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Simple Riemannian surfaces are scattering rigid

HAOMIN WEN

Scattering rigidity of a Riemannian manifold allows one to recognize the metric of
a manifold with boundary by looking at the directions of geodesics at the boundary.
Lens rigidity allows one to recognize the metric of a manifold with boundary from
the same information plus the length of geodesics. There are a variety of results about
lens rigidity but very little is known for scattering rigidity. We will discuss the subtle
difference between these two types of rigidities and prove that they are equivalent for
two-dimensional simple manifolds with boundaries. In particular, this implies that
two-dimensional simple manifolds (such as the flat disk) are scattering rigid since
they are lens/boundary rigid.

53C24; 57M27

1 Introduction

1.1 The invisible Eaton lens

The invisible Eaton lens (see Eaton [8], Kerker [13] and Hannay and Haeusser [11]) is
a gradient-index (GRIN) lens that looks like the vacuum from the outside, but has an
infinite refractive index at the center. The refractive index n of the invisible Eaton lens
is given by
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One can think the Eaton lens as a Riemannian manifold with the conformally flat
metric n2g0 on the unit disk. The metric has a singularity at the center, and light
trajectories will be geodesics in that Riemannian manifold.

As can be seen from Figure 1, the direction of each light ray when entering the lens
is the same as the direction of the light ray when leaving the lens. Hence there is no
refraction visible from the outside (even though each light ray makes a complete circuit
inside the Eaton lens) and thus this Eaton lens is invisible.

Question 1.1 Can we have an invisible lens without singularities?
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Figure 1: Trajectories of light in an invisible Eaton lens

1.2 Scattering rigidity and lens rigidity

Question 1.1 is equivalent to asking whether flat balls are scattering rigid. Simply put,
a Riemannian manifold M is scattering rigid if M is determined by its scattering data
(see below) up to isometries which leave the boundary fixed.

Let � W �M ! M be the unit tangent bundle of M and �xM be the set of unit
tangent vectors at x for any x 2M . Let @�M be the boundary of the unit tangent
bundle of M . In other words, @�M D

S
x2@M �xM . For each x 2 @M , let �M .x/

be the unit normal vector of M pointing inwards at x . Then put

@C�xM D fX 2�xM j .X; �M .x//gM
> 0g;

@0�xM D fX 2�xM j .X; �M .x//gM
D 0g;

@��xM D fX 2�xM j .X; �M .x//gM
< 0g;

and write

@C�MD
[

x2@M

@C�xM; @0�MD
[

x2@M

@0�xM; @��MD
[

x2@M

@��xM:

For each X 2 @C�M , there is a geodesic X whose initial tangent vector is X .
Extend the geodesic as long as possible until it touches the boundary @M again. Let
�X WD `.X /, the length of X .

M

X X

@M

˛M .X /

Figure 2: The scattering map ˛M
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If the geodesic X is of finite length, call its tangent vector at the other endpoint
˛M .X / (see Figure 2.) The map ˛M W @C�M ! @�M defined above is called the
scattering relation of M . Note that ˛M .X / will be undefined if X is of infinite
length.

Suppose that we have two Riemannian manifolds .M;gM /, .N;gN / and an isometry
hW @M!@N between their boundaries. Then there is a natural bundle map 'W @�M!

@�N defined as

(1) '.aX C b�M .x//D ah�.X /C b�N .h.x//

for any unit vector X based at x tangent to @M and real numbers a and b such that
a2Cb2D 1. We say M and N have the same scattering data rel h if 'ı˛M D˛N ı' .
If we also have `.X /D `.'.X //, then we say M and N have the same lens data
rel h.

Definition 1.2 We say a Riemannian manifold M is scattering rigid (resp. lens rigid)
if for any Riemannian manifold N which has the same scattering data as M (resp.
lens data) rel h (where hW @M ! @N is an isometry) we can always extend h to an
isometry from M to N .

We will omit “rel h” when h is clear from the context or the specific choice of h does
not matter.

Question 1.3 (Equivalent to Question 1.1) Are flat balls scattering rigid?

Remark Theorem 1.7 (below) shows that two-dimensional flat disks are scattering
rigid. Flat balls (of any dimension) are known to be lens rigid (see Gromov [10]).

1.3 Simple manifolds

Definition 1.4 A compact Riemannian manifold with boundary is simple if
(i) its boundary is strictly convex,

(ii) there is a unique minimizing geodesic connecting any pair of points on the
boundary,

(iii) the manifold has no conjugate points.

Remark Note that simple manifolds are topological balls.

Conjecture 1.5 (Michel [14]) Simple Riemannian manifolds are lens (boundary)
rigid.

Theorem 1.6 (Pestov and Uhlmann [15]) Simple Riemannian surfaces are lens
(boundary) rigid.
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Remark A Riemannian manifold is boundary rigid if its metric is determined by the
distance function between boundary points. The above statements are originally about
boundary rigidity, which is equivalent to lens rigidity when the manifold is simple.
Theorem 1.6 confirms the conjecture for surfaces. There are a variety of results in
higher dimensions (see Besson, Courtois and Gallot [2], Burago and Ivanov [4; 3],
Croke and Kleiner [7] and Michel [14]), but it is still largely open.

Our result extends Theorem 1.6 to scattering rigidity.

Theorem 1.7 Simple Riemannian surfaces are scattering rigid.

Remark Simple Riemannian manifolds do not have trapped geodesics and trapped
geodesics often make this type of rigidity problems much harder. Amazingly, the first
(and the only one before this one) known result of scattering rigidity (Croke [6]) is for
the flat product metric on S�Dn , which has trapped geodesics.

To get Theorem 1.7 from Theorem 1.6, it suffices to show that M and N have the
same lens data if they have the same scattering data, assuming that M is simple. Note
that this is not true in general without the assumption that M is simple (see Figure 3).

Figure 3: The second surface is obtained from the first one by removing
the upper hemisphere and identifying antipodal points in the top boundary
component. These two surfaces have the same scattering data but different
lens data.

By the first variation of arc length, `.'.X //� `.X / is equal to a constant L� 0. If
L > 0, then '.X / converges to a closed geodesic of length L as X converges to a
vector X0 tangent to the boundary (see Figure 4.) We will call this closed geodesic X0

.

At first glance, this is very unlikely to happen, since one expects @N to be convex
as @M is convex. However, the convexity of the boundary of a manifold, being a local
property, is not determined by local scattering data as illustrated by the invisible Eaton
lens. The boundary of the invisible Eaton lens is actually totally geodesic, and we have
closed geodesics running along the boundary. The trickiest part of the proof is to get rid
of these closed geodesics using knot theory (which only works in dimension 2 so far).
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X in M '.X / in N

Figure 4: Closed geodesics?

1.4 Sketch of the proof

As explained in the previous section, we need to close the gap between lens rigidity
and scattering rigidity, that is, to show LD 0. Recall that LD `.'.X //� `.X /, the
difference between the lengths of corresponding geodesics in M and N , where M

and N are two Riemannian manifolds with the same scattering data rel hW @M ! @N .

In Section 2, we will prove that N is homeomorphic to a disk.

Pick any x 2 @N . If L > 0, then there is a closed geodesic x of length L which
is tangent to @N at x . There are two such closed geodesics for each x , but we can
choose x properly such that x moves continuously as x moves. In this section, we
will assume that x has multiplicity 1. The actual proof will be more complicated due
to the possibility of higher multiplicities, but the idea of the proof is the same.

The paper will study the isotopy type of the projectivized unit tangent vector field
P ı zx W R=Z ! P�N of x , where zx W R=Z ! �N is the unit tangent vector
field of x (see Equation (3) in Section 3), P�N D �N=f.x; �/ � .x;��/g is the
projectivized unit tangent bundle of N and P W �N ! P�N is the corresponding
quotient map.

In Section 3 we shall define a family of knot invariants for contractible knots embedded
in P�N , and then use those invariants to prove Theorem 1.8, which is interesting on
its own.

Theorem 1.8 We have that P ı z is an isotopically nontrivial knot in P�N for any
smooth immersed curve  W R=Z!N without self-tangencies.

