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Varieties of general type with the same
Betti numbers as P 1 � P 1 � � � � � P 1

AMIR DŽAMBIĆ

We study quotients �nHn of the n–fold product of the upper half-plane H by
irreducible and torsion-free lattices � < PSL2.R/n with the same Betti numbers
as the n–fold product .P 1/n of projective lines. Such varieties are called fake
products of projective lines or fake .P 1/n . These are higher-dimensional analogs
of fake quadrics. In this paper we show that the number of fake .P 1/n is finite
(independently of n), we give examples of fake .P 1/4 and show that for n> 4 there
are no fake .P 1/n of the form �nHn with � contained in the norm-one group of a
maximal order of a quaternion algebra over a real number field.

11F06, 22E40

1 Introduction

After their classification of fake projective planes (see Prasad and Yeung [15; 17])
and the study of arithmetic fake projective spaces and fake Grassmannians (see [16]),
in their paper [18], G Prasad and S-K Yeung introduced the general notion of a
fake compact hermitian symmetric space and studied these spaces in detail. Let
X DG=K be a hermitian symmetric space of noncompact type and yX the compact
dual of X . Then, by definition, a quotient X� D �nX of X by a cocompact and
torsion-free discrete subgroup is a fake compact hermitian symmetric space or fake yX
if X� has the same Betti numbers as yX ; such a fake yX is called irreducible, resp.
arithmetic, if � is irreducible, resp. arithmetic. One of the main results in Prasad
and Yeung [18] is that there are no compact irreducible arithmetic fake hermitian
symmetric spaces of type other than An with n � 4. Here, the type of X� refers to
the type of the irreducible factors Xi of the universal covering X DX1 � � � � �Xs of
X� according to Cartan’s classification of irreducible hermitian symmetric spaces of
noncompact type. Two-dimensional fake A2 are exactly the fake projective planes,
which are completely classified. In Prasad and Yeung [16] we find examples of four-
dimensional fake A2 , that is, fake products of projective planes P2 �P2 . Note that
the case of fake A1 is not covered in [18]. By definition, a compact fake A1 of
dimension n (called n–dimensional fake product of projective lines in sequel) is a
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compact quotient �nHn of the product of n copies of the complex upper half-plane H
by a cocompact torsion-free lattice � � PSL2.R/

n with the same Betti numbers as
the product P1 � � � � � P1 of n copies of the complex projective line P1 D P1.C/.
The notion of an n–dimensional compact fake A1 is meaningful only for n� 2 and in
this case an irreducible fake A1 is automatically arithmetic. Two-dimensional fake A1

are also known as fake quadrics; see Hirzebruch [10, page 779f]. There are many
known irreducible as well as nonirreducible fake quadrics (see for instance Shavel [19]
or the author [8] for the irreducible case and Bauer, Catanese and Grunewald [1] for
the nonirreducible case). It is known that no fake products of projective lines of odd
dimension are possible. In this note we study the existence questions of irreducible
compact fake products of projective lines:

Theorem A (See Theorem 3.2) There exists a constant c>0 such that for any integer
n> c there exists no irreducible fake .P1/n . The number of fake .P1/n is finite.

Moreover we discuss the existence of irreducible fake products of projective lines with
the fundamental group contained in the norm-one group of a maximal order and show:

Theorem B (See Lemma 3.4 and Theorems 3.5, 4.5, 4.2 and 4.4) There exist two
nonisomorphic 4–dimensional irreducible fake products of projective lines of the
form �nH4 , where � is the norm-one group of a maximal order in totally indefinite
quaternion algebras over the maximal totally real subfields of cyclotomic fields Q.�20/

and Q.�24/ of 20th and 24th roots of unity. Moreover, fake products of projective lines
whose fundamental group is contained in a norm-one group of a maximal order exist
only in dimension 2 and 4. In dimension 4, the examples above are the only such
examples up to isomorphism.

Acknowledgments The author would like to thank Sai-Kee Yeung and Mikhail Be-
lolipetsky for the helpful comments and discussions on the subject.

2 Irreducible quotients of the polydisc

Let H denote the complex upper half-plane and Hn DH� � � � �H the product of n

copies of H . Since H is biholomorphically equivalent to the unit disc D � C , we
will use the short term polydisc to name Hn . The group GLC

2
.R/n D GLC

2
.R/ �

� � � �GLC
2
.R/, with GLC

2
.R/ the group of 2� 2–matrices with positive determinant,

acts on Hn componentwise as a group of linear fractional transformations. The
quotient PGLC

2
.R/n D .GLC

2
.R/=R�/n Š PSL2.R/

n is identified with AutC.Hn/,
the group of biholomorphic automorphisms which preserve each factor. A lattice
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��AutC.Hn/, that is, a discrete subgroup of finite covolume, is called irreducible if �
is not commensurable with a product �1��2 of two nontrivial lattices �1�AutC.Hr /,
�22AutC.Hn�r / for some 0< r <n. For n�2, irreducible lattices can be constructed
arithmetically in the following way.

