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The Adams–Novikov spectral sequence
and Voevodsky’s slice tower

MARC LEVINE

We show that the spectral sequence induced by the Betti realization of the slice tower
for the motivic sphere spectrum agrees with the Adams–Novikov spectral sequence,
after a suitable reindexing. The proof relies on a partial extension of Deligne’s
décalage construction to the Tot–tower of a cosimplicial spectrum.

14F42, 55T15; 55P42

1 Introduction

Voevodsky has defined a natural tower in the motivic stable homotopy category SH.k/
over a field k , called the slice tower; see [33; 34]. Relying on the computation of the
slices of MGL by Hopkins and Morel (see Lawson [17]), complete proofs of which
have been recently made available through the work of Hoyois [13], we have filled
in the details of a proof of Voevodsky’s conjecture [34], identifying the slices of the
motivic sphere spectrum with a motive built out of the E1 –complex in the classical
Adams–Novikov spectral sequence for the stable homotopy groups of spheres; see
Adams [1]. Explicitly,

sq.Sk/Š EMA1

�
N�2q.MU^�C1/˝Z.q/Œ2q�

�
;

where n 7!MU^nC1 is the usual cosimplicial spectrum associated to the E1 ring
spectrum MU, N�2q.MU^�C1/ is the associated normalized complex of homotopy
groups, Z.q/Œ2q� is the shifted Tate motive and EMA1 is the Eilenberg–Mac Lane
functor from Voevodsky’s category of motives to the motivic stable homotopy category.

In addition, the Betti realization of the slice tower yields a tower over the classical
sphere spectrum S , and in previous work we showed that the resulting spectral sequence
is bounded and converges to the homotopy groups of S . Furthermore, we also showed
that the resulting comparison map from the homotopy sheaves �n;0 of the slice tower,
evaluated on any algebraically closed subfield of C , to the homotopy groups of the Betti
realization is an isomorphism. For all these results, we refer the reader to Levine [20].
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2692 Marc Levine

Putting all this together, we have a bounded spectral sequence, converging to ��S ,
of “motivic origin” and whose E2 –term agrees with the E2 –term in the Adams–
Novikov spectral sequence, after a reindexing. The question thus arises: are these two
spectral sequences the same, again after reindexing? The main result of this paper is
an affirmative answer to this question, more precisely:

Theorem 1 Let MU 2 SH be the complex cobordism spectrum and S 2 SH the
classical sphere spectrum. Let k be an algebraically closed field of characteristic zero,
let Sk 2 SH.k/ denote the motivic sphere spectrum, and let st

pSk denote the pth layer
in the slice tower for Sk . Consider the Adams–Novikov spectral sequence

E
s;t
2
.AN/D Exts;t

MU�.MU/.MU�;MU�/) �t�s.S/

and the Atiyah–Hirzebruch spectral sequence for ��;0Sk.k/ associated to the slice
tower for Sk ,

E
p;q
1
.AH/D ��p�q;0.s

t
pSk/.Spec k/) ��p�q;0Sk.Spec k/:

Then there is an isomorphism


p;q
1
W E

p;q
1
.AH/ŠE

3pCq;2p
2

.AN/

which induces a sequence of isomorphisms of complexes (for all r � 1)M
p;q

p;q
r W

�M
p;q

Ep;q
r .AH/; dr

�
!

�M
p;q

E
3pCq;2p
2rC1

.AN/; d2rC1

�
:

We remind the reader that, for an object E 2 SH.k/ and integers p , q , one has the
homotopy sheaf �p;q.E/, this being the Nisnevich sheaf on smooth schemes over k

associated to the presheaf

U 2 Sm=k 7! HomSH.k/.†
p�2q

S1 †
q

P1†
1

P1UC; E/:

In particular, the term ��p�q;0.s
t
pSk/.Spec k/ occurring in Theorem 1 is the evaluation

of the presheaf ��p�q;0.s
t
pSk/ on the final object Spec k of Sm=k .

We have an `–local version of Theorem 1 as well:

Theorem 2 Let k , S and Sk be as in Theorem 1. Fix a prime ` and let BP.`/ 2 SH
be the associated Brown–Peterson spectrum. Consider the `–local Adams–Novikov
spectral sequence

E
s;t
2
.AN/` D Exts;t

BP.`/
� .BP.p//

.BP.`/� ;BP.`/� /) �t�s.S/˝Z.`/
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and the `–local Atiyah–Hirzebruch spectral sequence

E
p;q
1
.AH/` D ��p�q;0.s

t
pSk/.Spec k/˝Z.`/) ��p�q;0Sk.Spec k/˝Z.`/:

Then there is an isomorphism


p;q
1
W E

p;q
1
.AH/` ŠE

3pCq;2p
2

.AN/`

which induces a sequence of isomorphisms of complexes (for all r � 1)M
p;q

p;q
r W

�M
p;q

Ep;q
r .AH/`; dr

�
!

�M
p;q

E
3pCq;2p
2rC1

.AN/`; d2rC1

�
:

Remark The Atiyah–Hirzebruch spectral sequence is often presented as an E2 –
spectral sequence:

E
p;q
2
.AHI E ;X /0 WDH p�q

�
X; ���q.E/.n� q/

�
) EpCq;n.X /:

Here ��n .E/ is the homotopy motive of E , that is, a canonically determined object of
DM .k/ with EMA1.�

�
n .E/.n/Œ2n�/Š st

nE . Thus, for E DSk , X D Spec k , this gives

Ep;q
r .AH/0 DE

�q;pC2q
r�1

.AH/

and Theorem 1 yields the isomorphism (for all r � 2)

Ep;q
r .AH/0 ŠE

p�q;�2q
2r�1

.AN/;

answering affirmatively the question raised in [20, Introduction].

Remark Using an argument based on the Adams spectral sequence, Heller and
Ormsby [8] have proven a version of the comparison theorem of [20] for real closed
fields, showing the C2 –equivariant homotopy theory agrees with the motivic theory
after p–completion. It would be interesting to make a further comparison of associated
Adams–Novikov spectral sequences along the lines of this paper.

The paper is organized in a somewhat nonsequential fashion: We give the arguments
for our main results in Section 2, after introducing notation and extracting the necessary
technical underpinnings from later sections. The referee felt, and we agree, that many
of these technical results are known to the experts or are straightforward extensions
of known results, or that they can simply be accepted as black boxes in the main
arguments, subject, of course, to later verification.

We then turn to filling in these technical details. In Section 3, we review two ways of
giving a model category structure to functor categories: the projective model structure
and the Reedy model structure. We apply this material to give constructions of slice
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towers and Betti realizations for motivic homotopy categories associated to functor
categories, and prove some useful facts relating these two constructions. In Section 4
we specialize to the case of the category � of finite ordered sets, and we recall the
Bousfield–Kan functor Tot and the associated Tot–tower and spectral sequence. In
Section 5 we recall from the works of Sinha [29; 30] how the Tot–tower can be described
using cubical constructions, which are technically easier to handle. As an application,
we show how applying the slice tower termwise to the truncated cosimplicial objects
arising in the motivic Adams–Novikov tower gives approximations to the slice tower
for the motivic sphere spectrum (Proposition 5.5).

In Section 6 we adapt Deligne’s décalage construction to the setting of cosimplicial
objects in a stable model category that admits a t –structure and associated Postnikov
tower, this latter construction replacing the canonical truncation of a complex. The
main comparison result is achieved in Proposition 6.3. This is the technical tool that
enables us to compare the Atiyah–Hirzebruch and Adams–Novikov spectral sequences.
The treatment of this topic is less than optimal, as one should expect a more general
extension of Deligne’s décalage construction to some version of filtered objects in a
model category, but the special case handled here suffices for our main application.

Remark The reader will have noticed a “clash of spectral sequence cultures” between
the slice and Adams–Novikov spectral sequences. The slice spectral sequence follows
the Cartan–Eilenberg convention, standard in homological algebra and algebraic geome-
try, in which the dr differential has bidegree .r; 1�r/ and E

p;q
1 contributes to ��p�q or

H pCq . The Adams–Novikov spectral sequence follows the Bousfield–Kan convention,
in which the dr differential has bidegree .r; r �1/ and E

p;q
1 contributes to �q�p . The

evident transformation Ep;q.CE/DEp;�q.BK/ relates the two conventions. We use
the Cartan–Eilenberg convention throughout this paper, except for the Adams–Novikov
spectral sequence and its `–local version. Contrary to standard practice, we use the
Cartan–Eilenberg convention for the spectral sequence of the Tot–tower in Section 4;
we felt that using the Bousfield–Kan indexing would unnecessarily complicate the
proof of Proposition 6.3. In any case, the indexing for the convergent should make the
choice of convention clear.

Acknowledgements I would like to thank the referees for their careful reading of an
earlier version and their very helpful suggestions for improving this paper. Especially
useful was the suggestion that the paper be reorganized by putting the main arguments
first. Directing my attention to the works of Sinha [29; 30], which give the reformulation
of the truncated Tot–construction as a punctured cube, allowed me to replace my
considerably less elegant arguments for some weaker statements in Section 3 with
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Sinha’s results. Finally, I would like to thank the Alexander von Humboldt Foundation
for their generous support.

2 The Adams–Novikov spectral sequence

We have buried in later sections most of the technical results needed for our argument,
so as to present its main thread in as direct a fashion as possible. As a preliminary to
the main argument, we extract the relevant aspects of these technical constructions.

We have the model category of pointed spaces (ie pointed simplicial sets) Spc� and the
associated model category of suspension spectra Spt, with homotopy categories H�
and SH , respectively. We fix a perfect base field k , giving us the model category of
pointed spaces over k , Spc�.k/, and the model category of T–spectra SptT .k/, with
associated homotopy categories H�.k/ and SH.k/; the model category structures are
discussed in Examples 3.7. We have Voevodsky’s slice tower in SH.k/, written as a
tower of endofunctors

� � � ! f t
nC1! f t

n ! � � � ! id:

For a given embedding � W k ,!C , we have the associated Betti realization functor

ReBW SH.k/! SH:

These constructions extend to functor categories, using the machinery discussed in
Section 3. For a Reedy category S , we have the functor category SptT .k/

S , with the
model structure as described in Section 3.1, and the associated homotopy category
HoSptT .k/

S .1 The slice endofunctors f t
n extend to the functor category to give a

tower
� � � ! f

S;t
nC1
! f S;t

n ! � � � ! id

of endofunctors of HoSptT .k/
S . The two slice towers are compatible for each s 2 S

via the evaluation functor is�W HoSptT .k/
S ! SH.k/. Similarly, we have the functor

model category SptS and the associated Betti realization functor

ReSBW HoSptT .k/
S
!HoSptS ;

again, compatible with ReB via the evaluation functors is� for each s 2 S .

