
�1/D

n
.x;y/ 2 S1

W
�

2
<

y

x
<1

o
:

When g 2 fh; v; h�1; v�1g we have Exp�.g/ D S1 X cl.Shr�.g//, where cl denotes
the closure.

We will not prove this proposition as it is a simple computation. Disjointness of these
sets gives the following consequence:

Corollary 7.6 (Unique shrinking generator) Given � � 2 and � 2 R2 X f0g, there
is at most one element g 2 fh; h�1; v; v�1g so that k�g

�
.�/k < k�k. Moreover, if

g1 2 fh; h
�1; v; v�1g satisfies j�g1

�
.�/j < j�j (resp. j�g1

�
.�/j � j�j), then every

g2 2 fh; h
�1; v; v�1g with g1 ¤ g2 satisfies j�g2

�
.�/j> j�j (resp. j�g2

�
.�/j � j�j).

Proof The proof follows from the fact that if g1 and g2 are distinct elements of
fh; h�1; v; v�1g then Shr�.g1/ � Exp�.g2/ (resp. cl.Shr�.g1// � cl.Exp�.g2//).
This can be derived directly from Proposition 7.5.

Proof of Theorem 7.2 First consider statement (1). Suppose � 2 S1 is �–shrinkable,
ie there is a geodesic ray hgii with g0 D e so that k�gi

�
.�/k decreases monotonically.

Suppose hg0ii is another such geodesic ray. We claim they are equal. Otherwise there
is a smallest i so that gi ¤ g0i . Since g0 D g0

0
D e , we know i � 1 and gi�1 D g0

i�1
.

Thus

k�
gi g�1

i�1

�
.�

gi�1

�
.�//k< k�

gi�1

�
.�/k and k�

g0
i
g�1

i�1

�
.�

gi�1

�
.�//k< k�

gi�1

�
.�/k:

But gig
�1
i�1
;g0ig

�1
i�1
2 fh; v; h�1; v�1g are distinct, which contradicts Corollary 7.6.

Now consider statement (2). Let hgii be a geodesic ray, and suppose that it is the �–
shrinking sequence for two nonparallel directions � and � 0 . Observe that by definition
we have

k�
gi

�
.�/k � 1 and k�

gi

�
.� 0/k � 1:

But the set of all M 2 SL.2;R/ for which kM�k � 1 and kM� 0k � 1 is compact.
So by discreteness of �G

�
, the sequence h�gi

�
i can only take finitely may values. But

this contradicts the definition of a �–shrinking sequence.
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Proposition 7.7 Let � 2 S1 . Let hgii be a geodesic segment or ray in G for which
k�

gnC1

�
.�/k> k�

gn

�
.�/k (respectively k�gnC1

�
.�/k�k�

gn

�
.�/k) for some n� 0. Then

the subsequence k�gnCj

�
.�/k for j � 0 is a strictly increasing (respectively nonstrictly

increasing) sequence.

Proof We will prove the strictly increasing case. The nonstrict case follows similarly.
The proof is by induction. Suppose k�giC1

�
.�/k> k�

gi

�
.�/k. Then �S1.�

giC1

�
.�// 2

Shr�.gig
�1
iC1

/. Since hgii is a geodesic, giC2g�1
iC1
¤ gig

�1
iC1

. So by Corollary 7.6,

�S1.�
giC1

�
.�// 2 Exp�.giC2g�1

iC1//:

In other words, k�giC2

�
.�/k> k�

giC1

�
.�/k.

We also have the following consequence:

Corollary 7.8 If � 2 S1 X .Shr�.h/[ Shr�.h�1/[ Shr�.v/[ Shr�.v�1//, then for
all g 2G we have k�k � k�g

�
.�/k.

Proof Apply Proposition 7.7 to the geodesic segment joining e to g .

Using Proposition 7.4, we can obtain a concrete description of the shrinking and ex-
panding sets. (To make it extremely concrete, you can combine it with Proposition 7.5.)

Corollary 7.9 Let g 2G and let hg0D e; : : : ;gnD gi be the corresponding geodesic
segment. For �� 2, we have Exp�.g/D Exp�.g1/ and

Shr�.g/D �S1 ı �
g�1

�
.Exp�.gn�1g�1//D �S1 ı �

g�1
n�1

�
.Shr�.gg�1

n�1//:

Proof The statement Exp�.g1/D Exp�.g/ follows directly from Proposition 7.7. To
prove the identity for Shr�.g/, we apply the equation for Exp�.g/ and Proposition 7.4:

Shr�.g/D �S1 ı �
g�1

�
.Exp�.g

�1//D �S1 ı �
g�1

�
.Exp�.gn�1g�1//:

Finally by Proposition 7.4, we see that

Exp�.gn�1g�1/D �S1 ı �
gg�1

n�1

�
.Shr�.gg�1

n�1//:
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7.2 The limit set

Our original definition of �–renormalizable directions involved the limit set. See
Section 4.1. Here we will introduce hyperbolic geometry and the limit set. For the
necessary background, we refer to the book of Matsuzaki and Taniguchi [32].

The hyperbolic plane is H2 D SO.2/ n SL.2;R/. The boundary of the hyperbolic
plane is naturally defined to be @H2 D RP1 D .R2 X f0g/=R. For M 2 SL.2;R/
and v 2R2 X f0g, we will use ŒM � 2H2 and Œv� 2RP1 to denote the corresponding
equivalence classes. To make RP1 the boundary of the hyperbolic plane, we say a
sequence hŒMn� 2H2i converges to Œv� 2RP1 if for any Œw�¤ Œv� 2RP1 ,

(7-1)
kMnvk

kMnwk
! 0 as n!1:

The limit set ƒ.�/ � RP1 of a discrete group � � SL.2;R/ is the set of all limit
points of sequences in SO.2/ n� �H2 . Equivalently, the limit set ƒ.�/ � RP1 is
the smallest nonempty closed � –invariant subset of RP1 . An open horodisk in H2 at
Œv� 2RP1 is a set of the form

fŒM � 2H2
W kM vk< �g

for some � > 0. The only accumulation point in RP1 of the horodisk defined above is
Œv�. The horospherical limit set ƒh.�/�RP1 is the set of all Œv� 2ƒ.�/ for which
any horodisk at Œv� contains points in the orbit Œ��D fŒM � W M 2 �g.

From work in the last section, we can conclude the following.

Lemma 7.10 Suppose Œ� � 2 ƒh.�/. Then � is �–shrinkable. Moreover, if hgii is
the �–shrinking sequence of � , then

lim
i!1

k�
gi

�
.�/k D 0:

Proof Suppose that Œ� �2ƒh.�
G
�
/. From the definitions above, we know that for every

� > 0, there is a g 2G so that k�g

�
.�/k< � . Now we attempt to build a �–shrinking

sequence for � . We define the geodesic ray hgii inductively so that g0 D e and
gig
�1
i�1
2 fh; v; h�1; v�1g is the unique choice for which

k�
gi g�1

i�1

�
.�

gi�1

�
.�//k< k�

gi�1

�
.�/k:

Here uniqueness is provided by Corollary 7.6. Existence of this choice is a consequence
of Corollary 7.8: if there is no generator which shrinks �gi�1

�
.�/, then

k�
gi�1

�
.�/k D min

g2G
k�

g

�
.�/k:
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But this contradicts the hypothesis that Œ� � 2ƒh.�
G
�
/.

It remains to show that limi!1 k�
gi

�
.�/k D 0. Suppose not, then there is an � > 0 so

that k�gi

�
.�/k> � for all i 2N . Since this is true for i D 0, we know � < 1. On the

other hand, since Œ� � 2ƒh.�
G
�
/, we know that there is a 
 2G so that k�


�
.�/k< � .

Since � < 1, we know 
 ¤ e . Consider the geodesic segment heD 
0; 
1; : : : ; 
nD 
 i.
By hypothesis, we know the segment can not coincide with the initial segment of the ray
hgii. Thus there is a minimal i > 0 so that 
i ¤ gi . Since hgii is a shrinking sequence,
we know k�gi

�
.�/k< k�

gi�1

�
.�/k. Then by uniqueness of the shrinking generator (ie

Corollary 7.6 applied to �gi�1

�
.�/), we know that k�
i

�
.�/k> k�

gi�1

�
.�/k. But then

Proposition 7.7 implies that

k�

n

�
.�/k> k�


n�1

�
.�/k> � � �> k�


i

�
.�/k> k�

gi�1

�
.�/k:

Since k�
n

�
.�/k< � , we conclude that k�gi�1

�
.�/k< � , which is a contradiction.

We now recall a theorem of Beardon and Maskit [4, Theorem 2]. If � � SL.2;R/ is
geometrically finite, then ƒ.�/Xƒh.�/ is the collection of fixed points of parabolics.
Because �G

�
is geometrically finite, we have:

Corollary 7.11 If Œ� � 2 ƒ.�G
�
/ then either � is fixed by a parabolic in �G

�
or Œ� � 2

ƒh.�
G
�
/.

Recall that the collection R� � S1 of all �–renormalizable directions was defined in
Section 4.1 to be the limit set with orbits of some eigenvectors removed. In particular,
because we removed the conjugacy classes of the parabolics, R� � ƒh.�

G
�
/. As a

consequence, we can apply Lemma 7.10 to obtain:

Theorem 7.12 (Shrinking renormalizable directions) If � 2R� , then it is �–shrink-
able. Furthermore, its shrinking sequence hgii satisfies

lim
i!1

k�
gi

�
.�/k D 0:

We will now use the limit set to improve Proposition 7.5, which described the vectors
shrunk by the generators of G . In this paper, we only care about the behavior of
�–renormalizable directions, which we now understand to lie in ƒh.�

G
�
/. But note

that we also removed the eigendirections of conjugates of �vh�1

�
from the limit set to

obtain R� . This viewpoint gives the following:
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Proposition 7.13 For all �� 2, we have the following statements:

Shr�.h
�1/\R� �

n
� D .x;y/ 2 S1

W 0<
y

x
<
��
p
�2�4

2

o
;

Shr�.v
�1/\R� �

n
� D .x;y/ 2 S1

W
�C
p
�2�4

2
<

y

x
<1

o
;

Shr�.h/\R� �
n
� D .x;y/ 2 S1

W
��C

p
�2�4

2
<

y

x
< 0

o
;

Shr�.v/\R� �
n
� D .x;y/ 2 S1

W �1<
y

x
<
���

p
�2�4

2

o
:

Proof Note that when �D 2, this statement is directly implied by Proposition 7.5. So
we will assume � > 2. The quotient H2=�G

�
is homeomorphic to a thrice punctured

sphere. Recall that the homotopy classes of loops on H2=�G
�

are in bijective corre-
spondence with conjugacy classes in G . The conjugacy classes of h, v , and vh�1

correspond to simple loops traveling around each of the three punctures. As � > 2,
�vh�1

�
is a hyperbolic isometry of H2 whose axis is the hyperbolic geodesic with

whose endpoints are the projectivizations of the eigendirections of �vh�1

. The endpoints
of this geodesic are the points of RP1 ,

e1 D Œ.2; ��
p
�2� 4� and e2 D Œ.2; �C

p
�2� 4/�:

Note that these points were explicitly removed from the set of �–renomalizable di-
rections. The geodesic joining these points in H2 descends to a closed loop H2=�G

�

around the flaring end. Thus the interval

I1 D fŒ.2;y/� W ��
p
�2� 4< y < �C

p
�2� 4g �RP1

is a maximal interval in the compliment of ƒ.�G
�
/. The set of such complimentary

intervals is �G
�

invariant, thus

I2 D �
h�1

� .I2/D fŒ.2;y/� W ��
p
�2� 4< �y < �C

p
�2� 4g

is also a complimentary interval. Our formulas follow from the fact that

R� � S1
X .xI1[

xI2[f.1; 0/; .�1; 0/; .0; 1/; .0;�1/g/;

where we are using xI1 and xI2 to denote the closure of the lifts of I1 and I2 from RP1

to S1 . The conclusion follows from intersecting the set on the right with our formulas
for Shr�.g/ in Proposition 7.5 for each g 2 fh; v; h�1; v�1g.
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7.3 Combinatorics of renormalizable sequences

We would like to understand which geodesic rays are �–shrinking sequences for �–
renormalizable directions. In order to describe the answer, we define the following
shift action on geodesic rays hgnin�0 with g0 D e :

S.hg0;g1;g2; : : :i/D hg1g�1
1 ;g2g�1

1 ;g3g�1
1 ; : : :i:

We call two sequences of elements in G , hgii and hg0ii, tail equivalent if there are
nonnegative integers m and n for which Sm.hgii/D Sn.hg0ii/.

Theorem 7.14 (Shrinking sequences of renormalizable directions) Let �� 2. Then
the geodesic ray hgii with g0 D e is a �–shrinking sequence for a �–renormalizable
direction if and only if hgii is not tail equivalent to any of the four geodesic rays fixed
by S ,

he; h; h2; : : :i; he; h�1; h�2; : : :i; he; v; v2; : : :i and he; v�1; v�2; : : :i;

and is not tail equivalent to either of the following two geodesic rays of period two,

he; h; v�1h; hv�1h; v�1hv�1h; : : :i; he; h�1; vh�1; h�1vh�1; vh�1vh�1; : : :i:

Proof First suppose that hgii is tail equivalent to one of the first four listed sequences.
Then there is a parabolic P 2 �G

�
(namely, � g

�
for some g 2 fh; v; h�1; v�1g), and an

n so that � gnCk
�

DPk� gn

�
. But you can not make any vector shrink infinitely often by

successively applying the same parabolic. So hgii is not a �–shrinking sequence. Now
suppose it is tail equivalent to either of the last two listed sequences. We break into cases.
If �D 2, then there is a parabolic P 2 �G

�
(namely, � g

�
for some g 2 fv�1h; h�1vg),

and an n so that � gnC2k
�

DPk� gn

�
for all k � 0. The same reasoning works as before.

Now suppose that � > 2. This time there is a hyperbolic matrix H 2 �G
�

(namely
H D � g

�
for some g 2 fv�1h; h�1vg) and an n so that

� gnC2k
� DH k� gn

�

for all k � 0. The only vectors which can be repeatedly shrunk by a hyperbolic
matrix are its contracting eigenvectors. So � gn

�
.�/ is a contracting eigenvector of H .

Equivalently, � is a contracting eigenvector of � gn

�
H� g�1

n
�

. But these eigenvectors
were explicitly thrown out by the definition of �–renormalizable directions.

Now let hgii be any geodesic ray with g0 D e . We will show that this sequences is a
�–shrinking sequence unless it is tail equivalent to one of the six sequences listed in
the theorem.
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Since �G
�

is discrete and hgii is infinite, there must be an accumulation point Œ� �2RP1 .
Let � 2 S1 be a lift of Œ� �. We claim that � is �–shrinkable and hgii is its shrinking
sequence.

First we claim that � 2 Shr�.gi/ for all i , where Shr�.gi/ denotes the closure of
Shr�.gi/. By definition, the sets Shr�.gi/ are nested. (See Definition 7.3.) Observe
that Corollary 7.9 implies that each set is nonempty. We conclude that there is a direction
� 2

T
i Shr�.gi/. It follows that k�gi

�
.�/k is nonstrictly monotone decreasing. By

Equation (7-1), which defined convergence to the boundary in H2 , we know that the
inequality k�gi

�
.�/k�k�

gi

�
.�/k is satisfied infinitely often. So it follows that �gi�1

�
.�/

must be nonstrictly shrunk by � gi g�1
i�1

�
infinitely often . So

�S1 ı �
gi

�
.�/ 2 Exp�.gi�1g�1

i /

infinitely often. So by Corollary 7.9, infinitely often � 2 Shr�.gi/. Since these sets
are nested, we conclude that � 2 Shr�.gi/ for all i , as desired.

Now we claim that � 2 Shr�.gi/. Observe that the projectivized sets ŒShr�.gi/� form
a nested intersection of closed intervals. Thus the conclusion follows unless there is an
n so that � 2 @Shr�.gi/ for all i � n. Suppose this is the case. It follows then from
Corollary 7.9 that

�S1 ı �
gi�1

�
.�/ 2 @Shr�.gig

�1
i�1/

for all i � n. Observe that gig
�1
i�1
2 fh; v; h�1; v�1g. Then using the explicit descrip-

tion for shrinking sets provided by Proposition 7.5, we see that one of the following
must hold for each “time” i � n:

(a) Œ�S1 ı �
gi�1

�
.�/�D Œ.1; 0/� and gig

�1
i�1
2 fh; h�1g,

(b) Œ�S1 ı �
gi�1

�
.�/�D Œ.0; 1/� and gig

�1
i�1
2 fv; v�1g,

(c) Œ�S1 ı �
gi�1

�
.�/�D Œ.��; 2/� and gig

�1
i�1
D h,

(d) Œ�S1 ı �
gi�1

�
.�/�D Œ.�; 2/� and gig

�1
i�1
D h�1 ,

(e) Œ�S1 ı �
gi�1

�
.�/�D Œ.2;��/� and gig

�1
i�1
D v ,

(f) Œ�S1 ı �
gi�1

�
.�/�D Œ.2; �/� and gig

�1
i�1
D v�1 .

We will use these statements to show that the sequence hgii must in fact be tail
equivalent to one of the sequences from the theorem. For example, suppose we are
in case (a) for some time i . Then we have � g�1

i�1
�

.�/D .x; 0/ for some x ¤ 0, and
gig
�1
i�1
2 fh; h�1g. Then

�
gi

�
.�/D �

gi g�1
i�1

�
.x; 0/D .x; 0/:
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So we are again in case (a) but at time i C 1. We conclude that if we are in case (a) at
time n, then gig

�1
i�1
2 fh; h�1g for all i � n. But this means that hgii is tail equivalent

to either he; h; h2; : : :i or he; h�1; h�2; : : :i. Case (b) works similar. Now suppose at
time n we are in case (c). Then � D c.��; 2/ for some c ¤ 0 and gng�1

n�1
D h. We

see that

�
gn

�
.�/D c�

gng�1
n�1

�
.��; 2/D .�; 2/:

Now we must be in one of the six cases at time nC 1. If �¤ 2, then we must be in
case (d), but this is a contradiction because then gng�1

n�1
D h and gnC1g�1

n D h�1

which contradicts the definition of geodesic ray. If � D 2, for the same reason, we
must be in case (f) at time nC 1. Thus gnC1g�1

n D v
�1 . Continuing inductively, we

see that hgii is tail equivalent to he; h; v�1h; hv�1h; : : :i. The remaining cases work
in the same way.

Lemma 4.3 really follows as a corollary to the above result.

Proof of Lemma 4.3 Let �1 � 2 and let �1 2R�1
. By Theorem 7.12, we know that

�1 is �1 –shrinkable. So by definition it has a �1 –shrinking sequence hgii. Moreover,
this sequence is unique by the correspondence theorem (Theorem 7.2). This proves
statement (1) of the Lemma.

Now let �2 � 2. Statement (2) says there is a unique pair of antipodal �2 –renormal-
izable vectors ˙�2 so that the same hgii is the �2 –shrinking sequence for each.
The characterization of shrinking sequences of �–renormalizable directions given in
Theorem 7.14 is independent of �. So because hgii is �1 –shrinking sequence for a �1 –
renormalizable direction, it is also the �2 –shrinking sequence for a �2 –renormalizable
direction. We call this new direction �2 . The correspondence theorem tells us that �2

is unique up to the antipodal map.

We conclude this section by giving a proof of Proposition 6.21, which stated that the
pair of quadrants containing a �–renormalizable direction depends only on its shrinking
sequence and not on �.

Proof of Proposition 6.21 Suppose hgni is a renormalizing sequence and �; �0 � 2.
Then we have

˙�.hgni; �/ 2 Shr�.g1/ and ˙�.hgni; �
0/ 2 Shr�0.g1/:

Note that as g0D e and hgni is a geodesic ray, g1 2 fh; v; h
�1; v�1g. These shrinking

sets are contained in the same pair of opposite quadrants by Proposition 7.5.
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8 Geometry of graph surfaces

In this section, we discuss the geometry of surfaces of the form S.G;w/, where w
is a positive eigenfunction of the adjacency operator. In the Section 8.1, we discuss
features that distinguish eigenfunctions on graphs with a vertex of valence one from
graphs with no vertices of valence one. In Section 8.2, we use these observations to
prove that our surfaces have no saddle connections in renormalizable directions.

8.1 Facts about eigenfunctions

In this section, we discuss some facts about eigenfunctions of graphs which distinguish
graphs with no vertices of valence one. Note that GZ is the only infinite connected
graph with no vertices of valence one and no vertices of valence larger than two. We
will pay particular attention to the case of vertices of valence larger than two.

To distinguish graphs with vertices of valence one, we make the following definition.

Definition 8.1 For an integer k�2, a k–spoke is an ordered k–tuple .v1; : : : ; vk/2Vk

such that:

(1) val.v1/D 1.

(2) For each i 2N with 2� i � k � 1, val.vi/D 2, vi � vi�1 and vi � viC1 .

Note that there is no condition on the valence of the vertex vk of a k–spoke. See
Figure 1 for an example.

v1 v2 v3 v4 v5

v6

� � �

� � �

Figure 1: .v1; : : : ; v6/ is a 6–spoke.

Proposition 8.2 (Eigenfunctions and spokes) Let .v1; : : : ; vk/ be a spoke. Assume
w 2 RV is a positive function satisfying Aw D �w. If � D 2, then for all j with
2� j � k , we have w.vj /D jw.v1/. If � > 2 then

w.vj /D
sinh.j z/

sinh.z/
w.v1/; where z D ln

�C
p
�2� 4

2
D cosh�1

�
�

2

�
.
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Sketch of proof Note that w.v2/D�w.v1/ and w.vj /D�w.vj�1/�w.vj�2/. Thus
the values of w.vj / are determined by the previous values, and thus the value of w.vj /

is uniquely determined by the value of w.v1/. Finally by inspection and trigonometry,
it can be checked that the values stated in the proposition do give rise to a solution to
these equations.

Note that every vertex of valence one belongs to a spoke. The following handles
vertices with greater valence.

Proposition 8.3 (Detecting spokes) Let w be a positive function satisfying AwD

�w. Let x be a vertex with val.x/� 2. Then x belongs to a spoke if and only if there
is a y� x such that

w.y/
w.x/

<
��
p
�2� 4

2
:

Furthermore, if this inequality is satisfied then x and y belong to the same spoke.

Proof We will assume � > 2. (There are only three infinite connected graphs with a
positive eigenfunction with eigenvalue 2, and these satisfy the statement.)

First suppose that xD vj belongs to a spoke. Let yD vj�1 . Then by Proposition 8.2
and angle addition formulas, we know that

w.y/
w.x/

D
sinh..j � 1/z/

sinh.j z/
D

sinh.j z/ cosh z� cosh.j z/ sinh.z/
sinh.j z/

:

We have cosh.z/D �=2 and sinh.z/D
p
�2� 4=2. Thus

w.y/
w.x/

D
�

2
�

cosh.j z/
p
�2� 4

2 sinh.j z/
<
��
p
�2� 4

2
:

Now we will approach the converse. We claim that if a and b are two adjacent
vertices with

(8-1)
w.b/
w.a/

<
��
p
�2� 4

2
;

then they are elements of the same spoke. First, we will prove that this inequality
implies that val.b/ � 2. Suppose val.b/ D k � 3. Let a and c1; : : : ; ck�1 be the
vertices adjacent to b. We have that

�D
w.a/C

Pk�1
iD1 w.ci/

w.b/
>
�C
p
�2� 4

2
C

Pk�1
iD1 w.ci/

w.b/
:
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Thus there is a j such that

w.cj /

w.b/
<
��
p
�2� 4

2.k � 1/
D

2

.k � 1/.�C
p
�2� 4/

�
1

�C
p
�2� 4

�
1

�
:

In summary w.cj / <w.b/=�. Therefore

.Aw/.cj /D
X

d�cj

w.d/�w.b/ > �w.cj /;

which contradicts our assumption that AwD �w.

Now suppose a� b, val.b/D 2 and Equation (8-1) holds. We will show a belongs to
a spoke, completing the proof. Let c denote the other vertex adjacent to b. We have
�w.b/Dw.a/Cw.c/. Thus

w.c/
w.b/

D ��
w.a/
w.b/

> ��

�
��
p
�2� 4

2

��1

D
��
p
�2� 4

2
:

Thus Equation (8-1) is satisfied with a replaced by b and b replaced by c. By the claim
above, we know val.c/� 2. By induction, we see that either fa; b; cg is a subset of a
spoke, or there is an infinite sequence of vertices fx0 D a; x1 D b; x2 D c; x3; x4; : : :g

with each xj for j � 1 satisfying val.xj /D 2, xj � xj�1 , and xj � xjC1 . We will
show that fa; b; cg must be a subset of a spoke, by proving this other possibility is
false. Note that the values of w.xj / is uniquely determined by w.xj�1/ and w.xj�2/

according to the rule w.xj /Cw.xj�2/D �w.xj�1/. In particular, the value of each
w.xj / may be determined inductively from w.x0/ and w.x1/. Any such solution can
be written as

w.xj /D r

�
�C
p
�2� 4

2

�j

C s

�
��
p
�2� 4

2

�j

for all j and some r; s 2R. We will now solve for r and s . We have w.x0/D r C s .
Then

w.b/
w.a/

D
w.x1/

w.x0/
D

r
�
�C
p
�2�4
2

�
C s

�
��
p
�2�4
2

�
w.x0/

D
r
�
�C
p
�2�4
2

�
C .w.x0/� r/

�
��
p
�2�4
2

�
w.x0/

D

�
��
p
�2� 4

2

�
C r

p
�2� 4:

Thus, by Equation (8-1), we have r < 0. It follows that there is a j 2 N such that
w.xj / < 0. This contradicts our initial assumption that w is a positive eigenfunction.
Thus a is an element of a spoke.
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8.2 Absence of saddle connections

Let S DS.G;w/ be a surface built as in Section 3.4. Here w is a positive eigenfunction
of the adjacency operator with eigenvalue �. Recall that V DA[B is the vertex set of
the graph, and each v 2 V represents a cylinder, cylv , which is horizontal when v 2A
and vertical when v 2 B .

Definition 8.4 The support of a saddle connection � in S is the collection supp.�/�
V defined so that v 2 supp.�/ if � intersects a core curve of cylv .

Recall Definition 8.1 of a spoke.

Definition 8.5 The extended support of a saddle connection � , denoted supp.�/ is
the union of the support supp.�/ and all spokes which intersect the support.

Lemma 8.6 Let � be a �–renormalizable direction, and let hgii be its �–shrinking
sequence. If � is a saddle connection whose holonomy is parallel to � , then

supp.ˆg1.�//� supp.�/:

Proof By Remark 3.6, it suffices to consider the case when g1D h�1 . Let � D .x;y/.
Since � 2 Shr�.h�1/\R� , by Proposition 7.13, we know that

(8-2) 0<
y

x
<
��
p
�2� 4

2
:

Now suppose that the statement is not true for some � . Let � 0 D ˆg1.�/. If our
statement is false, there is a v 2 supp.� 0/X supp.�/.

We first claim that we can assume v 2 supp.� 0/X supp.�/. Otherwise v would lie
in a spoke which intersects supp.� 0/ but not supp.�/. But if this is the case, we can
replace our choice of v with a vertex in this intersection.

Now we claim that v 2 B . Indeed, the effect of applying ˆg1 D ˆh�1

is to simulta-
neously left Dehn twist all horizontal cylinders. It follows that � 0 intersects the same
horizontal cylinders that � does. So if v 2A, then v 2 supp.� 0/ implies v 2 supp.�/.