Remark Theorem 1.8 is purely knot-theoretical as it involves neither scattering data
nor lens data. It is a bit surprising that this simple fact was not known before even for
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plane curves. Actually, it would be a completely different story if the projectivization
were dropped: Chmutov, Goryunov and Murakami [5] showed that every knot type
in �R2 (including the trivial type) is realized by the unit tangent vector field along an
immersed plane curve.

Notice that the union of P ı zx for all x 2 @N is a torus immersed in P�N . We
can perturb the immersion to an embedding. Then we can prove that the torus is
compressible by showing that P ı zx is contractible. (Actually, any embedded torus
in P�N is compressible.) Next we can show that the other generator of the fundamental
group of the torus is not contractible in P ı zx . It follows that P ı zx bounds an
embedded disk, which contradicts Theorem 1.8. Therefore, there are no such closed
geodesics.

In the actual proof, we shall prove Theorem 1.7 in Section 4 using a similar contradiction
without the assumption on the multiplicity.

Acknowledgements Many thanks to my advisor Christopher Croke for introducing
me to this subject and teaching me the techniques in this field. Many ideas in this paper
stem from discussions with him.

2 Topology of N

Throughout the paper (except in Section 3), M and N will be two Riemannian surfaces
with the same scattering data rel hW @M ! @N , where h is an isometry. Also, M is
assumed to be simple. The induced bundle map defined in (1) is 'W @�M ! @�N .
We aim to prove the following result in this section.

Proposition 2.1 The surface N is homeomorphic to a 2–disk if M is simple.

If L WD `.'.X //� `.X /D 0, then M and N have the same lens data, and hence N

is a 2–disk. Thus we shall assume that L> 0 in this section.

Pick a point p0 2 @N , and let ˇ1W Œ0; 1�! @N be a constant speed closed curve of
multiplicity 1, starting and ending at p0 . There are two such curves corresponding to
different orientations but either one is fine.

Fix an orientation of @N and let Y0.x/ be the unit vector tangent to @N at x 2 @N

such that Y0.x/ and @N have the same orientation. Define ˇx W Œ0; 1�!N as

ˇx.t/D Y0.x/.Lt/;
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where Y0.x/ is the closed unit speed geodesic tangent to Y0.x/ of length L. Write
ˇ2 D p̌0

.

For any loop ˇ in N based at p 2N , we will denote by Œˇ�p the based homotopy class
of ˇ . Also, let hW �1.N;p/!H1.N;Z/ be the abelianization map which sends based
homotopy classes to corresponding homology classes. We will write Œˇ� WD h.Œˇ�p/.

Proposition 2.2 We have Œˇ1�p0
D Œˇ2�

�2
p0

.

Proof We shall prove the equivalent statement

(2) Œˇ2�p0
D Œˇ2�

�1
p0
Œˇ1�
�1
p0
:

Let Y W Œ0; 1�p0
! @C�N be a smooth curve from Y0.x/ to �Y0.x/ so that we have

Yt
.�.Yt //D ˇ1.t/.

Define H W Œ0; 1�� Œ0; 1�!M as

Hs.t/D

�
Ys
.2�.Ys/t/ if 0� t � 1

2
,

ˇ1..2� 2t/s/ if 1
2
� t � 1.

Then ŒH0�p0
D Œˇ2�p0

and ŒH1�p0
D Œˇ2�

�1
p0
Œˇ1�
�1
p0

, which implies (2).

Notice that ˇx are all in the same homology class. Denote by gC the homology class
of ˇx .

Assume that gC ¤ 0. Since N is a surface with boundary, it deformation retracts to
a graph. (The deformation is quite simple. Take any cell structure on N . Remove a
1–cell on the boundary and a 2–cell by deformation retraction if they intersect. Repeat
this process until all 2–cells are removed.) Hence H1.N;Z/D Zn for some n 2N .
So gC Dmg0 for some m> 0 and g0 prime. Then the multiplicity of ˇx is at most m

since it must divide m. Let m0 be the maximal multiplicity of ˇx .

Proposition 2.3 If gC ¤ 0, then H.N;Z/ is generated by g0 .

Proof For any g 2 �1.N;p0/, let gW Œ0; 1�!N be the length-minimizing represen-
tative of g that is of constant speed Tg . Since A WD �1

g .N n@N / is open, AD
S

A,
where A is a family of disjoint open intervals. For any .a; b/ 2A, since g is length
minimizing, gjŒa;b� has to be a geodesic segment. If a¤0, then  0g.a/ has to be tangent
to @N , or g will have a corner at g.a/, contradicting the assumption that g is length
minimizing. According to the scattering data,  0g.b/ is also tangent to @N if  0g.a/
is tangent to @N . Hence gjŒa;b� is a closed geodesic tangent to @N when a ¤ 0.
Similarly, gjŒa;b� is closed geodesic tangent to @N when b¤1. Suppose that aD0 and
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b D 1. If  0g.0/ is not tangent to @N , then  0g.0/=j
0
g.0/j D '.X / 2 @C�N for some

X 2 @C�M , and we have  0g.1/=j
0
g.1/j D ˛M .X /. Since M is a simple manifold

and X 2 @C�M , X is a length minimizing geodesic, and thus X and ˛M .X / have
different base points. It follows that  0g.0/ and  0g.1/ also have different base points,
contradicting our assumption that g is a loop. Therefore, in any case, gjŒa;b� is
a closed geodesic tangent to @N , and thus of length at least L=m0 . It follows that
jAj �m0Tg=L<1. So we can write ADf.a1; b1/; .a2; b2/; : : : ; .ang

; bng
/g, where

ng D jAj and 0� a1 < b1 � a2 < b2 � � � � � ang
< bng

� 1.

Since gjŒai ;bi � is a closed geodesic, ŒgjŒai ;bi ��D g
ki

0
for some ki > 0. Deleting all

those closed geodesics from g , we obtain a curve running around @N l times for
some l 2 Z. Its homology class will be Œˇ1�

˙l D Œˇ2�
˙2l D g˙2ml

0
. Therefore

h.g/D g
˙2m0lC

Png

iD1
ki

0
:

Since h is surjective, H1.N;Z/ is generated by g0 .

Proposition 2.4 The surface N is not a Möbius strip.

Proof Let � W N1 ! N be a double cover of N . Then N1 is an annulus with
two boundary components S1 and S2 . There are p 2 S1 and q 2 S2 such that
d.p; q/D d.S1;S2/. Let  be the shortest curve from p to q ; then  is perpendicular
to S1 and S2 at its endpoints. Let � be the unit normal vector at p . Since  is the
shortest curve from p to q , its beginning part must coincide with � . If the endpoint
�.�N1

.�// is on S1 , we can shorten  by deleting � . If the endpoint �.�N1
.�// is

on S2 , then  can not be any longer. Thus `. /D �N1
.�/

Notice that, for any X 2@C�N1 , �ıX D��.X / . Let Yt be a smooth curve in �pN1

such that Y0D � , Yt 2 @C�N1 for t 2 Œ0; 1/ and Y1 is tangent to @S1 . Notice that the
endpoint of � ı Yt

D ��.Yt / moves continuously (since N has the same scattering
data as the simple surface M ), and hence the endpoint of Yt

moves continuously for
t 2 Œ0; 1/. Therefore, Yt

connects p and S2 for any t 2 Œ0; 1/. However, we have
`. / D �N1

.�/ D �N .��.�// > L, and limt!1 `.Yt
/ D limt!1 �N .��.Yt // D L,

which contradicts our assumption that  is a shortest curve connecting S1 and S2 .

Proof of Proposition 2.1 If gC ¤ 0, then by Proposition 2.3, H1.N;Z/ is generated
by g0 . Hence H.N;Z/DZ, which implies that N is a Möbius strip, which contradicts
Proposition 2.4.

Therefore, gC D 0. It follows that ˇ2 is contractible, and hence ˇ1 is contractible by
Proposition 2.2. Since every contractible simple closed curve on a surface bounds a
disk (see Epstein [9, Theorem 1.7]), N is a disk.
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3 Knot theory

In this chapter, N will denote a Riemannian surface, with or without boundary, ori-
entable or not. We assume that there is a Riemannian metric on N just for convenience,
because all the results can be stated with only a smooth structure.