We have a parallel situation with respect to the classical Postnikov tower in SH ,

� � � ! fnC1! fn! � � � ! id;

1Not to be confused with the functor category .HoSptT .k//S . To avoid additional parentheses, we
will always use the notation HoMS for the homotopy category of a model category of functors MS and
reserve .HoM/S for the category of functors to the homotopy category.
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where, for a spectrum E , fnE!E is the usual .n�1/–connected cover. This passes
to the functor category, giving the tower

� � � ! f S
nC1! f S

n ! � � � ! id

of endofunctors of HoSptS , compatible with the classical Postnikov tower via the
evaluation functors.

We denote the homotopy cofiber of f S;t
b
! f

S;t
a by f S;t

a=b
and define f S

a=b
similarly.

The second type of tower that we need is the Tot–tower associated to a cosimplicial
object in a suitable model category. (See Section 4 for details.) For a pointed model
category M, we give the functor category M� the Reedy model structure. We
consider the functor TotWM�!M which sends a cosimplicial object X W �!M to
Tot.X / WDHom.�Œ��;X /, where �Œ�� is the cosimplicial space n 7!�Œn�. Restricting
�Œn� to its k –skeleton gives the cosimplicial space n 7! �Œn�.k/ and the associated
object Tot.k/.X / WDHom.�Œ��.k/;X /, which fit together to give the Tot–tower

Tot.X /! � � � ! Tot.kC1/.X /! Tot.k/.X /! � � � ! Tot.0/.X /! Tot.�1/.X /D pt:

The slice tower and Tot–tower generate spectral sequences; see Section 4.2 for a
discussion of the Tot–tower spectral sequence. The slice tower spectral sequence gives
rise to a motivic Atiyah–Hirzebruch spectral sequence E.AH/, and the Tot–tower
spectral sequence E.Tot;X / applied to the cosimplicial spectrum n 7!MU^nC1 gives
the Adams–Novikov spectral sequence E.AN/. The classical Postnikov tower yields
the classical Atiyah–Hirzebruch spectral sequence.

We may combine the Tot construction with the Postnikov tower as follows: Given a
cosimplicial spectrum m 7! Xm 2 Spt, we can apply the functor fn termwise, giving
the tower

� � � ! f �nC1X ! f �n X ! � � � ! X

in Spt� ; we may then apply the functor Tot, giving the tower

� � � ! Totf �nC1X ! Totf �n X ! � � � ! TotX

in Spt. We call the resulting spectral sequence the décalage of the Tot–spectral se-
quence and denote this by E.Dec;X /. Our main technical result concerning these spec-
tral sequences is Proposition 6.3, which states that the spectral sequences E.Dec;X /
and E.Tot;X / are equal up to a reindexing.

We now apply these tools to the problem of comparing the slice spectral sequence
for the motivic sphere spectrum with the Adams–Novikov spectral sequence for the
topological sphere spectrum.
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We call a spectral sequence .Ep;q
r ; dr / strongly convergent to …� if it is bounded and

converges to …� ; see [36, §5.2.5]. Under the Cartan–Eilenberg indexing convention,
this means simply that for each n there is a finite, exhaustive and separated filtration
F�…n of …n and an integer r.n/ such that Grp

F
…nŠE

p;n�p
1 DE

p;n�p
r for all p and

all r � r.n/. We call a spectral sequence E
p;q
a )…�p�q strongly convergent if

the spectral sequence is strongly convergent to …� .

Let k be an algebraically closed field with an embedding � W k ,! C and let Sk 2

SptT .k/ be the motivic sphere spectrum. Let S 2 Spt denote the classical sphere
spectrum. The Betti realization of the slice tower for Sk gives a tower

� � � ! ReBf
t

nC1Sk ! ReBf
t

n Sk ! � � � ! ReBf
t

0 Sk D S

in SH , with nth layer equal to ReBst
nSk . This gives the spectral sequence

E
p;q
2
.AH/0 D ��p�qReBst

�qSk ) ��p�qS:

One has a similar spectral sequence using the slice tower

� � � ! f t
nC1Sk ! f t

n Sk ! � � � ! f t
0 Sk

itself, namely

E
p;q
2
.AH/0mot D ��p�q;0.s

t
�qSk/.k/ŠH p�q.k; ���q.�q//) ��p�q;0.Sk/.k/:

We showed in [19, Theorem 4] that this latter spectral sequence is strongly convergent
and in [20, Proposition 6.4, Theorem 6.7] that the Betti realization functor gives an
isomorphism of ��p�q;0.Sk/.k/ with ��p�qS , as well as an isomorphism of the
spectral sequence E.AH/0mot with the spectral sequence E.AH/0 . One can thus say
that the spectral sequence E.AH/0 is of “motivic origin”.

In addition, in [20, Theorem 4] we identified E
p;q
2
.AH/0 with an E2 –term of the

Adams–Novikov spectral sequence for S :

E
p;q
2
.AH/0 ŠE

p�q;2q
2

.AN/:

We wish to extend this result by showing that the spectral sequence E.AH/0 agrees
with the Adams–Novikov spectral sequence E.AN/, after a suitable reindexing.

In principle, the argument should go like this: Let eMU be a strict monoid object in sym-
metric spectra representing the usual MU in SH . Let eMU^�C1 be the cosimplicial
(symmetric) spectrum n 7!eMU^nC1 , with the i th coface map inserting the unit map
in the i th spot and the i th codegeneracy map taking the product of the i th and .iC1/st

factors. The Adams–Novikov spectral sequence is just the Tot–tower spectral sequence
(4-8) associated to the cosimplicial symmetric spectrum eMU^�C1 . Let AMGL^�C1 be
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the motivic analog to eMU^�C1 , giving us a cosimplicial T–spectrum n 7!AMGL^nC1 ,
with coface and codegeneracy maps defined as for eMU^�C1 . One could hope to have
a “total T–spectrum functor” TotW SptT .k/

�! SptT .k/ and weak equivalences

Sk Š Tot AMGL^�C1; f t
p Sk Š Totf t

p
AMGL^�C1;

where f t
p
AMGL^�C1 is the cosimplicial spectrum n 7! f t

p
AMGL^nC1 , using a suitable

functorial model for f t
p in Spt†T .k/.

The layers of AMGL^nC1 for the slice filtration are known by work of Hopkins and
Morel (see Lawson [17]) and Hoyois [13], and one can show that the Betti realization
of the slice st

p
AMGL^nC1 is just the 2pth layer f2p=2pC1 MU^nC1 in the Postnikov

tower for MU^nC1 . Thus, one could hope to have an isomorphism

ReBf
�;t

p
AMGL^�C1

Š f �2p�1
eMU^�C1

Š f �2p
eMU^�C1

in HoSpt� . After changing the E2 –Atiyah–Hirzebruch spectral sequence to an E1 –
spectral sequence

E
p;q
1
.AH/ WD ��p�q;0.s

t
pSk/.k/) ��p�q;0S;

we would then have an isomorphism

E
p;q
1
.AH/ŠE

2p;q�p
1

.Dec;eMU^�/;

leading to the isomorphisms

Ep;q
r .AH/ŠE

2p;q�p
2r�1

.Dec;eMU^�C1/ŠE
2p;q�p
2r

.Dec;eMU^�/

and corresponding isomorphisms of complexes.

Using Proposition 6.3 (for spectra) would then give the sequence of isomorphisms

Ep;q
r .AH/ŠE

3pCq;2p
2rC1

.AN/

and corresponding isomorphisms of complexes. This would then give the isomorphisms

Ep;q
r .AH/0 ŠE

p�q;�2q
2r�1

.AN/

for all r � 2.

We prefer to avoid the technical problems that arise from the compatibility of the Betti
realization with the functor Tot and from checking whether Sk ! Tot AMGL^�C1

is an isomorphism; instead we work with the approximations Tot.N / AMGL^�C1 and
Tot.N / eMU^�C1 . These suffice to give the desired isomorphisms of Er –complexes,
by simply taking N sufficiently large and using Proposition 5.5 to show that the
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truncation Tot.N / AMGL^�C1 approximates Sk sufficiently well with respect to the
slice tower.

We deal with the compatibility of Tot.N / and ReB as follows: For a cosimplicial object
n 7! X n in a pointed simplicial model category M, we have an associated punctured
.N C 1/–cube

'NC1
0�

X W �NC1
0

!MI

see (5-1) for the definition. This arises by identifying the punctured .N C 1/–cube
�NC1

0
with the category �inj=ŒN �, where �inj � � is the subcategory of injective

maps. In addition, we have an isomorphism

holim
�

NC1
0

'NC1
0�

X Š Tot.N / X

in HoM; see Proposition 5.3. Moreover, using the isomorphism (5-2), one can describe
holim�

NC1
0

'NC1
0�

X as an iterated homotopy pullback. As the functor ReB is exact,
it is compatible (up to weak equivalence) with taking an iterated homotopy pullback,
giving us a canonical isomorphism

(2-1) ReB.Tot.N /.E//Š Tot.N /.Re�B .E//

in SH , for E W �! SptT .k/ a cosimplicial T–spectrum.

We drop the tilde from the notation, considering both MU and MGL as objects in the
appropriate category of symmetric spectra. We will also systematically replace objects
with their fibrant replacements without altering the notation, so all objects that appear
below will be assumed to be fibrant (or even cofibrant and fibrant, if need be).

