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A thick subcategory theorem for modules
over certain ring spectra

AKHIL MATHEW

We classify thick subcategories of the 1–categories of perfect modules over ring
spectra which arise as functions on even periodic derived stacks satisfying affineness
and regularity conditions. For example, we show that the thick subcategories of
perfect modules over TMF are in natural bijection with the subsets of the underlying
space of the moduli stack of elliptic curves which are closed under specialization.

55P43, 18E30

1 Introduction

1.1 Generalities

Let C be a stable 1–category. Recall the following definition.

Definition 1.1 A full subcategory C0 � C is thick if C0 is a stable subcategory (ie it is
closed under finite limits and colimits), and C0 is closed under retracts.

Note that this definition only depends on the underlying homotopy category of C and its
triangulated structure, and can be studied without the language of 1–categories. Since
many properties of objects in C are controlled by thick subcategories, it is generally
very useful to have classifications of the possible thick subcategories of C .

In the setting of the stable 1–category Sp!.p/ of finite p–local spectra, the following
fundamental result was proved by Hopkins and Smith:

Theorem 1.2 (Hopkins and Smith [14]) There is a descending sequence of thick
subcategories

Sp!.p/ D C0 © C1 © C2 © � � �

such that every nonzero thick subcategory of Sp!.p/ is one of the Ci .
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The subcategories Ci can be described in terms of the geometry of the moduli stack MFG

of formal groups. Namely, recall that any finite spectrum defines a Z=2–graded coherent
sheaf on MFG (via its complex bordism). The stack MFG localized at p has a filtration
by height

MFG �M�1
FG �M�2

FG � � � �

such that the successive “differences” are quotients of a point by an ind-étale group
scheme (and in particular, this tower cannot be refined); for a discussion of this, see
Goerss [11]. The moduli stack M�i

FG parametrizes formal groups of height at least i ,
and M�1

FG parametrizes formal groups over an Fp –algebra. A spectrum X 2 Sp!.p/
belongs to Ci precisely when its associated quasicoherent sheaf is set-theoretically
supported on M�i

FG . For instance, C1 consists of the p–torsion spectra.

In stable homotopy theory, Theorem 1.2 is extremely useful as a sort of “Tauberian”
theorem. If one wishes to prove a property of all finite (p–local) spectra, eg of the
sphere, then it suffices to show that the property is thick and that a single finite spectrum
with nontrivial rational homology satisfies it.

After the results of [14], thick subcategories have been studied in a number of other
settings. For instance, given a commutative ring R, one may consider the 1–category
Dperf.R/ of perfect complexes of R–modules, and one may consider the thick sub-
categories of Dperf.R/. Given a subset Z � Spec R closed under specialization
(equivalently, a union of closed subsets), one may define a thick subcategory of Dperf.R/

consisting of complexes whose cohomologies are set-theoretically supported on Z .
When R is noetherian, one has the following theorem:

Theorem 1.3 (Hopkins [12] and Neeman [26]) The above construction establishes a
bijection between thick subcategories of Dperf.R/ and subsets of Spec R closed under
specialization.

Given a symmetric monoidal stable 1–category .C;˝; 1/, one may also consider
thick tensor ideals: these are thick subcategories D � C such that if X 2 D;Y 2 C ,
then the tensor product X ˝Y belongs to D as well. Thick tensor ideals have been
extensively investigated (see Balmer [5]), and one can, for instance, arrange the “prime”
ones into a topological space.

For example, for the perfect derived category of a noetherian scheme, thick tensor-ideals
were classified in work of Thomason [32] generalizing Theorem 1.3. In this case, again
thick tensor-ideals are classified in terms of the supports of objects. The notion of
“support” has been axiomatized in work of Benson, Iyengar and Krause [7] with a view
towards diverse applications, including stable module categories for finite groups, for
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triangulated categories with an action of a commutative ring as endomorphisms of
the identity. In our setting, we will be working with symmetric monoidal stable 1–
categories (such as Dperf.R/), where the unit object generates C under finite colimits,
so thick subcategories are automatically tensor ideals. Moreover, the “base ring” will
be somewhat complicated, so it will be convenient to work locally, using techniques of
the author and Meier [24].

1.2 Methods

The goal of this paper is to classify thick subcategories in a different setting: that is,
for 1–categories of perfect modules over structured ring spectra which arise as global
sections of the structure sheaf on even periodic derived stacks. Such ring spectra play
an important role in stable homotopy theory: for instance, TMF arises as the ring of
functions on a derived version of the moduli stack of elliptic curves.

Our goal is to understand the structure of the 1–category Mod!.TMF/ of perfect
TMF–modules, for instance. One difficulty in doing so is that the algebraic structure of
�� TMF is extremely complicated, while the analysis of ring spectra and modules over
them is greatly simplified when one has nice (eg regular) homotopy rings. Nonetheless,
we know that TMF is obtained as the homotopy inverse limit of a diagram of elliptic
spectra, which are even periodic E1–rings whose formal group is associated to an
elliptic curve classified by an étale map to Mell . More precisely, there is a derived
Deligne–Mumford stack .Mell;Otop/, whose underlying ordinary stack is the mod-
uli stack of elliptic curves, such that the global sections of the structure sheaf Otop

gives TMF. These elliptic spectra obtained by evaluating Otop on an affine scheme
étale over Mell are much better behaved: not only are they even periodic, but their
homotopy rings are regular noetherian. The classification of thick subcategories for
perfect modules over them is significantly simpler by the following result which will
be proved in Theorem 2.13 below.

Theorem 1.4 Suppose R is an even periodic E1–ring with �0.R/ regular noetherian.
Then there is a canonical bijection between thick subcategories of the 1–category of
perfect R–modules and subsets of Spec�0.R/ closed under specialization.

Therefore, we shall approach the classification of thick subcategories of Mod!.TMF/
by relating Mod!.TMF/ to the 1–categories of perfect modules over elliptic spectra.
The essential ingredients for doing this are in [24]. In that paper, Meier and the author
prove:

Theorem 1.5 [24] The 1–category of TMF–modules Mod.TMF/ is equivalent the
1–category of quasicoherent sheaves on the derived moduli stack of elliptic curves.
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We refer to Lurie [20, Section 2.3] for generalities on quasicoherent sheaves on derived
stacks. By [20, Proposition 2.3.12], we can rewrite this statement by saying that

Mod.TMF/' lim
 ��

Spec R!Mell

Mod.Otop.Spec R//

as Spec R!Mell ranges over the étale maps from affine schemes.

More generally, the main result of [24] gives a criterion for this phenomenon of
“affineness”, which had been first explored by Meier in [25].

We briefly review the setup. Let X be a Deligne–Mumford stack equipped with a flat
map X !MFG . Given any affine scheme Spec R and an étale map Spec R! X ,
the composite Spec R! X !MFG classifies a formal group over R which yields
an associated (weakly) even periodic, Landweber-exact homology theory and even a
homotopy commutative ring spectrum. In particular, we get a functor

Affet
=X ! Homotopy commutative ring spectra

from the category of affine schemes étale over X to the category of homotopy com-
mutative ring spectra and homotopy classes of maps between them. We refer to
Lurie [19, Lecture 18] for the fundamentals of even periodic Landweber-exact ring
spectra.

In certain important cases, one has a lifting

CAlg

��
Affet

=X

Otop

55

// homotopy commutative ring spectra

where CAlg is the 1–category of E1–rings. Such a lift is called an even periodic
refinement X D .X;Otop/ of X !MFG . Such even periodic refinements exist, for
instance, for X the moduli stack of elliptic curves, and yield important examples of
derived stacks.

Given an even periodic refinement X D .X;Otop/, we can consider the E1–ring
�.X;Otop/ of “functions” on the derived stack X and its 1–category of modules. We
can also consider a related 1–category, the 1–category QCoh.X/ of quasicoherent
sheaves on X, obtained (by [20, Proposition 2.3.12]) as the homotopy limit of the
module categories Mod.Otop.Spec R// as Spec R! X ranges over all étale maps
from affines.

The main result of [24] now runs as follows.
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Theorem 1.6 [24] Let XD .X;Otop/ be an even periodic refinement of a Deligne–
Mumford stack X equipped with a flat map X !MFG . If X !MFG is quasi-affine,
then the global sections functor establishes an equivalence of symmetric monoidal
1–categories

�W QCoh.X/'Mod.�.X;Otop//:

The hypotheses of Theorem 1.6 apply in several important cases, such as the de-
rived version of the moduli stack of elliptic curves as well as its Deligne–Mumford
compactification.