3.1 Projectivized unit tangent vector fields

Definition 3.1 The unit tangent vector field of a smoothly immersed curve  on any
Riemannian surface N 2 (possibly with boundary) is a smoothly immersed curve z
in �N defined as

(3) z .t/D
�
 .t/;

 0.t/

j 0.t/j

�
:

Definition 3.2 Let P W �N ! P�N be the quotient map on the unit tangent bundle
which identifies the opposite vectors based at the same point. For any smoothly
immersed curve  in N 2 , P ı z is called the projectivized unit tangent vector field (or
the tangent line field) of  .

Remark Chmutov, Goryunov and Murakami [5] showed that every knot type in �R2

is realized by the unit tangent vector field along an immersed closed plane curve.
However, Theorem 1.8 shows that it is no longer possible to realize the trivial knot after
the projectivization. Figure 5 is an interesting example showing that the unit tangent
vector field of the figure-eight curve is an unknot while the projectivized unit tangent
vector field of the figure-eight curve is knotted.

 W R=Z!R2 z W R=Z!�R2 P ı z W R=Z! P�R2

Figure 5: The unit tangent vector field of the figure-eight curve is unknotted
while the projectivized unit tangent vector field of the figure-eight curve is
knotted. Here the solid tori (�R2 and P�R2 ) are projected to annuli for
illustration.
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Proposition 3.3 For any smoothly embedded closed curve  W R=Z ! N in a 2–
dimensional manifold N , z is not contractible in �N and hence P ı z is not
contractible in P�N .

Proof If  is contractible, then  bounds an embedded disk N1 in N [9, Theo-
rem 1.7].

Let x D z .0/, pD  .0/ and F D ��1.p/. Denote by Œz �x the based homotopy class
of z .

N1

 .0/

 .0:25/ .0:75/

 .0:5/

z

N1

Moving base points towards p

N1

A generator of �1.F;x/

Figure 6: z is homotopic to a generator of �1.F;x/

As in Figure 6, z corresponds to a vector moving along  for a complete circle and
being tangent to  all the time, which is homotopic to a generator of �1.F;x/. Denote
the generator of �1.F;x/ by g1 .

Since
F

i
�!�N

�
�!N

is a fibration, we have an exact sequence of homotopy groups

�2.N;p/! �1.F;x/
i�
�! �1.�N;x/

��
��! �1.N;p/:

Here �1.F;x/D Z since F is a circle.

If N D S2 , then �1.N;p/ D 0 and �1.�N;p/ D �1.RP3;�/ D Z=2Z. Hence
i�.�1.F;x// D Z=2Z. In particular, i�.g1/ ¤ 0. A similar argument shows that
i�.e/¤ 0 when N DRP2 .

If N ¤ S2 and N ¤ RP2 , then �2.N;p/D 0. Hence i� is injective. In particular,
i�.g1/¤ 0.

This completes the proof of Proposition 3.3.
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3.2 Knot invariants

We shall define a family of knot invariants for contractible knots in the projectivized
unit tangent bundle P�N and use these invariants to prove Theorem 1.8.

Let ˇW R=Z! P�N be a contractible smooth knot in the projectivized unit tangent
bundle P�N , whose projection to the surface N 2 is a smoothly immersed curve
 W R=Z!N 2 without self-tangencies.

Definition 3.4 The knot ˇ has a crossing at .l; l 0/ 2 R=Z � R=Z if l ¤ l 0 and
 .l/D  .l 0/. Note that a triple crossing will be treated as three independent crossings
according to this definition.

Since ˇW R=Z ! P�N is contractible, we can lift ˇ to y̌W R=Z ! �N , a knot
embedded in the unit tangent bundle ( y̌.t/ is a unit vector at  .t/ but not necessarily
tangent to  ).

Definition 3.5 A crossing of ˇ at .l; l 0/ is positive if the two pairs of vectors
. y̌.l/; y̌.l 0// and . 0.l/;  0.l 0// are of the same orientation (see Figure 7.) A crossing
will be called negative if it is not positive.

 0.l 0/
 0.l/

A positive crossing

 0.l 0/
 0.l/

A negative crossing

Figure 7: Each little arrow means a point on y̌.

Lemma 3.6 Suppose that  W R=Z! N is a smoothly immersed closed curve on a
surface N without self-tangencies, then all crossings of P ı z .t/ are positive.

Proof Suppose that P ı z has a crossing at .l; l 0/. Write ˇ D P ı z . Then
. y̌.l/; y̌.l 0// D . 0.l/;  0.l 0//, and hence they have the same orientation. Therefore
the crossing at .l; l 0/ is positive.
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Let X be any topological space. For any two curves ˛1W Œ0; 1�!X and ˛2W Œ0; 1�!X

such that ˛1.1/D˛2.0/, denote by ˛1�˛2W Œ0; 1�!X the curve obtained by gluing ˛2

to ˛1 . Also, define R.˛1/ as R.˛1/.t/ WD ˛1.1� t/. If ˛1 and ˛2 are loops based
at p , we have Œ˛1�p Œ˛2�p D Œ˛1 �˛2�p and ŒR.˛1/�p D Œ˛1�

�1
p .

Definition 3.7 Two closed curves ˛1W R=Z! X and ˛2W R=Z! X in any topo-
logical space X are said to be in the same unoriented free homotopy class if 1 is
homotopic to either 2 or R.2/.

When ˇ has a crossing at .l; l 0/, y̌.l/ and y̌.l 0/ are two unit vectors with the same base
point x D �.ˇ.l// and they are neither opposite to each other nor the same (since ˇ is
an embedding). Therefore, there is a unique shortest curve y̌.l;l 0/ in ��1.x/ connect-
ing y̌.l/ and y̌.l 0/. Separate y̌ into two arcs by cutting at y̌.l/ and y̌.l 0/, obtaining
two arcs y̌1W Œ0; 1�! P�N and y̌2W Œ0; 1�! P�N going from y̌.l/ to y̌.l 0/.

Now, let ˇ0
1
D .P ı y̌1/�R.P ı y̌.l;l 0//, and ˇ0

2
D .P ı y̌.l;l 0//�R.P ı y̌2/. Notice that

ˇ0
1
�R.ˇ0

2
/ is homotopic to ˇ , and hence Œˇ0

1
�p ŒR.ˇ

0
2
/�p D Œˇ

0
1
�R.ˇ0

2
/�p D Œˇ�p D e .

Hence Œˇ0
1
�p D ŒR.ˇ0

2
/��1

p D Œˇ0
2
�p . In other words, ˇ0

1
is homotopic to ˇ0

2
, and

hence ˇ0
1

and ˇ0
2

are in the same unoriented free homotopy class of P�N .

Definition 3.8 The unoriented free homotopy class g.l;l 0/ of ˇ0
1

is called the type of
the crossing of ˇ at .l; l 0/.

+

Figure 8: Smoothing a crossing: here each little arrow means a point on y̌

and each little bar means a point on y̌.l;l0/ .

Definition 3.9 For each nontrivial unoriented free homotopy class g of closed curves
in the projectivized unit tangent bundle P�N , define

Wg.ˇ/D#fpositive crossings of ˇ of type gg�#fnegative crossings of ˇ of type gg:
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3.3 Wg is a knot invariant

Theorem 3.10 For each nontrivial free homotopy class g , Wg can be extended to all
the contractible knots embedded in P�N as a knot invariant.

We will show that Wg is a knot invariant by verifying that Wg is unchanged under
Reidemeister moves. A knot will gain or lose a crossing of trivial type after going
through a Reidemeister move of type I. It will gain or lose a pair of crossing of the
same type but opposite signs after going through a Reidemeister move of type II.
Reidemeister moves of type III will not affect crossing. The proof is rather lengthy
because of some technical difficulties.

We will assume that N is compact, and the general case follows automatically since
any manifold is � –compact.

Definition 3.11 According to Alexander, Berg and Bishop [1, Theorem 5], there
is r > 0 such that there is a unique minimal geodesic segment joining p; q 2 N if
d.p; q/ < r . The biggest such r will be called the injectivity radius of N and we will
denote it by inj.N /.