We now know that v 2 supp.� 0/ and v 2 B . Note that because � 0 is not horizontal
or vertical, there must be a vertex a 2 supp.� 0/\A so that a is adjacent to v. Again,
because supp.�/\AD supp.� 0/\A, we know that a2 supp.�/. Consider the cylinder
cyla , which intersects the vertical cylinder cylv . Note that a and v can not be elements
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of the same spoke (or else a2 supp.�/ implies v2 supp.�/). Therefore Proposition 8.3
implies that

w.v/
w.a/

�
��
p
�2� 4

2
:

So there is at least one rectangle in the intersection cyla\ cylv and its width is nonstrictly
greater than 1

2
.��

p
�2� 4/w.a/. Since the circumference of cyla is �w.a/, it follows

that any geodesic segment of positive slope crossing from the bottom of cyla to the top
without passing through the interior of cyla\ cylv has slope greater than or equal to

w.a/

�w.a/� ��
p
�2�4
2

w.a/
D

2

�C
p
�2� 4

D
��
p
�2� 4

2
:

But � is supposed to be such a segment. Moreover, � points in the direction of � ,
which satisfies Equation (8-2). This is a contradiction.

Now we will show that there are no saddle connections on S.G;w/ which point in
�–renormalizable directions.

Theorem 6.2 Suppose to the contrary that there is a surface S.G;w/ with w an eigen-
function with eigenvalue �, a �–renormalizable direction � , and a saddle connection �
whose holonomy is parallel to � . Let hgii be the �–shrinking sequence of � . Observe
that the extended support supp.�/ is a finite set. Furthermore, by inductively applying
Lemma 8.6, we see that

supp.ˆgi .�//� supp.�/:

Thus each ˆgi .�/ is a saddle connection contained in a finite union of cylinders
indexed by supp.�/. We conclude that

(8-3) k hol.ˆgi .�//k �minfw.v/ W v 2 supp.�/g> 0 for all i .

On the other hand, we know that hol.�/D c� for some c ¤ 0. Therefore

hol.ˆgi .�//D c�
gi

�
.�/ for all i .

But Theorem 7.12 stated that lim
i!1

k�
gi

�
.�/kD 0, which contradicts Equation (8-3).

9 Conservativity of the straight-line flow

The goal of this section is to prove Theorem 6.4. By hypothesis, S D S.G;w/ is a
surface built as in Section 3.4, with w and eigenfunction for the adjacency operator
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with eigenvalue �� 2, and � is a �–renormalizable direction. The theorem concludes
that the straight line flow in direction � is conservative.

The following lemma describes the technique we use to prove conservativity. For this
lemma, let S be a translation surface described as a countable union of polygons with
edge identifications. We refer to a subset of S as bounded if it is contained in a finite
union of the polygons making up S . We let � 2 S1 be a direction and let � be the
Lebesgue transverse measure to the foliation in direction � .

Lemma 9.1 (Criterion for conservativity) Suppose that for all bounded subsets
K � S and all � > 0, there is a bounded subset U � S such that K � U and
�.@U / < � . Then the straight line flow in direction � is conservative.

The proof uses ideas from [43, Proof of Theorem 1]. See [21, Proof of Lemma 15] for
another variant of a proof.

Proof It suffices to consider a bounded transversal K to the foliation in direction �
and demonstrate that there is no wandering X �K with �.X / > 0. (X is wandering
if no backward orbit of a point in X returns to X .) Suppose not. By hypothesis we
can find a bounded subset U containing K so that �.@U / < �.X /. Consider the
backward straight line flow F t

��
applied to x 2 X . Let t.x/ 2 R[ f1g be the first

positive time the trajectory hits X [@U , or 1 if it never hits. Observe that the portion
of the trajectories F t

��
.x/ with 0� t < t.x/ are disjoint and contained entirely within

U . The measure of the union of such trajectories is
R
X t.x/d�.x/, which is bounded

by the area of U . We conclude that t.x/ is almost everywhere finite. Now consider
the �–ae defined map f W X ! X [ @U defined by f .x/D F

t.x/
��

.x/. This map is
measure preserving in the sense that �.f .A//D �.A/ for all measurable A�X . So
because of our choice of U , we know

�.f .X /\ @U /� �.@U / < �.X /:

We conclude that �.f .X /\X / > 0, but this contradicts our original assumption that
X was wandering.

Let us restate the lemma in the context of our work. We let S D S.G;w/ and assume
� is �–renormalizable. For any bounded set K , we will find a nested sequence
of bounded sets U1 � U2 � � � � � S so that K � U1 . The lemma tells us that if
lim infn!1 �.@Un/D 0, then the straight-line flow in direction � is conservative.

By Lemma 4.3, a �–renormalizable direction � has a unique �–shrinking sequence
hg0;g1; : : :i. By an action of the dihedral group, we may assume that g1 D h (see
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Remark 3.6). Our sequence of sets Ui will be defined using a natural subsequence

n D gi.n/ of the shrinking sequence. We will inductively define this subsequence. We
define i.0/D 0 so that 
0 D e , the identity. Recall that gi ı g�1

i�1
2 fh; h�1; v; v�1g

for all i � 1. For n> 0, inductively define

i.n/Dmin
˚
j > i.n� 1/ W gj ıg�1

j�1 ¤ gjC1 ıg�1
j

	
:

Such an i.n/ exists because � is �–renormalizable by Theorem 7.14. For example if

hgii D he; h; h
2; vh2; v2h2; v3h2; h�1v3h2; : : :i then h
ni D he; h

2; v3h2; : : :i:

In particular, 
n ı 

�1
n�1

is a nonzero power of h when n is odd and a nonzero power
of v when n is even.

Recall that for a vertex v 2 V , cylv � S denotes the cylinder associated to v . Recall
cyla is horizontal for a 2A and cylb is vertical for b 2 B . We will now define subsets
Vn � V . Recall K � S is bounded. Thus the following set is finite:

V0 D fa 2A W cyla\K ¤∅g:

For i > 0 inductively define

Vn D fv 2 V W v � w for some w 2 Vn�1g:

Note that Vn �A for n even, and Vn � B for n odd. It can be observed inductively
that each Vn is finite because G has bounded valence.

Using the Vn we define subsets of Un�S . Let XnD
S
v2Vn

cylv . Note that Xn�1�Xn

for all n� 1. We define
Un Dˆ


�1
n .Xn/:

We can see that these sets are nested by noting that

Un Dˆ

�1

n�1 ıˆ.
n

�1
n�1

/�1

.Xn/�ˆ

�1

n�1 ıˆ.
n

�1
n�1

/�1

.Xn�1/D Un�1:

The last equality follows from two statements. First, Xn�1 is a union of horizontal
cylinders when n is odd, and a union of vertical cylinders when n is even. And second,

n
n�1 is a power of h when n is odd, and a power of v when n is even. Thus
ˆ.
n
n�1/

�1

.Xn�1/DXn�1 for all n.

The Un are likely getting larger with much longer boundary measured using Euclidean
length. But @Un is getting closer to pointing in the direction � . We will show that this
convergence in direction is happening so fast that the Lebesgue transverse measure in
direction � of @Un decays to zero.
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Proposition 9.2 (Boundary growth) Let `n denote the Euclidean length of @Xn . If
� > 2 then there is a constant c such that

`n � c

�
�C
p
�2� 4

2

�n

for all n. If �D 2 then there is a c for which `n < cn for all n.

In order to prove this proposition, we first verify the following:

Claim 9.3 Let �� 2 and assume that ha0; a1; : : :i is a sequence of nonnegative real
numbers satisfying anC1 � �an� an�1 . If � > 2 then there is a constant c such that

an � c

�
�C
p
�2� 4

2

�n

for all n. If �D 2 then there is a c for which an < cn for all n.

Proof We consider the linear map �.x;y/D .y; �y � x/. We note that .an; anC1/

has the same x coordinate and nonstrictly smaller y coordinate than �.an�1; an/. Let
! D .�C

p
�2� 4/=2. The eigenvectors of � are v1 D .1; !/ and v2 D .!; 1/. They

satisfy �.v1/D !v1 and �.v2/D !
�1v2 . We first note that if an=an�1 < !

�1 for
some n, then there is no way to infinitely continue the sequence so that an � 0 for all
n. This because for every point .x;y/ with y=x < !�1 is eventually ejected from
the positive quadrant by a power of � . This is illustrated in the left half of Figure 2.
Moreover, lowering the y–coordinate along the way, will only result in the vector
being ejected from the quadrant faster.

Now assume � > 2. By the above argument, we know that an=an�1 � !
�1 for all n.

Let P denote the closed parallelogram constructed from the convex hull of the points
.0; 0/, !�1v2D .1; !

�1/, v1 and .0; !�1/. We note that �.P /� !P . See the right
half of Figure 2. Moreover�
.x;y/ W 9.x0;y0/ 2 P such that x D y0;y < �y0�x0 and

y

x
� !�1

�
� !.P /:

We may assume that .a0; a1/ 2 cP for some c > 0. By induction, we conclude that
.an; anC1/ 2 c!nP for all n. The conclusion for � > 2 follows.

When �D 2, we set Pk to be the convex hull of the points .0; 0/, .k; k/, .k; kC 1/,
and .0; 1/. We may check that �.Pk/� PkC1 for all k > 0. Moreover,�

.x;y/ W 9.x0;y0/ 2 Pk such that x D y0;y < 2y0�x0 and
y

x
� 1

�
� PkC1:
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Assuming .a0; a1/ 2 cP0 , we have .an; anC1/ 2 cPn for all n, and the conclusion
follows.

T

v2

�.T /

v2

v1

v2

P

v1

v2

!P

�.P /

Figure 2: This figure illustrates the action of � from the proof of Claim 9.3
on R2 in the case of �D 5

2
. The left two pictures illustrate a triangle T of

points satisfying y=x < !�1 being (eventually) ejected from the positive
quadrant. The right two pictures indicate how �.P /� !P .

Proof of Proposition 9.2 We will show that the numbers `n are related by the in-
equality

(9-1) `nC1 � �`n� `n�1:

By Claim 9.3 above, this is sufficient to guarantee the result. Consider Xn with
boundary of length `n . Let Wn D VnC1 XVn�1 . The set of all cylv for v 2Wn is the
set of all horizontal or vertical cylinders which cross @Xn . (These cylinders are all
horizontal if n is odd and all vertical if n is even.) As every such cylinder has inverse
modulus �, we know that X

v2Wn

length.@ cylv/� �`n:

(Each such cylinder cylv for v 2 Wn crosses @Xn at least twice. A cylinder which
crosses segments of length l , must have circumference �l .) Moreover,

XnC1 DXn�1[

[
v2Wn

cylv :
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Explicitly, XnC1 is formed from Xn�1 by attaching horizontal (or vertical) cylinders
to the horizontal (or vertical) boundaries of Xn�1 . Thus we have that

@Xn�1[ @XnC1 �

[
b2Wn

@ cylv :

The sets @Xn�1 and @XnC1 are disjoint other than they may contain common singular
points. Hence Equation (9-1) holds.

Now as Un D ˆ

�1

n .Xn/, we can compute the Lebesgue transverse measure of the
boundary of Un in terms of the unit vector � and `n . Recall that the derivative D.ˆg/

is �g

�
. From this observation, we have

(9-2) �.@Un/D

(
j�

�1

n

�
.`n; 0/^�j if n is even;

j�

�1

n

�
.0; `n/^�j if n is odd;

D

�
j.`n; 0/^ �


n

�
.�/j if n is even;

j.0; `n/^ �

n

�
.�/j if n is odd;

where .a; b/^ .c; d/D ad � bc is the usual wedge product in the plane. In any case,
we have

(9-3) �.@Un/� `nk�

n

�
.�/k:

The proof of conservativity proceeds by observing that along a subsequence k�
n

�
.�/k

decays faster than `n grows, and therefore Lemma 9.1 applies.

We define a collection of troublesome elements of the group G . Let

T D f.hv�1/kg[ fv�1.hv�1/kg[ f.h�1v/kg[ fv.h�1v/kg

[ f.vh�1/kg[ fh�1.vh�1/kg[ f.v�1h/kg[ fh.v�1h/kg;

where k is allowed to range over the set f0; 1; 2; 3; : : :g. We define a subsequence
h
nj i by n0 D 0 and

nj Dminfnj > nj�1 W 
nj 

�1
nj�1
62 T g:

Note that nj is well defined for all j so long as � is a �–renormalizable direction by
Theorem 7.14. (If nj is not well defined for some j , then hgni is tail equivalent to
one of last two pair of sequences in the theorem.)

Given the above arguments, the following two lemmas imply the conservativity of the
straight-line flow in a �–renormalizable direction � . (That is, they imply Theorem 6.4.)
The first lemma handles the case of �D 2, and the second handles the case of � > 2

which is made more technical because we have to work with the varying values of �.
The proofs of both these lemmas use the same ideas.
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Lemma 9.4 Assume �D 2. Then there is a positive � < 1 such that

�.n1/�.n2� n1/ � � � �.nj � nj�1/k�

nj

2
.�/k � �j for all j ;

where �.1/D 3
2

and �.n/D n for integers n� 2.

The statement of the lemma was chosen because it admits a recursive proof. Given the
lemma, we get the type of decay we really want:

Corollary 9.5 Assume �D 2. Then for all j , there is a positive � < 1 such that

njk�

nj

2
.�/k � �j for all j :

Proof This follows from the fact that for any finite collection of k � 1 positive
integers,

m1Cm2C � � �Cmk � �.m1/�.m2/ � � � �.mk/:

(Here mk D nk �nk�1 with n0 taken to be zero.) It is clearly true for k D 1. We now
prove it for k D 2. We break into cases:

� If m1 Dm2 D 1 then m1Cm2 D 2 and �.m1/�.m2/D
9
4
> 2.

� If m1 D 1 and m2 � 2 then �.m1/�.m2/
m1Cm2

D
3
2

m2

m2C1
D

3
2
�

3
2.m2C1/

� 1, with
equality when m2 D 2.

� If m1 � 2 and m2 � 2 then �.m1/�.m2/� 2 max.m1;m2/�m1Cm2 .

Now suppose the statement is true for k � 2. Then

m1Cm2C � � �Cmk CmkC1 � �.m1C � � �Cmk/�.mk/

D .m1C � � �Cmk/�.mkC1/

� �.m1/�.m2/ � � � �.mk/�.mkC1/:

Proof of Lemma 9.4 To simplify notation, write ıj D 
nj . It is sufficient to prove
the statement for the case of j D 1. To see this, suppose the statement is true for j D 1

and all �–renormalizable directions � . Then

�.n1/ � � � �.nj�nj�1/k�
ıj
2
.�/k D �.n1/ � � � �.nj�nj�1/k�

ıj ı
�1
1

2
ı �
ı1

2
.�/k

D .�.n1/k�
ı1

2
.�/k/�.n01/ � � � �.n

0
j�1�n0j�2/k�

ı0
j�1

2
.� 0/k

� ��.n01/ � � � �.n
0
j�1� n0j�2/k�

ı0
j�1

2
.� 0/k;

where � 0D �ı1

2
.�/=k�

ı1

2
.�/k, n0j D njC1�n1 and ı0j D ıjC1ı

�1
1

. Note that ı0j arises
from the shrinking sequence for � 0 in the same way in which ıj arises from the
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shrinking sequence of � . The inequality arises from the statement of the lemma in the
case j D 1. We repeat this argument j � 1 more times to obtain the statement of the
lemma.

We will now concentrate on proving the lemma in the case of j D 1. We note that the
possible words ı1 are of one of the following eight forms:

(9-4)
v�a.hv�1/k ; va.h�1v/k ; h�a.vh�1/k ; ha.v�1h/k ;

hav�1.hv�1/k ; h�av.h�1v/k ; vah�1.vh�1/k ; v�ah.v�1h/k :

Here k � 0 and a 2ZXf0; 1g. In addition, .a; k/¤ .�1; 0/ for words in the first row.
By the previous paragraph, it is enough to prove that if ı1 is one of these words then

(9-5) �.n1/k�
ı1

2
.�/k � � < 1;

where n1D 2kC1 if ı1 is chosen from the first line of Equation (9-4), or n1D 2kC2

if ı1 is chosen from the second. We simplify our job more by noting that many of
these words are equivalent under the dihedral group. See Remark 3.6. Thus we really
only need to cover one case from the first line and one case from the second.

We will prove the statement for the cases ı1 D h�a.vh�1/k and ı1 D hav�1.hv�1/k .
In both cases either vı1 or v�1ı1 is an element of the shrinking sequence for � .
(Otherwise ı1 would be reducible or a longer word.) Then by Corollary 7.9, we know
that

� 2 Shr2.vı1/[ Shr2.v
�1ı1/D �S1 ı �

ı�1
1

2
.Shr2.v/[ Shr2.v

�1//:

For �D 2, Shr2.v/[ Shr2.v
�1/� f.x;y/ 2 S1 W �1< x=y < 1g by Proposition 7.5.

Therefore, � 2 �S1 ı�ı
�1
1

2
.x;˙1/ for some choice of �1< x < 1 and some choice of

˙1. In particular it follows that

k�
ı1

2
.�/k D

k.x;˙1/k

k� ı
�1
1

2
.x;˙1/k

�

p
2

k� ı
�1
1

2
.x;˙1/k

:

Therefore, it is sufficient to prove the statement that

(9-6) inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
�

1

�
> 1:

(We can drop the ˙1 by symmetry.)

We will now work out the case of ı1 D h�a.vh�1/k where k � 0, a 2 ZX f0; 1g,
.a; k/¤ .�1; 0/ and n1 D 2kC 1. We need to estimate the length of

� ı
�1
1

2 .x; 1/D � .hv
�1/k

2 ı � ha

2 .x; 1/:
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Note that � ha

2
.x; 1/ D .x C 2a; 1/. We break into cases depending on a (recall

�1< x < 1):

(1) xC 2a> 3 when a� 2.

(2) xC 2a< �1 when k � 1 and a� �1.

(3) xC 2a< �3 when k D 0 and a� �2.

In each of these cases, we have shown that � ha

2
.x; 1/ lies in a ray contained in the line

LD f.x0; 1/ W x0 2Rg. Now consider the matrix

�hv�1

2 D

�
�3 2

�2 1

�
:

This matrix is a parabolic with eigenvector v D .1; 1/ satisfying � hv�1

2
.v/D�v . Let

u D .1; 0/. Then � hv�1

2
.u/ D �u � 2v . We see that L D fv C tu W t 2 Rg. We

compute that
�
.hv�1/k

2
.vC tu/D .�1/k..2k t C 1/vC tu/:

It can be checked that the point of � .hv
�1/k

2
.L/ which lies closest to the origin is

� .hv
�1/k

2
.vCtu/ for �1� t < 0. This is the image under � .hv

�1/k

2
of vCtuD .x0; 1/

for some 0� x0 < 1. In particular, this point is not in any of the rays. It follows that
the infimum we need to find to apply Equation (9-6) is obtained at the endpoint of the
ray. We must check this equation in each of the three cases. In case (1), the endpoint is
.3; 1/D vC 2u. Therefore

inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
>
k� .hv

�1/k

2
.vC 2u/k

�.2kC 1/
p

2
D
k.1C 4k/vC 2uk

�.2kC 1/
p

2
:

When k D 0, we have

inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
>
k.3; 1/k

3
p

2
2

D

p
10

3
p

2
2

D

p
20

3
> 1:

When k � 1, we know �.2kC 1/D 2kC 1. We apply the triangle inequality

inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
>
.1C 4k/kvk� 2kuk

.2kC 1/
p

2
D
.1C 4k/

p
2� 2

2kC 1

D 2�
1C
p

2

2kC 1
� 2�

1C
p

2

3
> 1:

In case (2), the endpoint is .�1; 1/D v�2u. We have k � 1. We check Equation (9-6):

inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
>
k� .hv

�1/k

2
.v� 2u/k

.2kC 1/
p

2
D
k.1� 4k/v� 2uk

.2kC 1/
p

2
:
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When k D 1, we have k.1� 4k/v� 2uk D k.�5;�3/k D
p

34. Therefore

inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
>

p
34

4
p

2
D

p
17

4
> 1:

When k � 2, we can apply the triangle inequality:

inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
>
k.1� 4k/v� 2uk

.2kC 1/
p

2
>
.4k � 1/

p
2� 2

.2kC 1/
p

2
D

4k � 1�
p

2

2kC 1

D 2�
3C
p

2

2kC 1
� 2�

3C
p

2

5
> 1:

Finally, we consider case (3). Here k D 0 and the ray endpoint is .�3; 1/, so

inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
>
k.�3; 1/k

3
2

p
2
D

p
20

3
> 1:

Now we consider the case of ı1 D hav�1.hv�1/k where n1 D 2k C 2. We must
estimate the length of

� ı
�1
1

2 .x; 1/D � .vh�1/k

2 ı � v2 ı �
h�a

2 .x; 1/:

Noting that �h�a

�
.x; 1/D .x�2a; 1/, we break into two cases depending on the choice

of k � 0 and a 62 f0; 1g.

(1’) x� 2a< �3 when a� 2.

(2’) x� a> 1 when a� �1.

Let v and u be as in the previous paragraph. We have � vh�1

2
.v/D�v and � vh�1

2
.u/D

�.u� 2v/. Let LD f.x0; 1/g. Set L0 D � v
2
.L/D f.t; 1C 2t/ W t 2 Rg. The closest

point to the origin on L0 is .�2
5
; 1

5
/. Now consider the closest point on � .vh�1/k

2
.L0/.

Using the action of this parabolic, it can be checked that this closest point is of the
form � .vh�1/k

2
.t; 1C2t/ where �1< t � �2

5
. Thus the closest point on � .vh�1/kv

2
.L/

is also of this form. The preimage of this point lies in

f�v
�1

2 .t; 1C 2t/ W �1< t � �2
5
g D f.t; 1/ W �1< t � �2

5
g:

Again we observe, that the rays in cases (1’) and (2’) do not contain such points.
Therefore the minimum length must occur at the endpoints of the rays. We now check
Equation (9-6) in case (1’). Here the endpoint is .�3; 1/ and �v

2
.�3; 1/D .�3;�5/D
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�5vC 2u. We simplify Equation (9-6) using the triangle inequality:

inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
>
k� .vh�1/k

2
.�5vC 2u/k

.2kC 2/
p

2
D
k.�5� 4k/vC 2uk

.2kC 2/
p

2

�
.5C 4k/

p
2� 2

.2kC 2/
p

2
D 2�

p
2� 1

2kC 2
� 2�

p
2� 1

2
> 1:

In case (2’), the endpoint is .1; 1/ and �v
2
.1; 1/D .1; 3/D 3v� 2u. Therefore

inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
>
k� .vh�1/k

2
.3v� 2u/k

.2kC 2/
p

2
D
k.3C 4k/v� 2uk

.2kC 2/
p

2
:

When k D 0, we have .3C 4k/v� 2uD .1; 3/. Therefore, in this case,

inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
>
k.3; 1/k

2
p

2
D

p
5

2
> 1:

When k � 1, we apply the triangle inequality:

inf
�1<x<1

k� ı
�1
1

2
.x; 1/k

�.n1/
p

2
>
.3C4k/

p
2�2

.2kC2/
p

2
D

3C4k�
p

2

2kC2
D 2�

1C
p

2

2kC2
� 2�

1C
p

2

4
> 1:

This concludes the argument. The constant � can be taken so that 1=� is the minimum
of the finite number of constants used the cases above.

Lemma 9.6 If � > 2, there is a positive � < 1 depending only on � such that�
�C
p
�2� 4

2

�nj

k�

nj

�
.�/k � �j for all j :

Proof To simplify notation, write ıj D 
nj and ! D .�C
p
�2� 4/=2. As in the

previous case, it is in fact sufficient to prove the statement for j D 1. To see this,
suppose the statement is true for all �–renormalizable directions � in the case of j D 1.
Then we have

!njC1k�
ıjC1

�
.�/k D !njC1k�

ıjC1ı
�1
1

�
ı �

ı1

�
.�/k

D !njC1k�
ıjC1ı

�1
1

�
.� 0/kk�

ı1

�
.�/k< �!n0

j k�
ı0
j

�
.� 0/k;

where � 0 D � ı1

�
.�/=k� ı1

�
.�/k, n0j D njC1 � n1 , and ı0j D ıjC1ı

�1
1

. Again, we can
apply induction to obtain the statement of the lemma.

We now prove the lemma in the case of j D 1. As in the previous proof, it is sufficient
to prove the lemma in the cases of ı1 D h�a.vh�1/k and ı1 D hav�1.hv�1/k . Here
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k � 0 and a 2ZXf0; 1g. For ı1D h�a.vh�1/k we can also assume .a; k/¤ .�1; 0/.
It is enough to prove that if ı1 is one of these words then

(9-7) !n1k� ı1

� .�/k � � < 1:

Here n1 D 2kC 1 if ı1 D h�a.vh�1/k and n1 D 2kC 2 if ı1 D hav�1.hv�1/k .

In both cases either vı1 or v�1ı1 is an element of the shrinking sequence for � . Then
by Corollary 7.9, we know that in either case

� 2 Shr�.vı1/[ Shr�.v
�1ı1/D �S1 ı � ı

�1
1
� .Shr�.v/[ Shr�.v

�1//;

where �S1 denotes projection onto the unit circle. From Proposition 7.13, we know

(9-8) R�\ .Shr�.v/[ Shr�.v
�1//� �S1.f.x;˙1/ W �!�1 < x < !�1

g/:

In particular, �S1 ı� ı
�1
1
�

.�/ lies in this set. Without loss of generality, we may assume

� D �S1 ı � ı
�1
1
� .x; 1/

for some x with �!�1 < x < !�1 . Thus

(9-9) k�
ı1

�
.�/k � sup

�!�1<x<!�1

k.x; 1/k

k�
ı�1

1

�
.x; 1/k

� sup
�!�1<x<!�1

p
�!�1

k�
ı�1

1

�
.x; 1/k

D

p
�!�1

inf
�!�1<x<!�1

k�
ı�1

1

�
.x; 1/k

:

The last inequality follows from the fact that k.x; 1/k � k.!�1; 1/k D
p
�!�1 . In

particular from Equation (9-7), it is sufficient to prove that

(9-10) inf
�!�1<x<!�1

!�n1

p
�!�1

k�
ı�1

1

�
.x; 1/k �

1

�
> 1:

for some � < 1.

Now we concentrate on the case ı1 D h�a.vh�1/k and n1 D 2k C 1. We need
to compute the infimum of � ı

�1
1
�

.x; 1/ D � .hv
�1/kha

�
.x; 1/ over those x satisfying

�!�1 < x < !�1 . We have that � ha

�
.x; 1/D .xC a�; 1/. Now we break into cases

depending on a and k . As a 62 f0; 1g, k � 0 and .a; k/ ¤ .�1; 0/, then one of the
following holds:

(1) xC a�� 2��!�1 D �C! when a� 2.

(2) xC a�� !�1��D�! when k � 1 and a� �1.

(3) xC a�� !�1� 2�D���! when k D 0 and a� �2.

Geometry & Topology, Volume 19 (2015)



1958 W Patrick Hooper

(For the equalities above, we use the identity ! C!�1 D �.) We will compute the
infimum over x0 of k� .hv

�1/k

�
.x0; 1/k, where x0 ranges over the possible values of

xC a� allowed by the inequalities in cases (1)–(3). First consider the infimum over
the line � .hv

�1/k

�
.R� f1g/. The two eigenvectors of � hv�1

�
are

(9-11) v1 D .!; 1/ and v2 D .!
�1; 1/;

with � hv�1

�
.v1/D�!

2v1 and � hv�1

�
.v2/D�!

�2v2 . Therefore

inf
x02R
k� .hv

�1/k

� .x0; 1/k D k� .hv
�1/k

� .xı; 1/k;

where 0� xı <!�1 . As the inequalities above exclude the possibility of x0 D xı , we
conclude that the infimum in cases (1)–(3) must be realized at the endpoints of the rays.

In case (1), we have

inf
x0��C!

k� .hv
�1/k

� .x0; 1/k D k� .hv
�1/k

� .�C!; 1/k:

We break into two subcases depending if k D 0 or k � 1. If k D 0, then

inf
x0��C!

k� .hv
�1/k

� .x0; 1/k D k.�C!; 1/k> �C!:

Applying this to Equation (9-10) in this case yields

inf
�!�1<x<!�1

!�n1

p
�!�1

k� ı
�1
1
� .x; 1/k �

!�1

p
�!�1

.�C!/D

s
.�C!/2

�!
>
p

2:

Now consider k � 1. We have that .�C!; 1/D 1
!�!�1 .2!v1��v2/, with vi as in

Equation (9-11). Thus

k�
.hv�1/k

�
.�C!; 1/k D

!2kC1

!�!�1
k2v1��!

