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Indefinite Morse 2–functions:
Broken fibrations and generalizations

DAVID T GAY

ROBION KIRBY

A Morse 2–function is a generic smooth map from a smooth manifold to a surface.
In the absence of definite folds (in which case we say that the Morse 2–function is
indefinite), these are natural generalizations of broken (Lefschetz) fibrations. We
prove existence and uniqueness results for indefinite Morse 2–functions mapping to
arbitrary compact, oriented surfaces. “Uniqueness” means there is a set of moves
which are sufficient to go between two homotopic indefinite Morse 2–functions while
remaining indefinite throughout. We extend the existence and uniqueness results to
indefinite, Morse 2–functions with connected fibers.

57M50; 57R17

1 Introduction

A Morse 2–function on a smooth n–manifold X is a generic smooth map from X to a 2–
manifold, just as an ordinary Morse function is a generic smooth map to a 1–manifold.
The singularities are folds and cusps. Folds look locally like .t;x1; : : : ;xn�1/ 7!

.t; f .x1; : : : ;xn�1// for a standard Morse singularity f , and cusps look locally like

.t;x1; : : : ;xn�1/ 7! .t; ft .x1; : : : ;xn�1// for a standard birth ft of a cancelling pair
of Morse singularities.

We develop techniques for working with Morse 2–functions and generic homotopies
between them, paying particular attention to (1) avoiding definite folds, in which the
modeling function f is a definite Morse singularity, ie a local extremum, and (2)
guaranteeing connected fibers. When definite folds are avoided, we say that the Morse
2–function (or generic homotopy) is indefinite. When fibers are connected, we say that
the function or homotopy is fiber-connected. The same adjectives also describe Morse
functions and their homotopies, when definite singularities (local extrema) are avoided
and when level sets are connected.

Let X be a compact, connected, oriented, smooth (C1 ) n–manifold and let † be
a compact, connected, oriented surface (with possibly empty, possibly disconnected,
boundaries). We leave the nonoriented case for others to think about.
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2466 David T Gay and Robion Kirby

Theorem 1.1 (Existence) Let gW @X ! @† be an indefinite, surjective, Morse func-
tion which extends to a map G0W X ! †. If n > 2 and G0�.�1.X // has finite index
in �1.†/, then G0 is homotopic rel boundary to an indefinite Morse 2–function
GW X !†. When n > 3, if g is fiber-connected and G0�.�1.X //D �1.†/ then we
can arrange that G is fiber-connected.

Theorem 1.2 (Uniqueness) Let G0;G1W X ! † be indefinite Morse 2–functions
which agree on @X and are homotopic rel boundary. If n > 3 then G0 and G1 are
homotopic through an indefinite generic homotopy Gs . If in addition G0 and G1 are
fiber-connected then we can also arrange that Gs is fiber-connected.

These results are analogs of the following facts in ordinary Morse theory:

Theorem 1.3 (Existence) A compact, connected m–dimensional cobordism M

between F0 ¤ ∅ and F1 ¤ ∅ supports an indefinite Morse function gW M ! I D

Œ0; 1�D B1 . If m > 2 and F0 and F1 are connected then we can also arrange that g

is fiber-connected. Any homotopically nontrival map g0 from a closed connected
m–manifold M to S1 is homotopic to an indefinite Morse function gW M ! S1 . If
m> 2 and g0�.�1.M //D �1.S

1/ then we can also arrange that g is fiber-connected.

Theorem 1.4 (Uniqueness) In both cases above, two homotopic (rel @) indefinite
Morse functions g0;g1W M!N 1 , where N DB1 or N DS1 , are homotopic through
an indefinite generic homotopy gs , and if m > 2 and g0 and g1 are fiber-connected
then we can arrange that gs is fiber-connected for all s .

Remark 1.5 Because our proofs of the above theorems begin with the case of maps to
I�I or I and are completed with Thom–Pontrjagin-type arguments, all the homotopies
constructed can be taken to be homotopic to given homotopies.

The motivation for generalizing Morse functions and Cerf theory [6] from dimension
one to dimension two comes originally from the importance of Lefschetz fibrations in
complex and symplectic geometry, and new ideas around broken Lefschetz fibrations.
After LeBrun [14] and Honda [10; 11] showed that a smooth 4–manifold X 4 with
bC

2
> 0 has a near symplectic form (a closed 2–form ! with ! ^! � 0 and zero only

on a smooth embedded 1–manifold Z in X ), Auroux, Donaldson and Katzarkov [3]
proved that such 4–manifolds are Lefschetz pencils in the complement of Z , where Z

mapped onto latitudes of S2 . Gay and Kirby [7], Lekili [15], Baykur [4] and Akbulut
and Karakurt [1] extended this result to all smooth, oriented, compact 4–manifolds as
broken fibrations (not just pencils).
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One aim was to define invariants by counting pseudoholomorphic curves in X 4 which
limit on Z , as had been done in the symplectic case by Taubes [19] and Usher [21].
To do this, Perutz [16; 17] defined his Lagrangian matching invariants for a broken
Lefschetz fibration, but to get invariants of the underlying smooth 4–manifold, one
needs moves between broken Lefschetz fibrations, preserving connectedness of fibers,
under which the Lagrangian matching invariants are preserved. Our uniqueness theorem
is intended to provide these moves, and thus provide purely topological definitions of
invariants.

Note that maps X 4! S2 are partitioned according to their homotopy class into the
elements of the cohomotopy set �2.X 4/, calculated homotopically by Taylor [20] and
geometrically by Kirby, Melvin and Teichner [13]. It is not clear how this partitioning
relates to known invariants, but all elements are realized by indefinite, fiber connected,
Morse 2–functions.

Theorem 1.1, in the case of †D S2 and without fiber-connectedness, is originally due
to Saeki [18], who also pointed out that the finiteness of the index ŒG0�.�1.X // W�1.†/�

is a necessary condition. A short proof of existence for closed X to S2 is sketched by
Gay and Kirby in [8]. A significant step forward in the uniqueness case was provided
by Lekili [15] when he reintroduced singularity theory into the subject and showed
how to go back and forth between Lefschetz singularities and cusps on fold curves.

Of course there is an extensive history behind this paper in the world of singularity
theory, which is too long to present, and an extensive history in complex algebraic
geometry in the study of honest Lefschetz fibrations. A purely topological precedent
lies in the study of round handles; see [2; 5] for example.

Theorem 1.2, when nD 4 and without fiber-connectedness, was originally proved by
Williams [23]. Theorem 1.3 is standard, with some of it proved in [18]. The B1 –valued
(cobordism) case of Theorem 1.4 is an essential ingredient in developing the calculus of
framed links for 3–manifolds and thus appears in [12]. It seems that the fiber-connected
assertion in the S1 –valued case of Theorem 1.4 is a new result, and was originally
posed to us as a question by Katrin Wehrheim and Chris Woodward.

If we remove the adjectives “indefinite” and “fiber-connected” from the above theorems
then the theorems become simply the facts that Morse functions, Morse 2–functions and
generic homotopies between them are, in fact, generic. Although in the above discussion
we simply stated that Morse functions, Morse 2–functions and the homotopies we are
calling “generic” are actually generic, in fact the definitions we prefer are in terms
of local models, and the fact that maps and homotopies with these local models are
generic (and in fact stable) is a standard result in singularity theory.
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To prove Theorems 1.1 and 1.2, we spend most of our time on the case where †DB2 ,
the disk, and in fact think of B2 as the square I2 D I � I . Here the natural structure
on the n–dimensional domain X of a Morse 2–function GW X ! I2 is that of a
cobordism with sides from M0 to M1 , where M0 is an .n�1/–dimensional cobordism
from F00 to F01 and M1 is an .n�1/–dimensional cobordism from F10 to F11 , with
F00 Š F10 and F01 Š F11 . We ask that this cobordism structure should be mapped
to the cobordism structure on I2 as a cobordism from I to I , and the boundary data
comes in the form of I–valued Morse functions on M0 and M1 . See Figure 1.

t

z

Figure 1: A Morse 2–function on a surface, mapping to the square I � I

Consider the special case where X D Œ0; 1��M and G.t;p/D .t;gt .p//, a generic
homotopy between Morse functions g0;g1W M ! Œ0; 1�. Then removing definite folds
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from G is the same as removing definite critical points from gt , and this is done
in Section 4 and also in [12]. Fibers remain connected, and therefore existence is
done in this special case. For uniqueness, suppose we have a generic 2–parameter
family gs;t between g0;t and g1;t , giving a generic homotopy Gs.t;p/ D gs;t .p/.
The 2–dimensional definite folds are shown to be removable in Section 4 by use of
singularity theory, in particular, use of the codimension-two singularities called the
butterfly and the elliptic umbilic.

For existence in the general case of a cobordism .X;M0;M1/! .I�I; f0g�I; f1g�I/,
choose a Morse function � W X ! I with no definite critical points. We will construct
the indefinite Morse 2–function G so that t ıG D � , where .t; z/ are coordinates on
I �I . Choose times ta and tb just before and after a critical value of � . At the critical
point there is a standard function in local coordinates giving the descending sphere.
Choose a z–valued Morse function �a on the slice ��1.ta/ such that the descending
sphere lies in a level set ��1

a .za/, which will mean that the descending sphere lies in
the fiber of G over .ta; za/. Away from the local coordinates, we essentially have a
product between ��1.ta/ and ��1.tb/ and the Morse function on ��1.ta/ determines
a Morse function on ��1.tb/.

We finish the existence outline by filling in the gaps between the strips around critical
values by choosing Cerf graphics without definite folds; ie appealing to the existence of
generic homotopies between ordinary Morse functions without definite critical points.
Thus we get images of the folds in I � I as in Figure 2.

t

z

tatb t 0a t 0
b

Figure 2: An example illustrating a Cerf graphic in between two critical
values of � D t ıG

In our proof, we would produce the Morse function �a mentioned above and the Cerf
graphic that connects it to an earlier � via a very general argument which, in any
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particular application, should be replaced by something more explicit. An interesting
and illustrative case is that of a (horizontal) Morse function � W X 4 ! R, a critical
point p of index 2, a given Morse function �W M 3

a !R, where Ma is the level set
of � at ta just below �.p/, and the attaching circle C of the descending disk from p

lying in Ma , but not in a level set of � . But we wish it to lie in a level set, for that
will be a fiber of the eventual Morse 2–function. In other words, before attaching the
handle associated to this critical point, we need to isotope C and construct a Cerf
graphic from the given � to a new Morse function �a such that C lies in a level set.
See Figure 3.

z

t

Ma

ta tb

p

1

2

1

2

C C

C C

cusp 2–handle

cusp 1–handle

dual 1–handle

Figure 3: Resolving crossings

First we can isotope C into a region Œ�1; 1��F , where F is a level set of Ma with
respect to � . After generically projecting C into 0�F D F , we get crossings, and
these have to be resolved somehow. For each crossing a cusp consisting of a cancelling
1–2–pair of critical points must be created at a lower level of � , that is, before trying
to embed C in F , so that they are available to remove the crossing.

Then to construct � on Mb D �
�1.tb/ near the crossing, we modify the � on Ma

as follows. The 1–handle is attached first, on either side of the arc of C which is
the under crossing. Then a 2–handle is attached along C , with the crossing having
been resolved by sending one strand of C over the cusp 1–handle. Next we must
add the dual 1–handle of C . This is attached to the 0–sphere bundle (which is the
boundary of the normal line bundle to C in F ), and this 0–sphere can be placed where
convenient. In our case it is as drawn in Figure 3. Finally, the 2–handle of the cusp,
which must cancel its 1–handle, goes over each of the 1–handles once, as drawn. This
describes how � changes locally at each crossing while shifting from Ma to Mb . At
each crossing of C in F , a cusp is added and the genus of the fiber F is raised by one.
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Returning to the main outline, the same ideas are used for uniqueness in Section 5. We
are given two maps G0;G1W .X;M0;M1/! .I�I; f0g�I; f1g�I/ and �0D tıG0 and
�1D t ıG1 are homotopic indefinite Morse functions. Appealing again to the existence
of indefinite homotopies between Morse functions, we get a generic homotopy �s

from �0 to �1 with no definite critical points. This homotopy is a sequence of indefinite
births, followed by changes of heights of critical values, followed by deaths. We first
construct the homotopy Gs for s 2 Œ0; 1

4
�[ Œ3

4
; 1� so as to arrange that t ıGs realizes

the appropriate births and height changes for s 2 Œ0; 1
4
� and the appropriate deaths for

s 2 Œ3
4
; 1�. For example, a birth is achieved by the introduction of an eye followed by a

kink, as in Figure 34 (see Section 5). Then we have arranged that t ıG1=4D t ıG3=4 and
we construct Gs for s 2 Œ1

4
; 3

4
� keeping t ıGs fixed. Here we end up appealing again to

the existence of indefinite 2–parameter homotopies between ordinary Morse functions,
as in Section 4, where now the Morse functions are of the form z ıGjG�1.ftg�I / .

Once the case of image equal to I �I is done, it is not hard using a zigzag argument to
extend the theorems to other surfaces (see Section 6). Extra care with Thom–Pontrjagin-
type arguments is needed to keep fibers connected.

Although our motivation comes from the nD 4 case, the arguments all generalize in a
straightforward manner to all dimensions, save occasionally troubles with dimensions
less than or equal to 3. It is hoped that in other dimensions, even 3, the theorems will
be useful.

Remark 1.6 In this paper we have assumed X is 0–connected and we have removed
definite folds (0– and .n� 1/–folds) when n� 3, and removed them in 1–parameter
families when n� 4. One could speculate that, if X is 1–connected, we could remove
0–, 1–, .n� 2/– and .n� 1/–folds for n � 5 (existence) or n � 6 (uniqueness). In
particular, simply connected 5–manifolds would have only 2–folds and no cusps. This
speculation would further generalize to k–connected n–manifolds with n � 2k C 3

(existence) or n� 2kC 4 (uniqueness).
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2 Definitions and basic results

We begin with the usual definition of Morse functions in terms of local models, as a
warm-up to the succeeding definitions, and also add a few slightly less standard terms
to this setting.

Definition 2.1 The standard index-k Morse model in dimension m is the function
�m

k
.x1; : : : ;xm/D�x2

1
�� � ��x2

k
Cx2

kC1
C� � �Cx2

m . When the ambient dimension m

is understood we will write �k instead of �m
k

. We will also abbreviate �k.x1; : : : ;xm/

as �k.x/.

Definition 2.2 Given an m–manifold M and an oriented 1–manifold N , a smooth
function gW M !N is locally Morse if there exist coordinates in a neighborhood of
each critical point p together with coordinates in a neighborhood of g.p/ with respect
to which g.x1; : : : ;xm/ D �k.x/, where k is the index of p . A Morse function is
a proper map gW M ! N which is locally Morse with the additional property that
distinct critical points map to distinct critical values. When g is a Morse function
from M to I D Œ0; 1� we imply that M is given as a cobordism from F0 to F1 and
that g�1.0/D F0 and g�1.1/D F1 .

It is a standard fact that Morse functions are stable and generic. Next we will discuss
homotopies and homotopies of homotopies between Morse functions, and also make
similar statements that homotopies satisfying certain properties are stable and generic.
These facts are only slightly less standard, and are discussed in many different references
on singularity theory and Cerf theory. Probably the most comprehensive reference for
the facts we mention is Hatcher and Wagoner [9]. To see these results in the more
general context of singularity theory, look at Wassermann [22]. For a modern exposition
explicitly in a low-dimensional setting, which also explains much of the motivation for
this paper, we recommend [15].

We want to discuss homotopies gt W M ! N between Morse functions which are
not necessarily Morse at intermediate times, in which case it is useful to discuss also
the associated function GW I �M ! I �N defined by G.t;p/D .t;gt .p//, and its
singular locus ZG , the trajectory of the critical points of gt . Given an m–manifold M

and a 1–manifold N with two Morse functions g0;g1W M !N , we are interested in
homotopies gt W M !N satisfying the following properties. The functions gt should
be Morse for all but finitely many values of t and, at those values t� when gt� is not
Morse exactly one of the following events should occur, possibly with the t parameter
reversed (Figure 4 illustrates these by drawing the Cerf graphic G.ZG/ for a typical
generic homotopy):
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Figure 4: Example of the Cerf graphic for a generic homotopy between Morse
functions, with indices of critical points labeled with integers, birth and death
cusps indicated by dotted circles and critical value crossings indicated by
dotted squares.

(1) Two critical values cross at t� : more precisely, gt� is locally Morse but not Morse,
and ZG \ .Œt�� �; t�C ���M / is a collection of arcs on which G is an embedding
except for exactly one transverse double point where the images of two arcs cross. For
future reference we call this event a 1–parameter crossing, or just a crossing.

(2) A pair of cancelling critical points are born: for all t 2 Œt���; t�C��, gt is Morse
outside a ball, and inside that ball there are coordinates on domain and range (possibly
varying with t ) with respect to which gt .x1; : : : ;xm/D�x2

1
�� � ��x2

k
Cx3

kC1
� .t �

t�/xkC1Cx2
kC2
C � � �Cx2

m , with no other critical values near 0. Thus for t ¤ t� , gt

is Morse, but for t < t� there are no critical points in this ball, and for t > t� there are
two critical points of index k and kC 1 in this ball. Note that here G is injective on
ZG \ .Œt�� �; t�C ���M /, and ZG \ .Œt�� �; t�C ���M / is a collection of arcs all
but one of which have endpoints at t��� and t�C� and are smoothly embedded via G ,
and one of which has both endpoints at t�C � and is mapped via G to a semicubical
cusp in Œt� � �; t� C �� �N . For future reference we call this a 1–parameter birth
singularity (or death singularity when t is reversed).

It is a standard fact that homotopies satisfying these properties are stable and generic,
so for this reason:

Definition 2.3 We call a homotopy gt W M !N , with g0 and g1 Morse, a generic
homotopy between Morse functions if gt satisfies the properties listed in the preceding
paragraph.

