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Generating the Johnson filtration

THOMAS CHURCH

ANDREW PUTMAN

For k � 1 , let I1
g.k/ be the k th term in the Johnson filtration of the mapping class

group of a genus g surface with one boundary component. We prove that for all
k � 1 , there exists some Gk � 0 such that I1

g.k/ is generated by elements which
are supported on subsurfaces whose genus is at most Gk . We also prove similar
theorems for the Johnson filtration of Aut.Fn/ and for certain mod-p analogues of
the Johnson filtrations of both the mapping class group and of Aut.Fn/ . The main
tools used in the proofs are the related theories of FI–modules (due to the first author
with Ellenberg and Farb) and central stability (due to the second author), both of
which concern the representation theory of the symmetric groups over Z .

20F05, 57S05; 57M07, 57N05

1 Introduction

In this paper, we use techniques from representation theory to prove that the terms of
the Johnson filtrations of both the mapping class group and the automorphism group of
a free group are generated by elements whose complexity is bounded in a sense to be
made precise below.

Mapping class group Let †k
g denote a compact oriented genus-g surface with k

boundary components. Let Mod1
g be the mapping class group of †1

g , ie the group of
isotopy classes of orientation-preserving homeomorphisms of †1

g that restrict to the
identity on @†1

g .

Choosing a basepoint � 2 @†1
g , the group Mod1

g acts on � WD �1.†
1
g;�/. For a

group G , let 
k.G/ be the k th term in the lower central series of G , so 
1.G/D G

and 
kC1.G/D Œ
k.G/;G� for k � 1. The action of Mod1
g on � preserves 
k.�/, so

there is an induced action of Mod1
g on �=
k.�/. The k th term of the Johnson filtration

of Mod1
g , denoted I1

g.k/, is the kernel of the action of Mod1
g on �=
kC1.�/. The

Johnson filtration was defined by Johnson in [18] and has connections to number theory
(see Matsumoto [23]) and 3–manifolds (see Garoufalidis and Levine [12]); however,
many basic questions about it remain open.
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Generators in low degree Let Tx 2 Mod1
g denote the Dehn twist about a simple

closed curve x on †1
g . It was proved independently by Lickorish [21] and Mum-

ford [24], building on the work of Dehn, that Mod1
g is generated by Dehn twists about

nonseparating simple closed curves.

Let I1
g WD I1

g.1/. The group I1
g is known as the Torelli group; it is the kernel of the

action of Mod1
g on �=
2.�/ŠH1.†

1
gIZ/. A genus-` bounding pair map is a product

TyT �1
z , where y and z are disjoint nonseparating simple closed curves on †1

g whose
union y[z separates †1

g into two subsurfaces, one homeomorphic to †2
`

and the other
to †3

g�`�1
(see Figure 1). Making essential use of work of Powell [27], Johnson [15]

proved that I1
g is generated by genus-1 bounding pair maps for g � 3. See [28] and

Hatcher and Margalit [13] for modern proofs of the necessary results of Powell.

x z

y

Figure 1: A genus-3 separating twist Tx and a genus-1 bounding pair map TyT �1
z

The group I1
g.2/ is known as the Johnson kernel. A genus-` separating twist is a

mapping class Tx , where x is a simple closed curve that separates †1
g into two subsur-

faces, one homeomorphic to †1
`

and the other to †2
g�`

(see Figure 1). Johnson [19]
proved that I1

g.2/ is generated by genus 1 and 2 separating twists.

Higher degree For k � 3, no interesting generating set for I1
g.k/ is known (of course,

one could do uninteresting things like taking the entire group as a generating set). An
appealing feature of the generating sets above is that the generators are “simple”, in
the sense that they are supported on small subsurfaces (ie subsurfaces with 1 boundary
component and bounded genus). Our first main theorem says that for every k � 1

the group I1
g.k/ can be generated by elements supported on subsurfaces of uniformly

bounded size.

In fact, we can be somewhat more precise. Fix a symplectic basis fa1; b1; : : : ; ag; bgg

for H1.†
1
gIZ/Š Z2g , ie a free basis such that

yi.ai ; aj /Dyi.bi ; bj /D 0 and yi.ai ; bj /D ıij ;

where yi. � ; � / is the algebraic intersection pairing. Say that a subsurface S of †1
g is

homologically standard if S has one boundary component and the image of H1.S IZ/
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in H1.†
1
gIZ/ is hai ; bi j i 2 Ii for some I � f1; : : : ;gg. Our theorem is then as

follows.

Theorem A (Generators for Johnson filtration) For every k � 1, there exists some
Gk � 0 such that for all g � 1, the group I1

g.k/ is generated by elements which are
supported on homologically standard subsurfaces of †1

g whose genus is at most Gk .

Remark 1.1 We emphasize that the constant Gk in Theorem A depends only on k ,
not on g . Otherwise, the theorem would be rather trivial!

Somewhat surprisingly, our proof of Theorem A is purely an existence proof; it gives
no information about how large the constants Gk must be. The following theorem,
however, implies that the bounds Gk must tend to infinity.

Theorem B (Lower bound on genus) For all k � 1 and g > k , the group I1
g.k/ is

not generated by elements supported on subsurfaces with one boundary component and
genus less than k=2.

Automorphism groups of free groups The Johnson filtration can also be defined on
the automorphism group Aut.Fn/ of the free group Fn D hx1; : : : ;xni. Let IAn.k/

denote the kernel of the action of Aut.Fn/ on Fn=
kC1.Fn/. The group IAn WD IAn.1/

consists of automorphisms in Aut.Fn/ acting trivially on Fn=
2.Fn/ Š Zn , and is
often known as the Torelli subgroup of Aut.Fn/. Magnus found a finite generating set
for IAn consisting of the following two types of elements.

� For distinct 1� i; j � n, let cij 2 IAn be the automorphism defined by

cij .x`/D

�
x�1

j x`xj if `D i ;

x` otherwise:
� For distinct 1� i; j ; k � n, let mijk 2 IAn be the automorphism defined by

mijk.x`/D

�
x`Œxj ;xk � if `D i ;

x` otherwise:

Magnus [22] proved that IAn is generated by the automorphisms cij and mijk ; see
Bestvina, Bux and Margalit [2] and Day and Putman [8] for modern proofs of Magnus’s
theorem. For k � 2, a generating set for IAn.k/ is not known.

Subsurfaces for free groups To state a version of Theorem A for IAn.k/, we need
an appropriate analogue of “supported on a subsurface” for Aut.Fn/. A splitting of Fn

consists of subgroups A;B < Fn such that Fn splits as the free product Fn DA�B .
The rank of a splitting A�B is the rank of the free group A (notice that this is different
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from the rank of the splitting B �A). We will say that an element ' 2 Aut.Fn/ is
supported on a splitting A �B if '.A/D A and 'jB D id. For example, Magnus’s
generator cij is supported on a splitting of rank 2, and mijk is supported on a splitting
of rank 3. We will prove that for all k � 1, the group IAn.k/ is generated by elements
supported on splittings whose rank is uniformly bounded.

Just as for the mapping class group, we will actually prove something a bit more precise.
Let fe1; : : : ; eng be the standard basis for F ab

n ŠZn . Say that a splitting A�B of Fn

is homologically standard if there is some I � f1; : : : ; ng such that the images of A

and B in F ab
n are AabDhei j i 2 Ii and BabDhei j i 62 Ii. We then have the following

theorem.

Theorem C (Generators for Johnson filtration of Aut.Fn/) For every k � 1, there
exists some Nk � 0 such that for all n� 1, the group IAn.k/ is generated by elements
which are supported on homologically standard splittings whose rank is at most Nk .

We will also prove the following analogue of Theorem B.

Theorem D (Lower bound on rank) For all k � 1 and n> k , the group IAn.k/ is
not generated by elements supported on splittings of rank less than k .

Mod-p lower central series Fix a prime p . In recent work [7], Cooper has introduced
two mod-p analogues of the Johnson filtration. The starting points are two different
mod-p analogues of the lower central series of a group G . If G0 is a subgroup of G

and `� 1, then denote by .G0/` the subgroup of G generated by fx` j x 2G0g.

� The mod-p Stallings filtration of G is the inductively defined filtration


S
1 .G/DG and 
S

kC1.G/D Œ

S
k .G/;G� � .


S
k .G//

p for k � 1:

This filtration first appeared in Stallings [33].
� The mod-p Zassenhaus filtration of G is defined in terms of the usual lower

central series via the formula


Z
k .G/D

Y
ipj�k

.
i.G//
pj

:

This filtration first appeared in Zassenhaus [37].

If G is finitely generated, the quotients G=
S
k
.G/ and G=
Z

k
.G/ are both finite

p–groups. We have

G=
Z
2 .G/ŠG=
Z

2 .G/Š H1.GIZ=p/I

however, for k � 3 these two filtrations differ.
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Mod-p Johnson filtrations We define I1;S
g .k/ and I1;Z

g .k/ to be the kernels of
the actions of Mod1

g on �=
S
kC1

.�/ and �=
Z
kC1

.�/, respectively. Observe that both
I1;Z

g .1/ and I1;S
g .1/ coincide with the level-p congruence subgroup Mod1

g.p/, that
is, the kernel of the action of Mod1

g on H1.†
1
gIZ=p/. All the groups I1;S

g .k/ and
I1;Z

g .k/ in these filtrations are finite-index subgroups of Mod1
g .

Similarly, we define IAS
n .k/ and IAZ

n .k/ to be the kernels of the actions of Aut.Fn/

on Fn=

S
kC1

.Fn/ and Fn=

Z
kC1

.Fn/, respectively. Both IAS
n .1/ and IAZ

n .1/ coincide
with the level-p congruence subgroup Aut.Fn;p/, that is, the kernel of the action of
Aut.Fn/ on H1.FnIZ=p/Š .Z=p/n . Again, all of the terms in these filtrations are
finite-index subgroups of Aut.Fn/.

Remark 1.2 Yet another mod-p Johnson filtration was defined by Perron in [26] using
the Fox calculus, but Cooper [7] proved that Perron’s filtration equals the Zassenhaus
filtration.

Generators for mod-p Johnson filtrations Cooper [7] proved many interesting
results about these filtrations. In particular, he found simple generating sets for I1;S

g .k/

and I1;Z
g .k/ for k D 1 and k D 2. We are able to prove analogues of Theorems A

and C for these filtrations. Let fa1; b1; : : : ; ag; bgg the standard symplectic basis
for H1.†

1
gIZ=p/. Say that a subsurface S of †1

g is Z=p–homologically standard
if S has one boundary component and the image of H1.S IZ=p/ in H1.†

1
gIZ=p/ is

hai ; bi j i 2 Ii for some I � f1; : : : ;gg. We then have the following.

Theorem E (Generators for mod-p Johnson filtrations) Fix a prime p . For all k � 1,
there exists some Gk � 0 (depending on p ) such that for all g � 1, both I1;S

g .k/

and I1;Z
g .k/ are generated by elements which are supported on a Z=p–homologically

standard subsurface of †1
g of genus at most Gk .