�4kv2k

�
!2kC1

!�!�1
.2kv1k��!

�4
kv2k/

D
!2kC1

!�!�1
.2
p
�! ��!�4

p
�!�1/

D
!2kC1

p
�!�1

!�!�1
.2! ��!�4/:
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Applying this to Equation (9-10) yields

inf
�!�1<x<!�1

!�n1

p
�!�1

k�
ı�1

1

�
.x; 1/k �

!�2k�1

p
�!�1

�
!2kC1

p
�!�1

! �!�1
.2! ��!�4/

�
D

2! ��!�4

! �!�1
D
! �!�1C�.1�!�4/

! �!�1
> 1:

In case (2), we have k � 1 and

inf
x0��!

k�
.hv�1/k/

�
.x0; 1/k D k�

.hv�1/k/

�
.�!; 1/k:

We may write .�!; 1/D 1
!�!�1 .��v1C 2!v2/. Therefore

k�
.hv�1/k

�
.�!; 1/k D

1

! �!�1
k2!1�2kv2�!

2k�v1k

�
1

! �!�1
.!2k�kv1k� 2!1�2k

kv2k/

D
!2kC1

p
�!�1

! �!�1
.�� 2!�4k/ >

!2kC1
p
�!�1

! �!�1
.�� 2!�4/:

Applying this to Equation (9-10) yields

inf
�!�1<x<!�1

!�n1

p
�!�1

k�
ı�1

1

�
.x; 1/k �

!�2k�1

p
�!�1

.
!2kC1

p
�!�1

! �!�1
.�� 2!�4//

D
�� 2!�4

! �!�1
D
! �!�1C 2.!�1�!�4/

! �!�1
> 1:

Case (3) is simpler because k D 0. For ı1 as in this case, we have that

inf
x0����!

k�
.hv�1/k

�
.x0; 1/k D k.���!; 1/k> �C!;

and we can proceed as in the first subcase of case (1).

Now we consider the case of ı1 D hav�1.hv�1/k and n1 D 2k C 2. Noting that
� h�a

�
.x; 1/D .x� a�; 1/, we break into two cases depending on the choice of k � 0

and a 62 f0; 1g:

(1’) x� a�� !�1� 2�D���! when a� 2.

(2’) x� a�� ��!�1 D ! when a� �1.

We will analyze infx0 k�
.vh�1/kv
�

.x0; 1/k, where x0 ranges over the possible values of
x� a� allowed by the inequalities in cases (1’) and (2’). This time, we have that

inf
x02R
k� .vh�1/kv
� .x0; 1/k D k� .vh�1/kv

� .xı; 1/k;
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where ��=.1C�2/� xı<!�1 . This interval is in the complement of the set of values
allowed for x�a� by cases (1) and (2), therefore the value of inf

x0Dx�a�
k� .vh�1/kv
�

.x0; 1/k

is realized at the endpoints of the rays of these cases.

In case (1’) we have,

inf
x0����!

k� .hv
�1/k

� .x0; 1/kDk� .vh�1/kv
� .���!; 1/kDk� .vh�1/k

� .���!;��2
�!2/k:

As before v1 D .!; 1/ and v2 D .!
�1; 1/ are eigenvectors of � vh�1

�
, but here

� vh�1

� .v1/D !
�2v1 and � vh�1

� .v2/D !
2v2:

We write our vector in terms of these eigenvectors as

.���!;��2
�!2/D

�

!3�!
v1C

�2!4

!2� 1
v2:

Thus we see

� .vh�1/kv
� .���!; 1/D

�

!3�!
!�2kv1C

�2!4

!2� 1
!2kv2:

By the triangle inequality, we have

k�
.vh�1/kv

�
.���!; 1/k �

2!2kC4kv2k

!2� 1
�
�!�2k�1kv1k

!2� 1

D

p
�!�1

!2� 1
.2!2kC4

��!�2k/:

In this case, we apply Equation (9-10) and see

inf
�!�1<x<!�1

!�n1

p
�!�1

k�
ı�1

1

�
.x; 1/k �

!�2k�2

p
�!�1

�p
�!�1

!2� 1
.2!2kC4

��!�2k/

�
D

2!2��!�4k�2

!2� 1

D
2!2�!�4k�1�!�4k�3

!2� 1

>
2.!2� 1/

!2� 1
D 2:

In case (2’), we have the following calculations:

inf
x0�!

k�
.vh�1/kv

�
.x0; 1/k D k�

.vh�1/kv

�
.!; 1/k D k�

.vh�1/k

�
.!; �!C 1/k:
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We may write .!; �!C 1/D 1
!2�1

.�2v1C!
3�v2/. Therefore

�
.vh�1/k

�
.!; �!C 1/D

1

!2� 1
.�2!�2kv1C!

3C2k�v2/:

By the triangle inequality, we have

k�
.vh�1/k

�
.!; �!C 1/k �

p
�!�1

!2� 1
.!3C2k�� 2!1�2k/:

We apply Equation (9-10) and see

inf
�!�1<x<!�1

!�n1

p
�!�1

k�
ı�1

1

�
.x; 1/k �

!�2k�2

p
�!�1

�p
�!�1

!2� 1
.!3C2k�� 2!1�2k/

�
D
!�� 2!�4k�1

!2� 1

D
!2C 1� 2!�4k�1

!2� 1
�
!2C 1� 2!�1

!2� 1
;

and the fraction .!2C 1� 2!�1/=.!2 � 1/ is strictly greater than one because 1�

2!�1 > �1. This completes the proof of Equation (9-10) in all cases.

10 Quadrants and shrinking sequences

Up to this point the �–shrinking sequence hgii of a vector � has been characterized
by the property that

k�k> k�
g1

�
.�/k> k�

g2

�
.�/k> � � � :

In this section, we will see that this condition is essentially equivalent to saying that
each �gi

�
.�/ lies in some specific quadrant depending on the shrinking sequence. This

section culminates with a proof of Theorem 6.11.

10.1 Quadrants and expansion

Because G is a free group, it is natural to identify each g2G with its unique expression
as a reduced word in the generators. This is equivalent to identifying g with a geodesic
segment in the Cayley graph joining e 2G to g 2G . In this context, it is natural to
consider zG which we define to be the free monoid with generating set fh; v; h�1; v�1g.
That is, zG is the set of all words in these symbols. Our expression of g 2 G as its
unique reduced word gives a set-theoretic embedding G ,! zG .

Recall Definitions 6.16 and 6.17 of sign pairs and quadrants in R2 , respectively. We
define the following action on sign pairs.
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Definition 10.1 (Expanding sign action) The monoid action †W zG�SP! SP on the
set of sign pairs is the action determined by action of generators shown in the following
diagram.

�C CC

C���

h�1; v�1
h�1

h

h; v

v v�1 v�1 v

h

h�1
h; v h�1; v�1

For g 2G , we define †g to be the action of g written as a reduced word in zG .

Now recall Definition 7.3 of Exp�.g/. Motivation for the definition of the expanding
sign action comes from the following.

Proposition 10.2 (Quadrants and expansion) Let hgii be a geodesic ray or segment
with g0D e and let s 2 SP. Suppose that � 2 cl.Exp�.g1/\Qs/. Define si D†

gi .s/.
Then �gi

�
.�/ 2 cl.Qsi

/ for all i .

Remark 10.3 The technical condition � 2 cl.Exp�.g1/\Qs/ allows the proposition
to handle horizontal and vertical � . If � is not horizontal or vertical, the condition that
� 2 cl.Exp�.g1/\Qs/ is equivalent to saying that � 2Qs \S1 and k�g1

�
.�/k � k�k.

Proof of Proposition 10.2 First, we will prove that the statement is true for i D 1.
Any such statement must be invariant under the action of the dihedral group on hgii

and � . See Remark 3.6. Thus we may assume that g1 D h and � 2 cl.QCC[Q�C/.
We have � 2 Exp�.h/\ .cl.QCC[Q�C/. Thus

�h
�.�/ 2 �

h
�.Exp�.h/\ .cl.QCC[Q�C//�QCC:

This agrees with the fact that †h.�C/D†h.CC/DCC. So the proposition is true
for i D 1, by dihedral group invariance.

To see the statement is true for i > 1, we apply induction. Proposition 7.7 implies that
the sequence k� gi

�
.�/k is nonstrictly increasing. Assume � gi

�
.�/ 2 cl.Qsi

/. We have
k� giC1
�

.�/k � k� gi
�
.�/k. Then by the first paragraph, � giC1

�
.�/ 2 cl.Qs0/, where

s0 D†giC1g�1
i .si/D siC1:
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Proposition 10.4 Let g 2 fh; v; h�1; v�1g and s 2 SP. If � g
�
.Qs/�Qs then for any

v 2Qs we have k� g
�
.v/k> kvk.

Proof By the dihedral group action, we may assume g D h. We have � h
�
.QCC/�

QCC and � h
�
.Q��/ � Q�� , but � h

�
.QC�/ 6� QC� and � h

�
.Q�C/ 6� Q�C . By

Proposition 7.5 we have QCC[Q�� � Exp�.h/.

By combining these two propositions, we have the following.

Corollary 10.5 Suppose hgii is a geodesic ray and � g1

�
.Qs/ � Qs , or equivalently

the pair .g1; s/ lies in the set˚
.h;CC/; .h;��/; .v;CC/; .v;��/;

.h�1;C�/; .h�1;�C/; .v�1;C�/; .v�1;�C/
	
:

Then for all i , �gi

�
.cl.Qs//� cl.Qsi

/ where si D†
gi .s/.

Recall that given a �–renormalizable direction � 2 S1 with shrinking sequence
hg0;g1;g2; : : :i, we can associate a sign sequence hs0; s1; s2; : : :i with si 2 SP so that
�

gi

�
.�/ 2 Qsi

for all i . See Definition 6.19. These two sequences are related by the
following.

Proposition 10.6 (Shrinking and sign sequences) Let hgii be the shrinking sequence
of a �–renormalizable direction � 2 S1\Qs0

, with s0 2 SP. Then there is a unique
(infinite) path in the following diagram which begins at the node labeled Qs0

and
follows edges labeled g1;g2g�1

1
;g3g�2

2
, etc. Moreover, the path visits the sequence

of nodes hQsi
i, where hsii is the sign sequence of � .

h; v h�1

h

h�1; v�1

v v�1 v�1 v

h�1; v�1 h�1

h

h; v

Q�C QCC

QC�Q��

Proof We will prove that we can determine siC1 from si , giC1g�1
i and giC2g�1

iC1
.

(This is similar to the diagram; a node in a path is uniquely determined from the previous
node and the labels on the adjacent arrows.) Consider the following observations.
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(1) We have �giC1

�
.�/ 2 Shr�.giC2g�1

iC1
/\QsiC1

. So the intersection

Shr�.giC2g�1
iC1/\QsiC1

is nonempty. Therefore giC2g�1
iC1
2 fh; vg implies siC1 2 fC�;�Cg and

giC2g�1
iC1
2 fh�1; v�1g implies siC1 2 fCC;��g.

(2) Similarly, we have �giC1

�
.�/ 2 �

giC1g�1
i

�
.Qsi

/\QsiC1
, so this intersection is

nonempty. Therefore we have the following:

si DC� and giC1g�1
i D h implies siC1 2 fC�;��g;

si D�C and giC1g�1
i D h implies siC1 2 fCC;�Cg;

si DC� and giC1g�1
i D v implies siC1 2 fCC;C�g;

si D�C and giC1g�1
i D v implies siC1 2 f�C;��g;

si DCC and giC1g�1
i D h�1 implies siC1 2 fCC;�Cg;

si D�� and giC1g�1
i D h�1 implies siC1 2 fC�;��g;

si DCC and giC1g�1
i D v

�1 implies siC1 2 fCC;C�g;

si D�� and giC1g�1
i D v

�1 implies siC1 2 f�C;��g:

These two observations combine to uniquely determine siC1 as in the diagram.

Proof of Proposition 6.22 Proposition 6.22 claimed that the sign sequence of � D
�.hgii; �/ only depended on the sequence hgii and on the quadrant containing � and
not on �. This is a consequence of Proposition 10.6, because � plays no role.

10.2 Critical times for the shrinking sequence

Let hsni be the sign sequence of � . We have the following important definition.

Definition 10.7 An integer n� 1 for which sn�1 D sn is a critical time.

There are various relationships between the sign sequence and the shrinking sequence
hgni that appear at critical times.

Proposition 10.8 Let n> 0 be an integer. The following statements are equivalent.

(1) n is a critical time.

(2) �
gn�1g�1

n

�
.Qsn

/�Qsn
.

(3) The pair .gn�1g�1
n ; sn/ lies in the set

f.h;CC/; .h;��/; .v;CC/; .v;��/; .h�1;C�/; .h�1;�C/; .v�1;C�/; .v�1;�C/g:

(4) gnC1g�1
n�1
2 fh2; hv; vh; v2; h�2; h�1v�1; v�1h�1; v�2g.
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Proof It can be observed that each of these statements is invariant under the action
of the dihedral group. (See Remark 3.6.) To simplify things, we use the dihedral
group to arrange that .x;y/ D � gn�1

�
.�/ satisfy x > 0, y > 0 and y < x . This

guarantees that gnD h�1gn�1 (since � h�1

�
is the only generator which shrinks .x;y/;

see Proposition 7.5) and implies that .x;y/ 2QCC (ie sn�1 DCC). So saying that n

is a critical time is the same as saying that � h�1

�
.x;y/2QCC , ie snDCC. If n is not

a critical time, then it must be the case that � h�1

�
.x;y/ 2Q�C , ie sn D�C. Using

this information, the other statements can be observed to be equivalent by inspection.
For example, we will verify that (4) is equivalent to being a critical time. If it is a
critical time, then because � gn

�
.�/ 2 QCC , we know that in order to further shrink

the vector we must have gnC1g�1
n 2 fh�1; v�1g. So gnC1g�1

n�1
2 fh�2; v�1h�1g,

which is allowed by (4). On other hand if n is not a critical time, then � gn

�
.�/ 2Q�C .

So in order to further shrink the vector, we have gnC1g�1
n 2 fh; vg. But because

gng�1
n�1
D h�1 , the first option is not allowed. We conclude that gnC1g�1

n�1
D vh�1 ,

which is not in the list in item (4).

Corollary 10.9 (Critical times occur) For � 2R� , there are infinitely many critical
times.

Proof We apply statement (4) of Proposition 10.8. Suppose the conclusion is false for
� . Then for all but finitely many n, we would have gng�1

n�2
2fhv�1; h�1v; vh�1; v�1hg.

But then hgii is tail equivalent to one of the last two sequences of Theorem 7.14, and
so � is not �–renormalizable.

10.3 Interaction with the dot product

Recall the group automorphism 
 W G ! G defined as in Equation (6-13). This
automorphism has special significance for the representation �G

�
.

Proposition 10.10 For all � and all g 2 G , we have � 
.g/
�

D t� g�1

�
, the inverse

transpose of �g

�
.

The proof follows by checking that it is true on the generators. As a consequence, for
all v;w 2R2 and all g 2G ,

(10-1) v �wD �
g

�
.v/ � �


.g/

�
.w/;

where � denotes the usual dot product R2 � R2 ! R. We establish some simple
corollaries of this observation.
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Corollary 10.11 (Sign pairs at critical times) Let hgii and hsii be shrinking se-
quences and sign pairs for a �–shrinkable direction � 2 S1 . Suppose n> 0 is a critical
time, then sn D†


.gn/.s0/.

Proof Consider that 1D � �� D � gi
�
.�/ �� 
.gi /

�
.�/ for all i > 0. Since k� g1

�
.�/k<

1 we know that k� 
.g1/
�

.�/k > 1. Therefore, by Proposition 10.2, we know that
� 
.gi /
�

.�/ 2Qs0
i
, where s0i D†


.gi /.s0/ for all i . Since n is a critical time, we know
sn D sn�1 . By the dihedral group action of Remark 3.6, without loss of generality, we
can assume that sn�1 D sn DCC and gn ıg�1

n�1
D h�1 . Note that

s0n 2†

.h�1/.SP/D†v.SP/D fCC;��g:

(See the diagram in Definition 10.1.) Since � 
.gn/
�

.�/ 2 Qs0n
, we know s0n D CC

because
� gn

� .�/ 2Qsn
DQCC and � gn

� .�/ � � 
.gn/
� .�/D 1:

Corollary 10.12 Suppose � is �–renormalizable, and v 2R2 satisfies � � v ¤ 0. Let
hgni be the �–shrinking sequence for � . Then k� 
.gn/

�
.v/k!1 as n!1.

Proof By Equation (10-1), we have that � � v D � gn

�
.�/ � � 
.gn/

�
.v/. Therefore

k�

.gn/

�
.v/k �

j� � vj

k�
gn

�
.�/k

:

The denominator of this expression tends to 0 as n!1, so k� 
.gn/
�

.v/k!1.

Of particular importance, we can conclude that if � � v ¤ 0 then eventually there is an
i for which k� 
.gi /

�
.v/k > k� 
.gi�1/

�
.v/k. Then, for n > i , the quadrant containing

� 
.gn/
�

.v/ is governed by the expanding sign action. See Proposition 10.2. Then the
following applies.

Proposition 10.13 Let � 2R� . Let hgii be the �–shrinking sequence of � , and let
hsii be the sign sequence. Suppose v 2 R2 satisfies � � v > 0. By Corollary 10.12,
there is an i for which k� 
.gi /

�
.v/k> k� 
.gi�1/

�
.v/k. For any critical time n� i , we

have � 
.gn/
�

.v/ 2Qsn
.

Proof Note that if g 2 fh; v; h�1; v�1g then the image †g.SP/ consists of precisely
two sign pairs. (For instance, †h.SP/DfC�;�Cg. See Definition 10.1.) In particular,
for n � i , we have � 
.gn/

�
.v/ lies in one of the two quadrants in †gng�1

n�1.SP/.
Now suppose that n is a critical time. Statement (3) of Proposition 10.8 explicitly
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describes the possible pairs .gn�1g�1
n ; sn/. By inspection it can be observed that

†gng�1
n�1.SP/D fsn;�sng. Now recalling Equation (10-1), we have that

� � v D � gn

� .�/ � � 
.gn/
� .v/:

Therefore � � v > 0 and � gn

�
.�/ 2Qsn

implies that � 
.gn/
�

.v/ 2Qsn
.

Now suppose that � � v D 0. Let R denote the linear map RW R2!R2 which rotates
by �=2. As a matrix,

(10-2) RD

�
0 �1

1 0

�
:

Conjugation by this map induces an automorphism of �G
�

. Inspection reveals that

(10-3) R ı �
g

�
D �


.g/

�
ıR

for all g 2 G . Note that this map R permutes the quadrants of R2 and therefore
induces permutation r W SP! SP so that

(10-4) R.Qs/DQr.s/:

The punchline of this section is that we can detect the sign of � � v using the shrinking
and sign sequences of � .

Theorem 10.14 Let � 2R� , and let hgni and hsni denote the �–shrinking and sign
sequences of � , respectively. Choose any nonzero vector v 2R2 .

(a) If � � v > 0, then there is an i � 0 such that for any critical time n> i we have
� 
.gn/
�

.v/ 2Qsn
.

(b) If � � v < 0, then there is an i � 0 such that for any critical time n> i we have
�� 
.gn/

�
.v/ 2Qsn

.

(c) If � � v D 0, the for all i � 0 we have � 
.gn/
�

.v/ 2 Qr˙1.sn/
for some fixed

choice of sign.

Proof Statement (a) follows directly from Proposition 10.13. Statement (b) follows
by applying this proposition to �v . Statement (c) follows from Equation (10-3) by
noting that

�

.gn/

�
ıR.�/DR ı �

gn

�
.�/ 2Qr.sn/:
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10.4 Proofs of results from Section 6

We need to convert between the dot and wedge product. We recall that

(10-5) v �wD v^R.w/DR�1.v/^w

with R defined as in Equation (10-2).

Recall that the Quadrant sequence proposition 6.20 said that the only v 2 S1 for which
�

gn

�
.v/ 2Qsn

for all n is v D � . We now give the proof:

Proof of Proposition 6.20 Suppose such a v exists. Then v^� ¤ 0. Let wDR.v/.
Then

v^� D � �wD �
gn

�
.�/ � �


.gn/

�
.w/:

Since � �w is nonzero, Theorem 10.14 guarantees that there is a n for which

˙� 
.gn/
� .w/ 2Qsn

;

with the sign equal to the sign of � �w. By Equation (10-3), we have

˙�

.gn/

�
.w/D˙R ı �

gn

�
.v/;

so we may conclude that � gn

�
.v/ 2 Qr.sn/ [Qr�1.sn/

. This is a contradiction, since
we assumed that � gn

�
.v/ 2Qsn

.

Recall Definition 6.10 of a .�; n/–survivor m 2 H 1 . Theorem 6.11 stated that a
cohomology class m 2 H 1 arises from applying ‰� to a locally finite transverse
measure to the foliation in a �–renormalizable direction � if and only if m is a
.�; n/–survivor for all n� 0.

Proof of Theorem 6.11 Note that the “only if” direction is trivial. Checking that m is
a .�; n/–survivor for all n� 0 simply checks that m pairs correctly with some saddle
connections. See Definition 6.10 of .�; n/–survivors. In particular, Lemma 6.6 implies
this is a necessary condition for m 2‰�.M�/.

For the “if” direction, we will use the sufficiency criterion given by Lemma 6.6 . Let
� be any saddle oriented connection in S , and let v D hol � . We will check that if
m.J�K/¤ 0 then sgn.m.J�K//D sgn.hol.�/^ �/. So assume that m.J�K/¤ 0. We
know that hol � is not parallel to � by Theorem 6.2. (There are no saddle connections
in �–renormalizable directions.) Let hgni denote the shrinking sequence for � , and
hsni denote the sign sequence. By Proposition 6.20, there is a smallest n for which
� gn

�
.hol �/ 62Qsn

[Q�sn
. Then there is a sign pair s 62 f˙sng so that � gn

�
.hol �/ lies
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in the closed quadrant Qs . Let � 0 Dˆgn.�/ whose holonomy is given by � gn

�
.hol �/.

Because our surface decomposes into rectangles, we can write

J� 0KD
kX

iD1

J� 0iK;

where the � 0i are horizontal or vertical saddle connections (boundary edges of the
rectangles) oriented so that their holonomies lie in the boundary of the quadrant Qs .
Now let �i Dˆ

g�1
n .�i/ for all i so that J�KD

Pk
iD1J�iK. Since we know that m is a

.�; n/–survivor, we know that for each i , either m.J�iK/D 0 or

sgn.m.J�iK//D sgn.hol.�i/^�/:

Given this, it suffices to prove that sgn.hol.�i/^ �/D sgn.v ^ �/ for all i , because
then we have

sgn.m.J�K//D sgn
kX

iD1

m.J�iK/D sgn.v^�/

since each term in the sum has the sign the same as hol.�i/^� whenever it is nonzero,
and since the total sum is nonzero from the assumption that m.J�K/¤ 0. To verify
this sufficiency condition, recall that for � D � or � D �i for some i , we have that
� gn

�
.hol �/ lies in the closed quadrant Qs with s 62 f˙sng, while by definition � gn

�
.�/

lies in Qsn
. By invariance of the wedge product under orientation preserving linear

maps,
hol.�/^� D � gn

� .hol �/^ � gn

� .�/:

The sign of the right-hand side is the same for all nonzero vectors such as � gn

�
.hol �/

taken from Qs wedged with all vectors such as � gn

�
.�/ taken from Qsn

. In particular,
the sign of this wedge product does not change if we set �D � or �D �i for some i .

11 Survivors and operators

The purpose of this section is to prove Theorem 6.31, which says that all � –survivors
in H 1 arise as „.f / where f 2RV is a � –survivor. In order to prove this statement,
we will transform several results proved in Section 10 about the interplay between the
�G
�

action on R2 and quadrants in R2 into statements about the ˆG
� action on H 1

and the ‡G action on RV .

11.1 Homology, cohomology and RV

We begin by proving Proposition 6.14, which says that ˆg
� ı„D„ ı‡

g .
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Proof of Proposition 6.14 Let JxK 2H1.S;V;Z/. By definition of ˆg
� and of „,

.ˆ
g
� ı„.f //.JxK/D„.f /.ˆg�1

.JxK//D
X
v2V

i.ˆg�1

.JxK/; JcylvK/f.v/:

By acting by ˆg on each side of each expression for intersection number, we have

.ˆ
g
� ı„.f //.JxK/D

X
v2V

i.JxK; ˆg.JcylvK//f.v/:

Consider the case of g D hk with k 2 Z. By Proposition 6.9, we have

ˆhk

.JcylvK/D
�
JcylvKC k

P
w�v

JcylwK if v 2A,
JcylvK if v 2 B.

Thus we may write

.ˆhk

� ı„.f //.JxK/D
X
a2A

i.JxK; JcylaK/f.a/C
X
b2B

i

�
JxK; JcylbKCk

X
a�b

JcylaK
�
f.b/:

By regrouping terms, we see

.ˆhk

� ı„.f //.JxK/D
X
a2A

i.JxK; JcylaK/
�
f.a/Ck

X
b�a

f.b/
�
C

X
b2B

i.JxK; JcylbK/f.b/:

This last expression is equal to
P

v2V i.JxK; JcylvK/.H k.f /.v//D .„ıH k.f //.JxK/.
Thus „ ıH k D ˆhk

� ı„ as desired. By a similar argument or by the action of the
dihedral group, the same holds for g D vk .

Recall that RV
c represents the set of finitely supported functions from V ! R. We

introduce a canonical linear map ZW H1.S;V;R/!RV
c . Define

(11-1) Z.JxK/.v/D i.JxK; JcylvK/;

where JcylvK 2 H1.S X V;Z/ represents the homology class of the core curve of
cylinder cylv for v 2 V . Recalling the bilinear pairing h ; iW RV �RV

c !R given in
Equation (6-11). By definition of „ (see Equation (6-5)), we have

(11-2) hf ;Z.JxK/i D„.f /.JxK/:

Note that Z is not injective. A useful consequence of the construction is that

Z.JxK/D Z.JyK/ implies „.f /.JxK/D„.f /.JyK/:

We collect the following corollary to Proposition 6.14.
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Corollary 11.1 For all JxK 2H1.S;V;R/, we have ‡g ıZ.JxK/D Z ıˆ
.g/.JxK/,
where 
 W G!G is the involutive homomorphism defined above Equation (6-14).

Proof Note that two elements x;y 2 RV
c are equal if and only if hf ;xi D hf ;yi

for all f 2RV . Let f 2RV be arbitrary. By Equation (6-14),

hf ; ‡g
ıZ.JxK/i D h‡
.g/

�1

.f /;Z.JxK/i:

Then by Equation (11-2) and Proposition 6.14,

hf ; ‡g
ıZ.JxK/i D„.‡
.g/

�1

.f //.JxK/D .ˆ
.g
�1/

� ı„.f //.JxK/:

By the definition of ˆ
.g
�1/

� given in Equation (6-1), we continue

hf ; ‡g
ıZ.JxK/i D„.f /.ˆ
.g/.JxK//D hf ;Z ıˆ
.g/.JxK/i:

Thus ‡g ıZ D Z ıˆ
.g/ as desired.

Recall that R is the linear map R2!R2 which rotates by �=2. Also, r is the induced
permutation on the signs of quadrants in R2 . See Equations (10-2) and (10-4).

Proposition 11.2 Let � be a saddle connection and s 2 SP. Then hol � 2 cl.Qs/ if
and only if Z.J�K/ 2 bQr.s/ .

