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Motivic Donaldson–Thomas invariants
for the one-loop quiver with potential

BEN DAVISON

SVEN MEINHARDT

We compute the motivic Donaldson–Thomas invariants of the one-loop quiver, with
an arbitrary potential. This is the first computation of motivic Donaldson–Thomas
invariants to use in an essential way the full machinery of y�–equivariant motives, for
which we prove a dimensional reduction result similar to that of Behrend, Bryan and
Szendrői in their study of degree-zero motivic Donaldson–Thomas invariants. Our
result differs from theirs in that it involves nontrivial monodromy.

14N35; 14D23

1 Introduction

Donaldson–Thomas invariants were first introduced by R Thomas [24] to count stable
bundles and sheaves on a Calabi–Yau 3–fold. A few years later, D Joyce [9; 10; 11;
12; 13] and Y Song [14] generalized the definition to much more general situations
using results of K Behrend [1]. Shortly after this, M Kontsevich and Y Soibelman [15;
16] came up with an alternative definition which turns out to be equivalent to the one
given by Joyce. It has been realized subsequently by several people that the Donaldson–
Thomas invariants should be of motivic origin; in other words, they should be Euler
characteristics of certain motives. Among several papers giving a definition of motivic
Donaldson–Thomas invariants (at least in special cases), we will basically follow Joyce,
but the reader is also encouraged to consult Behrend, Bryan and Szendrői [2], Kontsevich
and Soibelman [17] and Mozgovoy [22]. There are only a few nontrivial examples
for which motivic Donaldson–Thomas invariants have been computed for all classes
in the Grothendieck group of the Calabi–Yau 3–category in question, though let us
mention the papers Behrend, Bryan and Szendrői [2] and Morrison, Mozgovoy, Nagao
and Szendrői [21]. We will start from the rather trivial example of coherent sheaves of
dimension zero on A1

k
with k D xk and char k D 0 or, equivalently, finite-dimensional

representations of kŒt �, ie finite-dimensional representations of the one-loop quiver.
The corresponding category is of homological dimension one but is also the heart of a
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bounded t –structure in a 3–dimensional Calabi–Yau category. The motivic Donaldson–
Thomas invariants for this example are well-known and given by

�n D

�
L1=2 for nD 1;
0 otherwise;

where L1=2 D 1� Œ�2� denotes a square root of the motive L of A1
k

in Ky�.Var =k/
having Euler characteristic �1. Here Œ�d � denotes the y�–equivariant motive of the
set of d th roots of unity with obvious y�–action. We will modify this example by
considering a nonzero “potential” W 2 kŒt � and by requiring that the sheaves are
annihilated by multiplication with W 0D dW=dt , ie are supported on Spec.kŒt �=.W 0//.
In the language of representations, the operator A given by t has to satisfy W 0.A/D 0.
This class of examples provides the first case in which the full machinery of y�–
equivariant motives has to be applied. Here is our main result.

Theorem 1.1 For W 2kŒT �, let W 0Dc
Qr
iD1.t�ai /

di�1 be the prime decomposition
of W 0 into linear factors with c2k� , 1<di 2N and ai 2k for all 1� i� r . Define the
Donaldson–Thomas invariants �En 2 Ky�.Staff =k/ for any r –tuple .n1; : : : ; nr/ 2Nr

as in Sections 2 and 4. Then

�En D

�
L�1=2.1� Œ�di �/ for EnD Eei being the i th basis vector .1� i � r/;
0 otherwise:

In particular, �En is in the image of Ky�.Var =k/ŒL�1=2� in Ky�.Staff =k/.

By taking the Euler characteristic of the nontrivial �En , we end up with the Milnor
numbers di � 1 of W at the critical points ai 2A1

k
.

Using a standard wall-crossing argument for computing Donaldson–Thomas invariants
(see Lemma 4.1) and the isomorphism HilbnA1

k
Š SymnA1

k
, the main theorem would

actually be an easy application of the following claim concerning the commutativity of
the motivic vanishing cycle and the functor Symn .

Claim 1.2 Let f W X �!A1
k

be a regular map on a smooth variety of dimension d .
Denote by X0 the fiber over zero. For any n� 0 there is an obvious map

SymnC.f /W SymnX
Symn.f /
������! SymnA1k

C
�!A1:

If we consider the motivic vanishing cycles

�f 2 Ky�.Var =X0/ŒL�1=2� and �Symn
C
.f /jSymnX0 2 Ky�.Var =SymnX0/ŒL�1=2�
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as elements of the �–ring Ky�.Var =SymX0/ŒL�1=2� via the obvious inclusions, we
get for any n� 0 the equation

Lnd=2�Symn
C
.f /jSymnX0 D �

n.Ld=2�f /;

with �n.�/ .n 2N/ defined by the �–ring structure introduced in the text.

The attentive reader might have realized that �Symn
C
.f / is only defined for smooth

varieties SymnX , while SymnX is in general not smooth. There is, however, a similar
form with SymnX replaced by the smooth Deligne–Mumford stack SymnX WD
Xn=Sn . We prove this “stacky” version, which can also be seen as a generalization of
the famous Thom–Sebastaini theorem, in a forthcoming paper. For the purposes of the
present paper we take X DA1

k
, so the smoothness issue doesn’t arise.

Our strategy to prove the main result is to replace the vanishing cycle with the (integral
over) the much simpler vanishing cycle �eq

f
defined only for Gm–equivariant functions.

We then again use the wall-crossing argument of Lemma 4.1 to reduce our main theorem
to Claim 1.2, but for the equivariant vanishing cycle. This equivariant vanishing cycle
is much easier to work with; in particular, the above claim follows straight from the
definition of the �–ring structure.