Similarly, let fe1; : : : ; eng be the standard basis for H1.FnIZ=p/Š .Z=p/n . Say that
a splitting A�B of Fn is Z=p–homologically standard if for some I �f1; : : : ; ng, the
images of A and B in H1.FnIZ=p/ are H1.AIZ=p/Dhei j i 2Ii and H1.BIZ=p/D
hei j i 62 Ii. We then have the following.

Theorem F (Generators for mod-p Johnson filtrations of Aut.Fn/) Fix a prime p .
For all k � 1, there exists some Nk � 0 (depending on p ) such that for all n � 1,
both IAS

n .k/ and IAZ
n .k/ are generated by elements which are supported on a Z=p–

homologically standard splitting of Fn of rank at most Nk .
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Central stability Though our theorems concern topology and infinite group theory, the
main tools used in their proofs concern the representation theory of the symmetric group.
In particular, we use the notion of central stability for representations of the symmetric
group, which was introduced by the second author in [30] to study the homology groups
of congruence subgroups of GLn.Z/. Roughly speaking, this allows us to give an
inductive description of the images of the higher Johnson homomorphisms, which are
an important sequence of abelian quotients of the terms of the Johnson filtrations. The
key advance that makes this possible is the recent theorem of the first author with
Ellenberg, Farb and Nagpal [6], which establishes a Noetherian property for FI–modules
over Z. This theorem allows one to prove that certain sequences of representations
are centrally stable almost for free (in particular, with no detailed understanding of
their structure, which seems quite hard to achieve for the images of the higher Johnson
homomorphisms).

FI–groups To formulate the technical framework for our arguments, we introduce
FI–groups and weak FI–groups. An FI–group G consists of a group GI for each finite
subset I � N , together with homomorphisms GI ! GJ for each injection I ,! J

satisfying some natural compatibility conditions (see Definition 2.1 below). A weak
FI–group consists of similar data, except that for some of these homomorphisms, we
require only that they be compatible up to conjugacy. The main technical result of the
paper is the following theorem. The terms involved have not yet been defined; see
Section 2.1 below for their definitions.

Theorem G (Bounded generation for central filtrations) Let G be a weak FI–group
with a central filtration fG.k/g1

kD1
of finite rank. If G is boundedly generated, then

G.k/CG is boundedly normally generated for every k � 1.

Generating sets for Torelli To apply Theorem G to the Torelli groups I1
g , we need a

strengthening of a recent theorem of the second author [29] concerning generating sets
for I1

g . Johnson [17] proved that the Torelli groups I1
g are finitely generated for g � 3

with a generating set whose size is exponential in g . Johnson [20] also proved that the
rank of the abelianization of I1

g is cubic in g , which gives a lower bound on the size
of any generating set for I1

g .

The second author’s theorem [29] says that I1
g is generated by 57

�
g
3

�
C2gC1 elements

for g � 3. What is important to us is not the size of his generating set per se, but rather
the fact that his generators are supported on fairly simple subsurfaces of †1

g : each
element is supported on a genus-3 subsurface with multiple boundary components. To
prove Theorem A, we need to improve this generating set slightly, so that the generators
are supported on

�
g
3

�
different genus-3 subsurfaces with only one boundary component.
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We refer to Proposition 4.5 below for a precise description of our new generating set,
but we point out the following corollary. Denote by Ig the Torelli group on a closed
genus-g surface.

Theorem H For all g � 3, the groups Ig and I1
g are each generated by 42

�
g
3

�
elements.

Outline In Section 2, we introduce FI–groups, weak FI–groups, and their central
filtrations; the main result of this section is Theorem G. In Section 3 we show how
to apply this to the automorphism group of a free group and prove Theorem C. In
Section 4 we show how to apply this to the mapping class group and prove Theorem A;
to do this, we first prove Theorem H. Next, in Section 5 we discuss how to modify our
proof of Theorems C and A to prove Theorems E and F. Finally, in Section 6 we prove
Theorems B and D.

Acknowledgements We wish to thank the referee for their careful reading of our
paper. We are grateful to Shigeyuki Morita for informing us of a mistake in an earlier
version, and to Yiwei She for pointing out an elegant fix. TC was supported in part by
NSF grants DMS-1103807 and DMS-1350138, and AP was supported in part by NSF
grant DMS-1255350 and the Alfred P Sloan Foundation.

2 FI–groups and their central filtrations

This section contains all our general results on FI–groups and weak FI–groups. The
key result is Theorem G, which we will later apply to prove Theorems A, C, E and F.

We begin in Section 2.1 with general definitions, including all the definitions that
are used in the statement of Theorem G. We then discuss some technical results in
Section 2.2. In Section 2.3, we describe the related theories of central stability and
FI–modules as they will be used in this paper. Finally, we prove Theorem G in
Section 2.4.

2.1 FI–groups and weak FI–groups

In this section, we introduce FI–groups, weak FI–groups, and central filtrations of weak
FI–groups, leading up to the statement of the key Theorem G.

FI–groups Let N be the set of natural numbers, and let FI be the category whose
objects are finite subsets of N and whose morphisms are injections. Let Grp be the
category of groups and homomorphisms.
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Definition 2.1 An FI–group is a functor from FI to Grp. In other words, an FI–
group G consists of the following data:

(i) For each finite set I �N , a group GI .

(ii) For each injection f W I ,! J between finite sets I;J �N , a homomorphism
Gf W GI !GJ . These homomorphisms must satisfy the following compatibility
conditions:
(a) For all finite sets I � N , we have GidI

D id, where idI W I ! I is the
identity.

(b) For all finite sets I;J;K�N and all injections f W I ,!J and gW J ,!K ,
we have Ggıf DGg ıGf .

A morphism ‰W G!H of FI–groups is a natural transformation of functors. In other
words, ‰ consists of a homomorphism ‰I W GI !HI for each finite set I �N , so
that for every injection f W I ,! J between finite sets I;J �N , the following diagram
commutes:

GI

Gf
//

‰I

��

GJ

‰J

��

HI

Hf
// HJ

The morphism ‰ is an isomorphism (resp. an injection, resp. a surjection) if ‰I is an
isomorphism (resp. an injection, resp. a surjection) for all finite sets I �N .

Remark 2.2 FI–groups (and the related notion of FI–modules; see Section 2.2 below)
were originally defined by the first author with Ellenberg and Farb in [5]. The definitions
in that paper were slightly different from ours, in that in [5] the category FI had all
finite sets as its objects; however, this larger category is equivalent to our category.

Remark 2.3 Let Œn�D f1; : : : ; ng. For each bijection � W Œn�! Œn�, we have a homo-
morphism G� W GŒn�!GŒn� . Together these give an action of the symmetric group Sn

on GŒn� .

Weak FI–groups In Section 3, we will see that the automorphism groups of free
groups can be naturally viewed as an FI–group. Unfortunately, the mapping class
groups of surfaces do not form an FI–group. However, they do satisfy a weaker form
of functoriality that is sufficient for our purposes.

If A and B are groups, then B acts by conjugation on the set of homomorphisms from A

to B . A homomorphism-modulo-conjugacy is an equivalence class of homomorphisms
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under this action. Homomorphisms-modulo-conjugacy can be composed (by composing
representatives), so there is a category CGrp of groups and homomorphisms-modulo-
conjugacy. Given a pair of finite sets I � J �N , let iJ

I
W I ,! J denote the inclusion.

Definition 2.4 A weak FI–group G consists of the following data:

(i) For each finite set I �N , a group GI .

(ii) For each injection f W I ,! J between finite sets I;J �N , a homomorphism-
modulo-conjugacy Gf W GI !GJ . These homomorphisms-modulo-conjugacy
must satisfy the following compatibility conditions:
(a) For all finite sets I �N , we have GidI

D id.
(b) For all finite sets I;J;K�N and all injections f W I ,!J and gW J ,!K ,

we have Ggıf equal to Gg ıGf in CGrp.

(iii) For each pair of finite sets I � J �N , a homomorphism GJ
I
W GI !GJ ; these

homomorphisms must satisfy the following compatibility conditions:
(a) For all pairs of finite sets I � J �N , the homomorphism-modulo-conju-

gacy GiJ
I

is represented by the homomorphism GJ
I

.
(b) For all triples of finite sets I � J �K �N , we have GK

J
ıGJ

I
DGK

I
.

In Section 4, we will see that the mapping class groups of surfaces with one boundary
component can be naturally viewed as a weak FI–group.

Remark 2.5 Every FI–group G can be canonically considered as a weak FI–group,
by considering the homomorphisms Gf W GI !GJ only as homomorphisms-modulo-
conjugacy (and setting GJ

I
WDGiJ

I
). The conditions of Definition 2.1 imply that all the

conditions of Definition 2.4 are satisfied. Throughout the paper, wherever necessary
we consider FI–groups as weak FI–groups via this “forgetful” process. As a result,
many of our technical results and definitions will be stated for weak FI–groups, but
they apply equally well to FI–groups.

Remark 2.6 The conditions on the Gf in Definition 2.4(ii) are equivalent to the
assertion that they piece together to give a functor from FI to CGrp. In [5], such
functors were called “FI–groups up to conjugacy”. Similarly, the conditions on the
homomorphisms GJ

I
in Definition 2.4(iii) are equivalent to the assertion that they

piece together to give a functor from the category of finite subsets of N and inclusions
to Grp.

FI–modules An FI–module is an FI–group W such that WI is an abelian group for
all finite sets I �N . We say that an FI–module W has finite rank if for all finite sets
I �N , the abelian group WI is finitely generated.
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Remark 2.7 FI–modules were originally defined by the first author with Ellenberg and
Farb in [5], and we refer the reader to [5] for many examples of them. The paper [5]
considers FI–modules over an arbitrary ring R; in that language, our FI–modules
are FI–modules over the ring Z. Observe that there would be no point in defining
“weak FI–modules”; indeed, since homomorphisms-modulo-conjugacy coincide with
homomorphisms when the groups involved are abelian, the conditions of Definition 2.4
reduce to the conditions of Definition 2.1 in this case.

Normal weak FI–subgroups Let A and B be groups, and let f W A! B be some
homomorphism-modulo-conjugacy. Observe that if N CA is a normal subgroup, the
subgroup f .N /� B is well defined, even though f is not a well-defined homomor-
phism.

Definition 2.8 Let G be either an FI–group or a weak FI–group. A normal weak
FI–subgroup H of G , denoted H CG , consists of a normal subgroup HI CGI for
each finite set I �N satisfying the following property.

� For all injections f W I ,! J between finite sets I;J �N , Gf .HI /�HJ .

Given H CG and H 0 CG , we write H �H 0 if HI �H 0
I

for all finite sets I �N .

Remark 2.9 By the remark preceding Definition 2.8, the fact that HI CGI guarantees
that the condition Gf .HI /�HJ is well defined, even when G is only a weak FI–group.
This issue is the reason we do not define nonnormal weak FI–subgroups.

Remark 2.10 If G is an FI–group and H CG , then H is itself an FI–group. However,
we warn the reader that if G is only a weak FI–group and H C G , then H is not
necessarily a weak FI–group. The reason is that a homomorphism-modulo-conjugacy
GI ! GJ cannot be restricted to a homomorphism-modulo-conjugacy HI ! HJ ,
since homomorphisms conjugate by an element of GJ need not be conjugate by an
element of its subgroup HJ .