Proof Choose any s for which hol � 2 cl.Qs/. Write s D .sx; sy/ with sx; sy 2

f1;�1g. Then r.s/D .�sy ; sx/. Because hol � 2 cl.Qs/, we have sgn.�x.hol �// 2
fsx; 0g and sgn.�y.hol �// 2 fsy ; 0g. Let a 2A. Then

sgnZ.J�K/.a/D sgn i.J�K; JcylaK/D sgn.hol �/^ .1; 0/

D sgn.��y.hol �// 2 f�sy ; 0g:

Similarly if b 2 B , then

sgnZ.J�K/.b/D sgn i.J�K; JcylbK/D sgn.hol �/^ .0; 1/

D sgn.�x.hol �// 2 fsx; 0g:

So Z.J�K/ 2 bQr.s/ . The converse follows by reversing this argument.
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11.2 Quadrant tracking via expansion

Recall that conjugation by R preserves the subgroup �G
�
� SL.2;R/. Equation (10-3)

explains exactly how conjugation by R acts on G . This action on G also relates to
the expanding sign action †G . Namely,

(11-3) †g
ı r D r ı†
.g/:

We view the following as a corollary of Proposition 10.2.

Corollary 11.3 Let hgii be a geodesic ray and s 2 SP. Assume that � is a saddle
connection for which hol � 2 cl.Exp�.
 .g1//\Qs/. Then ‡gi ı Z.J�K/ 2 bQr.si / ,
where si D†

gi .s/.

Proof By Proposition 10.2, we know that �
.gi /

�
.hol �/ 2 cl.Qsi

/ for all i . We also
know that

hol ıˆ
.gi /.J�K/D �
.gi /

�
.hol �/

is the holonomy of a saddle connection. By Proposition 11.2, Z ıˆ
.gi /.J�K/2 bQr.si / .
By Corollary 11.1, we see

‡gi ıZ.J�K/D Z ıˆ
.gi /.J�K/ 2 bQr.si /:

Proposition 11.4 (Quadrant tracking) Suppose hgii is a geodesic ray and � g1

�
.Qs/�

Qs . Then ‡gi .bQs/� bQsi
, where si D†

gi .s/.

Proof Let f 2 bQs . Given v 2 V , let ev 2RV denote the function

(11-4) ev.w/D
�

1 if vD w;
0 if v¤ w.

Formally, we may write
f D

X
v2V; f.v/¤0

f.v/ev:

This sum makes sense, because for any v2 V , there are only finitely many terms whose
support includes v. For each v 2 V with f.v/ ¤ 0 we can choose a horizontal or
vertical saddle connection �v such that for any w 2 V we have

i.J�vK; JcylwK/D
�

sgnf.v/ if vD w;
0 otherwise.

Then by definition of Z we have

(11-5) f D
X

v2V; f.v/¤0

jf.v/jZ.J�vK/:
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Note that each Z.J�vK/ 2 bQs and therefore by Proposition 11.2 we know hol �v 2

cl.Qr�1.s//. We now apply ‡gi to Equation (11-5), yielding

(11-6) ‡gi .f /D
X

v2V; f.v/¤0

jf.v/j‡gi ıZ.J�vK/D
X

v2V; f.v/¤0

jf.v/jZ ıˆ
.gi /.J�vK/;

with the last equality following from Corollary 11.1. Now consider that if � g1

�
.Qs/�

Qs , then � 
.g1/
�

.cl.Qr�1.s/// � cl.Qr�1.s//. (This follows by inspecting the pairs
.g1; s/ allowed by Corollary 10.5.) By Corollary 10.5, we may conclude that

holˆ
.gi /.J�vK/ 2 cl.Qs0
i
/;

where s0i D†

.gi / ı r�1.s/. By Equation (11-3), we have s0i D r�1 ı†gi .s/. Then it

follows from Proposition 11.2 that

Z ıˆ
.gi /.J�vK/ 2 bQr.s0
i
/ D

bQsi
;

where si D r.s0i/D†
gi .s/ as in the statement of the proposition. As each of the terms

in the sum for ‡gi .f / in Equation (11-6) lie in Qsi
, we know ‡gi .f / 2Qsi

.

Let hgii be the shrinking sequence for a �–renormalizable direction � 2 S1 , and hsii

denote the sign sequence. Recall Definition 10.7 that n is a critical time if sn�1 D sn .
We have the following corollary to Proposition 11.4.

Corollary 11.5 (Critical times) Suppose n is a critical time. Then if f 2 RV is a
.�; n/–survivor, then it is a .�; k/–survivor for all k < n.

Proof Let fk D‡
gk .f / and �k D �

gk
�
.�/. We know that �n 2Qsn

and fn 2 bQsn
.

By statement (2) of Proposition 10.8, we know � gn�1g�1
n

�
.Qsn

/ � Qsn
D Qsn�1

.
Consider the geodesic segment hhi D gn�ig

�1
n i. By definition of the sign sequence

hsii, we have �n�i 2Qsn�i
. By Proposition 10.2, we know sn�i D†

hi .sn/. Finally,
by Proposition 11.4, we know fn�i D‡

hi .bQs/� bQsn�i
too. Therefore, by definition,

fn�i is a .�; n� i/–survivor.

Recall that Lemma 6.37 claimed that for � a �–renormalizable direction, there are
infinitely many n 2N such that for f 2RV , being a .�; n/–survivor implies being at
.�; k/–survivor for all k � n. So this was really a consequence of the above corollary.

Proof of Lemma 6.37 Let n be a critical time for the shrinking sequence of � . There
are infinitely many of these times by Corollary 10.9. Also if f is a .�; n/–survivor
then it is a .�; k/–survivor for all k < n by Corollary 11.5.
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Corollary 11.6 Suppose � is a �–renormalizable direction. If for some N � 0 we
know that f 2RV is a .�; k/–survivor for all k �N , then f is a � –survivor.

Proof Corollary 10.9 guarantees that we have infinitely many critical times n. Choose
such an n>N . Corollary 11.5 implies that f is a .�; k/–survivor for all k < n.

Corollary 11.7 (Group invariance) Assume that f is a � –survivor, for � a �–
renormalizable direction. Then for all g 2G , ‡g.f / is a � g

�
.�/–survivor.

Proof Let f 0 D ‡g.f /. Let hgii be the �–shrinking sequence for � , and hg0ii be
the �–shrinking sequence for � 0 D �S1 ı � g

�
.�/. Then the �–shrinking sequences

of � and � 0 are tail equivalent, as defined in Section 7. Moreover, regardless of the
choice of g 2G there are positive integers m and n such that

‡gm.f /D ‡g0n.f 0/ and �S1 ı � gm

� .�/D �S1 ı � g0n
� .� 0/:

Then this is also true for m replaced by mCk and n replaced by nCk for all k � 0.
Thus Corollary 11.6 implies that f 0 is a � 0–survivor.

11.3 Survivors in H 1 and RV

In this section we will provide a proof of Theorem 6.31, ie in the presence of the
subsequence decay property, we have that ‰�.M�/�„.R

V/. The main idea of the
proof is to understand the function F W H 1!RV given by

F .m/.v/Dm.JcylvK/;

where JcylvK represents the homology class of the cylinder associated to v2 V oriented
rightward or upward. Recall that r W SP ! SP is the action on signs of quadrants
induced by a rotation by �=2 radians. See Equation (10-4). We have the following.

Proposition 11.8 F ıˆ
g
� D ‡


.g/ ıF

Proof It is enough to handle the cases of g 2 fhk ; vk W k 2Zg. Let gD hk . Suppose
a 2A. Then by Proposition 6.9,

.F ıˆhk

� .m//.a/Dm.ˆh�k

.JcylaK//Dm.JcylaK/:

By definition of 
 , we have 
 .hk/D v�k . By Equation (6-3),

.‡v
�k

ıF .m//.a/D F .m/.a/Dm.JcylaK/:
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Now let b 2 B . We have

.F ıˆhk

� .m//.b/Dm.ˆh�k

.JcylbK//Dm

�
JcylbK� k

X
a�b

JcylaK
�
;

.‡v
�k

ıF .m//.b/D F .m/.b/� k
X
a�b

F .m/.a/Dm.JcylbK/� k
X
a�b

m.JcylaK/:

These two expressions are equal by linearity of m. The proof is similar for the case of
g D vk .

Recall that R acts on R2 by rotation by �=2. See Equation (10-2).

Proposition 11.9 If m2H 1 is a .�; n/–survivor, then F .m/2RV is a .R�1.�/; n/–
survivor.

Proof To ease notation define � 0 DR�1.�/. Let hgni denote the shrinking sequence
for � . Let g0n D 
 .gn/. By Equation (10-3), hg0ni is the shrinking sequence for
� 0 . Therefore, if hsni is the sign sequence of � , then the sign sequence for � 0 is
hs0n D r�1.sn/i. By Proposition 6.23, we must show that ‡g0n ı F .m/ 2 bQs0n

. By
Proposition 11.8, ‡g0n ıF .m/D F .ˆ

gn
� .m//. For v 2 V , we have

F .ˆ
gn
� .m//.v/D .ˆ

gn
� .m//.JcylvK/:

Define x;y 2 R so that .x;y/ D � . We may apply Proposition 6.12 because
m is a .�; n/–survivor and because JcylvK can be written as a sum of homology
classes of saddle connections parallel to hol.JcylvK/. Therefore, for all a 2A, unless
F .ˆ

gn
� .m//.a/D 0,

sgn F .ˆ
gn
� .m//.a/D sgn hol.JcylaK/^ �

gn

�
.�/D sgn.1; 0/^ �gn

�
.�/D sgn y:

Similarly, for b 2 B , unless F .ˆ
gn
� .m//.b/D 0, we have

sgn F .ˆ
gn
� .m//.b/D sgn hol.JcylbK/^ �

gn

�
.�/D sgn.0; 1/^ �gn

�
.�/D� sgn x:

Noting that .x;y/ 2Qsn
, we see .y;�x/ 2Qr�1.sn/

. Thus F .ˆ
gn
� .m//.v/ 2 bQs0n

as
desired.

Proof of Theorem 6.31 Suppose that m 2 H 1 is a � –survivor, and suppose that
there is no f 2 RV for which m D „.f /. Then there are horizontal or vertical
saddle connections �; � 0 2E both of which cross cylv for some v 2 V and for which
m.J�K/¤m.J� 0K/. Note that for such a pair of saddle connections, we have

ˆg.J�K� J� 0K/D J�K� J� 0K
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for all g 2G , because the difference J�K�J� 0K has zero algebraic intersection number
with each horizontal and vertical cylinder. Consider the shrinking sequence hgni of � .
We have

(11-7) .ˆ
gn
� .m//.J�K� J� 0K/Dm.ˆg�1

n .J�K� J� 0K//Dm.J�K� J� 0K/:

So this quantity remains constant.

On the other hand, let g D F .m/. By Proposition 11.9, g is a � 0 DR.�/–survivor.
The �–shrinking sequence of � 0 is hg0n D 
 .gn/i by Equation (10-3). Now we utilize
the subsequence decay property. By this property, there is a subsequence hg0ni

i such
that for all v 2 V we have

lim
i!1

‡
g0ni .g/.v/D 0:

The quantity ‡.g0ni
/.g/.v/ has meaning to us because

‡
g0ni .g/.v/D .‡g0ni ıF .m//.v/D .F ıˆ

gni
� .m//.v/Dˆ

gni
� .m/.JcylvK/:

Because m is a .�; n/–survivor for all n, we know that any saddle connection � 2E

satisfies either ˆgn
� .m/.J�K/D 0 or

(11-8) sgnˆgn
� .m/.J�K/D sgn.hol.J�K/^ �gn

�
.�//:

In particular, choose and orient a boundary component of cylv for some v 2 V . This
component is made up of some number of oriented horizontal or vertical saddle
connections �1; : : : ; �k . Equation (11-8) implies that all nonzero ˆgn

� .m/.J�j K/ have
the same sign regardless of the choice of j D 1; : : : ; k . Since J�1KC� � �CJ�kKD JcylvK
in H1.S;V;Z/, it follows that

lim
i!1

ˆ
gni
� .m/.J�j K/.g/.v/D 0 for all j D 1; : : : ; k :

Now note that every horizontal and every vertical saddle connection lies in the boundary
of some cylinder cylv for v2V . In particular, this holds for � and � 0 . We conclude that

lim
i!1

ˆ
gni
� .m/.J�K� J� 0K/D 0:

This contradicts our assumption that m.J�K� J� 0K/¤ 0 via Equation (11-7).

11.4 Surjectivity

In this section, we prove Lemma 6.43, which states that, under our hypotheses, if � is
a �–renormalizable direction, then A surjectively sends S� to Sx� . The proof follows
without much difficulty from Proposition 6.42 of the outline. However, the ideas used
in the proof are most similar to the ideas appearing in Appendix B.
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Proof of Lemma 6.43 We assume S.G;w/ has the critical decay property and the G
has the adjacency sign property. We let � 2R� and f 2 Sx� . We will show that there
is a g 2 S� with A.g/D f .

Let hgni and hsni denote the shrinking and sign sequences of � . Then hxgni and hxsni

are the corresponding sequences of x� . See the beginning of Section 6.6. To simplify
notation define fn D ‡

xgn.f /.

For each critical time ni , define the set Hni
D fh 2 bQsni

W A.h/D fni
g. Applying

Proposition 6.42 with f replaced by fni
and � replaced by �S1 ı � gni

�
.�/ implies

that Hni
is nonempty. For h 2Hni

, we have

A ı‡
g�1

ni .h/D ‡
xg�1

ni ıA.h/D ‡
xg�1

ni .fni
/D f :

Therefore any g0 2‡
g�1

ni .Hni
/ represents a candidate g . Set Gni

D‡g�1
t .Hni

/. By
definition, we have

(11-9) Gni
D fg0 2RV

W A.g0/D f and g0 2 ‡
gni .bQsni

/g:

Note that Lemma 6.37 implies that

(11-10) Gni
D fg0 W A.g0/D f and g0 is a .�; n/–survivor for 0� n� ni g:

Thus we have GniC1
�Gni

for all i . We conclude that

fg 2 S� W A.g/D f g D
\

i

Gni
;

where the intersection is taken over the critical times. We will use the notation G1 DT
i Gni

. We must show that G1 is nonempty.

Note that each Gni
is nonempty, because each Hni

is. Furthermore, we note that each
Gni

is weakly closed. This can be most easily seen by looking at Equation (11-9). It
follows because both A and ‡gni are weakly continuous and bQsni

is weakly closed.

For each critical time ni choose a gni
2Gni

. We will find a weak limit point, g , of the
a sequence of hgni

j ni a critical timei. As each gni
is a .�; 0/–survivor, we know

that gni
2 bQs0

. Without loss of generality, we may assume that s0 DCC. Therefore
gni

;f 2 bQCC . For each v 2 V , there is a w� v and we have

0� gni
.v/�A.gni

/.w/D f.w/:

In particular the sequence of gni
.v/ is bounded for each v 2 V . Therefore we can

apply a Cantor diagonal argument as in the proof of Proposition B.2. This produces our
desired limit g . Since each Gni

is weakly closed, and this sequence of sets is nested,
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we see that g 2G1 . Such a g lies in Gni
for every i , and in view of Equation (11-10),

we see that A.g/D f and g is a .�; n/–survivor for every n� 0. That is, g 2 S� .

11.5 Survivors and the pairing of RV with RV
c

Ideas developed in this section will be useful in Sections 12 and 13, which address
the critical decay property and the adjacency sign condition. We begin this section by
summarizing results from Sections 11.2 and 11.3. Then we will state some consequences
of our previous work.

Let � be a �–renormalizable direction. Let hgii and hsii be the shrinking and sign
sequences of � . Recall S� denotes the set of � –survivors in RV . By Definition 6.15
this is

S� D ff 2RV
W ‡gn.f / 2 bQsn

for all n� 0g:

Alternately, by Theorems 6.11 and 6.31, „.S�/ is the set of all cohomology classes
arising from transverse invariant measures to the foliation in the direction � . Then
Lemma 6.6 implies that

(11-11) S� D
�
f 2RV

W
sgnhf ;Z.J�K/i D sgn.hol � ^�/ for all saddle
connections � with hf ;Z.J�K/i ¤ 0

�
:

Here the quantity hf ;Z.J�K/i represents the value assigned to J�K by the associ-
ated cohomology class (which is potentially induced by an invariant measure). See
Equation (11-2).

The later sections of this paper are primarily interested in questions of the following
sort. Given x 2RV

c with some properties and any f 2 S� , is it true that hf ;xi � 0?
We pursue this sort of question from the following point of view. One way to show that
hf ;xi� 0 is to find saddle connections �j so that xD

P
j Z.J�j K/ and hol �j^� > 0.

If we can find this, then hf ;xi � 0 follows from Equation (11-11).

There is a second, more operator theoretic point of view as well.

Proposition 11.10 (Positivity checks) Let � be a �–renormalizable direction. Let
hgii and hsii be the shrinking and sign sequences of � . Let x 2 RV

c . Either of the
following two statements imply that for all f 2 S� , we have hf ;xi � 0.

(1) There exist a finite collection oriented saddle connections f�j g so that hol �j ^

� > 0 for each j and x D
P

j Z.J�j K/.

(2) There is a critical time t so that ‡
.gt /.x/ 2 bQst
.
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Remark 11.11 In fact, it can be observed that these two statements are equivalent. That
(1) implies (2) follows essentially from Theorem 10.14. Conversely, if we have (2), then
‡
.gt /.x/ can be expressed as Z.J�1KC� � �CJ�N K/ where each �j is an appropriately
oriented horizontal or vertical saddle connection, so that hol �j 2 cl.Qr�1.st /

/. Then

x D ‡
.gt /
�1

ıZ.J�1KC � � �C J�N K/D Z ıˆg�1
t .J�1KC � � �C J�N K/

and we may take �j Dˆ
g�1

t .�j /.

Proof of Proposition 11.10 For statement (1), this follows from the paragraph pre-
ceding the proposition. In the case of statement (2), we have

hf ;xi D h‡gt .f /; ‡
.gt /.x/i:

Since both ‡gt .f / and ‡
.gt /.x/ lie in bQst
, their product is nonnegative.

The following strengthens the utility of statement (2) of Proposition 11.10.

Proposition 11.12 Let � 2R� and let f be a � –survivor. Let hgii and hsii be the
shrinking and sign sequences of � . If x 2 RV

c \
bQs0

, then for any critical time t ,
‡
.gt /.x/ 2 bQst

.

Proof We can write x D
PN

jD1 Z.J�j K/, where each �j is a horizontal or vertical
saddle connection oriented so that hol �j 2 cl.Qr�1.s0/

/. See Proposition 11.2. Then

(11-12) ‡
.gt /.x/D

NX
jD1

Z ıˆgt .J�j K/

by Corollary 11.1. Looking at the action on holonomy, we have

hol ıˆgt .J�j K/D � gt

� .hol �j /:

By Proposition 7.5, since � g1

�
shrinks the vector � 2 Qs0

, we know � g1

�
expands

every vector in Qr�1.s0/
. Therefore the quadrant containing � gt

�
.hol �j / is governed

by the expanding sign action. Namely by Proposition 10.2, we must have � gi
�
.hol �j /2

cl.Qs0
i
/, where s0i D†

gi ı r�1.s0/ for all i . Therefore, by Proposition 11.2, we know
each term from Equation (11-12) satisfies

Z ıˆgt .J�j K/ 2 bQr.s0t /
:

By Equation (11-3), we know s0i D r�1 ı †
.gi /.s0/, and so r.s0t / D †
.gt /.s0/.
Therefore r.s0t /D st by Corollary 10.11. It follows from Equation (11-12) that

‡
.gt /.x/ 2 bQst
:
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12 Subgraphs and covers

In this section, we will consider how the group of operators ‡G is affected by restricting
to subgraphs and lifting to finite covers. This will be relevant to proofs in Section 13,
where we prove the adjacency sign property and the decay properties hold when G has
no vertices of valence one.

12.1 Subgraphs

Throughout this subsection, H � G will be a connected infinite subgraph. We will
use subscripts to distinguish quantities related to the two graphs. For instance, we
write VH � VG to indicate that the vertex set of H is a subset of the vertex set of
G . The subgraph H inherits a bipartite structure from G . Namely, AH D AG \ VH
and BH D BG \ VH . We use ‡G

G W R
VG ! RVG and ‡G

H W R
VH ! RVH to denote the

appropriate groups of operators on the two spaces. We identify RVH with the subset of
RVG whose support is contained in VH .

Proposition 12.1 Let f 2 RVH . Suppose that f 2 bQs for some s 2 SP. Write
s D .a; b/ with a; b 2 f˙1g. Then for all integers k ¤ 0, the following statements
hold.

(1) H k
G .f /�H k

H.f / is supported on a subset of AG and the sign of all nonzero
values of this function is b � sgn.k/.

(2) V k
G .f /� V k

H .f / is supported on a subset of BG and the sign of all nonzero
values of this function is a � sgn.k/.

Proof We will prove statement (1). Statement (2) has a similar proof. By considering
the definition of H given in Equation (6-2), for all v 2 VG we have

.H k
G .f /�H k

H.f //.v/D

( P
b�Gv;b6�Hv

kf.b/ if v 2AG ,

0 if v 2 BG ,

where the sum should be interpreted as over all edges leaving v that appear in G but
not in H . The conclusion follows.

Corollary 12.2 Let hgii be a geodesic ray in G . Suppose x 2RVH \ bQs0
for some

s0 2 SP, and define si D†
gi .s0/. Then for all i � 1,

‡
gi g�1

1

G .‡
g1

G .x/�‡
g1

H .x// 2 bQsi
:
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Proof By Proposition 12.1 and comparison to Definition 10.1 of the expanding sign
action, we see that ‡g1

G .x/�‡
g1

H .x/ 2 bQs1
. Moreover, because of the description of

the support as a subset of either A or B , we have

‡
g1

G .‡
g1

G .x/�‡
g1

H .x//D ‡
g1

G .x/�‡
g1

H .x/:

Since s1D†
g1.s0/, we know s1D†

g1.s1/. Therefore we have �g1

�
.Qs1

/�Qs1
and

thus
‡

gi g�1
1

G .‡
g1

G .x/�‡
g1

H .x//D ‡
gi

G .‡
g1

G .x/�‡
g1

H .x// 2 bQs0
i
;

where s0i D†
gi .s1/ by Proposition 11.4. Finally, note that

si D†
gi .s0/D†

gi g�1
1 .s1/D†

gi .s1/D s0i

since †g1.s1/D s1 . Thus ‡
gi g�1

1

G .‡
g1

G .x/�‡
g1

H .x// 2 bQsi
as desired.

For v 2 VH , we use ev to denote the element of either RVG
c or RVH

c (depending on
context) which assigns one to v and zero to everything else.

Theorem 12.3 Suppose H � G is an infinite connected subgraph. Let hgii be any
geodesic ray in G . Then, for any vertex v 2 VH ,

j‡
gi

H .ev/.w/j � j‡
gi

G .ev/.w/j

for all w 2 VH and all i � 0.

Proof Give H an arbitrary ribbon graph structure, and find an arbitrary eigenvector
of the adjacency operator. Then Corollary 11.3 gives a sequence si 2 SP such that
‡

gi

H .ev/ 2 bQsi
and ‡gi

G .ev/ 2 bQsi
. In particular, si D †

gi .s0/ for the appropriate
choice of s0 2 SP.

Now we will inductively define elements yi 2RVG
c for each integer i � 1. Assuming

y1; : : : ;yi�1 are defined, we define yi to be the unique element of so that

‡
gi

G .ev/�‡
gi

H .ev/D ‡
gi g�1

1

G .y1/C‡
gi g�1

2

G .y2/C � � �Cyi :

We will show that

(12-1) ‡
gi g�1

j

G .yj / 2 bQsi
for all i � j :

In particular, for all w 2 VG we have

‡
gi

G .ev/.w/D ‡
gi

H .ev/.w/C‡
gi g�1

1

G .y1/.w/C‡
gi g�1

2

G .y2/.w/C � � �Cyi.w/;
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and all terms in this sum are either zero or have the same sign. Therefore Equation (12-1)
implies the theorem.

To shorten our formulas, let xj D ‡
gj
H .ev/. By induction, we observe that

yj D ‡
gjg�1

j�1

G .xj�1/�‡
gjg�1

j�1

H .xj�1/:

Let i � j . Recall from the first paragraph that xj 2 bQsj . Applying Corollary 12.2 to
the geodesic ray hgig

�1
j ii�j yields that

‡gi g�1
j .yj / 2 bQs0

i;j
;

where s0i;j D †gi g�1
j .sj /. The conclusion follows from the observation that sj D

†gj .s0/ and therefore

s0i;j D†
gi g�1

j .sj /D†
gi g�1

j ı†gj .s0/D si :

This proves Equation (12-1) as desired.

12.2 Finite covers

Now let zG be a finite cover of G . We will let � W VzG! VG denote the restriction of the
covering map to the vertices. This map induces a map ��W RV zG !RVG given by

(12-2) ��. ef /.v/D X
zv2��1.v/

ef .zv/:
Since � arose from a covering map, we have the following.

Proposition 12.4 For all g 2G , ‡g
G ı�� D �� ı‡

g

zG
.

This may be proved by checking that the equation holds for powers of the generators
of G .

Finally, to use the previous propositions in our setting, we need to be able to find
nice subgraphs of finite covers of G . We use GZ to denote the graph with vertex
set consisting of the integers which is formed by drawing edges between subsequent
integers.

Lemma 12.5 Suppose G is an infinite connected graph so that every vertex has finite
valence. Further suppose that G has no vertices of valence one. Let v be any vertex of
G . Then one of the following holds:

(1) There is an embedding �W GZ! G such that �.0/D v.

(2) There is a double cover zG of G (depending on v) and an embedding z�W GZ! zG
such that z�.0/ is a lift of v.
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Proof For S � Z let GS denote the graph with vertex set S which is formed by
adding edges between all pairs of integers whose difference is 1. Because G is infinite
and has bounded valence, there are vertices of arbitrary large distance from v. Thus we
can define a metric embedding  0W Gf0;�1;�2;:::g! VG such that  .0/D v. (For each
n � 0, choose  0.�n/ so that its distance from v is n.) Now for n > 0 inductively
define  nW Gfn;n�1;:::g! VG so that
�  n restricted to Gfn�1;n�2;:::g is  n�1 , and
�  n applied to the edge .n� 1; n/ is distinct from the edge .n� 2; n� 1/. (This

can be done because G has no vertices of valence one.)

Now assume  n is always injective. Then the limit limn!1  n is an embedding of
GZ! G . So assume  n is not injective for some n. Let N be the smallest integer
for which  n is not injective. Then there is an M <N for which  N .N /D N .M /.
Let H be the circular subgraph of G consisting of the image  N .ŒM;N �/. Let
JHK 2H1.GIZ/ denote the corresponding homology class with Z coefficients. Note
that JHK must be primitive. Let pW H1.GIZ/! Z2 be any group homomorphism
so that p.JHK/ D 1. Let p0W �1.G/ ! Z2 be the homomorphism constructed by
taking homology class of an element of �1.G/ and then applying p . Let zG denote the
double cover of G which corresponds to the kernel of p . Then  N .ŒM;N �/ lifts to an
embedding z N .M / and z N .N / are both lifts of the point  N .N /D  N .M /. Also
consider the two disjoint lifts of  M . These two lifts are rays which end at z N .M /

and z N .N /. The two lifts of the ray  M and one of the lifts of the segment  N jŒM;N �

can be stitched together to form our desired embedding z�W GZ! zG .

13 Graphs without vertices of valence one

In this section, we will primarily consider graphs G with no vertices of valence one.
We prove the following results about these graphs.

Theorem 13.1 (Decay) Suppose G has no vertices of valence one. Let � 2R� and
let hgni be the �–shrinking sequence of � . Then for any f 2 S� and any v 2 V , the
sequence

j‡gn.f /.v/j

tends monotonically to zero as n!1.

We break the proof of this theorem into two parts. We will prove that the sequence is
monotonically decreasing in Section 13.1. In Sections 13.2 and 13.3, we will prove
that this limit is zero. Clearly this theorem implies that any subsequence also decays to
zero. Thus we have the following corollary.
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Corollary 13.2 (Decay properties) If G has no vertices of valence one, then S.G;w/
has the subsequence decay property and the critical decay property.

We will prove that graphs with no vertices of valence one have the adjacency sign
property in Sections 13.4 and 13.5. See Theorem 13.21 and Corollary 13.22

13.1 Monotonic decay

In this subsection we prove the monotonicity part of Theorem 13.1.

