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Quiver algebras as Fukaya categories

IVAN SMITH

We embed triangulated categories defined by quivers with potential arising from ideal
triangulations of marked bordered surfaces into Fukaya categories of quasiprojective
3–folds associated to meromorphic quadratic differentials. Together with previous
results, this yields nontrivial computations of spaces of stability conditions on Fukaya
categories of symplectic six-manifolds.

53D37; 16S38

1 Introduction

A marked bordered surface .S;M/ comprises a compact, connected oriented surface S ,
perhaps with nonempty boundary, together with a nonempty set M � S of marked
points, such that every boundary component of S contains at least one marked point.
We always assume that .S;M/ is not a sphere with fewer than five marked points. An
ideal triangulation of .S;M/ gives rise, via work of Labardini-Fragoso [25], to a quiver
with potential. The CY3 –triangulated category D.S;M/ of finite-dimensional modules
over the corresponding Ginzburg algebra depends only on the underlying data .S;M/.
This paper embeds these categories, under mild hypotheses on .S;M/, into Fukaya
categories of quasiprojective 3–folds. The 3–folds are the total spaces of affine conic
fibrations over S ; whilst these spaces have not appeared previously in the literature, they
are close cousins of those studied Diaconescu, Dijkgraaf, Donagi, Hofman and Pantev
in [7]. Together with the main results of Bridgeland and the author [5], we therefore
obtain computations of spaces of stability conditions on (distinguished subcategories
of) Fukaya categories of symplectic six-manifolds.

We work over an algebraically closed field k of characteristic zero. For much of the
paper, we take k to be the single variable Novikov field (with formal parameter q ),
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which is algebraically closed by Fukaya, Oh, Ohta and Ono [12, Lemma 13.1].
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1.1 Surfaces and differentials

Let .S;M/ be a marked bordered surface. An ideal triangulation T of S with vertices
at M has an associated quiver with potential .Q.T /;W .T //, which can be defined
over any algebraically closed field k . The construction is indicated schematically in
the case where T is nondegenerate in Figure 1 and (2-2), and defined more generally
in [25]. There is a triangulated CY3 –category D.T / of finite type (ie cohomologically
finite) over k defined by the Ginzburg algebra construction [15]; this has a distinguished
heart, equivalent to the category of finite-dimensional modules for the complete Jacobi
algebra of the quiver with potential .Q.T /;W .T //. Results of Keller and Yang and
Labardini-Fragoso imply that D.T / depends up to quasi-isomorphism only on the
underlying marked bordered surface .S;M/. We write D.S;M/ for any category in
this equivalence class.

A meromorphic quadratic differential � on a Riemann surface S has an associated
marked bordered surface .S;M/. The surface S is obtained as the real blowup of S at
poles of � of order greater than or equal to 3; the distinguished tangent directions of
the horizontal foliation of � define boundary marked points in M, and poles of order
less than or equal to 2 define the punctures (interior marked points) P �M. We will
write Pol.�/ for the set of poles, and Pol>i.�/, PolD2.�/ for poles of constrained or
specified orders. For q 2 Pol.�/ let ord.q/ denote the order of the corresponding pole.

All quadratic differentials considered in this paper have simple zeroes.

Let Quad.S;M/ denote the complex orbifold parametrising equivalence classes of
pairs comprising a Riemann surface S and a meromorphic quadratic differential �
with simple zeroes whose associated marked bordered surface is diffeomorphic to
.S;M/. This has an open dense subset Quad.S;M/0 of pairs where the differential �
has poles of order exactly 2 at P , or equivalently for which the flat metric defined by �
is complete. There is an unramified 2jP j W 1 cover Quad˙.S;M/0! Quad.S;M/0
whose points are signed meromorphic differentials, meaning that we fix a choice of
sign of the residue of the differential � at each double pole; the cover extends as a
ramified cover Quad˙.S;M/! Quad.S;M/.

1.2 The three-folds

Fix a signed complete differential .S; �/ 2 Quad˙.S;M/0 . Denote by M the divisorP
p2Pol.�/dord.p/=2ep on S , where d˛e denotes the smallest integer greater than or

equal to ˛ , and write

(1-2) M DMD2CM>3
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corresponding to the obvious decomposition Pol.�/D PolD2qPol>3 . Take a rank-
two holomorphic vector bundle V on S with det.V / D KS .M /. We perform an
elementary modification of the vector bundle Sym2.V / at each double pole p of � ,
to obtain a rank-three bundle W fitting into a short exact sequence

0!W ! Sym2.V /!OMD2
! 0:

We then remove from S all poles of � of order greater than or equal to 3.

The determinant map detW Sym2.V /!KS .M /˝2 restricts to a quadratic map detW
on the bundle W which is rank one at points of MD2 � S . The three-fold

Y� D fdetW ���� D 0g �W jS�Pol>3.�/

is an affine conic fibration over S � Pol>3.�/, with nodal fibres over the zeroes of
� , fibres singular at infinity over the double poles, and empty fibres over higher-
order poles. The topology of the fibre over a double pole p depends on the choice
of elementary modification. A choice of line in the fibre of V at p determines a
distinguished elementary modification, with the property that the resulting fibre of Y�
at p is isomorphic to the disjoint union of two planes C2

p;CqC2
p;� . We will always

consider elementary modifications with this property.

1.3 The result

We fix a linear Kähler form on P .W ˚O/. This induces a Kähler form ! on Y� .
A Moser-type argument, see Lemma 3.17, shows that (having fixed the parameters
determining the cohomology class of the Kähler form appropriately) the symplectic
manifold underlying Y� depends up to isomorphism only on the pair .S;M/. The
variety Y� has vanishing first Chern class, and � determines a distinguished homotopy
class �.�/ of trivialisation of the canonical bundle of Y� .

When @S¤∅, the Kähler form ! is exact, and Y� has a well-defined exact Fukaya
category F.Y�/, which may be constructed over any field k ; see Seidel [36]. More
generally, we will consider Lagrangian submanifolds L � Y� with the following
property: there is an almost complex structure JL on Y� , taming the symplectic form
and coinciding with the given integrable structure at infinity, for which L bounds no
JL –holomorphic disk and does not meet any JL –holomorphic sphere.1 For ease of
notation, we will refer to such .L;JL/ as strictly unobstructed. When S is closed, Y�
has a strictly unobstructed Fukaya category (which we again denote by) F.Y�/, now
defined over the Novikov field ƒC . This version of the Fukaya category appears, for
instance, in Abouzaid and the author [2] and Seidel [39]. The strictly unobstructed

1For instance, one can restrict to weakly exact Lagrangians, ie ones with hŒ!�; �2.Y� ;L/i D 0 .
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hypothesis rules out bubbling of holomorphic disks, which simplifies the technical
construction of F.Y�/; see [39, Sections 3b, 3c] for a detailed discussion under slightly
weaker hypotheses.

Let Y be a symplectic manifold with well-defined Fukaya category F.Y /. For each
b2H 2.Y IZ2/, there is a category F.Y I b/, the b–twisted strictly unobstructed Fukaya
category, which for b D 0 recovers the category considered previously. Objects of
F.Y I b/ are closed oriented graded strictly unobstructed Lagrangians L, which are
equipped with a relative spin structure,2 relative to the background class b . The choice
of background class b 2H 2.Y IZ2/ serves to change the signs with which holomorphic
polygons contribute to the A1–operations �d

F , and can be seen as fixing a particular
coherent orientation scheme for the Fukaya category; compare with [36, Section 11
and Remark 12.1].

Each category F.Y� I b/ is a Z–graded A1–category, linear over the appropriate
field k . Let DC denote the cohomological category H 0.TwC/ of the category of
twisted complexes over an A1–category C.

Now consider the three-fold Y� ! S . For each p 2M � S , the fibre ��1.p/ is
reducible. Let C2

C;p denote one component of this fibre. We fix the background class
b0 2H 2.Y� IZ2/ represented by the locally finite cycle

(1-3) b0 D

X
p2MD2

C2
p;C 2H lf

4 .Y� IZ2/ŠH 2.Y� IZ2/

given by (either) one of the components of the reducible fibre at each point of PolD2.�/,
or equivalently each point of P . The class is nontrivial by Lemma 3.11. Different
choices of cycle representative for b0 are related by monodromy by Lemma 3.12.

Theorem 1.1 Let .S;M/ be a marked bordered surface, with M¤∅. Suppose either

(1) S is closed, g.S/ > 0, jMj> 3 and k DƒC , or

(2) @S¤∅ and S is not a sphere with fewer than five punctures.

There is a k–linear fully faithful embedding D.S;M/ ,! DF.Y� I b0/.

The untwisted Fukaya category F.Y�/, which differs from F.Y� I b0/ by certain signs,
is different, and is discussed in Section 5.4.

2In other words, bjL D w2.TL/ and we fix a trivialisation of �B ˚TL over the 2–skeleton of L ,
where �b! Y is the unique real 2–plane bundle with w1.�b/D 0 and w2.�b/D b .
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One drawback of Theorem 1.1 is that it does not give a symplectic characterisation of
the image of the embedding D.S;M/ ,! DF.Y� I b0/. There is an obvious candidate
for such a characterisation, which we now explain.

Any embedded path  W Œ0; 1�! S , with endpoints distinct zeroes of � and otherwise
disjoint from the zeroes and poles of � , defines a Lagrangian 3–sphere L �Y� , fibred
over the arc  �† via Donaldson’s “matching cycle” construction [36, III, Section 16g].
The matching spheres L are exact if @S¤∅, and strictly unobstructed (with JL the
canonical complex structure on Y� ) when S is closed and g.S/ > 0. A Lagrangian
sphere is relatively spin for any choice of background class b , hence equipped with a
grading defines a Lagrangian brane in F.Y� I b/. A nondegenerate ideal triangulation T

of S defines a full subcategory A.T I b/�F.Y� I b/, generated by the matching spheres
associated to the edges of the cellulation dual to T . Theorem 1.1 is proved by showing
that DA.T I b0/ ' D.T / for particularly well-behaved triangulations T . Since the
category D.T / does not depend on T , it follows that DA.T I b0/ also depends only
on the pair .S;M/, up to triangulated equivalence.

Let K.Y� I b0/ � F.Y� I b0/ be the full A1–subcategory generated by Lagrangian
matching spheres. This manifestly depends only on the pair .S;M/. It seems likely
that D.S;M/'DK.Y� I b0/. We outline one tentative approach to proving that, which
amounts to proving that A.T I b0/ generates K.Y� I b0/, in Section 4.9, but elaborating
the details of that sketch would be a substantial task. Going further, it seems likely that
all Lagrangian spheres in Y� are quasi-isomorphic to matching spheres (the result is
proved in special cases in Abouzaid and the author [2] and Seidel [38]), in which case
the category DK.Y� I b0/ would be a symplectic invariant of Y� , carrying an action of
the subgroup of �0 Symp.Y�/ preserving the class b0 2H 2.Y� IZ2/. The question
of whether the embedding K.Y� I b0/ ,! F.Y� I b0/ itself split-generates is also open,
though here there seems to be less evidence either way. We hope to return to these
questions elsewhere.

The imposed condition M¤∅ gives a substantial simplification since holomorphic
polygons are constrained for grading considerations that do not pertain when � is
globally holomorphic; see Remarks 3.22 and 4.15. The constraint on the number of
punctures jMj> 3 when S is closed arises from a similar constraint in work of Geiss,
Labardini-Fragoso and Schröer [14], who study the action of right equivalences on
potentials on the quivers Q.T /; see Theorem 2.1. We conjecture that, for a closed
surface S of genus g.S/ > 0, Theorem 1.1 holds under the weaker hypothesis jMj> 1.
(Once-punctured surfaces are special: not every pair of signed ideal triangulations are
related by pops and flips, and when g D 1 the analogue of Theorem 2.1 is actually
false; see [14].)
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One can relax the strict unobstructedness hypothesis at the cost of invoking the deep
obstruction theory of Fukaya, Oh, Ohta and Ono [10; 11] in the construction of F.Y� I b/.
If S is closed and g.S/D 0 then Y� may contain rational curves, so only the more
complicated construction is available. This is the reason for the genus constraint in the
first part of Theorem 1.1.

Remark 1.2 The elementary modifications appearing in the specific construction of Y�
play a definite role in reproducing D.S;M/, which seems somewhat less natural from
the viewpoint of the symplectic topology of the original bordered surface .S;M/, not
least because of the CY3 –property. The particular choice of elementary modification
that we employ was motivated by two considerations: first, to yield the Calabi–Yau
property of Lemma 3.5, and second, to ensure the nonvanishing of a certain count of
local holomorphic sections over discs centred on double poles in Lemma 4.10. (The
latter result would fail if instead one took the three-fold Y� to have smooth, nodal,
higher multiplicity or empty fibres over the double poles, and also accounts for the
appearance of the twisting class b0 .) At a more technical level, the appearance of
a reducible fibre whose components are exchanged by the local monodromy of the
family of three-folds obtained by allowing the residue at a double pole to wind once
around the origin, see Lemma 3.12, fits well with the appearance of “signed” quadratic
differentials in Bridgeland and the author [5, Section 6.2].

1.4 Context

In many cases, the paper [5] by Bridgeland and the author computes the space of
stability conditions on the category D.S;M/ in terms of moduli spaces of quadratic
differentials. If either S is closed with g.S/ > 0 and with at least two punctures, or
@S ¤ ∅ and S is not a sphere with fewer than six punctures, there is a connected
component Stab�.S;M/ of Stab.D.S;M// and a subgroup Aut� of autoequivalences
which preserve this component modulo those which act trivially upon it, with

Stab�.S;M/=Aut� Š Quad~.S;M/;

where Quad~.S;M/ has the same coarse moduli space as Quad.S;M/ but additional
orbifolding along the incomplete locus; see [5] for details. This gives a nontrivial
computation of the space of stability conditions on (a subcategory of) the Fukaya
category of a symplectic six-manifold, and enables one to understand the Donaldson–
Thomas invariants of these categories.

One can construct a complex .3; 0/–form � on Y� with the following property: if
the path  � † is a saddle connection for � , the associated matching sphere L
is special, ie � has constant phase on L . (We are not working with the Ricci-flat
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metric, so these are not strictly special in the traditional sense.) There are similarly �–
special Lagrangian submanifolds S1�S2 of Y� associated to homotopically nontrivial
closed geodesics for the flat metric defined by � . As implied by [5, Theorem 1.4], the
Donaldson–Thomas invariants of Y� , defined with respect to the stability condition asso-
ciated to � , count such special Lagrangian submanifolds, the existence and numerics of
which are therefore governed by the Joyce–Song [18] and Kontsevich–Soibelman wall-
crossing formulae [23]. This confirms, in this special case, a long-standing expectation
of Joyce and others.

It is natural to conjecture that moduli spaces of holomorphic quadratic differentials
with simple zeroes arise as spaces of stability conditions (modulo autoequivalences)
on the Fukaya categories of the local three-folds of Diaconescu, Dijkgraaf, Donagi,
Hofman and Pantev [7] (see (3-1)). However, these categories do not appear to admit
descriptions in terms of quivers, and different techniques would be required to analyse
them and the corresponding spaces of stability conditions.

1.5 Higher rank

The three-folds Y� are associated to meromorphic maps of Riemann surfaces into
the versal deformation space of the A1 –surface singularity C2=Z2 . There are also
local three-folds associated to meromorphic maps to the versal deformation spaces of
other ADE singularities: in the case of a holomorphic map, the relevant three-folds are
studied in Diaconescu, Dijkgraaf, Donagi, Hofman and Pantev [7] and Szendrői [44].
Already for the A2 –surface, however, the geometry is substantially more complicated,
and the relationship to stability conditions rather less clear.