Bounded generation The notion of bounded generation, which we define in this
subsection, captures the idea that an FI–group (or weak FI–group) is generated by
elements “supported on subsets of bounded size”.

Definition 2.11 Let G be a weak FI–group, and H CG . Given a pair of finite sets
I � J �N , we denote by HJ .I/ the image HJ .I/ WDGJ

I
.HI /�HJ .

One should regard HJ .I/ as the subgroup of HJ which is “supported on the subset I ”.
Given I �K�J , the identity GJ

I
DGJ

K
ıGK

I
implies that HJ .I/�HJ .K/. Taking

H DG , we have GJ .I/ WDGJ
I
.GI /�GJ .
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Definition 2.12 Let G be a weak FI–group. Given A� 0, we say that G is boundedly
generated in degree A if for all finite sets J �N ,

(2-1) GJ is generated by its subgroups GJ .I/ for those I � J satisfying jI j �A:

We say that G is boundedly generated if (2-1) holds for some A� 0.

Lemma 2.13 Let G be an FI–group. Fix A � 0, and assume that for all n 2N , the
condition (2-1) holds for the set J D Œn�. Then G is boundedly generated in degree A.

Proof Given any set J �N , let nD jJ j, and choose a bijection f W Œn�! J . Given
any I � J , set I 0 WD f �1.I/� Œn�. By Definition 2.11 we have

Gf .GŒn�.I//DGf .G
Œn�
I 0
.GI 0//DGJ

I .Gf .GI 0//DGJ
I .GI /DGJ .I/;

where the equality Gf ıG
Œn�
I 0
DGJ

I
ıGf holds because G is an FI–group. Therefore

the condition (2-1) for J follows from condition (2-1) for Œn�.

Remark 2.14 When G is a weak FI–group it is not enough to check (2-1) for J D Œn�.
The proof of Lemma 2.13 breaks down not just because Gf ıG

Œn�
I 0
DGJ

I
ıGf need not

hold, but because Gf .GŒn�.I// is not even a well-defined subgroup. The best we could
conclude is that GJ is normally generated by the subgroups GJ .I/ with jI j �A, a
far weaker condition. Indeed, choosing the homomorphisms GJ

I
so that a given weak

FI–group is boundedly generated can be quite delicate. This issue is the main reason
that we must be so careful in Section 4 when making the Torelli group into a weak
FI–group.

Definition 2.15 Let G be a weak FI–group, and let H C G be a normal weak FI–
subgroup. Given B � 0, we say that H C G is boundedly normally generated in
degree B if for all finite sets J �N ,

(2-2) HJ is generated by the GJ –conjugates of its subgroups HJ .I/

for those I � J satisfying jI j � B:

We say that H CG is boundedly normally generated if this holds for some B � 0.

Remark 2.16 The condition (2-2) is vacuous for jJ j � B , since HJ D HJ .J /;
similarly the condition (2-1) is vacuous for jJ j �A.

Central filtrations Let G be a weak FI–group. Given H CG , we can define ŒG;H �

via the formula ŒG;H �I D ŒGI ;HI � for finite sets I � N ; it is easy to check that
ŒG;H �CG and ŒG;H ��H .

Geometry & Topology, Volume 19 (2015)



2228 Thomas Church and Andrew Putman

Definition 2.17 Let G be a weak FI–group. A central filtration of G consists of
normal weak FI–subgroups G.k/CG for each k � 1 satisfying

G DG.1/�G.2/� � � � �G.k/�G.kC 1/� � � �

and ŒG;G.k/��G.kC1/ for all k�1. This latter condition implies G.k/I=G.kC1/I
is an abelian group for all finite sets I �N , and we say that our central filtration is of
finite rank if the abelian group G.k/I=G.kC 1/I is finitely generated for all k � 1

and all finite sets I �N .

We can now state our main technical theorem, which we will prove in Section 2.4
below.

Theorem G Let G be a weak FI–group with a central filtration fG.k/g1
kD1

of finite
rank. If G is boundedly generated, then G.k/CG is boundedly normally generated
for every k � 1.

2.2 Technical results about FI–groups

This section collects a number of technical results about FI–groups that we will need
in the proof of Theorem G.

Controlling the support We begin with the following lemma, which allows us to
control the support of certain commutators.

Lemma 2.18 Let G be a weak FI–group with a central filtration fG.k/g1
kD1

. Fix
some k�1 and let I; I 0;J �N be finite sets satisfying I; I 0�J . Consider w2GJ .I/

and z 2G.k/J .I
0/. Then Œw; z� 2G.kC 1/J .I [ I 0/.

Lemma 2.18 follows immediately from the inclusions GJ .I/ � GJ .I [ I 0/ and
G.k/J .I

0/�G.k/J .I [ I 0/ together with the definition of a central filtration.

Subgroups normally generated on sets of a fixed size Let G be a weak FI–group
with H C G , and fix N � 0. For each finite set J � N , define H�N

J
to be the

subgroup generated by the GJ –conjugates of the subgroups HJ .I/ for those I � J

satisfying jI j �N . Since HJ CGJ is a normal subgroup, we have H�N
J
�HJ .

Lemma 2.19 Let G be a weak FI–group, let H CG be a normal weak FI–subgroup,
and fix N � 0. Then H�N CG is a normal weak FI–subgroup of G .

Comparing the definition of H�N with (2-2), we see that by definition

(2-3) H CG is boundedly normally generated in degree N () H DH�N :
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Proof of Lemma 2.19 We must prove that for any injection f W J ,!K between finite
sets J;K�N , we have Gf .H

�N
J

/�H�N
K

. Choose a homomorphism representing the
homomorphism-modulo-conjugacy Gf , which by abuse of notation we also denote Gf .
Since H�N

K
is a normal subgroup of GK , it is enough to show Gf .HJ .I//�H�N

K

for all I � J with jI j �N .

Set I 0 WDf .I/�K and f 0 WDf jI W I!I 0 , and choose a representative homomorphism
Gf 0 W GI ! GI 0 . Since f 0W I ! I 0 is invertible, Gf 0 must be an isomorphism, and
restricts to an isomorphism HI !HI 0 .

Definition 2.4(ii) implies that Gf ıGJ
I

is GK –conjugate to GK
I 0
ıGf 0 . Therefore

(2-4) Gf .HJ .I//DGf .G
J
I .HI // is GK –conjugate to

GK
I 0 .Gf 0.HI //DGK

I 0 .HI 0/DHK .I
0/:

Since jI 0j D jI j �N , certainly HK .I
0/ is contained in H�N

K
(being among its normal

generators). Since H�N
K

is normal in GK , any GK –conjugate of this subgroup is also
contained in H�N

K
. We conclude that Gf .HJ .I//�H�N

K
, as desired.

The graded quotients of a central filtration In this paper, the key examples of
FI–modules are the graded quotients of a central filtration of a weak FI–group. The
following lemma asserts that these do indeed form FI–modules.

Lemma 2.20 Let G be a weak FI–group and let fG.k/g1
kD1

be a central filtration
of G . Fix some k � 1. For each finite set I �N , define Q.k/I WDG.k/I=G.kC1/I .
Then the weak FI–group structure on G induces an FI–module structure on Q.k/.

Lemma 2.20 is a special case of the following more general lemma.

Lemma 2.21 Let G be a weak FI–group and assume that KCG and H CG satisfy
ŒG;H ��K�H . Then there exists an FI–module Q defined as follows: for each finite
set I �N define QI WDHI=KI , and for each injection f W I ,! J let Qf W QI !QJ

be the map induced by Gf W HI !HJ .

Proof For all finite sets I � N , we have ŒHI ;HI � � ŒGI ;HI � � KI , so QI is an
abelian group. It remains to prove that the maps Qf are well defined, and that they
satisfy the conditions of Definition 2.1(ii).

Consider an injection f W I ,! J between finite sets I;J �N . The key to the lemma
is that, since ŒGJ ;HJ � � KJ , the conjugation action of GJ on HJ descends to
the trivial action on QJ . Therefore even though Gf W HI ! HJ is only defined
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up to GJ –conjugacy, it descends to a well-defined homomorphism Qf W QI !QJ .
Given another injection gW J ,! K , Definition 2.4(ii) guarantees that Gg ı Gf is
GK –conjugate to Ggıf W HI !HK . It follows that the induced maps Qg ıQf and
Qgıf W QI !QK coincide, so Q is an FI–group.

2.3 Central stability and FI–modules

To prove Theorem G, we will need the notion of central stability, which was introduced
by the second author in [30]. The definitions in [30] were in terms of the representation
theory of the symmetric group. Here we give an equivalent definition in the language
of FI–modules.

Bounded generation Let W be an FI–module, so all the groups WI are abelian. In
this case, for any finite set J �N we have a map

(2-5)
M
I�J ;
jI j�A

WI �!WJ

induced by the homomorphisms W J
I
W WI ! WJ . Definition 2.12 says that W is

boundedly generated in degree A if (2-5) is surjective for every finite set J � N .
(In [5, Definition 2.1], the term “generated in degree �A” was used instead.)

Central stabilization Let W be an FI–module, and consider some finite set J �N .
We have a homomorphism

 W
M
I�J ;

jI jDjJ j�1

WI �!WJ :

If jJ j>A, then the map (2-5) factors through  , so  is surjective if W is boundedly
generated in some degree less than jJ j. We wish to understand the kernel of  . One
source of elements in ker. / is as follows. Consider a finite set K � N such that
K�J and jKjD jJ j�2. Let I1; I2�N be the two distinct sets satisfying K� Ii �J

and jIi j D jJ j � 1. We then have a commutative diagram

WI1
W J

I1

!!

WK

W
I1

K
<<

W
I2

K
""

WJ

WI2

W J
I2

==
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There is thus a map WK ! ker. / that takes x 2WK to

.W
I1

K
.x/;�W

I2

K
.x// 2WI1

˚WI2
�

M
jI jDjJ j�1

WI :

Collecting all of these maps, we obtain a map

�W
M

K�J ;
jK jDjJ j�2

WK �!

M
I�J ;

jI jDjJ j�1

WI

whose image lies in ker. /. The J –central stabilization of W , denoted C.W;J /, is
the cokernel of �.

There is a natural homomorphism C.W;J /!WJ , which is surjective if W is bound-
edly generated in some degree less than jJ j. A morphism ‰W V !W of FI–modules
induces a map C.V;J /! C.W;J / consistent with the map ‰J W VJ !WJ and the
maps C.V;J /! VJ and C.W;J /!WJ .

Central stability We say that an FI–module W is centrally stable starting at E � 0

if for all finite sets J � N with jJ j > E , the natural map C.W;J / ! WJ is an
isomorphism. This implies in particular that W is boundedly generated in degree E .
We say that W is centrally stable if it is centrally stable starting at some E . One
should think of a centrally stable FI–module as being “finitely presented”. The key
technical result underpinning this paper is the following theorem of the first author
with Ellenberg, Farb and Nagpal. It should be viewed as a “Noetherian” property of
FI–modules.

Proposition 2.22 [6, Corollary 2.11] Let W be a finite-rank FI–module. If W is
boundedly generated, then W is centrally stable.