Lemma 13.3 (Monotonic decay) Suppose G has no vertices of valence one. Let
� 2 S1 be a �–renormalizable direction with �–shrinking sequence hgni. For every
� –survivor f 2RV and every v2V , the sequence j‡gn.f /.v/j decreases (nonstrictly)
monotonically in n.

We will simplify the statement of this lemma. Applying Corollary 11.7, we know that
‡g1.f / is a �g1

�
.�/–survivor. By induction, it is sufficient to prove that

(13-1) j‡g1.f /.v/j � jf.v/j;

for all �–renormalizable � , all � –survivors f , and all v2 V . Up to the dihedral group
action, we may assume that � 2 QCC and that g1 D h�1 . See Remark 3.6. Since
f is a �–survivor, we know f 2 bQCC . By definition, H�1.f /.b/D f.b/ for all
b 2 B . So it suffices to consider v 2A. Suppose that � h�1

�
.�/ 2QCC . Recalling the

formula in Equation (6-2) for H .f /, we have that for a 2A,

H�1.f /.a/D f.a/�
X
b�a

f.b/� 0:

But each f.b/ � 0 as f 2 bQCC , so H�1.f /.a/ � f.a/. Hence Equation (13-1)
is trivially true when � h�1

�
.�/ 2 QCC . By Proposition 10.6, the alternative is that

� h�1

�
.�/ 2 Q�C . In this case H�1.f /.a/ < 0, so Equation (13-1) is equivalent to

showing

(13-2) f.a/� �H�1.f /.a/:

In fact, we have that H�1.f /.a/ D f.a/ � A.f /.a/ by Proposition 6.34. Thus
Equation (13-2) is equivalent to showing that 2f.a/�A.f /.a/. Perhaps more usefully,
we have

2f.a/�A.f /.a/D 2hf ; eai � hA.f /; eai D hf ; 2ea�A.ea/i:

In summary, the following lemma implies the Monotonic decay lemma 13.3 above.
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Lemma 13.4 Suppose G has no vertices of valence one. Let � 2 S1 \QCC be a
�–renormalizable direction with shrinking sequence hgni. Assume that g1 D h�1 .
Then for every � –survivor f and every a 2A, we have hf ; 2ea�A.ea/i � 0.

Recall that the valence of a vertex v 2 V is the number val.v/D #fx 2 V W x� vg.

Proposition 13.5 The conclusion of Lemma 13.4 holds when val.a/� 3 and a is not
a member of a spoke.

For one step in the proof, we need the following result, which is a consequence of
Proposition 8.3.

Corollary 13.6 Suppose G contains a vertex of valence n which is not a member of a
spoke. If G admits a positive eigenfunction with eigenvalue �, then �� n=

p
n� 1.

Proof Let v be the vertex of valence n which is not a member of a spoke, and let f
be a positive eigenfunction with eigenvalue �. Then by Proposition 8.3, if w� v we
know f.w/=f.v/� .��

p
�2� 4/=2. Since

P
w�v f.w/D �f.v/, we know that

�� n

�
��
p
�2� 4

2

�
:

This is equivalent to the inequality given in the corollary.

Proof of Proposition 13.5 By assumption g1 D h�1 . Thus, by Proposition 7.13, we
know � D .x;y/ 2 S1 satisfies

0<
y

x
<
��
p
�2� 4

2
:

We will show that there exists two saddle connections �1 and �2 such that:

(1) Z.J�1KC J�2K/D 2ea�A.ea/.

(2) hol.�i/^� � 0 for i D 1; 2.

We will show these two statements imply the proposition. Statement (1) implies that

hf ; 2ea�A.ea/i D hf ;Z.J�1KC J�2K/i:

We wish to show that this quantity is nonnegative. This follows from statement (2) of
Proposition 11.10 with x D Z.J�1KC J�2K/. Thus the existence of such �1 and �2

imply the proposition.
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Consider our surface S D S.G;w/, where AwD �w. We may assume that w.a/D 1

by scaling w if necessary. The cylinder cyla has a decomposition into rectangles of
the form

cyla D
[
b�a

.cyla\ cylb/:

Let k D val.a/� 3. We may number these rectangles R1; : : : ;Rk so that each Ri is
adjacent to RiC1 .mod k/ . Similarly, number the relevant vertices b1; : : : ; bk 2 B so
that Ri D cyla\ cylbi

for all i . Choose j 2 f1; : : : ; kg so that

(13-3) w.bj /Cw.bjC1 .mod k//Dminfw.bi/Cw.biC1 .mod k// W i D 1; : : : ; kg:

Choose �1 to be the diagonal of the rectangle Rj[RjC1 .mod k/ which can be oriented
downward and leftward. Choose �2 to be the diagonal of the complimentary rectangle,
cylaX.Rj [RjC1 .mod k//, oriented downward and leftward. See Figure 4.

�1�2

R1 R2 R3 R4

Figure 4: An example decomposition of cyla into rectangles. In this case,
val.a/D 4 and j D 3 is the index satisfying Equation (13-3).

We now verify statements (1) and (2) hold for our choices of �1 and �2 . Note that
�1[ �2 cross cyla twice with positive algebraic sign, and cross each of cylb for b� a
once with negative algebraic sign. Moreover, �1[ �2 cross no other cylinders. This
verifies statement (1).

Now we verify statement (2). Write hol.�1/D .�w1;�1/ and hol.�2/D .�w2;�1/

with w1> 0 and w2> 0. Now recall that �D .x;y/2S1\QCC is �–renormalizable
and that g1 D h�1 . Thus Proposition 7.13 implies that y=x < .��

p
�2� 4/=2. For

i D 1; 2, we have

(13-4) hol.�i/^� D .�wi ;�1/^ .x;y/D x�wiy D x
�
1�wi

y

x

�
>

x

2

�
2�wi.��

p
�2� 4/

�
:

(Note x > 0 since � 2QCC .) To proceed we must find upper bounds for w1 and w2 .
Because of Equation (13-3), we know that

w1 �
2�

val.a/
�

2�

3
:
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(w1 must be less than or equal to the average length of pairs of adjacent rectangles.)
Therefore by continuing Equation (13-4) for i D 1 we have

hol.�1/^� >
x

2

�
2�

�
2�

3

�
.��

p
�2� 4/

�
D

x

3

�
3C�

p
�2� 4��2

�
D

x

3

�
2�2� 9

�
p
�2� 4C�2� 3

�
� 0:

Here the � 0 statement is somewhat subtle. The denominator �
p
�2� 4C �2 � 3

is positive because � � 2, and the numerator 2�2 � 9 � 0 because � � 3
p

2=2 by
Corollary 13.6. To get an upper bound for w2 we find a lower bound for w1 . We know
a is not a member of a spoke and �1 crosses two rectangles, so by Proposition 8.3 we
have

w1 � ��
p
�2� 4:

Since the cylinder cyla has inverse modulus � and width one, we know w1Cw2 D �.
Therefore w2 �

p
�2� 4. By continuing Equation (13-4) for i D 2 we have

hol.�2/^� >
x

2

�
2� .

p
�2� 4/.��

p
�2� 4/

�
D

x

2

�
�2
� 2��

p
�2� 4

�
D

x

2

�
4

�2� 2C�
p
�2� 4

�
> 0:

This proves statement (2) and concludes the proof.

Proposition 13.7 Lemma 13.4 holds when val.a/D 2 unless a belongs to a spoke.

Proof Let b1 and b2 denote the two vertices adjacent to a. For i D 1; 2, let �i denote
the diagonal of rectangle cyla\ cylbi

which can be oriented downward and leftward.
We observe that Z.J�1KC J�2K/D 2ea�A.ea/. Write � D .x;y/ 2QCC . Because
g1 D h�1 , Proposition 7.13 implies that y < x..��

p
�2� 4/=2/. For i D 1; 2, we

have hol.�i/D .�w.bi/;�w.a//. By Proposition 8.3, w.bi/�w.a/..��
p
�2� 4/=2/.

We have w.b1/Cw.b2/D �w.a/. Thus

w.b1/D �w.a/�w.b2/�w.a/
�
��

��
p
�2� 4

2

�
Dw.a/

�C
p
�2� 4

2
:

And similarly, w.b2/�w.a/..�C
p
�2� 4/=2/. Thus we compute

hol.�i/^� D xw.a/�yw.bi/

> xw.a/�
�

x

�
��
p
�2� 4

2

���
w.a/

�
�C
p
�2� 4

2

��
D 0:
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Thus, if f is a � –survivor, hf ;Z.J�iK/i > 0. And therefore hf ; 2ea �A.ea/i � 0

as desired.

13.2 Effective decay for the integers

In this subsection, we will only consider the case when G D GZ , the graph whose
vertex set is Z and edges join two integers if and only if they differ by one. Our
decomposition V DA[B is a decomposition into even and odd integers.

Lemma 13.8 (Effective decay for the integers) Let hgii be a shrinking sequence for
a renormalizable direction � . Then there is a critical time t > 0 for which

j‡gt .f /.v/j � 1
2
jf.v/j

for any � –survivor f and any v 2 Z.

The idea of the proof is the following. We claim it is sufficient to find a critical time t

for which

(13-5) j‡
.gt /.ev/.v/j � 2 for all v 2 Z.

(The bulk of this section will be spent proving Equation (13-5).) Let ev 2 RZ
c be as

in Equation (11-4). Set e0v D ˙ev 2 bQs where the sign is chosen depending on the
quadrant Qs containing � . By Equation (6-14), we have

(13-6) jf.v/j D hf ; e0vi D h‡
gt .f /; ‡
.gt /.e0v/i

D

X
w2V

.‡gt .f /.w//.‡
.gt /.e0v/.w//:

By Proposition 11.12, we have ‡
.gt /.e0v/ 2 bQst
for all critical times t . Since both

‡gt .f / and ‡
.gt /.e0v/ lie in bQst
, all terms in the sum above are nonnegative.

Therefore

jf.v/j D h‡gt .f /; ‡
.gt /.e0v/i � .‡
gt .f /.v//.‡
.gt /.e0v/.v//� 2j‡gt .f /.v/j;

as claimed by the lemma.

Proposition 13.9 Consider the geodesic ray defined

gn D

�
.v�1h/

n
2 if n is even;

h.v�1h/
n�1

2 if n is odd:
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Then for all n� 1 and all a 2A and b 2 B ,

‡gn.ea/D

8̂̂̂̂
<̂
ˆ̂̂:

P
c2I ec if n� 1 .mod 4/;P
c2A\I ec�

P
c2B\I ec if n� 2 .mod 4/;

�
P

c2I ec if n� 3 .mod 4/;

�
P

c2A\I ecC
P

c2B\I ec if n� 0 .mod 4/,

‡gn.eb/D

8̂̂̂̂
<̂
ˆ̂̂:

P
c2J ec if n� 1 .mod 4/;P
c2A\J ec�

P
c2B\J ec if n� 2 .mod 4/;

�
P

c2J ec if n� 3 .mod 4/;

�
P

c2A\J ecC
P

c2B\J ec if n� 0 .mod 4/,

where I WD Œa� nC 1; aC n� 1� and J WD Œb� n; bC n�.

It is straightforward to check that the formulas in the proposition above follow from
the definition of the action ‡G .

Lemma 13.10 Let hgni be a geodesic ray for which � g1

�
.Qs/ � Qs . Then for all

x 2RV
c \

bQs and all v 2RV
c , the sequence j‡gn.x/.v/j is nondecreasing.

Proof Consider the orbit under the sign action, sn D†
gn.s/. Note that the condition

that � g1

�
.Qs/�Qs guarantees that ‡gn.bQs/� bQsn

for all n, by Proposition 11.4.

Suppose the lemma is false. Then there is a geodesic ray hgni such that j‡gn.x/.v/j<
j‡gn�1.x/.v/j. We may assume that n is minimal over all geodesic rays, all x and all
possible choices of n. Since the statement is invariant under the dihedral group, we
may assume that g1 D h and s DCC. We will show that

(13-7) gn D

�
.v�1h/

n
2 if n is even;

h.v�1h/
n�1

2 if n is odd:

Otherwise, there is a i � n� 2 for which giC2g�1
i 2 fvh; h2; h�1v�1; v�2g. (This

is the first i for which giC2 differs from the form above.) In this case, siC1 D siC2 ,
by the definition of the expanding sign action. Moreover, � giC2g�1

iC1
�

.QsiC1
/�QsiC1

.
So letting y D ‡giC1.x/ and considering the geodesic ray hgiC1Cng�1

iC1
in gives a

shorter counter example.

Finally the case of gn as in Equation (13-7) follows from Proposition 13.9 above.
Observe that

‡gn.x/.v/D
X
w2V

x.w/‡gn.ew/.v/:
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Note the sign of each nonzero term is only dependent on n, and that by Proposition 13.9
the sequence j‡gn.ew/.v/j is nondecreasing regardless of the choice of w.

This proposition further lowers the bar for proving Lemma 13.8. It is sufficient to find
any time n for which

(13-8) j‡
.gn/.ev/.v/j � 2 for all v 2 Z.

We will then apply Lemma 13.10. We know that Qs0
contains the vector � , which is

shrunk by � g1

�
. Then � 
.g1/

�
.Qs0

/�Qs0
and Lemma 13.10 indicates that given any

critical time t � n, we have j‡
.gt /.ev/.v/j> j‡
.gn/.ev/.v/j � 2. (We have such a
critical time because of Corollary 10.9.) Thus Equation (13-8) implies Equation (13-5)
which implies Lemma 13.8.

Recall from Section 4.1 that a renormalizing sequence is a �–shrinking sequences for
some �–renormalizable direction.

Proposition 13.11 Let hgni be any renormalizing sequence. Then there is an n for
which gn is of one of the following forms.

(1) gn D hcvbha for some a 2 Z and nonzero b; c 2 Z such that

.b; c/ 62 f.1;�1/; .�1; 1/g:

(2) gn D h�b.h�bvb/dha for some a 2 Z, b 2 f˙1g, and d > 0.

(3) gnDhf ve.h�bvb/dha for some a2Z, b 2 f˙1g, d > 0, and nonzero e; f 2Z
such that .e; f /¤ .b;�b/.

Moreover, for any such gn , we have j‡gn.ev/.v/j � 2 for all v 2A.

Proof There is an a2Z (possibly zero) of maximal absolute value such that haDgjaj .
(A renormalizing sequence cannot be gn D h˙n for all n, by definition.) For all v 2A
and all a 2Z, we have H a.ev/D ev by definition of H . See Equation (6-2). Then to
be a geodesic ray, one of vha; v�1ha 2 fgng. Thus there is a nonzero b of maximal
absolute value such that vbha D gjajCjbj . By definition of V , we have

‡gjajCjbj.ev/D V b
ıH a.ev/D evC b.ev�1C evC1/:

Then there is a nonzero c of maximal absolute value such that hcvbha D gjajCjbjCjcj .
We have

‡gjajCjbjCjcj.evv/D evC b.ev�1C evC1/C bc.ev�2C 2evC evC2/:
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Therefore j‡gjajCjbjCjcj.evv/.v/j D j1C 2bcj. This quantity is larger than one unless
.b; c/ 2 f.1;�1/; .�1; 1/g. This handles the case (1) of the proposition.

If case (1) does not apply, then b D ˙1, and c D �b . There is a maximal integer
d � 1 such that .h�bvb/dhaD gjajC2d . By conjugating by an element of the dihedral
group and applying Proposition 13.9, we see that for some ˛; ˇ 2 f˙1g we have

‡gjajC2d .ev/.v/D ‡gjajC2d .ev/.v˙ 2/D ˛ and ‡gjajC2d .ev/.v˙ 1/D ˇ:

The choices of ˛ and ˇ are given by the following rules that

˛ D .�1/d and ˇ D�b.�1/d :

The element gjajC2dC1 must be given by either h�bgjajC2d or v˙1gjajC2d . Assume
that gaC2dC1 D h�bgjajC2dC1 . Then

‡gjajC2dC1.ev/.v/D‡gjajC2d .ev/.v/�2‡gjajC2dC1.ev/.v˙1/D ˛�2bˇD 3.�1/d ;

which is of absolute value larger than 2. This handles case (2).

The only remaining possibility is that gjajC2dC1 D v˙1gjajC2d . Then there is a
nonzero e of maximal magnitude for which gjajC2dCjej D v

egjajC2d . We compute

‡gjajC2dCjej.ev/.v/D ˛ and ‡gjajC2dCjej.ev/.v˙ 1/D ˇ� 2e˛ D ˛.�bC 2e/:

There is then an integer f ¤ 0 such that hf gjajC2dCjej D gjajC2dCjejCjf j . We
compute that

‡gjajC2dCjejCjf j.ev/.v/D ˛C 2f ‡gjajC2dCjej.ev/.v˙ 1/D ˛.1C 2f .�bC 2e//:

This quantity has magnitude one only if f .�bC 2e/D�1. Therefore we must have
e D b , and f D�b . This handles case (3). Finally, if e D b and f D�b , then

gjajC2dCjejCjf j D h�bvb.h�bvb/dha;

which contradicts the maximality of d .

Corollary 13.12 Let hgni be any renormalizing sequence. Then there is an N such
that for all n�N ,

j‡gn.ev/.v/j � 2

for all v 2 V .

Proof Applying Proposition 13.11, there is an integer n1 for which j‡gn1 .ea/.a/j � 2

for all a 2 A. By applying dihedral symmetry and Proposition 13.11 again, there is
a integer n2 for which j‡
.gn2

/.eb/.b/j � 2 for all b 2 B . Set nDmaxfn1; n2g. By
Lemma 13.10, for all v 2 V we have j‡
.gn1

/.ev/.v/j � 2.
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Proof of Lemma 13.8 (Effective decay for the integers) From the discussion be-
low the statement of the lemma, we see it is sufficient to prove the statement in
Equation (13-8). Since � is renormalizable, its shrinking sequence hgni is renor-
malizable. The automorphism 
 sends renormalizable sequences to renormalizable
sequences by Theorem 7.14. Therefore the sequence h
 .gn/i is also renormalizable.
Thus Equation (13-8) follows directly from Corollary 13.12.

13.3 Effective decay for graphs without vertices of valence one

Essentially, we use covers and subgraphs to deduce effective decay for graphs with no
vertices of valence one from effective decay for GZ .

Lemma 13.13 (Effective decay) Let G be any infinite connected bipartite graph with
bounded valence and without vertices of valence one. Let hgii be a shrinking sequence
for a renormalizable direction � . Then there is a critical time t > 0 for which

j‡
gt

G .f /.v/j �
1
2
jf.v/j

for any � –survivor f 2RVG and any v 2 VG .

Proof The sequence h
 .gn/i is a renormalizable sequence. By Corollary 13.12, there
is an N such that for all n�N , j‡
.gn/

Z .ev/.v/j � 2 for all v2Z, where ‡Z denotes
the action associated to the graph GZ . We will show that for n � N we also have
j‡

.gn/
G .ev/.v/j � 2 for all v 2 VG .

Let hsii denote the sign sequence of � . Without loss of generality, we may assume
s0 D CC, g1 2 fh

�1; v�1g, and 
 .g1/ 2 fh; vg. In particular, � 
.g1/
�

.QCC/ �
QCC . Then by Corollary 11.3, for any infinite connected graph bipartite H we have
‡H.bQCC/�Qs0

i
where s0i D†


.gn/.CC/. Choose any v2 V . By Lemma 12.5, there
is a zG which is either G or a double cover of G , and an embedding z�W GZ! zG such
that z�.0/ is a lift of v. Let � W zG! G denote this covering, and ��W RV zG !RVG be
as in Equation (12-2). Then by Proposition 12.4 for n�N , we have

j‡

.gn/
G .ev/.v/j D j‡


.gn/

zG
.e�.0//.�.0//j:

Then by Theorem 12.3, we know that

j‡

.gn/

zG
.e�.0//.�.0//j � j‡


.gn/
Z .e0/.0/j � 2;

so that j‡
.gn/
G .ev/.v/j � 2 as desired.
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We complete the proof by following the logic applied to the case of G D Z. By
Corollary 10.9, there is a critical time t �N . Then, for any � –survivor f 2RVG and
any v 2 VG ,

f.v/D hf ; evi D h‡
gt .f /; ‡
.gt /.ev/i � j‡

gt .f /.v/jj‡
.gt /.ev/.v/j

� 2j‡gt .f /.v/j:

Here the first inequality follows because both ‡gt .f / and ‡
.gt /.ev/ are in Qst
by

Proposition 11.12. See Equation (13-6) for another example of this. We deduce that
j‡gt .f /.v/j � 1

2
f.v/ as claimed by the lemma.

13.4 A perturbed group action

Let Ax D y . For any g 2G , we can compute ‡g.x/�x inductively in terms of y .
In this section we will explain how this is done.

Fixing any y 2RV
c , define the following “affine” actions on RV

c :

Hy.z/DH .z/C�A.y/ and Vy.z/D V .z/C�B.y/:

Powers of these functions are given by

H k
y .z/DH k.z/C k�A.y/ and V k

y .z/D V k.z/C k�B.y/:

From these formulas, we can check that Hy and Vy generate a nonlinear group action
Xy W G �RV

c !RV
c by X hk

y DH k
y and X vk

y D V k
y .

Proposition 13.14 For all g 2G , c 2R and y ;y1;y2; z1; z2 2RV
c , we have:

(1) X g
y .z1C z2/D X g

y .z1/C‡
g.z2/.

(2) X g
y1Cy2

.0/D X g
y1
.0/CX g

y2
.0/.

(3) X g
cy.0/D cX g

y .0/.

Proof All statements follow from induction on the word length of g . The statements
are clearly true when g is the identity. Assume statement (1) is true for g0 . We will
show it is true for hkg0 :

X hkg0
y .z1Cz2/D X hk

y .X g0
y .z1/C‡

g0.z2//DH k.X g0
y .z1/C‡

g0.z2//Ck�A.y/

DH k.X g0
y .z1//Ck�A.y/C‡

hkg0.z2/

D X hkg0
y .z1/C‡

hkg0.z2/:
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A similar equation holds for vkg0 . Now assume (2) is true for g0 . Then

X hkg0

y1Cy2
.0/ D H k.X g0

y1Cy2
.0//C k�A.y1Cy2/

D H k.X g0
y1
.0/CX g0

y2
.0//C k�A.y1/C k�A.y2/

D X hkg0
y1

.0/CX hkg0
y2

.0/:

Again, a similar formula holds for vkg0 . Statement (3) holds for similar reasons.

The following proposition connects this group action to the adjacency sign property.

Proposition 13.15 Let x 2RV
c and set y DAx . Then for all g 2G ,

‡g.x/�x D X g
y .0/:

Proof We may prove this by induction on the word length of g . The statement is
clearly true when g is the identity. Now suppose we know the statement for g0 2G .
We must prove the statement holds for hkg0 and vkg0 for k D˙1. We write

‡hkg0.x/�x DH k
ı‡g0.x/�x DH k.‡g0.x/�x/CH k.x/�x

DH k
ıX g

y .0/C k�A ıA.x/

DH k
ıX g

y .0/C k�A.y/D X hkg0
y .0/:

A similar statement holds for the case of vkg0 .

We will now connect this operation to the adjacency sign property. Recall that for v2 V
the function ev 2 RV

c is the function that assigns one to v and assigns 0 to all other
vertices.

Definition 13.16 Let �� 2 and suppose � 2R�\QCC has �–shrinking sequence
hgii. Let s0i D†


.gi /.CC/. For a vertex v 2 V we say the graph G has v–ASP if for
all i � 0, we have X 
.gi /

ev .0/ 2 bQs0
i
.

Proposition 13.17 Suppose that G has v–ASP for all v2V . Then G has the adjacency
sign property.

Proof Let x 2RV
c and assume that y DA.x/ 2 bQCC . Let t be a critical time. Then

Proposition 13.15 implies that ‡
.gt /.x/�x D X 
.gt /
y .0/. By Proposition 13.14, we

can write

(13-9) X 
.gt /
y .0/D

X
v2V

X 
.gt /

y.v/ev
.0/D

X
v2V

y.v/X 
.gt /
ev .0/:
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Note that each y.v/ � 0 by the assumption that y 2 bQCC . In addition, each
X 
.gt /

ev
.0/ 2 bQs0t

because G has v–ASP. Now let hsii denote the sign sequence of � ,
and let f 2 S� be a � –survivor. By Proposition 6.23, we know ‡gt .f / 2 bQst

.
By Proposition 11.12, for all critical times t we have s0t D st . Therefore each
X 
.gt /

ev
.0/ is in bQst

. Each term in Equation (13-9) lies in bQst
. It follows that

h‡gt .f /;X 
.gt /
y .0/i � 0 as desired.

Lemma 13.18 (Subgraphs and v–ASP) Let v2V , and assume that there is an infinite
connected subgraph H� G containing the vertex v such that H has v–ASP. Then G
also has v–ASP.

Proof We recall our notation from Section 12. We distinguish the actions of ‡G W G�

RVG ! RVG and ‡HW G �RVH ! RVH . To distinguish the two Xy actions, we use
XG;y W G � RVG ! RVG and ‡H;y W G � RVH ! RVH . We will abuse notation by
identifying RVH with the subset of RVG which is supported on VH .

We must show that
X 
.gi /
G;ev

.0/ 2 bQs0
i

for all i . The statement of the proposition guarantees X 
.gi /
H;ev

.0/ 2 bQs0
i

for all i . We
will show that for all i ,

(13-10) X 
.gi /
G;ev

.0/�X 
.gi /
H;ev

.0/ 2 bQs0
i
:

This implies the proposition.

Now we will inductively define elements yi 2RVG
c for each integer i � 1. Assuming

y1; : : : ;yi�1 are defined, we define yi to be the unique element so that

(13-11) X 
.gi /
G;ev

.0/�X 
.gi /
H;ev

.0/D ‡

.gi g�1

1
/

G .y1/C‡

.gi g�1

2
/

G .y2/C � � �Cyi :

We will show that

(13-12) ‡

.gi g�1

j
/

G .yj / 2 bQs0
i

for all i � j .

This implies that Equation (13-10) holds, because it holds for each term in the sum
given in Equation (13-11).

We observe by combining the cases i D j and i D j � 1 of Equation (13-11) that

yj D X 
.gj /G;ev
.0/�X 
.gj /H;ev

.0/�‡

.gjg�1

j�1
/

G
�
X 
.gj�1/
G;ev

.0/�X 
.gj�1/
H;ev

.0/
�
:
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Define the following two quantities:

aj D X 
.gj /G;ev
.0/�‡


.gjg�1
j�1

/

G ıX 
.gj�1/
G;ev

.0/;

bj D�X

.gj /
H;ev

.0/C‡

.gjg�1

j�1
/

H ıX 
.gj�1/
H;ev

.0/:

Observe that

yj D aj Cbj C‡

.gjg�1

j�1
/

G ıX 
.gj�1/
H;ev

.0/�‡

.gjg�1

j�1
/

H ıX 
.gj�1/
H;ev

.0/:

By Proposition 13.14, we have

aj D X

.gjg�1

j�1
/

G;ev
.X 
.gj�1/

G;ev
.0//C‡


.gjg�1
j�1

/

G .�X 
.gj�1/
G;ev

.0//D X

.gjg�1

j�1
/

G;ev
.0/:

Similarly,

bj D�X

.gjg�1

j�1
/

H;ev
.X 
.gj�1/

H;ev
.0//�‡


.gjg�1
j�1

/

H .�X 
.gj�1/
G;ev

.0//D�X

.gjg�1

j�1
/

H;ev
.0/:

Thus aj Cbj D 0, because

X

.gjg�1

j�1
/

�;ev .0/D

�
˙�A.ev/ when gj g�1

j�1
D h˙1,

˙�B.ev/ when gj g�1
j�1
D v˙1.

Thus

yj D ‡

.gjg�1

j�1
/

G ıX 
.gj�1/
H;ev

.0/�‡

.gjg�1

j�1
/

H ıX 
.gj�1/
H;ev

.0/:

Now we will use the assumption that H has v–ASP. Therefore X 
.gj�1/
H;ev

.0/ 2 bQs0
j

.
Then, by applying Corollary 12.2 to the geodesic ray h
 .gig

�1
j�1

/ii�j�1 , we see that

‡

.gi g�1

j
/

G .yj / 2 bQs.i;j/;

where s.i; j / D †
.gi g�1
j�1

/.s0
j�1

/. We observe that s.i; j / D s0i , and therefore we
have proved Equation (13-12) as desired.