Let k be a totally real number field of degree mD Œk WQ� and let A be a quaternion
algebra over k . Choosing an ordering v1;1; : : : ; v1;m of the infinite places of k ,
assume that A is unramified at first n�m places v1;1; : : : ; v1;n and ramified at the
remaining infinite places v1;nC1; : : : ; v1;m . Additionally assume that A ramifies at
the finite places p1; : : : ; pr of k . Let dA D

Qr
iD1 pi denote the reduced discriminant

of A. Then m � nC r � 0 mod 2 and, under this condition, A is uniquely deter-
mined by the choice of n unramified infinite places and the reduced discriminant dA

up to isomorphism. We will write A D A.kIm; n; dA/ D A.kIm; n; p1; : : : ; pr /

to denote the isomorphism class of such A. If O � A is an order in A then,
under the embeddings A ,! A ˝k kv1;i

Š M2.R/ for i D 1; : : : ; n, the group
OCD fx 2O jNrd.x/ is totally positive unit in kg becomes a subgroup of GLC

2
.R/n ,

where Nrd denotes the reduced norm. The group �CO D OC=k� is a lattice in
AutC.H/n and, moreover, �CO is an irreducible lattice and so is every � �AutC.Hn/

which is commensurable with �CO . We say that � � AutC.Hn/ is an arithmetic
lattice if there exits a number field k , a quaternion algebra AD A.kIm; n; dA/ and
a maximal order O in A such that � is commensurable with �CO . For example
�1
O D fx 2 O j Nrd.x/ D 1g=f˙1g or any congruence subgroup in �CO or �1

O is,
by definition, arithmetic. By the celebrated theorem of Margulis, for n � 2, every
irreducible lattice � 2 AutC.H/n is an arithmetic lattice.

Let � be an irreducible lattice in AutC.Hn/ commensurable with �CO , where O
is a maximal order in the quaternion algebra AD A.kIm; n; dA/. As a corollary to
Godement’s compactness criterion we have that � is a cocompact lattice in AutC.Hn/ if
and only if A is a division algebra, or equivalently if and only if � is not commensurable
with a Hilbert modular group. Let X� D �nH

n be the orbit space under the action
of � on Hn . Then X� is a compact locally symmetric space. If � is torsion free, X�
is an n–dimensional complex manifold and even more, in this case X� is a smooth
projective variety whose canonical line bundle is ample. In particular, for torsion-free
and cocompact lattices � , X� is a variety of general type.

By Hirzebruch’s proportionality theorem, numerical invariants of X� are closely related
to the numerical invariants of the compact dual .P1/n of Hn (see Hirzebruch [9]).
In fact, only the knowledge of the Euler number e.X�/ determines the complete
Hodge diamond of X� (see Matsushima and Shimura [12] or Lemma 2.4 below).
On the other hand, the Euler number can be computed by a volume formula which
generalizes Siegel’s formula for the volume of the fundamental domain of SL2.Z/ in
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terms of Riemann zeta function. Namely, consider the AutC.H/n –invariant volume
form � D .�2�/�n

Q
1�i�ndxi ^ dyi=y

2
i on Hn . Then for torsion-free cocompact

lattices ��AutC.Hn/ we have e.X�/Dvol.X�/, where vol.X�/ denotes the volume
of a � –fundamental domain in Hn with respect to � .

Lemma 2.1 (Vignéras [22]) Let k be a totally real number field of degree mD Œk WQ�
and let ADA.kIm; n; dA/ be a quaternion algebra over k . Fix a maximal order O�A

and let � � PGLC
2
.R/n be a subgroup commensurable with �1

O DO1=˙ 1. Then

vol.X�/D Œ�1
O W ��.�1/mCn2n�mC1�k.�1/

Y
pjdA

.N p� 1/;

where Œ�1
O W ��D Œ�

1
O W � \�

1
O�=Œ� W � \�

1
O� denotes the generalized index between �

and �1
O , �k. � / is the Dedekind zeta function and where for an integral prime ideal p

in k , N pD jOk=pj is the norm of p.

2.1 Fake products of projective lines whose universal covering is
the polydisc

Let � be a torsion-free cocompact irreducible lattice in AutC.Hn/. As mentioned
above, the quotient X� D �nH

n is an n–dimensional smooth projective variety of
general type whose Betti numbers are closely related to the Betti numbers of .P1/n .

Definition 2.2 We say that a compact quotient X� of the n–dimensional polydisc Hn

is a compact fake product of projective lines (or simply fake .P1/n ) if � is a cocompact
and torsion-free lattice in AutC.Hn/ and X� D �nH

n has the same Betti numbers
as .P1/n . We say that X� is irreducible if � is an irreducible lattice in AutC.Hn/.

Remark 2.3 (1) As already mentioned in the introduction, many examples of irre-
ducible and nonirreducible fake P1�P1 (fake quadrics) are known. The nonirreducible
fake quadrics are examples of so-called Beauville surfaces. In higher dimensions, ex-
cluding the “trivial” cases of products of fake quadrics, no examples of fake .P1/n seem
to be known. It is an open question to construct such higher-dimensional fake .P1/n

which are not products of fake .P1/n in lower dimension. In this paper we will
concentrate on irreducible fake .P1/n . But other “nontrivial” constructions are to be
analyzed. In particular, this includes the construction of higher-dimensional varieties
isogenous to a product of curves (see Catanese [6]) with given Betti numbers which
are not products of Beauville surfaces.

(2) More generally, we could skip the condition on the universal covering, and define
a fake .P1/n as a variety of general type with the same Betti numbers as .P1/n . Here
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an open question is to identify the universal covering of such a variety; is the universal
covering of a variety of general type with the same Betti numbers as .P1/n always Hn

(compare [10, page 780])?

A theorem of Matsushima and Shimura gives a characterization of irreducible fake
products of projective lines:

Lemma 2.4 [12, Theorems 7.2, 7.3] Let � be an irreducible and torsion-free lattice
in AutC.Hn/ and let bi.X�/ denote the i th Betti number of X� . Then

� for i ¤ n, bi.X�/D bi..P1/n/;

� bn.X�/D bn..P1/n/C 2nhn;0.X�/, where hn;0.X�/D dim H 0.X� ; �
n
X�
/.

If nD dim X� is odd, X� cannot be a fake product of projective lines. For n even, X�
is a fake product of projective lines if and only if the arithmetic genus �.X�/ equals 1.

Since only bn.X�/ may be different from bn..P1/n/, we can characterize fake products
of projective lines also by the value of the Euler number e.X�/.

Corollary 2.5 For even n, a quotient X� is a fake .P1/n if and only if e.X�/ D

e..P1/n/D 2n .