We distinguish the above from the following:

Geometry & Topology, Volume 19 (2015)
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Definition 2.4 An arc of Morse functions is a homotopy gt which is Morse for all t .

Next we discuss homotopies gs;t W M!N between generic homotopies between Morse
functions, which are not necessarily generic homotopies for certain fixed values of s . In
this case it is useful to consider the associated functions GsW I�M ! I�N defined by
.t;p/ 7! .t;gs;t .p// and GW I�I�M!I�I�N defined by .s; t;p/ 7! .s; t;gs;t .p//,
and their singular loci ZGs

� I �M and ZG � I �I �M . Given an m–manifold M

and a 1–manifold N , with one generic homotopy g0;t W M ! N between Morse
functions g0;0 and g0;1 and another generic homotopy g1;t W M !N between Morse
functions g1;0 and g1;1 , we are interested in connecting these through a 2–parameter
family gs;t W M !N , with s; t 2 I , satisfying the following conditions.

(1) gs;0 is an arc of Morse functions from g0;0 to g1;0 and gs;1 is an arc of Morse
functions from g0;1 to g1;1 .

(2) For all but finitely many fixed values of s , gs;t is, in the parameter t , a generic
homotopy between the Morse functions gs;0 and gs;1 .

(3) At those values s� when gs�;t is not a generic homotopy there is a single value t�
such that gs�;t is a generic homotopy for t 2 Œ0; t�/ and for t 2 .t�; 1�.

(4) At each of these points .s�; t�/ 2 I �I exactly one of the following events occurs,
possibly with either the s or t parameter reversed (some of which are illustrated in
figures below by drawing sequences of Cerf graphics Gs.ZGs

/).
(a) (This event is not particularly important to us but we list it for completeness.)

The function gs�;t� is locally Morse (or has a birth or death in the parameter t )
but the 1–parameter family gs�;t does not meet the requirements to be a generic
homotopy because exactly two of the events listed in Definition 2.3 occur simul-
taneously at t D t� . For example, a birth singularity may happen at the same
time t� as a crossing. This phenomenon should be transverse in the obvious
sense; for example, for s < s� , the birth might happen before the crossing, and
for s > s� , the birth would then happen after the crossing. We call this event a
2–parameter coincidence.

(b) The function gs�;t� is locally Morse but the 1–parameter family gs�;t does
not meet the requirements to be a generic homotopy because the singular locus
ZGs�

\ .Œt� � �; t� C �� �M / is mapped into I � N via Gs� with a single
nontransverse quadratic double point at t D t� . However, we require here that
the singular locus ZG \ .Œt� � �; t�C ��� Œs� � �; s�C ���M / is a collection
of disjoint squares and is mapped into I � I �N via G with a single arc of
transverse double points. In other words, the image of ZGs

in I �N changes
via a Reidemeister-II type move at s D s� . See Figure 5; we call this event a
Reidemeister-II fold crossing.
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t

N
s

Figure 5: Nontransverse double point in the singular locus for a generic
homotopy between generic homotopies between Morse functions: note that
in general the indices of the two critical points involved can be arbitrary.

(c) The function gs�;t� is locally Morse but the 1–parameter family gs�;t does
not meet the requirements to be a generic homotopy because the singular locus
ZGs�

\ .Œt� � �; t� C �� �M / is mapped into I � N via Gs� with a single
transverse triple point. However, we require here that the singular locus ZG \

.Œt� � �; t�C ��� Œs� � �; s�C ���M / is a collection of disjoint squares and
is mapped into I � I �N via G with three arcs of double points which meet
transversely at the triple point. In other words, the image of ZGs

in I �N is
modified via a Reidemeister-III type move. See Figure 6; we call this event a
Reidemeister-III fold crossing.

t

N
s

Figure 6: Transverse triple point in the singular locus for a generic homotopy
between generic homotopies between Morse functions: again, the indices
involved can be arbitrary.

(d) The 1–parameter family gs�;t fails to be a generic homotopy because a birth (or
death) occurs at time t� at a point p 2M at the same value as another Morse
critical point q ; gs�;t�.p/ D gs�;t�.q/. In other words, Gs� maps ZGs�

into
I �N in such a way that a nontransverse double point occurs between a cusp
and a noncusp point. However, here we require that the 1–dimensional cusp
locus CG � I � I �M and the 2–dimensional singular locus ZG � I � I �M

are mapped into I � I �N via G with a transverse intersection at this point.
See Figure 7; we call this event a cusp-fold crossing.
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t

N
s

Figure 7: Nontransverse double point involving a cusp, occurring in a generic
homotopy between generic homotopies between Morse functions: the only
constraint on indices is that coming from the cusp, namely that the two critical
points born at the cusp are of successive index.

(e) The function gs�;t� is Morse away from a point p 2M , and in neighborhoods of
p and gs�;t�.p/ we have coordinates with respect to which, for js� s�j< ı and
jt � t�j< � , gs;t is given by gs;t .x1; : : : ;xm/D�x2

1
� � � ��x2

k
Cx3

kC1
C .t �

t�/
2xkC1�.s�s�/xkC1Cx2

kC2
C� � �Cx2

m . Furthermore, for these .s; t/ there
are no other singularities of gs;t in the inverse image of a small neighborhood
of gs�;t�.p/. Geometrically, this is the birth of a pair of cusps joined in an “eye”
shape, involving a birth and a death of a pair of cancelling critical points. See
Figure 8; we call this event an eye birth singularity (or death when s is reversed).

t

N
s

no critical values

k

kC 1

Figure 8: The birth of a birth–death pair (eye birth) involving a pair of
cancelling critical points of successive index

(f) The function gs�;t� is Morse away from a point p 2M , and in neighborhoods of
p and gs�;t�.p/ we have coordinates with respect to which, for js� s�j< ı and
jt � t�j< � , gs;t is given by gs;t .x1; : : : ;xm/D�x2

1
� � � � �x2

k
Cx3

kC1
� .t �

t�/
2xkC1�.s�s�/xkC1Cx2

kC2
C� � �Cx2

m . Furthermore, for these .s; t/ there
are no other singularities of gs;t in the inverse image of a small neighborhood
of gs�;t�.p/. Here a death and a birth of a cancelling pair merge together, so
that afterwards there is no cancellation. See Figure 9; we call this event a merge
singularity (or unmerge when s is reversed).
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t

N
s

k

kC 1

Figure 9: The merge of a death–birth pair involving a pair of cancelling
critical points of successive index

(g) The function gs�;t� is Morse away from a point p 2M , and in neighborhoods of
p and gs�;t�.p/ we have coordinates with respect to which, for js� s�j< ı and
jt � t�j< � , gs;t is given by gs;t .x1; : : : ;xm/D�x2

1
� � � � �x2

k
Cx4

kC1
� .s�

s�/x
2
kC1
C .t � t�/xkC1Cx2

kC2
C� � �Cx2

m . Furthermore, for these .s; t/ there
are no other singularities of gs;t in the inverse image of a small neighborhood
of gs�;t�.p/. This singularity is known as a swallowtail. See Figure 10; we call
this event a swallowtail birth singularity (or death when s is reversed).

t

N
s

k

kC 1

Figure 10: Birth of a swallowtail; an upside down version also occurs

Note that, besides the coincidence event, we have two types of events: 2–parameter
crossings (Reidemeister-II’s, Reidemeister-III’s and cusp-folds) and 2–parameter singu-
larities (eye births and deaths, merges and unmerges, and swallowtail births and deaths).
(As a technical point, note also that, in the definitions of the 2–parameter singularities,
the coordinates in which the homotopy of homotopies takes on the standard models
may vary with s and t , and also the parametrization of t may depend on s .)

It is also standard that such homotopies of homotopies are generic and stable, and so
for this reason:

Definition 2.5 A homotopy gs;t between generic homotopies g0;t and g1;t is a
generic homotopy of homotopies if it satisfies the properties described above. If
g0;0 D g1;0 and g0;1 D g1;1 , we can also ask that gs;0 D g0;0 and gs;1 D g0;1 for
all s , in which case we say that gs;t is a generic homotopy with fixed endpoints.
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Again, we distinguish this from the following:

Definition 2.6 An arc of generic homotopies is a homotopy of homotopies gs;t which,
for each fixed value of s , is a generic homotopy in the parameter t .

Definition 2.7 Given an n–manifold X and a 2–manifold †, a smooth proper map
GW X!† is a Morse 2–function if for each q 2† there is a compact neighborhood S

of q with a diffeomorphism  W S! I�I and a diffeomorphism �W G�1.S/! I�M ,
for an .n� 1/–manifold M , such that  ıG ı ��1W I �M ! I � I is of the form
.t;p/ 7! .t;gt .p// for some generic homotopy between Morse functions gt W M ! I .
A singular point for G is called a fold point if the homotopy used to model G at that
point can actually be taken to be Morse, and is called a cusp point if the homotopy
has a birth or death at that point. An arc of fold points is called a fold. When †
is given as a cobordism between 1–manifolds N0 and N1 then X should be given
as a cobordism between .n� 1/–manifolds M0 and M1 , with G�1.Ni/DMi and
with GjMi

W Mi ! Ni a Morse function. When † is given as a cobordism between
cobordisms (in particular, when †D I2 , a cobordism from I to I , with I being a
cobordism from f0g to f1g), then X should also be given as such a relative cobordism,
with all the cobordism structure preserved by G . For us the structure of a relative
cobordism includes an explicit product structure on the sides, and this should also be
respected by G . In particular, there should be no critical points along the side of the
cobordism.

Remark 2.8 The important thing to understand here is that Morse 2–functions look
locally like generic homotopies between Morse functions, but that there is no global
time direction. Note that the index of a fold is not well defined, but that if we choose a
transverse direction to the fold, and consider local models .t;p/ 7! .t;gt .p// in which
the second coordinate in the range is given by this transverse direction, then we do
have a well-defined index. In figures, we will indicate this by drawing a small arrow
transverse to the fold and labeling it with the index. If, however, we are drawing a Cerf
graphic, then it is understood that the transverse direction is up, and we will label folds
(arcs of critical points) with indices without indicating the arrow. We illustrate these
conventions in Figure 11, which show the images of the singular locus for, on the left,
a hypothetical Morse 2–function mapping to a genus-2 surface and, on the right, a
generic homotopy between Morse functions.

Definition 2.9 A 1–parameter family GsW X ! † is a generic homotopy between
Morse 2–functions if, for each q 2† and each s� 2 I there is an � > 0 and a compact
neighborhood S of q with a diffeomorphism  W S! I �I and a 1–parameter family
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Figure 11: Morse 2–functions versus Cerf graphics, and index labeling
conventions: on the left, we are mapping from a 4–manifold to a genus-2

surface; on the right, we are illustrating a generic homotopy between I–valued
Morse functions on a 3–manifold.

of diffeomorphisms �sW G
�1
s .S/ ! I �M , for an .n � 1/–manifold M and for

js�s�j<� , such that  ıGs ı�
�1
s W I�M ! I�I is of the form .t;p/ 7! .t;gs;t .p//

for some generic homotopy of homotopies gs;t W M ! I . Generic homotopies of Morse
2–functions GsW X !† are expected to be constant (independent of s ) on @X .

Again, although our terminology is not standard, it is a standard fact that Morse 2–
functions and generic homotopies of Morse 2–functions are stable and generic. This is
mostly explained in Section 4 and [15, Appendix A].

We will be interested, for most of this paper, in the special case of Morse 2–functions
mapping to I2 , seen as a cobordism from f0g � I to f1g � I . We use coordinates
.t; z/ on I2 , ie t is the horizontal axis. Here it is useful to impose one extra genericity
condition:

Definition 2.10 Suppose X n is a cobordism from M0 to M1 , with each Mi a
cobordism from Fi0 to Fi1 . A square Morse 2–function on X is a Morse 2–function
GW X ! I2 , respecting the cobordism structure, with no critical values in I � f0; 1g,
such that the projection onto the horizontal axis, t ı GW X ! I , is itself a Morse
function. In particular, there is a parametrization of the sides G�1.I � f0; 1g/ as
I � .F00 q F10/ with respect to which the horizontal projection t ıG restricts as
projection to I . Homotopies between square Morse 2–functions are assumed to
maintain this last condition.

It is not hard to see that, amongst Morse 2–functions mapping to I2 respecting the
cobordism structures on domain and range, square Morse 2–functions are generic
and stable.
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Definition 2.11 A Morse function is indefinite if there are no critical points of minimal
or maximal index, ie no critical points with the local model .x1; : : : ;xm/ 7! ˙.x

2
1
C

� � �Cx2
m/. A generic homotopy, or generic homotopy of homotopies, of Morse functions

is indefinite if it is indefinite at all parameter values at which it is Morse. A Morse
2–function, resp. generic homotopy of Morse 2–functions, is indefinite if it can always
be locally modeled, as in the definition, by an indefinite generic homotopy, resp. generic
homotopy of homotopies.

The following definition will be useful when we want to make assertions about the
connectedness of fibers:

Definition 2.12 A Morse function gW M ! I is ordered if, given two critical points
p; q 2 M with indices i; j , respectively, if i < j then g.p/ < g.q/. A generic
homotopy or generic homotopy of homotopies is ordered if it is ordered at all parameter
values at which it is Morse. A Morse function (or homotopy or homotopy of homotopies)
is almost ordered if, whenever i < j � 1, we have g.p/ < g.q/.

(Note that it is not clear how to generalize this definition to Morse 2–functions.) We
leave the proof of the following observation to the reader:

Lemma 2.13 Consider a Morse function gW M m! I , with M a cobordism from F0

to F1 , and with F0 and F1 both connected. If m� 3 and g is indefinite and ordered
then all level sets of g will be connected. If m � 4 and g is indefinite and almost
ordered then the level sets will all be connected.

3 An extended example

An important example in dimension 4, first described in [3, Section 8.2], concerns
Morse 2–functions over S2 with some fibers being torus fibers. Because Diff.S1�S1/

is not simply connected, a neighborhood B2�S1�S1 of a torus fiber can be removed
and glued back in via a nontrivial loop in Diff.S1�S1/, ie by performing a logarithmic
transform on the fiber. (See also [5].) Thus we may change the 4–manifold without
changing the data of folds, fibers and attaching maps on S2 . The example in [3] involves,
in particular, an indefinite Morse 2–function S4! S2 which is homotopically trivial
and can be obtained from a definite Morse 2–function S4 ! B4 ! B2 ,! S2 by
flipping a circle of 0–folds to a circle of 1–folds as illustrated in Figure 16. In this
section, we show in detail how this happens in dimension 3, in which case the fiber
in question is S0 �S1 , we show how the nontrivial loop arises, and explain that the
example generalizes to arbitrary dimensions n� 3, with fiber Sn�3�S1 . This example
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also illustrates the important ideas, used throughout the paper, associated with thinking
of a disk B2 in the base as I � I .

We begin with the following simple example of a Morse 2–function GW S1�R2!R2 .
Using cartesian coordinates on R2 in S1�R2 and polar coordinates on the range R2 , G

is defined by G.�;x1;x2/D .
1
2
C.x2

1
Cx2

2
/=2; �/. The singular set is a single circle of

definite folds at S1�f.0; 0/g and is embedded via G into R2 as the circle of radius 1
2

.
Figure 12 illustrates this map by showing the image of the fold locus as a dark circle,
with paraboloid fibers over rays emanating from the origin, showing clearly that the
total space is S1 �R2 .

Figure 12: A Morse 2–function GW S1 �R2!R2 with a single definite fold circle

Now let B be the square Œ�1; 1�� Œ�1; 1� � R2 and let X D G�1.B/. Then X is a
solid torus seen as a cobordism from G�1.f�1g� Œ�1; 1�/ to G�1.f1g� Œ�1; 1�/, both
of which are diffeomorphic to Œ�1; 1�� S1 , and G is a Morse 2–function from X

to B . The first row in Figure 13 illustrates “vertical slices” of this map, ie the inverse
images of vertical line segments ftg � Œ�1; 1�; the reader should take a moment to
reconcile this with Figure 12, which shows the inverse images of rays from the origin.
Figures 13 and 14 then illustrate a homotopy Gs beginning with the map G0 D G

described above. Each row of surfaces illustrates Gs for a fixed s , beginning with G0

in the top row of Figure 13. We have chosen six representative values of s , hence six
rows. (Figure 15 enlarges two regions in Figure 14 just to illustrate the detail there
carefully.) In each row (corresponding to a fixed value of s ), the surfaces illustrated are
each of the form Ms;t DG�1

s .ftg� Œ�1; 1�/, for nine representative values of t ranging
from �1 to 1. Each surface Ms;t is drawn embedded in R3 ; each embedding is such
that the function GsjMs;t

W Ms;t !ftg� Œ�1; 1� is the height function, projection to the
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z–axis. Thus the critical locus of each Gs can be seen as the trace of the critical points
of each GsjMs;t as t ranges from �1 to 1.

X

Y

X

Y

a

b

c

d

Figure 13: The first half of a 1–parameter family of Morse 2–functions on
S1 �B2 : critical points are labeled for coordination with following figures.
From the second row to the third row, we have broken the symmetry of
the mid-level circle to prepare for the next move, going to the first row of
Figure 14. Looking at the three middle surfaces in the bottom row, we see,
from left to right, a 3–dimensional 2–handle attached, surgering the mid-level
circle to two circles, followed by a 3–dimensional 1–handle which reattaches
the two circles.