1.3 Results

In this paper, we will use Theorem 1.6 to illuminate the structure of the 1–category
of perfect �.X;Otop/–modules. In particular, we will classify the thick subcategories
of perfect �.X;Otop/–modules, under some further constraints.

In classifying thick subcategories, it will generally be more convenient to work with
QCoh.X/ (at least implicitly), and in particular with the homotopy group sheaves �0; �1

of a given object in QCoh.X/, which in the perfect case will define a Z=2–graded
coherent sheaf on X . Given a subset of the underlying space of X closed under
specialization, it follows that we can define a thick subcategory of QCoh.X/ consisting
of objects whose homotopy group sheaves are supported on that subset.

The main result of this paper is:

Theorem 1.7 Suppose X is regular and affine flat over MFG . Then the thick sub-
categories of perfect modules over Mod.�.X;Otop//' QCoh.X/ are in bijection (as
indicated above) with the subsets of X closed under specialization.

Theorem 1.7 in particular applies to the derived moduli stack of elliptic curves, and
one has:

Corollary 1.8 There is a bijection between thick subcategories of perfect TMF–
modules and subsets of Mell which are closed under specialization.

We can also apply this to the classification of thick subcategories of perfect modules
over the Hopkins–Miller EOn –spectra (in view of [24, Section 6.2]).

Corollary 1.9 Let G be a finite subgroup of the nth Morava stabilizer group, so that G

acts on Morava E–theory En . Then thick subcategories of perfect EhG
n –modules are

in bijection with G–invariant subsets of Spec�0En closed under specialization.

Geometry & Topology, Volume 19 (2015)



2364 Akhil Mathew

The proof of Theorem 1.7 follows the outline of Theorem 1.2, although since we
already have the nilpotence technology of Devinatz, Hopkins and Smith [8] and [14]
and can in particular use results such as Theorem 1.2, many steps are much simpler.
The proof that all possible thick subcategories come from subsets of X closed under
specialization is essentially formal once certain “residue fields” are constructed, using
the techniques of Baker and Richter [3; 4]. (The analog in Theorem 1.2 is given
by the Morava K–theories.) The harder step is to show that all the different subsets
closed under specialization are realized, which requires in addition some algebraic
preliminaries about the structure of MFG and topological preliminaries of vanishing
lines in spectral sequences, which are of interest in themselves.

Acknowledgments I would like to thank Benjamin Antieau, Mike Hopkins, Jacob
Lurie, Lennart Meier and Niko Naumann for helpful discussions related to the subject
of this paper, and the referee for many detailed comments. The author was partially
supported by the NSF Graduate Research Fellowship under grant DGE-110640.

2 The affine case

2.1 Setup

Let R be an even periodic E1–ring such that �0R is regular noetherian. We do not
need to assume that R is Landweber-exact. Consider the stable1–category Mod!.R/
of perfect R–modules. The goal of this section is to classify the thick subcategories of
Mod!.R/ in Theorem 2.13 below.

Proposition 2.1 Let R be as above, and let M be a perfect R–module. Then we have
the following.

(1) �0M ˚�1M is a finitely generated �0R–module.

(2) Assume that �0R has finite global (ie Krull) dimension. In this case, an R–
module M is in fact perfect if and only if �0M ˚�1M is a finitely generated
R–module.

Proof The first assertion is equivalent to the assertion that ��.M / is a finitely gener-
ated ��.R/–module. Consider the collection of M 2Mod!.R/ for which this holds. It
clearly contains R. Since ��.R/ is noetherian, it follows from the long exact sequence
of a cofibering that this collection is a stable subcategory of Mod!.R/, and it is also
closed under retracts. Therefore, it is all of Mod!.R/.
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Suppose conversely that �0.R/ has finite global dimension and ��.M / is a finitely
generated ��.R/–module. We claim that M is perfect. For this, we use descending
induction on the (finite) projective dimension of �0.M /˚ �1.M / over �0.R/. If
�0.M /; �1.M / are projective R–modules, then it is well known that M is perfect: in
fact, M is a retract of a sum of copies of R and †R. Suppose the projective dimension
of �0.M /˚�1.M / is equal to n> 0. Choose a map Rs _†Rt !M which induces
an epimorphism on �� , which we may do as ��.M / is a finitely generated ��.R/–
module, and let F be the fiber of this map. Clearly, M 2 Mod!.R/ if and only if
F 2Mod!.R/. But ��.F / is finitely generated, and �0.F /˚�1.F / has projective
dimension less than or equal to n� 1. By induction, we are done.

Definition 2.2 If M 2Mod!.R/, the support of �0M ˚�1M thus defines a closed
subset of Spec�0R, which we will simply write as Supp M .

Given a cofiber sequence

M 0
!M !M 00

!M 0Œ1�

we have
Supp M � Supp M 0

[Supp M 00

and, furthermore, the support only shrinks under taking retracts. This enables us to
define thick subcategories of Mod!.R/:

Definition 2.3 Given a closed subset Z � Spec�0R, we let Mod!Z .R/�Mod!.R/
be the full subcategory of perfect R–modules M such that Supp M �Z . It follows
from the preceding paragraph that Mod!Z .R/ is a thick subcategory of Mod.R/.

In general, we cannot expect every thick subcategory of Mod!.R/ to come from a
closed subset Z � R. We might choose instead to work with a family of possible
choices of Z . If R is a domain, we could, for example, consider the collection of
all M 2 Mod!.R/ which are torsion, ie those whose support does not contain the
generic point. This is a thick subcategory, but it is not associated to any single closed
subset, but rather to the collection of all closed subsets of Spec R that do not contain
the generic point. Rather than working with “families of closed subsets”, it is simpler
to work with subsets of Spec R closed under specialization.

Definition 2.4 Let Z � Spec�0R be a subset of Spec�0R closed under specializa-
tion. In this case, we define Mod!Z .R/�Mod!.R/ analogously to be the collection
of M 2 Mod!.R/ with Supp M � Z . We thus get a map from the collection of
specialization-closed subsets of Spec�0R to the collection of thick subcategories
of Mod!.R/.
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The goal of this section is to prove that the Mod!Z .R/ are precisely the thick subcate-
gories of Mod!.R/, as Z ranges over the specialization-closed subsets of Spec�0R.
The proof will follow the argument for finite spectra in [14]. The key step, as in [14],
is a version of the nilpotence theorem, which is much easier in the present setting.

2.2 Residue fields

The first step is to define “residue fields”. Consider the regular ring �0R. For each
prime ideal p� �0R, the localization .�0R/p is a regular local ring, whose maximal
ideal p.�0R/p is generated by a system of parameters x1; : : : ;xn 2 .�0R/p such that
.�0R/p=.x1; : : : ;xn/ is a field k.p/.

Definition 2.5 Given p, consider first Rp , the arithmetic localization of R at p, as
an E1–R–algebra using Elmendorf, Kriz, Mandell and May [10, Theorem 2.2] or
Lurie [22, Section 8.2.4]. Then consider the R–module K.p/ defined as

K.p/DRp=.x1; : : : ;xn/
def
D Rp=x1 ^R Rp=x2 ^R � � � ^R Rp=xn;

where R=x for x 2 �0R denotes the cofiber of xW R!R, so that

K.p/� ' k.p/Œt˙1�; jt j D 2:

By the results of Angeltveit [2], it follows that K.p/ admits the structure of an A1–
algebra internal to Mod.R/.

Definition 2.6 For any R–module M , we can form the new R–module K.p/^R M

and in particular we obtain (by applying �� ) a homology theory K.p/� on the category
of R–modules, taking value in the category of graded k.p/Œt˙1�–modules.

This homology theory K.p/ is multiplicative and satisfies a Künneth isomorphism.
Strictly speaking, the notation is abusive, since the multiplicative structure K.p/� was
not constructed only from p, but also used some other choices; any of those choices
will be fine for our purposes.

The thick subcategories Mod!Z .R/ can also be defined in terms of the homology
theories K.p/� .