Lemma 13.19 (Covers and v–ASP) Let v2 V , and assume that there is a finite cover
zG of G and a lift zv of v for so that zG has zv–ASP. Then G has v–ASP.

Recall our notation for dealing with covers given in Section 12. When discussing a
covering graph zG of G , we will use tildes to denote functions in RzV and operators
on this space. For instance, zX zy denotes an action of G on RzV . Also recall that
� W zG! G denotes the covering map, and ��W R

zV !RV is the induced map given in
Equation (12-2). We also use z�zAW R

zV ! RzA to denote the variant of the projection
�AW RV !RA for the cover zG .

The key to the lemma is the following observation.
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Proposition 13.20 Let zG be a finite cover of G . Let zx; zy 2RzV . Then:

(1) �� ı z�zA. zy/D �A ı��. zy/.

(2) �� ı z�zB. zy/D �B ı��. zy/.

(3) For all g 2G , �� ı zX
g

zy
.zx/D X g

��. zy/
ı��.zx/.

Proof The first two statements follow trivially from the definitions. It is enough to
check statement (3) on powers of the generators. We will consider the case of g D hk .
The case of g D vk follows similarly. By definition of zX hk

, by statement (1) and by
Proposition 12.4 we have

�� ı zX hk

zy .zx/D ��.e‡ hk

.zx/C k z�zA. zy//D ‡
hk

ı��.zx/C k�A ı��. zy/:

So, by definition of X hk

, we see �� ı zX hk

zy
.zx/D X hk

��. zy/
ı��.zx/ as desired.

Proof of Lemma 13.19 First note that ��.ezv/D ev . Since zG has zv–ASP, we know
zX 
.gi /

ezv .z0/ 2 bQs0
i

for all i . By Proposition 13.20,

X 
.gi /
ev .0/D �� ı zX


.gi /
ezv .z0/;

and therefore X 
.gi /
ev .0/ 2 bQs0

i
for all i .

13.5 The adjacency sign property for Z

In this subsection, we complete the proof that graphs with no vertices of valence one
have the adjacency sign property.

Theorem 13.21 The graph GZ has v–ASP for all v 2 Z.

From the previous subsection, we have the following corollary.

Corollary 13.22 Suppose G be any infinite graph without vertices of valence one.
Then G has v–ASP for all v 2 V . Thus G has the adjacency sign property.

Proof Lemma 12.5 guarantees that given any v 2 V , we can find an embedding of GZ

into G such that v lies in the image, or we can find a double cover zG of G and a lift zv
of v and a embedding of GZ into zG which passes through zv. In the first case, G has
v–ASP by Lemma 13.18. In the second, zG has zv–ASP by Lemma 13.18 and G has
v–ASP by Lemma 13.19. The adjacency sign property follows from Proposition 13.17.
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Proof of Theorem 13.21 By possibly applying reflective dihedral symmetry x� (which
reflects in the line xDy ), we may assume that v2A. By further applying translational
symmetries of the graph GZ , we may assume that vD 0. Thus A consists of the even
integers and B consists of the odd integers. To simplify notation let y D e0 .

We now recall what we must prove. Let � � 2 and suppose � 2 R� \ QCC has
shrinking sequence hgii and sign sequence hsii. Let s0i D†


.gi /.CC/. Then we must
show that for all i � 0, we have X 
.gi /

y .0/ 2 bQs0
i
.

We primarily view this as a combinatorial statement, however we will find it useful to
use some geometric tricks. Therefore we define 1 2RZ to be the function such that
1.x/ D 1 for all x 2 Z. This is an eigenvector for the adjacency operator. Namely,
A.1/D 2 � 1. We can therefore build a surface S1 D S.GZ; 1/. We will find it useful
to compute the holonomies of homology classes on this surface. We use

hol1W H1.S1;V IZ/!R2

to denote the holonomy map for this surface.

The idea of the proof is to find zi ;wi 2 RV
c \

bQs0
i

for integers i � 0 such that the
following statements hold.

(1) For all i � 0 we have X 
.gi /
y .0/D zi Cwi . By Proposition 13.14, this ensures

that for all k � 0,

X 
.giCk/
y .0/D X 
.giCkg�1

i
/

y .zi/C‡

.giCkg�1

i
/.wi/:

(2) zi 2 bQs0
i

for all i � 0.

(3) For all i and all k � 0 we have ‡
.giCkg�1
i
/.wi/ 2 bQs0

iCk
. In particular,

wi 2 bQs0
i

for all i .

These statements guarantee X 
.gi /
y .0/ 2 bQs0

i
for all i as desired. Therefore they imply

the lemma.

We will now explain our choice of zi . Our choice determined inductively. We set
z0D 0. Note that z0 2 bQs0

0
D bQCC . Subsequent choices are determined by following

the arrows in Figure 5. We begin at the node labeled 0 in the quadrant CC of the
diagram. Then to find z1 we follow the arrow labeled 
 .g1/. To find zi we follow the
arrows labeled 
 .g1/, then 
 .g2g�1

1
/, then 
 .g3g�1

2
/, and continue until we follow

the arrow labeled 
 .gig
�1
i�1
/. By comparison with the diagram in Definition 10.1 of

the expanding sign action, we see that zi 2 bQs0
i

for all i . This verifies statement (2)
above.
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�e�3�e�2�e�1�e1�e2�e3 �e�3Ce�2�e�1�e1Ce2�e3

Figure 5: Diagram for the proof of Theorem 13.21. Arrows labeled

 .gig

�1
i�1
/ join zi�1 to zi .

The formula in statement (1) above inductively determines wi from zi . We have
w0 D 0. For i � 1 we have

(13-13) wi D X 
.gi /
y .0/� zi D X 
.gi g�1

i�1
/

y ıX 
.gi�1/
y .0/� zi

D X 
.gi g�1
i�1

/
y .zi�1Cwi�1/� zi

D X 
.gi g�1
i�1

/
y .zi�1/� zi C‡


.gi g�1
i�1

/.wi�1/:

Because of choice of wi , we have automatically verified statement (1) above.

It remains to verify statement (3). We prove this statement by induction in i . Clearly
statement (3) is true for w0 D 0 for all k . Now assume the statement is true for i � 1.
In particular, we assume that ‡
.giCkg�1

i�1
/.wi�1/ 2 bQs0

iCk
for all k � 0. We wish to

show statement (3) holds for i . By Equation (13-13), we have

‡
.giCkg�1
i
/.wi/D ‡


.giCkg�1
i
/.X 
.gi g�1

i�1
/

y .zi�1/� zi/C‡

.giCkg�1

i�1
/.wi�1/:

By our inductive hypothesis, it is sufficient to show that for all k � 0,

(13-14) ‡
.giCkg�1
i
/.X 
.gi g�1

i�1
/

y .zi�1/� zi/ 2 bQs0
iCk
:

Despite the fact that we need Equation (13-14) for all k � 0, this is really a finite
check. We will use the quadrant tracking Proposition 11.4 to verify this for all k in
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one step. The number of checks is therefore equal to the number (30) of arrows in
Figure 5 above.

In order to cut down on the number of checks, we consider the element of the dihedral
group action on the plane �W R2! R2 defined by �.x;y/D .�x;y/. Note that it
satisfies the equations

� ı �h
� D �

h�1

� ı� and � ı �v� D �
v�1

� ı�:

We define ıW G ! G to be the automorphism induced by the action on generators
ı.h/D h�1 and ı.v/D v�1 . The action satisfies � ı � g

�
D � ı.g/

�
ı� for all g 2 G .

There is an orientation reversing affine automorphism of the surface S1 which preserves
each rectangle which appears as an intersection of a horizontal and vertical cylinder
and which has derivative given by �. This affine automorphism preserves „.RZ/.
The action therefore lifts to an action on RZ . This action ��W RV !RV is given by

��.f /.v/D
�
�f.v/ if v 2A;
f.v/ if v 2 B.

We can use this action to conjugate our group of operators ‡G .

‡g
ı�� D�� ı‡

ı.g/ for all g 2G .

For our specific choice of y D e0 (or more generally for any y supported on A) we
have

�� ıHy DH�1
y ı�� and �� ıVy D V �1

y ı��:

Thus for all g 2G , we have X g
y ı�� D�� ıX

ı.g/
y . In particular, we can apply ��

to both sides of Equation (13-14) to obtain

‡ıı
.giCkg�1
i
/.X ıı
.gi g�1

i�1
/

y ı��.zi�1/���.zi// 2 bQ�.s0
iCk

/:

Therefore by the invariance of Figure 5 under �� , we only need to consider the case
when zi�1 2 bQCC[QC� . We will show that Equation (13-14) holds in each of these
cases below.

For all i let xi D X 
.gi g�1
i�1

/
y .zi�1/� zi .

(1) Suppose zi�1 D 0 2 bQCC .

(a) If 
 .gig
�1
i�1
/D h, then zi D e0 2 bQCC . We compute

xi DHy.0/� e0 D 0:

Thus in this case ‡
.giCkg�1
i
/.xi/ D 0 for all k . The conclusion follows trivially,

because 0 2 bQs for all s 2 SP.
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(b) If 
 .gig
�1
i�1
/ D v , then zi D 0 2 bQCC . We compute xi D 0. The conclusion

follows as in Case (1a).

(c) If 
 .gig
�1
i�1
/D h�1 , then zi D�e0 2 bQ�C . We compute xi D 0. The conclusion

follows as in Case (1a).

(2) Suppose zi�1 D e0 2 bQCC .

(a) If 
 .gig
�1
i�1
/D h, then zi D e0 2 bQCC . We compute

xi DHy.zi�1/� zi D 2e0� e0 D e0:

We see that xi D H .e0/ 2 bQCC . We have xi ; e0 2 QCC , while � h
�
.QCC/ �

QCC . Thus Proposition 11.4 entails that the quadrant containing ‡
.giCkg�1
i
/.xi/

is governed by the expanding sign action. Namely, we consider the geodesic ray
h
 .glCi�1g�1

i�1
/il�0 . Proposition 11.4 implies that

‡
.glCi�1g�1
i�1

/.e0/ 2 bQzsl
;

where zsl D†

.glCi�1g�1

i�1
/.CC/. Note by induction that zskC1 D s0

iCk
for all k � 0,

since s0
i�1
Dzs0DCC and s0

iCk
D†giCkg�1

i�1.s0
i�1
/DzskC1 . Therefore, for all k � 0,

‡
.giCkg�1
i
/.xi/D ‡


.giCkg�1
i�1

/.e0/ 2 bQs0
iCk
:

(b) If 
 .gig
�1
i�1
/D v , then zi D 0 2 bQCC . We compute

xi D Vy.zi�1/� zi D e�1C e0C e1:

We have xi D V .e0/ with both xi ; e0 2 bQCC , while � v
�
.QCC/ � QCC . Thus

Proposition 11.4 guarantees that

‡
.giCkg�1
i
/.xi/ 2 bQs0

iCk

for all k � 0. See Case (2a).

(c) If 
 .gig
�1
i�1
/ D v�1 , then zi D �e�1C e0 � e1 2 bQ�C . We compute xi D 0.

The conclusion follows as in Case (1a).

(3) Suppose zi�1 D�e�1C e0� e1 2 bQC� .

(a) If 
 .gig
�1
i�1
/D h, then zi D�e�2� e�1� e1� e2 2 bQ�� . We compute

xi DHy.zi�1/� zi D .�e�2� e�1� e1� e2/� zi D 0:

The conclusion follows as in Case (1a).
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(b) If 
 .gig
�1
i�1
/D h�1 , then zi D e�2� e�1� e1C e2 2 bQC� . We compute

xi DH�1
y .zi�1/� zi D .e�2� e�1C 2e0� e1C e2/� zi D 2e0:

Therefore xi DH�1.xi/ 2 bQC� while � h�1

�
.QC�/�QC� . Proposition 11.4 guar-

antees that
‡
.giCkg�1

i
/.xi/ 2 bQs0

iCk

for all k � 0. See Case (2a).

(c) If 
 .gig
�1
i�1
/D v�1 , then zi D�e�1C e0� e1 2 bQC� . We compute

xi D V �1
y .zi�1/� zi D .�2e�1C e0� 2e1/� zi D�e�1� e1:

Therefore xi D V �1.xi/ 2 bQC� . By Proposition 11.4, ‡
.giCkg�1
i
/.xi/ 2 bQs0

iCk
for

all k � 0 as in Case (2a).

(4) Suppose zi�1 D e�2� e�1� e1C e2 2 bQC� .

(a) If 
 .gig
�1
i�1
/D v , then zi D 0 2 bQCC . We compute

xi D Vy.zi�1/D V .zi�1/D e�3C e�2C e2C e3:

In this case xi DV .zi�1/. There exist saddle connections �1 and �2 on the surface S1

such that Z.J�1K/D e�2� e�1 and Z.J�2K/D�e1C e2 , and so zi�1 D Z.J�1K/C
Z.J�2K/. These saddle connections are pictured on the left side of Figure 6. For
j 2 f1; 2g, we have V ıZ.J�j K/D Z ıˆh�1

.J�j K/ by Corollary 11.1. We note that
the length of the holonomy of these saddle connections is

k hol1 ıˆh�1

.�j /k D k hol1.�j /k D
p

2:

Thus hol �j 2 cl.Exp2.h
�1/ \ Q��/. Therefore, by considering the geodesic ray

h
 .gi�1Clg
�1
i�1
/il�0 , Corollary 11.3 implies that ‡
.gi�1Cl g�1

i�1
/
ı Z.J�j K/ 2 bQzsl

,
where zsl D r ı†gi�1Cl g�1

i�1.��/. By Equation (11-3), we have

zsl D†

.gi�1Cl g�1

i�1
/
ı r.��/D†
.gi�1Cl g�1

i�1
/.C�/:

Thus we have s0
iCk
D zskC1 for all k � 0, since s0

i�1
D zs0 D C� and s0

iCk
D

†
.giCkg�1
i�1

/.s0
i�1
/ while zskC1 D†


.gkCi g�1
i�1

/.zs0/. Therefore we have

‡
.giCkg�1
i
/.xi/D ‡


.giCkg�1
i�1

/
ıZ.J�1K/C‡
.giCkg�1

i�1
/
ıZ.J�2K/ 2 bQs0

iCk

for all k � 0.
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Figure 6: Both sides of this figure illustrate the surface S1 D S.GZ; 1/ .
To obtain the surface, identify opposite horizontal and vertical edges by
vertical and horizontal translations (respectively). This figure illustrates the
saddle connections �1; : : : ; �5 used in the proof of Theorem 13.21. From
left to right, the dotted arrows represent the saddle connections ˆh�1

.�1/ ,
ˆh�1

.�2/ , ˆv
�1
.�3/ and ˆv

�1
.�5/ . Also ˆv

�1
.�4/D �4 .

(b) If 
 .gig
�1
i�1
/D h�1 , then zi D zi�1D e�2�e�1�e1Ce2 2 bQC� . We compute

xi DH�1
y .zi�1/� zi D .2e�2� e�1C e0� e1C 2e2/� zi D e�2C e0C e2:

Thus xi DH�1.xi/ 2 bQC� while �h�1

�
.QC�/�QC� . Proposition 11.4 guarantees

that ‡
.giCkg�1
i
/.xi/ 2 bQs0

iCk
for all k � 0 as in Case (2a).

(c) If 
 .gig
�1
i�1
/D v�1 , then zi D �e�3C e�2 � e�1 � e1C e2 � e3 2 bQC� . We

compute

xi D .�e�3C e�2� 2e�1� 2e1C e2� e3/� zi D�e�1� e1:

In particular, we have that xi D V �1.xi/. So Proposition 11.4 guarantees that
‡
.giCkg�1

i
/.xi/ 2 bQs0

iCk
for all k � 0 as in Case (2a).

(5) Suppose zi�1 D�e�3C e�2� e�1� e1C e2� e3 2 bQC� .

(a) If 
 .gig
�1
i�1
/D h, then zi D�e�2� e�1� e1� e2 2 bQ�� . We compute

xi DHy.zi�1/� zi D .�e�4� e�3� e�2� e�1� e0� e1� e2� e3� e4/� zi

D�e�4� e�3� e0� e3� e4:
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In this case xi DH .�e�3Ce�2�e0Ce2�e3/. We can find saddle connections �3 ,
�4 and �5 so that Z.J�3K/D �e�3C e�2 , Z.J�4K/D �e0 and Z.J�5K/D e2 � e3 .
These saddle connections are depicted on the right side of Figure 6. For j 2 f3; 4; 5g,
we have H ıZ.J�j K/D Z ıˆv�1

.J�j K/ by Corollary 11.1. For each such j we have

khol1.�j /k D khol1 ıˆv
�1

.J�j K/k:

In particular, hol1.�j / 2 cl.Exp2.v
�1/ \ .Q�C [ Q��//. Corollary 11.3 implies

that the quadrant containing ‡
.giCkg�1
i�1

/
ıZ.J�j K/ is given by may determined by

following the expanding sign action. As in Case (4a), we consider the geodesic ray
h
 .gi�1Clg

�1
i�1
/il�0 , and ‡
.giCl g�1

i�1
/
ıZ.J�j K/ 2 bQzsl

, where

es l D r ı†giCl g�1
i�1.s/D†
.giCl g�1

i�1
/
ı r.s/;

where s D�� or s D�C depending on j 2 f3; 4; 5g. In these cases r.s/DC� or
r.s/D��. We have 
 .gig

�1
i�1
/D h, and

†h.C�/D†h.��/D�� :

Therefore in either case, we have es l D†

.gi�1Cl g�1

i�1
/.C�/ for l � 1. We also observe

s0
iCk
Des1Ck for all k � 0. We conclude that for all k � 0,

‡
.giCkg�1
i
/.xi/D

5X
jD3

‡
.giCkg�1
i�1

/
ıZ.J�j K/ 2 bQs0

iCk
:

(b) If 
 .gig
�1
i�1
/D h�1 , then zi D e�2� e�1� e1C e2 2 bQC� . We compute

xi DH�1
y .zi�1/� zi

D .e�4� e�3C 3e�2� e�1C e0� e1C 3e2� e3C e4/� zi

D e�4� e�3C 2e�2C e0C 2e2� e3C e4:

In particular, xi DH�1.�e�3C e�2C e0C e2 � e3/. Both xi and �e�3C e�2C

e0 C e2 � e3 lie in bQC� , while � h�1

�
.QC�/ � QC� . Therefore Proposition 11.4

guarantees that

‡
.giCkg�1
i
/.xi/ 2 bQs0

iCk

for all k � 0 as in Case (2a).

(c) If 
 .gig
�1
i�1
/D v�1 , then zi D zi�1 2 bQC� . We compute

xi D V �1
y .zi�1/� zi D�e�3� e�1� e1� e3:
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Therefore xi D V �1.xi/ while � v
�1

�
.QC�/�QC� . So Proposition 11.4 guarantees

that
‡
.giCkg�1

i
/.xi/ 2 bQs0

iCk

for all k � 0 as in Case (2a).

Appendix A: Invariant measures and coding

In this section, we rehash some of the arguments used to understand invariant measures
of interval exchange maps. See [28, Section 14.5], for instance.

A1: Coding orbits

Let S D
F

i2ƒ Pi=� be a translation surface written as a union of polygons with edge
identifications. Let E denote the set of all identified pairs of edges in @Pi � S for
i 2ƒ. Let � 2 S1 be a direction. Define E� �E to be the collection of those edges
which are not parallel to � .

Remark A.1 In this paper, our surfaces are built from polygons with horizontal and
vertical sides, and the directions we consider are �–renormalizable which disallows �
from being horizontal or vertical. So, in our setting, E DE� .

We view each edge e 2E as a closed interval (including its endpoints). The union of
edges, X� D

S
e2E�

e is a section for the straight line flow in direction � . That is,
given any point in S , its forward orbit under the straight line flow F� hits a point in
X� . We use T�W X�!X� to denote the return map of the flow F� to this section.

Recall that V � S denotes the identified vertices of the polygons making up S . This
is also the union of endpoints of edges in E� . When equipped with the measure on
X� induced by the Lebesgue transverse measure to the foliation in direction � , the
return map T� conjugate to an interval exchange involving infinitely many intervals.

As with interval exchange transformations, we run into a problem concerning orbits
which visit the endpoints of an edge e 2E� . (These endpoints lie in V .) We resolve
this by splitting all orbits which hit a singularity in two. Namely, if the forward or
backward orbit of a point p hits an endpoint of an edge, we replace p with two new
points p� and pC . The orbit of p� tracks the points to the left of p , and the orbit of
pC tracks points to the right. (Left and right make sense once we rotate the picture so
that � is vertical.) By track we mean to follow points infinitesimally nearby. We keep
track of both the point’s location, and the edge it lies on. For e 2E� , let ye denote e
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with all points with singular orbits split as described above. Let l and r be the left and
right endpoints of e 2E� , respectively. We also replace l with lC and r with r� in
ye . We call ye a split edge.

For each e 2E� , there is a natural “unsplitting” map �eW ye! e . This map is surjective,
and one-to-one except at countably many points, where it is two-to-one. We will be
considering the disjoint union of all split edges yX�D

F
e2E�

ye , and we define the map

� W yX�!X�I p 2 ye 7! �e.p/:

This map may be countable-to-one at points in V , but is only finite-to-one at the
finite-order cone singularities.

The return map T� has a natural lift to the map yT�W yX�! yX� . We define yT� to be
the unique continuous map so that whenever � is one-to-one at p 2 yX� , we have

T�.p/D � ı yT� ı�
�1.p/:

With this definition, yT n
�
.q/ is well defined for all q 2 yX� and all n 2 Z.

Let edgeW yX�! E� denote the map which recovers the edge a point of yX� lies on.
Now consider the coding map

(A-1) codeW yX�!EZ
� ; q 7! hedge ı yT n

� .q/in2Z:

The image of this map is a shift space ��EZ
� on the countable alphabet E� . The

shift space � has the property that each symbol e 2E� is only followed by finitely
many other symbols.

We give the space yX� D
F

e2E�
ye the coarsest topology which makes both the map �

and the map code continuous.

Proposition A.2 The coding map is injective if the straight line flow in direction � is
conservative and has no periodic trajectories.

Proof Suppose the straight line flow is conservative and has no periodic trajectories.
We will show that distinct trajectories have distinct codes.

Suppose we have a pair of distinct trajectories with the same code, ! . The two
trajectories cross the same sequence of edges. Consider the intersection of the two
trajectories with one edge e 2E . Since the trajectories are distinct, they bound a closed
interval J in e . The straight-line flow of points in this interval must also have the same
code. Consider the forward and backward straight-line flows of all points in J . This
defines a continuous isometric immersion of a bi-infinite strip into the surface S . We
will draw a contradiction to the existence of this immersion.
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Since the straight-line flow is conservative, there is a trajectory in J which returns to
J . The code of a point and another point on the orbit of the point (intersected withS

e2E e ) differ by a shift. Since a point in J returns to J , we know that the code ! is
periodic. Now consider the set of points whose trajectories cross edges according to a
periodic ! . This set can be found by developing the bi-infinite periodic sequence of
polygons crossed into the plane. Lines which run through this sequence of polygons
correspond to trajectories with code ! . Such a line must be preserved by the translation
symmetry of the developed sequence of polygons. The quotient of such a line by this
symmetry gives a closed straight-line flow trajectory in this direction. But this is ruled
out by our assumption of no periodic trajectories.

Proposition A.3 If the coding map is injective, then the coding map is a homeomor-
phism from yX� onto its image, ��EZ

� . In this case, the coding map is a topological
conjugacy from yT� to the shift map on �.

Proof For this proof, endow yX� with the (a priori new) topology which makes the
coding map a homeomorphism. We must show that � is continuous. Let U be an
open subset of an edge e 2E . We will show that ��1.U / is open. Let q 2 ��1.U /

and let p D �.q/. It suffices to find an open subset of ��1.U / which contains q . For
each n� 0, let Cn �� be the cylinder set defined so that for each ! 2 Cn , we have
!m D code.q/m for �n �m � n. Observe that � ı code�1.Cn/ is a closed interval
in e . By definition of Cn , we have

T
n Cn D fcode.q/g. By injectivity of the coding

map, \
n

code�1.Cn/D fqg and
\
n

� ı code�1.Cn/D fpg:

Since the later is a nested intersection of closed intervals, there must be an N so that
� ı code�1.CN /� U . So our needed open set is given by code�1.CN /.

The fact that this is a conjugacy follows from the fact that the coding map is a homeo-
morphism together with the definition of the coding map given in Equation (A-1).

A2: Laminations and invariant measures

We mentioned that X� D
S

e2E�
e gives a section of the straight line flow in direction

� . Recall that F� denoted the foliation by orbits of this flow. We can split leaves
which hit points in V in a similar manner to how we split points of X� to form yX� .
Namely, if a leaf hits a singularity v 2 V in forward or backward time, we replace it by
two leaves one of which tracks points to the left, and one which tracks nearby points to
the right. We separate the two new leaves by a gap on the surface, and leave the point
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v in the gap. Since there are only countably many singular leaves, this can be done
everywhere. We let bF� denote the new leaf space.

Recall that we call a measure locally finite if it is finite on compact sets. Similarly,
a transverse measure is locally finite if it assigns finite mass to compact transversals.
Since we have split leaves and orbits in the same way, we have the following:

Proposition A.4 The following two spaces of measures are isomorphic:

� The space of locally finite yT�–invariant measures on yX� .

� The space M� of locally finite transverse measures to bF� .

If the coding map is injective, these two spaces are also isomorphic to this third one:

� The space of locally finite shift-invariant measures on �.

Suppose the straight line flow in direction � is conservative and has no periodic
trajectories. Proposition A.3 guarantees that each split edge ye is homeomorphic to
a Cantor set. It then follows that, in this case, bF� is a lamination, ie it is locally
homeomorphic to a Cartesian product of a Cantor set and a line. This lamination
can also be produced via the standard construction of a lamination from an interval
exchange obtained by placing a hyperbolic structure on the suspended IET (the surface
S ) and straightening the leaves to geodesics. See [5, Part I].

A3: Interaction with homology

In this section, we will consider the edges of the set E� to be oriented, with an arbitrary
choice of orientation made for each e 2E� . The homology classes of oriented edges
generate H1.S;V;Z/.

We recall some notation from Section 6.1. The cohomology space H 1 is the space of
all linear maps H1.S;V;R/! R. We let M� of locally finite transverse measures
to the oriented leaf space bF� . We will now formally define the map ‰�WM�!H 1 .
Given a measure � 2M� , we define a linear map ‰�.�/W H1.S;V;R/! R. This
is the unique map for which ‰�.�/.J
 K/D �.
 / if the homology class J
 K can be
realized by a curve 
 which has the property that whenever it crosses a leaf of bF� , it
crosses with positive algebraic sign. We are following the convention that if the leaf ofbF� is vertical, then 
 crosses with positive algebraic sign if it moves rightward across
the leaf. This determines the values of ‰�.�/ on a set which generates H1.S;V;R/,
and we extend linearly.
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Lemma A.5 Suppose the coding map given in Equation (A-1) is injective. Then the
map ‰� is also injective.

Proof We will utilize Proposition A.4 to translate the question to the shift space �.
By Carathéodory’s extension theorem, a Borel measure on a shift space is determined
by the measures of the cylinder sets. Let A be a cylinder set. Then � ı code�1.A/ is
a strip of trajectories which hit a sequence of specified edges of E . Such a strip of
trajectories is precisely the collection of trajectories which cross some specific saddle
connection � on S . (Namely, the left and right sides of the strip must hit at least one
vertex of an edge. Let P be a vertex on the left side and Q be a vertex on the right.
Then � D PQ is a saddle connection contained in the strip.) See Figure 7. Thus, if �
is a shift invariant measure on �, and � is the corresponding transverse measure tobF� , then �.A/D �.�/.

e0

e1

e2 e3

e4
�

�

Figure 7: This figure indicates how the measure of a cylinder set of � is
determined by the measure of a saddle connection. Here the cylinder set is the
set of trajectories which cross the sequence of edges e0; : : : ; e4 . The saddle
connection � is chosen so that it spans the width of the strip of trajectories
which cross this sequence of edges.