We can extract from these figures two related sequences of diagrams. The first, Figure 16,
illustrates the images of the singular loci in the base Œ�1; 1�� Œ�1; 1� for Gs for each
of the six values of s in Figures 13 and 14. The second, Figure 17, indicates how the
respective ascending and descending manifolds of the critical points, for the vertical
height functions GsjMs;t

, intersect the middle-level 1–manifold in each surface Ms;t
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Figure 14: The second half of a 1–parameter family of Morse 2–functions
on S1 �B2 , with definite folds at the beginning and indefinite folds at the
end: the two regions enclosed in boxes are shown enlarged in Figure 15. The
3–dimensional 1–handle mentioned in the caption for Figure 13 is seen in
the first row between the third and fourth surfaces, while the 2–handle is seen
in the first row between the sixth and seventh surface.
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X

Y

a

b

c

d

Y
b

d

X

a

c

Figure 15: Zooming in on two regions of Figure 14: critical points are labeled
corresponding to labels in Figure 13 and Figure 16. An important point to
note here is that, in the second row, going from the first surface to the second,
we see two handle slides: b slides over d and a slides under c . And, of
course, we have the symmetric slides at the other end of that row.

from Figures 13 and 14. Here we have only drawn the diagrams for the final five values
of s and for the middle five values of t .

There are several key features to note here.

(1) For each Morse 2–function Gs , we can consider the function t ıGs , where
t W R2!R is projection to the horizontal axis. In our examples, this “horizontal”
function is in fact (locally) an ordinary Morse function, which we call the
“horizontal Morse function” associated to Gs . The critical points of t ı Gs

occur at precisely the vertical tangencies of the singular loci, as illustrated in
Figure 16. These critical points should not be confused with the (2–dimensional)
critical points of the vertical Morse function z ıGsjMs;t

on each surface Ms;t in
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Y

X

Y

X

a
b

c
d

aD c

b D d

Figure 16: The singular loci of Gs for each of the six values of s correspond-
ing to the rows of Figures 13 and 14: the nine values of t corresponding
to the columns are indicated by vertical dotted lines. The correspondence
with the critical points in Figures 13 and 14 is indicated by the letter labels.
Capital letters X and Y indicate definite folds (2–dimensional 0– and 2–
handles) while lowercase letters a , b , c and d indicate indefinite folds
(2–dimensional 1–handles). Note that by the end of the homotopy, a and
c have become the same fold and b and d have become the same fold; this
arises due to the cancellation of the two “swallowtails” at the top and bottom
of the preceding singular locus.

Figures 13 and 14. Looking at how tıGs varies with s , in the beginning, we have
a (3–dimensional) critical point of index 2 on the left and a (3–dimensional)
critical point of index 1 on the right. By the fourth row, the index-1 critical point
has moved to the left and the index-2 critical point to the right.
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b

b

a

a
Y X d

d

c

c
Y X

Y X Y X

b a

d c

b a
d c

d c

b a
Y X

Figure 17: Handle attachment data for a 5� 5 block from Figures 13 and 14:
in each case we have drawn the middle-level 1–manifold for the surface, and
shown where the ascending and descending manifolds of the index-1 critical
points (for the vertical height function) intersect this 1–manifold. The circles
indicate descending manifolds and the stars indicate ascending manifolds.
We have also indicated the ascending manifold for the 0–handle X and the
descending manifold for the 2–handle Y . Note again the handle slides in
the fourth row. By the last row, the 0– and 2–handles have been canceled,
the 1–handles b and d can no longer be distinguished, and the 1–handles a

and c can no longer be distinguished.

(2) The first Morse 2–function G0 has only definite folds, the intermediate functions
have both definite and indefinite folds, and the final function G1 has only
indefinite folds.
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(3) At G1 , the fiber over points inside the circle of indefinite folds is S0 �S1 and,
considering rays going out from the center point of the circle, we see, over each
such ray, a 2–dimensional 1–handle attached along S0�fpg, where the point p

moves once around the S1 as the ray rotates once around the center point.

(4) This example generalizes to a generic homotopy GsW X
n D S1 �Bn�1! B2 .

The starting point G0 is easy to describe in coordinates, exactly as we have done
here for the case nD 3. The final map G1 is harder to see in higher dimensions
but this example makes it clear that, in the end, we get a circle of indefinite folds
with the fiber over points inside the circle being Sn�3 �S1 . Furthermore, over
rays going out from the center we see .n� 1/–dimensional .n� 2/–handles
attached along Sn�3 � fpg, where p rotates once around S1 as the ray rotates
once around the center point. When nD 4, this example was already seen in [3]
in their description of a broken fibration of S4 over S2 . This example also
highlights a subtlety involved in reading off information about the total space of
a Morse 2–function from data on the base; this subtlety is discussed in more
detail in [8].

(5) Such an example can be placed anywhere in a Morse 2–function by adding
a cancelling 0–1 round handle pair along any loop in X n which maps to an
embedded circle bounding a disk in the base, so that the image of the 0–fold
ends up on the inside of the 1–fold. After that, the round 0–handle can be traded
for a round .n� 2/–handle as we have seen here. Adding this cancelling 0–1

round handle pair and then trading the round 0–handle is a homotopy that starts
and ends without definite folds but which passes through definite folds during
the homotopy. A worthwhile example for the reader to consider, when following
the proofs in this paper, is how to carry out this homotopy without definite folds.
(The authors have not done this.)

4 Theorems about I–valued Morse functions on cobordisms

In this section we will prove Theorems 1.3 and 1.4 in the case where the base is
the interval I , and we will prove Theorems 1.1 and 1.2 in the case where the total
space is X n D I �M n�1 , the base is I � I , and the Morse 2–functions are of the
form G.t;p/D .t;gt .p//. In preparation for general Morse 2–functions over I � I

(see Section 5), we will need versions of Theorems 1.3 and 1.4 in which attaching
maps for n–dimensional handles lie in level sets of I–valued Morse functions on
.n� 1/–manifolds.
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Throughout this section, we are given the following data:

(1) a connected m–dimensional cobordism M from F0¤∅ to F1¤∅, where F0

and F1 are compact .m�1/–manifolds, possibly with boundary; we also assume
m� 2 to avoid very-low-dimensional confusion;

(2) a collection L1; : : : ;Lp (possibly empty) of closed manifolds with dim.Li/D

li <m=2 and with mutually disjoint embeddings �i W Œ��; ���Bm�1�li �Li ,!

.M n@M /, for some small � > 0; note that if li <m=2 then li <m�1: assume
the order is such that l1 � � � � � lp ;

(3) a collection of values z1 < � � �< zp 2 .0; 1/.

In the results that follow we will say that a Morse function gW M ! I is standard
with respect to �i at height zi if g ı �i W Œ��; ���Bm�1�li �Li ! I is of the form
.z;x;p/ 7! zC zi on some neighborhood of f0g � f0g �Li .

The most illuminating example to bear in mind is when mD 3 and each li D 1, and we
think of L1[� � �[Lp as a link in M and of each embedding �i as given by a framing
of Li . Then we are interested in Morse functions with Li in the level set at level zi ,
with framing coming from a framing in this level set. These can be constructed by
starting with a given Morse function, projecting Li into a level set, and then resolving
crossings by stabilizing to increase the genus. More generally the �i ’s are going to
be attaching maps for handles, and we will see in the next section the importance of
attaching handles along spheres lying in level sets of a Morse function, with tubular
neighborhoods interacting well with the Morse function.

Remark 4.1 In the proofs of the following theorems, we will use generic gradient-like
vector fields, and in particular the ascending and descending manifolds of critical points,
as a tool to organize local modifications of Morse functions, such as cancellation of
critical points. Recall that a gradient-like vector field is a vector field which is transverse
to level sets and such that, near each critical point, there are local coordinates with
respect to which the Morse function takes the usual form �x2

1
� � � � � x2

k
C x2

kC1
C

� � �Cx2
m D �

m
k
.x/ and the vector field is the usual Euclidean gradient of this function.

For a fixed Morse function g , a generic gradient-like vector field is one for which the
ascending and descending manifolds meet transversely in intermediate-level sets. For
a generic homotopy gt between Morse functions, a generic 1–parameter family of
gradient-like vector fields Vt is one for which the 1–parameter families of ascending
and descending manifolds intersected with intermediate level sets are transverse in
the 1–parameter sense, and for a generic homotopy gs;t between generic homotopies
we have the natural notion of a generic 2–parameter family of gradient-like vector
fields Vs;t . (We should also require that, at the non-Morse singularities, the vector
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field is the usual Euclidean gradient for the standard model of the singularity in local
coordinates.) It is clear from the fact that the transversality properties of the ascending
and descending manifolds are generic that the associated “genericity” properties of the
vector fields are actually generic.

Theorem 4.2 There exists an indefinite ordered Morse function gW M ! I , with
critical values not in fz1; : : : ; zpg, which is standard with respect to each of �1; : : : ; �p ,
at heights z1; : : : ; zp respectively. Furthermore, the indices of the critical values and
the dimensions li of the submanifolds Li are such that all critical values of index less
than or equal to li are below zi while all critical values of index greater than li are
above zi .

In the following proof, we will make essential use of the standard lemma that, for a
Morse function g with a generic gradient-like vector field, if there is a single gradient
flow line from a critical point q of index k C 1 down to a critical point p of index
k , then the two critical points can be canceled. More precisely, there exists a generic
homotopy gt , with g0 D g , with exactly one death singularity at g1=2 involving p

and q , and no other birth or death singularities. Also note that no other critical values
need to move if there is a regular level set between p and q such that the descending
manifold for q and the ascending manifold for p avoid all other critical points on their
way to this level set. If this is not the case then other critical points may need to move
“out of the way” to facilitate the crossing. See Figure 18 for an illustration of these
ideas.

q q

p p

a b

q

p

q

p

a
b

a

b

Figure 18: Cancellation of critical points q and p in one dimension, with
accompanying Cerf graphics: in the first example, no other critical points
need to move, but in the second example the critical point a needs to drop
below p before q and p can cancel (or raise b above q ).

Definition 4.3 Given a Morse function gW M ! I with a gradient-like vector field
and critical points q of index k C 1 and p of index k , with g.q/ > g.p/, we say
that q cancels p if there is a unique gradient flow line from q to p .
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Then we can summarize the standard cancellation lemma (without proof) as follows:

Lemma 4.4 Given gW M ! I with a generic gradient-like vector field, if critical
point q cancels critical point p , let C be the closure of the descending manifold
for q inside g�1Œg.p/;g.q/�. Note that p 2 C . Then there is a generic homotopy gt

between Morse functions, with g0D g , which is independent of t outside an arbitrarily
small neighborhood of C , passes through exactly one death singularity at g1=2 in
which q and p cancel, and has no other birth or death singularities. If C is actually just
the descending disk, then no other critical values will change; otherwise all the critical
points in C besides q and p will have to move below p before the death occurs.

Proof of Theorem 4.2 First define gW M ! I on the submanifolds �i.Œ��; �� �

Bm�1�li �Li/ by ��1
i followed by projection to Œ��; �� followed by translation by zi .

This places �i.Li/ at height zi as desired.

There is no obstruction to extending this map to a Morse function gW M ! I . (Issues
of smoothness at the boundary of �i.Œ��; ���Bm�1�li �Li/ are easily avoided either
by use of tubular neighborhood theorems or by slightly shrinking the image of �i .) To
make g indefinite and ordered, first choose a generic gradient-like vector field, so that
we can construct arguments using gradient flow lines and ascending and descending
manifolds. Indefiniteness is easily achieved because each critical point of index 0 (or m)
must be canceled by a critical point of index 1 (or m� 1), since M is connected. (If,
for an index-0 critical point p , there was no such cancelling index-1 critical point,
then there could not be a path from p to F0 , and M would not be connected.) The
set C for an index-1 critical point is 1–dimensional, and will thus miss a neighborhood
of the �i.Li/’s by genericity of the gradient-like vector field. Here we use the fact
that dim.Li/D li <m=2 �m� 1, so that each �i.Li/ has positive codimension in
the level set g�1.zi/. Thus we can cancel all the index-0 and index-m critical points
without modifying g near the �i.Li/’s.

To arrange that g is ordered, suppose that p and q are critical points of index j and k ,
respectively, with g.p/ < g.q/, and with no critical values in .g.p/;g.q//. If the
descending manifold Dq for q and the ascending manifold Ap for p are disjoint then
there is a generic homotopy supported in a neighborhood of Dq \ g�1Œg.p/;g.q/�

which lowers g.q/ below g.p/ (without creating any new critical points). In this case
there is also a generic homotopy supported in a neighborhood of Ap\g�1Œg.p/;g.q/�

which raises g.p/ above g.q/. If j � k this disjointness can always be arranged by a
generic choice of gradient-like vector field, and thus we can get g to be ordered, using
either raising or lowering homotopies each time we need to switch the relative order
of two critical points. However, if we are not careful, we may mess up the behavior
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of g near �i.Li/. To avoid this, we need to make sure that either Dq or Ap misses
each �i.Li/, which can be done by generically choosing the gradient-like vector field,
as long as dim.Li/ D li < m=2. (To see this, count dimensions in the level set F

containing �i.Li/ and note that we are asking for either li < j or li C k < m; if
li � j � k then li C k � 2li <m.)

To arrange that the critical values are ordered nicely with respect to the values zi

as stated, we may need to further raise or lower some critical values, but the same
dimension count argument works in this case.

The following theorem is about ordered, indefinite generic homotopies on M ; if F0

and F1 are connected, then ordered and indefinite implies fiber-connected. At the end
of this section, in Lemma 4.10, we will discuss fiber-connectedness without the ordered
assumption.

Theorem 4.5 Given two indefinite, ordered Morse functions g0;g1W M ! I there
exists an indefinite, ordered generic homotopy gt W M ! I from g0 to g1 . If m� 3

and both g0 and g1 are standard with respect to each �i at height zi , then we can
arrange that, for all t , gt is standard with respect to each �i at height zi . We can also
arrange that all the births occur before the critical point crossings and that all the deaths
occur after the critical point crossings.

The proof of this theorem (and the one to follow about homotopies of homotopies) is
in essentially the same spirit as the proof of the preceding theorem; we just need the
right cancellation lemmas to get rid of definite critical points over time and we need to
count dimensions to see that we can order critical points appropriately and avoid the
submanifolds �i.Li/ as we modify the homotopy.

For the cancellation lemmas, we need to articulate conditions under which we can pass
through eye, unmerge or swallowtail singularities to simplify the homotopy. When
discussing a generic homotopy gt W M ! I , we will frequently use the Cerf graphic
to organize our argument; recall that this is the image in I � I of the critical points
of gt under the map GW .t;p/ 7! .t;gt .p//. We will use the term “k–fold” to refer to
an arc of index-k critical points in I �M . If we label a k–fold P , then for a fixed
time t , Pt will refer to the index-k critical point on P at time t . We will also fix
a generic 1–parameter family of gradient-like vector fields so that we may refer to
gradient flow lines for each gt . (Here “generic” means that the 1–parameter families
of descending manifolds intersect transversely in level sets, which means that handle
slides occur at isolated times, with lower index critical points never sliding over higher
index critical points.) We will say that a .kC 1/–fold Q “cancels” a k–fold P over a
time interval A if Qt cancels Pt for every time t 2A.
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In the following three lemmas, suppose that gt W M ! I is a generic homotopy between
Morse functions g0 and g1 with a generic 1–parameter family of gradient-like vector
fields. We state conditions under which we can modify gt so as to reverse the arrows
in Figures 8, 9 and 10. We leave the proofs to the reader; the basic idea, as with
the proof of the standard cancellation lemma (Lemma 4.4), is as follows. We first
push extraneous critical points down far enough so that we only need to work with a
single descending disk and ascending disk. Then we use the uniqueness of a gradient
flow line to find coordinates on a neighborhood of the gradient flow line in which the
gradient flow line itself lies in one coordinate axis, and in the other coordinates the
Morse function has the usual Morse model. Then the cancellation occurs entirely in
the coordinate chart containing the gradient flow line.

Lemma 4.6 (Unmerge) Consider a k–fold P and a .k C 1/–fold Q over a time
interval Œt0; t1� such that Q cancels P over all of Œt0; t1�. Then for some arbitrarily
small ı > 0 there is a generic homotopy between homotopies gs;t , with g0;t D gt ,
passing through a single unmerge singularity (see Figure 9) at s D 1

2
and no other 1–

parameter singularities, independent of s for t 2 Œ0; t0�[ Œt1; 1�, such that, with respect
to g1;t , the cancelling pair Qt and Pt die at t D t0C ı and are reborn at t D t1 � ı .
For each t 2 Œt0; t1�, gs;t is independent of s outside an arbitrarily small neighborhood
of the descending manifold for Qt . Also note that, with respect to g1;t , Qt still
cancels Pt on Œt0; t0Cı/ and on .t1�ı; t1�. Furthermore we can arrange that any other
folds that canceled P on Œt0; t0C ı� or Œt1� ı; t1� will still cancel P there.

Lemma 4.7 (Eye death) Consider a k–fold P and a .k C 1/–fold Q over a time
interval Œt0; t1� such that Q cancels P over all of .t0; t1/. Also suppose that the critical
points Qt and Pt are born as a cancelling pair at time t0 and die as a cancelling
pair at time t1 . Then for some small ı > 0 there is a generic homotopy between
homotopies gs;t , with g0;t D gt , passing through a single eye death singularity (see
Figure 8) at s D 1

2
and no other 2–parameter singularities, independent of s for

t 2 Œ0; t0 � ı� [ Œt1 C ı; 1�, such that, in g1;t , the cancelling pair Qt and Pt have
canceled for all t 2 Œt0; t1�. For each t 2 .t0; t1/, gs;t is independent of s outside an
arbitrarily small neighborhood of the descending manifold for Qt . For t 2 ft0; t1g, gs;t

is independent of s outside a neighborhood of the birth/death point.