For any two points p; q 2P�N , let dh.p; q/ be the distance between �.p/ and �.q/
on N . (So dh is a pseudometric on P�N .) Notice that p is a projectivized unit
tangent vector at �.p/. When dh.p; q/ < inj.N /, there is a unique shortest geodesic
 W Œ0; 1�!N in N connecting �.p/ and �.q/. Let X W Œ0; 1�!P�N be the parallel
projectivized vector field along  such that X.0/Dp . Similarly, let Y W Œ0; 1�!P�N

be the parallel projectivized vector field along  such that Y .1/D q . Notice that the
angle between X and Y is constant, which is smaller than or equal to �=2. Call this
angle dv.p; q/. Next, put d0.p; q/Dmax.dh.p; q/; dv.p; q//. Note that dh , dv and
d0.p; q/ are all nonnegative and symmetric, but they are not metrics.

Definition 3.12 For p; q 2 P�N such that dh.p; q/ < inj.N / and dv.p; q/ < �=2,
let  0

p;qW Œ0; 1�!�N be the curve that satisfies the following conditions:
(i)  0

p;q.0/D p and  0
p;q.1/D q .

(ii) � ı  is the minimal geodesic connecting �.p/ and �.q/.
(iii) We have

(4)
ˇ̌̌

D

dt
 0

p;q

ˇ̌̌
D dv.p; q/:

We call  0
p;q the minimal linear curve connecting p and q . A curve will be called

linear if it coincides with  0
p;q for any pair of points p; q on the curve that are close

enough. A curve will be called piecewise linear if it consists of finitely many linear
curves.

Geometry & Topology, Volume 19 (2015)



2342 Haomin Wen

Proof of Theorem 3.10 For any " < min.inj.N /; �=2/ and n � 4, we will define
a class of closed piecewise linear knots in P�N called K.n; "/. A closed knot
ˇW R=Z! P�N is in K.n; "/ if and only if the following conditions hold.

(i) ˇ is contractible.

(ii) d0
�
ˇ
�

k
n

�
; ˇ
�

kC1
n

��
< " for k D 0; 1; : : : ; n� 1.

(iii) ˇ
�

kCt
n

�
D  0

ˇ.k
n
/;ˇ.kC1

n
/.t/ for t 2 Œ0; 1� and k D 0; 1; : : : ; n� 1.

In other words, the “distance” (dh and dv ) between any two adjacent vertices p and q

is at most " and the edge between them is  0
p;q . K.n; "/ is an open subset of .P�N /n ,

and thus of dimension 3n.

Let ˇ 2K.n; "/ be a piecewise smooth contractible knot with vertices fxk D ˇ.k=n/g

and edges fek D 
0
xk ;xkC1

g. Its projection � ı ˇ is said to have a singularity at the
vertex �.xi/ if �.xi/ is on � ı ej for some j 62 fi; i � 1g.

Let Kk.n; "/ be the set of knots in K.n; "/ whose projections on N have at most k

singularities. Also, let K0
k
.n; "/D Kk.n; "/�Kk�1.n; "/, knots with exactly k singu-

larities. Then K0.n; "/ is a open submanifold of K.n; "/, and K0
1
.n; "/ is a submanifold

of K.n; "/ of codimension 1.

Notice that the Wg.ˇ/ can be defined for ˇ 2 K0.n; "/ as before without any modifi-
cations. Consider a continuous family of knots ˇt 2 K0.n; "/. As t varies, crossings
of ˇt also move continuously with their types unchanged. Therefore, Wg is constant
on each component of K0.n; "/.

Next, we extend Wg to K1.n; "/. The old definition can not be adapted directly since
there might singularities. Pick any ˇ0; ˇ1 2 K0.n; "/ such that ˇ0; ˇ1 are in the same
component of K1.n; "/. We aim to show that Wg.ˇ0/ DWg.ˇ1/, and then we can
extend Wg to K1.n; "/ by making it constant on each component. Note that Wg will
remain the same on K0.n; "/.

Pick a smooth path H W Œ0; 1�! K1.n; "/ from ˇ0 to ˇ1 . Perturbing H if necessary,
we may assume that H intersects K0

1
.n; "/ transversely a finite number of times. Let

x0.t/, x1.t/, . . . , xn.t/D x0.t/ be the n vertices of H.t/.

As long as H.t/ stays in K0.n; "/, each crossing will just be moving without changing
its type. When H.t/ passes through K0

1
.n; "/, there are three possibilities corresponding

to three types of singularities for knots in K0
1
.n; "/ listed below. Suppose H.c/ 2

K0
1
.n; "/ and H.t/ 62 K0

1
.n; "/ for t 2 .c � ı; c/[ .c; c C ı/. Then � ıH.c/ has a

singularity at �.xi.c// which is on � ı ej , where xi.c/ is the i th vertex of H.c/

and ej .c/ is j th edge of H.c/ (connecting xj .c/ and xjC1.c/).
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(1) If � ı ei.c/ or � ı ei�1.c/ is tangent to � ı ej .c/, then the singularity is called
a cusp. This happens when i D j � 1 or i D j C 2. In this case, H.cC ı/ has one
more or one less crossing than H.c � ı/ has. We will show that the crossing involved
is of the trivial type (ie g D 0) and hence Wg.H.c � ı// D Wg.H.cC ı// for any
nontrivial unoriented homotopy class g of closed curves immersed in P�N .

H.c � ı/ H.c/ H.cC ı/

Figure 9: H.cC ı/ has one more crossing of the trivial type compared to
H.c � ı/ . This corresponds to a Reidemeister move of type I.

Without loss of generality, assume that i D j � 1 and that H.t/ has one more
crossing at .l.t/; l 0.t// than H.t 0/ has when c � ı � t 0 < c < t � c C ı (see
Figure 9). For any t 2 .c; c C ı�, swapping l.t/ and l 0.t/ if necessary, we may
assume l.t/ 2 ..i � 1/=n; i=n/ and l 0.t/ 2 ..i C 1/=n; .i C 2/=n/. Lift H W Œ0; 1�!

K.n; "/ to yH W Œ0; 1�! .R=Z! �N /. Since H.t/ is an embedding, H.t/.l.t// ¤

H.t/.l 0.t//, and hence yH .t/.l.t// and yH .t/.l 0.t// are not opposite vectors. It follows
that there is a unique minimal geodesic y̨.t/W Œ0; 1�! ��1.x/ connecting yH .t/.l.t//

and yH .t/.l 0.t//. Let ˛.t/ D P ı y̨.t/ and glue ˛.t/ to H.t/jŒl.t/;l 0.t/� , obtaining
a closed curve C.t/. Then the type of the crossing of H.t/ at .l.t/; l 0.t// is the
unoriented homotopy class of C.t/. It remains to show that C.t/ is contractible.

Let l.c/D limt!cC l.t/ and l 0.c/D limt!cC l 0.t/; then C.c/ can be defined as before,
which is homotopic to C.t/ for t 2 .c; cC ı/. We shall show that C.c/ is contractible.

Reparametrize C.c/ as x̌W R=Z ! P�N such that x̌.0/ D H.c/.l.c//, x̌.1
3
/ D

xiC1.c/, x̌.2
3
/DH.c/.l 0.c// and �. x̌.1

3
.1Cs///D�. x̌.1

3
.1�s/// for any s 2 Œ0; 1�.