Observe that for all saddle connections � and all � 2M� , we have that

�.�/D j‰�.�/.J�K/j:

Therefore we can recover the transverse measures of saddle connections from the image
under ‰� . The conclusion follows from Carathéodory’s extension theorem.
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Recall that Lemma 6.1 stated that for a general translation surface, S , conservativity
and aperiodicity of the straight line flow in direction � implies the injectivity of ‰� .

Proof of Lemma 6.1 If the straight line flow has no periodic trajectories and is
conservative, then the coding map is injective by Proposition A.2. By Lemma A.5, we
know ‰� is also injective.

Recall that Lemma 6.6 stated that for the surface S D S.G;w/ and for m 2 H 1 ,
m 2‰�.M�/ if and only if for every saddle connection � on S ,

m.J�K/¤ 0 implies sgn.m.J�K//D sgn.hol.�/^�/:

Proof of Lemma 6.6 The “only if” part of the lemma follows directly from the
definition of ‰� . See page 0. The “if” part follows from Carathéodory’s extension
theorem again. Assume m 2 H 1 satisfies Section A3 for every saddle connection
� . By Carathéodory’s extension theorem, we can define a unique measure � on �
by determining its value on cylinder sets. Define f on the semiring of transversals
generated by the saddle connections. We define f .�/ D jm.J�K/j. This function is
finitely additive because of the sign condition. Thus it extends uniquely to a measure
on �. The measure is shift invariant by the uniqueness provided by Carathéodory’s
extension theorem. We can use Proposition A.4 to pull this measure back to a unique
transverse invariant measure � 2M� so that ‰�.�/Dm.

Appendix B: Generalized Farkas’ theorem

We will use a generalization of Farkas’ theorem given by Craven and Koliha [16,
Theorem 2]. We will introduce some of their terminology and then give their result.
Then we will apply this to prove Lemma 6.36.

If X is a real vector space, its algebraic dual X ] is the collection of linear functionals
X!R. X ] is also a real vector space and we have a bilinear pairing h ; iW X�X ]!R
given by hx;f i D f.x/. A subset XC � X ] is said to separate points in X if for
any distinct x1;x2 2 X there is a f 2 XC such that hx1;f i ¤ hx2;f i. The pair
hX;XCi is a dual pair if XC is a subspace of X ] which separates points in X . The
weak topology on X with respect to the dual pair hX;XCi is the coarsest topology
which makes each functional in XC continuous.

A convex cone in X is a subset S � X such that S C S � S and ˛S � S for all
˛ � 0. If hX;XCi is a dual pair, then the anticone of S is

SC D ff 2XC W hx;f i � 0 for all x 2 S g:
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The algebraic adjoint of a linear map M W X ! Y is the map M ]W Y ]!X ] defined
by

hx;M ].g/i D hM.x/;gi:

If hX;XCi and hY;Y Ci are dual pairs then the linear map M W X ! Y is weakly con-
tinuous if and only if M ].Y C/�XC . In this case we define the adjoint MCW Y C!

XC to be the restriction of M ] to Y C .

Theorem B.1 (Generalized Farkas’ theorem [16, Theorem 2]) Let hX;XCi and
hY;Y Ci be dual pairs, let S �X be a convex cone, and let M W X ! Y be a weakly
continuous linear map. If M.S/ is weakly closed then the following are equivalent
conditions on b 2 Y :

(1) The equation M x D b has a solution x 2 S .

(2) If yC 2 Y C satisfies MC.yC/ 2 SC then hb;yCi � 0.

Lemma 6.36 is a special case of this theorem. Consider the dual pair hRV ;RV
c i. Here

the weak topologies are simply the topologies of pointwise convergence. We observe
that the adjoint of the adjacency operator AW RV !RV is just the restriction of A to
RV

c . (As in the rest of the paper, we abuse notation by using A to refer to either of
these maps.) In particular, A is weakly continuous. We will prove that the convex
cone A.bQCC/ is weakly closed below. The anticone of bQCC � RV is preciselybQCC\RV

c . By the theorem above, given any f 2RV , the following statements are
equivalent:

(1) The equation A.g/D f has a solution g 2 bQCC .

(2) If x 2RV
c satisfies A.x/ 2 bQCC , then hf ;xi � 0.

This is precisely the conclusion of Lemma 6.36, which therefore follows from:

Proposition B.2 The convex cone A.bQCC/�RV is weakly closed.

Proof Suppose hgi 2A.bQCC/i is a sequence weakly converging to g1 2RV . We
must show that g1 2 A.bQCC/. We may choose fi 2 bQCC such that A.fi/D gi

for all i . The idea of the proof is to use a Cantor diagonalization argument to produce
a subsequence of hfii which converges to some f1 , which necessarily lies in bQCC .
Then we have A.f1/ D g1 by the weak-continuity of A . And therefore g1 2

A.bQCC/.
We enumerate V D fv1; v2; : : :g. We will first find a subsequence hfi.1;j/ij of hfii

such that limj!1 fi.1;j/ exists. Let w be a vertex adjacent to v1 . Then by the formula
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for A.fi/, we know 0� fi.v1/�A.fi/.w/D gi.w/. Moreover, limi!1 gi.w/!
g1.w/. Thus for all but finitely many i we have

0� fi.v1/� g1.w/C 1:

Thus by compactness of the interval Œ0;g1.w/ C 1�, we can find a subsequence
hfi.1;j/ij of hfii such that limj!1 fi.1;j/ exists. We repeat this argument induc-
tively. For each n � 1, we can find a subsequence hfi.nC1;j/ij of hfi.n;j/ij such
that limj!1 fi.nC1;j/.vnC1/ exists. Then the diagonal sequence hfi.n;n/in satisfies
limn!1 fi.n;n/.vj / exists for all j . We set f1 D limn!1 fi.n;n/ and proceed as in
the previous paragraph.

Appendix C: The Martin boundaries of a graph

In this section, we will briefly review some relevant facts about the Martin boundaries
of the adjacency operator of an infinite connected graph G with bounded valence. The
main goal of this section is to state facts we will use in later appendices. We will follow
the surveys [34] and [48]. The reader is especially encouraged to refer to [34], because
it specifically discusses the adjacency operator. The book [48] deals exclusively with
stochastic matrices. However, our discussion of the adjacency operator can be reduced
to the discussion of stochastic matrices; see Remark C.8 below.

We may view the adjacency operator as an infinite matrix. For v;w 2 V and for n a
nonnegative integer, we define the nonnegative number

A.n/
v;w D hA

n.ew/; evi 2R;

where ev denote the function V ! R which is one at v and zero elsewhere. This
means that we can write

An.f /D
X
v2V

X
w2V

A.n/
v;wf.w/ev:

Given a � > 0, we define the matrix R� D
1
�

P1
nD0.

1
�

A/n . For � small this sum will
diverge. But there is a real constant r > 0 for which R� has all finite entries for all
�> r , and R� has all infinite entries for �< r . By definition, this constant r coincides
with the spectral radius of the action of A on `2.V/.

Note that whenever it exists, the matrix R� satisfies the equation

(C-1) �R� DAR�C I :

From this point of view, the columns R�.ev/ for v2V are nearly positive eigenfunctions
with eigenvalue �.
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We have not explained what happens for � D r . A is called r –transient if Rr has
all finite entries, and A is called r –recurrent if Rr has all infinite entries. No other
possibilities can occur. In the r –recurrent case, we might try to compute the matrix

LD lim
n!1

1

rn
An:

This limit always exists. We say that A is r –null if all entries of L are zero, and
r –positive if all entries are nonzero. Again, no other possibilities can occur. In the r –
positive case, the columns of L are positive eigenfunctions. Moreover, since L2 DL,
these eigenfunctions lie in `2.V/. It turns out that all columns are multiples of one
another.

Theorem C.1 [34, Theorem 6.2] If A is r –recurrent, then there is a positive solution
to the equation A.f /D rf . This solution is unique up to scaling.

The following treats the even more special r –positive case.

Theorem C.2 [34, page 215] A is r –positive if and only if A has a positive eigen-
function in `2.V/. If there is such an eigenfunction, its eigenvalue coincides with the
spectral radius r .

Definition C.3 (Martin kernel) Suppose that �> r or that �D r and A is r –transient.
Choose a root vertex o 2 V . The �–Martin kernel is the matrix satisfying

K�W V2
!R; .v;w/ 7!

R�.ew/.v/
R�.ew/.o/

:

We may view K� as a modification of the matrix R� where all columns have been
rescaled so that the row associated to the root consists of all ones. Any nontrivial
pointwise limit of the columns K�.ew/ of K� produces a positive eigenfunction by
Equation (C-1).

Definition C.4 (Martin boundary) The �–Martin compactification V� of the vertex
set V is the smallest compactification of V to which the function

V!RV ; w 7!K�.ew/

extends continuously. The �–Martin boundary is M� D V� XV , and if � 2M� we
use k� to denote the image of � under this extension.

It follows from the above discussion that if � 2M� , we have Ak� D �k� .
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Definition C.5 (Minimal Martin boundary) A point � 2M� is called minimal if
whenever �1; �2 2M� and 0< t < 1 satisfy

tk�1
C .1� t/k�2

D k� ;

we have � D �1 D �2 . We use Mmin
�
�M� to denote the set of all minimal � 2M� .

The subset Mmin
�
�M� is a Borel subset.

From the Poisson–Martin representation theorem 6.47, we have the following.

Corollary C.6 The function M� ! RV I � 7! k� restricts to a bijection between
the minimal Martin boundary and the extremal positive eigenfunctions of A with
eigenvalue � which take the value 1 at the root vertex o.

Since an infinite set with a discrete topology is not compact, we have the following
which yields an alternate definition of r in terms of positive eigenfunctions.

Corollary C.7 There exists a positive function satisfying A.f /D �f for all � > r

and for �D r when A is r –transient.

Remark C.8 (Reduction to the stochastic case) Much of the literature on this subject
is concerned with stochastic matrices P , which are defined to have the property that
P .1/ D 1. In this case, functions w satisfying P .w/ D w are called harmonic.
Suppose we have a positive function f 2 RV satisfying A.f /D �f . Define D to
be diagonal matrix with f.v/ in the diagonal entry associated to v 2 V . Consider the
matrix P D .1=�/D�1AD . The matrix P is easily seen stochastic. Moreover, if
g is another function satisfying A.g/D �0g , then P .D�1g/D .�0=�/D�1g . And
conversely, if h satisfies .�0=�/P .w/ D w then A.Dw/ D �0Dw. Therefore D

induces a linear bijection between the eigenfunctions of P with eigenvalue �0=� and
the eigenfunctions of A with eigenvalue �0 . This map also respects the definitions
above.

Appendix D: Cylinder decompositions of translation surfaces

Up to the affine group, a surface arises from Thurston’s construction if and only if
the surface has a pair of cylinder decompositions, each of which supports an affine
multitwist. We use this in later appendices to give a more geometrically natural view
of our main results.

Let S be a translation surface as defined in Section 3.1. An (open) cylinder in S

is a subset of S isometric to R=kZ� .0; h/. The constants k and h are called the
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circumference and height of the cylinder, respectively. Recall from Section 3.4, the
modulus of a cylinder is the ratio h=k . A cylinder decomposition of S in direction
u 2 S1 �R2 is a collection C D fCi W u 2 Ig of disjoint open cylinders in S whose
circumferences are parallel to u and whose closures cover S . We will call C infinite if
C is an infinite set. We call C twistable if there is a positive constant � so that �mi 2Z
where mi is the modulus of the cylinder Ci with i 2 I . We call the minimal such � the
twisting constant. A surface with a twistable cylinder decomposition supports an affine
multitwist which preserves the partition into cylinders given by the decomposition. See
[46, Section 9].

Proposition D.1 (Cylinder decompositions and Thurston’s construction) Suppose
translation surface S0 has two twistable cylinder directions: a cylinder decomposition
C in direction u 2 S1 with twisting constant � , and a cylinder decomposition C0 in
direction u0 2 S1 not parallel to u with twisting constant �0 . Then there is a connected,
bipartite ribbon graph G with bounded valence and a positive eigenfunction w with
eigenvalue �D

p
��0ju^u0j so that S0 is affinely equivalent to S.G;w/. Concretely,

we have that S0 is translation equivalent to the image of S.G;w/ under a linear map
AW R2!R2 so that A.�; 0/D

p
�u and A.0; �/D

p
�0u0 .

Sketch of proof By possibly subdividing the cylinders in the two decompositions,
we can assume that all cylinders in decomposition C have modulus 1=� , and all
cylinders in C0 have modulus 1=�0 . A calculation reveals that the image of a cylinder
in direction u of modulus 1=� under the linear map A�1 is a horizontal cylinder with
modulus 1=�. Similarly, the image of a cylinder in direction u0 under A�1 is a vertical
cylinder with modulus 1=�. Then the combinatorics of how the cylinders intersect on
A�1.S0/ determines the ribbon graph G , and the widths of the cylinders determine
the eigenfunction w.

Definition D.2 Suppose S has two twistable cylinder decompositions, C and C0 , and
let G , w, �, and A be as above. We will say that a direction � 2 S1 is .C; C0/–
renormalizable if the vector A�1.�/ points in a �–renormalizable direction.

The point of the above is that statements that hold for �–renormalizable directions also
hold for .C; C0/–renormalizable directions. The only difference is an affine change of
coordinates. For applying our ergodic measure characterization theorem 4.5, we need
to consider is when the associated graph has a vertex of valence one. This is dealt with
as below:
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Proposition D.3 (Valence-one condition) Suppose S has two twistable cylinder
decompositions, C and C0 , with twisting constants � and �0 , respectively. Let G be the
graph constructed using Proposition D.1. Then G has a vertex of valence one if and
only if one of the following holds:
� There is a cylinder of C which intersects only one cylinder of C0 counting

multiplicity, and the cylinder intersected has modulus 1=�0 .
� There is a cylinder of C0 which intersects only one cylinder of C counting

multiplicity, and the cylinder intersected has modulus 1=� .

Discussion of proof As mentioned in the proof of Proposition D.1, we first subdivide
cylinders so that they have moduli 1=� or 1=�0 . The graph is given by the intersection
pattern of such cylinders, so the condition that a vertex is 1–valent is equivalent to the
associated cylinder intersecting only one other cylinder counting multiplicity.

We note that the valence-one condition is not stable under subdivision. A cylinder
R=kZ � .0; h/ can be cut into two half cylinders, namely R=kZ � .0; h=2/ and
R=kZ � .h=2; h/. Given a cylinder decomposition C , we can get a new cylinder
decomposition in the same direction by cutting each cylinder of C in half.

Corollary D.4 Suppose that S has two twistable cylinder decompositions, C and C0 .
Suppose the graph obtained from C and C0 as in Proposition D.1 has a vertex of valence
one. Then the graph associated to the two decompositions formed by cutting each
cylinder in C and C0 in half has no vertices of valence one.

Sketch of proof Observe that the neither criterion of Proposition D.1 can hold for the
subdivided cylinder decomposition.

In particular, our ergodic measure characterization theorem 4.5 can still be used even if
a graph G has a vertices of valence one. We must subdivide cylinders, which has the
effect of changing G and decreasing the set of renormalizable directions. This set still
has Hausdorff dimension larger than 1

2
. (See Remark 4.1.)

Appendix E: Infinite interval exchange transformations

In this appendix, we describe some natural infinite interval exchange maps to which
our results apply. Given any surface produced from Thurston’s construction, the return
map of the straight-line flow F t

�
to the horizontal boundaries of rectangles is an infinite

interval exchange map. So our results hold generally for such infinite IETs which arise
from flows in renormalizable directions. But in this appendix we will describe some
examples which seem more natural from the point of view of infinite IETs which have
been studied by other authors.
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E1: Skew products

A well studied class of infinite IETs comes from the construction of skew product
transformations. Let � W I ! I be a finite IET, let G be a countably infinite discrete
group, and let  W I !G be a function which is locally constant away from finitely
many discontinuities. Then we define the skew product of � and  to be

(E-1) T W I �G! I �G defined by T .x;g/D .�.x/;  .x/g/:

We consider T an infinite IET, because T is an orientation preserving piecewise
isometry of a space piecewise isometric to an interval in R.

E2: Maharam measures

Let T be a skew product of � and  as above. Let hW I!RC be a Borel measurable
map to the positive real numbers. We call a probability measure � an .h; �/–conformal
measure if � ı � is absolutely continuous with respect to � and the Radon–Nikodym
derivative satisfies d�ı�

d�
.x/D h.x/ for �–ae x 2 I .

Let �W G!R be a group homomorphism, and suppose that � is a .e�ı ; �/–conformal
Borel probability measure. For each g 2G , consider the maps �gW I ! I �G given
by �g.x/D .x;g/. The �–Maharam measure associated to � and � is the measure
z�� on I �G defined so that

(E-2) z�� ı�g D
1

e�.g/
�:

Such a measure is always invariant under the skew product transformation T . The
scaling factor of � from .e�ı ; �/–conformality cancels with the 1=e� factor that
arises from the change in the G–coordinate under T . Note that some scalar multiple of
Lebesgue measure is �–Maharam measure where � is the trivial group homomorphism.
Note also that Maharam measures are normalized in the sense that z�.I � feg/ D 1,
where e 2G denotes the identity element.

E3: Skew rotations

A skew rotation is the skew product of a rotation � W Œ0; 1/! Œ0; 1/ given by �.x/D
xC˛ .mod 1/ and some  W I !G as described above. Let n� 2 be an integer and
choose generators 
1; : : : ; 
n 2G . We will consider the special case when  is defined
so that  .x/D 
i if and only if x 2 Œ i�1

n
; i

n
/. In general, such a skew rotation is not

even recurrent. (Consider the case when 
1; : : : ; 
n freely generate.) It is therefore
natural to impose a no-drift condition. We choose to highlight the no-drift condition

(E-3) 
n
n�1 � � � 
1 D e;
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in this paper, but other choices could be made to produce similar results.

The best studied system of this form is the case when G D Z, n D 2, 
1 D 1 and

2D�1. Ergodicity of this skew rotation was proved for some irrational ˛ by Schmidt
[38, Theorem 2.6], and later shown to hold for all irrational ˛ by Conze and Keane
[15]. In [2, Theorem 1.4], the following was proved:

Theorem E.1 (Aaronson–Nakada–Sarig–Solomyak) Let T˛ be the skew rotation
where ˛ is irrational, G D Z, nD 2, 
1 D 1 and 
2 D�1.

(1) For every group homomorphism �, there is a unique �–Maharam measure which
is invariant under T˛ .

(2) Each Maharam measure for T˛ is ergodic.

(3) All locally finite ergodic T˛ –invariant measures are scalar multiples of Maharam
measures.

In Appendix G, we will prove the following generalization.

Theorem E.2 (Nilpotent case) Let G be a nilpotent group generated by 
1; : : : ; 
n

and satisfying Equation (E-3). Then statements (1)–(3) of the above theorem hold for
the corresponding skew rotation T˛ whenever the unit vector in direction .˛�1=n; 1=n/

is n–renormalizable.

This theorem implies Theorem E.1, because the set of 2–renormalizable directions is
the directions of irrational slope. For n> 2, the above theorem gives all but countably
many ˛ in a Cantor set of Hausdorff dimension bigger than 1

2
. (See Remark 4.1 for a

description of the sizes of the set of n–renormalizable directions.)

E4: Skew rotations from translation surfaces

The goal of this section is to explain that the skew rotations T˛ defined in the prior
subsection appear as return maps to a section of the straight line flow on an infinite
translation surface. The definition of T˛ requires the choice of an infinite discrete
group G and a choice of generators 
1; : : : ; 
n so that 
n � � � 
1 D e . We then define
� W Œ0; 1/! Œ0; 1/ to be a rotation and  W Œ0; 1/!G to be so that

(E-4)  .x/D 
i if x 2
h

i�1

n
;

i

n

�
.

This determines a skew product T W Œ0; 1/�G! Œ0; 1/�G as in Equation (E-1).

We will use the same data to define a translation surface. Let C denote the cylinder
R=Z � Œ0; 1=n� with a decomposition into n squares and n top and bottom edges
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labeled t1; : : : ; tn and b1; : : : ; bn . See Figure 8. We apply the label ti to the segment
Œ.i � 1/=n; i=n�� f1=ng � C and bi to the segment Œ.i � 1/=n; i=n�� f0g � C . We
let S be the translation surface G �C= �, where � is a gluing of edges. For each
i 2 f1; : : : ; ng and g 2 G , we glue edge ti of cylinder fgg �C to edge biC1 .mod n/

of cylinder f
igg �C by parallel translation. Our surface has a decomposition into
vertical cylinders as well, because a flow in the vertical direction results in passing
through edges in the order ti ; tiC1; : : : ; tiCn�1 with subscripts written modulo n. This
results in visiting a list of horizontal cylinders of the form

(E-5) fgg �C; f
igg �C; f
iC1
igg �C; : : : ; f
iCn�1 � � � 
igg �C:

By our assumed group relation, 
iCn�1 � � � 
iC1
ig D g and the vertical trajectory
returns to its starting point after crossing n horizontal edges. That is, we have a vertical
decomposition into cylinders of inverse modulus n as well. In particular, S is of the
form S.G;w 1

n
/, where G is the valence-n cylinder intersection graph and w 1

n
2RV

is the constant function with value 1=n. This is an eigenfunction of eigenvalue �D n.
Note that, if we choose the trajectory to start on the edge labeled t1 of g�C , then it
passes through the cylinders

(E-6) f�1gg �C; f�2gg �C; : : : ; f�ngg �C;

where the group elements �i are defined to be

(E-7) �1 D e; �2 D 
1 and �i D 
i�1 � � � 
2
1 for 2� i � n.

t1 t2 t3 t4 t5

b1 b2 b3 b4 b5

Figure 8: The horizontal cylinder C when nD 5

We will describe the graph G obtained by this construction. The horizontal cylinders
and hence the nodes of the graph in A are identified with the group G . We use ag 2A
to denote the node associated to g 2 G . If x is a point of t1 the vertical straight line
flow crosses the cylinders as described by Equation (E-6). Every vertical cylinder
passes through some t1 . Thus the vertical cylinders can by identified by an ordered
n–tuple of the form

(E-8) Œg�D .�1g; �2g; : : : ; �ng/ 2Gn:
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We denote the vertex associated to this cylinder by bg 2 B . Finally the collection of
edges is given by the condition

(E-9) ag � bg0 if and only if g D �ig
0 for some 1� i � n.

Hence edges correspond to the choice of a n–tuple of Œg�D .�1g; �2g; : : : ; �ng/ and
an element �ig of the n–tuple. This choice refers to the edge a�i gbg . The ribbon
graph structure is given by

N.a�i gbg/D a�iC1gbg and E.a�i gbg/D a�i gb��1
iC1

�i g;

where subscript addition is taken modulo n.

Proposition E.3 Let G be a discrete group with generators 
1; : : : ; 
n 2G satisfying
the relation given in Equation (E-3). Define G from this data as in the above para-
graphs. Consider embedding �W R=Z � fgg ! S.G;w 1

n
/ which sends the interval

Œ.i � 1/=n; i=n�� fgg to the top edge ti of the cylinder fgg �C . Let T be the skew
rotation determined by a rotation �.x/D xC˛ .mod 1/ and the map  W Œ0; 1/!G
as in Equation (E-4). Then the embedding � conjugates the skew rotation T to the
return map of the straight-line flow F t

�
in direction � D .˛� 1

n
; 1

n
/=k.˛� 1

n
; 1

n
/k.

Proof Consider the point .x;g/ 2 Œ0; 1/ �G . We must show that � ı T .x;g/ is
the image of �.x;g/ under the return map of the straight-line flow. Assume x 2

Œ.i � 1/=n; i=n/. Observe that � has positive y–coordinate. So flowing �.x;g/ in
the direction of � immediately moves into the cylinder f
igg �C through the bottom
edge biC1 , with subscript addition taken modulo n. The point �.x;g/ is identified
with the point with coordinates .xC 1

n
; 0/ of f
igg �C , where the x–coordinate is

taken modulo 1. Continuing flowing in direction � we reach the point .xC˛; 1=n/ on
the top of the cylinder f
igg�C . This point coincides with � ıT .x;g/ as desired.

As a consequence, we see that whenever the direction .˛ � 1
n
; 1

n
/=k.˛ � 1

n
; 1

n
/k is

n–renormalizable, we can say something about the measures of the associated infinite
IET. For later use, we give this set of ˛ a name:

(E-10) �n D f˛ W .˛�
1
n
; 1

n
/=k.˛� 1

n
; 1

n
/k is n–renormalizableg:

Recall that �–renormalizable directions were defined in Section 4.1.

To conclude this section, we work out a special case of our skew rotation. We consider
the case when our no-drift relation is the only relation in our group. This will lead to a
primary example considered in Appendix F. See Theorem F.5.
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Proposition E.4 Suppose G D h
1; : : : ; 
n j 
n � � � 
1 D ei. Then the associated
bipartite graph G constructed above is the valence-n tree.

Proof From the above remarks we know G is n–valent. We must show that the graph
contains no homotopically nontrivial loops. Observe that the elements �2; : : : ; �n

defined in Equation (E-7) freely generate the group G , while �1D e . Note that there is
a unique way to write each element g 2G as a product of the generators �2; : : : ; �n and
their inverses which minimizes the word length. Moreover, if we have a word written as
a product of �2; : : : ; �n and their inverses, then this product is the minimal one unless
there are is a pair of adjacent terms of the form �i�

�1
i or ��1

i �i with i 2 f2; : : : ; ng.

Recall that A is identified with G and points in B correspond to n–tuples in B of the
form Œg�D .�1g; : : : ; �n�1g;g/. See Equation (E-8). The elements of an n–tuple in
B correspond to adjacent vertices in A.

Consider a nonbacktracking path in G starting at ae . Denote this sequence

a0 � b0 � a1 � b1 � a2 � � � � :

By nonbacktracking we mean that ai ¤ aiC1 and bi ¤ biC1 for all i . For each i � 0,
there is a group element gi so that ai D agi

. Similarly, let hi 2G be so that bi D bhi
.

We claim that the word length (measured with respect to the generators �2; : : : ; �n ) of
gi is strictly increasing in i . If this is true, then a nonbacktracking path can not close
up. So there are no homotopically nontrivial loops. We prove this by induction. Since
g0 D e , we see that

h0 D �
�1
i.0/

for some choice of i.0/ 2 f1; : : : ; ng. Then we have that g1 lies in the list Œh0�.
Therefore we have g1 D �j.0/�

�1
i.0/

for some j .0/. Since g1 ¤ g0 , we must have that
i.0/¤ j .0/. Since only one of i.0/ or j .0/ can equal 1, we see g1 ¤ e so the word
length has gone up. More generally, we see that for each m, there are distinct i.mC1/

and j .mC 1/ so that

hm D �
�1
i.m/gm�1 and gmC1 D �j.m/�

�1
i.m/gm�1:

Also hm D �
�1
i.m/

�j.m�1/hm�1 and hm ¤ hm�1 implies that i.m/¤ j .m� 1/ for all
m. Therefore, for each m, we can write

gmC1 D �j.m/�
�1
i.m/ � � � �j.0/�

�1
i.0/;

and we have j .k/¤ i.k/ and i.kC 1/¤ j .k/ for all k . We claim that aside from
removing terms of the form �1 D e and ��1

1
D e there can be no cancellation to

reduce the word length. No adjacent terms can be canceled because j .m/¤ i.m/ and
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i.mC 1/ ¤ j .m/ for all m. Moreover, we can have no “canceling sandwiches” of
the form �i�

˙1
1
��1

i or ��1
i �˙1

1
�i , because the sign of the exponent in the terms in the

product is alternating. Therefore, all simplification is simply the removal of terms of
the form �˙1

1
as claimed. Now we see that the word length of gm is at least one larger

than gm�1 , since gm D �j.m/�
�1
i.m/

gm�1 and we have either j .m/¤ 1 or i.m/¤ 1.
This proves the increasing word length claim.