The power of central stability If W is an FI–module which is centrally stable starting
at E , then W is determined by its initial segment of size E , by which we mean the
groups WJ for finite sets J �N with jJ j �E and the maps between these groups.
One way of using this is as follows.

Lemma 2.23 Let ‰W V !W be a morphism between FI–modules. Assume that W

is centrally stable starting at E � 0, that V is boundedly generated in degree E , and
that for all finite sets J �N with jJ j �E , the map ‰J W VJ !WJ is an isomorphism.
Then ‰ is an isomorphism.

Proof We will prove that ‰J W VJ !WJ is an isomorphism for all finite sets J �N
by induction on jJ j. The base cases are when jJ j �E , where ‰J is an isomorphism
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by assumption. Assume now that jJ j>E and that ‰I is an isomorphism for all sets I

with jI j< jJ j. Consider the commutative diagram

C.V;J / // //

Š

��

VJ

‰J

��

C.W;J /
Š
// WJ :

The first vertical map C.V;J /! C.W;J / is an isomorphism because ‰I is an iso-
morphism whenever jI j < jJ j. The first horizontal map is surjective because V

is boundedly generated in degree E < jJ j, and the second horizontal map is an
isomorphism because W is centrally stable starting at E < jJ j. We conclude that ‰J

is an isomorphism, as desired.

2.4 Proof of Theorem G

In this section, we prove Theorem G.

Let G be a weak FI–group with a central filtration fG.k/g1
kD1

of finite rank. Assume
that G is boundedly generated in degree A. Our goal is to prove for each k � 1 that
G.k/CG is boundedly normally generated. Via the equivalence (2-3), we must prove
that for each k � 1 there exists some Bk � 0 such that G.k/�Bk DG.k/.

We will prove this by induction on k . In the base case kD 1 we have GDG.1/, so we
may take B1 WDA. Now assume that for some fixed k � 1, we have constructed some
Bk�0 such that G.k/�BkDG.k/. We will find BkC1�0 such that G.kC1/�BkC1D

G.kC 1/; this will complete the inductive step.

Since the G.k/ form a central filtration of G , we know that ŒG;G.k/� � G.k C 1/.
Our first step will be to improve this inclusion.

Claim 1 For all N �ACBk , we have ŒG;G.k/��G.kC 1/�N .

Proof of claim We will use the notation abDb�1ab and Œa; b�Da�1b�1abDa�1ab .
Fix some N �ACBk , and consider a finite set J �N . By definition, ŒG;G.k/�J is
generated by the set

(2-6) fŒx;y� j x 2GJ ;y 2G.k/J g:

Our inductive hypothesis says that G.k/
�Bk

J
D G.k/J , so we can write y 2 G.k/J

as a product of elements of the set

fzg
j g 2GJ ; z 2G.k/J .I/ for I � J with jI j � Bkg:
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Repeatedly applying the Witt–Hall commutator identity Œa; bc�D Œa; c� � Œa; b�c , we can
therefore express every element of (2-6) as a product of GJ –conjugates of elements of
the set

(2-7) fŒx; zg� j x;g 2GJ ; z 2G.k/J .I/ for I � J with jI j � Bkg:

Consider some Œx; zg� as in (2-7). We have Œx; zg�D Œxg�1

; z�g . Since G is boundedly
generated in degree A, we can write xg�1

2GJ as a product of elements in the set

fw j w 2GJ .I
0/ for some I 0 � J with jI 0j �Ag:

Repeatedly applying the Witt–Hall commutator identity Œab; c�D Œa; c�b � Œb; c�, we can
therefore express Œx; zg� as a product of GJ –conjugates of elements of the set

(2-8) fŒw; z� j w 2GJ .I
0/ for I 0 � J with jI 0j �A; z 2G.k/J .I/

for I � J with jI j � Bkg:

In summary, ŒG;G.k/�J is generated by the GJ –conjugates of elements in (2-8). By
Lemma 2.18, every element in (2-8) lies in G.kC 1/�N , so this concludes the proof
of Claim 1.

Lemma 2.20 yields an FI–module W .k/ WD G.k/=G.k C 1/; the assumption that
the central filtration fG.k/g1

kD1
is of finite rank says precisely that the FI–module

W .k/ is of finite rank. Also, combining Claim 1 with Lemma 2.21, we obtain for any
N �ACBk an FI–module V N .k/ WDG.k/=G.kC 1/�N . We warn the reader that
we do not yet know that V N .k/ is of finite rank.

Claim 2 For N � AC Bk , both V N .k/ and W .k/ are boundedly generated in
degree Bk .

Proof of claim Fix N �ACBk . Since W .k/ is a quotient of V N .k/, it suffices to
prove that V N .k/ is boundedly generated in degree Bk . Consider a finite set J �N .
There is a surjective map �W G.k/J ! V N .k/J . Given x 2 G.k/J and y 2 GJ ,
Claim 1 implies that Œx;y� 2 G.k C 1/�N D ker.�/, so �.x/ D �.y�1xy/. Our
inductive hypothesis says that G.k/J DG.k/

�Bk

J
, ie that G.k/J is generated by the

GJ –conjugates of G.k/J .I/ for jI j � Bk . We conclude that V N .k/J D �.G.k/J /

is generated by

f�.G.k/J .I// j I � J; jI j � Bkg D fV
N .k/J .I/ j I � J; jI j � Bkg;

as desired. This concludes the proof of Claim 2.
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The FI–module W .k/ is finite rank by assumption, and it is boundedly generated by
Claim 2, so Proposition 2.22 implies that W .k/ is centrally stable. Choose BkC1

(which we may take to be at least ACBk ) such that W .k/ is centrally stable starting
at BkC1 .

We have an FI–module morphism � W V BkC1.k/�W .k/, since G.kC 1/
�BkC1

J
�

G.kC1/J for any finite set J �N . Note that the kernel of �J W V
BkC1.k/J !W .k/J

is isomorphic to G.kC 1/J =G.kC 1/
�BkC1

J
.

If jJ j �BkC1 , by definition we have that G.kC1/
�BkC1

J
DG.kC1/J , so in this case

�J W V
BkC1.k/J ! W .k/J is an isomorphism. Moreover V BkC1.k/ is boundedly

generated in degree Bk �BkC1 by Claim 2. Applying Lemma 2.23, we conclude that
�BkC1 W V BkC1.k/�W .k/ is an isomorphism.

We conclude that ker.�J /Š G.k C 1/J =G.k C 1/
�BkC1

J
is trivial for all finite sets

J �N . In other words, we have G.kC 1/D G.kC 1/�BkC1 ; by (2-3), this means
that G.k C 1/ is boundedly normally generated in degree BkC1 . This finishes the
proof of the inductive step, and thus concludes the proof of Theorem G.

Remark 2.24 Theorem G gives no bound whatsoever on the constants Bk , and it
is not possible to obtain any such bounds from our proof. The reason is in our use
of Proposition 2.22, which rests on the Noetherian property of FI–modules proved
in [6, Corollary 2.11]. This property is nonconstructive, since it ultimately relies on the
Noetherian property of the ring Z. As a result we have no way to know how large the
constant BkC1 must be taken in the inductive step.

3 Automorphism groups of free groups

We begin in Section 3.1 by showing how to assemble all the different automorphism
groups of free groups into an FI–group. In Section 3.2 we discuss generators for IAn

and prove Theorem C.

3.1 Automorphism groups of free groups as an FI–group

In this section, we show how the automorphism groups of free groups fit together into
an FI–group. We also show that a similar result holds for their Torelli subgroups and
that the Johnson filtration gives a central filtration of this FI–group.

Geometry & Topology, Volume 19 (2015)



Generating the Johnson filtration 2235

Automorphism groups of free groups We first define an FI–group AF which collects
together the automorphism groups of free groups of different ranks as follows.

� For each finite set I �N , let FI be the free group on the set fxi j i 2 Ig and
define AFI D Aut.FI /.

� For each injection f W I ,! J between finite sets I;J �N , define an injection
 f W FI ,! FJ via the formula  f .xi/D xf .i/ for i 2 I . We then define the
homomorphism AFf W AFI ! AFJ via the formula

(3-1) AFf .'/.xj /D

�
 f ı' ı 

�1
f
.xj / if j 2 f .I/,

xj if j 62 f .I/.

It is clear that these homomorphisms AFf satisfy the compatibility condition in
Definition 2.1(ii), so this defines an FI–group AF.

The Johnson filtrations For k � 1, we define IA.k/CAF as follows. For each finite
set I �N , define IA.k/I C AFI to be the kernel of the action of AFI D Aut.FI / on
FI=
kC1.FI /. The following lemma implies that IA.k/C AF.

Lemma 3.1 If I;J �N are finite sets and f W I ,! J is an injection, then we have
AFf .IA.k/I /� IA.k/J .

Proof We have a natural splitting FJ D Ff .I / � FJ�f .I / . Consider ' 2 IA.k/I .
Since the injection  f W FI !FJ takes 
kC1.FI / into 
kC1.Ff .I //� 
kC1.FJ /, the
automorphism AFf .'/ acts as the identity on the image of Ff .I / in FJ =
kC1.FJ /.
The automorphism AFf .'/ also acts as the identity on FJ�f .I / , and thus certainly
acts as the identity on its image in FJ =
kC1.FJ /. Since the images of Ff .I / and
FJ�f .I / generate FJ =
kC1.FJ /, we conclude that AFf .'/ 2 IA.k/J .

Since AF is an FI–group (and not merely a weak FI–group), IA.k/ is itself an FI–group.
Note that for the set Œn��N we have FŒn�DFn , so AFŒn�DAut.Fn/, IA.1/Œn�D IAn ,
and IA.k/Œn� D IAn.k/.

Proposition 3.2 The FI–subgroups fIA.k/g1
kD1

form a central filtration of IA.1/ of
finite rank.

Proof Fix a finite set I �N . Since 
2.FI /� 
3.FI /� 
4.FI /� � � � , we have

IA.1/� IA.2/� IA.3/� � � � :

For k�1, we must show that ŒIA.1/I ; IA.k/I �� IA.kC1/I and IA.k/I= IA.kC1/I is
a finite-rank abelian group. Setting nD jI j, the evident isomorphism IA.1/I Š IAn.1/
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takes IA.k/I to IAn.k/ for all k � 1. Our claim is thus equivalent to showing for all
k � 1 that ŒIAn.1/; IAn.k/�� IAn.kC1/ and that IAn.k/= IAn.kC1/ is a finite-rank
abelian group.

For this, we will need the higher Johnson homomorphisms. For all k � 1, let Lk.Z
n/

denote the k th graded piece of the free Lie algebra on Zn . The k th Johnson homo-
morphism is then a homomorphism �k W IAn.k/! Hom.Zn;LkC1.Z

n//. We will say
more about �k in Section 6; right now, we only need the following properties (see
Satoh [31] for a survey).

(i) The kernel of �k equals IAn.kC 1/.

(ii) For  2 IAn.1/D IAn and ' 2 IAn.k/, we have �k. ' 
�1/D �k.'/.