In order to pass to the equivariant vanishing cycle from the ordinary one we will make
use of the following theorem, which says that both versions of the vanishing cycle
coincide (after integration) for certain Gm–equivariant functions. The proof has been
sketched to the second author by Dominic Joyce in a private communication. All credits
are, therefore, attributed to him and all errors to us.

Theorem 1.3 Let X be a smooth variety with Gm–action such that every point has
an open neighborhood isomorphic to Ar

k
�Z for some smooth Z with Gm acting via

g � .v1; : : : ; vr ; z/D .gv1; : : : ; gvr ; z/ for all g 2Gm; .v1; : : : ; vr/ 2 Ar
k

and z 2 Z .
Let f W X!A1

k
be a Gm–equivariant morphism of degree d >0, ie f .g �x/Dgdf .x/

for all g 2Gm; x 2X , and let y� act on f �1.1/ via �d and trivially on f �1.0/. ThenZ
X

�f D L� dimX=2�Œf �1.0/�� Œf �1.1/�� in Ky�.Var =k/ŒL�1=2�:

This result should be compared to a similar result in Behrend, Bryan and Szendrői [2],
where the assumptions on the action are less strict but the assumptions on f are much
more restrictive. Returning to Claim 1.2, and considering the situation of particular
interest for this paper, in which X DA1

k
, f D xd , we see that the claim would be a

special case of the above theorem, but with weights wi D i for i D 1; : : : ; n, instead
of all weights wi equal to 1.
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Having this theorem at hand, one only has to spell out the definitions and to prove a
kind of perturbation lemma allowing us to reduce ourselves to homogeneous potentials
in order to give a proof of Theorem 1.1.
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2 Background and conventions

2.1 Naive motives

Let B be an Artin stack, locally of finite type over k , with an action of an algebraic
group G . We always assume that all G–actions on all schemes are good, in the sense
that every point has an open affine G–equivariant neighborhood.

Definition 2.1 Define KG0 .Var =B/, as an abelian group, to be generated by isomor-
phism classes of G–equivariant finite-type morphisms X f

�!B, where X is a separated
scheme, subject to the cut and paste relation

(1) ŒX
f
�!B�D ŒU

f jU
���!B�C ŒZ

f jZ
���!B�;

where Z � X is a closed G–equivariant subscheme with open complement U . If
G D f1g, we write K0.Var =B/ for KG0 .Var =B/.

Notice that
ŒX

f
�!B�D ŒXred

f
�!B�
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in K0.Var =B/, justifying “Var” in our notation. If .B; �; 0/ is a G–equivariant monoid
with finite-type multiplication map �W B�k B! B, then KG0 .Var =B/ carries an
associative product given by

ŒX1
f1
�!B� � ŒX2

f2
�!B�D ŒX1 �k X2

f1�f2
����!B�kB

�
�!B�;

with unit ŒSpec.k/
0
�!B�, making KG0 .Var =B/ into a ring. In particular, K0.Var =k/ is

a commutative ring. Below we will write L for the class ŒA1
k
!Spec.k/�2K0.Var =k/.

Each KG0 .Var =B/ is a module over K0.Var =k/ via the action

ŒX1! Spec.k/� � ŒX2
f
�!B� WD ŒX1 �k X2

f ı�2
����!B�;

where �2 is the projection onto X2 .

Definition 2.2 Define

KGpre.Var =B/D KG0 .Var =B/=H;

where the subgroup H is spanned by elements

(2) ŒX
�
�! Y

f
�!B��Lr � ŒY

f
�!B�

for every G–equivariant vector bundle X
�
�! Y of rank r . We then define

KG.Var =B/D lim
 ��

KGpre.Var =U/;

KG.Var =B/Glk D lim
 ��

�
KGpre.Var =U/ŒŒGlk.n/�

�1
j n 2N�

�
;

where the limit is taken over all G–equivariant open subschemes U�B of finite type
and the obvious restriction maps (see below).

Let KG0 .Staff =B/ be generated, as an abelian group, by isomorphism classes of G–
equivariant finite type morphisms X f

�!B, where X is an Artin stack with affine geo-
metric stabilizers, again modulo the cut and paste relation (1). We define KG.Staff =B/

via the same completion as above. By a result of Kresch [18], if B is of finite
type, then for any ŒX f

�!B� 2 KG0 .Staff =B/ there is a stratification X D
`
i Xi with

each Xi ŠXi=Glk.ni / a quotient stack, and it follows that

ŒX
f
�!B�D

X
i

ŒXi
f jXi
���!B�=ŒGlk.ni /�:
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Passing to the completion, it follows that for B, not necessarily of finite type, there is
an isomorphism (see [7, Theorem 1.2])

KG.Var =B/Glk Š KG.Staff =B/:

If f W B! X is a G–equivariant morphism, we obtain a map f �W KG.Staff =X /!
KG.Staff =B/ given by ŒX!X �; 7! ŒX�X B!B�. If f is of finite type, we obtain a
map

R
f W KG.Staff =B/! KG.Staff =X / by postcomposing with f . As a special case,

for finite-type U �B we define the mapZ
U

W Ky�.Staff =B/! Ky�.Staff =k/

as the composition
R
�U
ıi�U , where iU W U!B is the inclusion, and �U W U!Spec.k/

is the structure morphism.

2.2 �–rings

Definition 2.3 A �–ring structure on a commutative ring R is given by a map

� W R 3 a 7�! �.a/D

1X
nD0

�n.a/T n 2RŒŒT ��

such that these conditions hold:

� �.0/D 1.

� �.a/D 1C aT modT 2 for all a 2R .

� �.aC b/D �.a/�.b/ for all a; b 2R .