Lemma 4.8 (Swallowtail death) Consider a k–fold P and two .k ˙ 1/–folds Q

and R over a time interval .t0; t1/. Suppose furthermore that Q and P are born as a
cancelling pair at time t0 , that R and P die as a cancelling pair at time t1 , and that Q

cancels P over .t0; .t0C t1/=2C ı/ while R cancels P over ..t0C t1/=2� ı; t1/ for
some small ı > 0. Then there is a generic homotopy between homotopies, gs;t , with
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g0;tDgt , passing through a single swallowtail death singularity (see Figure 10) at sD 1
2

and no other 2–parameter singularities, independent of s for t 2 Œ0; t0� ı�[ Œt1C ı; 1�

(again for some small ı > 0) such that, in g1;t , the k–fold P has disappeared and
the .k ˙ 1/–folds Q and R have become the same fold. For each t 2 .t0; .t0 C

t1/=2� ı/, gs;t is independent of s outside an arbitrarily small neighborhood of the
descending/ascending (according to whether ˙ D C or ˙ D �) manifold for Qt ,
while for each t 2 ..t0C t1/=2C ı; t1/ the independence is outside a neighborhood of
the descending/ascending manifold for Rt , and for t 2 Œ.t0C t1/=2�ı; .t0C t1/=2Cı�

we need a neighborhood of the union of the descending/ascending manifolds for Qt

and Rt . For t 2 ft0; t1g the independence is outside a neighborhood of the birth/death
points.

Proof of Theorem 4.5 As in the proof of Theorem 4.2, there is no difficulty in finding
a generic homotopy gt W M ! I , and if g0 and g1 are standard with respect to each �i

at height zi then we can make gt independent of t on these neighborhoods. Arranging
for births to happen first and deaths last is standard, using connectedness; gt is modified
via a generic homotopy between homotopies which passes through cusp-fold crossings,
moving left-cusps (births) further left (earlier), and right-cusps (deaths) further right
(later). However it requires some work to make gt indefinite and then ordered for all
t 2 .0; 1/.

We will cancel the 0–folds one at a time. Consider a 0–fold P which is born at time a

and dies at time b . At each time t 2 Œa; b�, there is some index-1 critical point q which
cancels Pt . Thus there is a sequence a D t0 < t1 < � � � < tn D b and some ı > 0,
giving a covering of Œa; b� by intervals I1 D Œa; t1C ı/; I2 D .t1� ı; t2C ı/; : : : ; In D

.tn�1 � ı; b�, and a sequence of 1–folds Q1; : : : ;Qn such that each Qi cancels P

over the interval Ii . We do this so that Q1 is the 1–fold born with P as a cancelling
0–1 pair at time t0D a and so that Qn is the 1–fold which dies with P as a cancelling
pair at time tnD b . Using the above three lemmas we can then cancel P with the Qi ’s.
First cancel over the nonoverlapping parts of the open intervals I2; : : : ; In�1 using
Lemma 4.6. Then cancel over the overlaps and I1 and In using either Lemma 4.7
or Lemma 4.8, depending on whether the two cancelling 1–folds Qi and QiC1 in
the overlap region .ti � ı; ti C ı/ are the same or different. Going from cancelling
on the nonoverlapping regions to the overlapping regions requires the extra clauses
in Lemma 4.6 to the effect that whatever canceled P at the beginning still cancels P

wherever it has not been killed with Lemma 4.6.

The above argument ignored the issue of the submanifolds �i.Li/. If m � 3 and
both g0 and g1 are standard with respect to each �i at height zi , then we want to
arrange that, for all t , gt is standard with respect to each �i at height zi . Since, before
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cancelling the definite folds, we had arranged for this property to hold, we need to
arrange that, in each application of Lemmas 4.6, 4.7 and 4.8, we avoid neighborhoods
of each �i.Li/. In other words, all the descending manifolds for the cancelling 1–folds
down to the level of the canceled 0–folds should avoid �i.Li/. Counting dimensions
we see that this can generically be achieved at all but finitely many times t , which are
distinct from the times t0; t1; : : : ; tn at which we switch from one cancelling 1–fold to
another. If the descending manifold for a 1–fold Qj intersects some �i.Li/ at time t� ,
with tj�1 < t� < tj , we break Qj into two 1–folds by introducing a 1–2 swallowtail
(passing through a swallowtail singularity) at time t� along Qj . This is illustrated in
Figure 19; we label the two new 1–folds Qj

� and Q
j
C as indicated in the figure, and

observe that we can arrange for the descending manifold for Qj
� to meet �i.Li/ at

some time t� > t� while the descending manifold for Q
j
C meets �i.Li/ at some time

tC < t� . Then we break the interval .tj�1� ı; tj C ı/ into two overlapping intervals
.tj�1 � ı; t� C ı/ and .t� � ı; tj C ı/ and replace the single cancelling 1–fold Qj

with Qj
� over .tj�1� ı; t�C ı/ and Q

j
C over .t�� ı; tj C ı/. (We might, of course,

need to decrease ı .)

Qj

tj�1 t� tj

P

Q�j QCj

tj�1 tC t� t� tj

P

Figure 19: Splitting Qj

Note that the above argument required m� 3 because otherwise the 2–fold in the 1–2

swallowtail is a definite fold.

To arrange that gt is ordered when g0 and g1 are ordered, we first need to arrange that
each birth or death of a cancelling k–.kC1/ pair occurs above all the other k–folds and
below all the other .kC 1/–folds. This is straightforward because such a modification
of gt can be achieved through a generic homotopy supported in a neighborhood of
an arc, which can be chosen to be disjoint from the �i.Li/’s. Now the only issue is
pulling k–folds below j –folds when k < j (or pushing j –folds above k–folds); this
can be achieved if we ignore the �i.Li/’s for the same reason that it can be achieved
for a fixed Morse function, as in Theorem 4.2, namely that, for a generic 1–parameter
family of gradient-like vector fields, k–handles will not slide over j –handles if k < j .
However, if we want to avoid modifying gt near each �i.Li/ we need to be more
careful, and to do this we count dimensions again.

Here we need to check that either the 1–parameter descending disk for the k–fold Q

or the 1–parameter ascending disk for the j –fold P misses the li –dimensional sub-
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manifold �i.Li/ in the level set g�1.zi/, which is presumed to be between Q and P .
The level set is .m� 1/–dimensional, the descending sphere for Q in the level set is
.k � 1/–dimensional, and the ascending sphere for P is .m� j � 1/–dimensional.
However, because of the parameter t , we now want that either .k�1/C1C li <m�1

or that .m� j � 1/C 1C li < m� 1, ie that k C li < m� 1 or that li < j � 1. If
li � j � 1, so that k < j � li C 1, we have k � li and thus k C li � 2li . Thus we
are fine as long as li < .m� 1/=2, but in our initial hypotheses we only assumed that
li <m=2. The only potentially bad case is when m is odd, k D li D .m� 1/=2 and
j D .mC 1/=2. In this case both the ascending sphere for P and the descending
sphere for Q will intersect �i.Li/ at discrete times. However, now we simply note
that, again by genericity, these times will be distinct for P and Q, and so at times
when the ascending sphere for P intersects �i.Li/ we lower Q below P while at
times when the descending sphere for Q intersects �i.Li/ we raise P above Q.

Theorem 4.9 Suppose that m� 3. Given two indefinite, ordered generic homotopies
g0;t ;g1;t W M ! I between indefinite Morse functions g0;0 D g1;0 and g0;1 D g1;1 ,
there exists an indefinite, almost ordered generic homotopy of homotopies gs;t W M ! I

from g0;t to g1;t with fixed endpoints. When m�4 and F0 and F1 are both connected
this guarantees that all level sets of each gs;t are connected. In the case where mD 3

and F0 and F1 are both connected, we can do a little extra work to arrange that all
level sets of each gs;t are connected, even though the “almost ordered” condition is not
sufficient to imply this.

(Compare [9, Proposition 3.6], which deals with approximately the same issue, but is
about cancelling critical points of arbitrary indices and requires high ambient dimensions.
There are many striking similarities between that proof and our proof of Theorem 4.9.)

Note that we could also ask that gs;t behave well on neighborhoods of the Li ’s as in
the preceding theorems, and presumably there are constraints in terms of the dimensions
involved, but we have no need for such a result in this paper.

Although the statement of the theorem does not say this, we will actually be able to
modify a given generic homotopy gs;t from g0;t to g1;t through a generic homo-
topy gr;s;t with yet one more parameter r 2 Œ0; 1�, with g0;s;t D gs;t , so that g1;s;t

satisfies the various conditions we want. In doing so we will pass through higher
codimension singularities, and so we could have “cancellation” lemmas analogous to
Lemmas 4.4, 4.7, 4.6 and 4.8. In our case they would involve the “butterfly singularity”
and the “monkey saddle” (or “elliptic umbilic”). However, since each only occurs once
in the proof, we just develop them in the course of the proof. After discovering the
necessary homotopies corresponding to these singularities, we then realized that they
also play a central role, for similar reasons, in the work of Hatcher and Wagoner [9].
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Proof There is always a generic homotopy gs;t W M ! I rel boundaries, so the first
issue is to make it indefinite, that is, to remove all 0–folds (m–folds are treated the
same way using 1�gs;t ).

Instead of the traditional Cerf graphic, we consider a 1–parameter family of Cerf
graphics, and in this case the 0–folds form a 2–dimensional immersed surface †, as
in the example in Figure 20.

s

t

z D gs;t

†

†

�

Figure 20: Example of a 2–dimensional surface † of 0–folds in a generic
2–parameter homotopy between Morse functions: note the swallowtail singu-
larity at the point labeled � .

In †, with respect to the s direction, there are merges, unmerges, eyes and swallowtails;
apart from the swallowtails, these appear as smooth curves with tangents parallel to the
.t; z/ plane.

s

t

z D gs;t

Figure 21: After the first cuts, along constant s slices: note that components
are still not embedded, due to the bad swallowtail.

The first step is to cut † into pieces, each of which is embedded in I � I � I . We
do this by first cutting † in the .t; z/ direction at many fixed s values. Such a cut is
done by first making gs;t independent of s in a small s–interval Œs�� ı; s�C ı�, then
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applying the technique in the proof of Theorem 4.5 to modify the homotopy gs�;t to
get rid of definite folds at s� , and then noting that the modification is through a generic
homotopy between homotopies, which can then be run forward and backward in the s

direction as s ranges from s�� ı to s� to s�C ı . A typical example of the result is
illustrated in Figure 21.

The components of † are not yet embedded because of the possibility that there are
births of swallowtails in the middle of †. However, in [9, page 199 and item 1 on
page 194], it is shown exactly how such a swallowtail birth can be extended past the
0–1 cusp and onto the surface of 1–folds by passing through a “butterfly singularity”,
with the result that the swallowtail cuts † into two parts, which intersect each other
but no longer have a self-intersection. The change in the movie of Cerf graphics is
shown in Figure 22, with accompanying graphs of the 1–dimensional Morse functions.

0

1

Figure 22: Cutting the bad swallowtail onto the surface of 1–folds using
the butterfly singularity: above the dotted line, the swallowtail occurs in the
middle of a 0–fold, leading to surface of 0–folds that is not embedded. Below
the line, the swallowtail is born in the middle of a 1–fold, so that the two
0–folds which intersect are in distinct components of the surface of 0–folds.

Now each component P of † is embedded in I � I � I and we will eliminate these
components one by one, in much the same way we eliminated individual 0–folds in
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Theorem 4.5 and individual index-0 critical points in Theorem 4.2. Noting that, for
each .s; t/, the index-0 critical point Ps;t coming from P is canceled by some index-1
critical point, we can cover P with open disks fP ig over each of which we have chosen
a particular disk Qi of cancelling index-1 critical points. We also arrange that every
vertex in the nerve of this cover (including vertices on @P ) has valence 3 and that
every edge of the nerve is transverse to constant s slices. Then we can use the ideas in
the proof of Theorem 4.5 to eliminate P at all points in exactly one or two of the open
sets of the cover, and we reduce to the case where P is a union of disjoint triangles
each canceled by three distinct surfaces of 1–folds.

z

z

z

t

t

t

t

s

s

0 c
b

a

a

b
c

a

b
c

c

b

a

Figure 23: Three 1–folds a , b and c cancelling a 0–fold in two parameters

Figure 23 shows a sequence of Cerf graphics, representing the 2–parameter Cerf graphic
where three open sets intersect; on the right we show the covering in parameter space,
with the nerve and its trivalent vertex. The labels a, b and c indicate the 1–handles
that cancel in each of the three open sets. At each point in parameter space, we adopt
the convention that the closest index-1 critical point to the 0–fold is the cancelling one.
This is not necessarily the case at first, but right before the cancellations this will be true.
Next, Figure 24 shows the result of cancelling the 0–fold with the appropriate 1–folds
away from the overlaps in the cover, with the labels ab , bc and ac indicating the pairs
of 1–folds which cancel in each region. Finally, Figure 25 shows how this sequence
of Cerf graphics is transformed by cancelling the swallowtails that remain when two
of the open sets intersect, leaving the 0–fold uncanceled only in a cusped-triangular
neighborhood of the trivalent vertex. (The boxed numbers indicate points in parameter
space for reference in the next figure to come.)
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0

c a

b

a

b

a
b

a
b

c

c

c
b

t

z

s

s

t

ac

ab
bc

Figure 24: After cancelling the 0–1 pairs away from the overlapping regions

Because there are three 1–handles cancelling the 0–handle across this triangle, we
can construct a local model in which we separate out two local coordinates in the
domain in which the cancellations occur and keep the other coordinates as a sum
of squares independent of the parameters. In other words, locally gs;t is given by
gs;t .x1;x2;x3; : : : ;xm/Dhs;t .x1;x2/Cx2

3
C� � �Cx2

m . In Figure 26 we schematically
illustrate the handle decomposition corresponding to hs;t at representative points in the
.s; t/–parameter space, as labeled by boxed numbers in Figure 25. In [9, page 202],
this is shown to be precisely the southern hemisphere of the S2 –boundary of a B3

space of deformations of the monkey saddle h.x1;x2/D x3
1
� 3x1x2

2
. The south pole

is visualized as pushing down in the middle of the monkey saddle to create an index-0
critical point with three cancelling index-1 critical points, while the equator is a loop of
Morse functions involving two index-1 critical points that slide over each other three
times. To eliminate this 0–fold completely, we simply replace the southern hemisphere
of this S2 with the northern hemisphere, which involves pushing the middle of the
monkey saddle upwards to create an index-2 critical point. We replace the triangular
0–fold surface with a triangular 2–fold surface, exactly as in [9, page 198, item (iv) and
Lemma 4.1]. (This is where it is important that m� 3, so that index 2 is indefinite.)

Do this to each component of † and, upside down, do the same to the index-m critical
points and we have an indefinite generic homotopy between homotopies.
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1 2

3
4 5

6 7

8 9

1 2

3

4 5

6 7

8 9

c a

b

c a

b

c
b

a
b

c
b

a
b

a c

Figure 25: The 2–parameter Cerf graphic after cancelling along the double
overlaps but not the triple overlaps: the dotted lines in the figure on the right
indicate the points where two 1–folds intersect. Note that the labeling of
the 1–folds a , b and c is no longer consistent because, as one moves across
the bottom Cerf graphic, c becomes b and b becomes a , and as one moves
across the top Cerf graphic, c becomes a .

Getting gs;t to be almost ordered when g0;t and g1;t are ordered follows the same
argument as for a fixed Morse function or a homotopy between Morse functions, except
that we now note that for a generic 2–parameter family of gradient-like vector fields the
descending manifold for an index-j critical point may meet the ascending manifold for
an index-.j C 1/ critical point at isolated points .s; t/ in the 2–dimensional parameter
space. This is why we can at most ask that, if an index-k critical point is above an
index-j critical point, then j �kC1. As noted earlier, when F0 and F1 are connected
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1 2

3

4 5

6 7

8 9

c

b

a

b

c a

b

c

b

a

b

c
a

b

a
c

b

c a c a

Figure 26: Handle decompositions at various points in the Cerf graphic in Figure 25

and m � 3 then ordered implies connected level sets. In fact, for connectedness of
level sets we simply need that all index-.m� 1/ critical points are above all index-1
critical points, and thus almost ordered implies connected level sets when m� 4. So,
if m� 4, the proof is complete.

For the remainder of the proof, we assume m D 3, in which case level sets are 2–
dimensional.

There are no definite folds, so the only way for a level set to become disconnected is
by adding a 2–handle H2 to a separating circle C in a lower level set. Then this level
set would remain disconnected all the way to the top of the Morse function unless a
higher 1–handle H1 is attached to the different components of the level set. In the
0– and 1–parameter cases, we can always arrange that the 1–handle is added below
the 2–handle in which case the attaching circle C of the 2–handle does not separate.
But in the 2–parameter case, the attaching 0–sphere of the 1–handle H1 may go over
the 2–handle H2 and not be able to be pulled off. This is illustrated in Figure 27,
where one foot of the 1–handle moves around C1 and over the 2–handle H2 , as the
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parameter runs over a 2–disk D . At the center of D , the foot is stuck at the critical
point of H2 .

C C1

fiber

Figure 27: A 1–handle sliding over a 2–handle in a 2–parameter family

However, it is important to note that this problem occurs at isolated points, so we can
pull the 1–handles below the 2–handles everywhere except at small disks exactly like
this disk D .

To deal with the disconnectedness of the level set over the middle of D , above the
2–handle H2 and below the 1–handle H1 , we need a “helper” 1–handle H 0

1
, so create

a 1–2 cancelling pair over the entire disk D in which the helper 1–handle H 0
1

is
attached to a parallel copy C 0 of C and over H2 , and H 0

2
is a “tunnel” between H1

and H 0
1

. See Figure 28. Now perturb H 0
1

so that the value of the parameter in D at
which H 0

1
hits the critical point of H2 is different from 0 2D , say d 2D . Now the

fibers are connected except for disjoint disk neighborhoods of 0 and d of radius less
than kdk=3. However, in the disk around 0 2D , the helper 1–handle can be pulled
below H2 , so that H2 does not disconnect and then H1 is attached, and lastly H 0

2

which obviously does not disconnect. By symmetry, the level sets can also be made
connected in the disk around d 2D .