To be precise, define x̌ as

x̌.t/D

8<:
H.c/

�
iC3t

n

�
if t 2 Œ0; 1

3
�,

H.c/
�

iC1
n
C .3t � 1/

�
l 0.c/� iC1

n

��
if t 2 Œ1

3
; 2

3
�,

˛.3� 3t/ if t 2 Œ2
3
; 1�.
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Consider the homotopy GW Œ0; 1�! .R=Z! P�N / defined as

G.s/.t/D

8<:
x̌.t/ if 0� t � 1

3
.1� s/,

T . x̌.t/; �. x̌.1
3
.1� s//// if 1

3
.1� s/� t � 1

3
.1C s/,

x̌.t/ if 1
3
.1C s/� t � 1,

where T . x̌.t/; �. x̌.1
3
.1�s//// is a projectivized unit tangent vector at �. x̌.1

3
.1�s///

obtained by transporting x̌.t/ parallelly along � ı ej .c/. Notice that G.1/ is a closed
curve in ��.xi /N , where ��.xi /N is a circle of length 2� (using the Sasakian metric).
We are going to show that G.1/ is contractible by showing that `.G.1// < 2� . For
any piecewise smooth curve  W Œa; b�! P�N , define its vertical length as

`v. / WD

Z b

a

ˇ̌̌
D

dt
 .t/

ˇ̌̌
dt;

where D
dt

is the covariant derivative. Loosely speaking, `v. / measures the angle
that  .t/ rotates by as t goes from a to b . By our construction, `v.G.s// is constant
as s goes from 0 to 1. Notice that x̌ has three edges. The edges from x̌.0/ to x̌.1=3/
and from x̌.1=3/ to x̌.2=3/ both have vertical lengths at most " (by (4)), and the
vertical length of the edge from x̌.2=3/ to x̌.0/ (which is reparametrized ˛ ) is at most
� . Since "<�=2, `v. x̌/<�C2"<2� , and hence `.G.1//D`v.G.1//D`v.G.0//D
`v. x̌/ < 2� . It follows that G.1/ is contractible, and hence C.t/ is contractible for
any t 2 Œc; cC ı�.

(2) If � ı ei.c/ and � ı ei�1.c/ are not tangent to � ı ej .c/, and if � ı ei.c/ and
� ı ei�1.c/ are on the same side of � ı ej .c/, then the singularity is called a self-
tangency. In this case, H.cC ı/ has two more or two less crossings than H.c � ı/

has. We can show that the two crossings involved are of the same type g but opposite
signs, and hence Wg.H.cC ı//DWg.H.c � ı//.

Without loss of generality, assume that H.t/ has two more crossings at .l1.t/; l 01.t//
and .l2.t/; l 02.t// than H.t 0/ has when c � ı � t 0 < c < t � cC ı (see Figure 10).

Let l1.c/D limt!cC l1.t/ and define l 0
1
.c/, l2.c/ and l 0

2
.c/ similarly. Switching l2

and l 0
2

if necessary, we may assume that l1.c/ D l2.c/ and l 0
1
.c/ D l 0

2
.c/. Also,

either H.l1.c//D xi or H.l 0
1
.c//D xi . Without loss of generality, we assume that

H.l1.c// D xi . Lift H W Œ0; 1�! K.n; "/ to yH W Œ0; 1�! .R=Z! �N /, and denote
the vertices of yH .t/ by yxk.t/ and edges by yek.t/.

For any t 2 .c; cC ı�, we can separate yH .t/ into two arcs by cutting at yH .l1.t// and
yH .l 0

1
.t//. Pick the arc which contains yxi.t/ and glue it to yH.l1.t/;l

0
1
.t// , obtaining a

closed curve C1.t/. We can also separate yH .t/ into two arcs by cutting at yH .l2.t//

and yH .l 0
2
.t//. Pick the arc which does not contain i yxi.t/ and glue it to yH.l2.t/;l

0
2
.t// ,
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H.c � ı/ H.c/ H.cC ı/

Figure 10: H.cC ı/ has two more crossings of the same type but opposite
signs compared to H.c � ı/ . This corresponds to a Reidemeister move of
type II.

obtaining a closed curve C2.t/. Next, define C1.c/ and C2.c/ by taking limits. It is
then clear that P ıC1.t/ and P ıC2.t/ are in the same unoriented homotopy class
since C1.c/D C2.c/. Hence the two crossings at .l1.t/; l 01.t// and .l2.t/; l 02.t// are
of the same type.

Finally, it remains to show that the two crossings have opposite signs. Without
loss of generality, assume that the crossing at .l1.t/; l 01.t// is positive. In other
words, . yH .l1.t//; yH .l 0

1
.t/// and ..� ı H /0.l1.t//; .� ı H /0.l 0

1
.t/// have the same

orientation. It follows that . yH .l1.c//; yH .l 0
1
.c/// and .limt!cC.� ıH /0.l1.t//; .� ı

H /0.l 0
1
.c/// have the same orientation. Since � ı ei.c/ and � ı ei�1.c/ are on the

same side of � ıej .c/, .limt!cC.� ıH /0.l1.t//; .� ıH /0.l 0
1
.c/// and .limt!cC.� ı

H /0.l2.t//; .� ıH /0.l 0
2
.c/// have the opposite orientation. Since . yH .l1.c//; yH .l 0

1
.c///

and . yH .l2.c//; yH .l 0
2
.c/// are the same, . yH .l2.c//; yH .l 0

2
.c/// and .limt!cC.� ı

H /0.l2.t//; .� ıH /0.l 0
2
.c/// have the opposite orientation, and thus the crossing at

.l2.t/; l
0
2
.t// is negative.

(3) If � ı ei and � ı ei�1 are not tangent to � ı ej , and if � ı ei and � ı ei�1 are on
different sides of � ı ej , then the singularity is called a transverse self-intersection. In
this case, all crossings move continuously as t goes from c � ı to cC ı , although one
crossing will also be a singularity at t D c . The type and the sign of that crossing will
be unchanged, which follows from an argument very similar to the one used for the
previous case.

In any case, we have Wg.H.c � ı// D Wg.H.c C ı// for any nontrivial type g .
It follows that Wg.ˇ0/ D Wg.H.0// D Wg.H.1// D Wg.ˇ1/, and thus we may
extend Wg to K1.n; "/ by making it constant on each component.
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Next, we will extent Wg to the whole K.n; "/. Pick any ˇ0; ˇ1 2 K1.n; "/ such
that ˇ0; ˇ1 are in the same component of K.n; "/. We aim to show Wg.ˇ0/DWg.ˇ1/,
and then we can extend Wg to K.n; "/ by making it constant on each component.

The manifold K.n; "/ has a natural stratified structure as follows. For any  2K.n; "/,
pick any neighborhood U of  . If  has k singularities, then let U be the component
of U \K0

k
.n; "/ containing  , which is a submanifold embedded in K.n; "/. Now,

let Xm D f 2 K.n; "/ j dim.U /Dmg. Then K.n; "/ is a stratified space whose m–
dimensional stratum is Xm . We obviously have X3nDK0.n; "/ and X3n�1DK0

1
.n; "/.

(Note that Xm D K0
3n�m

.n; "/ is not true when m is big since the singularities are not
necessarily independent; see Figure 11.)

x1 x6 x4 x7 x9

x5

x2 x3

x9

Figure 11: This is the projection of a knot ˇ 2 X24 to N . Notice that x4

is on the edge from x9 to x1 and also the edge from x6 to x7 . Hence,
there are two singularities involving x4 . There are also two singularities
involving x6 and x7 , and thus ˇ 2 K0

4
.9; "/ . This counterexample shows

that Xm D K0
3n�m

.n; "/ is not true in general when m is big.

Pick a smooth path H W Œ0; 1�! K1.n; "/ from ˇ0 to ˇ1 . Perturbing H if necessary,
we may assume that H intersects each stratum Xm transversely. In other words, H

does not intersect Xm at all if m < 3n� 1. Hence H is actually a path in K1.n; "/,
and thus Wg.ˇ0/DWg.ˇ1/. Therefore, we can extend Wg to K.n; "/ by making it
constant on each component.

We can extend Wg to a knot invariant for all contractible knots embedded in P�N

using Lemma A.1, which will be proved in the appendix. For any smooth contractible
knot ˇ , we can approximate ˇ by a piecewise linear knot ˇ0 that is homotopic to ˇ .
Then we set Wg.ˇ/DWg.ˇ

0/. Wg is well defined according to Lemma A.1.

Now, we are ready to prove Theorem 1.8.
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Proof of Theorem 1.8 Let ˇ D P ı z be the projectivized unit tangent vector field
of  .

If ˇ is not contractible, then ˇ is a nontrivial knot. Assume that ˇ is contractible. We
are going to show that Wg.ˇ/ > 0 for some g , while Wg.Unknot/D 0 for any g .

Assume that  has no self-intersections. Then ˇ is not contractible by Proposition 3.3.
So  has at least one self-intersection.