Example 2.4 Let RŒŒx��Œx�1� be the ring of formal Laurent power series f .x/ DP
i fix

i in one variable, such that fi vanishes for �i sufficiently large. Assume
that R has a �–ring structure. Then we equip RŒŒx��Œx�1� with a continuous �–ring
structure by specifying �n.rxi / D �n.r/xni . The reader might like to check the
following claim: the subring of RŒŒx��Œx�1� consisting of elements that can be written
as a Taylor expansion around 0 of a rational function is closed under the operation of
�n for every n. This subring, therefore, also carries a �–ring structure.

If .B; �; 0/ is a commutative G–equivariant monoid, then KG.Var =B/ carries a
�–ring structure defined by setting

�n.ŒX
f
�!B�/ WD ŒXn=Sn

f n=Sn
����!Bn=Sn

�
�!B�:
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Remark 2.5 When we come to define motivic vanishing cycles it will prove useful to
be able to consider instead the ring KG.Staff =B/D KG.Var =B/Glk as a �–ring. We
do this as follows. For simplicity we assume that B is of finite type and encourage
the reader to extend it to the general case. An element of KG.Staff =B/ can be written
(nonuniquely) as a rational function f .L/ in L with f 2KG.Var =B/ŒŒT ��ŒT �1�. Then
we apply the construction of Example 2.4 to obtain a new element �n.f /, again a
rational function in L. We claim that this element �n.f / will also represent an element
�n.�/ 2 KG.Staff =B/, which is independent of our choice of f .

Definition 2.6 A filtered �–ring is a �–ring R with a decreasing filtration � � � �F1�
F0 D R such that Fi �Fj � FiCj and �n.Fi /� Fin . If R is complete with respect
to the topology induced by F � , we define the operation SymW F 1 ! R by setting
Sym.a/D

P
n�0 �

n.a/.

If R is a complete filtered �–ring, SymW F 1!R is an isomorphism of groups from
.F 1;C/ to .1CF 1; � /, the image of Sym.

Example 2.7 Given a commutative monoid .B; �; 0/ as before and a decreasing
filtration � � �B1�B0DB by G–equivariant substacks such that �.Bi�Bj /�BiCj

and
T
i Bi D ∅, then KG.Staff =B/ is a complete filtered �–ring with filtration

Fi D KG.Staff =Bi / ,! KG.Staff =B/. In particular, the map SymW KG.Staff =B1/!

KG.Staff =B/ is well-defined. A similar statement holds for KG.Var =B/.

Let y� be the projective limit of the groups of roots of unity �d � k
� along the

system of surjections �d ! �d 0 , defined for d 0 j d by z 7! zd=d
0

. Let B be any
locally finite type k–scheme, which we equip with the trivial y�–action. We impose
the extra condition on Ky�0 .Var =B/ and Ky�0 .Staff =B/ that all elements ŒX ! B�

satisfy the condition that X has an open y�–equivariant affine cover by varieties Ui
for which the y�–action factors through a �d –action for some d 2N . We then define
Ky�.Var =B/ and Ky�.Staff =B/ as before, by passing to the completion and imposing
the relation (2) for the y�–action. Note that by our condition on the y�–action, and
the fact that we pass to the completion, every element of Ky�.Staff =B/ is a limit of
elements of K�d .Staff =B/ for varying d .

We construct a �–ring structure on Ky�.Staff =B/ by constructing compatible �–ring
structures on the rings K�d .Staff =B/.

Given an element ŒX
f
�!B� 2 K�d .Var =B/ we construct the element

(3) � ŒX ��d Gm

.x;z/ 7!.f .x/;zd /
������������!B�k Gm� 2 KGm;d .Var =B�k Gm/;
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where the additional superscript d at KGm indicates that Gm acts on B�k Gm via
the trivial action on B and the weight-d action on Gm . This defines an isomorphism
which we denote

˛W K�d .Var =B/! KGm;d .Var =B�k Gm/:

Let j W Gm!A1
k

be the natural inclusion. Denoting by ˇ the composition of maps

KGm;d .Var =B�k Gm/

R
id�j
���!KGm;d .Var =B�k A1k/

q
�!KGm;d .Var =B�k A1k/=Id ;

we obtain another isomorphism. Here Id is spanned by elements ŒX � A1
k

f �id
���!

B�A1
k
�, with Gm acting on the domain via the trivial action on X and the weight-d

action on A1
k

, and q is the quotient morphism.

Now let B be a monoid. We assume as always that the map �W B �k B! B is
finite-type. We make B�k A1

k
into a monoid via�

.x1; z1/; .x2; z2/
�
7! .�.x1; x2/; z1C z2/:

Proposition 2.8 The ideal Id is a �–ideal of the �–ring KGm;d .Var =B �k A1
k
/,

ie it is an ideal that is preserved by the operations �n . The resulting �–ring struc-
ture on KGm;d .Var =B �k A1

k
/=Id Š K�d .Var =B/ is compatible with the inclu-

sions K�d .Var =B/! K�
0
d .Var =B/ for d j d 0 , and defines a �–ring structure on

Ky�.Staff =B/ by the construction of Remark 2.5.

We can now explain the mysterious sign in (3) — it is this choice of sign that makes the
above �–ring structure an extension of the natural �–ring structure on K.Var =B/�
Ky�.Var =B/, the subring of elements with trivial monodromy action.

We denote by L1=2 the element 1� Œ�2�D ˛�1ˇ�1qŒA1k
x 7!x2

����!A1
k
� 2 K�2.Var =k/.

A quick calculation shows that this is indeed a square root of L for the given ring
structure on Ky�.Var =k/. In what follows we will abuse notation and consider elements
of KGm;d .Var =B�k A1

k
/ as elements of K�d .Var =B/ via the map ˛�1ˇ�1q .