The natural data required to write down a quasiprojective Calabi–Yau three-fold fibred
over a Riemann surface S in the An –case is a tuple comprised of (perhaps meromor-
phic) sections of K˝i

S
for 2 6 i 6 nC1. For instance, when nD 2 and supposing one

is working with holomorphic rather than meromorphic differentials, one takes a vector
bundle V DL1˚L2 with det.V /ŠKS , and considers the hypersurface

(1-4) f.x;y; z/ 2L3
1˚L3

2˚L1L2 j xyC z3
D � � zC g;

where � 2 H 0.K˝2
S
/ and  2 H 0.K˝3

S
/. For generic choices of .�;  / this is a

smooth Calabi–Yau, the total space of a Lefschetz fibration over S , with generic fibre
the Milnor fibre of C2=Z3 (symplectically, the plumbing of two copies of T �S2 ).

However, the moduli space of such data — a complex structure on S and a tuple of
differentials — has dimension smaller than the dimension of the space of stability
conditions on the corresponding category, or more mundanely smaller than the rank
of H3 of the associated three-fold (compare to Remark 3.15). This is a familiar problem:
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whilst one expects spaces of complex structures on a symplectic Calabi–Yau to embed
into the space of stability conditions on the Fukaya category, there is no reason to expect
that embedding to be onto an open subset. The fortunate accident in the A1 –case is
that Teichmüller space has the same dimension as the space of quadratic differentials.
At least for An –fibred three-folds, it seems natural following Labourie [26] to expect
the “higher Teichmüller space,” ie Hitchin’s contractible component [17] of the variety
of flat PSL.n;R/–connections, to play a role in resolving this discrepancy.

Finally, we note that computations by Galakhov, Longhi, Mainiero, Moore and Neitzke
in [13] indicate that the CY3 –categories arising in higher rank (even when one re-
stricts to meromorphic differentials) are appreciably more complicated; whereas the
Donaldson–Thomas invariants of the categories studied in this paper are always C1

or �2, see [5], and nonvanishing only for primitive classes, in the higher rank case
one expects there are classes Œ � for which the DT–invariants (conjecturally related to
counts of special Lagrangian submanifolds in the corresponding three-fold) in class kŒ �

grow exponentially with k . The symplectic topology of (1-4) is the subject of work in
progress by the author.

1.6 Standing assumptions

The arguments for the two cases of Theorem 1.1 are rather similar. For definiteness, for
the rest of the paper we consider the (more complicated) case when S is closed, leaving
the required modifications for the case with nonempty boundary to the interested reader.

In the closed case all the marked points MD P � S are punctures. To avoid transver-
sality issues arising from rational curves and their multiple covers, we also exclude
the (interesting) case of three-folds fibring over the 2–sphere. Therefore the discrete
topological data will henceforth be indexed by a pair .S;M/ with g.S/ > 0 and
#M> 0.
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2 Background

2.1 Quivers with potential

Let Q be a quiver, specified by sets of vertices and arrows Q0 , Q1 , and source and
target maps s; t W Q1!Q0 . We write kQ for the path algebra of Q over the field k ,
and bkQ for the completion of kQ with respect to path length. A potential on Q is an
element W 2bkQ of the closure of the subspace of bkQ spanned by all cyclic paths
in Q of length greater than or equal to 2. A potential is called reduced if it lies in the
closure of the subspace spanned by cycles of length greater than or equal to 3.

We say that two potentials W and W 0 are cyclically equivalent if W �W 0 lies in
the closure of the subspace generated by differences a1 � � � as � a2 � � � asa1 , where
a1 � � � as is a cycle in the path algebra. W and W 0 are right-equivalent if there is
an automorphism �W bkQ!bkQ of the completed path algebra which fixes the zero-
length paths and such that �.W / and W 0 are cyclically equivalent. Following [14],
we say W and W 0 are weakly right equivalent if W and tW 0 are right-equivalent, for
some invertible scalar t 2 k� .

Consider minimal A1 categories C whose objects Si are indexed by the vertices of Q,
and such that, as a graded vector space,

HomC.Si ;Sj /D kıij ˚V �ij Œ�1�˚Vji Œ�2�˚ kıij Œ�3�;

where Vij is the space with basis consisting of arrows in Q connecting vertex i to
vertex j . There is an obvious nondegenerate pairing

h�;�iW HomC.Si ;Sj /�HomC.Sj ;Si/! kŒ�3�:

Thus, if we define

cn.fn; : : : ; f1/D hfn;mn�1.fn�1; : : : ; f1/i;

an A1 product of degree 2� .n� 1/,

mn�1W HomC.Sjn�1
;Sjn

/˝ � � �˝HomC.Sj1
;Sj2

/! HomC.Sj1
;Sjn

/;

is equivalently described by a linear map of degree �n,

(2-1) cnW HomC.Sjn
;Sj1

/˝HomC.Sjn�1
;Sjn

/ � � � ˝HomC.Sj1
;Sj2

/! k:

Let us insist that C is cyclic as an A1–category, meaning that the tensors cn are
cyclically invariant in the graded sense. If we further insist that the A1 structure on C
is strictly unital then the whole structure is determined by the elements cn.fn; : : : ; f1/

when all the fi have degree 1. For background on this construction, see Segal [33].
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Let W be a reduced potential on Q. Decomposing the potential into homogeneous
pieces, and cyclically symmetrising, we obtain linear maps

WnW V
�

jn;j1
˝V �jn�1;jn

˝ � � �˝V �j1;j2
! k:

Setting cn DWn gives a well-defined A1–category C.Q;W /. Define D.Q;W / to
be the homotopy category of the category of twisted complexes over C.Q;W /:

D.Q;W /DH 0.Tw.C.Q;W //:

The associated graded category of D.Q;W / contains C as a full subcategory.

The same category D.Q;W / admits an alternative (Koszul dual) description in terms
of the derived category of a dg algebra A.Q;W / called the complete Ginzburg algebra
(see for instance [23, Theorem 9] or Keller [19, Section 5]). To define it, first double Q,
adding a dual edge a� for each a 2Q, and then add loops ti based at each vertex i

of Q. The resulting quiver Q� has a grading given by

deg.x/D 0; deg.x�/D�1; deg.t/D�2:

Let A.Q;W / be the completion of the path algebra bkQ� as a graded algebra, with
respect to the ideal generated by the arrows of Q� . There is a unique continuous
differential d satisfying

d.t/D
X

a2Q1

ei � Œa; a
�� � ei ; d.a�/D @aW; d.a/D 0:

Thus A.Q;W / is a dg algebra. The category D.Q;W / can then be equivalently
described as the full subcategory of the derived category of the dg algebra A.Q;W /

consisting of finite-dimensional modules. By a general result of Keller and Van den
Bergh [20], this description shows that D.Q;W / is a CY3 –triangulated category.

Keller and Yang [21, Lemma 2.9] showed that if W and W 0 are right-equivalent poten-
tials, they have isomorphic complete Ginzburg algebras, and hence yield equivalent cate-
gories D.Q;W /'D.Q;W 0/. Ladkani [27, Proposition 2.7], see also [14, Lemma 8.5],
showed that the same conclusion holds when W and W 0 are only weakly right-
equivalent. Indeed, there is a natural k�–action on the set of minimal A1–structures
on the category C , where � 2 k� acts by rescaling the operation mn by �n�2 . The
A1–structures related by the k�–action are A1–equivalent even though not gauge-
equivalent in the usual sense (the required equivalence does not act by the identity on
cohomology but by a multiple of the Euler vector field). The potentials W and tW

on Q give rise to A1–categories C.Q;W / and C.Q; tW / which are related by the
k�–action. Since A1–equivalences induce equivalences on categories of twisted
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complexes by [36, Lemma 3.20], the category D.Q;W / depends only on the weak
right equivalence class of W .

The fact that A.Q;W / is concentrated in nonpositive degrees implies [21, Lemma 5.2]
that D.Q;W / is equipped with a canonical bounded t –structure, whose heart A.Q;W /

is equivalent to the category of nilpotent representations of the completed Jacobian
algebra

J.Q;W /DH 0.A.Q;W //DbkQ=.@aW W a 2Q1/:

In particular, A.Q;W /� D.Q;W / is a finite-length heart. Since it admits a bounded
t –structure, the category D.Q;W / is split-closed, ie agrees with its own idempotent
completion; see Le and Chen [28].

2.2 Quivers from triangulated surfaces

Suppose again that S is a closed oriented surface of genus g.S/ > 0, now equipped
with a nonempty set of d > 2 marked points M� S .

By a nondegenerate ideal triangulation of .S;M/ we mean a triangulation of S whose
vertex set is precisely M, and in which every vertex has valency at least 3 (this implies
that every triangle has three distinct edges). A signed triangulation is a triangulation
equipped with a function

�W M! f˙1g:

We can associate a quiver with potential .Q.T /;W .T; �// to a signed nondegenerate
triangulation T as follows.

Figure 1: Quiver associated to a triangulation

The quiver Q.T / has vertices at the midpoints of the edges of T , and is obtained by
inscribing a small clockwise 3–cycle inside each face of T , as in Figure 1. There are
two obvious systems of cycles in Q.T /, namely a clockwise 3–cycle T .f / in each
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face f , and an anticlockwise cycle C.p/ of length at least 3 encircling each point
p 2M. Define a potential

(2-2) W .T; �/D
X
f

T .f /�
X
p

�.p/C.p/:

When � � 1 we will sometimes omit it from the notation.

Consider the derived category of the completed Ginzburg algebra of the quiver with
potential .Q.T /;W .T; �// over k , and let D.T; �/ be the full subcategory consisting
of modules with finite-dimensional cohomology. As a special case of the discussion
of Section 2.1, this is a CY3 –triangulated category of finite type over k , and comes
equipped with a canonical t –structure, whose heart A.T; �/� D.T; �/ is equivalent
to the category of finite-dimensional modules for the completed Jacobi algebra of
.Q.T /;W .T; �//.

Suppose two nondegenerate ideal triangulations Ti are related by a flip, in which the
diagonal of a quadrilateral is replaced by its opposite diagonal. The resulting quivers
with potential .Q.Ti/;W .Ti ; �// (in which the signing is unchanged) are related by a
mutation at the vertex corresponding to the edge being flipped. It follows from general
results of Keller and Yang [21] that there exist distinguished k–linear triangulated
equivalences ˆ˙W D.T1; �/Š D.T2; �/.

Labardini-Fragoso [25] extended the above definitions so as to encompass a larger
class of signed ideal triangulations (ones containing self-folded triangles, in which two
of the three edges coincide; in this case there may be punctures of valency one, and the
mutation operation can change the signing). He moreover proved that flips also induce
right-equivalences in this more general context. There is another operation on signed
ideal triangulations, which involves changing the signing at a given puncture without
changing the triangulation, and a corresponding “pop” equivalence which relates the
associated categories. Under our hypothesis on .S;M/ that d D jMj> 2, any two of
these more general signed ideal triangulations are related by a finite chain of flips and
pops. It follows that up to k–linear triangulated equivalence, the category D.T; �/ is
independent of the chosen triangulation and of the choice of signing; see [5, Sections 8
and 9] for a more detailed discussion. We denote by D.S;M/ any triangulated category
in this quasiequivalence class.

Given the quiver Q.T /, define a CY3 –category by taking any potential on Q.T /, not
necessarily the potential W .T; �/ described above. Two potentials W1 and W2 are
disjoint if no cycle occurring in W1 is cyclically equivalent to a cycle appearing in W2 .
The following result is due to Geiss, Labardini-Fragoso and Schröer [14].
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Theorem 2.1 Let T be a triangulation of .S;M/ containing no self-folded triangles
or loops and in which every vertex has valency at least 4. Suppose the associated quiver
Q.T / contains no double arrows. Any two potentials on Q.T / of the form

(2-3)
X
f

T .f /�
X
p

�pC.p/CW 0

(for scalars �p ¤ 0 and W 0 disjoint from the T .f / and C.p/) are weakly right
equivalent.

Geiss, Labardini-Fragoso and Schröer furthermore prove that every pair .S;M/ with
g.S/> 0 and with jMj> 3 admits some triangulation T which satisfies the hypotheses,
ie which contains no self-folded triangle or loop, in which every vertex has valency at
least 4, and for which the associated quiver has no double arrow. (In the case when S
has nonempty boundary, the same result holds without further hypotheses on the number
of punctures.) The proof of Theorem 2.1 involves a delicate, iterative construction of a
suitable right-equivalence by hand, obtained as an infinite composition of equivalences
which, to first approximation, increase the minimal length of any cycle appearing in
the remainder term W 0 ; the actual proof is more complicated than this suggests.

For our purposes, these results yield a finite-determinacy theorem for A1–structures
on the total endomorphism algebra of the category C of Section 2.1 in the special case
.Q;W /D .Q.T /;W .T; �//. Considering the description of the category D.Q;W / as
a category of twisted complexes over an A1–algebra given in Section 2.1, Theorem 2.1
implies in particular that different choices of scalars f�pgp2P for the potential (2-3)
yield equivalent categories D.Q;W /, whilst A1–products encoded by the “remainder”
term W 0 can be gauged away.

2.3 Quadratic differentials and flat metrics

Let .S; �/ denote a pair comprising a Riemann surface S and meromorphic quadratic
differential � with poles of order precisely 2 at the points of a divisor M � S com-
prising d reduced points, and with simple zeroes. Thus, the marked bordered surface
associated to .S; �/ is diffeomorphic to .S;M/. Let Zer� �S denote the set of zeroes,
so

jZer� j D 4g.S/� 4C 2jM j:

At a point of SnfM [Zer�g there is a distinguished local coordinate z with respect
to which

�.z/D dz˝ dz:
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This local coordinate is uniquely defined up to changes z 7! ˙zC constant. At simple
zeroes, respectively double poles, there is a canonical coordinate with respect to which

(2-4) �.z/D

(
z dz˝2 at simple zeroes;

mdz˝2

z2 at double poles, where m 2C�:

We refer to the value m in the second case as the residue at the double pole.

The surface SnM inherits a flat metric j�j2 with singularities; at each p 2 Zer� , the
metric has a cone angle of 3� . The length element of the metric is defined byp

�.w/dw

in an arbitrary local parameter w , so the length of a curve  � SnM is given by

j j� D

Z


j�.w/j1=2jdwj:

This is well defined for curves passing through zeroes of � , but diverges to infinity for
curves through double poles. The area of the flat surfaceZ

S

j�.w/j dx ^ dy

is infinite, since a neighbourhood of each point of M is isometric to a semi-infinite
flat cylinder of circumference 2�jmj, with m as in (2-4).

The differential � 2 H 0.KS .M /˝2/ defines a horizontal foliation of SnM , given
by the lines along which arg.�/D 0. In the natural local coordinate, the horizontal
foliation is given by lines Im.z/D constant. The local trajectory structure at a zero
shows the horizontal foliation is not transversely orientable. The natural S1 –action by
rotation, � 7! ei�� , does not change the underlying flat surface, but changes which in
the circle of foliations defined by arg�.z/D constant is regarded as horizontal.

A saddle connection is a finite length maximal horizontal trajectory. Any such has both
endpoints at (not necessarily distinct) zeroes of � .

2.4 WKB-triangulations

Suppose the quadratic differential � is complete and saddle-free, meaning that it has no
finite-length maximal horizontal trajectory. It then defines a canonical isotopy class of
triangulation of S with vertices at M , called the WKB-triangulation; see [5, Section 10].
There is a dual “Lagrangian cellulation,” with trivalent vertices the zeroes of � and
which has exactly one face for each point of M .

In general, the WKB-triangulation may contain self-folded triangles. Given a quadratic
differential  whose associated WKB-triangulation contains a self-folded triangle,
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there is an edge in the Lagrangian cellulation which goes from a zero to itself. The
quiver prescription of Labardini-Fragoso differs in this case [25]. For simplicity we
will restrict attention to the nondegenerate case:

Lemma 2.2 For every g > 0 and d > 0 there is a complete saddle-free differential
whose associated WKB-triangulation contains no self-folded triangles. If d > 3 one
can assume that the triangulation satisfies the further hypotheses of Theorem 2.1. Every
edge of the dual cellulation then has distinct endpoints.