C
C 0

H1

H 0
1

H 0
2

Figure 28: The helper 1–handle H 0
1

, with cancelling 2–handle H 0
2

We end this section with a lemma, of a slightly different flavor, that will be used several
times in the following sections to relate connectedness of level sets to the property
of being ordered. In particular, Theorem 4.5 requires, as a hypothesis, that the given
Morse functions be ordered. The following lemma is used to prepare for this theorem.
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We have already stated that ordered I–valued Morse functions have connected level
sets, and the converse is obviously not true. However, we do have:

Lemma 4.10 Let gW M ! I be an indefinite Morse function which is standard with
respect to each �i at height zi , and suppose that all level sets of g are connected. Then
there exists an indefinite generic homotopy gt W M ! I between Morse functions, with
g0 D g , such that g1 is ordered, all level sets of gt are connected for all t , and such
that each gt is standard with respect to each �i at height zi , with the critical values
of g1 also ordered with respect to the heights zi as in the statement of Theorem 4.2.

Proof In the process of ordering the critical points, we just need to check that we do not
create disconnected level sets. Disconnected level sets only come from .m�1/–handles
attached along separating spheres. We will never be moving .m� 1/–handles below
other handles in the ordering process. If the attaching sphere for an .m�1/–handle H

is nonseparating, it can only be made separating by attaching another .m� 1/–handle
below H . Thus we never need to create disconnected level sets while ordering if all
level sets were connected to begin with.

For the sake of completeness, we could also state a parameterized version, in which one
homotopes a homotopy with connected level sets to an ordered homotopy of homotopies.
This would be used as preparation for applying Theorem 4.9. However, we will only
need such a lemma at two points (in the proofs of Theorem 5.2 and Lemma 5.7) so we
will prove it when we need it.

5 Theorems about I2–valued Morse 2–functions on
cobordisms between cobordisms

Throughout this section let X be an oriented connected n–dimensional cobordism
from M0 to M1 , where each Mi is a nonempty oriented .n�1/–dimensional cobordism
from Fi0 to Fi1 , with F00ŠF10 and F01ŠF11 , with each Fij oriented, closed and
nonempty. Recall that this means that @X is equipped with a fixed identification with
�M0 [ .I �F00/[ .I � .�F01//[M1 , with F0j �M0 identified with f0g �F0j

and F1j �M1 identified with f1g �F0j (see Figure 1). Also suppose that we are
given indefinite, ordered Morse functions �0W M0! I and �1W M1! I . On I2 we
use coordinates .t; z/, thinking of t as horizontal and z as vertical.

Note that we are not at this point assuming that the Mi ’s or the Fij ’s are connected.
However, the assumption that each �i is indefinite implies that each component of Mi

is a connected cobordism between nonempty components of the Fij ’s.
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Our goal in this section is to prove the following two theorems, an existence theorem
and a uniqueness theorem for square Morse 2–functions:

Theorem 5.1 Suppose that n � 3. Given any indefinite, ordered Morse function
� W X ! I which is projection to I on I �F00 and I � .�F01/ in @X , there exists an
indefinite square Morse 2–function GW X! I2 such that zıGjM0

D �0 , zıGjM1
D �1

and t ıG D � . If n� 4 and each Mi and Fij is connected, then we can arrange that G

is fiber-connected.

Theorem 5.2 Suppose that n � 4. Given two indefinite square Morse 2–functions
G0;G1W X ! I2 with z ıG0jM0

D z ıG1jM0
D �0 and z ıG0jM1

D z ıG1jM1
D �1 ,

and such that both �0 D t ıG0 and �1 D t ıG1 are ordered and indefinite, there exists
an indefinite generic homotopy GsW X ! I2 between G0 and G1 such that �s D t ıGs

is ordered (and �s restricted to I �F0i is projection onto I , as in Definition 2.10). If in
addition G0 and G1 are fiber-connected then we can arrange that Gs is fiber-connected.

Note that in the preceding section we have already proved these two theorems in the
special case that X D Œ0; 1��M , M0 D f0g �M , M1 D f1g �M , and � D �0 D �1

is projection to Œ0; 1�. This is because a generic homotopy gt W M ! I between Morse
functions g0;g1W M ! I gives a square Morse 2–function GW X ! I2 defined by
G.t;p/ D .t;gt .p//, with z ı GjMi

D gi . The key difference between a general
square Morse 2–function and one coming from a generic homotopy between Morse
functions is that the “Cerf graphic” for a general square Morse 2–function, ie the image
G.ZG/ � I2 of the critical point set, may have vertical tangencies. These vertical
tangencies correspond precisely to critical points of the horizontal Morse function
t ıGW X ! I . In the absence of such vertical tangencies, the horizontal Morse function
is trivial and hence X is a product. We exploit these ideas repeatedly in the following
proofs.

Before working on the proofs, we spend some time understanding neighborhoods
of these critical points. In other words, when t ıGW X ! I has a critical point at
p 2X , what can we say about G near p? We first construct two local models which
are illustrated in Figure 29 (recall that �n

k
.x/D �n

k
.x1; : : : ;xn/D�x2

1
� � � � �x2

k
C

x2
kC1
C � � �Cx2

n ):

(1) We call the following map a forward index-k critical point, or a forward k–
handle: �C

k
.x1; : : : ;xn/ D .�n

k
.x/;xkC1/. Note that this only makes sense

for 0 � k � n � 1. By construction t ı �C
k

has a critical point of index k

at 0. Reparametrizing the range by .t; z/ 7! .t � z2; z/ transforms �C
k

to
.x1; : : : ;xn/ 7! .�n�1

k
.x1; : : : ; yxkC1; : : : ;xn/;xkC1/, showing that �C

k
really
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.�n
k
.x/;xk/D �

�
k
.x/.�n

k
.x/;xkC1/D �

C

k
.x/

k
n�1�k

n�k
k�1

Figure 29: Local models for Morse critical points of index k realized via
Morse 2–functions: on the left is a “forward k–handle”, on the right is a
“backward k–handle”. Again, the arrows indicate the index of the fold in the
given direction, not the index of the Morse critical point.

is a (local) Morse 2–function with a single fold Z�
C

k
along the xkC1 axis and

with the image �C
k
.Z�

C

k
/ of this fold equal to the rightward-opening parabola

t D z2 . The fold is indefinite when 0< k < n� 1.

(2) This map is a backward index-k critical point, or a backward k–handle:

��k .x1; : : : ;xn/D .�
n
k.x/;xk/:

This only makes sense for 1 � k � n. Again, by construction t ı ��
k

has
a critical point of index k at 0. In this case, reparametrizing the range by
.t; z/ 7! .t C z2; z/ transforms ��

k
to

.x1; : : : ;xn/ 7! .�n�1
k�1.x1; : : : ; yxk ; : : : ;xn/;xk/;

showing that ��
k

really is a (local) Morse 2–function with a single fold Z��
k

along the xk axis and with the image ��
k
.Z��

k
/ of this fold equal to the leftward-

opening parabola t D�z2 . This fold is indefinite when 1< k < n.

Note that we could have defined �C
k

by �C
k
.x/ D .�n

k
.x/;˙xj / for any j 2 fk C

1; : : : ; ng and it would still have all the properties listed, and in fact such a definition is
equivalent to the one given up to a change of coordinates in the domain. Similarly we
could define ��

k
.x/D .�n

k
.x/;˙xj / for any j 2f1; : : : ; kg. However, �C

k
and ��

k
are

not in general related by a change of coordinates, even allowing a change of coordinates
in the range, because the indices of the folds are different, as can be seen in Figure 29.
If we turn a forward k–handle backwards, ie postcompose �C

k
with the time-reversal

.t; z/ 7! .�t; z/, it becomes a backward .n� k/–handle.

Here are some further observations about forward k–handles, illustrated below in
Figure 30; the reader can figure out the parallel statements for backward handles.
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(1) When 0 < k � n� 1, the descending disk fxkC1 D � � � D xn D 0g has image
equal to the horizontal line ft � 0; z D 0g. When k D 0 there is, of course, no
descending disk.

(2) When 0� k < n� 1, the ascending disk fx1 D � � � D xk D 0g has image equal
to the “interior” of the parabola ft � z2g. (Of course, when k D 0 the ascending
disk is the whole domain of the function.) When k D n� 1, the image of the
ascending disk is just the parabola ft D z2g.

(3) For 0 < k � n � 1, the descending .k � 1/–sphere fxkC1 D � � � D xn D

0;x2
1
C � � �Cx2

k
DR2g has image equal to the point .�R2; 0/.

(4) For 0< k � n� 1, the attaching region for the k–handle, which we identify as
the set

f�n
k.x/D�R2;�� � xkC1 � �;x

2
kC2C � � �Cx2

n � �
2
g

Š Sk�1
� Œ��; ���Bn�1�k ;

has image equal to the line segment ft D �R2;�� � z � �g, and the map to
this line segment is simply projection onto Œ��; ��. This is where we first see
the relevance of the conditions in the preceding section regarding constructing
Morse functions which are standard with respect to embeddings of Œ��; �� �
Bn�1�k �Sk�1 .

(5) For k < n� 1, the ascending .n� k � 1/–sphere fx1 D � � � D xk D 0;x2
kC1
C

� � �Cx2
n DR2g maps to the line ft DR2g via the standard Morse function on

a sphere, with image equal to the interval f�R � z � Rg. For k D n� 1 the
ascending sphere is two points mapping to .R2;˙R/.

First we prove existence using these local models:

Proof of Theorem 5.1 If � has no critical points then we use a gradient flow to
identify X with I �M0 such that �.t;p/ D t , and then we see �0 and �1 as two
indefinite Morse functions on M0 . Then our result follows from Theorem 4.5; we get
an indefinite generic homotopy �t and we let G.t;p/D .t; �t .p//.

Thus if we can now prove the theorem in the case where � has exactly one critical point
p2X , then we are done. Suppose that �.p/D 1

2
and that p has index k�n=2. (If k>

n=2 then replace � with 1�� and switch M0 and M1 .) Choose a gradient-like vector
field V for � , and use this to find an embedding �W Œ��; ���Bn�1�k �Sk�1 ,!M0

which gives the gluing map for the associated handle with appropriate framing. (We
have split the normal direction into a product of Œ��; �� and Bn�1�k as preparation for
the use of Theorem 4.2. Note that k�1 is the dimension referred to as li in the statement
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z

t

�

��

�R2 R2
f0g �Bn�k

f0g �Sn�k�1

Bk � f0g

Sk�1 � f0g

Sk�1 � Œ��; ���Bn�1�k

Figure 30: Images of ascending and descending disks and spheres, and
attaching region, for a forward k–handle Bk �Bn�k : the parabola t D z2 is
the image of the fold.

of that theorem, and that the dimension of M0 is mD n� 1. We need to verify that
k�1<.n�1/=2, which we do have, because k�1� .n=2/�1D .n�2/=2<.n�1/=2.)
Let T � ��1.1

2
� ı/ be the image of � . For some small ı > 0 we can then decompose

X into a union of four parts, X DX0[Xc [H [X1 with the following properties.
(Figure 31 shows where these four parts will sit in I2 and shows what the singular
locus G.ZG/ will look like in each part.)

(1) X0 D �
�1Œ0; 1

2
� ı� and is identified, via V , with Œ0; 1

2
� ı��M0 in such a way

that � jX0
.t;p/D t .

(2) X1D �
�1Œ1

2
C ı; 1� and is identified, via V , with Œ1

2
C ı; 1��M1 in such a way

that � jX1
.t;p/D t .

(3) Xc � �
�1Œ1

2
� ı; 1

2
C ı� and is identified, via V , with Œ1

2
� ı; 1

2
C ı�� .M0 n

.T n @T //, in such a way that � jXc
.t;p/D t .

(4) H is the k–handle, the union of the forward flow lines for V starting at T ,
together with the ascending manifold of p (using V ), intersected with ��1Œ1

2
�

ı; 1
2
Cı�. On H we have coordinates .x1; : : : ;xn/ with respect to which �.x/D

1
2
C�n

k
.x/ and V D �2x1@x1

� � � � � 2xk@xk
C 2xkC1@xkC1

C � � � C 2xn@xn
.

We choose these coordinates so that the xkC1 direction is the Œ��; �� direction
in the attaching region Œ��; ���Bn�1�k �Sk�1 (and .xkC2; : : : ;xn/ give the
Bn�1�k directions while the sphere in the .x1; : : : ;xk/ coordinates gives the
Sk�1 factor).
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X0

X1
Xc

Xc

Xc

H

Figure 31: Constructing a Morse 2–function with a single critical point in
the horizontal Morse function: this diagram shows the images of the four
parts of X , X0 , X1 , Xc and the handle H ; the image of the critical point is
at the star. Note that the images of X0 and X1 are disjoint, while the image
of Xc contains the image of H , even though Xc and H intersect in X only
along their boundaries.

In order to construct G , we first use Theorem 4.2 to each component of M0 to construct
an indefinite, ordered Morse function �1=2�ıW M0!I which is standard with respect to
� at height 1

2
, so that �1=2�ı on the attaching region T is of the form .t;x;p/ 7! tC 1

2

(identifying T with Œ��; ���Bn�1�k � Sk�1 via � ), with critical values of index
less than or equal to k � 1 at heights less than 1

2
and critical values of index greater

than or equal to k at heights greater than 1
2

. Now use Theorem 4.5 to construct an
indefinite, ordered generic homotopy �t (for t 2 Œ0; 1

2
� ı�) connecting �0 to �1=2�ı .

Then we let GW X0! Œ0; 1
2
� ı��I be G.t;p/D .t; �t .p//, after identifying X0 with

Œ0; 1
2
� ı��M0 as above. On H , at first just let G.x/D �C

k
.x/C .1

2
; 1

2
/, a forward

k–handle. This gives the single vertical tangency as part of a horizontal parabola seen
in the middle in Figure 31. This fits together smoothly with the definition of G on X0 .
Now we postcompose with an isotopy of Œ1

2
� ı; 1

2
C ı�� Œ0; 1� to make the image of

H exactly equal to the square Œ1
2
� ı; 1

2
C ı�� Œ1

2
� �; 1

2
C ��, so that G as defined on

X0 and H extends smoothly to

Xc Š Œ
1
2
� ı; 1

2
C ı�� .M0 n .T n @T //

via G.t;p/D .t; �1=2�ı.p//. One sees then that these definitions fit together smoothly
to define G over ��1Œ0; 1

2
Cı�, and that zıG then defines an indefinite Morse function

�1=2Cı on ��1f
1
2
Cıg, which is identified with M1 via V . Finally, we use Theorem 4.5

to construct an indefinite generic homotopy �t (for t 2 Œ1
2
C ı; 1�) connecting �1=2Cı

to �1 , and we define G on X1 Š Œ
1
2
C ı; 1��M1 by G.t;p/D .t; �t .p//.
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If we arranged that �t is ordered for t 2 Œ1
2
C ı; 1�, we would have completed the proof

of the connectedness assertion. This is fine if �1=2Cı (handed to us by the construction
on X0[Xc [H / is ordered. There are two different cases when �1=2Cı will not be
ordered. The first is when k D n=2. Here we have a critical point of index n=2 below
a critical point of index n� 1� n=2 D n=2� 1. The relevant indices are indicated
on the left in Figure 32. However, as long as the level sets of �1=2Cı are connected,
we can start off the homotopy �t , t 2 Œ1

2
C ı; 1�, by switching the heights of the two

offending critical points as indicated on the right in Figure 32. Because �1=2�ı has
critical values of index less than or equal to k � 1 below 1

2
and greater than or equal

to k above 1
2

, �1=2Cı is now ordered. The only case in which the level sets might
be disconnected in the short space when �t is not ordered is when n=2D n� 2 and
n=2� 1D 1, ie when nD 4 and k D 2. In this case we should make sure, in �1=2�ı ,
the attaching S1 for the 2–handle H does not separate the level set in which it lies. A
moment’s thought about the proof of Theorem 4.2 shows this is easy to achieve.

The second case when �1=2Cı will not be ordered is when n�1�k > k , in which case
the upper of the two new critical points, which has index n� 1� k , may have critical
points of lower index above it. In this case start off the homotopy �t , t 2 Œ1

2
C ı; 1�,

by lifting this critical point above those of lower index, and then proceed as above.
The only case when this could conceivably cause any connectedness problems is when
k D 1 and n� k � 1D n� 2, but adding a 1–handle and its dual .n� 2/–handle to a
fiber that is already connected cannot disconnect the fiber.

n=2 n=2

n=2

n=2� 1 n=2

n=2� 1

Figure 32: After attaching a handle of index n=2 , the vertical Morse function
will not be ordered, as on the left. The arrow labeled n=2 indicates that
this fold is of index n=2 when looked at in the direction of the arrow. The
numbers to the right of each box are the index of the critical points of the
vertical Morse function there. In the box on the right, we have switched the
two critical points to restore order.

The rest of this section is devoted to proving uniqueness, ie the proof of Theorem 5.2.
To do this, we first show that our two models, forward and backward handles, are a
complete list of local models, in the following sense:
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Lemma 5.3 Consider a square Morse 2–function GW X ! I2 and a critical point
p 2 X of t ı GW X ! I , of index k , with G.p/ D .tp; zp/. Suppose we are
given standard coordinates .x1; : : : ;xn/ on a neighborhood � of p such that � D
t ıG.x1; : : : ;xn/ D �

n
k
.x/C tp . Then there exists an arc Gs of Morse 2–functions

(ie Gs is Morse for all s ) supported inside � , with G0 D G and t ıGs independent
of s , such that, inside a smaller neighborhood �0 � � , G1.x/D �

˙
k
.x/C .tp; zp/. It

will be �C
k

, ie a forward k–handle, exactly when the point .tp; zp/ is a local minimum
for t jG.ZG/ , and it will be ��

k
, a backward k–handle, exactly when .tp; zp/ is a local

maximum.

Proof Let �D t ıG and �D zıG , ie G.x/D .�.x/; �.x//. We know �D�n
k
.x/Ctp .