2.3 Vanishing cycles

Below we will recall the motivic vanishing cycle �f of Denef and Loeser, associated
to a function f W X!A1

k
from a smooth equidimensional variety X . The existence of

a sensible motivic construction for the motivic vanishing cycle is not a trivial matter;
for instance, even in the analytic situation, for general f there is no sufficiently small
�2R>0 such that, for all �0<� , the element Œf �1.�0/�2K.Var =C/ (which is the naive
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guess of what the motivic vanishing cycle might be) is independent of �0 . But while
we have all the maps to hand, let us remind the reader of the definition of the (integral
over the) equivariant motivic vanishing cycle, defined in those situations for which the
naive guess makes sense. For this we assume that f is in fact Gm–equivariant, where
Gm acts on the target with weight d . ThenZ
X

�
eq
f
WD L� dim.X/=2

� ŒX
f
�!A1k� 2 K�d .Var =k/ŒL�1=2�� Ky�.Var =k/ŒL�1=2�:

Going through the identifications made before, we can also write

(4)
Z
X

�eq
D L� dim.X/=2�Œf �1.0/�� Œf �1.1/��;

with f �1.1/ carrying the natural induced �d –action, while y� acts trivially on f �1.0/.
Notice that we only defined the “integral over the equivariant vanishing cycle” but
not the �eq

f
themselves. There is an obvious generalization of our definition to Gm–

equivariant morphisms p�f W X !B�k A1
k

, giving rise toZ
p

�
eq
f
WD L� dim.X/=2ŒX

p�f
���!B�k A1k� 2 Ky�.Var =B/ŒL�1=2�:

Now let X be a smooth equidimensional variety and let f W X ! A1
k

be a regular
map. We denote by Crit.f / the critical locus of f . By replacing X with a Zariski
open subscheme U � X we may assume Crit.f / � X0 WD f �1.0/. In this setup
Denef and Loeser [5; 6] constructed a motivic analogue of the sheaf of vanishing
cycles associated to f . We briefly recall a modified version of their construction.
Define Ln.X/ to be the space of arcs of length n in X , ie the scheme representing
the functor Y 7! HomSch.Y �k Spec.kŒt �=tnC1/; X/. There is a natural morphism
pnW Ln.X/!X defined by the inclusion

Spec.k/Š Spec.kŒt �=t/! Spec.kŒt �=tnC1/;

and we define Ln.X/jX0 to be the preimage of X0 under this map. The map f induces
a map Ln.f /W Ln.X/!Ln.A1k/, and there is an isomorphism Ln.A1k/ŠAnC1

k
, given

by writing an arc in A1
k

as a polynomial a0C� � �CanT n . Sending an arc  in Ln.X/
to the coefficient an of Ln.f /./ defines a Gm–equivariant map pn�fnW Ln.X/�!
X �k A1

k
, where Gm acts on Ln.X/ by rescaling t . We define

Z
eq
f
.T /D

X
n�1

�Z
pn

�
eq
fn

�ˇ̌̌̌
X0

T n

D

X
n�1

L�.nC1/ dim.X/=2ŒLn.X/jX0
pn�fn
����!X0 �k A1k�T

n
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in Ky�.Var =X0/ŒL�1=2�ŒŒT ��. Denef and Loeser prove that this is in fact a rational
function in T with no pole at infinity, and we define

�f WD �Z
eq
f
.1/:

Our definition differs from that of Denef and Loeser by a factor .�L1=2/dim.X/ . It
coincides with that of Kontsevich and Soibelman [15].

We give an alternative description, also due to Denef and Loeser. Firstly, let � W Y !X

be an embedded resolution of X0 , ie a proper morphism, which is an isomorphism
away from X0 , and for which Y0 WD ��1.X0/ is a simple normal crossing divisor,
ie the irreducible components of Y0 are smooth hypersurfaces Ei for i indexed by
some finite set J , and the Ei are étale locally cut out by independent linear equations.
Denote by mi the order of vanishing of f ı � on Ei , and for ∅ ¤ I � J denote
by EıI the locally closed subscheme

T
i2I Ei n[i…IEi .

The function f ı� defines a section of OY .�
P
i2I miEi /, and so a regular map, linear

along the fibers, from the total space of OY .
P
i2I miEi / to A1

k
. The restriction of

this bundle to EıI is just
N
i2I N

˝mi
Ei jY

, so that the map

fI W NI WD
Y
i2I

.NEi jY nEi /jEıI
!A1k;

defined by taking the tensor product and evaluating f ı� , is homogeneous of degree
mI D

P
i2I mi , if we let Gm act by rescaling each copy of NEi jY . We denote by

�I W OY .
P
i2I miEi /jEıI

!EıI the projection.

Theorem 2.9 In Ky�.Var =X0/ŒL�1=2�, we have the equality

(5) �f D L� dim.X/=2
�
ŒX0

id
�!X0�C

X
∅¤I�J

Œf �1I .1/
�ı�I�kfI
�������!X0 �k A1k�

�
:

In particular, the right-hand side of (5) is independent of the embedded resolution
� W Y !X .

If X is smooth but not equidimensional, we extend the above expression by linearity.
The following proposition follows from Theorem 2.9.

Proposition 2.10 (1) The motive �f is supported on Crit.f /�X0 ; in other words,
it is contained in

Ky�.Var =Crit.f //ŒL�1=2� ,! Ky�.Var =X0/ŒL�1=2�:1

1Notice that Ky�.Var =∅/D f0g
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(2) If f � 0, then �f D L� dimX=2ŒX
id
�!X�.