Property (i) implies IAn.k/= IAn.kC1/ is a subgroup of Hom.Zn;LkC1.Z
n//, and in

particular is a finite-rank abelian group. Property (ii) implies �k.ŒIAn.1/; IAn.k/�/D 0,
so Property (i) implies ŒIAn.1/; IAn.k/�� IAn.kC 1/.

3.2 Generating the Torelli subgroup of Aut.Fn/ and its Johnson filtration

As was discussed in the introduction, Magnus [22] gave a finite generating set for IAn .
We will need a corollary of his result. Given a splitting F D A �B , recall that an
automorphism ' of F is supported on the splitting A�B if '.A/DA and 'jB D id.
Given a pair of finite sets I � J � N , it is clear from (3-1) that AFJ .I/ is exactly
the subgroup of AFJ D Aut.FJ / consisting of automorphisms that are supported on
the splitting FJ D FI �FJ�I . Similarly, IA.k/J .I/D IA.k/J \AFJ .I/ consists of
those automorphisms in IA.k/J that are supported on this splitting.

In the case J D Œn�, we write Aut.Fn; I/ for AFŒn�.I/, and we write IAn.I/ for
IA.1/Œn�.I/D IAn\Aut.Fn; I/. For example, recall the automorphisms cij ;mijk 2

IAn defined in the introduction:

cij .x`/D

�
x�1

j x`xj if `D i ;

x` otherwise;
mijk.x`/D

�
x`Œxj ;xk � if `D i ;

x` otherwise:

Clearly cij is supported on the splitting hxi ;xj i � hx` j `¤ i; j i, so cij 2 IAn.fi; j g/.
Similarly, the automorphism mijk 2 IAn is supported on the splitting hxi ;xj ;xki�hx` j

`¤ i; j ; ki, so mijk 2 IAn.fi; j ; kg/.

Since Magnus proved that the elements cij and mijk generate IAn for all n, we have
the following proposition.

Proposition 3.3 (Generators for IAn ) For any n� 0, the group IAn is generated by
the subgroups

fIAn.I/ j I � f1; : : : ; ng satisfies jI j � 3g:
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We are now ready to prove Theorem C.

Proof of Theorem C Since IA.1/ is an FI–group, Lemma 2.13 and Proposition 3.3
together imply IA.1/ is boundedly generated in degree AD 3. Proposition 3.2 states
that fIA.k/g1

kD1
is a central filtration of bounded rank. Applying Theorem G, we

conclude that for all k � 1, there exists Bk � 0 so that IA.k/C IA.1/ is boundedly
normally generated in degree Bk .

Let us apply this conclusion to IA.k/Œn� D IAn.k/. The bounded normal generation of
IA.k/C IA.1/ states that IA.k/Œn� is generated by the IAn –conjugates of its subgroups
IA.k/Œn�.I/ for those I � Œn� with jI j � Bk .

We saw above that IA.k/Œn�.I/ consists of those automorphisms in IAn.k/ which are
supported on the splitting Fn D FI �FŒn��I . The '–conjugate of this subgroup thus
consists of those automorphisms in IAn.k/ supported on the splitting

Fn D '.FI /�'.FŒn��I /:

When '2 IAn , this is a homologically standard splitting. Therefore IAn.k/ is generated
by elements of IAn.k/ supported on homologically standard splittings of rank � Bk ,
as desired.

4 Mapping class groups

We begin in Section 4.1 by showing how to assemble all the different mapping class
groups for surfaces of different genus into a weak FI–group. We also show that we can
do the same for their Torelli subgroups and that the Johnson filtration gives a central
filtration of this weak FI–group. In Section 4.2 we establish a generating set for I1

g ,
prove Theorem H, and finally prove Theorem A.

4.1 Mapping class groups as a weak FI–group

Ideally, we would like to construct an FI–group Mod such that ModŒg� ŠMod1
g and

such that Modfig is the subgroup supported on the “i th handle”. Unfortunately, this is
not possible, for the following reason.

Recall that any FI–group G has an action of the symmetric group Sn on the group GŒn� .
If there did exist an FI–group Mod as above, then the subgroups Modfig would be
permuted by the action of the symmetric group Sg on Mod1

g . Since these subgroups
are disjoint, this action must be faithful. However, this is impossible. Indeed, for g� 2,
it follows from work of Ivanov and McCarthy [14] that there is a short exact sequence

1! Z=2Z! Aut.Mod1
g/!Mod.†g;�/! 1;
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where Mod.†g;�/ is the mapping class group of a closed genus-g surface relative to a
marked point. Since every finite subgroup of Mod.†g;�/ is cyclic, every finite group
of automorphisms of Mod1

g is cyclic or dihedral; in particular, Sg cannot act faithfully
on Mod1

g for g� 0. Even if we tried to work with closed surfaces, a faithful action
of Sg on Modg would contradict Hurwitz’s classical theorem that finite subgroups of
Modg have size at most 84.g� 1/; see Farb and Margalit [11, Theorem 7.4]. We will
thus have to be content with constructing a weak FI–group Mod (this is our reason for
introducing the notion of weak FI–groups).

Systems of subsurfaces To pin down the morphisms in our weak FI–group, it will
be helpful to realize the surfaces supporting the various mapping class groups involved
as subsurfaces of one infinite-genus surface. Let SN be an infinite-genus surface with
one end. As in Figure 2a, pick closed subsurfaces X1;X2; : : :, a basepoint �, a ray ˛ ,
and arcs ı0

1
; ı0

2
; : : : with the following properties.

� The Xi are disjoint and each is homeomorphic to a one-holed torus.

� The subsurface

Y WD SN n

1[
iD1

Int.Xi/

has genus 0.

� The ray ˛ lies in Y and starts at �.

� The arc ı0i lies in Y , starts at a point pi of ˛ , and ends at a point �i 2 @Xi .
Also, the arcs ı0i are all disjoint from each other and their interiors are disjoint
from ˛ and the @Xj .

� The pi appear on ˛ in their natural order and have no accumulation points, and
p1 D �.

Define ıi to be the arc that starts at �, travels along ˛ to pi , and then travels along ı0i .
For every finite set I �N , let SI be a closed regular neighborhood of

S
i2I .ıi [Xi/.

Observe that SI is a genus-jI j surface with 1 boundary component, and contains each
handle Xi for i 2 I ; see Figure 2b.

If I;J �N are finite sets such that I � J , then SI is isotopic to a subsurface of SJ .
For our convenience, we will assume that the SI are chosen so that in fact SI � SJ

whenever I�J . One way to achieve this is as follows. Pick a Riemannian metric on SN

such that for some � > 0, the closed neighborhood of radius � around
S1

iD1.ıi [Xi/

is a regular neighborhood of
S1

iD1.ıi [Xi/. Letting �W Œ0;1/! .0; �/ be a strictly
increasing function, we define SI to be the closed neighborhood of radius �.jI j/
around

S
i2I .ıi [Xi/. We let �J

I
W SI ,! SJ denote the inclusion, so �K

J
ı �J

I
D �K

I
.
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ı0
1

ı0
2

ı0
3

ı0
4

ı0
5

p2 p3 p4 p5� D p1

X1 X2 X3 X4 X5

Sf2;3;5g

Figure 2: The top shows the one-ended infinite-genus surface SN . The long
ray shown is ˛ . The bottom shows the subsurface Sf2;3;5g inside SN . We
have perturbed the subsurface by an isotopy to make its structure clear.

The weak FI–group Mod We now define the weak FI–group Mod. For any surface S ,
let Mod.S/ denote the mapping class group of S , ie the group of isotopy classes of
orientation-preserving homeomorphisms of S that restrict to the identity on @S . For
each finite set I �N , define ModI DMod.SI /.

We next define the distinguished homomorphisms ModJ
I W ModI !ModJ . Consider

a pair of finite sets I � J �N . By our assumption above we have SI � SJ , so we
can define a homomorphism ModJ

I WD .�
J
I
/�W ModI !ModJ by extending mapping

classes on SI to SJ by the identity. Since �K
J
ı �J

I
D �K

I
, these homomorphisms satisfy

the compatibility conditions of Definition 2.4(iii).

We now define homomorphisms-modulo-conjugacy Modf W ModI !ModJ for each
injection f W I ,! J between finite sets I;J � N . Choose an arbitrary orientation-
preserving embedding SI!SJ . This induces a homomorphism Mod.SI /!Mod.SJ /;
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we define Modf W ModI!ModJ to be the induced homomorphism-modulo-conjugacy.
This definition may not seem very canonical, and we still need to check the compatibility
conditions of Definition 2.4(ii). This requires the following lemma.

Lemma 4.1 Let S0;S be surfaces with one boundary component, and let �; �0W S0 ,!

S be two orientation-preserving embeddings of S0 into S .

(i) The induced homomorphisms ��; �0�W Mod.S0/ ,!Mod.S/ are conjugate by
an element of Mod.S/.

(ii) If � and �0 induce the same map H1.S0IZ/! H1.S IZ/ on homology, the
homomorphisms ��; �0�W Mod.S0/ ,! Mod.S/ are conjugate by an element
of I.S/.

We prove Lemma 4.1 below. Part (i) of it shows that the homomorphism-modulo-
conjugacy Modf does not depend on the choice of embedding SI ,! SJ , so our
definition was canonical after all. In particular, ModJ

I represents ModiJ
I

. It also
guarantees that for all finite sets I;J;K � N and all injections f W I ,! J and
gW J ,!K , we have Modgıf equal to Modg ıModf in CGrp, so the conditions of
Definition 2.4(ii) are satisfied. This completes the construction of the weak FI–group
Mod.

Proof of Lemma 4.1 By perturbing � and �0 by an isotopy, we can assume that
their images lie in Int.S/. Let T WD S n Int.�.S0// and T 0 WD S n Int.�0.S0//.
An Euler characteristic calculation shows that there exists an orientation-preserving
homeomorphism  T W T !T 0 ; moreover we may assume that  T agrees with �0ı��1

on @.�.S0// D @T . Let  W S ! S be the orientation-preserving homeomorphism
that restricts to �0 ı��1 on �.S0/ and to  T on T . We then have  ı� D �0 , so the
mapping class defined by  conjugates �� to �0� , proving (i).

Let V (resp. V 0 ) be the image in H1.S IZ/ of H1.T IZ/ (resp. H1.T
0IZ/) under

the map induced by the inclusion T ,! S (resp. T 0 ,! S ). We have orthogonal
decompositions H1.S IZ/D��.H1.S0IZ//˚V and H1.S IZ/D�

0
�.H1.S0IZ//˚V 0 .

If we assume as in (ii) that � and �0 induce the same map H1.S0IZ/!H1.S IZ/, so
that ��.H1.S0IZ//D �

0
�.H1.S0IZ//, it follows that the complementary subspaces V

and V 0 are equal. Recalling that  T is an orientation-preserving homeomorphism
from T to T 0 , the map  T induces a symplectic automorphism M of V . We can
realize M by a homeomorphism � from T 0 to itself (see [11, Chapter 6]). Therefore
replacing  T by ��1 ı T in the previous paragraph, we may assume that  T acts
trivially on V . The assumption on � and �0 means that �0 ı ��1 acts trivially on
H1.�.S0/IZ/D ��.H1.S0IZ//. It follows that  2 I.S/, proving (ii).
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The weak FI–group I We would like to define I in the same way. However,
to ensure that I forms a weak FI–group we will need to be more careful with the
homomorphisms-modulo-conjugacy If .