Because the rank of DG at p D 0 must be 1, we know that � is nonsingular at 0 and
so, after a small perturbation of � (keeping G Morse) supported in a neighborhood of 0

we can assume that � is linear of the form �.x1; : : : ;xn/D a1x1C � � �C anxnC zp .
Now note that �a2

1
�� � ��a2

k
Ca2

kC1
C� � �Ca2

n¤ 0, because otherwise we would have
a 1–dimensional subset of the singular locus of G on which G was constant, which
does not happen in any of the local models for a Morse 2–function. Thus there is a
linear transformation of Rn preserving the quadratic form �n

k
and taking .a1; : : : ; an/

to .0; : : : ; 0; c; 0; : : : ; 0/ for some positive c , with the c in either the k th or .kC 1/st

coordinate. Smoothly interpolate from the identity to this linear transformation while
going in radially towards the origin in our neighborhood, and this creates an ambient
isotopy of the domain. Precomposing with this ambient isotopy and postcomposing with
a rescaling isotopy gives the arc of Morse 2–functions Gs with the desired properties.
Because we preserved the quadratic form �n

k
, we didn’t change � in this isotopy, and

thus t ıGs is independent of s .

At some point one might wish that a certain forward index-k critical point was actually
a backward index-k critical point, or vice versa. The next lemma addresses this:

Lemma 5.4 Suppose that GW X! I2 is a square Morse 2–function and that p 2G is
a critical point of t ıG of index k with local coordinates with respect to which G.x/D

�˙
k
.x/C .tp; zp/. If 2� k � n� 2 there exists an indefinite generic homotopy Gs of

Morse 2–functions supported inside this coordinate neighborhood, with G0 DG , such
that, inside a smaller neighborhood of p , we have G1.x/D �

�

k
.x/C .tp; zp/. If all

fibers of G are connected then we can arrange that all fibers of Gs are connected for
all s . We can further arrange that t ıGs is independent of s .

Proof Figure 33 shows how to do this (without the indefinite condition) when nD 2

and k D 1. For this we should in principle be able to write down an explicit formula,
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but the illustration probably explains what is going on better. We know that a forward
handle has become a backward handle simply because the vertical tangency in the
fold locus has changed from being a rightward-opening parabola to a leftward-opening
parabola. The homotopy has passed through a swallowtail singularity. To get the
higher-dimensional version, and indefiniteness, consider Figure 33 to be a picture of
what is happening in the .xk ;xkC1/–plane, and keep the homotopy independent of s

in the other coordinates .x1; : : : ;xk�1/ and .xkC2; : : : ;xn/. It is easy to see that,
for n� 4 and 2� k � n� 2, this is an indefinite homotopy and does not disconnect
fibers. The way we have drawn it, the critical point moves slightly to the left, but after
modifying by a small isotopy we can keep t ıGs independent of s throughout the
homotopy.

Figure 33: Bending a forward handle to a backward handle: the point is to see
that the only change to the projection to the horizontal axis in this homotopy
is that the critical point moves a little to the left, but that when we look at
the map to 2 dimensions, ie projection to the page exactly as in this figure,
the fold at the critical point changes from opening to the right to opening to
the left. This figure is in fact nothing more than the standard homotopy that
introduces a swallowtail.

We will want to accompany the lemmas above with a lemma stating that, outside the
standard neighborhood of a critical point of t ıG , G can be taken to be “constant in
the t direction”. We state this precisely as follows:

Lemma 5.5 Consider a square Morse 2–function GW X ! I2 and an index-k critical
point p 2 X of � D t ı G , with local coordinates near p with respect to which
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G D �C
k
.x/C .tp; zp/. In these local coordinates, let V be the standard gradient

vector field for � D t ı G D �n
k
.x/C tp and, for any small � > 0, let H� be the

k–handle neighborhood of p obtained by flowing forward along V starting from
the attaching region f.x1; : : : ;xn/ j �.x1; : : : ;xn/ D �� C tp;x

2
kC1
� �2;x2

kC2
C

� � � C x2
n � �

2g Š Sk�1 � Œ��; �� � Bn�k�1 , together with the ascending disk, and
stopping at � D tp C � . Note that H� � �

�1Œtp � �; tp C ��; let H c
� be the closure of

��1Œtp � �; tp C �� nH� and M c
tp��
D H c

� \ �
�1.tp � �/. Using V , H c

� is naturally
identified with Œtp � �; tp C �� �M c

tp��
. Then there exists an � > 0 and an arc of

Morse 2–functions Gs , with G0 D G , which is independent of s inside H� and
independent of s outside ��1.tp � 2�; tp C 2�/, such that, on H c

� , identified with
Œtp��; tpC���M c

tp��
, G1 is of the form .t;x/ 7! .t;g.x// for a fixed Morse function

gD �j��1.tp��/
. In addition, we can arrange that there are no critical values of gjM c

tp��

in Œzp � �; zpC ��.

Proof Given the standard model on the handle, the complement of the handle in
��1.Œtp � 2�; tpC 2��/ is a product cobordism and G on this product is identified with
an arc of Morse functions gt . A standard homotopy can make gt independent of t for
t 2 Œtp � �; tpC ��.

We now present the proof of uniqueness for indefinite square Morse 2–functions as a
sequence of steps forward-referencing two further lemmas which will be stated and
proved afterwards.

Proof of Theorem 5.2 We are given two indefinite square Morse 2–functions

G0;G1W X ! I2

which agree on M0 and M1 , ie z ıG0jMi
D �i D z ıG1jMi

, for i D 0; 1. Then we
need to construct an indefinite generic homotopy GsW X ! I2 between G0 and G1 ,
and we need to address the issue of connected fibers. The steps are as follows.

(1) Let �0D t ıG0 and �1D t ıG1 . These are indefinite I–valued Morse functions,
and we are given that they are ordered. Let �sW X ! I be an indefinite, ordered
generic homotopy from �0 to �1 such that all the births of cancelling pairs of
critical points occur for s 2 Œ0; 1

4
� and all the deaths occur for s 2 Œ3

4
; 1�, and

such that �s is independent of s for all s 2 Œ1
4
; 3

4
�. We then construct the desired

generic homotopy Gs for s 2 Œ0; 1
4
� and s 2 Œ3

4
; 1� such that t ıGs D �s . (We

need to slightly modify �s to achieve this.) This step is carried out in Lemma 5.6.
The key outcome of this step is t ıG1=4 D t ıG3=4 , so when we construct Gs

for s 2 Œ1
4
; 3

4
�, we can leave t ıGs independent of s and work on z ıGs .
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(2) Now we need to connect G1=4 to G3=4 . Let �D tıG1=4D tıG3=4 . Our next step
is to extend the homotopy Gs to s 2 Œ1

4
; 1

2
�, keeping t ıGs D � for all s 2 Œ1

4
; 1

2
�

so that, for some � > 0 and for each critical value t� of � , G1=2 and G3=4 agree
on ��1.Œt�� �; t�C ��/DG�1

1=2
.Œt�� �; t�C ���I/DG�1

3=4
.Œt�� �; t�C ���I/.

This step is carried out in Lemma 5.8.

(3) Finally, we extend Gs to s 2 Œ1
2
; 3

4
� to connect G1=2 to G3=4 as follows. The

parts of X where G1=2 and G3=4 do not yet agree are of the form X� D

��1.Œt�C �; t
0
�� ��/, for two consecutive critical values t� < t 0� of � . But then

X� can be identified with a product Œt�C�; t 0�����M� , where M�D �
�1.t�C�/.

Furthermore, with this identification, for s D 1
2

and s D 3
4

, we see that GsjX�

is of the form .t;p/ 7! .t;gs;t .p//, precisely because t ıG1=2 D t ıG3=4 D � .
Thus we can use Theorem 4.9 from the preceding section to construct a ho-
motopy gs;t from g1=2;t to g3=4;t , and then define Gs for s 2 Œ1

2
; 3

4
� and

p 2 X� D Œt�C �; t
0
� � ���M� by Gs.t;p/ D .t;gs;t .p//. (Here we actually

need a parameterized version of Lemma 4.10, which is discussed in a similar
context in the proof of Lemma 5.7.) Finally, since G1=2 and G3=4 already agree
on ��1.Œt�� �; t�C ��/ for critical points t� , we can define Gs DG1=2 DG3=4

on these subsets, for all s 2 Œ1
2
; 3

4
�, and we are done.

In the above steps we did not address the issue of keeping fibers connected when G0

and G1 are fiber-connected. We have already arranged for �s to be ordered for all s .
In this case, Lemma 5.6 also states that Gs will have all fibers connected for all
s 2 Œ0; 1

4
� and for all s 2 Œ3

4
; 1�. Lemma 5.8 then explicitly asserts that, if the fibers

of G1=4 and G3=4 are connected in each ��1.Œt�� �; t�C ��/, for t� a critical value
of � , then we can keep the fibers of Gs connected there when we construct Gs for
s 2 Œ1

4
; 1

2
�. Finally, when we use Theorem 4.9 to construct Gs for s 2 Œ1

2
; 3

4
�, we should

first use Lemma 4.10 to get each of the Morse functions g1=2;t�C� D g3=4;t�C� and
g1=2;t 0���

D g3=4;t 0���
to be ordered.

We now state and prove the two lemmas referenced in the proof above.

Lemma 5.6 Given any indefinite Morse 2–function GW X ! I2 and an indefinite,
ordered generic homotopy �sW X ! I between Morse functions, with t ıG D �0 and
with no deaths of cancelling pairs of critical points, there exists an indefinite, ordered
generic homotopy � 0sW X ! I , with � 0

0
D �0 and � 0

1
D �1 , which is connected to �s by

an arc of generic homotopies, and there exists an indefinite generic homotopy of Morse
2–functions GsW X ! I2 with G0 DG and with t ıGs D �

0
s . If G is fiber-connected

then we can arrange that Gs is fiber-connected for all s .
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Proof of Lemma 5.6 We will show how to construct generic indefinite homotopies Gs

such that t ıGs is a generic homotopy between Morse functions which realizes either
(1) a desired birth of a cancelling pair or (2) a desired crossing of two critical points.
The given �s will then tell us where the births should be and which critical points
should cross when. Making the births occur at these points and the right critical points
cross at the right time, and pre- and postcomposing G with ambient isotopies, we can
construct Gs so that � 0s D t ıGs is connected to �s by an arc of generic homotopies.
(To see this, first note that an arc of Morse functions can always be realized by pre-
and postcomposing with ambient isotopies. This is because we can postcompose with
an isotopy so that the critical values are constant, then precompose so that the critical
points are constant, then precompose again to arrange that the homotopy is constant
on neighborhoods of the critical points, and finally integrate a time-like vector field to
get the full isotopy. Then note that births and critical point crossings can be localized
by using bump functions to keep given homotopies stationary for short time periods
outside standard neighborhoods.)

n�2�k

n�1�k

k

kC 1

k

n�1�k

n�k

k

k�1

k

Figure 34: Two ways to realize a birth of a cancelling k–.kC 1/ pair in �s

via a homotopy of G : the birth occurs inside the dotted square.

We deal with these two moves as follows.

(1) The easiest way to arrange a birth is to arrange that, inside the ball in which the
birth should occur, G has the form G.x1; : : : ;xn/D .�x2

1
�� � ��x2

k
CxkC1C

x2
kC2
C � � �Cx2

n ;xkC1/. This is a fold which is index k looked at from left to
right and the image of the fold set is the line z D t . We can arrange this via, for
example, an eye birth as illustrated in Figure 34; there are two cases, one which
is indefinite for 1 � k � n� 3 and one which is indefinite for 2 � k � n� 2.
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Now let fs.x/ be a function which equals x3 � sx for x in a neighborhood
of 0, has no critical points outside that neighborhood for any s 2 Œ��; ��, and is
linear in x and independent of s outside a slightly larger neighborhood. Finally
let Gs.x1; : : : ;xn/ D .�x2

1
� � � � � x2

k
C fs.xkC1/C x2

kC2
C � � � C x2

n ;xkC1/,
the result of which is also illustrated in Figure 34. As long as this eye birth is
indefinite, it will not disconnect fibers.

(2) Since �s is ordered, we only need to switch critical values of the same index.
Lemma 5.7 below deals with more general critical values switches, but applies
in particular to this case. (We have separated that lemma from the proof of this
lemma because we will need the more general case in the following section.)

This completes the proof.

Lemma 5.7 Given an indefinite Morse 2–function GW X!I2 , let �D tıG . Consider
two critical points p and q of � , with p having index k � n=2, with q having index
l � k , with �.q/ < �.p/ and with no other critical values between �.q/ and �.p/.
Fix a generic gradient-like vector field for � . Then there exists an indefinite generic
homotopy Gs with G0DG such that �s D t ıGs agrees with � outside a neighborhood
of the descending manifold for p and, inside this neighborhood, no new critical points
are born and �s.p/ decreases monotonically from �.p/ to �.q/�� for some small �>0.
Furthermore, if G is fiber-connected then we can arrange that Gs is fiber-connected for
all s .

Proof Suppose that �.p/ D 2
3

and �.q/ D 1
3

and that there are no other critical
values between 1

3
and 2

3
. Using Lemmas 5.3 and 5.4, we arrange for local coordinates

near p with respect to which G has the form G D �C
k
.x/C .2

3
; zp/, a forward k–

handle, and we arrange for a disjoint coordinate system near q with respect to which
G D �˙

l
.x/C .1

3
; zq/, a forward or backward l –handle. We further use Lemma 5.5

to arrange that G is constant in the t direction outside a neighborhood of q for
t 2 Œ1

3
� �; 1

3
C ��. First we consider the case that q is a backward l –handle.

Since there are no critical points between p and q , ��1.Œ1
3
C�; 2

3
���/ is diffeomorphic

to Œ1
3
C �; 2

3
� �� �M for an .n� 1/–manifold M (each component of which is a

connected cobordism between nonempty manifolds), and via this diffeomorphism G

has the form .t;p/ 7! .t;gt .p// where gt is an indefinite generic homotopy between
Morse functions on M . Furthermore, because of the local models we have found for G

near p and q , we have an embedding �q of a neighborhood of the ascending sphere
for q and an embedding �p of a neighborhood of the descending sphere for p in M

such that g1=3C� is standard with respect to �q at height zq while g2=3�� is standard
with respect to �p at height zp .
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We will now sequentially improve gt in preparation for lowering p past q . This is
illustrated in Figure 35, where “lowering” p really means moving p to the left. At
each stage we produce an improved gt , which must be connected to the preceding gt

by a homotopy gs;t . The homotopy gs;t is produced by appealing to Theorem 4.9. The
one hitch here, as pointed out helpfully by our anonymous referee, is that Theorem 4.9
requires ordered Morse homotopies as input, and at certain stages our two Morse
homotopies may have connected level sets without necessarily being ordered. For this,
we need a parameterized version of Lemma 4.10. Now we have a given homotopy gt

which has connected level sets and must be made ordered, respecting standardization
with respect to �p and/or �q (see below). Here we simply pull the arcs of critical
points down or up, as appropriate, using exactly the same argument as in last two
paragraphs of the proof of Theorem 4.5.

Now here is the sequence of improvements of gt . First we use Lemmas 4.10 and 5.5
and Theorems 4.2 and 4.5 to arrange that gt is ordered and standard with respect
to �p at height zp for t near 1

3
. Similarly we arrange for gt to be ordered near 2

3
,

keeping it standard with respect to �p at height zp near 2
3

. (Note the importance of
the t –independence of G outside a neighborhood of q , as given by Lemma 5.5, so
that we can smoothly connect the behavior of g1=3C� to the behavior of g1=3�� , and
similarly for the g2=3�� and g2=3C� .) Then we use Theorem 4.5 to arrange that gt

is standard with respect to �p at height zp (and ordered) for all intermediate values
of t . The argument from the preceding paragraph connects these improved gt ’s by the
appropriate homotopies of homotopies of Morse functions, which turn into homotopies
of Morse 2–functions. Finally, having arranged the standardness of gt for the point p

on the entire interval Œ1
3
� �; 2

3
C ��, we can easily lower p past q .

In the case that q is a forward l –handle, we use the same argument as above but look
first at M 0 D ��1.1

3
� �/, with a vertical Morse function g1=3��W M

0! I which is
standard with respect to the descending manifold for q at height zq . We modify this
to be standard with respect to the descending manifolds for both p and q , using the
t –independence of G outside a neighborhood of q for t 2 Œ1

3
� �; 1

3
C ��, so that again

we get g1=3C�W M ! I to be standard with respect to the descending manifold for p

and proceed as above.

Regarding fiber-connectedness, note that the only potential problem arises when the
attaching sphere for p has codimension 1 in the fiber, and then we need to make sure
that it never separates the fibers as we lower p past q . Thus we only need to worry
when k D n� 2, but since k � n=2 and n � 4, the only case of concern is n D 4

and k D 2. (To a 4–manifold topologist this is, of course, the most interesting case.)
Thus, when we apply Theorems 4.2 and 4.5 and Lemma 4.10 to arrange that gt is
standard with respect to �p at height zp for all values of t between 1

3
and 2

3
, we
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p

q

zp

zq

1
3

2
3

t

z

s1 s2

s3 s4

Figure 35: Passing two critical points past each other; the homotopy is
illustrated at four successive values of s . Shaded squares are regions where
gt is standard with respect to �p or �q . To pass from s1 to s2 , we modify
gt in a neighborhood of t D 1

3
so that the framed attaching sphere for p lies

in a level set at t D 1
3

. Going from s2 to s3 , we modify gt between t D 1
3

and t D 2
3

so that this attaching sphere lies in a level set on the whole
interval Œ1

3
; 2

3
� .

actually need to do a little more. We need to ensure that the descending sphere for p

remains nonseparating in its fiber for all t . Thus we need a slight improvement on
Theorem 4.5 which says that, in this special case mD n� 1D 3 and li D k � 1D 1,
we can maintain the nonseparating property throughout a generic homotopy between
Morse functions. The easiest way to do this is to arrange that a dual circle to the
attaching circle also lies in the fiber throughout the homotopy, ie that the union of two
circles intersecting transversely at one point stays in the fiber. Since the proof of the
relevant part of Theorem 4.5 simply involves counting dimensions and appealing to
transversality, this slight improvement is straightforward.