(3) Let � W Y !X be a smooth morphism of relative dimension r . Then

�f ı� D L�r=2���f :

Given a quotient stack X D X=Glk.n/ with atlas � W X ! X=Glk.n/ and a regular
function f W X !A1

k
, we extend our definition of motivic vanishing cycles by putting

�f WD ŒGlk.n/�
�1Ldim.�/=2

Z
�

�f ı� 2 Ky�.Staff =Crit.f //;

with Crit.f /D Crit.f ı�/=Glk.n/, motivated by Proposition 2.10. Note that L�1=2

already exists in Ky�.Staff =k/ since L1=2 and L�1 do. This definition generalizes
easily to Artin stacks X whose connected components are quotient stacks. In particular,
if pW X !B is a morphism on such an Artin stack X , then

R
p �f 2 Ky�.Staff =B/ is

well defined.

2.4 Quivers with potential

Let Q be a quiver, ie a directed graph with finitely many vertices and arrows. Let
W 2 CQ=ŒCQ;CQ� be a potential, ie a finite linear combination of cyclic words in
the quiver, with each word only considered up to cyclic permutation. If  2NQ0 is a
dimension vector, the space

Rep .Q/ WD
M
a2Q1

Hom.C.s.a//;C.t.a///

is a parameter space of left CQ–representations of dimension vector  . Let the gauge
group G WD

Q
i2Q0

Glk..i// act on Rep .Q/ by change of basis on the vector spaceL
i2Q0

C.i/ . Then the stack of  –dimensional left CQ–modules is isomorphic to
the stack-theoretic quotient Rep .Q/=G . We abuse notation by identifying NQ0

with the scheme
`
2NQ0 Spec.k/. Then the collection of morphisms

Rep .Q/=G
�
�! Spec.k/

turns the stack of finite-dimensional kQ–modules into a stack over NQ0 , and we define

(6) dimW
a

2NQ0

�
Rep .Q/=G

�
�! Spec.k/

�
:

From the potential W we obtain a function W WDTr.W / on this stack, and so an element

ˆW WD

Z
dim
�W 2 Ky�.Staff =NQ0/:
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Now NQ0 is a commutative monoid in the category of schemes, via the (finite-type)
addition operation. As such, there is a �–ring structure on Ky�.Staff =NQ0/, defined
above. Define

.NQ0/m WD
n
 2NQ0

ˇ̌ X
i2Q0

.i/�m
o
:

As seen in Example 2.7, the filtration FmDKy�.Staff =.NQ0/m/ turns Ky�.Staff =NQ0/

into a complete filtered �–ring. The element � 2 Ky�.Staff =.NQ0/�1/ is defined by
the expression

Sym
�

�

L1=2�L�1=2

�
DˆW :

Definition 2.11 If i W Spec.k/!NQ0 is the inclusion of the point  , then we define
the motivic Donaldson–Thomas invariant � D i�� 2 Ky�.Staff =k/.

Conjecturally, the elements � all belong to the image of Ky�.Var =k/ŒL�1=2� !
Ky�.Staff =k/. Our main theorem verifies this conjecture in the case of the one-loop
quiver with arbitrary potential.

3 Vanishing cycles for equivariant functions

The following theorem is very useful for computing the motivic vanishing cycle in a
Gm–equivariant situation — it states that under special hypotheses on the Gm–action
of the domain of a Gm–equivariant function, the motivic vanishing cycle of Denef
and Loeser is the same as the naive vanishing cycle �eq

f
of (4). Let X be a smooth

equidimensional variety locally of finite type equipped with a Gm–action. Let us assume
that every closed point has an open neighborhood which as a variety with Gm–action is
isomorphic to Ar

k
�Z with Gm acting via g �.v1; : : : ; vr ; z/D .gw1v1; : : : ; gwrvr ; z/

with strictly positive weights w1; : : : ; wr . In particular, Z is the intersection of the
neighborhood with the fixed point set XGm and, hence, smooth. Moreover, it is not
difficult to see that the projection to Z along Ar

k
can be described by limg!0 g � x

and extends, therefore, to a smooth map X ! XGm . The assumption is not very
restrictive, as any smooth projective variety with Gm–action has a dense open subset
satisfying our assumption by a theorem of Białynicki-Birula [3; 4]. Conjecturally, any
smooth quasiprojective variety X with Gm–action such that XGm is connected and
limg!0 g � x exists for any closed point x should satisfy our assumption.

Theorem 3.1 Let X be a smooth variety with Gm–action satisfying the assumption
mentioned above with all weights equal to 1. Let f W X !A1

k
be a Gm–equivariant
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morphism of degree d , ie f .g � x/ D gdf .x/ for all g 2 Gm; x 2 X . Let y� act on
f �1.1/ via �d and trivially on f �1.0/. ThenZ

X

�f D

Z
X

�
eq
f
D L� dimX=2�Œf �1.0/�� Œf �1.1/�� in Ky�.Var =k/ŒL�1=2�:

Proof Let us first assume that X D Ar
k
�Z , with Gm acting nontrivially only on

the affine “fiber” Ar
k

by scalar multiplication. Consider the blow-up zX of Z in X ,
which has a natural fibration towards the exceptional divisor zE0 induced by the affine
fibration X ! Z . Moreover, the Gm–action has a lift to zX with fixed point set zE0
and it is not difficult to see that zX as a variety with Gm–action is isomorphic to the
normal bundle N WD N zE0j zX with Gm acting by scalar multiplication on the fibers.
Denote by zEi for i D 1; : : : ; l the strict transforms of the irreducible components of
the divisor f �1.0/. As they are closed and Gm–invariant, we get zEi DN j zDi for the
divisors zDi D zE0\ zEi in zE0 . Note that the collection . zDi /liD1 might not be a normal
crossing divisor in zE0 .