Proof According to Fomin, Shapiro and Thurston [8, Corollary 3.9], any ideal triangu-
lation can be transformed via a sequence of flips to a nondegenerate triangulation (one
containing no self-folded triangles), whilst [14] constructs nondegenerate triangulations
satisfying the hypotheses of Theorem 2.1 whenever d > 3. Any nondegenerate triangu-
lation T has an associated bipartite quadrilation zT , whose vertices are the vertices of T

together with the midpoints of all faces of T , and which has three edges for each face
of T , which join the vertices of that face to its centre; see Figure 2. In [5, Section 4.9],
they show that any quadrilation of the marked surface .S;M/ may be realised as the
“horizontal strip decomposition” of a quadratic differential � , meaning that � has
double poles at the vertices of T , zeroes at the additional (necessarily trivalent) vertices
of zT , and that the edges of zT are exactly the trajectories of � which contain a zero.
It follows that the nondegenerate triangulation obtained in [14] is realised as a WKB-
triangulation. The final statement is an immediate consequence of nondegeneracy.

Figure 2: The quadrilation associated to a triangulation

For brevity, we will call a triangulation as provided by Lemma 2.2 a nondegenerate
WKB-triangulation.
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3 Threefolds

We now associate quasiprojective Calabi–Yau 3–folds to meromorphic quadratic differ-
entials. By way of motivation, if .S;  / comprises a Riemann surface of genus g > 2

and a holomorphic quadratic differential  on S , there is a quasiprojective 3–fold
which is a Lefschetz fibration over S , namely

(3-1) Y 0 D f.q1; q2; q3/ 2K˚3
S
j q2

1 C q2
2 C q2

3 D  g � Tot.K˚3
S
/:

This is Calabi–Yau, and its geometry (Abel–Jacobi map, cycle theory etc) has elegant
interpretations in terms of geometry on S ; see [7]. Our spaces are cousins of these,
adapted to the case of meromorphic differentials.

3.1 Elementary modification

Let S be a closed Riemann surface of genus g > 1, equipped with a reduced divisor M

comprising d D jM j points. Fix a rank-two holomorphic vector bundle

V ! S with an isomorphism �W det.V /ŠKS .M /:

The determinant defines a fibrewise quadratic map

(3-2) detW S2.V /!KS .M /˝2:

Consider an elementary modification of the symmetric square S2.V / along M , fitting
into a short exact sequence of sheaves

(3-3) 0!W ! S2V
˛
�! .�M /�C! 0:

Lemma 3.1 The bundle W is locally free of rank 3, and c1.W /D 3KS C 2PDŒM �.

Proof The sheaf W is torsion free on a smooth curve, hence locally free. The first
Chern class is given by the Whitney sum formula.

Elementary modifications along M are not unique, but depend on the choice of ˛ in
(3-3). It will be important for us to choose the elementary modification compatibly
with the quadratic map (3-2).

Lemma 3.2 There is an elementary modification W as above with the property that
for each x 2M , the induced map

detW W !KS .M /˝2

has fibre C2qC2 �Wx over any nonzero point of KS .M /˝2
x .
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Proof The statement is obviously local at a given x 2M . Let x be defined by an
equation f . Near x we fix a trivialisation S2V Š O˚O˚O in which S2V is
spanned by holomorphic sections a; b; c with respect to which the determinant map is
given by the fibrewise quadratic

.a; b; c/ 7! ab� c2:

Such a local basis of sections arises naturally from a choice of local basis of sections s; s0

for V near x , with a D s ˝ s , b D s0 ˝ s0 and c D s ˝ s0 C s0 ˝ s . The proof of
Lemma 3.1 implies there is an elementary modification W which is spanned by local
holomorphic sections .fa; b; c/, and the determinant map on W is then given by

.fa/b� c2:

At x , where f D 0, the fibre det�1.y/ D fc2 D �yg � Wx is isomorphic to the
disjoint union of two planes fc D˙

p
�yg �C3 , provided y ¤ 0.

Note that a choice of complex line ` in the fibre Vp of V at p , equivalently of a
parabolic structure on V at p , induces an elementary modification as in Lemma 3.2,
where the subspace Wp �S2Vp is identified with the quadratic forms on V �p vanishing
on the annihilator of `� Vp .

3.2 A quasiprojective Calabi–Yau 3–fold

Let � 2H 0.KS .M /˝2/ be a meromorphic quadratic differential on S with simple
zeroes and a pole of order exactly 2 at each x 2M . Define the hypersurface

Y� D fdetW ���� D 0g �W

inside the total space of the vector bundle W . We shall write

X� � P .W ˚O/

for the fibrewise projective completion of Y� . Being fibred in quadrics, this is the
zero-locus of a section of ��KS .M /˝2.2/! P .W ˚O/, where � W P .W ˚O/! S

denotes projection.

The previous description of the determinant map detW shows that the natural map
X�! S is a fibration by projective quadrics, with generic fibre P1 �P1 , nodal fibres
over zeroes of � , and reducible fibre P2[l P2 at each point of M , ie the union of two
planes joined along a line l . The locus of reducible quadrics has codimension greater
than 1 in the space of all quadric hypersurfaces in P3 , so a generic one-parameter
family of quadrics would have no such singular fibres. The singular fibre P2[l P

2 is not
locally smoothable (ie not the 0–fibre of a smooth three-fold X!D ); an infinitesimal
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smoothing is determined by a section of the tensor product ��
l=P2 ˝ �

�

l=P2 Š O.�2/

of the normal bundles to the normal crossing locus l in the two components of the
singular fibre.

Lemma 3.3 X� has two isolated singularities at infinity (ie in the complement of
Y� �X� ) over each point of M � S , which are 3–fold ordinary double points. These
are the only singularities of X� .

Proof Away from M , the map X�!S is a Lefschetz fibration, and smoothness of the
total space is clear. Given the description of the determinant map in Lemma 3.2, a local
model for the behaviour near the singular fibres over M is given by a neighbourhood
of the .ı D 0/ fibre in the quadric pencil

(3-4) fx2
� ıyz D �.ı/t2

g � P3
ŒxWyWzWt � �Cı �.ı/¤ 0 for all ı:

The subspace ft D 1g defines the vector bundle W � P .W ˚O/ in the given trivi-
alisation, and by hypothesis the holomorphic function �.ı/ vanishes away from M .
Without loss of generality, we can suppose �.0/D 1. Under projection to the second
factor Cı , the 0–fibre is fx2 D t2g which is a union of two planes, whose line of
intersection fxD0D tg lies in the hyperplane at infinity …DftD0g. The complement
of … is the affine variety

fx2
� ıyz D �.ı/g �C4:

Under the projection to the plane Cı , this has generic fibre an affine conic T �S2 , and
these degenerate at ı D 0 to a singular fibre C2qC2 . The singularities of the total
space of (3-4) are the points

y D 1; 0 2 fx2
��.ı/t2

D ızg and z D 1; 0 2 fx2
��.ı/t2

D ıyg;

in the given affine charts fy D 1g respectively fz D 1g, which since � is locally
nonvanishing are both 3–fold ordinary double points.

Corollary 3.4 Y� is smooth.

Proof Removing the section of OP .�1/ defining the divisor �1DX�nY� at infinity
removes the line l from each reducible fibre, hence removes all the nodes.

The quasiprojective variety Y� comes with a natural projection map � W Y�! S .

� The generic fibre of � is a smooth affine quadric fab � c2 D tg with t ¤ 0,
abstractly diffeomorphic to the cotangent bundle T �S2 .
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� At a zero p of � , ��1.p/ is defined by the quadratic fab � c2 D 0g � C3 ,
which has an isolated nodal singularity.

� At a point x 2M , recalling that by hypothesis �.x/D t 0¤ 0, the fibre ��1.x/

is given by an affine quadric fc2 D t 0g �C3 , a disjoint union of two planes.

Lemma 3.5 The space Y� has holomorphically trivial canonical bundle, and hence
c1.Y�/D 0. The choice of isomorphism �W det.V /!KS .M /˝2 defines a canonical
homotopy class of trivialisation of the canonical bundle KY� .

Proof Consider the P3 –bundle � W P D P .W ˚O/! S . The determinant map

detW S2.V /!KS .M /˝2

restricted to W � S2.V / is fibrewise quadratic, hence can be viewed as an element of
the space of global sections ��.KS .M /˝2/.2/, which pushes forward to give

�.S2.W ˚O/�˝��KS .M /˝2/:

The projective completion X� has canonical class KX DKP KS .M /˝2.2/. Since

(3-5) KP D det.W �˚O/.�4/˝��KS

and there is an isomorphism z�W det.W �/!KS .M /˝�3.M /, one sees that

KX DOP .�2/:

The quasiprojective subvariety Y� �X� is the complement of the section of OP .1/ at
infinity, and the square of that section is a canonical divisor on X� . The last statement
follows from (3-5) since � induces z�.

Lemma 3.6 There is a nowhere-zero holomorphic volume form �� on Y� .

Proof Up to rescaling, there is a unique section of OP .1/ vanishing on the divi-
sor �1 at infinity, and since KX� DOP .�2/, the complement Y� admits a canonical
holomorphic volume form up to scale.

Remark 3.7 The form �� has poles of order 2 at infinity. For a heuristic discussion of
the relevance of the pole order being greater than or equal to 2 to constructions of stabil-
ity conditions on the Fukaya category starting from pairs comprising a complex structure
and such a nonvanishing volume form; see Kontsevich and Soibelman [24, Section 7.3].
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3.3 Resolution

The 3–fold ordinary double point

fz2
0 C z2

1 C z2
2 C z2

3 D 0g �C4

admits two distinct small resolutions, in which the singular point is replaced by a
smooth P1 with normal bundle O.�1/˚O.�1/. The resolutions are obtained by
collapsing either one of the two rulings of the exceptional divisor P1 �P1 resulting
from blowing up the singularity; the passage from one resolution to the other is the
simplest example of a 3–fold flop.

Lemma 3.8 There is a projective small resolution �W yX�!X� .

Proof Blowups of projective varieties are necessarily projective. Let yX� be given by
blowing up a Weil divisor comprising exactly one component P2 ŠHx � �

�1.x/ of
each reducible fibre, x 2M . Such a Weil divisor contains all of the nodes, hence the
blowup is a small resolution. See Clemens [6] and the author, Thomas and Yau [42]
for further discussion.

Let y�1 � yX� be the total transform of �1 �X� .

E

E

E

E

Figure 3: Reducible degenerations of a quadric surface with smooth total
space: the divisor y�1 is marked in bold (sum of components with multiplic-
ity one); small resolution curves are labelled E .

Lemma 3.9 The divisor y�1 � yX� is smooth, and supports an effective anticanonical
divisor.

Proof There are two possible models for the singular fibre of yX�! S over a point
of M , depending on whether the small resolution curves lie in the same or distinct
components of the fibre. Either the generic fibre P1 �P1 degenerates to a union of
two first Hirzebruch surfaces meeting along a fibre, or it degenerates to a copy of the
blowup of P2 at two distinct points p; q , meeting a second copy of P2 along the curve
which is the proper transform of the line between p; q ; see Figure 3. More explicitly,
the local model given by the rightmost of the degenerations of Figure 3 can be obtained
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by taking the trivial fibration .P1 �P1/�D and blowing up a point ..q; q/; 0/ lying
on the diagonal of the central fibre. The two models are related by flopping one of the
.�1;�1/–curves E . In either case, y�1 is a conic bundle over S with Lefschetz-type
singularities, hence the total space of the divisor is smooth. Since yX�!X� is crepant
and �1 �X� supports an effective anticanonical divisor on X� , by Lemma 3.5, the
last statement holds.

Lemma 3.10 y�1 �C > 0 for every rational curve P1 Š C � y�1 � yX� .

Proof Inside X� , the divisor at infinity is a conic bundle over S , with an integrable
complex structure for which projection to S is holomorphic. Since g.S/ > 0, any
rational curve in �1 is contained in a fibre of projection, hence is a rational curve in
some quadric surface in P3 . Any such curve is in the homology class of some multiple
of a line in P3 , hence deforms inside the P3 –fibre, and meets �1 strictly positively.

The small resolution r W yX�!X� contracts, for each point x 2M , two smooth curves
P1 each with normal bundle O.�1/˚O.�1/. For such a curve E , E � y�1 D 0;
indeed, K yX� D r�KX� D r�.�2�1/D�2y�1 , but the canonical class is trivial near
a .�1;�1/–curve. The result for a general C D P1 � y�1 then follows by linearity;
the coefficient of a line in the homology class of C must be nonnegative by considering
the area (with respect to a suitable Kähler form; see Section 3.5 below) of the image of
C after blowing down.

At a double pole of � , there is a canonical local complex coordinate on S in which a
quadratic differential can be expressed as

� Dm
dz˝2

z2
:

We refer to m 2C� as the residue of � at the double pole.

For each p 2M � S , the fibre ��1.p/ is reducible. Let C2
C;p denote one component

of this fibre.

Lemma 3.11 The divisors C2
C;p are linearly independent in H 2.Y�IZ2/ŠH

lf
4
.Y IZ2/.

Proof By considering intersections with the small resolution curves, the d divisors
defined by taking one component of each reducible fibre are linearly independent in
H 2. yX� IZ/; general properties of small resolutions [42] further imply that b2. yX�/D

b2.X�/C d . The fibre Y� is the complement of a smooth divisor y�1 � yX� , by
Lemma 3.9. The complex surface y�1 is a ruled surface over S , with fibres comprising
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a chain of 3 rational curves over each point of M and smooth fibres elsewhere. The
Mayer–Vietoris sequence gives an exact sequence with Z2 –coefficients

(3-6) 0!H 2. yX�/!H 2.Y�/˚H 2.y�1/!H 2.@U.y�1//! 0

with @U.y�1/ the smooth five-manifold which is the circle normal bundle to y�1� yX� .
The Gysin sequence for the cohomology of this five-manifold shows the map

H 2.y�1/!H 2.@U.y�1//

is a surjective map Z2C2d
2

! Z1C2d
2

with rank-one kernel spanned by the Euler class.
The group H 2. yX�/ has rank 2C d , and dimension counting shows that H 2.Y�/ has
rank 1Cd and that the map between them in (3-6) has full rank. Thus the components
of the reducible fibres in H 2. yX�/ are linearly independent in the image.

Lemma 3.12 Consider a loop  of quadratic differentials f�tgt2S1 on S with the
property that the residue at a given double pole p 2S has winding number C1 about 0.
Let f W X! S1 denote the corresponding family of relative quadrics, with fibre X�t

over �t . The monodromy of f on H�.X�1
/ exchanges the homology classes of the

two components of the reducible singular fibre ��1.p/�X�1
.

Proof In the local model fx2� ıyz D �.ı/t2g of (3-4), consider a family of differ-
entials �� with �� .0/ D ei� . The components of the fibre over ı D 0 of the affine
piece Y�� are given by fx D ˙ei�=2tg, which are exchanged by the monodromy
corresponding to varying � in Œ0; 2��.

Since the choice of small resolution yX� depends on a choice of component of the
reducible fibre along which to blow up, there is no obvious universal family of small
resolutions over any such loop  in the space of quadratic differentials. A universal
family of small resolutions does exist over the space Quad˙.S;M/0 of signed complete
differentials introduced in the Introduction.

3.4 Topology

We consider the algebraic topology of the three-fold Y� .