We have the cosimplicial objects

MGL^�C1
2 Spt†T .k/

�; MU^�C1
2 .Spt†/�:

Restricting to the subcategory ��N via the inclusion functor �N W ��N !� gives us
the truncated objects

�N�MGL^�C1
2 Spt†T .k/

��N

; �N�MU^�C1
2 .Spt†/�

�N

:

As the Betti realization of MGL is isomorphic to MU and ReB is an exact monoidal
functor, we have the isomorphism

Re�
�N

B �N�MGL^�C1
Š �N�MU^�C1
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in HoŒ.Spt†/��N

�. Our main task is to identify the tower

� � � ! Re�
�N

B f
��N ;t

nC1
�N�MGL^�C1

! Re�
�N

B f �
�N ;t

n �N�MGL^�C1

! � � � ! Re�
�N

B �N�MGL^�C1 :

We introduce some notation. For E 2SptT .k/, ID .i1; : : : ; ir / an index with 0� ij 2Z
and bI D b

i1

1
� � � b

ir
r a monomial with bj of degree nj , we define

E � bI WD†
jI j
T

E ;

where jI j WD
Pr

jD1 nj � ij . More generally, if fbi
j g, i D 1; : : :m, is a set of variables

with some assigned positive integral degrees, we let E Œfbi
j g� denote the coproduct of

the Eb1
I1
� � � bm

Im
.

Lemma 2.1 We have an isomorphism of left MGL–modules

MGL^mC1
ŠMGL Œb.1/� ; : : : ; b

.m/
� �;

where b
.j/
� is the collection of variables b

.j/
1
; b
.j/
2
; : : : , with b

.j/
n of degree n.

Proof We write ��;�MGL for ��;�MGL.k/, etc. It clearly suffices to handle the case
m D 1. For this, [23, Proposition 6.2] provides elements bn 2 �2n;n.MGL^MGL/
giving rise to an isomorphism of left ��;�MGL–modules

��;�.MGL^MGL/Š ��;�MGL Œb1; b2; : : : �:

For each monomial bI in b1; b2; : : : , we view bI 2 �2jI j;jI j.MGL^MGL/ as a map
bI W †

jI j
T

Sk!MGL^MGL; using the product in MGL, this gives the left MGL–map

# WD
X

I

bI W

M
I

†
jI j
T

MGL!MGL^MGL :

Now, MGL is stably cellular [7, Theorem 6.4], hence
L

I †
jI j
T

MGL and MGL^MGL
are stably cellular. (The second assertion follows from [7, Lemma 3.4].) Clearly #
induces an isomorphism on �a;b for all a; b ; hence by [7, Corollary 7.2], # is an
isomorphism in SH.k/.

Lemma 2.2 (1) ReB.f
t

n MGL^mC1/ is .2n� 1/–connected for all n;m� 0.

(2) The map

f2nReB.f
t

n MGL^mC1/! f2nReB.MGL^mC1/

induced by the natural transformation f t
n ! id and the map

f2nReB.f
t

n MGL^mC1/! ReB.f
t

n MGL^mC1/
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induced by the natural transformation f2n! id are weak equivalences.

(3) The map

f �
�N

2n Re�
�N

B .f �
�N ;t

n �N�MGL^�C1/! f �
�N

2n ReB�N�MGL^�C1

induced by the natural transformation f �
�N ;t

n ! id and the map

f �
�N

2n Re�
�N

B .f �
�N ;t

n �N�MGL^�C1/! Re�
�N

B .f �
�N ;t

n �N�MGL^�C1/

induced by the natural transformation f �
�N

2n
! id are weak equivalences.

Proof We first prove (1). Recall that a P1 –spectrum E is topologically c–connected
if the homotopy sheaf �nCm;mE is zero for all n� c and all m 2 Z. It follows from
Morel’s A1 –connectedness theorem [22] that �aCb;b MGLn D 0 for a < n, b � 0.
Thus the stable homotopy sheaves �aCb;b MGL are zero for a < 0, that is, MGL is
topologically .�1/–connected. By [18, Proposition 3.2], f t

n MGL is also topologically
.�1/–connected; hence by [20, Theorem 5.2], ReB.f

t
n MGL/ is .n� 1/–connected

for all n� 0.

We have an isomorphism (of left MGL–modules)

(2-2) MGL^mC1
Š

M
ID.i1;:::;im/

†
jI j
T

MGL;

from which it follows that f t
n MGL^mC1 is topologically .�1/–connected and that

ReBf
t

n MGL^mC1 is .n� 1/–connected for all n � 0. Thus the spectral sequence
associated to the tower

� � � ! ReBf
t

NC1 MGL^mC1
! ReBf

t
N MGL^mC1

! � � � ! ReBf
t

n MGL^mC1

converges strongly to the homotopy groups of ReBf
t

n MGL^mC1 . As both f t
N

and ReB

are exact functors, the `th layer in this tower is ReBst
nC`

MGL^mC1 , so to prove (1),
it suffices to show that ReBst

nC`
MGL^mC1 is .2n� 1/–connected for all `� 0.

By the Hopkins–Morel–Hoyois’ theorem [13; 17] and the above computation of
MGL^mC1 , we have that st

N
MGL^mC1 is a finite coproduct of copies of †N

T
M Z,

where M Z is the motivic Eilenberg–Mac Lane spectrum representing motivic co-
homology. In addition, ReB.M Z/ Š EM.Z/, hence ReBst

N
MGL^mC1 is a finite

coproduct of copies of †2N EM.Z/ and is thus .2N � 1/–connected.

For (2), applying ReB to the decomposition (2-2) gives

ReB.MGL^mC1/Š
M

I

†2jI jMUI
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since f t
n ı†T Š†T ıf

t
n�1

and fm ı†Š† ıfm�1 , this reduces the proof of (2) to
the case mD 0. Since

ReBst
N MGLŠ†2N EM.Z/˝MU�2N ;

the strongly convergent spectral sequences

E
p;q
1
D ��p�qReBst

p MGL) ��p�qReB MGL;

E
p;q
1
D ��p�qReBst

p MGL) ��p�qReBf
t

n MGL

degenerate at E1 and show that �mReBf
t

n MGL!�mReB MGL is an isomorphism for
m� 2n and �mReBf

t
n MGLD 0 for m< 2n. Thus ReBf

t
n MGL!ReB MGLŠMU

is isomorphic (in SH) to the .2n� 1/–connected cover of MU, proving (2).

Then (3) follows immediately from (2), by the definition of the weak equivalences in
the functor category MS .

Having gone through these preliminaries, we can now prove our main result:

Proof of Theorem 1 We replace all objects with fibrant models, without changing
the notation.

Denote the spectral sequence (4-9) for indices A D 0, B D 1 and cosimplicial
spectrum E by E.Tot; E/. We let E.Dec; E/ denote the spectral sequence (6-3) for
AD 0, B D1. The Adams–Novikov spectral sequence may be constructed as the
spectral sequence E.Tot;MU^�C1/ associated to the cosimplicial spectrum

n 7!MU^nC1 :

For k �K an extension of algebraically closed fields, the base extension induces an
isomorphism of the spectral sequence E.AH/ for k with the spectral sequence E.AH/
for K ; this follows from [20, Theorem 8.3]. Thus, we may assume that k admits an
embedding into C , giving the associated Betti realization functor

ReBW SH.k/! SH:

By Lemma 2.2 and the isomorphism (2-1), we have an isomorphism

ReB.Tot.N / f
�;t

a=b
MGL^�C1/Š Tot.N / f

�
2a=2b MU^�C1

in SH for all a � b , including b D1, compatible with respect to the maps in the
slice tower for MGL^�C1 and the Postnikov tower for MU^�C1 .

By Proposition 5.5, this gives us an isomorphism

(2-3) ReB.f
t

a=bSk/Š Tot.N / f
�

2a=2b MU^�C1
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in SH for a � b � N C 1, compatible with respect to change in a and b . In
addition, as we have replaced f �

2a=2b
MU^�C1 with a fibrant model, the Tot–tower for

f �
2a=2b

MU^�C1 is a tower of fibrations and

Totf �2a=2b MU^�C1
Š lim
 ��
N

Tot.N / f
�

2a=2b MU^�C1
Š holim

N
Tot.N / f

�
2a=2b MU^�C1 :

Using the isomorphism (2-3) gives us the isomorphism

ReB.f
t

a=bSk/Š Totf �2a=2b MU^�C1

in SH , and since the functor Tot is compatible with homotopy fiber sequences, we
have isomorphisms

Totf �2a=2b MU^�C1
Š hocofib.Totf �2b MU^�C1

! Totf �2a MU^�C1/

in SH for all a� b . Thus, we have an isomorphism of the spectral sequence associated
to the tower

� � � ! ReB.f
t

nC1Sk/! ReB.f
t

n Sk/! � � � ! ReB.f
t

0 Sk/Š S

and the one associated to the tower

� � � ! Totf �2nC2 MU^�C1
! Totf �2n MU^�C1

! � � � ! Totf �0 MU^�C1
D Tot MU^�C1 :

Since all the odd homotopy groups of MU^mC1 vanish, this latter spectral sequence is
just E.Dec;MU^�C1/, after reindexing.

By [20, Proposition 6.4], the functor ReB induces an isomorphism

�n;0.s
t
mSk/.Spec k/Š �n.ReB.s

t
mSk//

for all n and m. In addition, the tower

� � � ! f t
mC1Sk ! f t

mSk ! � � � ! f t
0 Sk D Sk

and its Betti realization

� � � ! ReBf
t

mC1Sk ! ReBf
t

mSk ! � � � ! ReBf
t

0 Sk D S

yield strongly convergent spectral sequences

E
p;q
1
D ��p�q;0.s

t
pSk/.Spec k/) ��p�q;0.f

t
a=bSk/.Spec k/;

E
p;q
1
D ��p�qReB.s

t
pSk/) ��p�qReB.f

t
a=bSk/

Geometry & Topology, Volume 19 (2015)



2704 Marc Levine

(see [19, Theorem 4; 20, proof of Theorem 6.7]) and thus the functor ReB induces an
isomorphism

�n;0.f
t

a=bSk/.Spec k/Š �n.ReB.f
t

a=bSk//

for all n and all a< b �1.