Let � W E0! zE0 be an embedded resolution of the zDi ; ie the strict transforms Di
.iD1; : : : ; l/ together with the exceptional divisors DlC1; : : : ;Dm of � form a normal
crossing divisor in E0 . Moreover, E0 is smooth and

� W E0 n

m[
iD1

Di �!
� zE0 n

l[
iD1

zDi :

Consider the pullback Y WD��N and the normal crossing divisors E0; Ei WD .��N/jDi
for i D 1; : : : ; m in Y along with the proper morphism given by the composition
� W Y D ��N

�
�! N D zX ! X . By construction, .f ı �/�1.0/ D

Sm
iD0Ei set-

theoretically, and � W Y n
Sm
iD0Ei �!

� X n f �1.0/. We will use this embedded
resolution of X0 D f �1.0/ to compute

R
X �f .

As Y
p
�!E0 is a line bundle, we get NE0jY DY and Nf0gDY n

Sm
iD0Ei . The induced

map ff0g is just f ı � , as the latter is homogeneous and E0 is of multiplicity d .
Moreover, after identifying Nf0g with X n f �1.0/ by means of � , we get ff0g D f
on Nf0g and, thus, f �1

f0g
.1/D f �1.1/ with y�–action given by the natural �d –action

on f �1.1/.

On the other hand, for any i D 1; : : : ; m, we have by construction

NEi jY D p
�NDi jE0 DNEi jY jE0\Ei �NE0jY jE0\Ei

and, thus, for any ∅¤ I � f1; : : : ; mg,

NI D
Y
i2I

.NEi jY nEi /jEıI
D

Y
i2I[f0g

.NEi jY nEi /jEıI[f0g
DNI[f0g:
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Moreover, by Gm–equivariance of f ı� the induced maps fI and fI[f0g coincide,
which can be checked by a local calculation. Hence, f �1I .1/ D f �1

I[f0g
.1/. Unfor-

tunately, the y�–actions are different, but, nevertheless, the y�–equivariant motives
Œf �1I .1/� and Œf �1

I[f0g
.1/� coincide. To see this we choose local functions .zi /i2I[f0g

in some Gm–invariant neighborhood V D p�1.V \ E0/ of y 2 Eı
I[f0g

such that
Eı
I[f0g

\V is the zero locus of z0
Q
i2I zi . Hence,

NI jV ŠNI[f0gjV ŠE
ı
I[f0g\V �Gm �GI

m and fI D fI[f0g D uz
d
0

Y
i2I

z
mi
i ;

with u being a unit on V , mi > 0 being the multiplicities of Ei in .f ı�/�1.0/ and
with zi identified with the coordinates on the corresponding “normal” Gm–factors.
The action of y� via �mI with mI D

P
i2I mi is given by diagonal embedding of �mI

into GI
m , and similarly for �mI[f0g D �mICd .

However, we can choose an automorphism of Gm �GI
m mapping

.zi /i2I[f0g to
�Y

j2I[f0g
z
a
.i/

j

j

�
i2I[f0g

;

with .a.i//I[f0g being a basis of the group Z�ZI of characters of Gm�GI
m such that

a
.0/
i Dmi=e for all i 2 I [f0g, with e WD gcd.mj j j 2 I [f0g/ and m0 D d . After

this coordinate change on NI jV , the function fI is given by uze0 . Using relation (2),
we see that Œf �1I .1/� is given by .L�1/jI jŒ zEı

I[f0g
�, with zEı

I[f0g
being a Galois cover

of Eı
I[f0g

with Galois group �e , locally given by

f.z; y/ 2A1k �E
ı
I[f0g\V j z

eu.y/D 1g:

Moreover, the group �mI acts by its quotient group �e . Exactly the same holds for
f �1
I[f0g

.1/ acted on by �mI[f0g .

Thus, Œf �1I .1/�D Œf �1
I[f0g

.1/� in Ky�.Var =k/ and their contributions to
R
X �f cancel.2

In the formula for
R
X �f we are left with the contribution f �1

f0g
.1/D f �1.1/, which

proves the theorem.

The general case is a purely combinatorial argument using the motivic behavior of the
integral. Indeed, for any Gm–invariant open subset U DAr

k
�Z in X , we get by the

previous arguments

(7)
Z
U

�f D

Z
U

�f jU D

Z
U

�
eq
f jU
D

Z
U

�
eq
f
:

Let us now take a general smooth variety X with Gm–action satisfying the assumptions
of the theorem. Choose an open covering by Gm–invariant subsets Ui of the form

2Note that the projections to X0 are different, so they do not cancel each other in the formula for �f .

Geometry & Topology, Volume 19 (2015)



Motivic Donaldson–Thomas invariants for the one-loop quiver with potential 2549

Ui DAri
k
�Zi .i 2 I /. If Ui \Uj ¤∅, the intersection is of the form Ari

k
� zZi for

some open zZi �Zi , as Ui\Uj must contain the limits limg!0 g �x for all x 2Ui\Uj .
By applying (7) to any nonempty intersection UJ D

T
i2J Ui , we finally getZ

X

�f D
X
UJ¤∅

.�1/jJ jC1j
Z
UJ

�f D
X
UJ¤∅

.�1/jJ jC1j
Z
UJ

�
eq
f
D

Z
X

�
eq
f
:

Unfortunately, we were not able to prove the theorem for arbitrary positive weights
w1; : : : ; wr > 0. Nevertheless, we conjecture that Theorem 3.1 holds also in that case.