Proposition 2.7 Given a perfect R–module M , we have that M 2Mod!Z .R/ if and
only if for every p 62Z , K.p/�M D 0.
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Proof It suffices to show that Mp D 0 if and only if K.p/�M D 0, for any M 2

Mod!.R/ and p2Spec�0R. This is a consequence of the fact that if Mp=.x1; : : : ;xn/

is contractible and M is perfect, so is the Bousfield localization of M at K.p/, ie the
smash product M ^R

yRp where the completion yRp is given by

yRp ' lim
 ��
N

Rp=.x
N
1 ;x

N
2 ; : : : ;x

N
n /:

We refer to Lurie [21, Section 4] for generalities on completions of E1–rings and
modules. By classical commutative algebra, yRp is faithfully flat over Rp , so that Mp

is itself contractible.

The basic step towards the thick subcategory theorem is given by the following Bousfield
decomposition in Mod.R/:

Proposition 2.8 If M is an R–module, then M ' 0 if and only if K.p/�M D 0 for
all p 2 Spec A.

Note that we make no compactness assumptions on M in this proposition.

Proof One direction is obvious, so suppose M is acyclic with respect to all the
homology theories K.p/� . We would like to show that M is contractible. Suppose
the contrary.

Since a module over �0R vanishes if and only if all its localizations at prime ideals
vanish, we can assume that �0R is a (regular) local ring. We may use induction on the
dimension of �0R, and thus assume that the localization of M at any nonmaximal
prime ideal p � �0R is trivial. It follows that if x belongs to the maximal ideal
m� �0R, then the RŒx�1�–module M Œx�1� has the property that its localization at
any prime ideal is trivial, so M Œx�1�' 0 for any x 2m.

Now we use [27, Lemma 1.34] of Ravenel: if N is a nontrivial R–module, then, for any
a2�0R, at least one of N Œx�1� and N=xN has to be nontrivial. (This assertion would
be false in ordinary algebra.) Then M=xM for each x 2m is nontrivial. Repeating
this, and applying the same argument, it follows that M=.x1; : : : ;xn/M is nontrivial
for any system of parameters .x1; : : : ;xn/ for m. It follows that K.m/�M ¤ 0.

Given the Bousfield decomposition, the rest of the proof of Theorem 2.13 (which
follows [14]) is now completely formal, except for the last statement, and has been
axiomatized in Hovey, Palmieri and Strickland [15, Section 6]. For completeness, we
give a quick review of the argument.
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Corollary 2.9 If �W †kM !M is a self-map in Mod!.R/, then � is nilpotent if
and only if K.p/�.�/ is nilpotent for each p 2 Spec�0R.

Proof This is a formal consequence of the Bousfield decomposition. Namely, since M

is compact, it follows that � is nilpotent if and only if the colimit of

M
�
�!†�kM

�
�!†�2kM ! � � �

is contractible, which by Proposition 2.8 holds if and only if, for each p, the diagram
of finitely generated k.p/Œt˙1�–modules induced by applying K.p/� has zero colimit.
This implies the result.

Corollary 2.10 Let R0 be an R–ring spectrum, that is, a monoid object in the homo-
topy category of R–modules.

(1) Suppose ˛ 2 ��R maps to a nilpotent element under the Hurewicz map ��R!
K.p/�R for each p; then ˛ is nilpotent.

(2) Suppose a class ˛W R! R0 ^R F , for F an R–module, is zero in K.p/� for
each p. Then it has the property that ˛k W R!R0 ^R F^k is null for k� 0.

Proof The first claim follows using a similar telescope; it implies the second claim by
considering R0^JF for JF DR˚F˚F^2˚� � � the free A1–algebra (in Mod.R/)
on F .

2.3 Proof of the main result

We are now ready to prove a thick subcategory theorem in the affine case. We will split
this into two pieces.

Proposition 2.11 Let M;N 2 Mod!.R/. Suppose Supp N � Supp M . Then the
thick subcategory generated by M contains N .

Proof The first claim is a consequence of Corollary 2.9. Hypotheses as in the claim,
we consider a fiber sequence

F
�
�!R!M ^R DM;

where DM D HomR.M;R/ is the Spanier–Whitehead dual (in R–modules). By
hypothesis, � has the property that it is the zero map in K.p/�–homology for p 2

Supp M (but not otherwise).
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Moreover, the cofiber of � belongs to the thick subcategory CM �Mod!.R/ generated
by M . Thus the cofiber of each iterated tensor power �r W F^r !R belongs to CM

too, and similarly for the cofiber of

1N ^�
r
W N ^F^r

!N:

But for large r � 0, these maps are zero. In fact, adjointing over, � gives a map
 W R! End.N /^DF and we equivalently need to show that the sufficiently highly
iterated tensor powers  r W R ! End.N / ^ DF^r are zero. Since  is zero on
K.p/�–homology for all p, this follows from Corollary 2.10.

If 1N ^ �
r is nullhomotopic for r � 0, it follows that the cofiber (which we saw

belongs to CM ) contains N as a direct summand, and we are done with the first
claim.

Proposition 2.12 Let Z � Spec�0R. Then there exists M 2 Mod!.R/ such that
Supp M DZ .

Proof Let Z � Spec�0R be a closed subset corresponding to the radical ideal I .
Choose generators x1; : : : ;xn 2 I and take as the desired module

M DR=.x1; : : : ;xn/'R=x1R^R � � � ^R R=xnR:

Clearly this vanishes when any of the xi are inverted. Conversely, if p � I , then
R=xiR has nontrivial K.p/�–homology (since multiplication by xi induces the zero
map on K.p/� ), and therefore the smash power that defines M has nontrivial K.p/�–
homology as well.

Theorem 2.13 The thick subcategories of Mod!.R/ are precisely the fMod!Z .R/g
for Z � Spec�0R closed under specialization, and these are all distinct.

We note that this result has been independently obtained in forthcoming work of
Benjamin Antieau, Tobias Barthel and David Gepner, and is likely known to others as
well.

Proof Given a thick subcategory C �Mod!.R/, we associate to it the union Z0 (in
Spec R) of the supports of all the objects in C . Note that if Z0;Z1 occur as supports
of objects in C , then so does Z0[Z1 , by taking the direct sum. Proposition 2.11 will
imply that this subset Z0 , which is closed under specialization, determines C in turn.
Proposition 2.12 will imply that we can obtain any subset Z0 � Spec R closed under
specialization in this manner, by taking these modules for each closed subset of Z0

and the thick subcategory they (together) generate.
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3 Vanishing lines in the descent spectral sequence

In the previous section, we classified the thick subcategories of Mod!.R/ when R

is an even periodic E1–ring with �0R regular noetherian. The classification relied
on the construction of certain “residue fields” of R to detect nilpotence, and then the
verification that all the possible thick subcategories one could thus hope for actually
exist. The latter part was very easy in the affine case, but it is somewhat trickier in the
general case: we actually will need to produce elements in the homotopy groups of
�.X;Otop/ for an even periodic derived stack XD .X;Otop/.

We will do this by producing such elements in the descent spectral sequence, and by
establishing a general horizontal vanishing line for such descent spectral sequences
(based on nilpotence technology). The latter is the goal of this section, and may be of
independent interest. We note that in the setting of Theorem 1.2, one is not working in
an En –localized setting, so the corresponding vanishing line arguments are significantly
more difficult than they are for us.

3.1 Towers

Let C be a stable 1–category.

Definition 3.1 Let Tow.C/ be the 1–category of towers of objects of C , that is,
Tow.C/' Fun..Z�0/

op; C/.

To any element of Tow.C/ and object P 2 C , there is associated a spectral sequence
converging to the homotopy groups of the space (or spectrum) of maps from P into
the homotopy inverse limit. For instance, given a cosimplicial spectrum, the spectral
sequence associated to the Tot tower is the Bousfield–Kan homotopy spectral sequence.

Let us single out a certain subcategory Townil.C/ of Tow.C/ consisting of objects
whose spectral sequences have extremely good convergence properties.

Definition 3.2 The subcategory Townil.C/� Tow.C/ consists of towers � � � !Xn!

Xn�1! � � � ! X0 with the property that there exists an integer r > 0, such that all
r –fold composites in the tower are nullhomotopic. The subcategory Townil.C/ is the
union of an ascending sequence

Townil
1 .C/� Townil

2 .C/� � � � ;

where Townil
r 0 � Townil consists of towers such that every r 0–fold composite is null.
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Definition 3.3 More generally, given a collection of objects U�C , we define Townil
U .C/

as the collection of towers � � � ! Xn! Xn�1! � � � such that there exists r 2 Z>0

such that every r –fold composite Xn!Xn�r induces the zero map

ŒU;Xn��! ŒU;Xn�r �� for each U 2 U:

Taking UD C gives Townil.C/.