Lemma 3.13 If � W Y� ! S is the natural projection and Dp � S is a small disk
encircling a pole p 2M D Pol.�/, then ��1.Dp/� Y� is simply connected, and has
reduced homology groups

H2.�
�1.Dp//Š Z2; H3.�

�1.Dp//Š Z:
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Proof Via the right side of Figure 3, a neighbourhood of the reducible fibre at a point
of M is described topologically as follows. Let uW P1 �P1 �P1! P1 denote the
third projection. Let H � .P1/3 be a divisor which is a smooth conic in every fibre
of u over P1nf0g, but meets the 0–fibre of u in a union of two lines. Let Z denote
the blowup of P1 �P1 �P1 at the unique intersection point of those two lines, and
let W �Z denote the divisor which is the proper transform of u�1.1/[H . Then
��1.Dp/'ZnW , and hence H�.�

�1.Dp//ŠH 6��
ct .ZnW /DH 6��.Z;W /. The

computation is then straightforward.

The lemma implies that Y� contains homotopically nontrivial 2–spheres which are
not contained in a fibre of projection to S , which is one source of delicacy in the
subsequent construction of its Fukaya category.

Lemma 3.14 H3.Y� IZ/ has rank 6g� 6C 3d ; the intersection form has kernel of
rank d .

Proof Let Y op
� denote ��1.Sn[p Dp/, with Dp a small disk enclosing p 2M and

no other critical point of � . A Mayer–Vietoris argument and (the proof of) Lemma 3.13
imply H3.Y�/ŠH3.Y

op
� /. We now apply the Leray–Serre spectral sequence to the

projection Y op
� ! SnM . The monodromy in R2��Z of a projective fibration of

quadric surfaces can be canonically identified with the monodromy in R0��Z of the
associated double covering of Riemann surfaces; see eg Reid [32]. Let C ! S be
the double cover branched at the zeroes of � , and C 0 � C the preimage in C of
SnM . We next identify the 2–dimensional homology of an affine quadric with the
anti-invariant 0–dimensional homology of the corresponding pair of points. Then

H3.Y
op
�
IZ/ŠH1.SnM IR

2��Z/ŠH1.C
0
IZ/�:

The last group was computed by the Riemann–Hurwitz formula in [5, Lemma 2.2], and
has rank 6g�6C3d . Matching paths in S between zeroes of � define circles  �C 0

and 3–spheres L � Y� ; cf Section 3.7 below. By considering a basis of either group
associated to matching paths of a cellulation of S , one sees that the intersection forms
h�; �iC 0 and h�; �iY� agree, which means that the kernel of the intersection form can
be computed on C 0 . The last statement then follows from [5, Section 2].

Remark 3.15 The space of stability conditions Stab.DC/ on any triangulated cate-
gory C is locally homeomorphic to HomZ.K

0.C/;C/. The K0 –group of the CY3 –
category D.Q;W / defined by a quiver with potential is freely generated by the vertices
of the quiver, and for the quivers Q.T / arising from ideal triangulations of .S;M/, the
number of vertices is 6g�6C3d . On the other hand, for any symplectic manifold Y 2n
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for which the Fukaya category is well defined and b 2H 2.Y IZ2/, there is always a
natural homomorphism

K0.F.Y I b//!Hn.Y IZ/

which associates to a Lagrangian submanifold its homology class (note we have not
passed to split-closures). From Lemma 3.14 and Theorem 1.1 one can show that this
map is an isomorphism for Y� if one restricts to the K0 –group of the subcategory
A.T I b0/� F.Y� I b0/ introduced after Theorem 1.1. It is interesting to compare this
to Abouzaid’s computation [1] for K0.F.†g//, with †g a closed surface of genus
g > 2.

3.5 Symplectic forms

The divisor �1 � X� is relatively ample over S , and its pullback y�1 � yX� is
relatively nef, and relatively ample over SnM . Fix a Hermitian metric k �k in O.y�1/
for which the curvature form iFr is a semipositive .1; 1/–form. Denote by t the
section of O yX� .y�1/ defining the divisor at infinity. The 2–form

(3-7) !v D�ddc.log ktk2/

is weakly plurisubharmonic and vertically nondegenerate over SnM ; for each x 2

Sn.M [Zer�/ the fibre .��1.x/; !v/ is a finite-type Stein manifold, symplectomor-
phic to a Stein subdomain of the cotangent bundle .T �S2; dp^dq/. In particular, the
fibres of Y� over S �M have contact type at infinity.

Fix an area form !S on S of total area d D jM j. The class Œ��1.pt/�C��1 lies
in the interior of the ample cone of X� for any � > 0, and the form

�!vC�
�!S

is symplectic away from the small resolution curves fEig�
yX� . Recall that �W yX�!X�

is the blowup of a (not necessarily connected) Weil divisor HM �X� which passes
through all the ordinary double points. Flopping the small resolution curves appro-
priately, we can ensure that the pullback H � yX� of HM meets every Ei strictly
positively. Direct consideration of the blowup, cf the proof of [42, Theorem 2.9],
implies that

(3-8) !res D �!vC�
�!S C ı�H

is a Kähler form on yX� , where �H is a 2–form Poincaré dual to HM , pointwise
positive on each of the Ei , and ı > 0 is sufficiently small.
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Lemma 3.16 Let  W Œ0; 1�! S � .M [Zer�/ be a C 1 –smooth embedded path. For
any � > 0, there is a well-defined symplectic parallel transport map for � W Y� ! S

over  , which induces an exact symplectomorphism of the fibres ��1. .i//, i D 0; 1,
over the endpoints.

Proof Since by hypothesis  avoids M , and the perturbing form �H can be chosen to
be supported near the preimage of M , it suffices to work with the form �!vC�

�!S ,
which in turn defines the same symplectic connection as !v .

Let D � S �M be a small disk. Local parallel transport maps for X� jD ! D are
clearly well defined since the map is proper, but it is not obvious that these preserve the
divisor at infinity and hence restrict to give maps on Y� . One can appeal to a relative
version of Moser’s theorem to deform the parallel transport vector fields so that they
preserve the divisor at infinity, or one can estimate the horizontal vector fields on the
open part directly. With respect to the vertical Kähler metric on Y� induced by k � k,
the horizontal lift of the vector @z 2 TD is

(3-9) @]z D
r�

kr�k2

since

D�.@]z/D
D�.r�/

kr�k2
D1 and h@]z; viD

D�.v/

kr�k2
D0 for v2T vt .X�/jDD ker.d�/:

Over D , the divisor �1 is smooth, irreducible and of multiplicity 1. Choose local
coordinates x near a point 0 2�1 with

�1 D t�1.0/D fx1 D 0g and �.x/D xn

and write k � k D e� j � j as a multiple of the standard metric, for some locally bounded
positive function � . Then !res D dd ch for a Kähler potential

hD� log ktk2 D� log jt j2� �;

j@]z � hj D
jhr�;r�ij

kr�k2
C

2jt jjhrt;r�ij

kr�k2jt j2
6 constant

j�j
;

which ensures integrability of the horizontal vector field on Y� itself.

The parallel transport maps are not compactly supported, but the image under parallel
transport along  of any closed exact Lagrangian submanifold of ��1. .0// is well
defined up to compactly supported Hamiltonian isotopy inside ��1. .1//. One can
slightly generalise the story to allow parallel transport along vanishing paths 0 which
end at a zero of � , ie critical point of the Lefschetz fibration �j��1.S�M / . In particular,
there are well-defined Lefschetz thimbles associated to such paths, in the usual way;
see Seidel [34] for details.
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3.6 Universal families

Recall from the Introduction the finite 2d –fold cover

(3-10) Quad˙.S;M/0! Quad.S;M/0

of signed quadratic differentials. Geometrically on S , one interprets the sign at p

as a choice of residue ˙
R
ˇp

p
� , where p̌ is a small loop encircling p on S . The

unbranched cover (3-10) extends to Quad.S;M/ as a branched cover, with isotropy
group Zs

2
over differentials with s simple poles.

Both Quad.S;M/0 and its finite cover are complex analytic orbifolds, excluding a
handful of exceptional cases where there is a nontrivial generic isotropy group; when
g.S/ > 0 this only occurs if g.S/D 1 and jMj D 1, when differentials have generic
Z2 –stabiliser. One can also consider framed quadratic differentials Quad�.S;M/0
in which one fixes a framing of the group H3.Y�/. A framed quadratic differential
determines a signed differential, see [5], and Quad�.S;M/0 is smooth. We will view
the choice of sign at a double pole which enters into a signed differential as a choice of
component C2

C;x ��
�1.x/�Y� of the reducible fibre over x (making this association

canonical will not be required in the sequel). There is then a universal smooth family

(3-11) yX! Quad�.S;M/0

of small resolutions over framed quadratic differentials.

Lemma 3.17 For any fixed � > 0 and ı > 0 sufficiently small, the symplectic six-
manifold .Y; !/ underlying .Y� ; !

�;ı
res / depends up to symplectic diffeomorphism only

on the underlying smooth data .S;M/.

Proof Fix �> 0 and ı > 0 sufficiently small. Note !�;ıres is Kähler on yX� for every � .
The period map on Quad�.S;M/0 equips that space with a flat Kähler structure,
cf [5, Theorem 1], and there is a Kähler form on the total space of yX!Quad�.S;M/0
which restricts to !res on each fibre. Since both varieties y�1 � yX� are smooth for
every � , we can now apply a relative version of Moser’s theorem (or an argument as in
Lemma 3.16) to the universal family (3-11) to symplectically identify the complements
yX�ny�1 D Y� for different � .

To simplify notation, we will write ! or !� to denote a symplectic (Kähler) form
on Y� induced as above by the ample divisor Œ��1.pt/�C��1 on X� .
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3.7 Lagrangian spheres

The general fibre of .Y� ; !/ is a finite-type Stein manifold, symplectomorphic to a disk
cotangent subbundle DT �S2 � T �S2 , equipped with the restriction of the canonical
symplectic form. A well-known theorem of Hind [16] asserts that there is a unique
Lagrangian 2–sphere in T �S2 up to Hamiltonian isotopy. That uniqueness leads to
various constructions of 3–dimensional Lagrangian submanifolds in Y� .

Pick a path  W Œ0; 1�! S with f .0/;  .1/g � Zer� ,  .0/¤  .1/ and with  j.0;1/ �
SnfM [Zer�g. We require the tangent vector of  to be nontrivial at each endpoint.

Lemma 3.18 Such a  defines a Lagrangian sphere L � Y� , well defined up to
Hamiltonian isotopy.

Proof Suppose �0 is a meromorphic quadratic differential with a zero of multiplicity
two at a point p 2 S . The corresponding 3–fold

Y�0
D fdetW D ���0g

is given locally by a family of quadrics

fab� c2
D t2
gjt j<" �C3

�Ct

which has a 3–fold ordinary double point at the origin. The sphere L � Y� arises
as a vanishing cycle for the associated nodal degeneration corresponding to a path of
quadratic differentials from � to �0 for which two simple zeroes of � coalesce to
a double zero along  . The sphere is well defined up to Hamiltonian isotopy by a
Moser-type argument, starting from the fact that the stratum of quadratic differentials
with one double zero (and all other zeroes simple) is connected.

The path  defines a matching cycle L0 � Y� , fibred over the arc  via Donaldson’s
construction; cf [36, Section 16] and Auroux, Muñoz and Presas [4]. In general, the
matching cycle construction requires a perturbation of the symplectic connection over 
and thus of ! , which may in general change its cohomology class (pulling back a
nontrivial multiple of the area class on S ). To avoid this issue, we impose additional
symmetry.

Lemma 3.19 Given any open subset M � U � S , there is a Hamiltonian isotopy ht ,
0 6 t 6 1 and h0 D id, of Y� for which h1.L / fibres over  for every matching path
 � S �U .
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Proof There is a distinguished trivialisation of O.M / over SnM . Pick a spin
structure on S viewed as a square root K

1=2
S

of the canonical bundle. We may then
suppose that the original vector bundle V ! SnM is a direct sum of line bundles

V DK
1=2
S
˚K

1=2
S
DK

1=2
S
˝C2:

Then there is a canonical action of SU.2/ by bundle automorphisms of V jS�M , hence
of S2V , and the determinant map is SU.2/–equivariant. Since S2V and W are
isomorphic over SnM , the same holds for the determinant map on W . It follows that,
for � 2H 0.KS .M /˝2/, the hypersurface

(3-12) det�1.�/�W

has a holomorphic SU.2/–action fibrewise over SnM (which does not extend to the
total space of Y� ). Away from ��1.U /, the Kähler form on W and hence Y� can be
made SU.2/–invariant (in fact the SU.2/–action factors through SO.3/).

The SO.3/ action on any fibre T �S2 �D<�.S2/D ��1.x/ is the canonical action
induced by rotations of S2 . Since the action is fibrewise, symplectic parallel transport
maps are SO.3/–equivariant, which in turn means that the vanishing cycles for arbitrary
matching paths contained in SnU are SO.3/–invariant Lagrangian spheres in T �S2 .
However, there is a unique such sphere (any one is an orbit of the action, so distinct ones
would be disjoint). Therefore, for the invariant symplectic form, the matching cycle L0
can be constructed without perturbing the symplectic connection. The Hamiltonian
isotopy ht of the Lemma arises from interpolating a given symplectic form with one
which is SO.3/–invariant over SnU .

The previous construction of a Hamiltonian representative for L fibred over  depends
on choices; fortunately, we will not need to carry this out in families. A choice of
orientation for the vanishing cycle in the fibre and of the matching path in S defines
an orientation of the Lagrangian L .

3.8 Lagrangian cylinders

Consider a loop � � S encircling a point x 2 M . Each fibre ��1.y/ for y 2 �

contains a Lagrangian 2–sphere, unique up to Hamiltonian isotopy. In particular, if
one parallel transports a given 2–sphere V � ��1.�.0// around � , the resulting
monodromy image h� .V / is Hamiltonian isotopic to V , and coincident with V if the
symplectic form is SO.3/–invariant over � as in the previous section. This constructs
a Lagrangian submanifold L� � Y� fibred over � .

Lemma 3.20 L� Š S1 �S2
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Proof We claim the monodromy around x 2M is Hamiltonian isotopic to the identity.
The smooth projective 3–fold yX� ! S has singular fibre a union of two rational
surfaces meeting along a smooth curve C Š P1 ; cf Lemma 3.8. This is a Morse–Bott
Lefschetz degeneration of the generic smooth fibre P1 �P1 , so the monodromy is a
fibred Dehn twist in the vanishing cycle; see Perutz [30]. In this case, the isotropic
fibres of the vanishing cycle are circles in P1 , so the fibred Dehn twist is Hamiltonian
isotopic to the identity.

It will be helpful to be more explicit. We keep the previous notation.

Lemma 3.21 Let � be defined by

(3-13) � D fx 2R;p 2 e�i�=2R; q 2 e�i�=2R; ı D ei�
g06�62�

inside the affine variety

XD fx2
C ı.p2

C q2/D 1g �C4:

There is a symplectic structure !X on X, compatible with the standard complex
structure, for which � is Lagrangian, and a symplectic embedding of an open subset of
the preimage of fjıj D 1g � .X; !X/ into .Y� ; !/ taking � to L� .