The other lemma needed in the proof of Theorem 5.2 is:

Lemma 5.8 Given two indefinite Morse 2–functions G;G0W X ! I2 such that z ı

GjM0
D zıG0jM0

D �0 , zıGjM1
D zıG0jM1

D �1 and tıGD tıG0D � W X!I , there
exist an � > 0 and a generic indefinite homotopy of Morse 2–functions GsW X ! I2

such that:
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(1) G0 DG .

(2) t ıGs D � for all s .

(3) For each critical value t� of � , letting X� D �
�1Œt�� �; t�C ��, G1jX� DG0jX� .

If G and G0 have all fibers connected then we can arrange for Gs to have all fibers
connected as well.

Proof Again, we use Lemma 5.3 to standardize G D .�; �/ and G0 D .�; �0/ near
each critical point of � , so that � and �0 are equal in a neighborhood of each critical
point. Then use Lemma 5.5 to make G and G0 “constant in the t direction” inside each
��1Œt�� �; t�C �� but away from the critical point. Thus if we homotope �j��1.t���/

to �0j��1.t���/
without changing � on the attaching region for the handle associated

to this critical point, this homotopy can be spread out over Œt�� �; t�C �� to give the
desired homotopy of G . The homotopy from �j��1.t���/

to �0j��1.t���/
is given by

Lemma 4.10 followed by Theorem 4.5.

6 The main results

In this section we prove the theorems stated in the introduction. We will apply Thom–
Pontrjagin type arguments to reduce to the case of maps to disks, so first we show
quickly how the results of the preceding two sections immediately give our main
theorems in the case when we are mapping to B1 or B2 .

Proof of Theorem 1.3 for maps to B1 This is exactly Theorem 4.2, with ordered
implying fiber-connected when m> 2.

Proof of Theorem 1.4 for maps to B1 Given two indefinite Morse functions

g0;g1W M
m
! B1;

we need to construct an indefinite generic homotopy gt connecting them, and if m� 3

and g0 and g1 are fiber-connected we need to arrange that gt is fiber-connected.
Apply Lemma 4.10 to homotope g0 and g1 to be ordered, without destroying fiber-
connectedness if they are given as fiber-connected. Then apply Theorem 4.5.

Proof of Theorem 1.1 for maps to B2 Here we are given an indefinite Morse
function gW @X n ! S1 and we need to construct an indefinite Morse 2–function
GW X !B2 with Gj@X D g . When n� 4 and g is fiber-connected we need to arrange
that G is fiber-connected. Arbitrarily identify S1 with @I2 so that g has no critical
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values in I �f0; 1g � @I2 , and then use this identification to realize X as a cobordism
from M0 D g�1.f0g � I/ to M1 D g�1.f1g � I/. Apply Lemma 4.10 to begin the
construction of G on a collar neighborhood of @X so as to reduce to the case where g

is ordered on M0 and M1 , without destroying fiber-connectedness if we had it to
begin with. This gives us �0 and �1 as in the preceding section, in preparation for
Theorem 5.1. Also apply Theorem 4.2 to X to produce the desired indefinite, ordered
Morse function � . Finally apply Theorem 5.1 to produce G .

Proof of Theorem 1.2 for maps to B2 Now we are given two indefinite Morse
2–functions G0;G1W X

n! B2 which agree on @X , and, assuming that n � 4, we
need to construct an indefinite generic homotopy Gs connecting them. When G0

and G1 are fiber-connected we need to arrange that Gs is fiber-connected. In order
to reduce to Theorem 5.2, we first proceed as in the previous proof, identifying B2

with I2 and applying Lemma 4.10 to get �0 and �1 ordered as in Theorem 5.2. Now
we need to arrange that �0 D t ıG0 and �1 D t ıG1 are ordered. We do this with
Lemma 5.7, switching critical values so as to order them by index, making sure to
always move critical points of index less than or equal to n=2 to the left and critical
points of index greater than n=2 to the right. Now we can apply Theorem 5.2.

Now we can consider more interesting topology in our target spaces. For existence of
indefinite, fiber-connected S1 –valued Morse functions, for example, we need to arrange
for one fiber to be connected, and then we can cut open along that fiber and reduce to
the B1 –valued case. These proofs are essentially a refinement of the Thom–Pontrjagin
construction, in which maps to Sn and homotopies between them are constructed and
characterized by specifying the fiber over a point. However, we need to be more careful
than in the basic Thom–Pontrjagin construction because of the fact that we need to
arrange for connected fibers, and because we want to construct homotopies which
connect fibers without introducing extraneous components along the way.

In the traditional Thom–Pontrjagin construction for maps from Sn to Sk , a framed
codimension-k submanifold of Sn determines a map by sending the submanifold
to the north pole and the framed normal k–disk bundle to Sk , with boundary and
the complement of the normal disk bundles all mapping to the south pole. A framed
cobordism in I �Sn between two such framed submanifolds determines a homotopy
between their maps in the same way.

In our setting, the framed cobordisms are easy to see but we require more control on the
associated homotopies than we would get by applying the standard Thom–Pontrjagin
arguments. In particular, if we want to construct a homotopy which connects two
components of a disconnected fiber, we will need to choose an arc connecting the
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components and then construct a homotopy with support in a neighborhood of the arc,
such that, during the homotopy, extraneous components are not introduced.

We begin with the existence and uniqueness results for indefinite, fiber-connected,
Morse functions. As mentioned earlier, we already have these results when mapping
to I , so we focus now on maps to S1 .

Proposition 6.1 Given a Morse function gW M m ! S1 which is surjective on �1 ,
with M connected, and given a regular value q 2 S1 , if g�1.q/ is disconnected
then we can find two components of g�1.q/ connected by an arc a � M which
intersects g�1.q/ only at its endpoints and which is disjoint from either g�1Œq� �; q/

or g�1.q; qC ��, for some small � > 0.

Proof Begin with an arc connecting any two components of g�1.q/, meeting g�1.q/

transversely, intersecting g�1.q/ with opposite signs at its endpoints, and projecting
to a homotopically trivial loop in S1 . (Here we use �1 –surjectivity.) If this arc
hits g�1.q/ anywhere in its interior, either take an innermost arc intersecting distinct
components with opposite signs at its endpoints, or, if an innermost arc starts and
ends in the same component, shortcut in the obvious way, reducing the number of
intersections.

M

N 1

�.1/
�.3

4
/

�.0/

�.1
4
/

�

�.t/

gFm�1

Normal
Bm�1� bundle

Normal
Sm�2� bundle

0 1t

Graph of
g ı � W Œ0; 1�!N

Graph of
�W Œ0; 1�!N

g ı �.t/

q

Figure 36: Connecting components of g�1.q/

We will use such arcs to construct homotopies that connect components of g�1.q/. For
the basic idea, referring to Figure 36, consider a given Morse function gW M m!N 1 ,
with regular value q and suppose the fiber F D g�1.q/ is disconnected. Choose an arc
� W Œ0; 1�!M transverse to F , intersecting F only at �.1

4
/ and �.3

4
/, connecting two

components of F . (If � intersects F at more points, choose a shorter arc.) Note that
� has a normal Bm�1 –bundle with boundary Sm�2 –bundle. We wish to construct
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a homotopy gt starting at g0 D g , supported inside this Bm�1 –bundle, such that,
watching the level sets g�1

t .q/ as t ranges from 0 to 1, we see two fingers stick
out from F following � , meeting at �.1

2
/, and merging to achieve a surgery on the

0–sphere f�.1
4
/; �.3

4
/g. In other words, we connect the two components of F with a

tube along � , without introducing any extraneous components during the homotopy.

To visualize the homotopy gt , choose coordinates for the normal Bm�1 –bundle to the
arc �.Œ0; 1�/ so that g is projection on the t coordinate, that is, each normal Bm�1

maps to a point of N . Then gt should equal g0 on the boundary Sm�2 of each
normal Bm�1 and should push the interior of this Bm�1 down N until the center
of Bm�1 has gone past q . If the center is below q , then a normal Sm�2 will map
to q , and these spheres will make up the cylinder I �Sm�2 which connects the two
components of the fiber.

In order not to create extra components during the homotopy gt , the interiors of the
normal Bm�1 ’s need to be pushed across q in turn, starting monotonically at t D 1

4

and t D 3
4

, and finally at t D 1
2

. To organize this, choose a parabolic arc � as drawn in
Figure 36 and first push all the centers of the normal Bm�1 ’s, ie �.t/, down to �, and
then push the centers down as though � was being translated down.

The details are as follows:

Lemma 6.2 Suppose that gW M m ! N 1 is a Morse function and that � W I !M

is a smooth embedded path avoiding the critical points of g such that  D g ı � is
homotopically trivial (rel endpoints) in N . Let q 2 N be a regular value for both
gW M !N and  W Œ0; 1�!N , with �1.q/D f1

4
; 3

4
g. Suppose that �W I � I !N

is a homotopy, with �.0;x/D  .x/, such that q is regular for � and such that ��1.q/

is an arc a� I � I from .0; 1
4
/ to .0; 3

4
/ and such that projection onto the first factor

of I � I restricts to a as a Morse function with a single index-1 critical point at .1
2
; 1

2
/.

Then, inside any neighborhood of �.I/ there is an embedding x� W Bm�1 � I !M ,
with x�.0;x/D �.x/ such that, letting x D gıx� W Bm�1�I!N , we have a homotopy
x�W I �Bm�1 � I !N satisfying the following properties.

(1) For any .0;y ;x/ 2 I �Bm�1 � I , x�.0;y ;x/D x .y ;x/.

(2) For any .t; 0;x/ 2 I �Bm�1 � I , x�.t; 0;x/D �.t;x/.

(3) For any .t;y ;x/2I�..Sm�2�I/[.Bm�1�f0; 1g//, x�.t;y ;x/D x�.0;y ;x/D
x .y ;x/.

(4) The point q 2N is a regular value for x� .

(5) x��1.q/ is an m–dimensional submanifold of I � Bm�1 � I on which the
projection onto the first factor of I �Bm�1 � I has a single Morse critical point
of index 1 at .1

2
; 0; 1

2
/. This is illustrated in Figure 37.
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(6) This submanifold x��1.q/ intersects the boundary of I �Bm�1 � I as

.f0g �Bm�1
� I/\ x��1.q/D f0g �Bm�1

� f
1
4
; 3

4
g;

.I �Sm�2
� I/\ x��1.q/D I �Sm�2

� f
1
4
; 3

4
g:

(7) In particular, this implies that .f1g�Bm�1�I/\x��1.q/ is properly embedded in
f1g�Bm�1�I and diffeomorphic to Sm�2� Œ1

4
; 3

4
�, only meeting the boundary

of f1g �Bm�1 � I at Sm�2 � f
1
4
; 3

4
g.

Bm�1

I

I
x��1.q/

Figure 37: The model for x��1.q/ in the statement of Lemma 6.2

Proof Let x� be a parametrization of a small neighborhood of �.Œ0; 1�/ such that
x�1.q/D Bm�1 � f

1
4
; 3

4
g. Let H be a model saddle hypersurface in I �Bm�1 � I

satisfying the behavior given in the statement of the lemma for x��1.q/. Then, the
constraints given for x� , where we ask that x��1.q/DH , completely determine x� on
the following subset C of I �Bm�1 � I :

C D .f0g�Bm�1
� I/[ .I �Sm�2

� I/[H [ .I �f0g� I/[ .I �Bm�1
�f0; 1g/:

There is a natural extension of this prescribed behavior of x� on C to a smooth function
on a regular neighborhood � of C so that q becomes a regular value and such that x�.@�/
avoids q . Then note that I �Bm�1 � I deformation retracts onto C , so there is a
continuous extension of x� to all of I �Bm�1 � I , which can be smoothed and made
generic without changing the behavior on � , and without introducing any components
of x��1.q/ outside � .

Existence: Proof of Theorem 1.3 We have already proved this for the case of maps
to B1 . Now we consider the case of maps to S1 . We are given a homotopically
nontrivial map g0W M ! S1 and we want to produce an indefinite Morse function
gW M !S1 which is homotopic to g0 . To simplify notation, we will simply refer to all
our maps to S1 as g , modifying g in stages by homotopies. So we begin with gD g0 .
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Because g is homotopically nontrivial, we can lift to a finite cover of S1 so that the
induced map on �1 is surjective, and thus reduce to the case g�.�1.M //D �1.S

1/.
Fiber-connectedness is not preserved under postcomposition with a covering space map,
but we are not asking for fiber-connectedness unless g is �1 –surjective to begin with.

So now assume g is �1 –surjective and Morse. Identify S1 with R=Z so that 0 is
a regular value. We want to homotope g to arrange that g�1.0/ is connected. (The
new g should still be Morse and 0 should still be regular.) Then our theorem will
reduce to the cobordism case, Theorem 4.2, by cutting M open along g�1.0/.

Choose some � > 0 such that there are no critical values of g in Œ��; 0�. Choose two
components of g�1.0/ as in Proposition 6.1, and, extending the arc produced in the
proposition, choose a path � W Œ0; 1�!M connecting them in M , but starting and ending
in g�1.��/ and passing through the two components at �.1

4
/ and �.3

4
/, respectively,

such that  D g ı � is homotopic to 0 2 �1.S
1;��/. We can then choose a homotopy

�W I � I !N as in the hypotheses of Lemma 6.2, with 0 being the regular value q

in the lemma. Then the embedding x� and the homotopy x� gives us a homotopy gt

defined as the identity outside the image of x� and as gt .p/ D x�.t; x�
�1.p// for p

in the image of x� . The effect on g�1.0/ is to replace two Bm�1 neighborhoods in
g�1.0/ of the two points �.1

4
/ and �.3

4
/ with a tube diffeomorphic to Sm�2 � I , and

thus the two components get connected. Repeating, we connect all the components
of g�1.0/.

Note that the final homotopy is a concatenation of homotopies each supported in a
neighborhood of an arc in M . Thus we could just as well have performed all the
homotopies at the same time, as long as we can choose all the relevant arcs to be
disjoint from the beginning, which we can do if m � 3. This point of view is more
useful in the next proof.

Uniqueness: Proof of Theorem 1.4 Again, we have already proved this in the case of
homotopies between maps to B1 , so now we consider the case of homotopies between
maps to S1 . We are given two homotopic indefinite Morse functions g0;g1W M !S1

and we need to produce an indefinite homotopy gt between them; when g0 and g1 are
fiber-connected then gt should also be fiber connected for all t . Throughout the rest of
this proof suppose we are trying to prove both indefiniteness and fiber-connectedness.
Assuming that g0 and g1 are indefinite and fiber-connected implies that both maps
are �1 –surjective. The proof without asking for fiber-connectedness follows by lifting
to an appropriate cover.

Again, identify S1 with R=Z and assume that 0 and 1
2

are regular values of both g0

and g1 . We first choose any generic homotopy gt , and we will show how to modify gt
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so as to arrange the following connectedness of level sets property: for a sequence
of values 0D t0 < t1 < � � �< t2n D 1, we have that g�1

t .0/ is connected and regular
on Œt0; t1�[ Œt2; t3�[ � � � [ Œt2n�2; t2n�1� and that g�1

t .1
2
/ is connected and regular on

Œt1; t2�[ Œt3; t4�[ � � � [ Œt2n�1; t2n�.

As in the proof of Theorem 1.3 we can make either of the level sets g�1
t .0/ or g�1

t .1
2
/

connected for a fixed t , as long as 0 or 1
2

is a regular value. The construction depends
on a choice of arcs in M based at the level set in question, and then produces a
homotopy supported in a neighborhood of those arcs and loops. Even if one of the level
sets contains a single Morse critical point, we can keep the arcs and loops away from
that critical point, either connecting the entire singular level set if the critical point
is indefinite or connecting all the components other than the single point component
when the critical point is a minimum or maximum.

Now note that the arcs and the guiding homotopies in S1 which are used for a fixed
value t D t0 will work for all t in some short interval Œt0��; t0C��, modulo modifying
the arcs by small ambient isotopies near their endpoints. Also note that, in the middle
of one of these homotopies, we do not introduce new components of the level set
in question. This is because, in Lemma 6.2, x��1.q/ has a single critical point of
index 1 with respect to projection onto the first factor of I �Bm�1 � I , so for each t ,
.ftg �Bm�1 � I/\ x��1.q/ either has two components (for t < 1

2
) or one component

(for t � 1
2

), but never more.

Thus, for a fixed level set g�1
t .z0/, as long as z0 is regular or a Morse critical value for

each t , we can cover Œ0; 1� by a finite collection of such short intervals, using disjoint
arcs and loops where the intervals overlap (recall that m� 3, where m is the dimension
of M ), and use bump functions to patch together the homotopies over the whole of
Œ0; 1�. The result will be that g�1

t .z0/ is connected for all t outside a short interval
around each time t� at which g�1

t .z0/ contains a definite critical point. In these short
intervals, g�1

t .z0/ will be connected, say, for all t < t� , will be the disjoint union of
a connected manifold and a point for t D t� , will have an isolated sphere component
for t slightly larger than t� , and then that component will get connected back to the rest
of the level set immediately thereafter. (The phenomenon described in the preceding
sentence could also occur with time reversed, of course.)

Do this once for g�1
t .0/. Now do this for g�1

t .1
2
/, noting that generically 1

2
and 0

will never be critical values at the same time, and also noting that the arcs used to
connect components of g�1

t .1
2
/ can be made to avoid g�1

t .0/ because g�1
t .0/ is now

connected or has a single isolated sphere component that dead-ends immediately above
or below 0. Because these arcs are disjoint from g�1

t .0/, the homotopy used to connect
components of g�1

t .1
2
/ does not destroy the connectedness properties of g�1

t .0/. We
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have also assumed here that non-Morse singularities, ie births and deaths, never occur
at 0 or 1

2
.