We also need a generalization of Townil
U .C/ to handle towers that are “very close to

constant”, but not necessarily at zero.

Definition 3.4 We define Towfast
U .C/ to be the collection of those towers fXng such

that lim
 ��i

Xi exists and such that the cofiber of the map of towers

flim
 ��

i

Xig ! fXng;

where the first term is the constant tower, belongs to Townil
U .C/.

The basic permanency property of these subcategories is given by:

Proposition 3.5 (Hopkins, Palmieri and Smith [13]) For each U� C , we have that
Townil

U .C/;Towfast
U .C/� Tow.C/ are thick subcategories.

Proof The assertion about Towfast
U .C/ follows from the assertion about Townil

U .C/, so
we need only handle this case. Proposition 3.5 is essentially contained in [13, Corol-
lary 2.3], but we give the proof. It is easy to see that Townil

U .C/ � Tow.C/ is closed
under retracts and under suspensions and desuspensions. It suffices to show that given
a cofiber sequence in Tow.C/

fXng ! fYng ! fZng;

if fXng; fZng 2 Townil
U .C/, then fYng 2 Townil

U .C/.

To see this, suppose every r –fold composite in fXng induces the zero map on ŒU; � ��
for each U 2 U, and every r 0–fold composite in fZng induces the zero map on ŒU; � ��
for each U 2 U. We claim that every .r C r 0/–fold composite in fYng induces the
zero map on ŒU; � �� for each U 2 U. Fix U 2 U and let n � 0. Choose any map
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f W †kU ! YnCrCr 0 for k 2 Z arbitrary. Then we have a commutative diagram in C :

XnCrCr 0

��

// YnCrCr 0

��

// ZnCrCr 0

��
XnCr

��

// YnCr

��

// ZnCr

��
Xn

// Yn
// Zn

A diagram chase now shows that the composite of f with YnCrCr 0 ! Yn is null.
In fact, the composite of f with YnCrCr 0 ! YnCr ! ZnCr is null, and so factors
through XnCr . But the composite of any map from †kU !XnCr with XnCr !Xn

is null.

Remark 3.6 Given a tower � � � !Xn!Xn�1! � � �!X0 in Tow.C/, it can belong
to Townil.C/ only if it is pro-zero, that is, if the associated pro-object in Pro.C/ is
equivalent to the zero pro-object, as its inverse limit is contractible and this property is
preserved under any exact functor. The converse is false: if a cofinal subset of the Xi

are contractible, the tower is automatically pro-zero, but such a tower need not belong
to Townil . The associated spectral sequence may support arbitrarily long differentials.

3.2 Vanishing lines

We keep the notation of the previous subsection. We can give an interpretation of
Townil

U .C/ in terms of vanishing lines. Before it, we make the following definitions.

Definition 3.7 Given an inverse system � � � ! An! An�1! � � � ! A0 of abelian
groups, we define the r th derived system to be the inverse system of abelian groups
fim.AnCr !An/gn2Z�0

.

Definition 3.8 An inverse system of abelian groups � � � !An!An�1! � � � !A0

is eventually constant if the maps An!An�1 are isomorphisms for n� 0.

Since C is a stable 1–category, there is a natural spectrum of maps between any two
objects X;Y 2 C , which for the next result we write simply as Hom.X;Y /.

Proposition 3.9 The tower � � �!Xn!Xn�1!� � � in C belongs to Townil
U .C/ if and

only if, for each U 2 U, the spectral sequence associated to the tower of spectra

� � � ! Hom.U;Xn/! Hom.U;Xn�1/! � � � ! Hom.U;X0/

collapses to zero at a finite stage independent of U (that is, the r th page is identically
zero for some r , independent of U ).
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Proof We consider first the case C D Sp and UD fS0g, and assume that we have a
tower of spectra fXngn2Z�0

, which we extend to n<0 by taking X�1DX�2D� � �D0.
In this case, we recall the definition of the spectral sequence associated to the tower.
Let Fi be the fiber of Xi!Xi�1 . One has an exact coupleM

i

��Xi
� //

M
i

��Xi�1

{{M
i

��Fi

bb

where � is obtained as the direct sums of the maps ��Xi ! ��Xi�1 . The spectral
sequence for the homotopy groups of lim

 ��
Xi is obtained by repeatedly deriving this

exact couple. In particular, the successive derived couples are of the form

Im�r�1 � // Im�r�1

zz
E
�;�
r

dd

so that if E
�;�
r is identically zero for some r , then � necessarily (by exactness) induces

an automorphism of Im�r�1 . In other words, if we consider the inverse system
f��Xigi2Z , it follows that the r th derived system is constant, and thus necessarily zero,
by considering indices below zero.

For the converse, if fXng 2 Townil
fS0g

.Sp/, say all r –fold composites in the inverse sys-
tem are zero, then reversing the above argument shows that the exact couple degenerates
to zero at the r C 1st stage: the Im�r terms are zero.

The case of a general .C;U/ now easily reduces to this, because (as in the above
argument), the point at which the spectral sequence collapses and the number of
successive composites needed to make all the maps nullhomotopic are functions of
each other.

Similarly, we can give a criterion for belonging to Towfast
U .C/. First, however, we need

to prove some lemmas about pro-systems of abelian groups.

Lemma 3.10 Consider a half-exact sequence of inverse systems of abelian groups

fXig ! fYig ! fZig:
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(1) If fYig; fZig have eventually constant r th derived systems and 0!fXig! fYig

is exact, then fXig has an eventually constant r th derived system.

(2) If fXig; fYig have eventually constant r th derived systems and fYig! fZig! 0

is exact, then fZig has an eventually constant r th derived system.

(3) If
0! fXig ! fYig ! fZig ! 0

is exact, and fXig and fZig have eventually constant r th derived systems,
then fYig has an eventually constant 2r th derived system.

Proof We will prove the first and third of these assertions. The second is dual to
the first and can be proved similarly (or via an “opposite category” argument, since
everything here works in an arbitrary abelian category). The three assertions state that
the subcategory of the category of towers of abelian groups consisting of those towers
with an eventually constant r th derived system for r � 0 is closed under finite limits
and colimits, and extensions too.

(1) Suppose fYig; fZig have eventually constant r th derived systems and fXig is
the kernel inverse system of fYig ! fZig. In this case, we want to show that the r th

derived system of ker.Yi!Zi/ is eventually constant.

For i � 0, it follows that

�W Im.�r
W Xi!Xi�r /! Im.�r

W Xi�1!Xi�r�1/

is injective, because the analog is true for fYig.

The harder step is to show that the map is surjective. Equivalently, for j � 0, we
must show that any element of Xj that can be lifted up to XjCr can also be lifted
up to XjCrC1 (not necessarily in a compatible manner). Fix xj 2 Xj admitting
a lift xjCr 2 XjCr . Then the image yjCr of xjCr in YjCr lifts the image yj

of xj in Yj . It follows that yj , since it lifts r times, is actually the image of an
element y0

jCrC1
2 YjCrC1 which is “permanent”, ie which lifts arbitrarily. The image

z0
jCrC1

2ZjCr of y0
jCrC1

maps to zero in Zj , but z0
jCrC1

is also “permanent”, so
it must itself vanish by assumption. Thus y0

jCrC1
is the image of x0

jCrC1
2XjCrC1

and this lifts xj .

(3) Suppose fXig; fZig have eventually constant r th derived systems. Suppose j � 0

and suppose yj 2 Yj is in the image of YjC2r . We need to show two things.

� If yj ¤ 0, then the image of yj in Yj�1 is not zero.

� yj can be lifted to YjC2rC1 .
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For the first item, if the image zj of yj in Zj is not zero, then the image zj�1 of zj

in Zj�1 is also nonzero, because zj is permanent. If zj D 0, then yj comes from Xj ,
and we can apply the same argument to Xj .