For each i 2 N , fix once and for all a symplectic basis fai ; big for H1.Xi IZ/. For
any finite set I � N , the map H1.SI IZ/ ! H1.SN IZ/ is injective, and we will
identify H1.SI IZ/ with its image. Therefore fai ; bi j i 2Ng is a symplectic basis for
H1.SN IZ/, and fai ; bi j i 2 Ig is a symplectic basis for H1.SI IZ/.

Lemma 4.2 For any injection f W I ,! J between finite sets I;J �N , there exists
an embedding �f W SI ,! SJ which on homology induces the map

(4-1) H1.SI IZ/! H1.SJ IZ/; ai 7! af .i/; bi 7! bf .i/ for all i 2 I:

Proof Let  W SI ! Sf .I / be an arbitrary orientation-preserving homeomorphism.
Fix an arbitrary ordering on I . Then f .ai/;  .bi/ j i 2 Ig and faf .i/; bf .i/ j i 2 Ig

are both ordered symplectic bases for H1.Sf .I /IZ/, so there is a symplectic auto-
morphism M of H1.Sf .I /IZ/ taking the former to the latter. We can realize M by
�f 2Mod.Sf .I // [11, Chapter 6], and �f WD iJ

f .I /
ı �f ı is the desired map.

We are now ready to define the weak FI–group I . For each finite set I �N , define II

to be the subgroup of ModI acting trivially on H1.SI IZ/.

For each pair of finite sets I � J �N , define IJ
I
W II ! IJ to be the restriction of

the map ModJ
I W ModI !ModJ described above. The condition in Definition 2.4(iii)

is automatically satisfied.

For each injection f W I ,! J between finite sets I;J �N , choose an arbitrary embed-
ding �f W SI ,!SJ inducing the map (4-1) on homology, as guaranteed by Lemma 4.2.
We define If W II!IJ to be the restriction of the induced map .�f /�W ModI!ModJ .
By Lemma 4.1(ii), any two embeddings inducing the map (4-1) on homology are IJ –
conjugate, so this gives a well-defined homomorphism-modulo-conjugacy If . More-
over since the maps (4-1) are preserved under composition, Lemma 4.1(ii) guarantees
that these homomorphisms-modulo-conjugacy satisfy the compatibility condition in
Definition 2.4(ii). This concludes the construction of the weak FI–group I .

The Johnson filtration For k � 1, we define a normal weak FI–subgroup I.k/
of I as follows. For each finite set I � N , choose a basepoint �I 2 @SI and let
�1.SI / WD �1.SI ;�I /. We define I.k/I to be the kernel of the action of ModI on
�1.SI /=
kC1.�1.SI //. This kernel does not depend on the choice of basepoint. Note
that I.1/D I . The following lemma guarantees that I.k/C I .
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Lemma 4.3 For any k � 1, if f W I ,! J is an injection between finite sets I;J �N ,
then If .I.k/I /� I.k/J .

Proof Let � be an arc in SJ n Int.Sf .I // joining the basepoint �J 2 @SJ to the
basepoint �f .I / 2 @Sf .I / . There is an injection �1.Sf .I // ,! �1.SJ / that takes
ı 2 �1.Sf .I // to � �ı ���1 ; we will identify �1.Sf .I // with its image in �1.SJ /. The
free group �1.SJ / can then be decomposed as a free product �1.Sf .I //�U , where U

is a subgroup generated by loops that lie entirely in SJ n Int.Sf .I //.

Consider ' 2 I.k/I . Since the embedding  f W SI ,! SJ induces a map taking

kC1.�1.SI // into 
kC1.�1.Sf .I ///� 
kC1.�1.SJ //, the mapping class If .'/ acts
as the identity on the image of �1.Sf .I // in �1.SJ /=
kC1.�1.SJ //. The mapping
class If .'/ also acts as the identity on SJ n Int.Sf .I //, and thus certainly acts as the
identity on the image of U in �1.SJ /=
kC1.�1.SJ //. Thus, If .'/ 2 I.k/J .

Proposition 4.4 The weak FI–subgroups fI.k/g1
kD1

form a central filtration of I D
I.1/ of finite rank.

Proof Since 
2.�1.SI //� 
3.�1.SI //� 
4.�1.SI //� � � � , we have

I D I.1/� I.2/� I.3/� � � � :

We must show for k � 1 that ŒI.1/I ; I.k/I �� I.kC1/I and that I.k/I=I.kC1/I is
a finite-rank abelian group. Just as in Proposition 3.2, this is an immediate consequence
of the higher Johnson homomorphisms for I1

g.k/ (see [31]).

4.2 Generating the Torelli group and its Johnson filtration

Identify †1
g with SŒg� , so for all subsets I �f1; : : : ;gg we have a subsurface SI �†

1
g .

As notation, if S is a subsurface of †1
g , we denote by Mod1

g.S/ the subgroup of
Mod1

g consisting of mapping classes that are supported on S . Also, define I1
g.S/ WD

I1
g\Mod1

g.S/. The following result is a strengthening of the main result of the second
author in [29].

Proposition 4.5 (Torelli generators) For g � 3, the group I1
g is generated by the

subgroups
fI1

g.SI / j I � f1; : : : ;gg satisfies jI j D 3g:

Before proving Proposition 4.5, we deduce Theorem H from it.
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Proof of Theorem H Johnson [17] proved that I1
3

is generated by 42 elements. There
are

�
g
3

�
subsurfaces SI in Proposition 4.5, and each subgroup I1

g.SI / is isomorphic to
I1

3
, so we deduce that I1

g is generated by 42
�
g
3

�
elements. There is a surjection

I1
g� Ig obtained by gluing a disc to @†1

g and extending mapping classes over the
disc by the identity, so Ig is also generated by 42

�
g
3

�
elements.

Proof of Proposition 4.5 Let � � I1
g be the subgroup generated by the subgroups

I1
g.SI / for jI j D 3, or equivalently for jI j � 3; our goal is to prove that � D I1

g . We
begin by describing some simple elements of I1

g that lie in � .

First, choose i 2 f1; : : : ;gg. Recall the genus-1 subsurfaces X1; : : : ;Xg of †1
g , which

satisfy Xi � SI if and only if i 2 I . The boundary curve @Xi is a separating curve
contained in Sfig , so the Dehn twist T@Xi

lies in I1
g.Sfig/� � .

Next, choose j 2 f1; : : : ;gg with j ¤ i , and let 
 be an embedded curve in Xj based
at �j 2 @Xj . The regular neighborhood of @Xi[ıi[ıj [
 is a genus-0 surface with 3
boundary components. These 3 boundary components are isotopic to 
 , the separating
curve @Xi , and a third curve 
 0 homologous to 
 . The mapping class T
T �1


 0 has the
effect of “sliding” the handle Xi around the curve ı�1

i ıj
 ıjı
�1
i (though this notion

is only well defined modulo powers of T@Xi
); see [11, Fact 4.7]. Since 
 and 
 0 are

homologous, T
T �1

 0 lies in I1

g . Since our regular neighborhood is contained in Sfi;jg ,
we have T
T �1


 0 2 I
1
g.Sfi;jg/� � .

For any subset I � f1; : : : ;gg, define the subsurface

YI WD†
1
g n

�[
i 62I

Int.Xi/

�
;

so YI is a genus-jI j surface with g�jI jC1 boundary components. See Figure 3 for an
example. For i 62I , let Z

.i/
I

be the genus-jI j surface with g�jI j boundary components
obtained from YI by attaching a single disk to the boundary component @Xi . We
will next show that the kernel of the corresponding map �.i/W I1

g.YI /� I1
g.Z

.i/
I
/ is

contained in � .

Certainly T@Xi
lies in ker.�.i//. Birman proved [3] that the quotient ker.�.i//=hT@Xi

i

is isomorphic to �1.Z
.i/
I
/, with a loop in �1.Z

.i/
I
/ corresponding to the mapping class

that slides the handle Xi around that loop. The fundamental group �1.Z
.i/
I
/ can be

generated by elements of the form ı�1
i ıj
 ıjı

�1
i where 
 is an embedded curve in Xj :

for each j 62 I we take 
 D @Xj , and for each j 2 I we take two embedded curves
generating �1.Xi/. We saw earlier that � contains the mapping class T
T �1


 0 which
slides the handle Xi along any such loop, and so we conclude that ker.�.i//� � .
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Figure 3: For I D f2; 3; 5g , the surfaces SI (dark gray), YI (light and dark
gray), and ZI

Let ZI be the abstract surface obtained from YI by attaching disks to each of the
boundary components @Xi for i 62 I , so ZI is a genus-jI j surface with one boundary
component. We can find an identification of ZI with SI so that the composition
SI ,! YI ,!ZI ŠSI is isotopic to the identity. It follows that the resulting homomor-
phism � W I1

g.YI /� I1
g.SI / is a split surjection, with section given by the inclusion

I1
g.SI / ,! I1

g.YI /. It follows from the classical Fadell–Neuwirth exact sequences [10]
that the kernel ker.�/� I1

g.YI / is generated by the subgroups ker.�.i// for all i 62 I

(in fact, ker.�/ is isomorphic to the .g� jI j/–strand pure framed braid group on the
surface SI , though we will not use this directly). We conclude from the previous
paragraph that ker.�/� � .

When jI j D 3 we have I1
g.SI /� � by definition, so I1

g.YI /� � as well. The second
author proved in [29] that I1

g is generated by the set

fI1
g.YI / j I � f1; : : : ;gg satisfies jI j D 3g;

so we conclude that � D I1
g , as desired.

We would like to conclude from Proposition 4.5 that the weak FI–group I is boundedly
generated. However since I is only a weak FI–group, this conclusion is not at all
automatic (cf Remark 2.14). To do this, we need the following lemma. Along with
Proposition 4.5, this lemma is the reason for our care in Section 4.1 when defining the
system of subsurfaces SI .

Lemma 4.6 Let J;J 0 �N be finite sets such that jJ j D jJ 0j. There exists a bijection
� W J ! J 0 and an orientation-preserving homeomorphism �W SJ ! SJ 0 such that for
all I � J the subsurface �.SI / of SJ 0 is isotopic to the subsurface S�.I / .
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Proof Let � W J!J 0 be the unique order-preserving bijection. Recall from Section 4.1
the basepoint �, the genus-1 subsurfaces X1;X2; : : :, and the arcs ı1; ı2; : : : used to de-
fine the surfaces SI . Using the standard “change of coordinates principle” (see [11, Sec-
tion 1.3.2]), there exists a homeomorphism �W SJ ! SJ 0 with the following three
properties:

� �.�/D �.

� For all i 2 J , we have �.Xi/DX�.i/ .

� For all i 2 J , we have �.ıi/D ı�.i/ .

From the definition of the surface SI we see that � has the desired properties.

We emphasize that Lemma 4.6 depends in an essential way on the precise details of
our construction of the surfaces SI (unlike Lemmas 4.1 and 4.2 above, which were
rather tautological). We are now ready to prove Theorem A.