The zigzag argument We have now achieved the connectedness property advertised:
for 0 D t0 < t1 < � � � < t2n D 1, we have that g�1

t .0/ is connected and regular
on Œt0; t1� [ Œt2; t3� [ � � � [ Œt2n�2; t2n�1� and g�1

t .1
2
/ is connected and regular on

Œt1; t2� [ Œt3; t4� [ � � � [ Œt2n�1; t2n�, as in Figure 38. If g0 and g1 agreed on, say,
g�1

0
.0/Dg�1

1
.0/, then we could cut open M along L and obtain two indefinite Morse

functions to I , thus reducing, with the help of Lemma 4.10, to the already proven
Theorem 4.5. The goal now is to arrange for this to be true for gti

and gtiC1
for

0D t0 < t1 < � � �< t2n D 1.

t0 t1 t2 t3

C1 C2 C3 C4

Ft0 Ft1

F 0t1 F 0t2

Ft2 Ft3

F 0t3 F 0t4

D

D

D

D

reg

reg

reg

reg

� � �

t 2 I

S1 S1

0

1
2

Figure 38: The zigzag argument

Let Fti
D g�1

ti
.0/ and let F 0ti

D g�1
ti
.1

2
/. Note that Ft0

is isotopic to Ft1
because 0 is

regular for each gt , t 2 Œt0; t1�. Similarly, Ft2i
is isotopic to Ft2iC1

. We can assume
they are, in fact, equal. The same works for F 0t2iC1

and F 0t2iC2
.

The vertical cobordism Ci D g�1
ti
Œ0; 1

2
� between Fti

and F 0ti
is connected because the

top, g�1
ti
.1

2
/, is connected, as is the bottom, and because gti

W M ! S1 is surjective
on �1 . (For, given p; q 2 Ci , there is an arc joining them in M which intersects Fti

and F 0ti
algebraically 0 each, and now connectedness of Fti

and F 0ti
allows the arc to

be replaced by an arc in Ci .)

Now for each i D 1; : : : ; 2n� 1 we construct, by Theorem 4.2, intermediate functions
hti
W M ! S1 homotopic to gti

such that h�1
ti
Œ0; 1

2
� D Ci and hti

is indefinite and
fiber-connected.

Then g0 and ht1
agree on the level set Ft0

D g�1
0
.0/ and are homotopic rel this level

set and thus are joined by an indefinite fiber-connected homotopy (using Lemma 4.10
and Theorem 4.5). Also ht1

and ht2
agree on the level set F 0t2

D h�1
t2
.1

2
/ so they are
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also joined by an indefinite fiber-connected homotopy. Repeat this up and down zigzag
construction up to ht2n�1

, and then finally join ht2n�1
to gt2n

D g1 . This ends the
proof.

We have proved Theorem 1.1 when †2 is B2 , and we could prove the case †D S2

by homotoping G so that a fiber F is connected and then removing a B2 –bundle
neighborhood of F to reduce to the case †D B2 . However when † is closed and
not S2 , there can be problems keeping G an epimorphism on �1 after removing F .
To resolve this issue, we need some constructions which use the following lemma. This
is essentially the Morse 2–function version of Lemma 6.2. However, when written as
a direct analog of Lemma 6.2, the statement of this lemma becomes unwieldy.

Lemma 6.3 Let GW X !† be a Morse 2–function. Let a be a nonseparating simple
closed curve or properly embedded arc in † which meets all folds transversely so that
G�1.a/DM n�1 is a smooth manifold. Let ˇW Œ�1; 2�!X be a smoothly embedded
arc in X which intersects M transversely in two points, ˇ.1/ and ˇ.0/, of opposite
sign. Let the arc bW Œ�1; 2�!† be defined as b DG ıˇ . Now suppose that bjŒ0;1� is
homotopic by hs; s 2 Œ0; 1� to an arc joining G.ˇ.1// and G.ˇ.0//, and call this arc a0 .

Then there exists a homotopy Gs; s 2 Œ0; 2� satisfying:

(1) G0 DG .

(2) Gs DG outside of an arbitrarily thin tubular neighborhood of ˇ.Œ�1; 2�/.

(3) If the homotopy hs of b never takes b across a except at time sD1, then G�1
2
.a/

equals M surgered along the 0–sphere, ˇ.1/[ˇ.0/, thus connecting the com-
ponents containing ˇ.1/ and ˇ.0/ by a tube Œ0; 1��Sn�2 .

(4) If hs does take b across a, then G�1
2
.a/ is the result of 0–surgery on M as

described above together with the possible addition of new closed components.

Proof The argument is a version of the well-known Thom–Pontrjagin method for
calculating �n.S

2/ by simplifying the preimage of the north pole of S2 by first
connecting its components.

First it is easy to alter hs so that the end h1 of the homotopy taking b.Œ0; 1�/ to a0 is a
diffeomorphism.

We have that M in X has a trivial normal line bundle which locally is compatible with
the normal lines to a in †, meaning that the lines map to lines. Then, using this product
structure around ˇ.1/ and ˇ.0/ and a�†, it is easy to extend the homotopy hs to a
homotopy of the full arc bW Œ�1; 2�!†, with the homotopy time parameter s extended
from Œ0; 1� to Œ0; 2�, so that points under hs; s 2 Œ0; 2� follow the curved lines beginning
at b and ending up on a parallel copy of a0 called a00 as drawn in Figure 39.
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a00 a0

a

b DG ıˇ

G

X n

ˇ.�1/
ˇ.0/

ˇ.2/

ˇ.1/

M n�1

M n�1

t0

�0 2 Sn�2

Bn�1
t0

Figure 39: Connecting components of M

The arc ˇ has a tubular neighborhood, ˇ�Bn�1 , and each Bn�1 has polar coordinates
.t; r; �/ where t 2 Œ�1; 2�; r 2 Œ0; 1�; � 2Sn�2 (see Figure 39). A ray .t0; r; �0/; r 2 Œ0; 1�

determined by the pair .t0; �0/ is mapped by G to a path �D �t0;�0
�†. The endpoint

of � at b is moved by the homotopy hs; s 2 Œ0; 2�, along a path ending on a00 ; extend �
to this longer path x� .

The homotopy of G now maps the ray .t0; r; �0/ to � and as time progresses stretches
the ray over more and more of x� until it is onto. It is easy to see that this homotopy is
constant on ˇ ’s normal sphere bundle, and it is also constant on the top and bottom
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of this cylinder because these points in G�1.a00/ are also not moved. At the end G2

is a Morse 2–function on a neighborhood of M (because we chose endpoints of b

disjoint from folds and then M and nearby copies change only by surgery on small
neighborhoods of the endpoints of ˇ ) but may need to be perturbed to make it a Morse
2–function again elsewhere.

The difference between the last two parts of the lemma is fairly evident. The surgery
statement follows because neighborhoods of ˇ.1/ and ˇ.0/ are pushed off of a0 and
replaced by a horn shaped cylinder which is mapped to a0 , as can be seen in Figure 39.
And if the original homotopy hs does move points across a0 , then closed components
can be added to M .

Existence: Proof of Theorem 1.1 Here we are given a compact, connected, oriented
n–manifold X and a 2–manifold † and an indefinite, surjective Morse function
gW @X ! @† which extends to a map G0W X ! †. We wish to homotope G0 rel
boundary to an indefinite Morse 2–function GW X ! †, and perhaps also arrange
fiber-connectedness. Again, we will drop the primes and simply refer to all our maps
to † as G , constructing or modifying G in stages.

The base case is when † is the disk B2 , which we have already addressed. We
postpone the case †D S2 briefly until Remark 6.4 below, and now we reduce all other
cases to the case †DB2 . The given map G can be homotoped to a Morse 2–function;
we need to make it indefinite if ŒG�.�1.X // W �1.†/� < 1 and fiber-connected if
G�.�1.X //D �1.†/. If ŒG�.�1.X // W �1.†/� <1 we can lift to a finite cover of †
and reduce to the case that G is �1 –surjective.

First suppose that † and X are closed, in which case there is no boundary condition g .
We first arrange that a nice basis for �1.†; �0/ lifts to X (we only know that the basis
is homotopic to one that lifts). We do this as follows:

Describe † as a 0–handle, 2g 1–handles and a 2–handle in the standard way, with
the 1–handles coming in dual pairs. Let a1; a2; : : : ; a2g be the cores of the 1–handles
and xa1; : : : ; xa2g be the extensions of these arcs to smooth loops by “coning” their
endpoints to the core, �0 , of the 0–handle in a smooth way. We can assume that
G�1.xai/DM n�1 is a manifold.

Focus on a1 and xa1 and drop the subscript for simplicity. xa is homotopic to a loop xb
which lifts to X , and the homotopy fixes �0 and can be made to fix the arc, xa� a,
also. This gives an arc b with @aD @b . Let ˇ be the lift of b to X .

We can assume that ˇ meets M D G�1.xa/ transversely at @ˇ and that these two
intersection points have opposite signs. Now apply Lemma 6.3 to homotope G so
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that a, hence xa, has a lift ˛ to M � X . Do the same process for each ai , noting
that the arcs ˇi need not intersect, nor their thin neighborhoods. Also note that all the
lifts ˛i can contain the basepoint of x0 2X .

Thus we have homotoped G so that each ai and xai have lifts which we call ˛i and x̨i .
Now we want to apply Theorem 1.1 to an Mi D G�1. xai/, where we know G is an
epimorphism on �1 , but M DMi may not yet be connected.

We will make M DM1 connected by again using Lemma 6.3. It suffices to show how
to homotope G so as to connect two points, p and q in M DG�1.xa/, where p belongs
to the component of X containing x0 , without introducing any new components in the
process.

For this we need some notation. The two dual curves xa1; xa2 , define a punctured
torus T0 and its one-point compactification T , and there is a projection from X to †
to T to xai ; i D 1; 2, and we name the composition pi ; i D 1; 2.

In X , p and q are connected by an arc ˇ which intersects M transversely in some
points including p and q . We form a loop  in † by joining the endpoints of G.ˇ/

by the subarc a0 of a which does not contain the basepoint �0 . We want to arrange
that  is homotopically trivial in †.

First, it may be that p1. / is not homotopically trivial, so we connect sum ˇ in M

with multiples of the lift of xa1 , ˛1 , so that it is now homotopically trivial. Recall that p

belongs to the component containing x0 2 ˛1 so the connect sum is taken near x0 .
And we push the copies of ˛1 slightly to one side of M so as to avoid unnecessary
intersections.

Next consider whether the new  projected by p2 to xa2 is homotopically trivial. If
not, we connect sum parallel copies of ˛2 (which lie in M2 ) to arrange triviality.
Furthermore we choose these parallel copies so that all their projections to † all lie on
the same side of the basepoint �0 .

Continue in this way with the other ˛i ’s so as to arrange that  is homotopically trivial
in †. Note that the other ˛i ’s do not intersect M1 DM .

Next we want to arrange that  not intersect xa1 except along a0 . For this, consider the
universal cover of † in which we see “parallel” copies of the lift of xa1 , and also a copy
of the lift of  which contains a given lift of the basepoint; see Figure 40. Look for the
last (rightmost in Figure 40) lift of xa1 which intersects the lift of  . Pick a subarc � of
the lift of  which intersects this lift of xa1 in its two endpoints, necessarily of opposite
sign. If that subarc � has endpoints in the same component of M , then connect them
in M , changing ˇ and  by removing these two points of intersection. Proceed until
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we get two points in different components. Then �, projected back to †, is extended to
a contractible loop, which we again call  , by adding a segment of a1 . The subarc �
corresponds to a subarc of ˇ which intersects M only in its endpoints, with opposite
sign. Now apply Lemma 6.3 using this subarc of ˇ to connect two distinct components
of M , without introducing any new components because the loop  now lies to one
side of a1 . These steps are iterated to make M connected.

At this point we pause in the proof for a useful remark, needed for the case †D S2

and for the proof of Theorem 1.2 below.

Remark 6.4 Notice that if the two points b.0/ and b.1/ which belong to M , actually
belong to a single fiber of G , then the construction we have just described connects
the two components of that fiber. And if the hypothesis of part 3 of the lemma holds,
namely that the homotopy ht does not move b across a except at time t D 1, then no
components have been added to the fiber. Thus an iteration of these steps can be used
to make a single fiber connected.

When † D S2 , this remark shows us how to homotope G so that a regular fiber is
connected, and then removing the fiber cross disk reduces to the case †D B2 .

z�0

zxa1

�

Figure 40: Shortening  in the universal cover of † (the hyperbolic plane
or R2 if †D T 2 )

We now return to the general case †¤ S2 . Now GjM W M ! xaD xa1 D S1 is �1 –
surjective and M is connected, so by Theorem 1.3, GjM can be homotoped to be
indefinite with connected fibers. This homotopy extends to X , moving points only in a
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thin product neighborhood, M � Œ�1; 1� in X . Now we remove M � .�1; 1/ from X

and xa� .�1; 1/ from † and reduce to the case @X ¤∅.

Note that after removing M � .�1; 1/, G is still surjective on �1 , because we still
have the lifts, ˛i , of the remaining generators xai ; i � 2 of the fundamental group of
† n xa1 .

The proof of the case in which @†¤∅, assuming only that �1 is onto and that Gj@X
is indefinite with connected fibers, proceeds nearly identically to the case just done.
Again we describe † as a 0–handle and some 1–handles, and arrange that the loops
defined by the cores of the 1–handles lift to loops in X , in order to make sure that G

remains �1 –surjective during the remaining steps.

We now apply the technique we just used to make M connected to make the inverse
image of a nonseparating arc from boundary to boundary connected, eg a cocore of
a 1–handle. The universal cover argument follows in the same way, and we apply
Theorem 1.3 in the interval-valued Morse function case rather than the circle-valued
case. Then we cut † along this arc and X along its preimage and proceed inductively.
After cutting, G is still �1 –surjective because the remaining generators of �1 still
have their lifts.

Uniqueness: Proof of Theorem 1.2 Now we are given a compact, connected, ori-
ented n–manifold X and a 2–manifold † and two indefinite Morse 2–functions
G0;G1W X !† which agree on @X and are homotopic rel @. We need to construct
an indefinite generic homotopy Gs between them, which is fiber-connected when G0

and G1 are fiber-connected. Begin with an arbitrary generic homotopy Gs and we will
modify this in stages, referring to it as Gs before and after each modification. We also
reduce to the fiber-connected case by lifting to a cover, as in preceding proofs.

As in the preceding proof, the base case is when †D B2 , which we have addressed.
We also postpone the case † D S2 and now reduce by cutting along closed curves
and/or arcs to the case †D B2 , using induction on ��.†/.

Choose a nonseparating simple closed curve (if † is closed) or properly embedded
arc (if @†¤∅) a which is transverse to the folds of both G0 and G1 , and let a0 be
a parallel copy of a with the same transversality property. Figure 41 illustrates the
cases where a and a0 are arcs, cobounding a rectangle R with two sides in @†; for
the closed case, R would be a cylinder. We will parallel the zigzag argument in the
proof of the S1 –valued case of Theorem 1.4, with a and a0 playing the role that 0

and 1
2

played in that proof. We use Lemma 6.3 to arrange the following property: for a
sequence 0D s0 < s1 < � � �< s2n D 1, G�1

s .a/ is connected and Gs is �1 –surjective
on the complement of G�1

s .a/, for all s 2 Œs0; s1�[ Œs2; s3�[� � �[ Œs2n�2; s2n�1�, while
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the same is true for a0 on the other intervals Œs1; s2�[ Œs3; s4�[ Œs2n�1; s2n�. Again,
this works because all the homotopies involved are supported in neighborhoods of
arcs which can be taken to be disjoint. By further subdivisions if necessary, we can
also arrange that, on the s–intervals where G�1

s .a/ is connected, the restriction of Gs

to G�1
s .a/ is a Morse function to a, and similarly for a0 . Recall that, in this paper,

Morse functions have distinct critical points mapped to distinct critical values. By
Theorem 1.3 we can also arrange that this Morse function GsW G

�1
s .a/!a is indefinite

with connected fibers.

The zigzag argument Now, in Figure 41, we set up the usual zigzag argument where
the vertical interval Œ0; 1

2
� in Figure 38 is replaced by R, with 0 replaced by a and 1

2

replaced by a0 .

s0 s1 s2 s3

@†
@†

R

a

a0

Figure 41: The zigzag argument for Morse 2–functions

Since the restriction of Gs to a is a Morse function for all s 2 Œs0; s1�, it follows
that G�1

s0
.a/ is isotopic, and hence can be taken to be equal, to G�1

s1
.a/, and in fact Gs

can be taken to be independent of s on G�1
s .a/ for all s 2 Œs0; s1�. Similarly, Gs

is constant along G�1
s1
.a0/ D G�1

s2
.a0/ for all s 2 Œs1; s2�, etc. Note that G�1

s1
.R/ is

a connected cobordism between the connected submanifolds G�1
s1
.a/ and G�1

s1
.a0/,

on each of which Gs1
is indefinite and fiber-connected. Thus we can construct an

intermediate indefinite, fiber-connected Morse 2–function Hs1
on X which agrees

with Gs1
over a and a0 , and is homotopic rel boundary to Gs1

over both R and the
closure of the complement of R. Then G0 agrees with Hs1

over a, so there exists an
indefinite fiber-connected homotopy between G0 and Hs1

(because ��.†na/<��.†/
and the inductive hypothesis holds). Similarly we construct an appropriate Hs2

, so
that Hs1

and Hs2
agree over a0 , so they are homotopic via an indefinite fiber-connected

homotopy. This argument can be iterated over each interval Œs2i ; s2iC2�, to finish the
proof when †¤ S2 .

When †D S2 , there are no �1 –surjectivity issues, and we can adapt the above zigzag
argument to use Remark 6.4 to zigzag back and forth between two fibers G�1

s .p/

and G�1
s .q/ as opposed to inverse images of arcs or closed curves G�1

s .a/ and G�1
s .a0/.

The rectangle R is replaced by an arc between p and q .
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