Namely, choose yjC2r 2 YjC2r lifting yj and let yjCr 2 YjCr be the image. The
image zjCr 2 ZjCr is a permanent element which, by hypothesis, projects to zero
in Zj , so must be zero. In particular, yjCr 2 YjCr comes from XjCr , which means
that yj not only comes from Xj but also that it is the image of a (nonzero) permanent
element in Xj . The image of this in Xj�1 thus cannot be zero. This completes the
proof of the first item.

For the second item, the image zj 2Zj of yj is a permanent element, so it lifts uniquely
to a permanent element zjC2rC1 . Choose a lift y0jC2rC1 2 YjC2rC1 of zjC2rC1 .
Let y0

jC2r
be the image of y0

jC2rC1
in YjC2r . Then yjC2r � y0

jC2r
maps to an

element in ZjC2r which maps to zero in Zj , and thus maps to zero in ZjCr . In
particular, yjCr �y0jCr belongs to XjCr ; call it xxjCr . Taking images in Yj , we get

yj D xxj Cy0j ;

where xxj is the image of xxjCr and y0j is the image of y0
jC2rC1

. But xxj is permanent,
and y0j is the image of something in YjC2rC1 , so this completes the proof.

Lemma 3.11 Let fAig; fBig; fCig be three pro-systems of graded abelian groups.
Suppose that there is a long exact sequence of pro-systems

fAig
// fBig

||
fCig

bb

where the map fCig ! fAig lowers grading by 1. Suppose the r th derived system
of fAig and fBig are eventually constant. Then the 2r th derived system of fCig is
eventually constant.

Proof More generally, suppose given an exact sequence of inverse systems of abelian
groups

fMig ! fNig ! fPig ! fQig ! fRig;

and suppose that the r th derived systems of the inverse systems fMig; fNig; fQig; fRig

are eventually constant. Then we claim that the 2r th derived system of fPig is eventually
constant. In fact, this follows by applying Lemma 3.10 three times, and implies the
present result.
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Proposition 3.12 The tower � � � ! Xn! Xn�1! � � � in C belongs to Towfast
U .C/ if

and only if, for each U 2 U, the spectral sequence associated to the tower of spectra

� � � ! Hom.U;Xn/! Hom.U;Xn�1/! � � � ! Hom.U;X0/

collapses at a finite stage with a horizontal vanishing line independent of U . In other
words, there should exist r;N such that E

s;�
r D 0 for s >N , in the spectral sequence

associated to the above tower for each U .

Proof Without loss of generality, suppose that U D fS0g and C D Sp. Analysis
with exact couples as in the proof of Proposition 3.9 shows that the spectral sequence
condition of the proposition holds if and only if there exists r;N such that the map

�W .Im�r
W ��.Xs/! ��.Xs�r //! .Im�r

W ��.Xs�1/! ��.Xs�r�1//

is an isomorphism for all s > N . In other words, the r th derived system of the pro-
system f��Xng is eventually constant (rather than constant at zero as in the proof of
Proposition 3.9). Necessarily, the stable value of the pro-system must be �� lim

 ��
Xi .

By Lemma 3.11, it follows that if the condition of the proposition holds for the tower
fXigi2Z�0

, then it also holds for the tower fcofib.lim
 ��

Xj!Xi/gi2Z�0
, since it clearly

holds for the constant tower with value lim
 ��

Xj , and conversely. It follows that we can
reduce to the case where lim

 ��
Xj is contractible, which is precisely Proposition 3.9.

Observe that any object in Towfast
C .C/ defines a tower yielding a constant pro-object:

this follows from the analogous assertion about Townil
C .C/.

Remark 3.13 Suppose UD C and C is presentable. Then if T is any spectrum and
fXng 2 Towfast

C .C/, the tower fT ^Xng also belongs to Towfast
C .C/, where we recall

that C is tensored over Sp. This is a consequence of the fact that fXng defines a
constant pro-object in C , so that the natural map

T ^ lim
 ��

Xi! lim
 ��
.T ^Xi/

is an equivalence.

3.3 Vanishing in the descent spectral sequence

Our goal is to show that given .X;Otop/, then for any F 2 QCoh.X/, the Tot tower
associated to the given cosimplicial spectrum that “computes” �.X;F/ (ie based on
a choice of affine, étale hypercovering of X ) has a horizontal vanishing line in the
homotopy spectral sequence.

Let X D .X;Otop/ be an even periodic refinement of a Deligne–Mumford stack X

equipped with a flat map X !MFG .
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Theorem 3.14 Suppose X !MFG is tame.1 There exists s;N 2 Z>0 such that for
any quasicoherent sheaf F on X, the descent spectral sequence for ���.X;F/ has a
horizontal vanishing line of height N at the sth page.

Proof Note that it suffices to fix F and then prove the result for F specifically: if s

and N could not be taken independently of F , taking appropriate wedges would
provide a counterexample.

Let M be the least common multiple of the orders of all the automorphism group
schemes of geometric points of X . Then, the stack X ŒM�1� is itself tame, and so
(as in [24, Proposition 2.24]) has bounded cohomology, and thus the E2 –page of the
descent spectral sequence has a horizontal vanishing line at E2 itself after inverting
some M .

We now work p–locally for a fixed “bad” prime p . In this case, all the spectra
Otop.Spec R/ for étale maps Spec R! X are Ln –local for some n; see the discus-
sion at the beginning of [24, Section 4.2] and in particular [24, Lemma 4.9]. The
collection CF � Sp of spectra T such that the Tot tower for �.X;F ^ T / belongs
to Towfast

�.X;Otop/
.Mod.�.X;Otop// is a thick subcategory. Any thick subcategory of

Ln Sp that contains the smash powers of En contains LnS0 by the Hopkins–Ravenel
smash product theorem. It thus suffices to show that the smash powers of En belong
to CF . Since F was arbitrary, we need to show that the Tot tower for �.X;F ^En/

belongs to Towfast
�.X;Otop/

.Mod.�.X;Otop///.

However, as in [24, Proposition 4.10], since the stack X �MFG Spec�0En is tame,
the descent spectral sequence �.X;F ^En/ already has a horizontal vanishing line
at E2 (and therefore degenerates at a finite stage), because the fiber product X �MFG

Spec�0En is a (quasicompact, separated) tame stack. It follows that the statement of
the proposition holds p–locally.

Remark 3.15 The descent spectral sequence for ���.X;F/ will generally be very
infinite at the E2 –page because of “stackiness”. The descent spectral sequence for KO–
theory, which is also the homotopy fixed point spectral sequence for KO'KUhZ=2 , is
displayed in Figure 1. The class � is not nilpotent in the E2 –page, until a d3 kills �3 .
The same phenomenon occurs in the TMF spectral sequence, which is computed in
Bauer [6] and Konter [17]. It is a finiteness property of the En –local stable homotopy

1This is equivalent to the condition that for every geometric point Spec k ! X , the kernel of the
automorphism group to the automorphism group of the associated formal group has order prime to the
characteristic of k . We refer to Abramovich, Olsson and Vistoli [1] for the general theory. In [24, Proposi-
tion 4.10], it is shown that this hypothesis implies that the global sections functor on the derived stack X

commutes with filtered colimits. For example, representable maps are tame.
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category: the En –local Adams–Novikov spectral sequence exhibits the same property;
see Hovey and Strickland [16].
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Figure 1: The descent (or homotopy fixed point) spectral sequence for KO'
KhZ=2 : arrows in red indicate differentials, while arrows in black indicate
recurring patterns. Dots indicate copies of Z=2 , while squares indicate copies
of Z .

4 Extension to stacks

Fix a regular Deligne–Mumford stack X . Let X !MFG be a flat morphism and
consider an even periodic refinement XD .X;Otop/ of this data. We have considered
the 1–category QCoh.X/ of quasicoherent sheaves on X, which has good finiteness
properties if X !MFG is tame, as explored in [24, Section 4].

In this section, we will define thick subcategories of QCoh.X/ associated to every
closed substack of X and prove one half of the thick subcategory theorem. We will
also illustrate how the other, more difficult, half can be deduced in the special case of a
quotient stack by a finite group.

4.1 Definitions

We keep the previous notation and use the following hypotheses.
Hypotheses (1) X is a regular, separated, noetherian Deligne–Mumford stack.