4 The one-loop quiver with potential

In this section we apply the results of the previous parts to compute the motivic
Donaldson–Thomas invariants of the one-loop quiver with potential W 2 kŒt �. Let

X D
a
n�0

Matk.n; n/=Glk.n/D
a
n�0

Rep.Q/n=Gn

be the stack of finite-dimensional representations of the one-loop quiver Q , ie repre-
sentations of the ring kŒt �. Equivalently, it can be seen as the stack parametrizing zero-
dimensional sheaves on A1

k
. To a given potential W 2 kŒt � we associate, for any n� 0,

the Glk.n/–equivariant function WnW Matk.n; n/3A 7�! trW.A/2A1
k

. These induce
a regular function WW X!A1

k
whose critical locus M WDCrit.W/ is the stack of finite

length sheaves on Spec.kŒt �=.W 0//�A1
k

. Consider the homomorphism dimW X !N
defined as in (6), mapping each representation to its dimension or, equivalently, each
sheaf on A1

k
to its length. If we denote the element ŒSpec.k/! 1� 2 Ky�.Staff =N/

by T , we obtain the invertible power series

ˆW .T / WD

Z
dim
�W D

X
n�0

R
Matk.n;n/

�Wn

L�n2=2ŒGlk.n/�
T n D Sym

�
1

L1=2�L�1=2

X
n�1

�nT
n

�
in Ky�.Staff =N/ by Definition 2.11. The stack X carries a natural good Gm–action
given by scalar multiplication on the space of matrices. If W is homogeneous we can,
therefore, also consider the invertible power series

ˆ
eq
W .T / WD

Z
dim
�

eq
W D

X
n�0

R
Matk.n;n/

�
eq
Wn

L�n2=2ŒGlk.n/�
T n

in Ky�.Staff =N/. To compute the series ˆW .T / and ˆeq
W .T / we use the stack

(8) Hilb.A1k/D
a
n�0

Hn=Glk.n/Š
a
n�0

Ank;
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with Hn WD f.A; v/ 2 Matk.n; n/�An
k
j spank.v; Av; : : : ; A

n�1v/ D kng equipped
with the obvious Glk.n/–action. Let Gm act on Hn by scalar multiplication and on An

k

with weights 1; : : : ; n. The isomorphism (8) is induced by the Glk.n/–principal bundle
qnW Hn 3 .A; v/ 7�! .trA1; : : : ; trAn/ 2 An

k
. If for any A 2Matk.n; n/ we express

trW.A/ in terms of tr.Ai / with i 2 f1; : : : ; ng, we obtain functions fnW Ank ! A1
k

making the diagram

Hn
qn //

pMat

��

An
k

fn
��

Matk.n; n/
Wn // A1

k

commutative and Gm–equivariant if W is homogeneous.

Lemma 4.1 Using the notation just introduced, one has

ˆW .LT /=ˆW .T /D
X
n�0

Z
An
k

�fn.L
1=2T /n;

and

ˆ
eq
W .LT /=ˆ

eq
W .T /D

X
n�0

Z
An
k

�
eq
fn
.L1=2T /n for homogeneous W

in Ky�.Staff =N/Š Ky�.Var =k/Glk ŒŒT ��.

Proof The key observation is the following formula in the (equivariant) Hall algebra
K.Gm/.Staff =X / first observed by Reineke (see [8, Lemma 5.1]):�

Matk.N;N /�AN
k

Glk.N /
pMat
���! X

�
D

NX
nD0

�
Hn

Gln

pMat
���! X

�
?

�
Matk.N �n;N �n/

Glk.N �n/
,! X

�
:

We apply the algebra homomorphismsZ �W

dim
W K.Staff =X / 3 ŒZ

�
�! X � 7�!

Z
dim ı�

���W 2 Ky�.Staff =N/;Z �
eq
W

dim
W KGm.Staff =X / 3 ŒZ

�
�! X � 7�!

Z
Z
�

eq
Wı� 2 Ky�.Staff =N/

from the (equivariant) Hall algebras to Ky�.Staff =N/. These are as constructed in
[15], but working over quivers the Hall algebra is much simplified, and so is the
proof that the map is an algebra homomorphism, resting entirely on the proof that the
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“integral identity” of [15, Section 4.4] holds. For a proof of this, see [19] or [20]. By
Proposition 2.10(3),Z �W

dim

�
Matk.N;N /�AN

k

Glk.N /
pMat
���! X

�
D LN

Z �W

dim

�
Matk.N;N /

Glk.N /
,! X

�
and Z �W

dim

h
Hn=Glk.n/

pMat
���! X

i
D Ln=2

Z
An
k

�fn ;

and similarly for the equivariant version. Multiplying with TN and summing over
N � 0 proves the lemma. Notice that the lemma can also be seen as a special wall-
crossing formula (see [23]).

To compute the integral Ln=2
R

An
k
�fn we restrict ourselves firstly to the case W D td

of normalized homogeneous potentials. By Theorem 3.1, ˆW .T /Dˆ
eq
W .T /, and

Ln=2
Z

An
k

�fn D Ln=2
Z

An
k

�
eq
fn

follows from the previous lemma. Notice that SymnA1
k
ŠAn

k
, induced by the map

zqnW A
n
k 3 .z1; : : : ; zn/ 7�! .z1C � � �C zn; : : : ; z

n
1 C � � �C z

n
n/ 2Ank :

An easy calculation shows that fn ı zqn.z1; : : : ; zn/D zd1 C � � �C z
d
n ; in other words,

fn D SymnC.W /. We finally obtain

Ln=2
Z

An
k

�fn D Ln=2
Z

An
k

�
eq
fn
D �n

�
L1=2

Z
A1
k

�
eq
W

�
D �n.1� Œ�d �/;

with �d carrying the obvious y�–action.