Putting these two pieces together, the Betti realization functor gives an isomorphism
of the spectral sequence E.AH/ with the spectral sequence E.Dec;MU^�C1/, after a
suitable reindexing. Explicitly, this gives

E
p;q
1
.AH/ŠE

2p;q�p
1

.Dec;MU^�C1/DE
2p;q�p
2

.Dec;MU^�C1/I

the terms E
p;q
� .Dec;MU^�C1/ with p odd are all zero, and by induction we have

isomorphisms
Ep;q

r .AH/ŠE
2p;q�p
2r

.Dec;MU^�C1/

commuting with the differentials dr .AH/ and d2r .Dec/. We apply Proposition 6.3 to
yield the isomorphism

p;q
r W Ep;q

r .Dec;MU^�C1/!E
2pCq;�p
rC1

.MU^�C1/DE
2pCq;p
rC1

.AN/:

(The change in indices in the last identity results from passing from the Cartan–Eilenberg
indexing convention to that of Bousfield–Kan.) This completes the proof.

Remarks 2.3 (1) Fixing a prime `, one can replace MU with the `–local Brown–
Peterson spectrum BP, and similarly replace MGL with BPmot , the motivic counterpart
to BP. (See [32] for a construction.) Having made this substitution, repeating the above
argument gives a comparison of the `–local Adams–Novikov spectral sequence with the
`–localized slice spectral sequence. Indeed, the only point one needs to check is that the
unit map Sk ˝Z.`/! BPmot has cofiber in †T SHeff.k/. For this, we note that BPmot

is a summand of MGL˝Z.`/ , hence BPmot is in SHeff.k/. Thus, we need only see
that the unit map induces an isomorphism on the 0th slice, st

0
Sk˝Z.`/! st

0
BPmot . By

Spitzweck’s computation of the slices of Landweber exact theories [31], we see that the
canonical map MGL! BPmot induces an isomorphism st

0
MGL˝Z.`/! st

0
BPmot ;

as we have already seen that st
0
Sk! st

0
MGL is an isomorphism, the point is checked.

This yields Theorem 2.

(2) Presumably the main results presented here have an analog in étale homotopy theory
with respect to a suitable étale realization functor; see for example [14]. Using the étale
theory should enable an extension of these results to fields of positive characteristic,
at least for the prime-to-characteristic parts of the groups concerned, but we have not
checked this.
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3 Constructions in functor categories

It is convenient to perform some constructions, such as Postnikov towers in various
settings or realization functors, in functor categories. This can be accomplished in a
number of ways. The Postnikov towers may be constructed via cofibrant replacements
associated to a right Bousfield localization; by making the cofibrant replacement
functorial, this extends immediately to functor categories. The Betti realization is
similarly accomplished as the left derived functor of a left Quillen functor, so again
applying this functor to a functorial cofibrant replacement extends the Betti realization
to a realization functor between functor categories. However, it is often useful to have
more control over these constructions, which can be achieved through a full extension
to the appropriate model category structure on the functor category; we give some
details of this approach here. None of this basic material is new; it is assembled
from Barwick [3], Hirschhorn [9] and Hovey [11] and collected here for the reader’s
convenience. The applications to the slice tower and Betti realization are new.

3.1 Model structures on functor categories

Let S , T be small categories, M a complete and cocomplete category and MS the
category of functors X W S !M. For a functor f W T ! S , we have the restriction
functor f�WMS !MT , f�X WD X ı f , with left adjoint f � and right adjoint f ! .
For X 2MT , we have that f �X and f !X are respectively the left and right Kan
extensions in the following diagram:

T X
//

f
��

M

S

In particular, for s 2S , we have isW pt!S , the inclusion functor with value s , inducing
the evaluation functor is�WMS !M, the left adjoint i�s WM!MS and the right
adjoint i !

sWM!MS .

We take M to be a simplicial model category and consider two model structures
on MS . If M is cofibrantly generated, we may give MS the projective model structure,
that is, weak equivalences and fibrations are defined pointwise, and cofibrations are
characterized by having the left lifting property with respect to trivial fibrations.

In case S is a Reedy category, one can also give MS the Reedy model structure. We
first recall the definition of a Reedy category S : there is an ordinal �, a function (called
degree) d W ObjS ! � and two subcategories SC and S� such that all nonidentity
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morphisms in SC increase the degree, all nonidentity morphisms in S� decrease the
degree and each morphism f in S admits a unique factorization f Daıb with a2SC ,
b 2 S� . For s 2 S , we let Ss

� be the category of nonidentity morphisms s! t in S�
and let Ss

C be the category of nonidentity morphisms t ! s in SC . Given an object
X 2MS and s 2 S , we have the latching space LsX and matching space M sX ,

LsX WD lim
��!

t!s2Ss
C

X .t/; M sX WD lim
 ��

s!t2Ss
�

X .t/;

with the canonical morphisms LsX ! X .s/, X .s/!M sX .2

The Reedy model structure on MS has weak equivalences the maps f W X ! Y such
that f .s/W X .s/! Y.s/ is a weak equivalence in M for all s 2 S , fibrations the maps
f W X ! Y such that X .s/! Y.s/�M sY M sX is a fibration in M for all s 2 S and
cofibrations the maps f W X!Y such that X .s/qLsX LsY!Y.s/ is a cofibration for
all s 2 S . This makes MS a model category without any additional conditions on M.

In both of these two model structures, the evaluation functor is� preserves fibrations,
cofibrations and weak equivalences, and admits i�s as left Quillen functor and i !

s as
right Quillen functor.

Remark 3.1 Suppose M is cofibrantly generated. If S is a direct category, these two
model structures agree; if S is a general Reedy category, the weak equivalences in the
two model structures agree, every fibration for the Reedy model structure is a fibration
in the projective model structure, and thus every cofibration in the projective model
structure is a cofibration in the Reedy model structure. Furthermore, the projective
model structure is also cofibrantly generated, and is cellular (resp. combinatorial)
if M is cellular (resp. combinatorial); we refer the reader to [9, Theorem 11.6.1,
Theorem 12.1.5; 3, Theorem 2.14] for proofs of these assertions. The Reedy model
structure likewise inherits the combinatorial property from M [3, Lemma 3.33].

Left and right properness are similarly passed on from M to the projective model
structure on MS [3, Proposition 2.18]. For the Reedy model structure, the inheritance
of left and right properness is proven in [3, Lemma 3.24].

Example 3.2 The classical example of a Reedy category is the category of finite or-
dered sets. Let � denote the category with objects the finite ordered sets Œn�WDf0; : : : ; ng
with the standard order, nD 0; 1; : : : , and with morphisms the order-preserving maps
of sets. For a category C , the functor category C� (resp. C�op

) is called as usual the
category of cosimplicial (resp. simplicial) objects in C .

2Note the shift in indices from the notation in [5, Chapter X, Section 4].
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We let �inj (resp. �surj ) denote the subcategory of � with the same objects and with
morphisms the injective (resp. surjective) order-preserving maps. Taking �C WD�inj ,
�� WD�surj and d W �!N , the function d.Œn�/D n makes � a Reedy category. We
have the standard coface maps dj W Œn�! ŒnC 1�, j D 0; : : : ; nC 1, and codegeneracy
maps si W Œn�! Œn� 1�, i D 0; : : : ; n� 1.

Let Spc denote the category of simplicial sets and Spc� the category of pointed
simplicial sets, each with the standard model structures; see [11, Section 3.2]. Note
that this is not the Reedy model structure!

Let �Œn� be the representable simplicial set, �Œn� WDHom�.�; Œn�/, and �Œ��W �!Spc
be the cosimplicial space n 7!�Œn�.

3.2 Simplicial structure

We consider a small category S and a simplicial model category M satisfying the
conditions discussed in the previous section. Both of the model structures for MS

discussed above yield simplicial model categories: For a simplicial set A and a functor
X W S!M, the product X ˝A and Hom–object Hom.A;X / are the evident functors
.X ˝A/.s/ WDX .s/˝A and Hom.A;X /.s/ WDHom.A;X .s//. The simplicial Hom–
object MapMS .X ;Y/ is given as the simplicial set

n 7! HomMS .X ˝�Œn�;Y/

or, equivalently, as the equalizer

MapMS .X ;Y/!
Y
s2S

MapM.X .s/;Y.s//
Q

g�
//Q

g�

//

Y
gW s!s0

MapM.X .s/;Y.s
0//:

Together with the evident adjunction Hom.X ;Hom.A;Y// Š Hom.X ˝A;Y/, this
makes MS into a simplicial model category (see below).

We have as well the object Hom.A;X / in MS for A 2 SpcS
op

, X 2 M, with
Hom.A;X /.s/ WD Hom.A.s/;X /, and the object X ˝ A in MS for A 2 SpcS ,
X 2M, with .X ˝A/.s/ WDX ˝A.s/.

For A 2 SpcS , X 2MS , we have HomS.A;X / in M, defined as the equalizer

HomS.A;X /!
Y
s2S

Hom.A.s/;X .s//
Q

g�
//Q

g�

//

Y
gW s!s0

Hom.A.s/;X .s0//:

Similarly, for A2SpcS
op

, X 2MS , we have X˝SA in M, defined as the coequalizer

a
gW s0!s

X .s0/˝A.s/
Q

X .g/˝id
//Q

id˝A.g/
//

a
s2S

X .s/˝A.s/! X ˝S A:
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Besides the adjunction already mentioned, one has the adjunctions

HomM.X;HomS.A;Y//Š HomMS .X ˝A;Y/

for X 2M, A 2 SpcS , Y 2MS , and

HomMS .X ;Hom.A;Y //Š HomM.X ˝S A;Y /

for X 2MS , A 2 SpcS
op

, Y 2M. These all follow directly from the adjunctions for
Hom and ˝.

Both adjunctions are Quillen adjunctions of two variables. In case M is cofibrantly
generated and we use the projective model structure, this is [9, Theorem 11.7.3]; if S
is a Reedy category and we give MS the Reedy model structure, this is [3, Lemma
3.24]. This gives MS the structure of an SpcS model category and an SpcS

op
model

category.

3.3 Monoidal structure

We now suppose that M has a symmetric monoidal structure ˝M , making M
into a closed symmetric monoidal simplicial model category, with internal Hom
HomM.�;�/.

For X 2M, Y 2MS , we have X˝MY and HomM.X;Y/ in MS , defined objectwise,
with the adjunction

HomMS .X ˝M Y;Z/Š HomMS .Y;HomM.X;Z//

for Y;Z 2MS , X 2M. This extends to the adjunction

MapMS .X ˝M Y;Z/ŠMapMS .Y;HomM.X;Z//

on mapping spaces. We define the M–valued internal Hom

HomS
MW .M

S/op
�MS

!M

as the equalizer

HomS
M.X ;Y/!