We will start at any point on  and trace along  until hitting the trace. To be precise,
let q D maxft j  jŒ0;t � has no self-intersectiong. Then there is p 2 Œ0; q/ such that
 .p/ D  .q/ and ˇ has a crossing at .p; q/. By Lemma 3.6, the crossing of ˇ at
.p; q/ is positive. Separate y̌ into two arcs by cutting at y̌.p/ and y̌.q/. Then y̌jŒp;q�
will be one of these two arcs. Glue y̌jŒp;q� to y̌.p;q/ , obtaining a closed curve y̌0 . We
can gradually widen the angle of  jŒp;q� at the corner until it becomes a simple smooth
closed curve, and y̌0 will converge to the unit tangent vector field along that simple
smooth closed curved. By Proposition 3.3, y̌0 is not contractible in �N .

Denote by g the nonorientable homotopy type of y̌0 ; then Wg.ˇ/� 1 by Lemma 3.6.
Since Wg.Unknot/D 0, ˇ is isotopically nontrivial.

Actually, a stronger (but more technical) result can be proved with exactly the same
proof.

Theorem 3.13 Suppose that 1W Œ0; 1�! N is a smoothly immersed curve without
self-tangencies and that ˇ2W Œ0; 1�! P�N is a smoothly embedded curve connecting
the endpoints of ˇ1 WD P ı z . Glue ˇ2 to ˇ1 , obtaining a closed curve ˇ in P�N .
If 1 has at least one self-intersection, 1 and � ıˇ2 have no intersections and � ıˇ2

has no self-intersections, then ˇ is isotopically nontrivial.

Proof Just let

ˇ D

�
ˇ1.2t/ if t 2 Œ0; 1

2
�;

ˇ2.2� 2t/ if t 2 Œ1
2
; 1�;

and  D�ıˇ . Let qDmaxft j  jŒ0;t � has no self-intersectiong. Then there is p2 Œ0; q/

such that  .p/D  .q/ and ˇ has a crossing at .p; q/.

Note that q < 1
2

because 1 has at least one self-intersection. The rest of the proof is
very similar to the proof of Theorem 1.8 since it only involves ˇŒp;q� .
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4 Closed geodesics tangent to the boundary

In this section, M and N will be two Riemannian surfaces with the same scattering
data rel hW @M ! @N , where h is an isometry. Also, M is assumed to be simple. The
map 'W @�M ! @�N is the induced bundle map defined in (1). In this section, we
shall prove Theorem 1.7 by studying closed geodesics tangent to the boundary.

Recall that LD �N .'.X //� �M .X /� 0 is a constant. We need to show that LD 0.

For any Y 2 @0�N , recall that Y is the limit of geodesic segments X as X ! Y ,
where X 2 @C�N ; Y is a closed geodesic of length L.

Proposition 4.1 If L> 0, then P ı zY is contractible in P�N for any Y 2 @0�N .

Proof Pick p 2 @�N . Let Y 2 @0�pN be one of the two unit vectors at p which
are tangent to @N . Put

Ys D cos.�s/Y C sin.�s/�.x/

for each s 2 Œ0; 1�.

Now define a continuous family of loops H W Œ0; 1��R=Z!�N as

Hs.t/D

8<:
 0

Ys
.3�.Ys/t/ if 0� t � 1

3
,

˛N .Y.2�3t/s/ if 1
3
� t � 2

3
,

Y.3t�2/s if 2
3
� t � 1.

We shall show that H1jŒ1=3;1� is contractible. Since N is a disk, there is a diffeo-
morphism  W N ! f.x;y/ 2 R2 j x2C y2 � 1g. For any X 2�N and x 2 N , let
�.x;X / be the unit vector based at x such that  �.�.x;X // and  �.X / have the
same directions as two vectors in R2 .

Since N is a disk, @N is homotopic the constant curve at p . So there is a homotopy
qW Œ0; 1�� Œ0; 1�!N such that q.1; � /Dp and that q.0; t/D�.˛N .Yt //. Next, define
a continuous family of loops GW Œ0; 1��R=Z!�N as

Gs.t/D

�
�.q.s; 2t/; ˛M .Y2t // if 0� t � 1

2
,

Y2�2t if 1
2
� t � 1.

Let At be the angle that r1.xt/ WD �.p; ˛M .Yxt // rotates by as xt goes from 0 to t . We
shall show that A1 D � . Let Bt be the angle that r2.xt/ WD �.p; .d=dxt/q.0;xt// rotates
by as xt goes from 0 to t . Notice that  .q.0;xt// goes around the unit circle in R2

for a full circle as t goes from 0 to 1. Hence B1 D 2� . Let Ct be the signed angle
between r1 and r2 . Since r1.0/ and r2.0/ have the same direction, Ct D Bt �At .
For any t 2 .0; 1/, ˛M .Yxt / is not tangent to @N , and hence Ct 2 Œ0; �� for t 2 Œ0; 1�.
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Since r1.1/ and r2.1/ have opposite directions, C1 D � , which implies that A1 D � .
Therefore, �.p; ˛M .Yt // rotates counterclockwise by � as t goes from 0 to 1. On
the other hand, the Y2�2t rotate by � clockwise as t goes from 1

2
to 1. Hence G1 is

contractible. It follows that G0 is contractible, and thus H1jŒ1=3;1� is contractible.

Since H0jŒ1=3;1� is constant and H0jŒ0;1=3� coincides with zY , H0 is homotopic to zY .
Since H1jŒ1=3;1� is contractible and H1jŒ0;1=3� coincides with z�Y , H1 is homotopic
to z�Y . Therefore, zY is homotopic to z�Y .

If we rotate each vector counterclockwise by � , then z�Y becomes R.zY /. Hence zY

is homotopic to R.zY /. It follows that ŒzY � D ŒR.zY /� D �ŒzY �, where Œ˛� means
the homology class of ˛ . Since N is a disk, �N is a solid torus, and hence
H1.�N;Z/ D Z. Thus ŒzY � D 0, that is, zY is contractible. Hence P ı zY is
contractible in P�N .

Fix an orientation of @N and let X0.x/ be the unit vector tangent to @N at x 2 @N

such that X0.x/ and @N have the same orientation. Let h1W R=Z ! @N be an
orientation preserving diffeomorphism. Pick " > 0 small and let T W @N ! @N be a
diffeomorphism defined as

T .x/D h1.h
�1
1 .x/C "/;

and let X1.x/ 2 @C�xN be the vector which is tangent to the geodesic from x

to T .x/. Finally, put X2.x/ D ˛.X1.T
�1.x///. When T �1.x/, x and T .x/ are

close, both X1.x/ and X2.x/ are close to X0.x/, so we may assume that the angle
between X1.x/ and X2.x/ is smaller than � by picking " small enough; see Figure 12.

T �1.x/ T .x/

x

N

X1.T
�1.x//

X1.x/

X0.x/

X2.x/

Figure 12
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Now X1.x/ and X2.x/ separate the circle �xN into two segments. Let A.x/ be the
segment containing X0.x/ (which is the shorter segment). Then AD

S
x2@N A.x/ is

an annulus with boundaries X1.@N / and X2.@N /. We have a natural diffeomorphism
uW R=Z� Œ0; 1�!A, where u.s; t/ is the unique vector in @�h1.s/N such that

t D
the angle between u.x; t/ and X1.h1.s//

the angle between X1.h1.s// and X2.h1.s//
:

In particular, we have u.s; 0/DX1.h1.s// and u.s; 1/DX2.h1.s//.

Thus we can break A down to a family of disjoint curves �x W Œ0; 1�!A from X1.x/

to ˛.X1.x// defined as
�h1.s/.t/D u.sC "t; t/I

see Figure 13 (left).

Define
f W @N �R=Z! P�N

as
f .x; t/D

�
P
�
zX1.x/

�
t

1�"

��
if 0� t � 1� ",

P
�
�x.

1�t
"
/
�

if 1� "� t � 1;
see Figure 13 (right).

x

�x.0/

�x.1/

T .x/N

f .x; 0/D f .x; 1/

x

f .x; 1� "/

T .x/
N

Figure 13: Left: Values of �x from 0 to 1 . Right: Values of f .x; � / from 0 to 1 .

Proposition 4.2 The map f W @N �R=Z! P�N is an embedding.