3 Finiteness results on irreducible fake .P 1/n

In this section we will prove the finiteness result which states that the dimension of a
fake .P1/n is bounded by an absolute constant from above and that in each dimension
there are only finitely many fake .P1/n . Moreover we will prove the nonexistence of
irreducible fake .P1/n X� whose fundamental group � is contained in a norm-one
group �1

O of maximal order of a quaternion algebra over a real number field in all
dimensions n > 4. In fact, we will list all the isomorphism classes of quaternion
algebras which contain a torsion-free group � � �1

O such that X� is a 4–dimensional
fake product of projective lines.

Recall that the fundamental group � of an irreducible n–dimensional fake product of
projective lines is an arithmetic lattice commensurable with �1

O , where O is a maximal
order in a quaternion algebra ADA.kIm; n; dA/ over a totally real number field k of
degree m with prescribed ramification at infinite places. If � is contained in a lattice �
we have vol.X�/ � vol.X�/ D e.X�/ D 2n . Every � is contained in a maximal
lattice � with finite index, and in the first step we will show that for n> c (where c

is a constant) every maximal irreducible lattice �< PSL2.R/
n satisfies vol.�/ > 2n .
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In the second step we shall show that in a fixed dimension n there exist only finitely
many conjugacy classes of maximal (irreducible) lattices � in PSL2.R/

n such that
vol.�/� 2n . For this purpose we will intensively make use of results in Borel [4] and
Chinburg and Friedman [7] where volumes and commensurabilities between arithmetic
lattices of PGL2.R/

a�PGL2.C/
b are studied in great detail. The most relevant results

for our purposes are summarized in the following.

Lemma 3.1 Let k be totally real number field of degree m and let

ADA.kIm; n; p1; : : : ; pr /

be a quaternion algebra over k with m � n � 1 (that is, A satisfies the Eichler
condition).

.1/ The maximal arithmetic subgroup of

AC=k� D fx 2A j Nrd.x/ is totally positiveg=k�

which contains �1
O for a maximal order O in A is N�CO Dfx2AC jxOx�1DOg=k� ;

compare [4, 4.9, 8.4–8.6; 7, Lemma 2.1]. The index of �1
O in N�CO is ŒN�CO W �

1
O�D

2r ŒkA W k�, where kA is the maximal abelian extension of k which is unramified at all
finite places of k and such that its Galois group Gal.kA=k/ is elementary 2–abelian
and in which all the prime ideals p1; : : : ; pr are totally split.

.2/ Let S be a finite set of primes of k such that pi 62S for i D 1; : : : ; r and let O.S/
be the Eichler order of level

Q
q2S q. Let �C

S;O be the normalizer of O.S/ in AC=k� .
Then every maximal arithmetic subgroup of AC=k� is (a conjugate of) a lattice of the
form �C

S;O with �C∅;O D N�CO0 for some maximal order O0 . There exists an integer
0� s � jS j such that the generalized index ŒN�CO W �

C

S;O� equals 2�s
Q

q2S .N qC 1/.
For any S we have vol.X

N�
C
O
/� vol.�C

S;O/ with equality if and only if S D∅. There
exist only finitely many conjugacy classes of maximal lattices �C

S;O commensurable
with a given N�CO such that ŒN�CO W �

C

S;O�� c for any given c > 0; compare [4, 4.4,
5.3] and Maclachlan and Reid [11, 11.4].

.3/ Let C.k;A/ be the set of all irreducible lattices in PSL2.R/
n which are commen-

surable with �1
O for some maximal order O in A=k . Then the function � 7! vol.X�/

takes its minimum on a conjugate of N�CO . Let e be the number of dyadic places of k

(finite places lying over 2) not dividing the reduced discriminant of A. Then vol.�/ is
a positive integral multiple of 2�e vol.X

N�
C
O
/ for any � in C.k;A/; compare [4, 5.4].

The finiteness of the set of irreducible fake .P1/n follows immediately from the
following theorem.
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Theorem 3.2 There exists a constant c > 0 such that if N�CO ,! PSL2.R/
n is a

maximal lattice with vol.N�CO / � 2n then n � c . For each n there are only finitely
many conjugacy classes in PSL2.R/

n of maximal lattices � such that vol.X�/� 2n .

Proof By Lemmas 3.1 and 2.1, the volume of X
N�

C
O

is given by

vol.X
N�

C
O
/D .�1/nCm 2n�mC1�k.�1/

2r ŒkA W k�

rY
iD1

.N pi � 1/:

Let k 0
A

be the abelian extension of k with the same properties as kA but which is
additionally unramified also at all infinite places of k . Then (see [7, Proposition 2.1])

ŒkA W k�
�1
D
Œo�

k
W o�

k;C
�

2m
Œk 0A W k�

�1:

The advantage of considering k 0
A

instead of kA is the fact that Œk 0
A
W k� divides the

class number of k . Now recall the functional equation of the Dedekind zeta function,
by which for a totally real number field k of degree m we have

(1) �k.�1/D .�1/m2�m��2md
3=2

k
�k.2/;

where dk is the discriminant of k . Keeping in mind that n–dimensional fake products
of projective lines exist only for even n we obtain

vol.X
N�

C
O
/D

d
3=2

k
�k.2/

22m�n�1Ct 0
ŒkA W k��2m

Y
i2f1;:::;rg

N pi¤2

N pi � 1

2
;

where t 0 is the number of those primes pi which are ramified in A and such that
N pi D 2. Let t be the number of primes of k which divide 2. Then t 0 � t . Define

(2) g.k;A/D
d

3=2

k
�k.2/

22m�1Ct�2mŒkA W k�
D

d
3=2

k
�k.2/Œo

�
k
W o�

k;C
�

23m�1Ct�2mŒk 0
A
W k�

:

Then

(3) vol.X
N�

C
O
/D 2t�t 0Cng.k;A/

Y
i2f1;:::;rg

N pi¤2

N pi � 1

2
:

Assume now that 2n � vol.X
N�

C
O
/. As

Q
i2f1;:::;rgN pi¤2

N pi�1
2
� 1 and t � t 0 , the

inequality

(4) 1� g.k;A/
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follows. The main ingredient at this point is a lower bound for g.k;A/ depending
on m and ŒkA W k� obtained by Chinburg and Friedman. In [7, Lemma 3.2] we find the
inequality

(5) g.k;A/ > 0:142 exp
�
0:051 �m�

19:0745

Œk 0
A
W k�

�
:

The right-hand side of (5) tends to infinity for m!1. Thus the condition (4) implies
that m is bounded from above and since the dimension, or equivalently the number
of unramified infinite places n in A, satisfies n � m, then n is also bounded. Now
let m be fixed. We want to show that in this case the discriminant of k and reduced
discriminant of A are bounded. In order to do so, we first replace Œk 0

A
W k� in (2) by the

class number hk of k . Also we use the estimate on hk provided by the Brauer–Siegel
theorem. Let s > 1 be a real number, k a totally real number field of degree m with
discriminant dk , regulator Rk and the class number hk . Then, by the theorem of
Brauer and Siegel,

(6) hkRk � 21�ms.s� 1/�.s=2/m
�

dk

�m

�s=2
�k.s/:

Using a lower bound for the regulator of the form Rk � c1 exp.c2m/ (see for instance
Zimmert [27, page 375] for an explicit choice of the constants c1 and c2 ) and choosing
s D 2 in (6) we obtain an upper bound

hk �
22�mdk�k.2/

�mc1 exp.c2m/
:

Plugging this into (4) we obtain

1� g.k;A/�
d

3=2

k
�k.2/Œo

�
k
W o�

k;C
�

23m�1Ct�2mhk

�
d

1=2

k
Œo�

k
W o�

k;C
�c1 exp.c2m/

�m22mCtC1
:

As Œo�
k
W o�

k;C
�� 2 and t �m the above inequalities give

d
1=2

k
�

�m23m

c1 exp.c2m/
:

For fixed m, the right-hand side of the last inequality is constant and it follows that
the discriminant dk is bounded. It follows that there are only finitely many possible
totally real fields which may serve as fields defining the commensurability class C.k;A/
of N�CO . If k is fixed, from (3) it easily follows that if vol.N�CO / is bounded, the
reduced discriminant dA is also bounded. As the reduced discriminant determines the
isomorphism class of A (notice that the ramification behavior at infinite places is fixed),
there are only finitely many isomorphism classes of quaternion algebras which define
lattices of fake .P1/n . Finally, there are only finitely many nonconjugate maximal
orders inside a given quaternion algebra A, hence only finitely many nonconjugate
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maximal lattices of type N�CO inside the commensurability class C.k;A/. It follows
from Lemma 3.1(2) there are only finitely many maximal lattices �C

S;O 2 C.k;A/ with
vol.X

�
C

S;O
/� 2n .

A natural question which arises from Theorem 3.2 is that on effectivity: is it possible to
list all fake .P1/n ? Less ambitious we could ask to what extent one can make precise
the bounds on invariants n;m; dk ; dA which belong to fake .P1/n ? Certainly, a careful
analysis of the proof of Theorem 3.2 will provide bounds on the above invariants. For
instance, (5) implies that the dimension n of a fake .P1/n is less than or equal to 412.
In fact the bounds which we get are not expected to be very precise. The main hurdle
is the invariant ŒkA W k� or rather Œk 0

A
W k� associated with A, for which we apparently

miss good bounds and which we are forced to estimate by the class number. Some
observations on this invariant have been also made by Belolipetsky and Linowitz [3] in
connection with the enumeration of fields of definition of arithmetic Kleinian reflection
groups.

In order to get a first impression on how big the number of fake .P1/n can be, we will
now concentrate our attention to fake .P1/n whose fundamental group is contained in
the norm-one group of a maximal order. This is a class of arithmetic groups which is
much more accessible than the general ones, since the critical invariant Œk 0

A
W k� does

not appear in the volume formula of such lattices. We will see soon that fake .P1/n

with such a fundamental group are very rare. So, from now on let us assume that

(7) the lattice � is contained in the norm-one group �1
O .

Remark 3.3 Note that the above assumption is indeed restrictive. Typical examples
of lattices which are not contained in �1

O are the normalizer of maximal and Eichler
orders.

Under the assumption (7) the inequality 2n D e.X�/� e.X�1
O
/ holds.

The functional equation (1) for the Dedekind zeta function and Lemma 2.1 imply
directly the equality

(8) e.X�/D 2n
� e.X�1

O
/D 2n�2mC1��2md

3=2

k
�k.2/

Y
pjdA

.N p� 1/:

Next we observe that
Q

pjdA
.N p� 1/ � 1 as well as �k.2/ > �Q.2m/ > 1. The last

inequality �k.2/ > �Q.2m/ (or more generally �k.s/ > �Q.ms/ for any s > 1) follows
easily from the Euler product representation. Namely,

�k.2/D
Y
p

�
1�

1

N p2

��1
D

Y
p

Y
pjp

�
1�

1

N p2

��1
;
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where p runs through the set of nonzero prime ideals in Ok and p through all rational
primes. Suppose that p1; : : : ; pt are the prime divisors of pOk and N pi D pfi . ThenY

pjp

�
1�

1

N p2

��1
D

tY
iD1

�
p2fi

p2fi�1

�
D

p2.f1C���Cft /Qt
iD1.p

2fi�1/
:

We have an obvious inequality
Qt

iD1.p
2fi � 1/ < p2.f1C���Cft /� 1. HenceY

pjp

�
1�

1

N p2

��1
>

p2.f1C���Cft /

p2.f1C���Cft /�1
D

�
1�

1

p2.f1C���Cft /

��1
:

Finally, the fundamental identity for prime ideals (see Neukirch [13, Proposition I.(8.2)])
implies that f1C� � �Cft �m and we have

Q
pjp.1� 1=.N p2//�1 > .1� 1=p2m/�1

and the stated inequality follows. (Obviously, �Q.s/D 1C 1=2sC � � �> 1 for any real
s > 1).