(2) XD .X;Otop/ is an even periodic refinement of a flat map X !MFG .
(3) The derived stack X has the property that the global sections functor establishes

an equivalence Mod.�.X;Otop//' QCoh.X/. The main result of [24] implies
that this holds if X !MFG is quasi-affine.
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Definition 4.1 Let QCoh!.X/ be the subcategory of quasicoherent sheaves F 2
QCoh.X/ such that for each étale map Spec R ! X , the Otop.Spec R/–module
F.Spec R/ is perfect. Thus, QCoh!.X/ is the 1–category of dualizable objects
in QCoh.X/. Given F 2QCoh!.X/, the homotopy group sheaves �iF , i 2Z, define
coherent sheaves on X .

Remark 4.2 Under taking global sections, QCoh!.X/ then corresponds to the dualiz-
able, or equivalently perfect, �.X;Otop/–modules. This follows because dualizability
is a local condition (we refer to [22, Section 4.2.5] for the theory of duality in 1–
categories), and since the dualizable objects in a module category are precisely the
perfect modules.

Recall that there is a topological space associated to X in the sense of Laumon and
Moret-Bailly [18, Chapter 5]. Fix a closed subset Z � X : equivalently, this is an
equivalence class of closed substacks of X , where two closed substacks Z;Z0 �X

are equivalent if and only if there is a third substack Z00 �X containing Z;Z0 as a
nilpotent thickening.

Definition 4.3 Given a coherent sheaf G on X , we say that it is supported on Z if
there exists a closed substack of X with Z as its underlying space on which G is
supported. (This is a condition on the fibers of G at field-valued points.)

If we have a particular closed substack Z �X in mind (and not simply an equivalence
class), we will also say that G is scheme-theoretically supported on Z if G is an
OZ –module.

Definition 4.4 Let Z be a subset of X closed under specialization. We define a thick
subcategory QCoh!Z .X/�QCoh!.X/ consisting of those F 2QCoh!.X/ such that the
homotopy group sheaves �iF are supported set-theoretically on Z . We thus get a map
from specialization-closed subsets of X to thick subcategories of Mod!.�.X;Otop//.

Using exact sequences, one sees that QCoh!Z .X/ is in fact thick. Our first goal is to
show that every thick subcategory of QCoh!.X / is of this form. As in Section 2, it
suffices to construct a sufficient collection of “residue fields”. To do this, choose an étale
surjection Spec R!X . The E1–ring Otop.Spec R/ fits into the setting of the previous
subsection, and we can construct homology theories K.p/� on Mod.Otop.Spec R//

for each p 2 Spec R.

Via pullback, we can define these homology theories on QCoh.X/. In particular, it
follows that given F 2 QCoh.X/, we can define

K.p/�F
def
D ��.F.Spec R/p=.x1; : : : ;xr //;
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where x1; : : : ;xr 2Rp is a system of parameters. Every point of X can be represented
by a prime ideal p 2 Spec R (the topological space of X is the quotient of Spec R

under the two maps Spec R �X Spec R� Spec R), and as in the previous section,
it follows that the support of F 2 QCoh!.X/ contains the point corresponding to
p 2 Spec R if and only if K.p/�F ¤ 0.

Proposition 4.5 Given F 2 QCoh.X/, F ' 0 if and only if K.p/�F D 0 for each
p 2 Spec R.

Proof This is a consequence of Proposition 2.8, since F is contractible if and only if
F.Spec R/ is.

Now the entire thick subcategory argument (reviewed in the previous section for
R–modules) can be carried out in QCoh!.X/, or, one can appeal to the axiomatic
framework in [15]. In particular, just as in Proposition 2.11, one concludes:

Proposition 4.6 If F ;F 0 2 QCoh!.X/ and SuppF � SuppF 0 , then the thick subcat-
egory generated by F 0 contains F .

Corollary 4.7 Every thick subcategory of QCoh!.X/ is of the form QCoh!Z .X/ for
some subset Z �X closed under specialization.

The primary goal of the rest of this paper will be to study when the different QCoh!Z .X/
are distinct: that is, we would like to know when we can realize a given closed subset
as the support of a sheaf on X. We will answer this question, via Theorem 1.7, when
X !MFG is affine.

4.2 The case of a quotient stack

In this subsection, we consider a case of Theorem 1.7. Suppose the Deligne–Mumford
stack X is given by the quotient of an affine scheme by a finite group, so

X D .Spec R0/=G;

where jGj < 1, and R0 is a regular noetherian ring. Consider a flat, affine map
X !MFG and an even periodic refinement .X;Otop/ of this map. In this case, we
have a G–action on the E1–ring RDOtop.Spec R0/, and

�.X;Otop/'RhG :

This case was discussed in [24], and it is quite general (for instance, it includes Mell

once any prime is inverted). By the main result of [24], one has:
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Proposition 4.8 We have an equivalence

Mod.RhG/' QCoh.X/'Mod.R/hG :

Our goal is to show, as claimed in Theorem 1.7, that every thick subcategory of
Mod.RhG/ should arise from a G–invariant subset of Spec R0 closed under special-
ization (ie a union of closed substacks of X ). We begin with some lemmas.

Lemma 4.9 Let E
s;t
r be an upper half-plane spectral sequence of (not necessarily

commutative) algebras for s � 0; t 2Z. Suppose that x 2E
0;r
2

is an element. Suppose
moreover:

(1) x is central in E
�;�
2

.

(2) E
s;t
2

is torsion for s > 0 and t arbitrary.

(3) The spectral sequence degenerates at a finite stage.

Then a power of x survives to E
0;r
1 .

Proof In fact, suppose d2.x/ is N–torsion; then this implies that xN survives to E3 .
Repeating, it follows that a sufficiently divisible enough power of x survives to E4;E5 ,
and so forth to any finite stage. Since the spectral sequence stops at a finite stage, it
follows that a high power of x survives the spectral sequence.

Lemma 4.10 Let x 2RG
0

. Then a sufficiently divisible power of x is in the image of
�0RhG! �0R.

Proof To see this, consider the homotopy fixed point spectral sequence

H i.GI�j R/D) �j�iR
hG :

By assumption, x defines an element of E
0;0
2

. This spectral sequence has the two
key properties of Lemma 4.9. Above the s D 0 line, everything is torsion: in fact,
annihilated by jGj. Moreover, the spectral sequence degenerates at a finite stage (in
fact, with a horizontal vanishing line), thanks to Theorem 3.14. This is enough to imply
the lemma by Lemma 4.9.

Remark 4.11 If x is invertible, one may prove this using the norm map gl1.R/!

gl1.R
hG/' ��0gl1.R/

hG .

Proposition 4.12 The thick subcategories of Mod!.�.X;Otop// are in bijection with
the G–invariant subsets of Spec R0 closed under specialization.
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Proof By Corollary 4.7, the remaining step is to show that given a G–invariant closed
subset Z�Spec R0 , we can find a perfect �.X;Otop/–module with support exactly Z .
We would like to imitate the construction used to prove Theorem 2.13, although the
problem is that the xi need not live inside ���.X;Otop/D��R

hG . We can get around
this as follows.

Let Z correspond to the G–invariant radical ideal I �R0 . We can find an ideal J � I

such that rad.J / D I and such that J is itself generated by G–invariant elements.
Indeed, for each prime p that fails to contain I , we observe that gp also fails to
contain I for each g2G . Therefore, by prime avoidance (see Eisenbud [9, Lemma 3.3]),
choose an element x 2 I n

S
g2G.gp/. Then consider its norm NGx D

Q
g2G gx ,

which is in I and not in p. Taking norms such as these, we can choose G–invariant
elements of I such that any prime that fails to contain I fails to contain one of these
elements.

Therefore, we choose G–invariant elements fx1; : : : ;xng �RG
0

such that they cut out
the closed subset Z � Spec R0 . We would like to take as our �.X;Otop/–module M

the iterated quotient �.X;Otop/=.x1; : : : ;xn/, except that the xi do not necessarily
belong to �0�.X;Otop/. However, by Lemma 4.10, after raising the xi to a suitable
power, we can arrange that they do belong to �0�.X;Otop/. Then, the quotient
RhG=.x1; : : : ;xn/ is the desired RhG –module.

Corollary 4.13 Suppose R is an E1–ring with an action of a finite group G . Suppose
that:

(1) R is even periodic with �0R regular.

(2) RhG!R is a faithful G–Galois extension (in the sense of Rognes [29]).

Then the thick subcategories of Mod!.RhG/ are in bijection with the G–invariant
subsets of Spec�0R closed under specialization.