Proof of Theorem A We begin by showing that the weak FI–group I is boundedly
generated in degree 3. Fix a finite set J �N . If jJ j � 3 the condition (2-1) is vacuous,
so assume that jJ j > 3. Taking g WD jJ j, let � W J ! Œg� be the bijection given by
Lemma 4.6, and �W SJ ! SŒg� D†

1
g the corresponding homeomorphism.

Consider I � J with jI j D 3. By construction, � takes SI to the subsurface S�.I /
of SŒg� . Therefore the isomorphism ��W IJ ! I1

g takes the subgroup IJ .I/ supported
on SI to the subgroup I1

g.�.I// supported on S�.I / . Proposition 4.5 states that I1
g

is generated by the subgroups I1
g.S�.I //. We conclude that IJ is generated by the

subgroups IJ .I/ for I � J satisfying jI j D 3. Therefore (2-1) is satisfied, and the
weak FI–group I is boundedly generated in degree 3.

Proposition 4.4 states that fI.k/g1
kD1

is a central filtration of bounded rank. Applying
Theorem G, we conclude that for all k � 1, there exists Bk � 0 so that I.k/C I is
boundedly normally generated in degree Bk .

Fix g � 0, and let us apply this conclusion to I.k/Œg� D I1
g.k/. The bounded normal

generation of I.k/C I states that I.k/Œg� is generated by the I1
g –conjugates of its

subgroups I.k/Œg�.I/ for those I � Œn� with jI j � Bk . The subgroup I.k/Œg�.I/
consists of those elements of I1

g.k/ supported on the genus jI j subsurface SI �†
1
g ,

so its '–conjugate consists of those elements of I1
g.k/ supported on the subsurface

'.SI /. If ' 2 I1
g , the subsurface '.SI / is homologically standard. Therefore I1

g.k/

is generated by elements of I1
g.k/ supported on homologically standard subsurfaces

of genus at most Bk , as desired.
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5 Mod-p filtrations

Fix a prime p� 2. In this section we discuss the modifications that must be done to our
proofs of Theorems A and C to obtain proofs of Theorems E and F. Almost everything
goes through verbatim. There are only two places where additional work is necessary.

The first occurs in the proofs of Propositions 3.2 and 4.4, where the higher Johnson
homomorphisms are invoked. These should be replaced with the higher mod-p Johnson
homomorphisms constructed by Cooper in [7]. The second place where a new idea is
needed is in the analogues of Propositions 3.3 and 4.5, which give generators for IAn

and I1
g . We need generators for the level p congruence subgroups Aut.Fn;p/ and

Mod1
g.p/. These are given in Propositions 5.1 and 5.3 below. Given these results, the

proofs of Theorems E and F parallel exactly the proofs of Theorems A and C.

5.1 Generators for Aut.Fn; p/

For a subset I � f1; : : : ; ng, let Aut.Fn; I/ consist of automorphisms supported on
the splitting Fn D FI � FŒn��I , as defined in Section 3.2. Define Aut.Fn;p; I/ D

Aut.Fn;p/\Aut.Fn; I/.

Proposition 5.1 (Generators for Aut.Fn;p/) For any n � 0 and any prime p � 2,
the group Aut.Fn;p/ is generated by the subgroups

fAut.Fn;p; I/ j I � f1; : : : ; ng satisfies jI j � 3g:

For the proof of Proposition 5.1, we will need a generating set for the level-p congruence
subgroup SLn.Z;p/ of SLn.Z/, which is the kernel of the natural map SLn.Z/�
SLn.Z=p/. Given r 2 Z and 1� i; j � n, let �n

ij .r/ be the n� n matrix with .i; j /
entry equal to r and all other entries equal to zero. For 1� i < n, let ˇn

i .r/ be the n�n

matrix with .i; i/ and .i; i C 1/ entries equal to r , with .i C 1; i/ and .i C 1; i C 1/

entries equal to �r , and all other entries equal to zero.

Given r 2 Z and i ¤ j , let

En
ij .r/ WD InC �

n
ij .r/ 2 SLn.Z/

be the n� n elementary matrix whose diagonal entries are 1 and whose .i; j / entry
is r . Similarly, given r 2 Z and 1� i < n, let Bn

i .r/ WD InCˇ
n
i .r/. For instance,

B4
2.7/D

0BB@
1 0 0 0

0 8 7 0

0 �7 �6 0

0 0 0 1

1CCA :
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We then have the following theorem of Sury and Venkataramana.

Theorem 5.2 (Sury and Venkataramana [34]) For n � 3 and p � 2, the group
SLn.Z;p/ is generated by the set

fEn
ij .p/ j 1� i; j � n; i ¤ j g[ fBn

i .p/ j 1� i < ng:

Let GLn.Z;p/ be the level-p congruence subgroup ker.GLn.Z/! GLn.Z=p//. For
any M 2GLn.Z/ we have det M D˙1; moreover, if M 2GLn.Z;p/, then M � In

mod p implies that det M � 1 mod p . For p� 3 these together imply that det M D 1,
and so GLn.Z;p/D SLn.Z;p/. However for p D 2 we have an extension

1 �! SLn.Z; 2/ �! GLn.Z; 2/
det
�! f˙1g �! 1:

Let N1 2 GLn.Z/ be the matrix obtained from the identity matrix by replacing the 1

at position .1; 1/ with a �1. Then N1 2 GLn.Z; 2/ has detN1 D�1, and GLn.Z; 2/
is generated by SLn.Z; 2/ together with N1 .

Proof of Proposition 5.1 Let � � Aut.Fn;p/ be the subgroup generated by the
purported generators Aut.Fn;p; I/ with jI j � 3; our goal is to prove that � D
Aut.Fn;p/. The map � W Aut.Fn/! GLn.Z/ is known to be surjective, so we have a
short exact sequence

1 �! IAn �! Aut.Fn;p/
�
�! GLn.Z;p/ �! 1:

Since IAn.I/� Aut.Fn;p; I/, Proposition 3.3 implies that IAn � � . It is therefore
enough to show that �.�/ is all of GLn.Z;p/.

Define automorphisms zEn
ij .p/2Aut.Fn;p/ for 1� i; j �n with i¤j , automorphisms

zBn
i .p/ 2 Aut.Fn;p/ for 1 � i < n, and the automorphism zN1 2 Aut.Fn; 2/ via the

following formulas:

zEn
ij .p/.x`/D

�
xj x

p
i if `D j ;

x` otherwise;

zBn
i .p/.x`/D

8<:
xi.xix

�1
iC1

/p if `D i ;

xiC1.xix
�1
iC1

/p if `D i C 1;

x` otherwise;

zN1.x`/D

�
x�1

1
if `D 1;

x` otherwise:

The automorphism zEn
ij .p/ is supported on the splitting hxi ;xj i � hx` j ` ¤ i; j i,

so zEn
ij .p/ 2 Aut.Fn;p; fi; j g/. Similarly, we have zBn

i .p/ 2 Aut.Fn;p; fi; i C 1g/
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and zN1 2 Aut.Fn; 2; f1g/. These elements are therefore contained in � . Direct
computations show that �.zEn

ij .p//D En
ij .p/ and �.zBn

i .p//DBn
i .p/ and �. zN1/DN1 .

By Theorem 5.2 these elements generate GLn.Z;p/, so we conclude that �.�/ D
GLn.Z;p/, as desired.

5.2 Generators for Mod1
g.p/

Recall from Section 4.2 that †1
g D SŒg� , so for any I � f1; : : : ;gg we have a subsur-

face SI of †1
g . For any subsurface S of †1

g , we denote by Mod1
g.p;S/ the subgroup

Mod1
g.p;S/ WDMod1

g.p/\Mod.S/ consisting of mapping classes supported on S .

Proposition 5.3 (Level–p generators) For g � 3 and p � 2, the group Mod1
g.p/ is

generated by the set

fMod1
g.p;SI / j I � f1; : : : ;gg satisfies jI j D 3g:

The level-p congruence subgroup Sp2g.Z;p/ is the kernel of the natural map

Sp2g.Z/! Sp2g.Z=p/:

To prove Proposition 5.3, we will need a generating set for Sp2g.Z;p/ analogous to
Theorem 5.2.

For g � 1 let Ig and Og be the g�g identity matrix and zero matrix, respectively.
Recall from Section 3.2 that for any r 2Z, we defined �g

ij .r/ as the g�g matrix with
.i; j / entry equal to r and zero otherwise, and ˇg

i .r/ as the g�g matrix with .i; i/
and .i; iC1/ entries equal to r , with .iC1; i/ and .iC1; iC1/ entries equal to �r ,
and zero otherwise. We define s�

g
ij .r/ to be the g � g matrix with .i; j / and .j ; i/

entries equal to r and zero otherwise; when i ¤ j this is just �g
ij .r/C �

g
ji.r/, while

when i D j we have s�
g
ii.r/D �

g
ii.r/.

We can now describe our generating set. First, for 1� i � j � g , define

X g
ij .r/ WD I2gC

�
Og Og

s�
g
ij .r/ Og

�
; Yg

ij .r/ WD I2gC

�
Og s�

g
ij .r/

Og Og

�
:

Second, for 1� i; j � g with i ¤ j , define

Zg
ij .r/ WD I2gC

 
�

g
ij .r/ Og

Og ��
g
ji.r/

!
:

Third, for 1� i < g , define

Wg
i .r/ WD I2gC

�
ˇ

g
i .r/ Og

Og �ˇ
g
i .r/

>

�
:
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Finally, define

Ug
1
.r/ WD I2gC

�
�

g
11
.r/ �

g
11
.r/

��
g
11
.r/ ��

g
11
.r/

�
:

Lemma 5.4 For g � 2 and p � 2 the congruence group Sp2g.Z;p/ is generated by
the set

fX g
ij .p/;Y

g
ij .p/j1� i � j � gg[ fZg

ij .p/j1� i; j � g; i ¤ j g

[ fWg
i .p/j1� i < gg[ fUg

1
.p/g:

Proof of Lemma 5.4 Let � �Sp2g.Z;p/ be the subgroup generated by the purported
generating set. Let sp2g.Z=p/ and gl2g.Z=p/ be the symplectic Lie algebra and matrix
Lie algebra over Z=p , considered as abelian groups.

Let �W Sp2g.Z;p/! gl2g.Z=p/ be the map sending I2gCpA 2 Sp2g.Z;p/ to the
mod-p reduction of A in gl2g.Z=p/. It was first proved by Newman and Smart
(see [25, Theorem 7]) that the image �.Sp2g.Z;p// is precisely the subgroup

sp2g.Z=p/� gl2g.Z=p/:

It is easy to see that � maps our purported generating set to a basis for sp2g.Z=p/
(the generators Wg

i .p/ are needed to get matrices whose diagonal does not vanish,
and U1

g.p/ is needed to get matrices whose trace is not zero in each block). Therefore
�.�/D sp2g.Z=p/D �.Sp2g.Z;p//.

It remains to show that ker.�/� � . But the kernel of � is Sp2g.Z;p
2/ by definition,

and Tits [35, Proposition 4] proved that Sp2g.Z;p
2/� � (the generator Ug

1
.p/ is not

necessary here). Therefore � D Sp2g.Z;p/, as desired.