Proof After flattening the Hermitian metric on the vector bundle W to look like a
product near M , and deforming � through smooth sections to be constant over a small
neighbourhood of M , one obtains the following symplectic (but not holomorphic)
local model for a neighbourhood of a reducible fibre of Y� . Consider

P3
�C � fŒx W y W z W t �; ı j x2

� ıyz D t2
g with !FS ˚!std

and the hyperplane section …D ft D 0g. The subspace living over some small ball
0 2 Bı �Cı embeds into X� , with the local fibration given by projection � to the ı–
plane, and a symplectic model for Y� near a double pole of � is the affine complement
of …,

(3-14) C3
�C � fx2

� ıyz D 1g:

A unitary change of coordinates and conformal rescaling gives the hypersurface

XD fx2
C ı.p2

C q2/D 1g �C4

which we equip with the restriction of the standard flat symplectic structure, scaled in
the ı–direction so Bı contains the unit circle. We deform the standard symplectic form
!C3˚!ı by deforming !ı to a form !0

ı
which coincides with the form .1=r/ dr ^d�

in a small open neighbourhood of the unit circle. Since this coincides with the usual
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form r dr d� on S1 , a sufficiently small such perturbation will still tame the standard
integrable complex structure. There is an antiholomorphic involution

.x;p; q; ı/ 7! .xx; ıp; ıq; 1=xı/

which preserves X and reverses the sign of the deformed symplectic form on the
submanifold XjfjıjD1g . The fixed locus therefore defines a Lagrangian submanifold

� D fx 2R;p 2 e�i�=2R; q 2 e�i�=2R; ı D ei�
g06�62�

as given in the lemma. This is an S2 –bundle over the unit ı–circle; since it is globally
Lagrangian, the 2–sphere fibres are preserved by parallel transport by [36, Lemma 16.3],
which implies that � DL� for � a parametrisation of the unit ı–circle.

3.9 WKB-collections of spheres

Fix a complete saddle-free quadratic differential � which defines a nondegenerate
WKB-triangulation in the sense of Lemma 2.2. Lemma 3.18 associates to every edge of
the dual cellulation a Lagrangian sphere, which gives a collection of nD 6g� 6C 3d

Lagrangian spheres fLeg � Y� . We will call such a collection a WKB-collection of
Lagrangian spheres.

We remark that if the differential  yielded a WKB-triangulation T which contained a
self-folded triangle, the dual cellulation would contain an edge which goes from a zero
to itself, and the matching sphere construction would yield an immersed Lagrangian
sphere in Y . The quiver prescription of Labardini-Fragoso then involves replacing
this immersed sphere with an embedded replacement, as in Figure 4. In any case, the
situation covered by Lemma 2.2 will suffice in this paper.

Figure 4: A self-folded triangle, its enclosing triangle and matching spheres
(dotted): on the left, one sphere would be immersed; the right side shows its
embedded WKB-replacement.

Saddle-free differentials form chambers which are separated by walls on which, in the
simplest instance, there is a unique saddle connection; the corresponding triangulations
differ by a flip, and the Lagrangian cellulations and WKB-collections differ as in
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Figure 5, assuming the WKB-triangulations are nondegenerate on both sides of the
wall.

Figure 5: Lagrangian cellulations differing by a flip

Note that the Lagrangians Le , Lf for two distinct edges may meet at two points, cf
Figure 6. In this case, the union of the two matching paths e [ f is necessarily
a homotopically nontrivial loop, by the uniqueness of geodesic representatives for
homotopy classes in complete flat surfaces; see Strebel [43].

P

L

K

K

P

L

Figure 6: WKB-Lagrangians fL;K;Pg in the case g D 1 , d D 1

Remark 3.22 A holomorphic quadratic differential  on S has 4g�4 zeroes. There
is no trivalent cellulation of S with vertices the zeroes of  , for reasons of Euler
characteristic (trivalence implies the number of faces would be zero). Thus, there is no
direct analogue of the Lagrangian cellulation for the 3–fold Y 0

 
of (3-1).

3.10 Gradings

Let .Z; !/ be a symplectic manifold with 2c1.Z/D0, so that Z has trivial bicanonical
bundle K˝2

Z
ŠO , where KZ is defined with respect to any compatible almost complex

structure. The space of possible homotopy classes of trivialisation of K˝2
Z

is given by
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H 1.ZIZ/. Pick a quadratic volume form ‚ 2H 0.K˝2
Z
/ giving the trivialisation; ‚

defines a map from the Lagrangian Grassmannian to the circle,

˛W GrLag.Z/! S1; ƒ 7!
�.v1^� � �^vn/

2

j�.v1^� � �^vn/2j
; ƒD hvj i � T Zz :

For any L � Z there is an induced map ˛LW L! S1 and a grading of L � Z is
given by a phase function z̨LW L!R with exp.2i� z̨L/D ˛L . If zL, zL0 are graded
Lagrangians, any isolated transverse intersection point p of L and L0 acquires an
absolute Maslov index i. zL; zL0Ip/ 2 Z.

Example 3.23 Suppose L0 is the graph of an exact one-form df in T �L, and f is
Morse with an isolated critical point at 0. Equip L with the constant trivial phase
function. There is a distinguished choice of grading on L0 compatible with the canonical
isotopy from L0 to L via graphs of "df , and with respect to this grading, i. zL; zL0I 0/

is given by the Morse index of 0 as a critical point of f .

The Lagrangian submanifolds L admit gradings with respect to the holomorphic
volume form �� of Lemma 3.6, since they are simply connected.

Since � equips the surface S with a flat metric with singularities, a curve  W Œ0; 1�!
S �M has a well-defined phase at each point with  .t/ 62 Zer� . Recall that  is
a geodesic for the �–metric precisely if this phase is constant on each connected
component of �1.SnZer�/, and any primitive saddle connection for � is a geodesic.

Lemma 3.24 There is a volume form z�� homotopic to �� with the property that the
phase function of the matching sphere L � Y� , computed with respect to z�� , is equal
to the �–phase of the curve  � S . In particular, saddle connections define Lagrangian
3–spheres of constant phase.

Proof Away from a neighbourhood M � U � S we have a holomorphic SU.2/–
action on Y� fixing the divisor at infinity, hence the associated holomorphic volume
form is SU.2/–invariant in this subset. It follows that the phase function on a matching
sphere Le is SO.3/–invariant, where SO.3/ rotates the S2 –fibres, hence defines a
function on the underlying matching path e . We claim that this function coincides
with the phase of e in the �–metric.

The result is local, so after passing to a cover of S we can reduce to the case where 
is an arc in the base of a Lefschetz fibration with fibres given by affine quadrics. An
explicit formula for the phase can then be obtained from the Poincaré residue theorem;
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compare to Thomas and Yau [45, Section 6] or Khovanov and Seidel [22, Section 5e].
In particular, for the local model

C3
!C; .z1; z2; z3/ 7!

X
z2

i D t

[45, Equation (6.3)] asserts that the phase function associated to ‚D dz1 ^ dz2 ^ dz3

at any tangent vector to the Lefschetz thimble defined by a path  .t/, and projecting
to  0.t/@t , has phase  0.t/

p
t , ie that ‚ pushes forward to the one-form

p
tdt .

Thus ‚˝2 defines a quadratic differential t dt˝2 on the t –plane with a simple zero.

The previous lemma can be used to fix the phase of �� uniquely.

4 Floer theory

4.1 Almost complex structures

The manifold .Y� ; !/ is not convex or of contact type at infinity, because the divisor �1
is not ample. Lemma 3.10 nonetheless gives good control on holomorphic curve theory
in Y� .

Definition 4.1 Let J� denote the space of almost complex structures on Y� which

(1) tame the symplectic form ! ,

(2) make the projection Y�! S holomorphic,

(3) coincide outside a compact set with the restriction of the integrable complex
structure from the crepant resolution yX� .

Lemma 4.2 For J 2 J� there is no nonconstant J –holomorphic map P1! Y� , and
if L � Y� is a matching sphere, then L bounds no J –holomorphic disk.

Proof Since the projection Y�! S is holomorphic and g.S/ > 0, the first statement
follows. The same argument implies that any J –holomorphic disk with boundary
on L is contained in a fibre of the projection Y� ! S , but the intersection of L
with any fibre it meets is exact.

A pseudoholomorphic disk denotes the solution to a perturbed Cauchy–Riemann equa-
tion

(4-1) .du�  ˝XH /
0;1
D 0
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defined on a disk with boundary punctures and Lagrangian boundary conditions Lj �

int.A/, where  2 �1.D/ is a 1–form and XH the Hamiltonian vector field of a
Hamiltonian function H W yX�!R which vanishes to order at least 2 on the divisor y�1 .
The .0; 1/–part of the 1–form is taken with respect to a family of almost complex
structures induced by a mapping of the domain of u into J� . Note that the map
uW D! J� has the property that u.t/ is some fixed integrable structure J0 near �1 .
In local coordinates (4-1) has the form

@suCJu.z/@tu�  .@t / �Ju.z/ �XH .u; t/D 0:

Since XH �0 near �1 and Ju.z/ is constant near infinity, outside a relatively compact
subset U whose interior contains all the fLj g, (4-1) reduces to the usual unperturbed
holomorphic curve equation.

Lemma 4.3 Let fL1; : : : ;Lkg � Y� be compact Lagrangian submanifolds, and sup-
pose uj is a sequence of pseudoholomorphic disks with uniformly bounded energy and
with boundary on

S
j Lj . Then the uj are contained in some compact subset of Y� .

Proof Suppose the conclusion of the lemma fails. By Gromov compactness in the
smooth variety yX� , some subsequence of the uj converges to a curve u1 in yX� which
has nontrivial intersection with the divisor y�1 . Since the Cauchy–Riemann equation
is unperturbed near infinity, the image of u1 must meet y�1 locally positively, except
for components contained inside the divisor. More precisely, positivity of intersections
applied to the principal component of the stable curve limit means that this limit curve
must contain at least one bubble component which is a rational curve in y�1 with
strictly negative intersection with y�1 . No such curves exist by Lemma 3.10.

4.2 Fukaya category generalities

The strictly unobstructed Fukaya categories occurring in this paper belong to a techni-
cally manageable regime. The relevant transversality theory is encompassed by material
in [36; 39], to which we defer for essentially all details of the construction.

Let .Y; !/ be a symplectic manifold which admits a class of taming almost complex
structures JY which satisfy the first conclusion of Lemma 4.2. We only consider strictly
unobstructed Lagrangian submanifolds, and suppose furthermore that the conclusion
of Lemma 4.3 is valid. (A quasiprojective variety Y admitting a compactification as in
Lemma 3.10 is the most relevant source of examples.) For each b 2H 2.Y IZ2/ there
is a Z–graded A1–category F.Y I b/, linear over ƒC , called the strictly unobstructed
(b–twisted) Fukaya category. Objects of F.Y I b/ are Lagrangian branes L � Y ,
namely:
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� L� Y is a closed oriented Lagrangian submanifold.

� JL2JY is an almost complex structure for which L bounds no JL –holomorphic
disk and meets no JL –holomorphic sphere.

� L carries a relative spin structure, relative to the class b .

� L is graded; see Section 3.10.

Morphisms in F.Y I b/ are given by the Floer cochain complex .CF�.L;L0/; �1/,
which is freely generated by intersection points of L and L0 if they intersect transversely.
More properly, index theory and the choice of gradings on L, L0 associate to any
isolated transverse intersection point x 2 L t L0 an abstract one-dimensional ƒC –
vector space orx , see [36, Section 11h], and the Floer complex

CF�.L;L0/D
M

x

orx :

There are higher-order chain-level operations which comprise a collection of maps

(4-2) �d
F W CF.Ld�1;Ld /˝ � � �˝CF.L0;L1/! CF.L0;Ld /Œ2� d �

of degree 2�d , for d > 1, with �1
F being the aforementioned differential and �2

F the
holomorphic triangle product. The f�d

Fg have matrix coefficients which are defined
by counting holomorphic disks with .d C 1/–boundary punctures, whose arcs map
to the Lagrangian submanifolds .L0; : : : ;Ld / in cyclic order and which converge in
strip-like end coordinates at the punctures to intersection points. The moduli spaces
of disks are naturally oriented relative to the orientation lines occurring in (4-2) (in a
manner which depends on the choice of b ), so the count of pseudoholomorphic disks is
a signed count. The count of a disk u is weighted by the symplectic area q

R
u ! , with q

the Novikov parameter.

The construction of the operations �d
F is rather involved, and we defer to [39, Section 3]

for details; in particular, the coefficients �d .xd�1; : : : ;x0/ depend on additional
perturbation data .K; J/ (choices of Hamiltonian functions, domain-dependent almost
complex structures, strip-like ends etc; these choices in part overcome the difficulty that
a Lagrangian is never transverse to itself). The coefficients are not individually well
defined (the �k are not chain maps), but the entire structure is invariant up to a suitable
notion of quasi-isomorphism. Hamiltonian isotopic Lagrangian submanifolds, equipped
with brane data compatible with the isotopy, define quasi-isomorphic objects of F.Y I b/.

We denote by TwF.Y I b/ the category of twisted complexes over F.Y I b/, and by
Tw� F.Y I b/ its idempotent completion. The corresponding cohomological categories
are denoted DF.Y I b/ and D�F.Y I b/.

We record one particular fact for later.
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Lemma 4.4 Let b 2H 2.Y IZ2/ be supported by a locally finite cycle Fb �Y disjoint
from a collection of spin Lagrangian submanifolds fLig06i6k . Suppose the Li are
pairwise transverse, and fix intersection points xi 2 CF.Li ;LiC1/ with cyclic indices.
If a rigid holomorphic disk u contributes to the coefficient �k

F.Y /
.xk�1; : : : ;x0/ with

value � , then it contributes to the same coefficient in F.Y I b/ with coefficient .�1/d �� ,
where d D u �Fb is the algebraic intersection number of the disk with the cycle Fb .

Proof See [11, Proposition 8.1.16]. Since Fb\Li D∅, each of the spin Lagrangians
Li is also relatively spin relative to b . Note that two Hamiltonian isotopic represen-
tatives for L in Y each lying in Y nFb , which define quasi-isomorphic objects of
F.Y I b/, may not be Hamiltonian isotopic in Y nFb . The trace on L of the isotopy
with the cycle Fb defines a 1–cycle in L, Poincaré dual to a class in H 2.LIZ2/ which
twists its relative spin structure compatibly with the change in intersection number
with Fb of some given element in �2.Y;L/.

If one encounters Lagrangians in some convenient geometric position (clean Morse–
Bott intersections, matching cycles in a Lefschetz fibration) it is often useful to compute
without perturbing them. Given a finite set of Lagrangians fLj g which meet pairwise
transversely, one can define the corresponding Fukaya category subject to this constraint,
but the structure coefficients are obtained from (virtual) counts of more general objects
called pearly trees; see Seidel [37, Section 7] and Sheridan [40, Section 4].

First, one defines CF�.Li ;Li/D C �Morse.fi/ for a fixed Morse function fi W Li !R
(Morse–Smale for an underlying Riemannian metric). An abstract pearly tree is a
planar tree � �R2 with one infinite incoming and several infinite outgoing edges, and
d > 0 finite-length internal edges, vertices of valence at least 3, the connected compo-
nents of the complement R2n� being labelled by Lagrangians Lj . A holomorphic
pearly tree comprises a collection of pseudoholomorphic disks and gradient flow-lines,
satisfying obvious incidence and compatibility conditions; gradient flowlines arise
when computing a higher product �k.xk�1; : : : ;x0/ for which we have some inputs
xi 2 CF�.Li ;Li/; see Figure 7.

There are two important situations in which one can avoid pearls for purposes of
computing a coefficient of (4-2).

(1) If adjacent boundary conditions fLi ;LiC1g (with cyclic indices) are always
pairwise transverse, in particular never coincide, there are no pearly contributions
to this particular coefficient of �k . This relies on an important theorem due to
Sheridan [40, Proposition 4.6]: moduli spaces of pearls can be made regular by
generic choices of consistent perturbation data, and in the regular case pearls
with d internal edges form a stratum of real codimension d . Therefore for
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Figure 7: An abstract planar tree, and associated pearly configuration

isolated regular pearls, there are no internal (finite length Morse) edges of the
underlying planar tree.

(2) If there is exactly one adjacent pair of coincident Lagrangians Li DLiC1 , and
the corresponding input or output xi 2 HF�.Li ;Li/ŠH�.Li/ is the class of
top degree, then one can count pseudoholomorphic polygons which are smooth
at the given corner but have an incidence condition, passing through a fixed
generic point q 2Li Poincaré dual to xi ; compare to [37, Section 7].