Y
s2S

HomM.X .s/;Y.s//
Q

g�
//Q

g�

//

Y
gW s!s0

HomM.X .s/;Y.s0//:

Similarly, for X 2MS , Y 2MSop
, we have X˝S

MY in M, defined as the coequalizer

a
gW s0!s

X .s0/˝M Y.s/
Q

X .g/˝id
//Q

id˝Y.g/
//

a
s2S

X .s/˝M Y.s/! X ˝S
M A:
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We have the adjunctions

HomS.A;HomM.X;Y//ŠHomS
M.X ˝A;Y/ŠHomM.X;HomS.A;Y//

for A 2 SpcS , Y 2MS , X 2M, induced by the adjunctions

Hom.A;HomM.X;Y //ŠHomM.X ˝A;Y /ŠHomM.X;Hom.A;Y //

for X;Y 2M, A 2 Spc. Analogous constructions and statements hold in the pointed
setting.

Lemma 3.3 Give MS either the Reedy model structure or, in case M is cofibrantly
generated, the projective model structure. Then the operations ˝M and HomS

M form a
Quillen adjunction of two variables, that is, these make MS into an M–model category.

Proof For the projective model structure, the proof of [9, Theorem 11.7.3] extends
word for word to prove the result; the case of the Reedy model structure is proven in
[3, Lemma 3.36].

MS is a closed symmetric monoidal category, with .A˝MS B/.s/ WDA.s/˝M B.s/
for A;B 2MS . The internal Hom is given as

HomMS .A;B/.s/ WDHoms=S.s=A; s=B/;

where s=A 2Ms=S is the functor s=A.s! t/ WD A.t/; for f W s! s0 , the induced
map HomMS .A;B/.s/!HomMS .A;B/.s0/ is the map

Homs=S.s=A; s=B/!Homs0=S.s0=A; s0=B/

induced by the functor f �W s=S! s0=S , noting that .s0=A/ ıf � D s=A. The unit is
the constant functor with value the unit in M.

Remark 3.4 The question of when this gives MS the structure of a symmetric
monoidal model category does not appear to have a simple answer, and we will not
need this structure here. In the case of the Reedy model structure, Barwick proves the
following result:

Proposition 3.5 [3, Theorem 3.51] Let S be a Reedy category and give MS the
Reedy model structure. Suppose that either

(a) all morphisms in S� are epimorphisms and for each s 2 S , the category Ss
� is

either empty or connected; or the dual,
(b) all morphisms in SC are monomorphisms and for each s 2 S , the category Ss

C

is either empty or connected.

Then ˝MS and HomMS .�;�/ form a Quillen adjunction of two variables, making
MS a symmetric monoidal model category.
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The condition (a) is satisfied for S D� and the dual (b) is satisfied for S D�op , so the
categories of cosimplicial or simplicial objects in a symmetric monoidal model category
have the structure of a symmetric monoidal model category. As another example of
an S satisfying (a), one can take for S the category associated to a finite poset having
a final object, with Reedy structure S D S� ; a finite poset with initial object similarly
satisfies (b) if one takes S D SC .

3.4 Bousfield localization

We suppose that M is cellular and right proper. Let K be a set of cofibrant objects in M.
We have the right Bousfield localization RKM with associated functorial cofibrant
replacement QK ! id; see [9, Theorem 5.1.1]. Let KS be the set of cofibrant objects
i�s a, a 2K , s 2 S , and let RKSMS be the right Bousfield localization of MS with
respect to KS . (As noted in Remark 3.1, MS inherits cellularity and right properness
from M.)

Lemma 3.6 Suppose that M is cellular and right proper, and give MS the projective
model structure. Let K be a set of cofibrant objects in M.

(1) The right Bousfield localization RKSMS is the same as the projective model
structure on .RKM/S .

(2) Take x 2MS and let Qx! x be a cofibrant replacement in RKSMS . Then
is�Qx! is�x is a cofibrant replacement of is�x in RKM for all s 2 S .

Proof Right Bousfield localization leaves the fibrations unchanged, hence RKSMS

and .RKM/S have the same fibrations. The weak equivalences in a right Bousfield
localization with respect to a set of objects K are the K–colocal weak equivalences, that
is, maps X ! Y that induce a weak equivalence on the Hom spaces Hom.a;RX /!

Hom.a;RY / for all a 2K , where RX , RY are fibrant replacements. From this it
follows that X ! Y is a weak equivalence in RKSMS if and only if is�X ! is�Y is
a weak equivalence in RKM for all s , that is, the weak equivalences in RKSMS and
.RKM/S agree.

Then (2) follows from (1), noting that is� preserves cofibrations, fibrations and weak
equivalences (for the projective model structure).

Examples 3.7 (1) “Topological” Postnikov towers We recall a functorial construc-
tion of the .n�1/–connected cover fnX !X of a pointed space. Fix an integer n� 0

and let Kn be the set of spaces of the form †mX , with X in Spc� and m� n. Since
Spc� is a right proper cellular simplicial model category, by [9, Theorem 5.1.1] the
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right Bousfield localization RKn
Spc� of Spc� with respect to the Kn –colocal maps

exists. In addition, there is a cofibrant replacement functor fnW RKn
Spc�!RKn

Spc� .
By the definition of right Bousfield localization ([9, Definition 3.3.1]; see also [20,
Theorem 2.5]) fnX ! X in HoSpc� is universal for maps from .n� 1/–connected Y
to X ; by obstruction theory, it follows that fnX ! X is an .n� 1/–connected cover
of X . Using Lemma 3.6, we may form the .n�1/–connected cover f S

n X ! X in the
functor category SpcS� as the cofibrant replacement with respect to the right Bousfield
localization RKS

n
Spc� .

Varying n and noting that Kn �Km if n�m gives the tower of cofibrant replacement
functors

� � � ! f S
nC1! f S

n ! � � � ! f S
0 D id:

Let Spt be the category of S1 –spectra in Spc� , with stable model structure as defined
in [12]. We have the nth evaluation functor evnW Spt! Spc� , evn.S0;S1; : : : / WD Sn ,
and its left adjoint FnW Spc�! Spt,

Fn.S/ WD .pt; : : : ; pt;S; †S; †2S; : : : /:

We repeat the construction of the Postnikov tower with Spt replacing Spc� and tak-
ing Kn to be the set of objects Fa†

bX , with X 2 Spc� , b�a� n, n 2Z. This gives
us the Postnikov tower

� � � ! f S
nC1! f S

n ! � � � ! id

in the functor category SptS (with n 2 Z). We may extend these constructions to
other model categories. Rather than attempting an axiomatic discussion, we content
ourselves with the examples arising in motivic homotopy theory. Let S be a noetherian
separated base scheme and let Spc�.S/ be the category of pointed spaces over S , that
is, Spc�–valued presheaves on the category Sm=S of smooth S –schemes of finite
type. We give Spc�.S/ the motivic model structure; this gives Spc�.S/ the structure of
a proper combinatorial symmetric monoidal simplicial model category; for details see
[10, Corollary 1.6; 15, Section 1, Theorem 1.1; 16, Appendix A; 26, Theorem 2.3.2].
Letting Kn.S/ be the set of objects of the form †mX , with X 2 Spc�.S/ and m� n,
we have the right Bousfield localization RKn.S/Spc�.S/ and the cofibrant replacement
functor fn , with universal property for maps with source in the Kn.S/–cellular objects
of Spc�.S/. In case S D Spec k , k a field, these turn out to be the .n�1/–connected
objects in Spc�.S/, that is, those objects with vanishing A1 –homotopy sheaves �m

for m < n (see [27] and also [20, Theorem 3.1, Remark 3.3] for a discussion of the
stable case and an indication of how this construction works in the unstable case).
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We may also use categories of S1 – or P1 –spectra, SptS1.S/, SptP1.S/, with the
respective motivic model structures. (See [16] for a description of the model structures
and [26, Theorem 2.5.4] for the fact that these are cellular.) For S1 –spectra, replace Kn

with KS1

n .S/ WD fFS1

q †pX ;X 2 Spc�.S/;p � q � ng. Here FS1

q W Spc�.S/ !
SptS1.S/ is given by using the functor FqW Spc�! Spt, that is,

FS1

q .X /.T / WD Fq.X .T //

for each T ! S in Sm=S . Suppose S D Spec k , with k a perfect field. Again, the
KS1

n .S/–cellular objects are those E 2 SptS1.S/ with stable A1 –homotopy sheaves
�mE that vanish for m<n. Additionally, in this stable model category, the subcategory

SHS1.S/�0
WDHoRK S1

0
.S/SptS1.S/

of the homotopy category SHS1.S/ of SptS1.S/ is half of a t –structure with heart
the strictly A1 –invariant Nisnevich sheaves on Sm=S and with SHS1.S/�0 the full
subcategory of the E with �nE D 0 for n> 0. This all follows from results of Morel,
see [21, Theorem 4.3.4, Lemma 4.3.7].

For SptP1.S/, we use

KP1

n .S/ WD fFP1

q †
p

S1X ;X 2 Spc�.S/;p� q � ng;

with
FP1

q X WD .FP1

q X0; FP1

q X1; : : : /;

FP1

q Xn D pt for n< q,

FP1

q Xn D†
n�q

P1 X for n� q,
and with identity bonding maps. Assuming that S D Spec k with k a perfect field, then
in this stable model category, the KP1

n .S/–cellular objects are those E 2 SptP1.S/

with stable A1 –homotopy sheaves �mCq;qE that vanish for m < n, q 2 Z, and the
subcategory SH.S/�0 WD HoRK P1

0
.S/SptP1.S/ of the homotopy category SH.S/

of SptP1.S/ is half of a t –structure with SH.S/�0 the full subcategory of the E with
�mCq;qED 0 for m> 0, q 2Z. The heart is Morel’s category of “homotopy modules”
[21, Definition 5.2.4]; see [21, Theorem 5.2.3, Theorem 5.2.6] for detailed statements.