Remark 5.5 Bass, Milnor and Serre [1, Theorem 12.4] proved that Sp2g.Z;p/ is the
normal closure in Sp2g.Z/ of

fX g
ij .p/;Y

g
ij .p/ j 1� i � j � gg

for g � 2 and p � 2. However, one can show that these g2C g generators do not
suffice to generate Sp2g.Z;p/. Indeed, we saw above that Sp2g.Z;p/ surjects to
sp2g.Z=p/, an elementary abelian group of rank 2g2Cg , so Sp2g.Z;p/ cannot be
generated by fewer than 2g2C g elements. Since the generating set in Lemma 5.4
consists of exactly 2g2Cg elements, it is in fact a minimal generating set.

Proof of Proposition 5.3 Let � �Mod1
g.p/ be the subgroup generated by the sub-

groups Mod1
g.p;SI / with jI j D 3, or equivalently with jI j � 3. We have a short exact

sequence
1 �! I1

g �!Mod1
g.p/

�
�! Sp2g.Z;p/ �! 1:
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Consider the image �.�/� Sp2g.Z;p/. By examination we see that the generators
X g

ij .p/, Y
g
ij .p/, and Zg

ij .p/ are in the image of Mod1
g.p;Sfi;jg/, the generator Wg

i .p/

is in the image of Mod1
g.p;Sfi;iC1g/, and the generator Ug

1
.p/ is in the image of

Mod1
g.p;Sf1g/. By Lemma 5.4, �.�/ D Sp2g.Z;p/. Since I1

g.I/ � Mod1
g.p; I/,

Proposition 4.5 implies that I1
g � � . We conclude that � DMod1

g.p/, as desired.

6 Lower bounds on generators

Our goal now is to prove Theorems B and D. We begin by recalling some facts about
the higher Johnson homomorphisms. See Satoh [31] for more details.

Automorphism groups of free groups Fix n� 1, and let H WD F ab
n . Since 
k.Fn/

is a central filtration, the graded quotients grk.Fn/ WD 
k.Fn/=
kC1.Fn/ form a graded
Lie algebra gr.Fn/ under the commutator bracket. Witt [36] proved that gr.Fn/ is
naturally isomorphic to the free Lie algebra L.H / on H D gr1.Fn/.

Similarly, from the central filtration IAn.k/ we obtain a graded Lie algebra gr.IAn/

with grk.IAn/ WD IAn.k/= IAn.kC 1/. The action of IAn on Fn induces an injective
map of Lie algebras � W gr.IAn/ ,!Der.gr.Fn//ŠDer.L.H //ŠHom.H;L.H //. Tra-
ditionally one thinks of the k th graded piece of � as a homomorphism �k W IAn.k/!

Hom.H;LkC1.H // with ker.�k/ D IAn.k C 1/; the map �k is known as the k th

Johnson homomorphism. Explicitly, given ' 2 IAn.k/ and x 2Fn we have '.x/x�1 2


kC1.Fn/, and �k.'/ 2 Hom.H;LkC1.H // is the map which takes Œx� 2 H to
Œ'.x/x�1�2grkC1.Fn/ŠLkC1.H /. Determining the image of � is a fundamental and
difficult problem which has a large literature (see [31] for a discussion; we especially
would like to point out the papers by Satoh [32] and Enomoto and Satoh [9]).

The universal enveloping algebra of L.H / is the tensor algebra T .H /, that is, the
free associative algebra on H . Since L.H / is a free Z–module, the natural map
i W L.H / ,!T .H / to its universal enveloping algebra T .H / is injective by the Poincaré–
Birkhoff–Witt theorem ([4, Theorem I.2.7.1]; see especially [4, Corollary I.2.7.2]).

Proof of Theorem D Fix k�1, and let �W LkC1.H /!H˝
Vk

H be the composition

�W LkC1.H / ,!H˝kC1�H ˝
Vk

H

of the injection i W LkC1.H / ,! H˝kC1 with the natural projection. Denote by
y�k W IAn.k/! Hom.H;H ˝

Vk
H / the composition

y�k W IAn.k/
�k
�! Hom.H;LkC1.H //! Hom.H;H ˝

Vk
H /;

where the second map is induced by � .
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Consider an automorphism ' 2 IAn.k/ supported on the splitting Fn D A �B , and
let HA WD Aab � H . From the explicit description of �k.'/ above, it is easy to see
that �k.'/ lies in the subspace Hom.HA;LkC1.HA// � Hom.H;LkC1.H //. From
the naturality of the Poincaré–Birkhoff–Witt injection, y�k.'/ lies in Hom.HA;HA˝Vk

HA/. If the splitting Fn D A �B has rank r < k , then since HA Š Zr we haveVk
HA D 0, so y�k.'/D 0. This shows that any automorphism ' 2 IAn.k/ supported

on a splitting of rank less than k has y�k.'/D 0.

To complete the proof of Theorem D, it thus suffices to show that y�k.IAn.k//¤ 0 when
n > k . Since Fn is centerless, conjugation gives an injection InnerAutW Fn ,! IAn .
This corresponds under � to the injection InnerDerW L.H / ,! Der.L.H //:

Fn

InnerAut
��

gr.Fn/
Š

//

��

L.H /

InnerDer
��

IAn gr.IAn/
�

// Der.L.H //

Explicitly, the inner derivation corresponding to an element � 2 Lk.H / is the map
�� 2 Hom.H;LkC1.H // defined by ��.h/D Œ�; h� for h 2H .

Let fa1; : : : ; ang be a free basis for H , and set

� WD Œ Œ� � � ŒŒa1; a2�; a3�; � � � �; ak � 2 Lk.H /:

The commutativity of the diagram above implies that all inner derivations lie in the
image of � , so there exists some ' 2 IAn.k/ with �k.'/D �� . It thus suffices to show
that � ı �� ¤ 0; we do this by verifying that the element

y�k.'/.akC1/D �.��.akC1//D �.Œ�; akC1�/

is nonzero.

The image i.Œ�; akC1�/ 2H˝kC1 is an alternating sum of 2kC1 monomials, each of
the form a�.1/˝� � �˝a�.kC1/ for some permutation � 2SkC1 . However, by induction
on k we see that the only such permutation � with �.1/D 1 is the identity id2SkC1 .
Accordingly, let a�

1
W H ! Z be the dual functional, and .a�

1
˝ id/W H˝kC1!H˝k

be the map that applies this functional to the first factor. We then have .a�
1
˝ id/ ı

i.Œ�; akC1�/D a2˝� � �˝akC1 2H˝k . This projects to a2^� � �^akC1 2
Vk

H under
the natural projection, so .a�

1
˝ id/ ı �.Œ�; akC1�/D a2 ^ � � � ^ akC1 ¤ 0. This shows

that �.Œ�; akC1�/ ¤ 0 2 H ˝
Vk

H , so � ı �� D y�k.'/ ¤ 0. This demonstrates that
y�k.IAn.k//¤ 0 when n> k , and thus completes the proof of the theorem.
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Mapping class groups We now turn to Theorem B, which requires introducing the
higher Johnson homomorphisms for the mapping class group. Fix g � 1, and set
nD 2g . Choosing an isomorphism �1.†

1
g;�/Š F2g , we obtain an embedding of I1

g

into IAn . The central filtration I1
g.k/ is taken to the central filtration IAn.k/, so

we obtain an embedding gr.I1
g/ ,! gr.IAn/ of graded Lie algebras. Setting H WD

F ab
2g
ŠH1.†

1
gIZ/, we obtain from this embedding the k th Johnson homomorphism

�k W I1
g.k/! Hom.H;LkC1.H //.

Proof of Theorem B Just like for IAn , we define y�k W I1
g.k/!Hom.H;H ˝

Vk
H /

via the formula y�k.'/D �ı�k.'/, where �W LkC1.H /!H ˝
Vk

H is the same map
as before.

Consider a subsurface S � †1
g such that S Š †1

h
. Choose a disjoint subsurface

T � †1
g with T Š †1

g�h
. Fix a basepoint �S 2 @S and an arc connecting �S to

the basepoint � 2 @†1
g , and similarly for �T 2 @T . In the usual way, this determines

inclusions �1.S;�S / ,! �1.†
1
g;�/ and �1.T;�T / ,! �1.†

1
g;�/. By van Kampen’s

theorem, we have a splitting F2g Š �1.†
1
g;�/D �1.S;�S /��1.T;�T /.

If ' 2 I1
g.k/ is supported on the subsurface S , the induced automorphism of F2g

preserves this splitting, which is of rank 2h. If 2h< k , our computation in the proof
of Theorem D thus shows that y�k.'/D 0. Therefore y�k vanishes on any element of
I1

g.k/ supported on a subsurface †1
h

of genus less than k=2. To complete the proof,
it thus suffices to prove that y�k.I1

g.k//¤ 0 when g > k .

In the proof of Theorem D, we made use of the map InnerDerW L.H /! Der.L.H //,
which is determined by InnerDer1W H ! Der1.L.H //. The image of �1W I1

g !

Der1.L.H // does not contain InnerDer1.H /, but the work of Johnson [16] shows that
�1.I1

g/ does contain the image of another map PP1W H ! Der1.L.H //, defined as
follows.

Fix a symplectic basis fa1; b1; : : : ; ag; bgg for H and let ! 2 L2.H / represent the
algebraic intersection form yi on H , so ! D

Pg
iD1

Œai ; bi �. Given x 2H , we define

PP1.x/ WD Œh 7! Œx; h�Cyi.h;x/!� 2 Hom.H;L2.H //Š Der1.L.H //:

The map PP1 induces a map of Lie algebras PPW L.H /! Der.L.H //. We remark
that PP is not injective. The initials “PP” stand for “point-pushing”, since the image
of this map turns out to be the image under the Johnson homomorphism of the point-
pushing subgroup of the mapping class group. However, neither of these facts will be
necessary for our proof.

Let L � H be the isotropic subspace ha1; : : : ; agi. For any x;y 2 L we have
yi.x;y/D 0, so

PP1.x/.y/D Œx;y�Cyi.y;x/! D Œx;y�:
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Generating the Johnson filtration 2253

It follows by induction that for any �1; �2 2 L.L/ we have

(6-1) PP.�1/.�2/D Œ�1; �2�:

Consider the element � WD Œ Œ� � � Œa1; a2�; � � � �; ak � 2 Lk.L/ � Lk.H /. The work of
Johnson in [16, Section 6] shows that Im.PP1/ � �1.I1

g/; indeed, generators for
Im.PP1/ can be realized by genus-.g� 1/ bounding pairs that lie in the point-pushing
subgroup. Since PP is a map of Lie algebras, it follows that there exists some ' 2I1

g.k/

with �k.'/D PP.�/.

As long as g > k we can consider akC1 2L, and from (6-1) we have PP.�/.akC1/D

Œ�; akC1�. During the proof of Theorem D, we showed that �.Œ�; akC1�/ ¤ 0, so
y�k.'/.akC1/D�.PP.�/.akC1// is nonzero. Thus y�k.I1

g/¤0 when g>k , completing
the proof.
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