Proof This result is not a corollary of the previous ones, but rather of the proof. Since
RhG!R is faithful G–Galois, we have an equivalence of1–categories Mod.RhG/'

Mod.R/hG . This is essentially Galois descent, and has been observed independently
by Gepner–Lawson and Meier; see for example the author [23, Theorem 9.5].

Moreover, since R is even periodic with �0R regular, we can use the residue field con-
struction of Definition 2.5 to produce multiplicative homology theories on Mod.RhG/

satisfying Künneth isomorphisms that detect all nonzero objects. This gives one half
of the classification of thick subcategories.
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Using the same construction as above, the argument proving Proposition 4.12 applies
here too, provided that Lemma 4.10 applies. But in fact Lemma 4.10 is valid for any
faithful G–Galois extension. As shown in [23], the map RhG !R is “descendable”
in the sense of Sections 3–4 of that paper. One can use the analogous properties
of the homotopy fixed point (or descent) spectral sequence (degeneration at a finite
stage with a horizontal vanishing line, so that Lemma 4.9 applies) which are valid
for the homotopy fixed point spectral sequence for any faithful G–Galois extension;
see [23, Section 4].

5 The general case

In this section, we complete the proof of Theorem 1.7. Throughout this section, we fix
the even periodic refinement XD .X;Otop/ of the affine map X !MFG , where X

is a regular, noetherian and separated Deligne–Mumford stack. Our goal is now to
produce sufficiently many perfect �.X;Otop/–modules to see that any closed substack
of X can be realized as the support. Since X need not be a quotient stack by a finite
group, we will need a different approach from the previous section. We will use the
theory of graded Hopf algebroids (see, eg Ravenel [28]).

5.1 An abstract periodicity theorem

The basic step in producing �.X;Otop/–modules is the following analog of the period-
icity theorem in our setting.

Theorem 5.1 Let F 2QCoh!.X/ have the property that the homotopy group sheaves
of F ^DF are scheme-theoretically supported on a closed substack Z �X . Given a
section s 2H 0.Z; !k/, there exists a self-map

†nkF ! F

for some n, whose map on homotopy group sheaves is given by multiplication by s^n .

Proof In fact, we consider the endomorphism ring End.F/, which is an A1–algebra
internal to the category QCoh!.X/. Note first that End.F/ has its homotopy group
sheaves supported on the closed substack Z . The homotopy group sheaves End�.F/
of End.F/ form a sheaf of graded associative algebras on Z , and we get a map of
quasicoherent sheaves on Z (or X ),

1M
kD�1

!˝k
Z
! End�.F/:
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This is obtained from the natural map
1M

kD�1

!˝k
! End�.F/;

which has the property that it factors through the base-change to Z . Note in particular
that this map is central. In particular, the section s 2 H 0.Z; !k/ defines a central
element of H 0.X; �kEnd.F//: more precisely, a central element in the E2 –page of
the spectral sequence

E
s;t
2
DH i.X; �j End.F//D) �j�i�.X;End.F//:

In this spectral sequence, everything above the horizontal line s D 0 is torsion, as the
rationalization XQ is the quotient of an affine scheme by Gm in view of the affine map
XQ! .MFG/Q ' BGm . In particular, the presentation XQ D .affine/=Gm implies
that XQ has no higher sheaf cohomology. Therefore, it follows by Theorem 3.14
and Lemma 4.9 that a power of s survives the spectral sequence and defines a global
endomorphism of F as desired.

This result almost reduces our work to pure algebra. The situation becomes slightly
tricky, though, because while the set-theoretic support is well behaved in cofiber se-
quences, the scheme-theoretic support (which is what intervenes in Theorem 5.1) is less
so. We now note further consequences of Theorem 5.1 that will be used in the sequel.

Lemma 5.2 Let Y � Y 0 be a nilpotent thickening of Artin stacks and L 2 Pic.Y 0/.
Then any torsion section s 2H 0.Y;L/ has the property that some power of s extends
over Y 0 .

Proof It suffices to consider a square-zero thickening Y �Y 0 , defined by a square-zero
sheaf of ideals I on Y 0 . Then we have an exact sequence of sheaves on Y 0

0! IL! L! L˝OY 0
OY ! 0;

and we consider a section s of the last term. The obstruction to its lifting is given by
the coboundary ıs 2H 1.IL/. The coboundary has the property ı.sN /DN sN�1ı.s/

(in a natural sense, given the operation of OY 0=I on I ), which vanishes for N highly
divisible by assumption.

Corollary 5.3 Let F 2 QCoh!.X/. Suppose F is supported (scheme-theoretically)
on a closed substack Z�X . Suppose Z0�X is another closed substack with the same
underlying set as Z and s 2 H 0.Z0; !i/ is a torsion section. Let Z00 be the closed
substack of Z0 cut out by s . Then there exists F 0 2 QCoh!.X/ whose set-theoretic
support is precisely Z00 .
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Proof By Lemma 5.2, we may assume, after raising s to an appropriate power, that
Z0 D Z and s actually is a section over Z . In this case, we use Theorem 5.1 to
produce a self-map of F which induces multiplication by some tensor power of s on
homotopy group sheaves. The cofiber of this map can be taken to be F 0 .

5.2 The algebraic setup; the rational piece

Let Z � X be a closed substack. In this subsection, we will begin the algebraic
preliminaries in showing that there exists an object in QCoh!.X/ set-theoretically
supported on Z .

Definition 5.4 Recall (eg from [11]) the covers

M
coord;n
FG !MFG;

where M
coord;n
FG is the moduli stack of formal groups together with a coordinate to

degree n. Each of these covers is a torsor for the group G that acts on coordinates
to degree n (ie automorphisms of Spec ZŒx�=xnC1 ). The group G has a map (which
admits a splitting)

G�Gm

by contemplating the action on the Lie algebra, and the kernel H �G is an iterated
extension of copies of Ga , This property of the group G will become crucial below.

The inverse limit of the moduli stacks M
coord;n
FG parametrizes formal groups together

with a coordinate: equivalently, formal group laws. The inverse limit is thus the
spectrum of the Lazard ring L. Since X �MFG Spec L is affine by hypothesis, one gets:

Proposition 5.5 We have X �MFG M
coord;n
FG is affine for n� 0.

Proof Consider the tower of Deligne–Mumford stacks X .n/ DX �M
coord;n
FG

MFG as n

varies. For n> 0, the successive maps in the tower are Ga –torsors and in particular
are affine morphisms.

Moreover, the inverse limit of this tower, given by X .1/def
DX �MFG Spec L is an affine

scheme, by hypothesis, so we want to claim that some term in the tower is itself an affine
scheme. For this, we argue first that for n� 0, the Deligne–Mumford stacks X .n/ are
algebraic spaces, or equivalently, by [18, Corollary 8.1.1], that they have no nontrivial
automorphisms. In fact, consider the diagonal maps

X .n/
!X .n/

�X .n/
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for each n. These fit into a tower of cartesian squares as n ! 1, since for any
morphism of stacks Y1! Y2 , one has a cartesian square:

Y1

��

// Y1 �Y1

��
Y2

// Y2 �Y2

Since in the inverse limit, the map X .1/!X .1/ �X .1/ is a closed immersion, it
follows by Rydh [30, Proposition B.3] that X .n/!X .n/�X .n/ is a closed immersion
for n� 0. Thus, X .n/ is an algebraic space for n� 0.

Now, we can apply to the general theory of inverse limits of towers of algebraic spaces
under affine morphisms: by the Stacks project [31, Tag 07SQ] if the inverse limit is
affine, then some term in the tower (and thus everything above it) must be affine, to
conclude.

Fix one such n. Then we get a quotient stack presentation for X as the quotient of
some affine scheme Spec RDX �MFG M

coord;n
FG by an action of the algebraic group G .

In particular, if O.G/ denotes the ring of functions on G , then we get a presentation
for X via a Hopf algebroid,

(1) �W R�R˝O.G/!!
!
� � � :

Remark 5.6 Although we do not need this, these covers arise from certain ring spec-
tra X.n/. This Hopf algebroid can be realized in homotopy via the cobar construction

�.X;Otop/^X.n/� �.X;Otop/^X.n/^X.n/
!
!
!
� � � :

Consider the setup above. If we forget the Gm –action but remember the associated
grading, the result is a graded Hopf algebroid which presents the stack X . A given
closed substack of X ' Stack.�.X;Otop// corresponds to an invariant homogeneous
ideal I �R� .