The choice of b0 as background class is relevant in Lemma 4.11, but much of the
discussion in the next sections applies to the categories F.Y I b/ uniformly. We will
sometimes omit the background class b 2H 2.Y� IZ2/ from our notation when it plays
no role.

4.3 Grading the WKB-algebra

Now return to the 3–fold Y� . Any Lagrangian matching sphere is strictly unob-
structed and admits a unique spin structure. Since L bounds no holomorphic disks,
the cohomology H.CF�.L;L//ŠH�.L/, equipped with its classical A1–structure.

Given a finite collection of Lagrangian spheres fLeg � Y� , and a choice of b 2

H 2.Y� IZ2/, there is an associated total morphism A1–algebra

(4-3) ADAb D

M
e;e0

HF.Le;Le0/
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Theorem 1.1 involves computing the A1–algebra ADA.T I b0/, where the indices
e 2 T are indexed by edges of a nondegenerate triangulation T and correspond to
a WKB-collection of Lagrangian spheres, and identifying it with the corresponding
Ginzburg potential algebra (ie with the total endomorphism algebra of the category C
considered in Section 2.1).

Lemma 3.19 implies that each Le can be taken to fibre over the path e , and hence
it suffices to compute the Floer theory amongst such a collection of fibred matching
spheres. By projecting to S , pseudoholomorphic disks are then constrained by the
Riemann mapping theorem. Collections of matching spheres do not lie in general
position (there are triple intersections at vertices of the Lagrangian cellulation), so in
principle one must define A via pearls, but the remarks at the end of Section 4.2 imply
that in the case at hand the consequences are fairly benign.

Consider the Lagrangian submanifolds fLeg which are matching spheres for the edges
of the Lagrangian cellulation (dual to a nondegenerate WKB triangulation). Any two
distinct Lagrangians Le;Lf are either disjoint or meet at either one or two isolated
points, lying over trivalent vertices of the cellulation (the nodal points of a fibre of �
lying over a zero of � ).

Lemma 4.5 The Le admit gradings for which:

� The algebra AD
L

e;e0 HF�.Le;Le0/ is concentrated in degrees 0 6 �6 3.

� The isolated intersection points have absolute Maslov index C1 clockwise
and C2 anticlockwise; cf Figure 8.

2

2

2

L

K 1

1

1

L

K

Figure 8: A point contributes to CF2.L;K/ and CF1.K;L/ .

Proof The groups HF�.L;L/ŠH�.S3/ carry their natural grading, and by Poincaré
duality HF�.L;L0/ Š HF3��.L0;L/ for any L;L0 , so it suffices to determine the
grading of an isolated intersection point lying over a zero of � . The Lagrangian
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matching paths of a WKB-type Lagrangian cellulation are realised by geodesics for
the �–metric on S , so the Lagrangians are locally given by transversely intersecting
special Lagrangian thimbles.

More explicitly, working locally near a simple zero of the quadratic differential � ,
we consider the three straight arcs of the associated vertical foliation, which form the
terminals of a trivalent vertex. (Comparing with Figure 5, the leaves of the horizontal
foliation at a zero fall into the double poles at the centres of the three cells adjacent to
the zero, and the edges of the Lagrangian cellulation are given, locally near the zero,
by leaves of the vertical foliation.) Each of the arcs defines by parallel transport a
Lagrangian disk in the 3–fold Y� , and Lemma 3.24 implies these all have identical
phase. There are Darboux coordinates in which these three Lagrangians are given by
linear subspaces R3; ei�=3R3 and e2i�=3R3 �C3 . (Note the quadratic volume form
‚ D .dz1 ^ dz2 ^ dz3/

˝2 is invariant under rotation by �=3, just as the quadratic
volume form on S , locally given by t dt˝2 with t D

P
z2
j , is locally invariant under

rotation by 2�=3.)

The subspace L0 D ei�=3R3 is the graph of the differential of a function over LDR3

with an isolated minimum, so a Morse critical point of index 0. Therefore, for the
grading on L0 compatible with the obvious rotation isotopy back to L, the absolute
index would be zero by Example 3.23. The phase function ˛L0 � �=2 differs from
the phase function compatible with that isotopy by the constant function 1, hence the
index of the intersection point is C1. (An alternative for the last step is to use the
nonvanishing of the triangle product, Lemma 4.9 below, to show that since the absolute
indices are symmetric under rotation of Figure 8 by 2�=3, they must all equal C1.)

The local Morse-theoretic description of an isolated intersection x of WKB-spheres
L;L0 given above also yields preferred isomorphisms orx Š k between the orientation
lines and the ground field, coming from preferred trivialisations det.Dx/Š k for the
determinant line of a x@–operator on a half-plane with linear Lagrangian boundary
conditions which rotate by �=3. Via these trivialisations, Lemma 4.5 shows that the
WKB-algebra is isomorphic, as a graded vector space, to the total morphism algebra of
the category C introduced in Section 2.1.

4.4 First constraints on polygons

Let fLeg be matching spheres which are edges of a nondegenerate WKB-cellulation.
Appealing to [36, Lemma 2.1], we can take the A1–structure on the algebra A from
(4-3) to be strictly unital.
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Lemma 4.6 Let k > 3. If the product

�k
W HF�.Lk�1;Lk/˝ � � �˝HF�.L0;L1/! HF�.L0;Lk/Œ2� k�

is nonzero, then either L0¤ Lk and all inputs have degree 1, or L0DLk , exactly one
input has degree 2 and all others have degree 1.

Proof Lemma 4.5 implies that the degree–0 subalgebra of the WKB-algebra is spanned
by the units ei 2 HF0.Li ;Li/ of the constituent WKB-spheres. It follows that since
the A1–structure is strictly unital, none of the inputs to a nontrivial operation �k with
k > 3 has degree 0. Hence every input has degree greater than or equal to 1, whilst �k

has degree 2� k . Since A is concentrated in degrees 0 6 � 6 3, it follows that no
input can have degree 3, and at most one input can have degree 2. Moreover, there
is an input of degree 2 if and only if the output has degree 3, which is possible only
if L0 and Lk coincide.

Lemma 4.7 The second case of Lemma 4.6 does not occur.

Proof Working with pearls, we take a Morse model CF�.L;L/ D C �Morse.L/ for
self Floer cochains; without loss of generality, for each WKB-sphere we can take a
perfect Morse function so the Floer cochain group has rank 2. If there is a degree-two
input to the product in Lemma 4.6, the output is in the rank-one space CF3.L0;L0/,
which means that the holomorphic disk should pass through the stable manifold for the
gradient flow of the maximum of the Morse function on L0 . Therefore this marked
point is unconstrained, and hence no nonconstant disk can be rigid. It follows from the
proof of Lemma 4.9 below that constant polygons contribute nontrivially to �2 but not
to �k for k > 3.

According to Fukaya [9, Theorem 1.1], over ƒC the Fukaya category can always be
taken both cyclic and strictly unital, and Lemma 4.7 would also follow formally from
that fact; compare to Section 2.1. A helpful consequence of the previous result is
that one can compute the Fukaya category using pseudoholomorphic disks rather than
pearly trees. Note that these results do not imply that all the fLig in (4-2) are pairwise
distinct for the corresponding operation to be nontrivial; see Figure 9 for an example.

The boundary of any holomorphic polygon contributing to �k defines a (not necessarily
embedded) parametrised closed path in the graph on the surface S formed by the edges
of the Lagrangian cellulation. Inputs of degree 1 correspond to turning clockwise
in the graph defined by the cellulation edges, and inputs of degree 2 correspond to
turning anticlockwise, along the boundary of the disk; it is simplest to see this by lifting
the disk to the universal cover, given by pulling back the fibration � W Y�! S to the
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L
P

L
P

K

K

Figure 9: A polygon contributing to �5 in the universal cover when
g.S/D 1; jM j D 1; note the holomorphic disk maps onto S D T 2 .

universal cover of S , where the Lagrangian cellulation edges give rise to a trivalent
planar graph. Lemma 4.6 implies that there is at most one anticlockwise turn.

Example 4.8 Suppose L and K meet transversely at a single point. The unique
closed path of length 2 gives rise to the product

(4-4) HF1.L;K/˝HF2.K;L/! HF3.K;K/

which is nontrivial by Poincaré duality.

4.5 Constant triangles

Let L0;L1;L2 �Z be three graded Lagrangian submanifolds, intersecting pairwise
transversely at a point p . There is a constant holomorphic triangle u with boundary
conditions (anticlockwise ordered) L0;L1;L2 . Let Du be the linearized operator
at u, ie the x@–operator on the trivial vector bundle with fibre T Zp over a disk with
three boundary punctures, with boundary values in TL0;p , TL1;p , TL2;p . The index
formula for such operators [36, Proposition 11.13] implies that

(4-5) index.Du/D i. zL0; zL2Ip/� i. zL0; zL1Ip/� i. zL1; zL2Ip/:

We now return to the situation (and notation) arising in the proof of Lemma 4.5. We label
the linear Lagrangians R3; ei�=3R3 and e2i�=3R3 � C3 by L0 , L2�=3 and L4�=3 ,
corresponding to the slopes in the complex plane of the arcs over which they fibre in
the model Lefschetz fibration

pW C3
!C; .z1; z2; z3/ 7! z2

1 C z2
2 C z2

3 :
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For the zero phase functions of Lemma 4.5, the indices appearing in (4-5) are

i. zL0; zL2�=3Ip/D 2; i. zL0; zL4�=3Ip/D 1; i. zL4�=3; zL2�=3Ip/D 1;

so the constant triangle has index 0 and can in principle contribute nontrivially to the
product in the algebra Ab .

Lemma 4.9 The constant holomorphic triangle at a trivalent zero contributes ex-
actly C1 to a nontrivial multiplication

�2
FW HF1.L4�=3;L2�=3/˝HF1.L0;L4�=3/! HF2.L0;L2�=3/:

Proof The local model splits into a direct sum of three copies of the geometry given
by three real lines in C passing through the origin.

Case 2: index Du D 0

















 J

J
J
J
J
J
J
JJ


















L0

L1 L2

L0

L2 L1

Case 1: index Du D�1

J
J
J
J
J
J
J
JJ

Figure 10: Indices of constant holomorphic triangles

The regularity of the constant triangle u is then standard, provided the Lagrangians are
taken in the appropriate order. For a constant triangle u in C contributing to a product

HF�.L1;L2/˝HF�.L0;L1/! HF�.L0;L2/

the indices are as given in Figure 10 (consider perturbing the three lines to create a
nontrivial triangle in C , which is either holomorphic or antiholomorphic depending on
the cyclic order of the boundary conditions).

Constant triangles and Poincaré duality do not always completely determine the algebra
structure in A; there may be additional products if some of the cells of the Lagrangian
cellulation are themselves triangles.
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4.6 Holomorphic disks on totally real cylinders

Constant holomorphic triangles provide the cubic terms in the superpotential associated
to a triangulated surface arising from the “inscribed triangles” of Labardini-Fragoso’s
quiver prescription for a potential [25]; see (2-2) and Figure 1. The higher-order terms
of the potential arise from higher-order A1–products in A. En route to computing
these, it will be helpful to study a simpler local model involving the Lagrangian cylinder
of Section 3.8.

Recall the totally real model S1 �S2 Š � �C4 for the Lagrangian cylinder given in
(3-13). We will consider holomorphic sections D!C4 with this boundary condition.

Lemma 4.10 In the notation of Lemma 3.21, there are exactly two rigid holomorphic
sections of � W X!D with boundary condition on � , and all other moduli spaces of
sections are empty.

Proof Consider a section D! X of � . Since X�C4 , each coordinate projection
defines a holomorphic map D!C . In the x coordinate this is a map from the unit
disk Dı to C which takes the boundary circle to the real line; any such is constant,
so in fact the nontrivial geometry takes place in the C2 –bundle over the disk with
coordinates p; q . In each of these factors, the total space of the fibrewise Lagrangian
of (3-13) over the boundary circle defines a Möbius band, for instance

C2
p;ı � fı D ei� ;p 2 e�i�=2Rg:

Consider a holomorphic section of � in this factor. This defines a map z 7! v.z/ on
the disk with the property that v.z/ 2 z�1=2R for z 2 S1 . In [34, Lemma 2.16], it is
shown that the only holomorphic maps uW D!C satisfying u.z/ 2 z1=2R on S1 are

uW z 7! czCxc for some c 2C:

Therefore if v is a holomorphic section of � , then zv.z/D czCxc , but then v.z/D
.cCxc=z/ is meromorphic with a pole, unless cD0. It follows that the only holomorphic
sections of � with boundary condition � are the constant sections

x.ı/D˙1; p.ı/D 0D q.ı/:

Since the sections are constant, they are both regular.

We equip � with the unique spin structure which is bounding in the circle factor. The
moduli space of holomorphic sections of � W X!D with boundary on � inherits a
canonical orientation. (More precisely, we are interested in the space of sections with a
single boundary marked point, which has a natural evaluation map to � .) Note that
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this spin structure is in particular a relative spin structure relative to the class b0 of
(1-3), since b0j� D 0. The choice of background class b 2 H 2.Y� IZ2/ enters the
computation of A.T I b/ at the following point.

Lemma 4.11 The two rigid sections of Lemma 4.10 contribute to the moduli space of
sections with opposite signs, with respect to the trivial background class b D 0, and
with the same sign, relative to the background class b D b0 .

Proof We return to the local model of Lemma 3.21 and the affine variety fx2 C

ı.p2C q2/ D 1g � C4 . There is a holomorphic involution � of the model given by
x 7! �x , p 7! �p . This acts fibrewise, preserves the Lagrangian � and exchanges
the two holomorphic sections. The involution preserves the orientation of � , which
implies that the sections count with the same respectively opposite signs (for the trivial
background class) depending on whether or not the involution preserves the stable
trivialisation of the Lagrangian boundary condition along the sections determined by
the spin structure on � ; cf [11, proof of Theorem 8.1.1]. We claim that the involution
does not preserve this stable framing.

Fix a model S1�S2 �R2�R3 DR5 with the bounding spin structure. Let .x;y; z/
denote coordinates on the R3 –factor. There is a natural parametrisation S1 �S2! �

taking .ei� ; .x;y; z// to

.ei� ; .x; e�i�=2.cos.�=2/yC sin.�=2/z/; e�i�=2.sin.�=2/y � cos.�=2/z/

D .ei� ; .x;p; q//:

The involution � acts fibrewise on the S2 –factor of S1�S2 by reversing the sign of x

and reflecting the circle in the .y; z/–plane along an axis of angle �=2. Altogether, this
means we act by the generator of �1.SO.3// and hence of �1.SO.5//. Put differently,
the boundary values x D ˙1;p D 0 D q of the holomorphic sections, viewed as
S1 –submanifolds of � , have an obvious “constant” framing (constant in a twisted
parametrisation) from the tangent spaces to the .p; q/–plane. These “constant” framings
are exchanged by the involution, but are not simultaneously compatible with a choice
of spin structure on � . Indeed, � is really the mapping torus of a rotation by � on S2 ,
and the two holomorphic sections have boundary values coming from the two rotation
fixed points. Homotoping the monodromy to the identity rotates the tangent spaces
at the fixed points by � in opposite directions, hence can bring only one of the two
“constant” framings to the framing induced by the fixed spin structure. The upshot is
that the two sections contribute with opposite signs to the moduli space oriented with
respect to the trivial background class.
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Note that b0 is supported by a locally finite cycle H disjoint from the Lagrangian � .
The two holomorphic sections of Lemma 4.10 each hit one of the two components of
the reducible fibre over the local point of M , hence exactly one of them intersects H ,
so turning on the background class b0 changes the sign of exactly one of the disks by
Lemma 4.4.