(2) Slice towers This is a modification of the construction in Spc�.S/ given in (1),
using the set Kt

n of objects of the form †b
Gm

X , with b � n � 0. The S1 –stable
version uses the set of objects of the form Fm†

b
Gm

X , with b � n � 0, and the
P1 –stable version uses the set of objects of the form FP1

m †b
Gm

X , with b �m � n,
n 2 Z. Varying n, the first two yield the slice tower

� � � ! f t
nC1X ! f t

nX ! � � � ! f t
0X D X ;
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while the P1 –version gives us the doubly infinite tower

� � � ! f t
nC1E! f t

nE! � � � ! E :

Replacing Kt
n with K

t;S
n gives the slice towers

� � � ! f
t;S

nC1
X ! f t;S

n X ! � � � ! f
t;S

0
X D X ;

� � � ! f
t;S

nC1
E! f t;S

n E! � � � ! E

in Spc�.S/S , SptS1.S/S and SptP1.S/S . There are similarly defined versions in
categories of T–spectra (T DA1=A1nf0g) or the various flavors of symmetric spectra.
As above, we refer the reader to [27] and [20, Theorem 3.1, Remark 3.3] for details.

(3) Betti realizations Betti realizations are left derived functors of a left Quillen
functor An� , either on categories of spaces over k or on the various spectrum categories,
where An� is a left Kan extension of the functor sending a smooth k –scheme X to the
topological space of its C–points (with respect to a fixed embedding k ,!C ) or, if one
prefers Spc as target category, to the singular complex of this space. As a left derived
functor of a left Quillen functor, the resulting Betti realization functor on the appropriate
homotopy category is constructed by applying An� (or some allied construction, in
the case of spectra) to a cofibrant resolution for a suitable (cellular) model structure.
Thus, we may form a Betti resolution for functor categories by first noting that An�

extends by applying it pointwise to a left Quillen functor between functor categories,
and then applying this to cofibrant resolutions in the domain functor category.

Fix an embedding � W k ! C . We use the Betti realization of Panin, Pimenov and
Röndigs [25], modified to pass to Spc instead of locally compact Hausdorff spaces.
This functor arises from the left Quillen functor

An�W Spc�.k/! Spc�;

which is the Kan extension of the functor sending X 2 Sm=k to the singular complex
of X an , this latter being the topological space of C–points of X � , endowed with the
classical topology.

One extends this to P1 –spectra using the fact that .P1/an Š S2 and that An� is
symmetric monoidal, then using an equivalence of Spt and S2 –spectra. Glossing over
this latter equivalence, we have the isomorphism (in SH)

ReB.MGL/ŠMU :

There is a similar version from symmetric P1 –spectra to symmetric S2 –spectra,
inducing an isomorphic functor on the homotopy categories.
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Finally, the Betti realization functor extends to a left Quillen functor

AnS;�
W SptT .k/

S
! SptS

S2 ;

with a natural isomorphism i�s ıAnS;�
ŠAn� ı is� ; note that one needs to use a different

model structure on SptT .k/ than the one we have been using; see [25, Section A4]
and [20, Section 5] for details.3 For other versions of the Betti realization, see [2,
Definition 2.1; 28; 35, Section 4].

We let
ReSBW HoSptT .k/

S
!HoSptS

be the left derived functor of AnS;� composed with the equivalence HoSptS
S2ŠHoSptS .

Remark 3.8 Since the Postnikov tower

� � � ! f S
nC1! f S

n ! � � � ! id

and the slice tower
� � � ! f

t;S
nC1
! f t;S

n ! � � � ! id

are both defined via cofibrant replacement functors on the appropriate model categories,
we thus have for a � b well-defined endofunctors zf S

a=b
WD hofib.f S

b
! f S

a / and
zf

t;S
a=b
WD hofib.f t;S

b
! f

t;S
a /, giving rise to homotopy fiber sequences

zf S
a=b! f S

b ! f S
a and zf

t;S
a=b
! f

t;S
b
! f t;S

a :

In the stable setting, this gives us the homotopy fiber sequences

f S
b ! f S

a ! f S
a=b and f

t;S
b
! f t;S

a ! f
t;S

a=b

by defining
f S

a=b D† ı
zf S
a=b and f

t;S
a=b
D† ı zf

t;S
a=b
:

Even in the unstable setting, if we fix an object Y and let X D�.Y/, then we have a
canonical weak equivalence

f S
n .X /Š�.f

S
nC1.Y//;

giving us the homotopy fiber sequence f S
b
.X /! f S

a .X /! zf S
aC1=bC1

.Y/. We may
therefore define f S

a=b
.X / WD zf S

aC1=bC1
.Y/, giving the homotopy fiber sequence

f S
b .X /! f S

a .X /! f S
a=b.X /;

3We still use the projective model structure on SptT .k/S , but with respect to the Panin–Pimenov–
Röndigs model structure on SptT .k/ .
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which is at least functorial in Y (for X D�.Y/). We can make a similar definition
of f t;S

a=b
.X / in the setting of the slice tower, having chosen a delooping Y of X . We set

sSn WD f
S

n=nC1 and st;S
n WD f

t;S
n=nC1

:

As the Postnikov tower and slice tower are defined via cofibrant replacement functors,
the functors f S

n and f t;S
n send fibrant objects to fibrant objects. The same holds for

the layers f S
a=b

and f t;S
a=b

, assuming that the choice of delooping is fibrant.

We conclude with a simple result concerning connectivity.

Lemma 3.9 Take E 2 SptS such that is�E is .n�1/–connected for each s 2 S . Then
f S

n E! E is a weak equivalence.

Proof Since is�f
S

n E Š fnis�E , our assumption on E implies that is�f
S

n E! is�E is
a weak equivalence for each s 2 S , and thus f S

n E! E is a weak equivalence.

4 Cosimplicial objects in a model category

We will work in a fairly general setting, letting M be a pointed closed symmet-
ric monoidal simplicial model category. The reader can keep in mind the example
MD Spc� , the category of pointed simplicial sets.

This material, as well as much of the material in the next section, may be found in the
beginning of [4].

We have the functor category M� of cosimplicial objects in M. We give M� the
Reedy model structure, unless explicitly stated otherwise. For X W �!M, we often
write X n for X .Œn�/.

Remark 4.1 The unit for the monoidal structure on M� is the constant cosimplicial
object on the unit 1 in M; this is usually not a cofibrant object in M� .

If A is an object in M, write cA for the constant cosimplicial object. The functor c

does not in general preserve cofibrations; however, if i W A! B is a cofibration in M
and pW X ! Y is a fibration in M� with Y (and hence X ) fibrant, then

Hom.cB;X /!Hom.cA;X /�Hom.cA;Y/Hom.cB;Y/

is a fibration, and it is a trivial fibration if either i or p is a weak equivalence.
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We consider the full subcategory ��n of �, with objects Œk�, k D 0; : : : ; n; note that
��n is also a Reedy category, with the evident C and � subcategories. We usually
give M��n

the Reedy model category structure.

For T 2M, we write �T for the functor Hom.T;�/WM!M, right adjoint to †T ,
where †T .X /DX ^T . We also write �T for the functor Hom.cT;�/WM�!M� ,
leaving it to the context to determine the precise meaning. Similarly, we may use the
Spc�–structure to define �K WDHom.K;�/WM!M, right adjoint to †K , where
†K .X / D X ^K , and also �K WD Hom.K;�/WM�!M� . We write � and †
for �S1 and †S1 .

4.1 The total complex and associated towers

We recall the construction of towers associated to cosimplicial objects, recapping the
construction of [5] for cosimplicial spaces, which was generalized to cosimplicial
objects in a simplicial model category in [4].

Let X be a cosimplicial object in M. We have the associated total object TotX WD
Hom�.�Œ��;X / in M; note that �Œ�� is a cofibrant object in Spc� , hence the functor
TotWM�!M is a right Quillen functor with left adjoint A 7!A��Œ��. We make
the analogous definition in the pointed setting.

For T 2M, X 2M� , the adjoint property of Hom gives the isomorphism

HomM.T;TotX /ŠHom�M.T ��Œ��;X /

ŠHom�.�Œ��;HomM.T;X //D Tot.HomM.T;X //

in M. That is, we have the canonical isomorphism �T TotX Š Tot�T X . Conse-
quently, assume M is a category of T–spectra in some model category M0 . For
E W �! SptM0

T
a cosimplicial T–spectrum,

E D .E0; : : : ; En; : : : /;

with bonding maps �nW En ! �T EnC1 , Tot E is the spectrum .Tot E0;Tot E1; : : : /,
with bonding maps Tot �nW Tot En! Tot�T EnC1 Š�T Tot EnC1 .

Let ik W �
�k!� be the inclusion functor, and let Spc.k/ be the category of presheaves

of sets on ��k . Restricting via ik gives the functor ik�W Spc! Spc.k/ , which admits
the left adjoint i�

k
W Spc.k/ ! Spc; the k –skeleton functor skk is the composition

i�
k
ıik� , with counit skk! id. We write A.k/ for skkA. We have the canonical natural

transformations �m;k W skk! skm for 0�k �m, with �n;mı�m;k D �n;k for k �m� n.
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Let �k W �Œ��.k/!�Œ�� be the k –skeleton of �Œ��, that is, the cosimplicial simplicial set
n 7!�Œn�.k/ . For X a cosimplicial object of M, let Tot.k/ X WDHomM.�Œ��.k/;X /.
The sequence of cofibrations

∅ WD�.�1/ ,!�Œ��.0/ ,!�Œ��.1/ ,! � � � ,!�Œ��.k/ ,! � � ��Œ��

thus gives the tower

(4-1) TotX ! � � � ! Tot.k/ X ! � � � ! Tot.1/ X ! Tot.0/ X ! Tot.�1/ X WD pt

in M, which is a tower of fibrations if X is fibrant.