Appendix F: Translation surfaces and hyperbolic graphs

A graph is called hyperbolic if it is ı–hyperbolic as a metric space equipped with the
edge metric for some ı > 0. We refer the reader to [8, Section 8.4] for the definition of
and background for ı–hyperbolicity. If G is hyperbolic, we can compactify G with the
ı–hyperbolic boundary @hypG .

Theorem F.1 [48, Theorem IV.27.1] Suppose the graph G is hyperbolic, and let
� > r . Then every point in M� is minimal and M� is homeomorphic to @hypG .

Example F.2 Consider the graph G given in Figure 9. The eigenfunction w given
in the figure lies in `p.V/ for p 2 Œ1;1�. We conclude that A is r –positive and that
the spectral radius is the associated eigenvalue r D 3

p
2=2. By Theorem C.1, we

conclude that the only positive functions satisfying A.f /D rf are the multiples of the
function w. For �> r , we may apply Theorem F.1. In the case of a tree, the hyperbolic
boundary of G is homeomorphic to the space of ends of G . In this case, we have
exactly 3 ends. We conclude the space of positive functions satisfying A.f /D �f is
linearly isomorphic to the cone on a triangle; we have 3 such extremal eigenfunctions
up to scaling. One such function is given in Figure 10; the others are the same up to the
automorphism group of the graph. The space of all extremal positive eigenfunctions
which take the value one at the root is homeomorphic to the graph itself. Using our
measure characterization, this information determines the ergodic invariant measures
for the straight-line flow in a r –renormalizable direction on the surface S.G;w/ of
Figure 9.

The theorem above leaves open the question of what the Martin boundary is in the case
that �D r and A is r –transient. In the special case of trees, we have an answer.

Theorem F.3 [35, page 459] If G is a tree and A is r –transient with �� r or if A is
r –recurrent and � > r , then every point in M� is minimal and M� is homeomorphic
to the space of ends of G (which is also homeomorphic to @hypG ).
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Figure 9: A surface S.G;w/ with finite area. Labeled and opposite unlabeled
edges are glued by horizontal or vertical translations. At left, the graph G is
shown with the positive eigenfunction w which lies in `p.V/ for all p 2

Œ1;1� .
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Figure 10: An extremal positive eigenfunction is given above with eigenvalue
�D t C t�1 when we set aD .t � 2t�1/=.t � t�1/ .

Remark F.4 As far as the author knows, there is no general description of the Martin
boundary of a hyperbolic graph G in the case that �D r , even in the particular case
when G is the Cayley graph of a Gromov hyperbolic group.

Theorem F.5 (Nonabelian free case) Let n � 3 and let G be the nonabelian free
group of rank n� 1 generated by 
1; : : : ; 
n�1 and define 
n D .
n�1
n�2 � � � 
1/

�1

so that the no-drift condition of Equation (E-3) is satisfied. Let �n � Œ0; 1/ be as in
Equation (E-10). Then, for every ˛ 2�n , the following holds for the associated skew
product T˛ :

(1) T˛ is conservative but no Maharam measure is ergodic (including Lebesgue
measure).
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(2) Points in the projectivization of the space of locally finite ergodic T˛–invariant
measures are in bijective correspondence with the Cartesian product of a ray
Œ0;1/ and the Gromov boundary of G .

Proof of Theorem F.5 By Propositions E.3 and E.4, the skew product T˛ with
˛ 2 �n described in the theorem is the return map of the straight-line flow F t

�
in

a direction � 2 R� on the surface S.G;w 1
n
/, where G is the valence-n tree. By

Theorem 6.4, this flow is conservative. Theorem 4.5 characterizes the locally finite
ergodic transverse measures to the foliations F� . Such measures are in bijective
correspondence with positive eigenfunctions of the adjacency operator. The spectral
radius of G is r D 2

p
n� 1 (see [34, page 225]) and the graph is known to be r –

transient when n > 2 (see [48, page 10]). Therefore Theorem F.3 characterizes the
positive eigenfunctions (normalized to take the value 1 at the root node) in terms of
the choice of a �� r and the choice of a point in the Gromov boundary of the graph.
This bijection then extends to projective equivalence classes of locally finite ergodic
invariant transverse measures by Theorem 4.5 and to the skew rotation by restricting
these measures to the section of horizontal edges of rectangles.

Appendix G: Surfaces with cocompact nilpotent actions

G1: Eigenfunctions of graphs with nilpotent actions

For the following is a variant of a theorem of Margulis [29].

Theorem G.1 (Margulis) Let G be a nilpotent group acting cocompactly by graph
automorphisms on the graph G . Let f 2RV be an extremal positive eigenfunction for
the adjacency operator. Then for all g 2G , the quantity f ıg.v/=f.v/ is independent
of the choice of v 2 V . Moreover, the function hW G! R given by h.g/D log.f ı
g.v/=f.v// is a group homomorphism to R. The map f 7! h is a bijection from
extremal positive eigenfunctions which take the value 1 at an arbitrary chosen root
node of G to the collection of homeomorphisms G!R.

Our formulation of the result does not appear in the literature. However, it follows
quickly from the following version:

Theorem G.2 [48, Theorem 25.8] Let G be a locally finite, connected graph, and let
P be a stochastic matrix determining a random walk on G . Suppose the automorphism
group of the pair .G;P / contains a discrete nilpotent group G which acts cocompactly
on G . Then for any extremal positive eigenfunction f W RV !R and every v 2 V , the
function hvW G!R given by hv.g/D log.f ıg.v/=f.v// is a group homomorphism.
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Discussion of proof of Theorem G.1 This theorem is sufficiently different from
Theorem G.2 that it warrants some discussion. First of all, Woess’ statement involves
stochastic matrices, but this can be resolved by Remark C.8. Second, Woess only states
that for each v, the function

hv.v/D log.f ıg.v/=f.v//

is a group homomorphism. To see that this is independent of the choice of v, take an
adjacent vertex w. We will use the fact that since Af D �f , whenever a� b we have
��1f.b/ � f.a/ � �f.b/. Since automorphisms preserve adjacency, for all g 2 G
we have

��1f ıg.w/
�f.w/

�
f ıg.v/
f.v/

�
�f ıg.w/
�f.w/

:

Therefore we have hw.g/ � 2 log� � hv.g/ � hw.g/ C 2 log�. This equation is
independent of the choice of g , so we may apply it to gn for all n. Then we may use
the fact that hv.g

n/D nhv.g/ and hv.g
n/D nhv.g/ to say that

nhw.g/� 2 log�� nhv.g/� nhw.g/C 2 log� for all n.

Therefore hv.g/D hw.g/.

Finally, we need to say something about existence and uniqueness of the positive
eigenfunction associated to a group homomorphism. Fix a group homomorphism
hW G!R. Then consider the subspace of RV given by

LD ff 2RV
W f ıg.v/D eh.g/f.v/ for all g 2Gg:

Since G is acting by graph automorphisms, this subspace is A–invariant. Moreover,
L has dimension equal to the number of elements of GnG . Choose representatives
v1; : : : ; vk for the orbit equivalence classes in GnG . The functions f1; : : : ;fk defined
so that fi.vj /D 1 if i D j and fi.vj /D 0 otherwise form a basis for L. Observe
that a function in L is positive if and only if it can be written as a positive linear
combination of f1; : : : ;fk . Finally, observe that A acts as a Perron–Frobenius matrix
in this basis. Therefore there is a unique positive eigenvector up to scaling.

G2: Nilpotent covers of translation surfaces

Suppose that S is an infinite translation surface, and let G be a discrete group which
acts faithfully on S by homeomorphisms which are translations in local coordinates.
Then S=G is also a translation surface. If S=G is a closed surface, we call S a
G–cover of the translation surface S=G . We will let D be a measurable fundamental
domain for the G–action.
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Let �W G ! R be a group homomorphism. We call an F t
�

–invariant measure �
�–Maharam if �.D/ D 1 and for each g 2 G , we have � ı g D e��.g/� . We call
� Maharam because the induced invariant measure for the return map to a periodic
section is Maharam in the sense of Section E2. Note that some scalar multiple Lebesgue
measure is �–Maharam when � is the trivial homomorphism.

Theorem G.3 (Nilpotent covers) Suppose that the connected translation surface S

is a G–cover of a closed translation surface, where G is a discrete nilpotent group.
Further suppose that C and D have two twistable cylinder decompositions and that
the associated intersection graph has no vertices of valence one (see Proposition D.3).
Then, in any .C;D/–renormalizable direction � , the following statements are satisfied.

(1) For every homomorphism �W G!R, there is a unique �–Maharam measure of
F t
�

.

(2) The collection of locally finite ergodic F t
�

–invariant measures is the collection
of scalar multiples of the Maharam measures.

Discussion of proof We begin by showing that all locally finite ergodic F t
�

–invariant
measures are �–Maharam, and there is one for each �. Since our surface has two
twistable cylinder decompositions, we may assume that (up to an affine change of
coordinates) S D S.G;w/ for some graph G and positive eigenfunction w. Since G
acts on S by translation symmetries, it induces a G action on G . The quotient surface
S=G inherits a pair of quotient cylinder decompositions whose intersection data is
given by the quotient graph G=G . Since S=G is a compact translation surface, we
know that G=G is a finite graph. Then since G is nilpotent, Theorem G.1 gives a
description of the extremal positive eigenfunctions of the adjacency operator. Namely,
they are in bijection with the collection of group homomorphisms hW G ! R. Fix
such a �. Then, by Theorem G.1, there is an extremal positive eigenfunction so
that h.g/D log.f ı g.v/=f.v// for all g 2 G and all vertices v of G . The ergodic
measure characterization theorem 4.5 guarantees that the locally finite ergodic invariant
measures arise from a pullback construction from surfaces built from such extremal
positive eigenfunctions. (That is, we pullback the transverse measures. The associated
F t
�

–invariant measures is locally a product of this transverse measure and Lebesgue
measure in the orbit direction.) Observe that the surface S.G;f / has a G–action
which is conjugate to the action on S D S.G;w/, but which acts by dilation. Namely,
the g–action scales area by a dilation with expansion constant eh.g/ . It follows
that the pullback measure is a �–Maharam measure where �W G ! R is given by
�.g/D�h.g/.

It remains to show that there are no other �–Maharam measures. Fix �, and let � be a
�–Maharam measure. We already know the classification of ergodic invariant measures.
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Namely, for each group homomorphism hW G!R, there is a unique ergodic invariant
h–Maharam measure, which we will denote my �h . It then follows that there is a
measure m on the collection of such group homomorphisms, Hom.G;R/, so that

�.A/D

Z
Hom.G;R/

�h.A/ dm for all measurable A� S :

We claim that �D �� . For this, it suffices to show that the support of the measure m

only includes �. Suppose the support included some hs ¤ �. Since hs ¤ �, there is a
g so that hs.g/ > �.g/. Define the constant k D 1

2
.hs.g/C�.g// and the set

H D fh 2 Hom.G;R/ W h.g/� kg:

Then m.H /D � for some � > 0. Let D be the fundamental domain as in the definition
of �–Maharam. Then �.D/D 1 and �h.D/D 1 for all h. For each integer n > 0,
we have

� ıg�n.D/D

Z
Hom.G;R/

�h ıg�n.D/ dm�
Z

H

�h ıg�n.D/ dm

D

Z
H

enh.g/�h.D/ dmD
Z

H

enh.g/ dm�
Z

H

enk dmD enk�:

As k >�.g/, by taking n sufficiently large we can guarantee that �ıg�n.D/> en�.g/ .
But we must have equality here for � to be �–Maharam.

Discussion of proof of Theorem E.2 Let T˛ be a skew rotation defined using a
nilpotent group G with generators 
1; : : : ; 
n satisfying Equation (E-3). Assume that
the unit vector in direction .˛ � 1

n
; 1

n
/ is n–renormalizable. Then as described by

Proposition E.3, T˛ arises from a return map of straight-line flow F t
�

to a section on
a surface S D S.G;w 1

n
/ in an n–renormalizable direction � . The description of the

locally finite ergodic invariant measures of F t
�

given in Theorem G.3 gives rise to
a similar characterization for T˛ . This characterization is given in the statement of
Theorem E.2.

We establish one more corollary to cover the case where we have a lot of different
twistable cylinder decompositions. We remark that the papers [27] and [25] give many
examples of Z–covers of closed translation surfaces which admit a twistable cylinder
decompositions in a dense set of directions.

Corollary G.4 Suppose that S is a G–cover of a closed translation surface, where G
is nilpotent. Suppose also that S has twistable cylinder decompositions in a dense set
of directions. Then there is a dense set of directions ‚ of Hausdorff dimension larger
than half so that statements (1) and (2) of Theorem G.3 are satisfied for all � 2‚.
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Sketch of proof Fixing any pair of decompositions C and D , we obtain a collection
of directions for which Theorem G.3. This uses the discussion at the end of Appendix
D. It is either the .C;D/–renormalizable directions, or renormalizable directions of
the pair of decompositions obtained by subdividing each cylinder. In either case, the
set of renormalizable directions accumulates on the directions of the two cylinder
decompositions C and D . We take ‚ to be the union of all such directions over all
pairs of decompositions. Because of this accumulation, ‚ is dense. The statement
about Hausdorff dimension follows from Remark 4.1.

G3: Example: The Ehrenfest wind-tree model

In [20], Hardy and Weber began the study billiards in the plane with a periodic family
of rectangular barriers. We will follow the treatment of this dynamical system given by
Hubert, Lelièvre and Troubetzkoy [26]. Further works on these systems include [44]
and [17]. These systems are parameterized by a pair of real numbers a and b taken from
the interval .0; 1/. For each m; n2Z, define rectangle Rm;nD .m;mCa/�.n; nCb/.
We consider billiards in the table Ta;b DR2 X

S
m;n2Z Rm;n .

The billiard flow on Ta;b decomposes into invariant sets corresponding to the fact
that a single billiard trajectory can travel in only four directions. These invariant sets
are given the structure of a translation surface by the Zemljakov–Katok unfolding
construction [50]. The billiard flow restricted to any of these invariant sets is conjugate
to a straight-line flow on a translation surface Xa;b . The surface Xa;b has a cocompact
Z2 action. See [26] for more details. For the following, see [26, Theorem 1]:

Theorem G.5 (Periodic directions in the wind-tree model) Suppose a and b are
rational numbers in .0; 1/ which can written as the ratio of two integers with odd
numerator and even denominator. Then there are twistable cylinder decompositions in
a dense set directions on Xa;b .

It should be noted that Theorem G.5 is quite delicate. It is also shown in [26, Theorem
2] that when a and b can both be written as rationals with even numerator and odd
denominator, then Xa;b never admits a decomposition into cylinders.

Because of the above theorem, Corollary G.4 can then be specialized to the following.

Corollary G.6 (Ergodic directions in the wind-tree model) Let a and b be as in the
above theorem. Then there is a dense set of directions of Hausdorff dimension larger
than half for which the billiard flow on Ta;b is ergodic. For each of these directions,
statements .1/ and .2/ of Theorem G.3 hold for the surface Xa;b as well.
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The conclusion here should be contrasted with the work of Frączek and Ulcigrai, where
it is shown that when a and b are rational numbers, the billiard flow on Ta;b is not
ergodic in almost every direction [19, Theorem 1.2]. (This result is also shown to hold
for almost every a and b .)

Appendix H: Unique ergodicity

Recall that a dynamical system is said to be uniquely ergodic if there is only one
invariant probability measure. We have been considering two dynamical systems
associated to our surfaces S.G;w/: the infinite IETs arising from the return maps to the
horizontal edges of the rectangles making up the surface, and the straight-line flows on
these surfaces. In both cases we will show that when an invariant probability measure
is unique whenever it exists.

The surface in Figure 9 and the surfaces X˛ defined for a rational parameter 0< ˛ < 1

defined in [9, Section 3] (see [9, Proposition 11] for a description of the multitwists
of X˛ ) and orientation covers of the surfaces X and Y of [10] represent surfaces
our unique ergodicity theorems apply to. We remark that Treviño has a criterion for
ergodicity of the straight-line flow which likely also applies here [42, Theorem 2].

H1: Unique ergodicity of infinite IETs

Let G be an infinite, connected, bipartite, ribbon graph with bounded valence and
no vertices of valence one, and let w be a positive eigenfunction with eigenvalue �
for the adjacency operator on G . Let X denote the union of the horizontal edges
of the rectangles making up the surface S.G;w/. (See Definition 3.3 of the surface
S.G;w/ for a description of these rectangles.) Choose a �–renormalizable direction
� , and let T W X !X be the infinite IET given by the return map of the straight-line
flow F t

�
W S.G;w/! S.G;w/ to the section X . Then by the measure characterization

(Theorem 4.5), the locally finite ergodic transverse measures to the foliation F� are
given by a pullback of a Lebesgue transverse measure of surfaces S.G;f / where
f W RV!R iterates over the extremal positive eigenfunctions of the adjacency operator.
By restricting these measures to X , we obtain the locally finite ergodic invariant
measures �f for T W X !X .

The total measure �f.X / is related to the `1 –norm of f , which we define to be

kf k1 D
X
v2V

jf.v/j:

Proposition H.1 We have �f.X / <1 if and only if kf k1 <1.
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Proof Let e D ab be an edge of G . Then Re is a rectangle of S.G;w/. (See
Definition 3.3.) Let Le denote the lower edge of Re . Because �f is a pullback of
Lebesgue transverse measure on S.G;f / in some nonhorizontal direction, there is a
constant c > 0 depending on f so that �f.Le/D cf.b/. Since X is the union of all
lower edges of the rectangles Re , we have the inequality

�f.X /D
X
b2B

cf.b/ < ckf k1:

Let n be the largest valence of a vertex in G , and let � be the eigenvalue of f . Then
if the vertex a 2 A is adjacent to vertex b 2 B , we have f.a/ < �f.b/. Since every
vertex b 2 B is adjacent to at most n vertices in A, we have

kf k1 D
X
a2A

f.a/C
X
b2B

f.b/� .1C n�/
X
b2B

f.b/D
1C n�

c
�f.X /:

Together these inequalities imply that �f.X / <1 if and only if kf k1 <1.

Corollary H.2 (Unique ergodicity of T ) Let G be an infinite, connected, bipartite,
ribbon graph with bounded valence and no vertices of valence one, and let w be a
positive eigenfunction with eigenvalue � for the adjacency operator on G . Let � be a
�–renormalizable direction. Then there is at most one invariant probability measure for
the first return map T W X ! X of the straight-line flow F t

�
W S.G;w/! S.G;w/ to

the union X of horizontal edges of rectangles making up S.G;w/.

Proof Suppose T W X ! X has an invariant probability measure. Then it has an
ergodic one, �f . By the prior proposition, f has finite `1 –norm. Therefore it has
finite `2 norm. In this case, Theorem C.2 guarantees that the eigenvalue of f is the
spectral radius, r , of the adjacency operator, A . We also get that A is r –positive.
Then by Theorem C.1, we see that the equation Af D rf has a unique solution up to
scaling. It follows that �f is the only ergodic invariant probability measure for T , ie
T is uniquely ergodic.

H2: Unique ergodicity for the straight-line flow

Let G be a graph as in the prior section, and let w be a positive eigenfunction of
the adjacency operator with eigenvalue �. We will consider the straight-line flow
F t
�

on S.G;w/ in a �–renormalizable direction � . Let f be an extremal positive
eigenfunction, and let �f be the F t

�
–invariant measure on S.G;w/ obtained as in the

measure characterization theorem by pulling back the Lebesgue transverse invariant
measure from S.G;f / and then integrating over the leaves.
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Lemma H.3 The �f measure of the surface S.G;w/ is finite if and only if the
`2 –inner product

w �f D
X
v2V

w.v/f.v/

is finite.

Proof We assume that Aw D �w and Af D �0w. The measure �f is locally the
product of the pullback of Lebesgue measure on the leaves of the foliation F� and the
pullback of the Lebesgue transverse measure, �, on S.G;f / to the foliation in some
direction � 0 .

We need to compute �.S.G;w// using this local product structure. To do this, let
cyla be a horizontal cylinder in the surface S.G;w/, and let 
a be a horizontal circle
winding around the cylinder. By considering that the transverse measure �.
a/ should
be the same as the sum of the �–measures of edges on the bottom of cyla , we see that
this can be computed by looking at the surface S.G;f /. Let � 0 be the angle made
with the horizontal by � 0 . We have

�.
a/D sin.� 0/
X
b�a

f.b/DA.f /.a/ sin.� 0/D �0f.a/ sin.� 0/:

The Lebesgue measures of the (connected components of) intersections of a leaf of the
foliation in direction � on S.G;w/ and the cylinder cyla are given by w.a/= sin.�/,
where � is the angle made with the horizontal by the vector � . Since the cylinder cyla
can be written as the product of a circle 
a with a intersection of a leaf with cyla we
have

�.S.G;w//D
X
a2A

�.cyla/D
X
a2A

�0 sin.� 0/f.a/w.a/
sin.�/

D
�0 sin.� 0/

sin.�/

X
a2A

f.a/w.a/:

By swapping the roles of horizontal and vertical, we also obtain an expression for
�.S.G;w// in terms of

P
b2B f.b/w.b/. The conclusion follows.

Now we will consider when the `2 –inner product of two eigenfunctions is finite.

Lemma H.4 Suppose A.f / D �f and A.g/ D �0g . Then if �0 6¤ �, whenever
`2 –inner product of f and g exists it equals zero.

Proof Suppose A.f /D �f and A.g/D �0g . Let s denote the `2 –inner productP
v2V f.v/g.v/, and assume the sum converges. Since A.f /D �f ,

�s D
X
v2V

ŒA.f /.v/�g.v/D
X
v2V

X
w�v

f.w/g.v/D
X
w2V

X
v�w

f.w/g.v/:

Geometry & Topology, Volume 19 (2015)



2032 W Patrick Hooper

Now observe that fixing any w 2 V , we have
P

v�w f.w/g.v/D f.w/ŒA.g/.w/�D
�0f.w/g.w/. Therefore we have

�s D �0
X
w2V

f.w/g.w/D �0s:

Since �0 ¤ �, we know that s D 0.

Theorem H.5 G be an infinite, connected, bipartite, ribbon graph with bounded
valence and no vertices of valence one, and let w be a positive eigenfunction with
eigenvalue � for the adjacency operator on G . Let � be a �–renormalizable direction.
Then, if S.G;w/ has finite area, then F t

�
is uniquely ergodic.

Proof Suppose S.G;w/ has finite area. Then by Lemma H.3, we have w �w <1.
So w is a positive eigenfunction in `2 . So by Theorem C.2, � is the spectral radius
and A is r –positive. By Theorem C.1, we see that the equation Af D �f has a
unique solution up to scaling. So if f is a positive eigenfunction of f which is not
a scalar multiple of w, it must have an eigenvalue other than �. Since f and w
are both positive, we can not have f �w D 0. We conclude that f �w D C1. By
Lemma H.3, we conclude that the F t

�
–invariant measure �f assigns infinite measure

to the surface. Thus scalar multiples of Lebesgue measure, �w , are the only finite
F t
�

–invariant measures.
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List of notations

S a translation surface defined as a union of polygons 1898
S1 the unit circle in R2 1898
F t
�

the straight-line flow 1898
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� an element of S1 (called a direction) 1898
D.�/ the derivative of the affine automorphism � 1899
Aff.S/ affine automorphism group of S 1899
G infinite, connected, bipartite, ribbon graph with bounded

valence
1899

V the set of vertices of G 1899
E the set of edges of G 1899
v;w elements of V (ie vertices of G) 1899
A;B subsets of V which make G bipartite 1899
a; b elements of A and B 1899
˛, ˇ the projections ˛ W E!A and ˇ W E! B 1899
pv permutation of edges containing v 2 V which make G a

ribbon graph
1899

RV the set of all functions from V to R 1899
A the adjacency operator, A WRV !RV 1900
f , g elements of RV 1900
w a element of RV which is a positive eigenfunction of A 1900
� eigenvalue of w 1900
E, N east and north permutations of E 1900
S.G;w/ surface built from rectangles using G and w 1900
Re rectangle of S.G;w/ associated to e 2 E 1900
cylv horizontal or vertical cylinder of S.G;w/ associated to

v 2 V
1900

G nonabelian free group with two generators 1900
h; v generators of G 1900
�� group representation ��W G! SL.2;R/ depending on � 1901
g arbitrary element of the free group G 1901
ˆ group endomorphism of G into Aff.S.G;w// 1901
RP1 the real projective line, RP1 DR2 X f0g=R 1902
R� the �–renormalizable directions in S1 1902
hgni a sequence of elements of G which form a geodesic ray 1902
�.hgni; �/ a �–renormalizable direction with �–shrinking sequence

hgni

1903

E� nonnegative solutions to A.f /D �f 1904, 1925
F� foliation by orbits of the straight line flow in direction � 1904bF� leaf space formed by splitting singular leaves of F� 1904, 2008
^ standard wedge product in R2 1904
V collection of singularities of S 1908
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M� space of transverse measures to bF� 1908
H1.S;V;R/ space of homology classes of curves in S=V 1908
H 1 space of linear maps H1.S;V;R/!R 1908
‰� a linear map M�!H 1 1908
� a saddle connection on S 1908
hol.�/ holonomy of a saddle connection 1909
sgn the signum function R! f�1; 0; 1g 1909
E edges of rectangles making up S 1910
�� action of an affine automorphism on M� or H 1 1910
J � K homology class in H1.S;V;Z/ 1910
ˆ

g
� action of the affine automorphism ˆg on H 1 1911

H , V operators on RV 1912
‡G G–action on RV generated by H and V 1912
„ linear embedding of RV into H 1 1912
i the intersection pairing H1.S;V;Z/�H1.SXV;Z/!Z 1912
S� subset of �–survivors in RV 1913
SP the set of sign pairs: SP D f.1; 1/, .1;�1/, .�1; 1/,

.�1;�1/g

1913

CC,C�, . . . abbreviation for sign pairs 1913
Qs the four quadrants in R2, parameterized by s 2 SP 1913
cl.X / the (topological) closure of X 1913bQs the four quadrants in RV , parameterized by s 2 SP 1913
Pf parameterization of a 2–plane inside of RV 1915
x� the involution of R2 or SP given by .x;y/ 7! .y;x/; 1919

also, the involution of G which interchanges v with h 1919
�U .f / projection of f 2RV to functions supported on U � V 1920
RV

c the set of finitely supported functions in RV 1921
h; i a bilinear pairing RV � RV

c ! R analogous to the dot
product

1921


 an automorphism of G satisfying h‡gf ; ‡
.g/xi D

hf ;xi

1921

V� Martin compactification of the vertex set V of G 1924, 2013
M� The Martin boundary V� XV 1924, 2013
� a point in the Martin boundary M� 1924, 2013
k� the positive eigenfunction in RV associated to � 2M� 1924, 2013
Mmin
�

the minimal Martin boundary in M� 1924, 2014
�f measure on Mmin

�
associated to the positive eigenfunction

f

1924
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bEs solutions to A2.f /D �2f with f 2 bQs where s 2 SP 1925
fA, fB elements of RV derived from f jA and f jB, where f 2RV 1925
M a space of signed Borel measures on M� 1925
MC, M� collections of positive and negative measures in M , resp. 1925
N linear map

S
s2SP

bEs!M 2 1926
Shr�.g/ set of directions shrunk when moving from e to g 2G 1933
Exp�.g/ set of directions expanded when moving from e to g 2G 1933
�S1 projection R2 X f0g ! S1 recovering a vectors direction 1933
H2 the hyperbolic plane, SO.2/ n SL.2;R/ 1936
†g.s/ expanding sign action G � SP! SP 1962
R rotation of R2 by angle �=2 1967
r action on SP induced by the action of R on quadrants 1967
Z linear embedding of H1.S;V;R/ into RV

c 1970
val.v/ the valence of the vertex v 2 V 1985
Hy ;Vy affine perturbations of H and V operators 1993
Xy affine perturbation of the action ‡G 1993
�n renormalizable parameters for certain special skew prod-

ucts
2020
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