Remark 4.12 After twisting by b0 , the boundary values of the sections of Lemma 4.10
sweep the 1–cycle

m0.S
1
�S2/D˙2Œ@��¤ 0 2H1.S

1
�S2/;

which is not the restriction of any central element of QH�.M I b0/. Therefore a
Lagrangian cylinder L� has obstructed b0 –twisted Floer cohomology, and does not
define an object of F.Y� I b0/, even if one enlarges the category to allow unobstructed
branes in the sense of [10; 11] rather than just weakly exact Lagrangian submanifolds.

4.7 Nonconstant polygons

Fix a finite collection fL0; : : : ;Lkg of matching spheres Li � Y� arranged cyclically,
bounding an open subset of S containing a unique double pole of � . The Lagrangians
meet at a sequence of intersection points xj D Lj t LjC1 for 0 6 j 6 k (with
LkC1 � L0 by definition). Appealing to Lemma 4.5, we may suppose that xj has
Maslov index 1. Let xxk denote the dual Maslov index-2 intersection point which is a
generator of HF2.L0;Lk/.

Lemma 4.13 If the fLj g16j6k are pairwise distinct, the coefficient of � in the
product

�k
F.Y Ib/.xk�1; : : : ;x0/D �xxk

is well defined; it is independent of the auxiliary choices made in constructing the
Fukaya category.

Proof Recall that the construction of the Fukaya category relies on additional pertur-
bation data .K; J/ of Hamiltonian deformations, domain-dependent almost complex
structures or Morse–Smale pairs made universally over moduli spaces of stable disks or
pearly trees. As in [36, Section 10e], two different choices of that auxiliary data .Ki ; Ji/,
i D 1; 2, for defining the A1–operations can be related by a continuation A1–functor
G D .Gi/i>1 between the resulting Fukaya categories Fi . Given a configuration of
WKB-Lagrangians, G1 (the action on morphism groups) is necessarily the identity,
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whilst �1
Fi

also vanishes on CF.Li ;Lj / (defining self-Floer cochains using perfect
Morse functions). The A1–functor equations then imply that

(4-6) �k
F2
.xk�1; : : : ;x0/C

X
i<k;j

�i
F2
.xk�1; : : : ;G

j .xiCj ; : : : ;xi/;xi�1; : : : ;x1//

D G1.�k
F1
.xk�1; : : : ;x0//

C

X
j ;i<k

˙Gj .xk�1; : : : ; �
i
F1
.xiCj ; : : : ;xj /; : : : ;x0//:

The higher products �j
F amongst the fxig all vanish for 2 < j < k , since any con-

tributing holomorphic disk would not have boundary defining a closed curve in the
WKB-graph. That immediately implies the �k –product is invariant under G.

Note that the hypothesis that the fLig16i6k are pairwise distinct can be weakened to
the hypothesis that no cyclic subchain fLi ; : : : ;LiCj g � fL0; : : : ;Lkg arises as the
ordered boundary of any nontrivial element of �2

�
Y� ;

S
j Lj

�
. Since holomorphic

disks lift uniquely to unramified covers, it would also be sufficient to realise either of
these hypotheses after pullback to a covering space, as in Figure 9.

Suppose one has a Lefschetz fibration pW X ! B and a finite collection of k C 1

cyclically ordered weakly exact matching spheres fKj g � X which enclose a disk
containing no critical points of p . Suppose that the Lagrangians fKj g are pairwise
distinct, and have the obvious affine Ak –intersection graph. Let yj 2 Kj t KjC1

denote the intersection points, for 0 6 j 6 k with cyclic indices. The following is well
known, and reflects the existence of a relation between the classes ŒKj � 2K0.F.X //.

Lemma 4.14 If eK0
2 HF0.K0;K0/ denotes the unit,

(4-7) �kC1.yk ; : : : ;y0/D˙eK0
:

Proof The coefficient of eK0
in the output is well defined by Lemma 4.13. An iterated

application of the long exact triangle in Floer cohomology expresses Kk as a twisted
complex on fK0; : : : ;Kk�1g, and the nontriviality of (4-7) follows from the Maurer–
Cartan equation for the differential in that complex.

Remark 4.15 Suppose  is a holomorphic quadratic differential, and consider a
cycle of matching spheres in the 3–fold Y 0

 
of (3-1) enclosing a disk with no critical

points of  , hence in the configuration of the previous lemma. The nonvanishing of
this higher product implies that

Pk
iD0 jyi j C 1� k D 0, which precludes jyi j D 1

for every i . It follows that F.Y 0
 
I b/ is not described by a quiver with potential of

WKB-type; compare to Remark 3.22.
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The higher product of (4-7) counts disks with kC1 punctures, which extend smoothly
across the output puncture but are constrained at the corresponding marked point on
the boundary of the disk to pass through a generic point p 2 K0 , the minimum of
the Morse function used to define CF�.K0;K0/. In particular, consider the moduli
space M�.yk�1; : : : ;y0/ of Maslov-zero holomorphic polygons with k punctures at
the given intersection points, and one boundary marked point on the boundary interval
between the first and last inputs. The A1–relations then imply that for generic J , M�
is a closed manifold of dimension nD dimR.Kj /. There is an evaluation map

(4-8) ev�W M�.yk�1; : : : ;y0/!K0

which is transverse for generic choices of perturbation data, and Lemma 4.14 implies

(4-9) ev� has degree ˙ 1:

Lemma 4.16 For background class b0 , the contribution to the multiplication

�k
F.Y Ib0/

W HF1.Lk�1;Lk/˝ � � �˝HF1.L0;L1/! HF2.L0;Lk/

from holomorphic disks which project to a single WKB-cell with multiplicity one is
nontrivial.

Proof We are essentially in the situation of Lemma 4.13, bearing in mind the remark
after that lemma. Note that our standing hypotheses imply that jMj> 1, so the number
of faces of the Lagrangian cellulation associated to a nondegenerate WKB-triangulation
is at least 2. In particular, given any face of the cellulation, there is at least one boundary
edge  on that face which occurs exactly once in the boundary, separating two distinct
embedded open faces on the surface S . (This need not be true when jMj D 1; see
Figure 9.)

Following a well-known strategy going back at least to [34], we then apply a degenera-
tion and gluing argument to the situation depicted on the left of Figure 11, which is a
schematic for a polygon R of matching spheres encircling a double pole in S .

There is a Lagrangian boundary condition fibred over the dashed circle, and Lemma 4.11
asserts that the algebraic count of isolated holomorphic sections over this inner disk Dloc

is nonvanishing. There is a degeneration of the restriction of the fibration to this WKB-
cell, indicated on the right of Figure 11, to a pair of fibrations over disks with boundary
marked points, namely the local model and the trivial fibration over a polygon Rtriv

encircling no singular fibres. In this degeneration, we push the double pole towards
an edge  which occurs only once on the boundary on the given polygon, so the
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Figure 11: Bubbling off sections of the local model near a double pole

degeneration on the surface is locally schematically well depicted by Figure 11. The
gluing theorem [34, Proposition 2.14] implies that

(4-10) M0.R/Š
a

pCqD2

Mp.Dloc; e/�L Mq.Rtriv; e/;

where Mi denotes the i –dimensional component of a space of holomorphic sections
over the relevant domain, e 2  is the boundary marked point on the fibrations after
degeneration, and the fibre product is taken over evaluation into the Lagrangian 2–
sphere LDL \�

�1.e/� ��1.e/. The evaluation maps are transverse for generic
J 2 J� ; see eg McDuff and Salamon [29, Proposition 3.4.2]. On the right of (4-10),
we have computed already that Mp.Dloc; e/ is trivial except for p D 0; on the other
hand, Lemma 4.14 and (4-9) imply that the evaluation map M 2.Rtriv; e/ sweeps L

with multiplicity 1. The fibre-product is therefore nonempty; the moduli space on the
left of (4-10) is cobordant to two (transversely cut out) isolated points.

Since the two holomorphic sections contribute to M0.Dloc; e/ with the same sign by
Lemma 4.11, given our choice of background class b0 , the holomorphic polygons
contribute to �k with the same sign.

If the conic fibres of Y�!S over points in M had a different topological type (smooth,
Lefschetz singularities, higher multiplicity, empty etc), or if we took b D 0, it seems
the analogue of Lemma 4.16 would not hold.

4.8 Summary

Fix a nondegenerate triangulation T of S which satisfies the conditions of Theorem 2.1.
Denote by C.T /D C.Q.T /;W .T // the associated Ginzburg category from Section 2.1,
for the trivial signing �� 1. Via Lemma 2.2, pick a meromorphic quadratic differential
� 2H 0.KS .M /˝2/ whose associated WKB-triangulation is T . Let fLeg denote the
corresponding WKB-Lagrangian spheres, graded as in Lemmas 4.9 and 4.16, and denote
by Ab0

the total morphism algebra
L

e;f HF�.Le;Lf / in the category F.Y� I b0/.
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Theorem 4.17 Suppose jMj> 3. The A1–algebra Ab0
is quasi-isomorphic to C.T /.

Proof We begin by recalling the discussion from the end of Section 4.3. The A1–
algebra Ab0

DA is the total morphism algebra of an A1–category over ƒC whose
objects are the Lagrangians Le , which correspond one-to-one with the vertices of
the quiver Q.T /. From Lemma 4.5 we know that each Le has Floer cohomology
isomorphic as a graded algebra to H�.S3/, and the morphisms between the different Le

are based by the arrows in the quiver Q.T /, graded as in the construction of the
category C.T / in Section 2.1. Thus, as graded vector spaces, AŠ C.T / are isomorphic.

Floer theory equips A with an A1–structure which, by homological perturbation,
we can take to be minimal and strictly unital. The structure coefficients of this A1–
structure count holomorphic polygons with boundary conditions the Le , weighted
by their symplectic areas. Lemmas 4.6 and 4.7, together with Poincaré duality as in
Example 4.8, imply that in the notation of (2-1) the only nontrivial multiplications mn�1

in A with n > 3 are exactly those recorded by the corresponding cyclic degree �n

maps cn , ie the A1–structure is in fact cyclic. It follows that the A1–structure on A

may be encoded by the terms of a reduced potential W on Q.T /.

Lemma 4.9 implies that there is a nontrivial multiplication m2 in A, and hence
nontrivial cubic term in the potential W , for each isolated intersection point of a triple
of Lagrangians Le ; indeed, the corresponding Floer product counts a constant disc (of
area zero) with coefficient C1. Such isolated triple intersections exactly correspond
to the clockwise 3–cycles T .f / for the faces f of the triangulation T , and show
for the potential W , the equality W D

P
f T .f /CW 00 , where by definition W 00 is

disjoint from
P
f T .f /. More prosaically, disjointness asserts that none of the oriented

3–cycles corresponding to the oriented triangular faces of Q.T / centred on vertices
of T occur in W 00 (each triangular face of Q.T / defines three such 3–cycles, pairwise
cyclically equivalent).

Lemma 4.16 implies that there are further nontrivial multiplications mk in A for each
.kC1/–dimensional face of the WKB-Lagrangian cellulation on S defined by � . The
corresponding coefficients ckC1 in the potential W are exactly the (anticlockwise-
oriented) cycles C.p/ occurring in the quiver Q.T / (cf Figure 1). In the notation
of Lemma 4.13, Lemma 4.16 implies that the Floer product �k.xk�1; : : : ;x0/ is a
nonzero multiple of xxk , where the multiple depends on the symplectic area of the
polygons occurring in Lemma 4.16 and the orientation (relative to the orientation
lines associated to intersection points) of that moduli space: we have established (via
Lemma 4.11) that the two holomorphic sections which contribute to the given product
count with the same sign, hence cannot cancel, but have not pinned down that sign. At
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this stage, we may therefore write the potential W as

(4-11) W D
X
f

T .f /�
X
p

�pC.p/CW 0;

where we sum over the faces respectively vertices of Q.T /, where �pD˙2q
R

u ! 2ƒ�C
records the area and orientation of the holomorphic discs u of Lemma 4.16, and
where W 0 is disjoint from the various cycles T .f / and C.p/. Since we have Œ!� 2
H 2.Y� ;

S
e Le/ŠH 0.S;

S
e e/ (with the isomorphism arising from the Leray–Serre

spectral sequence of the projection map), the choice of symplectic form not only deter-
mines but is essentially equivalent to a choice of (nonzero) scalar coefficients �p above.

At this point, we have determined the A1–structure constants which arise either from
constant holomorphic polygons or from polygons which project to a single face of
the WKB-cellulation of S with multiplicity one. In general there will be additional
polygons, eg those which project to a single cell with higher multiplicity (corresponding
to powers C.p/j of the cycles C.p/) or to the union of two adjacent cells (correspond-
ing to a concatenation C.p/C.q/), which give rise to the terms in W 0 . Rather than
determining these by hand, we appeal to finite determinacy, via the work of Geiss,
Labardini-Fragoso and Schröer. Equation (4-11) shows the potential W governing
the A1–structure on A is exactly of the form given in (2-3). By Theorem 2.1, we
infer the potential W is weakly right-equivalent to W .T /, which shows A' C.T /
are A1–quasi-isomorphic as required.

We should point out analogous finite determinacy arguments have been used to pin down
A1–structures in symplectic topology elsewhere, going back at least to Seidel’s [37].

Since the quiver category C.T / is independent, up to derived equivalence, on the
particular WKB-triangulation T , one can infer the same result for the subcategories
TwAb0

of F.Y I b0/ generated by the Lagrangians coming from different cellulations
(strictly, provided those cellulations come from triangulations satisfying the hypotheses
of Theorem 2.1). Since D.T /DH 0 Tw.C.T // is idempotent complete, Theorem 4.17
then implies that

Tw� Ab0
' TwAb0

:

Since Ab0
is tautologically a subcategory of the Fukaya category F.Y� I b0/, on passing

to twisted complexes and then cohomology we see that D.C.T // ,!DF.Y� I b0/, which
completes the proof of (the first case of) Theorem 1.1 as stated in the Introduction.

4.9 Generation

Fix a nondegenerate triangulation T . This subsection outlines one approach to proving
that A.T I b0/ generates the subcategory K.Y� I b0/ � F.Y� I b0/ generated by all
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matching spheres. This sketch falls far short of a proof, but it is worth including in part
because one sees the Harder–Narasimhan filtration of a matching sphere with respect to
the stability condition determined by � emerge as a natural ingredient in the argument.

There are two pieces of background for the sketch. Let L and L0 denote two matching
spheres which meet transversely once, at a vertex p of the cellulation. Consider the
Lagrange surgery L # L0 of L and L0 at p , which is equivalently given by taking
the Dehn twist of L0 about L. (There are two local surgeries, corresponding to the
positive and negative Dehn twists; here we are taking p 2 HF1.L;L0/, a morphism
from L to L0 .) Seidel’s theorem [34] yields a distinguished triangle in K.Y� I b/:

(4-12)
L // L0

yy

L # L0
Œ1�

ee

This gives a long exact sequence of Floer cohomology groups in Y� ,

� � � ! HF.L00;L/
�2.p;� /
�����! HF.L00;L0/! HF.L00;L # L0/! � � � ;

for any third Lagrangian submanifold L00 2 F.Y I b/, and shows the Lagrange surgery
L # L0 is generated by the two constituent Lagrangians L and L0 .

The second piece of background concerns Floer theory for immersed Lagrangians; see
Akaho [3]. Consider a closed saddle trajectory 0 for � of phase � , going from a zero
to itself. If we assume that the residue of � at each double pole does not belong to
ei�R<0 , then 0 forms one boundary component of a ring domain, the other boundary
of which is a union of straight arcs also of phase � (the hypothesis on the residues rules
out the degenerate case in which the other boundary component collapses onto a double
pole). The closed saddle 0 defines an immersed Lagrangian 3–sphere L0

,! Y� .
Despite being immersed, this has well-defined Floer cohomology (indeed L0

is still
strictly unobstructed, ie bounds no holomorphic disks, so this is straightforward), and

HF.L0
;L0

/ŠH�.S3/˚ k˚2;

where the second summand arises from the node of L0
.