We let Tot.k/ X ! TotX be the homotopy fiber of TotX ! Tot.k�1/ X , giving the
tower

(4-2) � � � ! Tot.kC1/ X ! Tot.k/ X ! � � � ! Tot.1/ X ! Tot.0/ X D TotX

in M. For m�k ��1, let Tot.m=k/ X be the homotopy fiber of Tot.m/ X!Tot.k/ X .
For m� k � 0, let Tot.k=m/X D Tot.m�1=k�1/ X . To unify the notation, we define

Tot.0/ WD TotDW Tot.1/ and Tot.m=1/ WD Tot.m/ DW Tot.1=m�1/ :

The homotopy fiber sequence Tot.m�1=k�1/ X ! Tot.m�1/ X ! Tot.k�1/ X and an
application of the Quetzalcoatl lemma to the commutative diagram

TotX // Tot.m�1/ X

��

TotX // Tot.k�1/ X

give us the homotopy fiber sequence

(4-3) �Tot.k=m/ X ! Tot.m/ X ! Tot.k/ X :

Suppose we have a delooping Z of X . We get natural (in Z ) deloopings Tot.r/ X Š
�Tot.r/ Z for all r , which in turn give us natural deloopings Tot.r=s/ X Š�Tot.r=s/ Z
for all r , s . Extending the homotopy fiber sequence (4-3) for Z to the left gives us the
homotopy fiber sequence

�Tot.m/ Z!�Tot.k/ Z!�Tot.k=m/ ZI

using our deloopings thus gives us the homotopy fiber sequence

(4-4) Tot.m/ X ! Tot.k/ X
�k=m

���! Tot.k=m/ X ;

with �k=m natural in Z . In fact, �k=m is natural in X and may be defined directly as
follows: The composition Tot.k/ X ! TotX ! Tot.m�1/ X ! Tot.k�1/ X is just the
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composition in the homotopy fiber sequence Tot.k/ X ! TotX ! Tot.k�1/ X , so it is
canonically homotopic to the trivial map. This gives the canonical lifting of the
composition Tot.k/ X ! TotX ! Tot.m�1/ X to a map Tot.k/ X ! Tot.m�1=k�1/ X ,
which is just the map �k=m .

In case M is a stable model category, the loops functor � is invertible in the homotopy
category, so our delooping assumption is automatically satisfied, and we just define
Tot.k=m/ X as the homotopy fiber of z†Tot.m�1/ X ! z†Tot.k�1/ X , where z† is the
functorial fibrant model of the suspension.

We fix a homotopy functor �� on M. Rather than try to give an axiomatic treatment,
we list the examples of interest, where S D Spec k and k is a perfect field:

(1) M D Spc� , �� the usual direct sum of homotopy groups (a pointed set for
� D 0).

(2) MD Spc�.S/, �� the Nisnevich sheaf of A1 –homotopy groups (pointed sets
for � D 0).

(3) MD Spc�.S/, �n WD
L

m�0 �nCm;m .

These all have the property that a map f W X ! Y in M is a weak equivalence if and
only if f induces an isomorphism on �� for all choices of base point in X .4 For the
case of a stable model category, we will assume that �� is the graded truncation functor
associated to a nondegenerate t –structure on HoM, and again that a map f W X ! Y

in M is a weak equivalence if and only if f induces an isomorphism on �� . Our
main examples of interest are, where S D Spec k and k is a perfect field:

(1) T D S1 , MD SptS1.S/ and �n the stable A1 –homotopy sheaf.

(2) T D S1 , M D SptS1.S/ and �n WD
L

m�0 �nCm;m , n 2 Z, with �a;b the
bigraded stable A1 –homotopy sheaf.

(3) T D P1;A1=A1 n f0g or some other convenient model of P1 , MD SptT .S/

and �n WD
L

m2Z �nCm;m , n 2 Z.

For a cosimplicial abelian group n 7!An , we have the associated complex A� , with
differential the alternating sum of the coface maps. We also have the quasi-isomorphic
normalized subcomplex NA� , with NAn WD

Tn�1
iD0 ker si . For a cosimplicial object

X 2M� , let NX n be the fiber of snW X n!M n.X / (over the base point).

4In cases (2) and (3), the choice of base point is a local one with respect to the Nisnevich topology.
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Lemma 4.2 There is a natural isomorphism of ��Œn�=@�Œn�NX n with the fiber of the
map Tot.n/ X ! Tot.n�1/ X . If X is fibrant, the induced map ��Œn�=@�Œn�NX n !

Tot.n=n�1/ X gives rise to an isomorphism

(4-5) �nNX n
Š Tot.n=n�1/ X

in HoM. Moreover, we have an isomorphism �j NX n ŠN.�jX /n � �jX n .

Proof See [5, Chapter X, Proposition 6.3] for a proof in the case MD Spc.

The fiber of Tot.n/ X ! Tot.n�1/ X is equal to HomM.�Œ��
.n/=�Œ��.n�1/;X /. This

in turn is isomorphic to the equalizer

HomM.�Œ��
.n/=�Œ��.n�1/;X /!Hom.�Œn�=@�Œn�;X n/

˛
//

ˇ

//

n�1Y
iD0

X n�1;

where ˛.f /D
Q

i si ı f and ˇ is the map to the base point. This gives the asserted
identification of HomM.�Œ��

.n/=�Œ��.n�1/;X / with ��Œn�=@�Œn�NX n .

Assume that X is fibrant. As �Œ��.n�1/!�Œ��.n/ is a cofibration, the map Tot.n/ X!
Tot.n�1/ X is a fibration, hence the induced map ��Œn�=@�Œn�NX n ! Tot.n=n�1/ X
is a weak equivalence. Since X is fibrant, so is NX n , hence a weak equivalence
.S1/^n ! �Œn�=@�Œn� induces a weak equivalence ��Œn�=@�Œn�NX n ! �nNX n .
The last assertion is proven for simplicial sets in [5, Chapter X, Proposition 6.3]; the
same proof works in general.

Consider the following conditions on a cosimplicial pointed space X :

(4-6-1) X is fibrant and there is a fibrant cosimplicial object Y in M� and an
isomorphism X Š�2Y in HoM� .

(4-6-2) Given an integer i � 0, there is an integer Ni such that .N�jX /n D 0 for
n�Ni , j � i C n.

In the stable case, we have the analog of these conditions for X 2M� , namely:

(4-7-1) X is fibrant.

(4-7-2) Given an integer i , there is an integer Ni such that .N�jX /nD 0 for n�Ni ,
j � i C n.

By Lemma 4.2, under the assumption that X is fibrant, the condition (4-6-2) is equiva-
lent to

�j Tot.n=n�1/ X D 0 for j � i , n�Ni :
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4.2 Spectral sequences and convergence

Suppose that X 2M�
� is fibrant. The tower of fibrations (4-1) gives the spectral

sequence

(4-8) �E
p;q
1
.X /D ��p�q Tot.p=p�1/ X ) ��p�q Tot.B�1=A�1/ X ; A� p < B;

for 0 � A < B � 1. Note that we use the Cartan–Eilenberg indexing convention
instead of the Bousfield–Kan convention used in [5].

Under the assumption (4-6-1) or (4-7-1), the spectral sequence (4-8) is isomorphic to
the spectral sequence of the tower (4-2),

(4-9) E
p;q
1
.X /D ��p�q Tot.p=pC1/ X ) ��p�q Tot.A=B/ X ; A� p < B;

for 0�A< B �1. Furthermore, using Lemma 4.2 and (4-5), the E1 –terms are

E
p;q
1
.X /DN��qXp:

Lemma 4.3 (1) If X 2M�
� satisfies (4-6-1) (or (4-7-1) if M is a stable model

category), then the spectral sequences (4-8) and (4-9) are strongly convergent if B <1.

(2) If X 2M�
� satisfies (4-6) (or (4-7) if M is a stable model category), then the

spectral sequences (4-8) and (4-9) are strongly convergent for all B , including B D1 .

Proof It suffices to give the proof in the unstable case. (1) follows easily, as in all
cases the associated tower is finite.

For (2), since X Š�2Y , there are no low-dimensional subtleties, and all the statements
we will be using from [5] make sense and are valid for �1 and �0 .

We first show that the sequence is bounded. Indeed, E
p;q
1
D 0 for p < 0, and if

p C q D �n, then E
p;q
1
D 0 for p � Nn . In particular, E

p;�n�p
r D E

p;�n�p
rC1

D

E
p;�n�p
1 for r �maxfNn;Nn�1g and all p .

Thus, the terms fEr g are “Mittag–Leffler in dimension i ” for all i [5, IX, Section 5,
page 264] and hence, by [5, IX, Proposition 5.7], the spectral sequence converges
completely to �� TotX . Fix an integer n � 0. Since the sequence is bounded, the
filtration of �n TotX induced by the spectral sequence is finite for each n, giving the
desired convergence.

Lemma 4.4 Suppose there is an integer c such that X n is .c�1/–connected for all n.
Then for all 0� r �1, m 2 Z (in the unstable case, we assume in addition m� 0):

Geometry & Topology, Volume 19 (2015)



The Adams–Novikov spectral sequence and Voevodsky’s slice tower 2721

(1) For 0� c �m� r , the map Tot.c�m=r/ X ! Tot.0=r/ X induces a surjection

�m Tot.c�m=r/ X ! �m Tot.0=r/ X :

(2) For 0 � c � m � 1 � r , the map Tot.c�m�1=r/ X ! Tot.0=r/ X induces an
isomorphism

�m Tot.c�m�1=r/ X ! �m Tot.0=r/ X :

Proof We have the strongly convergent spectral sequence

E
p;q
1
.X /D ��p�q Tot.p=pC1/ X ) ��p�q Tot.0=b/ X ; 0� p � b� 1:

By Lemma 4.2, E
p;q
1
D��qNXp���qXp , so E

p;q
1
D0 for �q< c . Since E

p;q
1
D0

for p>b�1, this implies that E
p;q
1
D 0 for �p�q� c�b . Thus �sTot.0=b/X D0 for

s � c�b , and so �s Tot.0=c�m/ X D 0 for s �m. Using the homotopy fiber sequence

Tot.c�m=r/ X ! Tot.0=r/ X ! Tot.0=c�m/ X

proves (1). Similarly, �s Tot.0=c�m�1/ X D 0 for s � mC 1, and (2) follows by a
similar argument.

5 Cosimplices and cubes

The functors Tot.n/ are complicated by the mixture of codegeneracies and coface maps
in �; in this section we discuss the reduction of Tot.n/ to a homotopy limit over an
associated direct category, namely a punctured .nC 1/–cube.

As above, we have the full subcategory ��n of � and, for a model category C , the
restriction functor �n�W C�! C��n

with left adjoint ��n .