Using the above inequalities, (8) implies the relation

2n > 2n�2mC1��2md
3=2

k

or equivalently

(9) dk <
�
.2�/2m

2

�2=3
:

For any totally real field K of degree m and discriminant dK let ıK D d
1=m
K

be its
so-called root discriminant and let

ır
min.m/DminfıK jK is totally real of degree mg:

The equation (9) implies that for our purposes relevant fields k must satisfy ık <
f .m/D .2�/4=3=22=3m . The function f is increasing in m but f .m/ < .2�/4=3 <
11:6 for all m. A Odlyzko proved lower bounds for ır

min.m/ and from his work we
know that for any m � 9 the inequality ır

min.m/ > 11:823 holds (see Odlyzko [14]).
We conclude that m � 8. But we can improve this knowing the exact value of the
minimal root discriminant of a totally real field of degree less than or equal to 8 which
has been determined by J Voight in [24, Table 3]. The values of ır

min.m/ and f .m/
are compared in Table 1.

m 8 7 6 5 4

ır
min.m/ 11.385 11.051 8.182 6.809 5.189
f .m/ 10.943 10.853 10.734 10.570 10.329

Table 1: Root discriminant bounds

Altogether, we have:
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Lemma 3.4 If �1
O , with O a maximal order in the quaternion algebra A.kIm; n; dA/

as above, contains a lattice of a fake .P1/n , then n�mD Œk WQ�� 6.

Since the dimension n of an arithmetic fake product is always less than or equal to the
degree m of the center field k of the defining quaternion algebra, any irreducible
fake .P1/n whose fundamental group satisfies condition (7) is either 2–, 4– or 6–
dimensional. As already remarked, the 2–dimensional examples are discussed in [8]
(see also references therein) in greater generality. Moreover we can prove:

Theorem 3.5 There are no irreducible fake .P1/6 X� such that � satisfies (7).

Proof Assume that X� is an irreducible fake .P1/6 such that � < �1
O and O1 is

a maximal order in A D A.kI 6; 6; dA/. According to Lemma 3.4 the totally real
number field k is of degree 6 with discriminant dk � .10:734/6� 1529570:6. Finally,
vol.X�1

O
/D2�k.�1/�

Q
pjdA

.N p�1/�26 . As � is cocompact, A is a division algebra
and therefore there must be at least one finite place of k ramified in A (by assumption, A

is unramified at all infinite places of k ). Since the number of ramified places is even
(by the reciprocity law for Hilbert-symbols (see Vignéras [23, Corollaire 3.3, page 76]))
there must be at least two such finite places. In Table 5 (see Section 5), we collected the
needed invariants of all totally real sextic fields with discriminant less than 1529570:6

which were computed with PARI. The list of these fields has been produced by J Voight
(see [25]). With the knowledge of all these values, case by case analysis shows that
there is no totally indefinite division quaternion algebra A over a sextic real field
satisfying 2�k.�1/ �

Q
pjdA

.N p� 1/� 26 . We note that the last condition bounds the
value of

Q
pjdA

.N p� 1/D
Q

pjdA
.pf .p=p/� 1/, with f .p=p/ the inertia degree of p,

and thus restricts the set of possible prime ideals p at which A ramifies.

We will now focus on 4–dimensional fake products.

Theorem 3.6 Let A D A.kIm; 4; dA/ be a quaternion algebra over a totally real
number field k unramified at 4 archimedean places of k and O a maximal order in A.
Assume that � < �1

O is a finite-index torsion-free subgroup such that X� D �nH
4 is a

fake product of projective lines. Then the pair .k; dA/ (determining the isomorphism
class of A uniquely) belongs to the list in Table 2.

There, the reduced discriminant dA D
Q

pp is a (possibly empty) formal product of
suitably chosen prime ideals pp lying over a rational prime p .

Remark 3.7 To specify what “suitably chosen” in the above Theorem 3.6 means, let
us consider an example. Let k be the totally real field of degree 4 and discriminant
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dk defining polynomial �k.�1/ dA

1957 x4� 4x2�xC 1 2=3 p3p7

2000 x4� 5x2C 5 2=3 p2p5

2304 x4� 4x2C 1 1 p2p3

38569 x5� 5x3C 4x� 1 �8=3 p7

106069 x5� 2x4� 4x3C 7x2C 3x� 4 �16 p2

453789 x6�x5� 6x4C 6x3C 8x2� 8xC 1 16=3 ∅
1387029 x6� 3x5� 2x4C 9x3�x2� 4xC 1 32 ∅
1397493 x6� 3x5� 3x4C 10x3C 3x2� 6xC 1 32 ∅

Table 2

dk D 38569. Then there are two prime ideals of k lying over 7, but one with inertia
degree 1 and the other with inertia degree 4 (see Table 4, Section 5). Only the first
prime ideal can be taken as the prime where A, the quaternion algebra defining a fake
.P1/4 , ramifies, but not the latter.

Proof of Theorem 3.6 Let A and � < �1
O as above be given. Then by Lemma 3.4,

mD Œk WQ�� 6 and the root discriminant ık satisfies ık � f .m/ with the value f .m/
from Table 1. We know that e.X�/D 16D Œ�1

O W��e.X�1
O
/D 25�mC1�k.�1/ � integer.