Theorem 4.2 The motivic Donaldson–Thomas invariants for the one-loop quiver with
homogeneous potential W D td are given by

�n D

�
L�1=2.1� Œ�d �/ for nD 1;
0 otherwise:

Proof Using the previous lemma and our calculations, we get

Sym
�X
n�1

Ln� 1

L1=2�L�1=2
�nT

n

�
DˆW .LT /=ˆW .T /D

X
n�0

�n.1� Œ�d �/T
n

D Sym
�
.1� Œ�d �/T

�
;

and the theorem follows by comparing coefficients.
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Let us now come back to the case of general potentials 0¤W 2 kŒt � and let W 0 D
c
Qr
iD1.t�ai /

di�1 be the prime decomposition of W 0 into linear factors, with c 2 k� ,
1 < di 2N and ai 2 k for all 1� i � r . Hence, the Grothendieck group of the abelian
category of sheaves supported on the zero scheme of W 0 is Zr with effective cone Nr

spanned by the classes Eei of skyscraper sheaves of length one supported at ai 2A1
k

.i 2 f1; : : : ; rg/, or equivalently by one-dimensional representations with eigenvalue ai .
The monoid homomorphism dimW Crit.W/ �!N factorizes as

dimW Crit.W/
cl
�!Nr C

��!N;

with cl.V / being the class of the representation of V in the Grothendieck group. This
allows us to define refined Donaldson–Thomas invariants by means ofZ

cl
�W D Sym

�
1

L1=2�L�1=2

X
EnD.n1;:::;nr /2Nrnf0g

�En T
n1
1 � � �T

nr
r

�
DWˆW .T1; : : : ; Tr/

in Ky�.Staff =Nr/, where we denote the element ŒSpec.k/ ! Eei � by Ti . For any
1 � i � r let us write M.i/ for the substack cl�1.NEei / parametrizing sheaves on
faig �A1

k
. Obviously

MŠ

rY
iD1

M.i/

by taking direct sums. However, to compute the motivic vanishing cycle �W we
use different embeddings on each side. Indeed, the vanishing cycle on the left-hand
side restricted to cl�1.n1; : : : ; nr/ DWMEn is computed by means of the embedding
MEn �Matk.N;N /=Glk.N / with N D n1C� � �Cnr , whereas on the right-hand side
we use the embedding

rY
iD1

Mni Eei
�

rY
iD1

Matk.ni ; ni /=Glk.ni /:

However, one can prove the product formula

(9)
Z

cl
�W D

rY
iD1

Z
cl
�W jM.i/ :

Indeed, as there are neither extensions nor morphisms between representations V 2M.i/

and V 0 2M.j / for i ¤ j , we have

ŒM!M�D ŒM.1/
!M� ? � � �? ŒM.r/

!M�
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in the Hall algebra K.Staff =M/. To prove formula (9) we again apply the refined
algebra homomorphism

R �W
cl from the Hall algebra to Ky�.Staff =Nr/.

For the computation of the right-hand side in the product formula (9) we make use of
the following lemma.

Lemma 4.3 For any i 2 f1; : : : ; rg, let di be defined as above. ThenZ
cl
�W jM.i/ Dˆtdi .Ti /D Sym

�
1� Œ�di �

L� 1
Ti

�
:

Proof Fix i 2 f1; : : : ; rg and 0 < n 2N . By translation we can assume ai D 0 and
W D

P
p�0 bpt

pCdi with b0¤ 0 but bp D 0 for p� 0. Let zW .t/D tdi . By solving
the recursive equations X

m0Cm1C���Ddi
m1C2m2C���Dp

� di
m0; m1; : : :

�
a
m0
0 a

m1
1 � � � D bp

starting with a d th
i root a0 of b0 , one finds a power series �.t/D t .a0C a1t C � � � /

with �.t/di D zW .�.t//DW.t/.

The component MnEei
is given by the quotient stack C=Gl.n/, with

C D fA 2Matk.n; n/ j A
di�1 D 0g

as
dWn.A/W Matk.n; n/ 3H 7�! tr.HAdi�1G.A// 2A1k

with G 2 kŒt � having nonzero constant term. As the map A 7! Am.di�1/ is in the mth

power of the defining ideal of C , we obtain a well-defined isomorphism �nW yC ! yC

on the formal neighborhood of C , ie the formal completion of Matk.n; n/ along C .
Moreover, the restriction of the function zWnW A 7! trAdi to yC composed with �n
coincides with the restriction of Wn to yC . As any arc of length l in Matk.n; n/ with
constant term in C is actually an arc of length l in yC , �n induces isomorphisms

Ll.�n/W Ll.Matk.n; n//jC �!� Ll.Matk.n; n//jC ;

with Ll. zWn/ ıLl.�n/D Ll.Wn/ for any l > 0. HenceZ
C

Z
eq
Wn
.Ti /D

Z
C

Z
eq
zWn
.Ti /

with the notation from Section 2, and
R
C �Wn D

R
C � zWn

follows, proving the first
equality. The second equality is a direct consequence of Theorem 4.2.
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Combining the lemma with the preceding arguments proves our main theorem.

Theorem 4.4 For W 2 kŒT �, let W 0 D c
Qr
i1
.t � ai /

di�1 , with c 2 k� , 1 < di 2N
and ai 2 k for all 1 � i � r , as before. Define the Donaldson–Thomas invariants
�En 2 Ky�.Staff =k/ for any r –tuple .n1; : : : ; nr/ 2Nr as above. Then

�En D

�
L�1=2.1� Œ�di �/ for EnD Eei .1� i � r/;
0 otherwise:

In particular, �En is in the image of Ky�.Var =k/ŒL�1=2� in Ky�.Staff =k/.
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