The suggested route to generation of K.Y� I b0/ by A.T I b0/ has three ingredients.

Step 1 Let 0 be as above, and suppose for simplicity that both boundaries of the
ring domain containing 0 are composed of a single saddle (this is true for generic � ;
compare to the discussion of hat-proportional saddles in [5, Section 5]).

Geometry & Topology, Volume 19 (2015)



2608 Ivan Smith

Figure 12: A nondegenerate ring domain with a pair of arcs ˛; ˇ

Let ˛; ˇ be two �–geodesics inside the ring domain bound by 0 , as in Figure 12,
defining embedded matching spheres L˛ , Lˇ in Y� with

HF.L˛;Lˇ/Š khxi˚ khyi;

where fx;yg denote the zeroes on the boundary of the ring domain and x belongs
to 0 . It seems natural to conjecture that the immersed sphere is quasi-isomorphic to
the cone

(4-13) L0
' .L˛

y
�!Lˇ/:

This is a version of (4-12), in a setting where the surgery is unobstructed but immersed
(in particular cannot be interpreted in terms of a Dehn twist). One roundabout approach
to a proof of (4-13) would appeal to known results on homological mirror symmetry
for the 3–dimensional affine A2 –singularity, which provides a local model for two
spherical objects having a two-dimensional space of extensions, cf the discussion of
the representation theory of the quiver (J1) in [5, Section 11].

Step 2 The existence theorem for geodesics in flat surfaces implies that a given
matching path  �S is homotopic to a concatenation of �–geodesics  'j0

�� � ��jk
,

where each ji
is embedded in its interior (hence is either a geodesic matching path or

a closed geodesic from a zero to itself). Given the correspondence between geodesics
and stable objects [5, Theorem 1.4], this decomposition should reflect the Harder–
Narasimham filtration of L in the stability condition associated to � , and (especially
in light of [45]) there are obvious potential connections to mean curvature flow. In
particular, one expects that L 2 hLj0 ; : : : ;Ljk i, where h � i denotes the extension-
closed subcategory generated by the given objects. An inductive argument might reduce
that claim to the special cases of the surgery exact triangle discussed above.

Step 3 At this point, one would know that any Lagrangian matching sphere is generated
by the subset of matching spheres coming from �–geodesics. An embedded �–
geodesic � of phase � occurs as one of the WKB-Lagrangians for the cellulation
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associated to e�i.�Cı/� , for sufficiently small ı ; compare to [5, Figure 32]. If the
triangulation T 0 associated to this rotated differential is nondegenerate, it is immediate
from Theorem 1.1 and the fact that D.T /'D.T 0/ that L� is generated by the category
A.T I b0/ associated to the triangulation T defined by � itself.

However, if e�i.�Cı/� has a triangulation T 0 with self-folded triangles, this is more
delicate. To conclude that A.T I b0/ generates K.Y� I b0/, at least by this method, one
would need further to introduce the algebras A.T 0I b0/ for arbitrary, not necessarily
nondegenerate triangulations T 0 , and to prove that A.T 0I b0/' D.T 0/ in this wider
setting. Note in particular that any such argument would seem to hinge on an extension
of the results of [14] to this more general setting. Assuming that such an extension
had been carried out, however, one could then conclude the desired generation: L
would be generated by geodesics, geodesics arise as WKB-Lagrangians for some
triangulation, and all the subcategories of F.Y� I b0/ associated to triangulations would
be quasiequivalent.

5 Miscellany

5.1 Higher order poles

Suppose we have a marked bordered surface .S;M/ with @S ¤ ∅, arising from a
quadratic differential � on a Riemann surface S with a nonempty set of poles of order
greater than or equal to 3. We construct the 3–fold Y�! SnPol>3.�/ as indicated
in the Introduction.

The preceding arguments need only minimal changes to yield the second case of
Theorem 1.1. The locally free sheaf W now has first Chern class 3KSC2MD2C3M>3 ,
in the notation of (1-2). The proof of Lemma 3.5 then implies that the projective
completion X� has canonical class OP .�2/˝��.�M>3/, which again means that
after removing �1 [ ��1.M>3/ the open 3–fold Y� is a smooth Calabi–Yau.3 It
is moreover affine, and one can work with a symplectic structure which is exact and
contact type at infinity, which obviates the need to control rational curves via intersection
theory at infinity.

Lemma 3.14 changes. We now view the differential � as a section of the bundle
KS .M /˝2 , where the divisor M D

P
p2Pol.�/dord.p/=2ep , which means � has sim-

ple zeroes at odd order poles, and hence the local system R2��Z picks up monodromy
at odd order poles. The identification of H3.Y� IZ/ with the anti-invariant homology

3Since the coefficients in the divisor M>3 D
P

p2Pol>3.�/
dord.p/=2ep are all greater than or equal

to 2 , the holomorphic volume form �� again has poles of order at least 2 at infinity.
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of a spectral double cover goes through only if that cover is branched at both zeroes
and odd order poles. The upshot is that H3.Y� IZ/ is now free of rank

nD 6g� 6C
X

p2Pol.�/

.ord.p/C 1/:

Lemma 3.11 carries over unchanged. The construction of symplectic forms, matching
spheres, and the grading of the WKB-algebra, were all essentially local arguments
on S , as were the computations of the contribution of constant holomorphic triangles
and nonconstant polygons covering WKB-cells with multiplicity one. At this stage,
one sees that the A1–structure on the WKB-algebra A is given by a potential of
the shape W .T; �/CW 0 as before. Finally, the crucial result Theorem 2.1 of Geiss,
Labardini-Fragoso and Schröer also holds in the nonempty boundary case (with no
further constraints on the number of punctures), which enables one to conclude the
proof as before.

Example 5.1 Consider .S;M/ to be an annulus with p , respectively q , marked points
on the two boundary components. This corresponds to differentials on P1 with poles
of order pC 2 and qC 2 and nD pC q simple zeroes. The quiver Q is a noncyclic
orientation of the affine An�1 –Dynkin diagram, with trivial potential. The Lagrangian
spheres of a WKB-collection form a cycle of n matching spheres encircling the origin;
the vanishing of the potential reflects the fact that the three-fold fibres over C� , and
there are no nonconstant holomorphic polygons (by the maximum principle applied
in C� ). Note that the poles of the holomorphic volume form and resulting grading
of the endomorphism algebra of the WKB-collection depend on the decomposition
nD pC q ; compare to [5, Section 12.3].

5.2 Simple poles

Whilst one can construct the triangulated category associated to .S;M/ by starting
with a nondegenerate ideal triangulation defined by a point � of the open stratum
Quad.S;M/0 � Quad.S;M/, the space of stability conditions on DK..S;M/I b// is
(an orbifolded version of) the larger space Quad.S;M/ in which the differentials may
acquire simple poles by having zeroes collide with double poles. The universal family
Y!Quad.S;M/0 of three-folds (which exists locally) does not extend to Quad.S;M/

as a locally trivial fibre bundle. In any extension of the universal family there must
be a nontrivial degeneration of Y� when � acquires a simple pole, to account for
the nontriviality of the monodromy action on H 2.Y� IZ2/ described in Lemma 3.12,
which exchanges components of the reducible fibre.
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Return to the local model

fa2
� ıbc D �.ı/t2

g � P3
Œa;b;c;t � �Cı

for the neighbourhood of the reducible fibre fa2 � t2 D 0g � P3 � f0g inside X� ,
where � 2H 0.KS .M /˝2/ has a double pole at ı D 0 2 S and �.0/D 1. Suppose
instead that we have a differential �0 with �0.0/D 0, so the quadratic differential �0

has a simple pole at the corresponding point of S . The corresponding 3–fold

X�0
D fa2

D ı.bcC t2/g � P3
�Cı

has a multiple fibre fa2 D 0g, and is singular along a smooth conic curve faD 0D

ı; bcC t2 D 0g. The transversal singularity is a surface ordinary double point.

It is tempting to associate to a quadratic differential �0 with a simple pole at p 2M a
smooth 3–fold

Y�0
! S

with fibre T �RP2 , with multiplicity 2, over p . For suitable symplectic forms, there is
a Lagrangian RP3 � Y�0

, fibred by a Morse–Bott function over an arc from a zero
to p (the vanishing cycle of the zero converges at p to the RP2 Bott minimum). The
two Lagrangian spheres depicted on the right side of Figure 4, which should persist in
the category defined by �0 since this does not change in passing from Quad.S;M/0
to Quad.S;M/, would now be realised by this RP3 , equipped with either the trivial
or the nontrivial spin structure or equivalently Z2 –valued local system. It would be
interesting to find a model (of this or another form) for the “locally trivial family of
categories” over a point of the incomplete locus.

5.3 No poles

Let S be a Riemann surface of genus greater than or equal to 2. Consider again the
3–fold Y 0

 
from (3-1) associated to a holomorphic quadratic differential  on S with

distinct zeroes. This has a fibrewise compactification which is a Lefschetz fibration
over S with generic fibre P1�P1 . According to the author’s [41, Corollary 4.9], there
is an equivalence of Z2 –graded split-closed categories

(5-1) D�F.P1
�P1/�D0 'D�F.S0/

between the nilpotent summand of the Fukaya category of the even-dimensional quadric,
ie that corresponding to the zero eigenvalue of quantum product with the first Chern
class, and the Fukaya category of a pair of points (both categories are semisimple).
The paper [41] works over C , but the argument underlying the equivalence of (5-1)
(which uses the computation of a certain Gromov–Witten invariant counting sections of
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a Lefschetz fibration with fibre P1�P1 and some elementary deformation theory) goes
through over any algebraically closed characteristic zero field. Starting from this, one
can show in the spirit of [41, Section 5] that, over the Novikov field ƒC , the Z2 –graded
category underlying F.Y 0

 
/ admits a formal deformation which is split-closed derived

equivalent to the Z2 –graded Fukaya category F.C / of the spectral cover C ! S , ie
the double cover of S branched at the zeroes of  .

That equivalence takes the matching sphere L considered in this paper to the obvious
circle lying over  in the double covering C . An essential simple closed curve � � S

defines a Lagrangian .S1 �S2/� Y 0
 

and a disjoint union of two circles in C . The
ring structures on the Floer cohomologies of these objects is different (only one has a
nontrivial degree zero idempotent), which suggests that the deformation of categories
from D�F.Y 0

 
/ to D�F.C / induced by the compactification of the fibres is nontrivial.

5.4 The untwisted category

For each b 2H 2.Y� IZ2/ there is a total morphism algebra

A.T I b/D
M

e;f 2T

HF�.Le;Lf /

associated to a collection of Lagrangian matching spheres indexed by edges of a
nondegenerate triangulation T . The quasi-isomorphism type of this algebra will
depend on the choice of b , even though its idempotent pieces HF.Le;Le/ do not.
Theorem 1.1 concerns the case bD b0 and the twisted Fukaya category F.Y� I b0/, and
it is natural to consider the untwisted category F.Y�/ corresponding to taking b D 0.

Lemma 4.11 determined the signs with which the two rigid disks with boundary
on � contribute to their moduli space. These discs cancelled in the category F.Y�/.
Therefore, the category D.A.T I 0// is obtained by replacing the potential of (2-2) by
its first term

P
f T .f /, killing the higher A1–products; alternatively, it arises if one

constructs the three-fold Y� by removing the conic fibres over all poles of � , and not
just those of order greater than 2. This category is drastically different from D.AI b0/;
see the example considered in Section 5.5.

Moreover, in contrast to Remark 4.12, the Lagrangian cylinder L� Š S1 �S2 does
define an object of the untwisted category F.Y�/ if one allows unobstructed branes. The
category F.Y�/ cannot be generated by matching spheres: the Lagrangian cylinder L�
can be deformed through non-Hamiltonian deformations (shrinking the loop � ) to be
disjoint from any given matching path in S �M , but (in the untwisted category) still
with nontrivial Floer cohomology.
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5.5 An example

Consider a differential on P1 with poles of order 2 and 4; this case was considered
in [5, Section 12]. The relevant quiver has two vertices and no arrows, and the category
K..S;M/I b0/ is generated by two Lagrangian spheres L1;L2 with HF.L1;L2/Df0g.
All objects are isomorphic to direct sums of shifts of the Li . These objects are depicted
on the left of Figure 13, where the black dot denotes the double pole and the higher-order
pole lies at 12CP1 .

Figure 13: The generators of F.Y� I b0/ and a nonisotopic sphere defining an
equivalent object

The vanishing of Floer cohomology relies on the choice of the nontrivial background
class, which ensures the two rigid disks which project onto the obvious region bound
by these arcs count with the same sign: the differential

(5-2) @W CF�.L1;L2/D kŒ1�˚ kŒ2�! kŒ1�˚ kŒ2�D CF�.L1;L2/

maps the degree-one generator to a nontrivial multiple of the degree-two generator.

On the other hand, there are infinitely many pairwise non-Hamiltonian isotopic La-
grangian spheres in Y� , distinguished in the split-closed twisted Fukaya category
Tw� F.Y�/ by the rank of Floer cohomology with the noncompact Lefschetz thimble
dotted in the right of Figure 13 (with background class b D 0 the differential in (5-2)
vanishes, and spherical objects can then arise from nontrivial twisted complexes based
on the Li ). Turning on the background class b0 collapses all of these distinct objects
onto shifts of L1 and L2 (direct sums are excluded by considering the rank of self
Floer cohomology). Therefore isomorphism in the category F.Y� I b0/ is very far from
implying Hamiltonian isotopy.

5.6 Open directions

It is natural to wonder if [5] and Theorem 1.1 have applications to the classical sym-
plectic topology of Y� , or to representation theory. The results established so far fall
slightly short of what seems to be required, although there are several obvious avenues
for further study.

There are natural representations (the first defined by parallel transport)

(5-3) �1.Quad˙.S;M/0/! �0 Symp.Y� I b0/! AuteqDF.Y� I b0/=hŒ2�i;
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where the middle term refers to mapping classes preserving b0 2 H 2.Y� IZ2/ and
where on the right we quotient by the square of the shift functor. It follows from results
of [5] that if the space of stability conditions Stab�.S;M/ studied there is simply
connected, then the first arrow is injective: but simple-connectivity of Stab�.S;M/ is
currently unknown (see however Qiu [31] for progress in this direction).

When @S ¤ ∅ one can kill the fundamental group of Y� by subcritical handle at-
tachments at infinity, to obtain symplectic six-manifolds which are simply connected
but admit symplectomorphisms of positive Floer-theoretic entropy, and which have
subgroups of autoequivalences of the Fukaya category which surject onto mapping
class groups. This may be of some interest, since whilst such examples are known,
they are not yet terribly numerous.

In another direction, the second map of (5-3) does surject onto the quotient of the
subgroup of autoequivalences which preserve Stab�.S;M/ by those which act trivially
(“negligible” autoequivalences in the terminology of [5]). There are many situations in
which autoequivalences of derived Fukaya categories have no geometric origin, ie do
not arise from symplectomorphisms; see eg [2].

Finally, the existence of a smooth compactification divisor y�1 for Y� gives rise to
a spectral sequence computing symplectic cohomology SH�.Y�/; see Seidel [35].
That in turn leads to conjectural bounds on the ranks of the Hochschild cohomology
groups of the Ginzburg algebra A.Q;W / which might be of independent interest. It
would be instructive, in this vein, to relate the wrapped Fukaya category of Y� to the
derived category of all (not necessarily finite-dimensional) modules over the complete
Ginzburg algebra.
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