Hence, k satisfies the condition

(10) 16

25�m�k.�1/
2N:

In the already mentioned Table 5 from Section 5, we find all the sextic fields k satisfying
ık � f .6/. Additionally, Tables 4 and 3 (see Section 5) contain all the totally real
quintic and quartic fields with ık � f .m/ and satisfying the condition (10). Next, note
that for each finite place p of k which divides the reduced discriminant dA , the value
N p�1D pf .p=p/�1 divides 16=.25�m�k.�1//. The relevant values for f .p=p/ are
given in Tables 5, 4 and 3. Finally, for m D 4; 5, the quaternion algebra (which is
assumed to be a skew field) has to be ramified at least at one finite place of k and if
mD 4, A ramifies at least at two finite places.

4 Examples

Let � D �20 be a primitive 20th root of unity, KDQ.�/ the corresponding cyclotomic
field and k D Q.� C ��1/ D Q.cos.�=10// the maximal totally real subfield of K .
The field k is defined by the polynomial P .x/D x4� 5x2C 5. We summarize some
relevant facts about k .
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Lemma 4.1 The field k is a totally real abelian quartic field of discriminant dkD2000.
The small rational primes have the following prime ideal decomposition in k :

� 2Ok D p2
2

, where p2 is a prime ideal in Ok with norm N p2 D 4.
� 3Ok D p3 is inert.
� 5Ok D p4

5
is totally ramified in k .

The value of Dedekind zeta function �k.s/ at s D�1 is �k.�1/D 2
3

.

Proof Either one consults the Table 3 in Section 5 or one applies directly some of the
well-known facts about cyclotomic fields. Let us briefly explain the second approach:
Let �n be a primitive nth root of unity. Then, the extension Q.�n/=Q.�n C ��1

n /

is unramified at all the finite places of k for n not a prime power (see Washing-
ton [26, Proposition 2.15]). Also, a rational prime p factorizes in Q.�n/ as

pOQ.�n/ D .Q1 � � �Qr /
'.p�p.n//;

where all Qi are of residual degree fp Dminff j pf � 1 mod n=p�p.n/g and �p. � /
is the normalized p–valuation [13, Proposition I(10.3)]. Recall again the fundamen-
tal identity for prime ideals [13, Proposition I.(8.2)] which in this case states that
fp'.p

�p.n//r D '.n/. It follows for � D �20 that the principal ideal 2OQ.�/DP2
2

is a
square of a prime ideal in OQ.�/ . As Q.�/=k is unramified, the stated decomposition
of 2 in Ok follows. The above shows also that 3 is inert in OQ.�/ hence inert in Ok .
Finally, we find that 5OQ.�/ D .PP0/4 is a product of two prime powers. Again, as
the extension Q.�/=k is unramified, the fundamental identity allows only the stated
possibility for the decomposition of 5 in Ok . For the computation of the zeta value,
one can use the formula for �k.�1/ as the product of values L.�1; �/, where �
runs over all even Dirichlet characters modulo 20 (a Dirichlet character � is even
if �.�1/ D 1) and the formula L.�1; �/ D �B2;�=2 in terms of the generalized
Bernoulli number B2;� associated with � [26, Theorems 4.2 and 4.3]. The general
formula for the values B2;� can be found for instance in [26, Proposition 4.1]. If � is
a nontrivial even character with conductor N there is a simple expression for B2;� ,
namely B2;� D

1
N

PN
aD1 �.a/a

2 (see for instance [26, Exercise 4.2]). Now, there are
four even Dirichlet characters mod 20: the trivial character �0 with B2;�0

D 1=6, a
real character �1 with conductor 5 given by �1.11/D 1, �1.17/D�1 contributing
B2;�1

D 4=5 and two conjugate even characters �2 , x�2 with conductor 20 defined by
�2.11/ D �1, �2.17/ D

p
�1 contributing B2;�2

D 4
p
�1C 8. Altogether we get

�k.�1/D 1
12

2
5
.2
p
�1C 4/.�2

p
�1C 4/D 2

3
.

Now let ADA.kI 4; 4; p2; p5/ be the quaternion algebra over k , ramified exactly at
the two places p2 and p5 .
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Theorem 4.2 Let O � A.kI 4; 4; p2; p5/ be a maximal order. Then, X�1
O

is a four-
dimensional fake product of projective lines.

Proof By Lemma 2.1, e.X�1
O/D 2�k.�1/.N p2�1/.N p5�1/, and Lemma 4.1 gives

immediately the asked value e.X�1
O/D2� 2

3
.22�1/.5�1/D16D24 . We need to prove

that X�1
O is smooth. For this we will exclude the existence of elements of finite order

in �1
O . Note that there exists a torsion element in �1

O if and only if there is an embedding
of Ok Œ�� into O , where � is some primitive root of unity. In particular, every torsion
corresponds to a (commutative) subfield k.�/�A. In order to show the claim we will
exclude the possibility of an embedding k.�/ ,! A. It is sufficient to consider only
primitive pth roots of unity � , where p is an odd prime or pD4. Since Œk WQ�D4, and
k.�/=k is at most a quadratic extension, k.�/�A is possible at most for p D 3; 4 or
5. By the classical embedding theorem of Hasse [23, Theoreme 3.8, page 78], k.�/ can
be embedded in A if and only if each prime p j dA is nonsplit in k.�/. Let us consider
�D �3 and show that p2 �Ok , the prime ideal over 2, splits in the field LD k.�3/.
The field LDk.

p
�3/ is a subfield of Q.�60/, and by the facts from the general theory

of cyclotomic fields used in the proof of Lemma 4.1, 2OQ.�60/ DQ2
1
Q2

2
, where Q1;2

are both of inertia degree 4 over 2. The primes Q1 and Q2 are Galois conjugate by the
automorphism

p
�3 7! �

p
�3, since 2OQ.�20/ D q2 with inertia degree f .q=2/D 4.

Lemma 4.1 implies that p2 is split in k.�3/ and therefore k.�3/ is not a subfield of A.