Proof Suppose that f .x; t/Df .x0; t 0/. If 0< t < 1�", then �.f .x; t// is not on the
boundary, so �.f .x0; t 0// is also not on the boundary, which implies that 0< t 0< 1�".
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However, � ı f .x; � /j.0;1�"/ and � ı f .x0; � /j.0;1�"/ are geodesics in N , so they
always intersect transversely, and thus f .x; t/ and f .x0; t 0/ are equal if and only if
.x; t/ D .x0; t 0/. If 1 � " � t � 1, then 1 � " � t 0 � 1. Now f .x; t/ D P .�x.t//

and f .x0; t 0/ D P .�x0.t
0//, where P W A ! P�N is injective because the angle

between X1.x/ and X2.x/ is smaller than � . Hence f .x; t/D f .x0; t 0/ if and only
if �x.t/ D �x0.t/, which, by our definition of �, is equivalent to .x; t/ D .x0; t 0/.
Therefore, f is an embedding of the torus R=Z� @N into the solid torus P�N .

Proposition 4.3 The map f .x; � / is contractible in P�N .

Proof We shall show that f .x; � / is homotopic to P ı zX0.x/ . As "! 0, T converges
to the identity map, X1 and X2 converge to X0 , and f .x; t=.1� "// converges to
P .zX0

.t// for t 2 Œ0; 1� "�. Thus f .x; � / is homotopic to P ı zX0.x/ .

Proposition 4.4 The map f .x; � / is isotopically trivial in P�N .

Proof Define ˇ1W R=Z! @N �R=Z as

ˇ1.t/D .h1.t/; 0/;

and define ˇ2W R=Z! @N �R=Z as

ˇ2.t/D .h1.0/; t/:

Let p D ˇ1.0/; then

�1.@N �R=Z;p/D fŒˇ1�
k
p Œˇ2�

l
p j k; l 2 Zg ' Z2:

Let
f�W �1.@N �R=Z;p/! �1.P�N; f .p//

be the induced homomorphism between fundamental groups. Since �1.P�N; f .p//D

Z, f� is not injective. Since a two-sided surface f is incompressible if and only if f�
is injective (see Hatcher [12, Corollary 3.3]), the torus f .@N �R=Z/ has a compressing
disk embedded in P�N .

As "! 0, f ıˇ1 converges to the projectivized unit tangent vector field along @N , so
f�.Œˇ1�p/¤0 by Proposition 3.3. Since f .h1.0/; � / is homotopic to X0.h1.0// , both of
them are contractible in P�N by Proposition 4.1. Since �1.P�N; f .p//DZ, there
is no difference between free homotopy and based homotopy, hence f�.Œˇ2�p/D 0.

Now, let B be a compressing disk of the torus f .@N �R=Z/, then @B is a circle
embedded f .@N �R=Z/ which is contractible in P�N . It follows that @B is homo-
topic to f ıˇ2 on f .R=Z�S/. Any two simple closed essential curves on a surface
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are isotopic to each other if and only if they are freely homotopic to each other [9].
Therefore, @B is isotopic to f ıˇ2D f .h1.0/; � / on f .R=Z�S/�P�N . Since @B
bounds a disk B in P�N , @B is isotopically trivial, and so is f .h1.0/; � / in P�N .
This completes the proof of Proposition 4.4.

Notice (see below) that Proposition 4.4 contradicts Theorem 3.13 when L> 0, which
proves Theorem 1.7.

Proof of Theorem 1.7 Suppose that L> 0. Pick any x 2 @M . Let 1 D X1.x/ and
ˇ2 D P ı �x .

If 1 has no self-intersections, then X0.x/ , the limit of 1 as "! 0, also has no
self-intersections. By Proposition 3.3, P ı zX0.x/ is not contractible in P�N1 , which
contradicts Proposition 4.1. Therefore, 1 has at least one self-intersection.

Let ˇ1 D P ı z1 Notice that 1 and P ıˇ2 have no intersections except at endpoints
and that f .x; � / is the closed curve obtained by gluing ˇ1 and ˇ2 . By Theorem 3.13,
f .x; � / is isotopically nontrivial in P�N1 , which contradicts Proposition 4.4. Thus
LD 0, which finishes the proof of Theorem 1.7.

Appendix: Approximating smooth knots by piecewise linear
knots

The goal of this section is to prove the following lemma, which allows us to approximate
knot isotopies using piecewise-linear knot isotopies.

Lemma A.1 Suppose that there is a continuous knot isotopy GW Œ0; 1��R=Z!P�N .
Then there is continuous family of knot isotopies H W Œ0; 1�� Œ0; 1��R=Z! P�N

such that H.0; � ; � / D G , H.l; s; � / is a knot embedded in P�N for each .l; s/ 2
Œ0; 1�� Œ0; 1�, and H.1; s; � / is a piecewise linear knot for each s 2 Œ0; 1�.

The following proposition and its corollaries will be our main tool used in this section.

Proposition A.2 Assume that K is a compact smooth manifold and M is a Riemann-
ian manifold. Suppose that GW K � Œa; b�!M is smooth and that each G.s; � / is a
smooth curve whose speed is never 0. For any " > 0, there is ı > 0 such that the angles
between G.s; � /jŒt1;t2� and the minimal geodesic connecting its endpoints are smaller
than " whenever jt1� t2j< ı .
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Proof Pick any " > 0. There is "1 > 0 such that j� j< " if j cos.�/� 1j< "1 and if
j� j � � .

Define LW K � Œa; b�� Œa; b�!R as

L.s; t1; t2/D

�
`.G.s; � /jŒt1;t2�/ if t2 � t1,
�L.s; t1; t2/ if t2 < t1;

where `.G.s; � /jŒt1;t2�/ is the length of G.s; � /jŒt1;t2� . Similarly, define DW K� Œa; b��

Œa; b�!R as

D.s; t1; t2/D

�
d.G.s; t1/;G.s; t2// if t2 � t1,
�D.s; t1; t2/ if t2 < t1:

For any fixed s , we have

(1) L.s; t1; t2/�D.s; t1; t2/D o..t2� t1/
2/

as t2! t1 . Put

Q.s; t1; t2/D

@
@t2

D.s; t1; t2/

@
@t2

L.s; t1; t2/
:

Then we have Q.s; t1; t1/D 1 by (1).

We shall show Q is continuous near K ��Œa; b�, where �Œa; b� is the diagonal of
Œa; b� � Œa; b�. Since G is continuous and K is compact, there is ı1 > 0 such that
d.G.s; t1/;G.s; t2// < inj.M / if jt1� t2j< ı1 . Since the squared distance function is
smooth within the injectivity radius, D2 is smooth on K�Vı1

where Vı1
D f.t1; t2/ 2

Œa; b�� Œa; b� j jt1 � t2j < ı1g and hence .@=@t2/D is continuous. Also, .@=@t2/L is
obviously continuous on K � Œa; b� � Œa; b� (since L.s; t1; � / is just the signed arc
length). Therefore, Q is continuous on K � Vı1

. Since Q is continuous and K is
compact, there is ı 2 .0; ı1/ such that jQ.s; t1; t2/�Q.s; t1; t1/j< "1 if jt1� t2j< ı ,
that is, jQ� 1j< "1 on K �Vı .

For any .s; t1; t2/2K�Vı n�Œa; b�, let �.s; t1; t2/ be the angle between G.s; � /jŒt1;t2�

and the minimal geodesic connecting its end points at the endpoint G.s; t2/. By the
first variation of arc length,

cos �.s; t1; t2/D
@
@t2

D.s; t1; t2/

@
@t2

L.s; t1; t2/
DQ.s; t1; t2/:

Hence � < " on K �Vı . Therefore the angles between G.s; � /jŒt1;t2� and the minimal
geodesic connecting its endpoints are smaller than " whenever jt1� t2j< ı .

For any compact Riemannian surface N , we can apply the above proposition to unit-
speed linear curves of length less than or equal to 1 in P�N (which has the Sasakian
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metric on it), which is a compact family of curves in P�N . For any p; q 2 P�N

such that d.p; q/ < inj.P�N / and that dh.p; q/ < inj.N /, let p;q be the minimal
geodesic connecting p and q . Recall that  0

p;q is the minimal linear curve connecting p

and q .