Our strategy will be, first, to choose globally invariant elements x1; : : : ;xr that gener-
ate I rationally, and which exist in homotopy in a very strong sense. Here we use the
fact that the stack X is (up to Gm –action) already affine once we rationalize. After we
do this, we need to add in more generators to avoid introducing unnecessary irreducible
components of the support. In the torsion case, however, the distinction between the
set-theoretic and scheme-theoretic support simplifies thanks to the Frobenius.
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Lemma 5.7 In the above setup, there exist invariant homogeneous elements x1; : : : ;xr

in the Hopf algebroid � (from (1)) that generate I rationally. In the language of stacks,
there are sections xi 2H 0.X; !ki / which cut out the closed substack Z rationally.

Proof We will prove this using a different presentation from (1). On rationalizations,
XQ ! .MFG/Q ' BGm is affine, so XQ is the Gm –quotient of an affine scheme
Spec C with a Gm –action (ie grading). Now a closed substack of XQ' .Spec C /=Gm

is defined by a Gm –invariant ideal of C , or a homogeneous ideal of C . We can
take x1; : : : ;xr as homogeneous elements of C (ie sections of H 0.XQ; !

ki /) which
generate this homogeneous ideal. Multiplying by a highly divisible integer, we may
assume they extend to sections over X .

Proposition 5.8 Given the closed substack Z �X , there exists F 0 2QCoh!.X/ such
that SuppF 0 �Z and .SuppF 0/Q DZQ .

Proof Choose sections x1; : : : ;xr 2 H 0.X; !˝�/ such that the closed substack
of X cut out by the fxig is equal, rationally, to Z . After multiplying the xi by a
sufficiently divisible integer, we may assume the xi vanish along Z as well. After
raising the xi to a sufficiently divisible power, we may assume (by Theorem 3.14 and
Lemma 4.9) that each xi survives to an element in ��.�.X;Otop//. Then, we can take
F 0 DOtop=x1 ^ � � � ^Otop=xr .

5.3 The torsion piece

In this subsection, we prove some algebraic lemmas needed to handle the torsion.
Throughout, let B be a base ring, assumed noetherian. Let G be an algebraic group
over B with the property that G fits into an exact sequence of group schemes

1!H !G!Gm! 1;

where the map G!Gm has a section (so that G is a semidirect product). Suppose H

has a finite filtration with successive quotients isomorphic to Ga . Observe that on any
G–quotient, there is a natural line bundle ! obtained from the map G ! Gm , the
standard one-dimensional representation of Gm and the Borel construction. Through-
out, a representation of an algebraic group (always over the base ring B ) will refer
to a B–module together with a coaction of the associated Hopf algebra. Given a
representation, the fixed points consist of the primitive vectors under the coaction map.
See Waterhouse [33] for a discussion over fields.

Lemma 5.9 Let M be a Ga –representation. Then if M ¤ 0, M Ga ¤ 0.
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Proof Fix m ¤ 0 in M . Consider the coaction map  W M ! M ˝B BŒt �, and
suppose

(2)  .m/D

1X
iD0

t i
˝mi ; mi D 0 for i � 0:

Recall that m0 D m, and in particular  is injective. Let n be maximal such that
mn ¤ 0. Then mn is Ga –invariant. In fact, we get an equality from coassociativity,

nX
iD0

t i
˝ .mi/D

nX
iD0

iX
jD0

�
i

j

�
tj
˝ t i�j

˝mi ;

and comparing terms of tn˝ . � / shows that  .mn/D 1˝mn .

Lemma 5.10 Let A be a B–algebra with an action of the algebraic group H . Let
I � A be a H –invariant torsion ideal. Suppose IH consists of nilpotent elements.
Then I is nilpotent.

Proof We first consider the case of H DGa . Let  W A!A˝B BŒt � be the coaction
map. Choose x 2 I , and write  .x/D

Pn
iD0 t i ˝xi for the xi 2 I and for some n.

By the proof of (2), it follows that xn is H –invariant and therefore, by assumption,
nilpotent. Choose N highly divisible and so large that xN

n D 0.

In this case, it follows that

 .xN /D

� nX
iD0

t i
˝xi

�N

D

�n�1X
iD0

t i
˝xi

�N

;

because N is highly divisible and xn is torsion and nilpotent. (In general, if a is torsion
and nilpotent, then .aC b/N D bN for N sufficiently highly divisible.) Therefore,
when one expands

 .xN /D

1X
jD0

tj
˝ nj ;

the largest j that appears is j DN.n�1/, and that term is tN.n�1/˝xN
n�1

. It follows
that xN

n�1
is H –invariant and therefore nilpotent. Continuing in this way, we can work

our way down to conclude that all the xi , and in particular x0 D x , are nilpotent.

In general, if H is not assumed to be isomorphic to Ga , choose an exact sequence

1!H 0!H !Ga! 1;
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and assume inductively that the lemma is valid for H 0 . In particular, if I is not
nilpotent, it follows that IH 0 �AH 0 contains a nonnilpotent element x . The group Ga

acts on AH 0 and IH 0 , and in particular .IH 0/Ga must contain a nonnilpotent element
by the case of the lemma already proved. But then IH contains a nonnilpotent element,
a contradiction.

Proposition 5.11 Let Y be an Artin stack obtained as Y ' Spec R=G , where R is a
noetherian ring. Then given a closed substack T � Y such that TQ D YQ , there exists
a sequence of closed substacks

Y � Y1 � Y2 � � � � � Yr � T

such that:

(1) There exists an element yi 2H 0.Yi ; !
ki / such that YiC1 is the zero locus of yi .

(2) Yr is a nilpotent thickening of T .

Proof The stack Y is represented by a Hopf algebroid obtained by the G–action
on Spec R. The closed substack T � Y corresponds to a G–invariant ideal I � R

with the property that I ˝Z QD 0. It suffices to show that there exist homogeneous
elements y1; : : : ;yr 2R such that:

(1) The image of yi in H –invariant in R=.y1; : : : ;yi�1/ (which is inductively a
G–representation by this assumption).

(2) .y1; : : : ;yr / contains a power of I .

To do this, note first that we may assume I nonnilpotent. In this case, Lemma 5.10 gives
us a nonnilpotent H –invariant element y1 2 I , which we can assume homogeneous.
We can now form the quotient R=.y1/, which defines a proper closed G–invariant
subscheme of Spec R, or equivalently a proper closed substack Y1 � Y , which con-
tains T . Now, apply Lemma 5.10 again to the H –action on R=.y1/ and the image
of I in here, and continue to get the descending sequence of substacks and the yi . The
process stops once the image of I in R=.y1; : : : ;yr / is nilpotent, at which point we
have gotten down to a nilpotent thickening of T .

5.4 Proof of the main theorem

We now restate and prove the main theorem from the introduction.

Theorem 5.12 The construction Z 7! QCoh!Z .X/ establishes a bijection between
specialization-closed subsets of the underlying space of X and thick subcategories of
Mod!.�.X;Otop//' QCoh!.X/.
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Proof It thus suffices to show that, given a closed substack Z � X , there exists
F 2 QCoh!.X/ such that the (set-theoretic) support of F is precisely Z .

By Proposition 5.8, there exists F 0 2QCoh!.X/ such that the homotopy group sheaves
of F 0 are supported scheme-theoretically on a closed substack Z0 of X with Z0 �Z

and Z0Q D ZQ . Moreover, by Proposition 5.11 (which is applicable in view of the
discussion in Section 5.2), there exists a descending sequence of closed substacks

Z0 DZ1 �Z2 � � � � �Zm �Z

and torsion sections xxi 2H 0.Zi ; !
ki / for 1� i �m, such that:

� ZiC1 is the zero locus of xxi on Zi .

� Zm is a nilpotent thickening of Z .

We claim that, for each i D 1; 2; : : : ;m, there exists Fi 2 QCoh!.X/ such that the
set-theoretic support of Fi is precisely Zi . We prove this by induction on i . For i D 1,
we can take F 0 . If we have proved the assertion for i , then the assertion follows for
i C 1 by Corollary 5.3. Taking i Dm� 1, we have proved our result.

Question Does X need to be regular for the results of this paper to hold?
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