Consider next L D k.�/ with � D �4 or � D �5 . Then, L D K D k.�20/, and
we can use same kind of arguments: namely, we know that K=k is unramified at
all the finite places and 5OK D P4 �P04 with two prime ideals P, P0 in K with
f .P=5/D f .P0=5/D 1. By Lemma 4.1, 5Ok D p4

5
, hence p5 DPP0 is split in K

and K is not a subfield of A.

Let us present another example. Let �24 be a primitive 24th root of unity, LDQ.�24/

the corresponding cyclotomic field and ` D Q.�24C �
�1
24
/ the maximal totally real

subfield of L. Then, as in the example before we have the following elementary result,
which can be proved in the same way as Lemma 4.1.

Lemma 4.3 We have that ` is a quartic field of discriminant d`D2304 and �`.�1/D1.
We have the following prime ideal decomposition of rational primes in O` :
� 2O` D p4

2
.

� 3O` D p2
3

.
� 5O` D p5p

0
5

.

Theorem 4.4 Let A D A.`I 4; p2; p3/ be the totally indefinite quaternion algebra
over ` of reduced discriminant dA D p2p3 and O a maximal order in A. Then X�1

O
is

an irreducible four-dimensional fake product of projective lines.
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Proof The proof goes along the lines of the proof of Theorem 4.2. The equality
e.X�1

O
/D 2.2� 1/.32� 1/D 16 follows immediately from Lemmas 4.3 and 2.1. For

proving the smoothness of X�1
O

, note that `.�3/ and `.�4/ coincide with the cyclotomic
field Q.�24/ where p3 � O` , the prime ideal over 3 is split. This shows that `.�3/
and `.�4/ cannot be contained in A. Thus X�1

O is smooth.

After giving the examples, let us show that all the other virtual candidates from
Theorem 3.6 do not give rise to a lattice of a fake product.

Theorem 4.5 Besides the two examples above, no other quaternion algebra A contains
a lattice of a fake .P1/n which is a finite-index subgroup of the norm-one group of a
maximal order in A.

Proof We will exclude the only possible quaternion algebras from Theorem 3.6 by
showing the corresponding lattices are never torsion free (if they exist). Consider
for instance A.k1957; 4; 4; p3p7/ with k1957 , the totally real quartic field with dis-
criminant 1957, which has the smallest discriminant among the possible fields. From
Table 3, vol.�1

O/ D
4
3
� .3 � 1/.7 � 1/ D 16, hence �1

O is the only candidate for a
lattice of a 4–dimensional fake product. But we can show �1

O contains an element of
order 2 which comes from an embedding of �4 into O . Namely, let K D k1957.�4/;
then K is a totally complex field of discriminant 980441344 D 281921032 defined
by x8 � 4x6 C 2x5 C 16x4 � 12x3 C 25x2 � 12x C 37 (via PARI). Considering
the factorization of this polynomial modulo 3, the rational prime 3 factorizes in K

as q3q
0
3

as a product of two prime ideals. Since 3 is also a product p3p
0
3

of two
prime ideals in k (compare Table 3), p3 remains prime in K and hence by the
embedding theorem [23, Theoreme 3.8, page 78] �4 can be embedded into A. But
this embedding can even be chosen in such a way that �4 lies in O (see Shimura [20,
Proposition 2.8]) so �4 gives rise to a torsion in �1

O . In all the other cases, except
ADA.k453789; 6; 4;∅/, the same kind of arguments work: the only possible lattice
is �1

O itself, but which is never torsion free. In the case A D A.k453789; 6; 4;∅/,
where k453789 is the totally real sextic field of discriminant 453789, the possible
lattice of a 4–dimensional fake product is a subgroup of index 6 in �1

O . Now recall
the following elementary group-theoretic result (see Brown [5, IX 9.2] for a proof of a
more precise result): If H;G0 <G are groups with H finite and G0 torsion free, then
the index ŒG W G0� is divisible by jH j. On the other hand, k453789 DQ.�21C �

�1
21
/

is the maximal totally real number field of the cyclotomic field Q.�21/. Since Q.�21/

is a totally imaginary quadratic extension of k453789 and A is unramified at all the
finite places, �21 can be embedded into O and the index of a torsion-free subgroup
in �1

O must be divisible by 21 which contradicts the assumption Œ�1
O W ��D 6.
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Remark 4.6 More precisely we can say that up to isomorphism, the two examples
of fake .P1/4 are the only examples of irreducible fake .P1/n with n � 4 whose
fundamental group is contained in �1

O . This follows from the fact that there is a single
conjugacy class of maximal order inside A.Q.�20C �

�1
20
/; 4; 4; p2p5/ and A.Q.�24C

��1
24
/; 4; 4; p2p3/ since both fields have class number one (see [11, Section 6.7, (6.13)]).

5 Tables

In this section we list the tables of invariants of quaternion algebras related to lattices
of fake products of projective lines used in previous sections.