Corollary A.3 Assume that N is a compact Riemannian manifold. For any " > 0,
there is ı > 0 such that the angles between p;q and  0

p;q are smaller than " for any
p; q 2 P�N such that 0< d.p; q/ < ı .

Suppose p; q; r 2P�N are close enough so there are minimal linear curves  0
p;q ,  0

q;r

and  0
p;r . Denote by A.p; q; r/ the sum of the three angles between the linear

curves 0
p;q , 0

q;r and 0
p;r . Since the sum of the inner angles of small geodesic

triangles are close to � , Corollary A.3 implies that A.p; q; r/ is also close to �

when p; q and r are close enough.

Corollary A.4 Assume N is a compact Riemannian manifold. For any " > 0,
there is ı > 0 such that jA.p; q; r/ � �j < " for any p; q; r 2 P�N such that
d.p; q/; d.p; r/; d.q; r/ 2 .0; ı/.

The following result follows from Proposition A.2 and Corollary A.3.

Corollary A.5 Assume that K is a compact smooth manifold and N is a compact
Riemannian manifold. Suppose that GW K � Œa; b�! P�N is smooth and that each
G.s; � / is a smooth curve whose speed is never 0. For any " > 0, there is ı > 0 such
that the angles between G.s; � /jŒt1;t2� and  0

G.s;t1/;G.s;t2/
are smaller than " whenever

jt1� t2j< ı .

Proof of Lemma A.1 We shall assume that G is smooth since it is standard to
approximate continuous isotopies by smooth isotopies.

Put "D0:1. By Corollary A.5, there is ı1>0 such that the angles between G.s; � /jŒt1;t2�

and  0
G.s;t1/;G.s;t2/

are smaller than " whenever jt1� t2j< ı1 . By Corollary A.4 there
is "0 > 0 such that

(2) jA.p; q; r/��j< "

for any p; q; r 2P�N such that d.p; q/; d.p; r/; d.q; r/ 2 .0; "0/. By Corollary A.3,
there is "1 2 .0; "0/ such that the angles between  0

p;q and p;q are smaller than "
for any p; q 2 P�N such that 0 < d.p; q/ < "1 . Since G is continuous, there is
ı2 2 .0; ı1/ such that d.G.s; t1/;G.s; t2// < "1 if d.t1; t2/ < ı2 .
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For each .s; t/ 2 Œ0; 1� � R=Z, let I.t/ D R=Z n .t � ı2; t C ı2/; then D.s; t/ WD

d.G.s; t/;G.s; I.t/// > 0. Let "2 D min."1; inf.s;t/2Œ0;1��R=Z D.s; t//; then "2 > 0.
Since G is continuous, there is ı 2 .0; ı2/ such that d.G.s; t1/;G.s; t2// <

1
2
"2 if

d.t1; t2/ < ı .

Pick n 2N such that nı > 1. Define H W Œ0; 1�� Œ0; 1��R=Z! P�N as

H
�
l; s;

kCt

n

�
D

(
 0

G.s;k=n/;G.s;.kCl/=n/

�
t
l

�
if 0� t < l ,

G
�
s; kCt

n

�
if l � t � 1,

where k 2 Z=nZ, and t 2 Œ0; 1�. It is obvious that H.0; � ; � / D G and H.1; � ; � / is
an isotopy of piecewise linear knots. We shall show that each H.l; s; � / is a knot
embedded in P�N .

Suppose that H.l; s; � / has a self-intersection, that is, H.l; s; k1Ct1

n
/DH.l; s; k2Ct2

n
/

for some ki 2 Z=nZ and ti 2 Œ0; 1/ such that k1 ¤ k2 or t1 ¤ t2 .

Since G.s; � / is an embedding, we have either t1< l or t2< l . Without loss of generality,
assume that t1 < l . Write t3 D .k1 C t1/=n and t4 D .k2 C t2/=n. We shall show
that  0

G.s;k1=n/;G.s;.k1Cl/=n/ is in N"2=2.G.s; k1=n//, the ball of radius "2=2 centered
at G.s; k1=n/. Put p DG.s; k1=n/ and q DG.s; .k1C l/=n/. Since d.k1=n; .k1C

l/=n/ < ı < 1
3
ı2 , d.p; q/ < "1 . Define QW Œ0; 1�!R as

Q.t/D

@
@t

d.p;  0
p;q.t//

@
@t
`. 0

p;qjŒ0;t �/
:

By the first variation of arc length, Q.t/D cos �.t/ where �.t/ is the angle between
 0

p;qjŒ0;t � and the minimal geodesic connecting their endpoints at the endpoint  0
p;q.t/.

Since d.p; q/ < 1
2
"2 < "1 , �.t/ < " D 0:01, and hence Q.1/ > 0. If Q.t/ D 0 for

some t 2 Œ0; 1/, then let t0 D supft 2 Œ0; 1/ jQ.t/D 0g. Then we have Q.t0/D 0 and
Q.t/ > 0 for t 2 .t0; 1�. Since

d.p;  0
p;q.t0//D d.p; q/�

Z 1

t0

@

@t
d.p;  0

p;q.t//dt

D d.p; q/�

Z 1

t0

@
@t
`.p;qjŒ0;t �/

Q.t/
dt < d.p; q/ < "1;

�.t0/ < ", and hence Q.t0/ > 0, which contradict our assumption that Q.t0/ D 0.
So Q.t/ > 0 for any t 2 Œ0; 1�, which implies that d.p;  0

p;q.t// is strictly increasing.
Hence d.p;  0

p;q.t//� d.p; q/< "2=2 for all t 2 Œ0; 1/, that is,  0
G.s;.k1Cl/=n/;G.s;k1=n/

is in N"2=2.p/. It also follows that  0
G.s;.k1Cl/=n/;G.s;k1=n/ has no self-intersections,

and thus k1 ¤ k2 .
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Assume that d.k1=n; k2=n/ � ı2 . Then G.s; k2=n/ 62 N"2
.G.s; k1=n//. Hence we

have N"2=2.G.s; k1=n//\N"2=2.G.s; k2=n// D ∅. When t2 � l , H.l; s; t4/ is on
 0

G.s;k2=n/;G.s;.k2Cl/=n/ , which is contained in N"2=2.G.s; k2=n//, hence H.l; s; t4/2

N"2=2.G.s; k2=n//. However, for the same reason, H.l; s; t3/ 2 N"2=2.G.s; k1=n//,
and hence H.l; s; t3/¤H.l; s; t4/, which contradicts our assumption. When t2 � l ,
H.l; s; t4/DG.s; t4/. Since d.k2=n; t4/D t=n< 1=n< ı , d.G.s; k2=n/;G.s; t4// <

"2=2, and hence H.l; s; t4/ 2 N"2=2.G.s; k2=n//. Again, H.l; s; t3/ ¤ H.l; s; t4/,
which contradicts our assumption. Therefore, d.k1=n; k2=n/ < ı2 . We shall assume
that k2=n 2 .k1=n; k1=nC ı2/, and the other case (k1=n 2 .k2=n; k2=nC ı2/) can
be addressed similarly. Then we have d.H.l; s; .k1C l/=n/;H.l; s; k2=n// < "2 .

We shall show that d.G.s; k2=n/;H.l; s; t4// < "2 . If t2 � l , then H.l; s; t4/ D

G.s; t4/. We have d.G.s; k2=n/;G.s; t4// < "2 since d.k2=n; t4/ < ı . If t2 < l , then
d.G.s; k2=n/;H.l; s; t4// < d.G.s; k2=n/;H.l; s; .k2C l/=n// < "2 . Using the same
argument, we have d.G.s; .k1C l/=n/;H.l; s; t3// < "2 .

Write p1DH.l; s; .k1Cl/=n/, p2DH.l; s; k2=n/ and p3DH.l; s; t3/DH.l; s; t4/.
Then the angle between  0

pi ;pj
and G.s; � / is at most " for any i ¤ j . So, the angles

between  0
p1;p2

and  0
p1;p3

and between  0
p1;p2

and  0
p2;p3

are at least � �2". Hence
A.p1;p2;p3/ > 2� � 4", which contradicts (2).

This completes the proof of Lemma A.1.
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