dk defining polynomial �k.�1/ f . p
2
/ f . p

3
/ f . p

5
/ f . p

7
/ f . p

11
/ f . p

13
/

725 x4�x3�3x2CxC1 2
15

4 4 2 2I 2 1I 1I 2 2I 2

1125 x4�x3�4x2C4xC1 4
15

4 2 4 2I 2

1957 x4�4x2�xC1 2
3

4 1I 3 4 1I 3

2000 x4�5x2C5 2
3

2 4 1 4 4

2225 x4�x3�5x2C2xC4 4
5

2I 2 4 2I 2

2304 x4�4x2C1 1 1 2 2 2

2525 x4�2x3�4x2C5xC5 4
3

4 4 1I 1 4

2624 x4�2x3�3x2C2xC1 1 2 4 1I 1I 2

2777 x4�x3�4x2CxC2 4
3

1I 3 4 4

3600 x4�2x3�7x2C8xC1 8
5

3981 x4�x3�4x2C2xC1 2 4 1I 2 1I 3

4205 x4�x3�5x2�xC1 2 4 4 1I 2

4352 x4�6x2�4xC2 8
3

1 4

9909 x4�6x2�3xC3 8 4

10512 x4�7x2�6xC1 8 2

Table 3: Totally real quartic fields with root discriminant less than or equal
to 10:3 and with the property that 16=2�k.�1/ is an integer: each entry in
the column f .p=p/ is the inertia degree of a prime ideal p dividing pOk ;
the number of entries is the number of prime ideals dividing pOk .
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The invariants are obtained as follows. First we collect all defining polynomials of
number fields of degree m� 6 with root discriminant less than f .m/ which can be
found in Cohen [2] and Voight [25]. The PARI procedure nfinit->idealprimedec
gives the decomposition of small rational primes in k . We use the PARI procedure
zetakinit->zetak to compute the values �k.�1/. More precisely, PARI a priori
computes an approximation of the true value of �k.2/ by computing the truncated
Euler product Y

p�x

Y
pjp

.1�N p�2/�1:

The accuracy depends on the choice of x but the precision of 5–10 decimal digits is
certain and this turns out to be enough in given cases. We can namely control the result
knowing some properties of the zeta values �k.�1/. Recall that by the theorem of
Klingen and Siegel [21], �k.�1/ is a rational number and moreover we have information
on primes dividing the denominator of �k.�1/ and its size. By [21, page 89] we know
that the denominator of 2m�k.�1/ divides a certain integer c2m which in given cases
is product of small primes (if mD 4 then p D 2; 3; 5).

Hence we have an upper bound B such that B�k.�1/ is an integer. The functional equa-
tion implies that B�k.�1/DB�k.2/�.�1/m2�m��2md

3=2

k
is an integer. So with an ap-

proximation Zk.2/ we would take the closest integer to BZk.2/�.�1/m2�m��2md
3=2

k

to obtain the true value. Consider for instance the quartic field k with discriminant
dk D 725. PARI gives us the value Zk.2/D 1:0369329880 : : :. By Siegel’s theorem
we know that only 2; 3; 5 can divide the denominator of �k.�1/. Hence from the value

30Zk.2/2
�4��87253=2

D 3:9999999997

we find that �k.�1/D 4
30
D

2
15

is the correct value.

dk defining polynomial �k.�1/ f . p
2
/ f . p

3
/ f . p

5
/ f . p

7
/ f . p

11
/ f . p

13
/

24217 x5�5x3�x2C3xC1 �
4
3

5 5 1I 4 5 2I 3 2I 3

36497 x5�2x4�3x3C5x2Cx�1 �
8
3

5 5 2I 3 2I 3

38569 x5�5x3C4x�1 �
8
3

5 5 5 1I 4

81509 x5�x4�5x3C3x2C5x�2 �32
3

Table 4: Totally real quintic fields with root discriminant less than or equal
to 10:570 and with the property that 16=�k.�1/ is an integer: each entry in
the column f .p=p/ is the inertia degree of a prime ideal p dividing pOk ;
the number of entries is the number of prime ideals dividing pOk .
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dk defining polynomial �k.�1/ f .p
2
/ f .p

3
/ f .p

5
/ f .p

7
/ f . p

11
/

300125 x6�x5�7x4C2x3C7x2�2x�1 296
105

6 6 3 2 3I 3

371293 x6�x5�5x4C4x3C6x2�3x�1 152
39

6 3I 3 2I 2I 2 6

434581 x6�2x5�4x4C5x3C4x2�2x�1 104
21

6 3I 3 3I 3 2

453789 x6�x5�6x4C6x3C8x2�8xC1 16
3

6 3 3I 3 1

485125 x6�2x5�4x4C8x3C2x2�5xC1 88
15

6 2I 4 3

592661 x6�x5�5x4C4x3C5x2�2x�1 8 6 6 2I 4

703493 x6�2x5�5x4C11x3C2x2�9xC1 72
7

6 6

722000 x6�x5�6x4C7x3C4x2�5xC1 56
5

2 6

810448 x6�3x5�2x4C9x3�5xC1 40
3

2 3I 3

820125 x6�9x4�4x3C9x2C3x�1 584
45

6 2

905177 x6�x5�7x4C9x3C7x2�9x�1 320
21

3I 3 6

966125 x6�x5�6x4C4x3C8x2�1 256
15

6

980125 x6�x5�6x4C6x3C7x2�5x�1 256
15

6

1075648 x6�7x4C14x2�7 416
21

3

1081856 x6�6x4�2x3C7x2C2x�1 20 3

1134389 x6�2x5�4x4C6x3C4x2�3x�1 64
3

6

1202933 x6�6x4�2x3C6x2Cx�1 24 6

1229312 x6�10x4C24x2�8 172
7

3

1241125 x6�7x4�2x3C11x2C7xC1 376
15

6

1259712 x6�6x4C9x2�3 248
9

3

1279733 x6�2x5�6x4C10x3C10x2�11x�1 544
21

6

1292517 x6�6x4�x3C6x2�1 232
9

6

1312625 x6�x5�7x4C7x3C12x2�12x�1 416
15

2I 4

1387029 x6�3x5�2x4C9x3�x2�4xC1 32 6

1397493 x6�3x5�3x4C10x3C3x2�6xC1 32 6

1416125 x6�2x5�5x4C9x3C6x2�9xC1 152
5

2

1528713 x6�3x5�3x4C7x3C3x2�3x�1 304
9

3I 3

Table 5: Totally real sextic fields with root discriminant less than or equal
to 10:734; the entries should be read as follows: each entry in the column
f .p=p/ is the inertia degree of a prime ideal p dividing pOk ; the number of
entries is the number of prime ideals dividing pOk .
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