Throughout this section we fix a pointed simplicial model category M.

Lemma 5.1 Take X in M� . There is a natural isomorphism

Tot.n/ X ŠHom.�n��Œ��; �n�X /:

If X is fibrant, there is a natural weak equivalence

holim
��n

�n�X ! Tot.n/ X :

Proof We note that we have a canonical isomorphism of cosimplicial spaces

skn�Œ��Š �
�
n�n��Œ��:

Indeed, .skn�Œm�/.Œk�/ is the colimit over Œk�! Œ`� 2 .Œk�=��n/op of Hom�.Œ`�; Œm�/,
while .��n�n��Œ��/Œm�.Œk�/ is the colimit over Œ`�! Œm� 2��n=Œm� of Hom�.Œk�; Œ`�/.
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Both colimits are equal to the subset of Hom�.Œk�; Œm�/ consisting of maps that admit
a factorization Œk�! Œ`�! Œm�, with `� n.

This gives us the isomorphism

Tot.n/ X WDHom.skn�Œ��;X /ŠHom.�n��Œ��; �n�X /

in M. For 0� k � n, the nerve of ��n
inj =Œk� is the barycentric subdivision of �Œk�, and

sending the nondegenerate k –simplex of �Œk� to the k –simplex

f0g
� � //

))

f0; 1g
� � //

%%

� � �
� � // f0; : : : ; kg

xx

f0; : : : ; kg

in ��n=Œk� gives rise to an acyclic cofibration

˛W �n��Œ��! ŒŒk� 7!N��n=Œk��

in Spc�
�n

. As X is fibrant in M� , it follows that �n�X is fibrant in M��n

, so ˛
induces a weak equivalence upon applying Hom.�; �n�X /. As

holim
��n

�n�X WDHom
�
ŒŒk� 7!N��n=Œk��; �n�X

�
by definition, we have the weak equivalences

holim
��n

�n�X ŠHom.�n��Œ��; �n�X /Š Tot.n/ X :

Remark 5.2 For M the category of pointed simplicial sets, the above result is proven
in [29, Lemma 2.9].

Let �n be the category associated to the set of subsets of f1; : : : ; ng, with morphisms
being inclusions of subsets, and let �n

0
be the full subcategory of nonempty subsets.

We let iI;J W J ! I denote the morphism associated to an inclusion I � J .

Give f1; : : : ; ng the opposite of the standard order. The maps iI;J are clearly order-
preserving, so sending I to the ordered set ŒjI j � 1� by the unique order-preserving
bijection defines a functor

(5-1) 'nC1
0
W �nC1

0
!��n

��:

For a model category M and for C D�nC1
0

;�n; ��n , we give MC the Reedy model
structure; since �nC1

0
and �n are direct categories, this agrees with the projective

model structure in these cases.
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Proposition 5.3 Let M be a pointed simplicial model category and take X in M� .
The map

'nC1�
0

W holim
��n

�n�X ! holim
�

nC1
0

'nC1
0�

�n�X

induced by the functor 'nC1
0
W �nC1

0
!��n is a weak equivalence in M.

Proof As replacing X with a fibrant model induces a weak equivalence on the
respective homotopy limits, we may assume that X is fibrant. The result in the case
MD sSets� follows from [30, Theorem 6.5]. The general case follows from the case
of simplicial sets by taking a cofibrant object A of M and applying the mapping space
functor MapsM.A;�/ to 'nC1�

0
.

The n–cube and punctured .nC1/–cube lend themselves to inductive arguments. Take
an integer n � 1. We decompose �nC1

0
into three pieces by defining �n�

0
to be

the full subcategory with objects I such that n 62 I , �nC
0

to be the full subcategory
with objects I such that n 2 I , I ¤ fng, and ptn WD fng (with identity morphism).
We have the isomorphisms j�n W �n

0
! �n�

0
, jCn W �n

0
! �nC

0
, defined as follows:

Let jnW f1; : : : ; ng ! f1; : : : ; nC 1g be the inclusion jn.i/ D i for 1 � i < n, with
jn.n/D nC 1. Then j�n is just the functor induced by jn , and jCn .I/D jn.I/[fng.
Let iCn W �n

0
!�nC1

0
and i�n W �n

0
!�nC1

0
be the inclusions induced by jCn and j�n .

The inclusions I � I [ fng define a natural transformation ˛nW i
�
n ! iCn , whereas

the inclusions fng � I , I 2�nC
0

, define the morphisms ˇI W fng ! iCn .I/. For each
X 2M�

nC1
0 , we thus have the following diagram in M:

holim�n
0

i�n�X
˛n
// holim�n

0
iCn�X

X .fng/

ˇ�

OO

This diagram defines a functor

holimC;�
nC1
WM�

nC1
0 !M�2

0

and we have a natural isomorphism

holim
�

nC1
0

X Š holim
�2

0

holimC;�
nC1

.X /

in M. In case X .fng/D pt , we have the natural isomorphisms

(5-2) holim
�

nC1
0

X Š holim
�2

0

holimC;�
nC1

.X /Š hofib.˛nW holim
�n

0

i�n�X ! holim
�n

0

iCn�X /:
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Let �Cn W �n ! �nC1
0

be the functor �Cn .I/ WD I [ fnC 1g, giving the restriction
functor

�Cn�WM
�

nC1
0 !M�n

and the left adjoint �C�n WM�n

!M�
nC1
0 . Explicitly, for X 2M�n

, �C�n X 2M�
nC1
0

is given by �C�n X .�Cn .I//D X .I/ and �C�n X .J /D pt for J � f1; : : : ; ng.

Similarly, we have a decomposition zi˙n of �n into two .n�1/–cubes, with zi�n .I/D I ,
ziCn .I/D I[fng and natural transformation z̨nW zi�n !zi

C
n , as for the punctured .nC1/–

cube. We define the iterated homotopy fiber functor hofibn
WM�n

!M inductively by

hofibn.X /D hofib
�
hofibn�1.z̨n/W hofibn�1.zi�n .X //! hofibn�1.ziCn .X //

�
:

Using the isomorphism (5-2) and induction, we arrive at a natural isomorphism

(5-3) hofibn.X /Š holim
�

nC1
0

�C�n .X /:

Example 5.4 We let M0 be one of the model categories discussed in (6-1) below
and we apply the above results to the stable model category M of symmetric T–spectra
Spt†;M0

T
, with T D S1 or some model of P1 . Let E be a commutative monoid

in Spt†;M0

T
. Form the cosimplicial (symmetric) spectrum n 7! E^nC1 , with coface

maps given by the appropriate unit maps and codegeneracies by multiplication maps.
Letting zE^�C1 be a fibrant model, Lemma 5.1 and Proposition 5.3 give us isomorphisms

(5-4) Tot.n/ zE^�C1
Š holim

��n
�n�E^�C1

Š holim
�

nC1
0

'nC1
0

E^�C1

in HoSpt†;M0

T
ŠHoSptM0

T
, where we write 'nC1

0
E^�C1 for 'nC1

0�
�n�E^�C1 .

Let S 2 Spt†;M0

T
be the unit. We have the map SŠ Totn cS! Totn zE^�C1 , induced

by the unit map cS! zE^�C1 . Letting xE be the homotopy cofiber of the unit map
S! E , we claim there is a natural isomorphism

�nxE^nC1
Š hocofib.S! Tot.n/ zE^�C1/

in HoSpt†;M0

T
. Indeed, let ŒS! E �^nC1 be the evident .nC 1/–cube in spectra I 7!

E^jI j . The distinguished triangle S! E! xE! SŒ1� and isomorphism (5-3) give the
isomorphism

�nC1xE^nC1
Š holim

�
nC2
0

�C�
nC1

ŒS! E �^nC1

in HoSpt†;M0

T
. On the other hand, fill in the punctured .nC 1/–cube 'nC1

0
E^�C1 to

an .nC 1/–cube z'nC1
0

E^�C1 by inserting pt at the entry ∅, and similarly extend S
to an .nC 1/–cube zS with value S at ∅ and value pt at I ¤ ∅. This gives us the
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homotopy fiber sequence

(5-5) �C�
nC1
z'nC1

0
E^�C1

! �C�
nC1

ŒS! E �^nC1
! �C�

nC1
zS

in .Spt†;M0

T
/�

nC2
0 . Using the isomorphism (5-3) we get the isomorphisms

� holim
�

nC1
0

'nC1
0

E^�C1
Š holim

�
nC2
0

�C�
nC1
z'nC1

0
E^�C1;

�nC1xE^nC1
Š holim

�
nC2
0

�C�
nC1

ŒS! E �^nC1;

SŠ holim
�

nC2
0

zS

in HoSpt†;M0

T
. Thus, applying holim

�
nC2
0

to the homotopy fiber sequence (5-5) gives
us the distinguished triangle

� holim
�

nC1
0

'nC1
0

E^�C1
!�nC1xE^nC1

! S! holim
�

nC1
0

'nC1
0

E^�C1

in HoSpt†;M0

T
, which combined with (5-4) yields the desired result.

We consider the case of E DMGL in Spt†T .S/. For the construction of MGL we refer
the reader to [33]; for the structure as a symmetric monoidal object in Spt†T .S/, we
cite [24, Section 2.1]. Applying the above example, we have the distinguished triangle

(5-6) SS
in
�! holim

�
nC1
0

'nC1
0

MGL^�C1
!�nMGL^nC1

! SS Œ1�

in SH.S/. Since f t
m is an exact functor and �nC1

0
is a finite category, we have the

isomorphism

holim
�

nC1
0

f
t;�

nC1
0

m 'nC1
0

MGL^�C1
Š f t

m holim
�

nC1
0

'nC1
0

MGL^�C1

in SH.S/.

Proposition 5.5 (1) The morphism in induces an isomorphism

f t
m=N SS ! holim

�
nC1
0

f
t;�

nC1
0

m=N
'nC1

0
MGL^�C1

for all m�N � nC 1.

(2) There is a natural isomorphism

�m=N;nW f
t

m=N SS ! Tot.n/ f
t;�

m=N
MGL^�C1

for m � N � nC 1, compatible with the maps in the Tot.n/–tower (for fixed m, N

and varying n) and the maps in the slice tower (for fixed n and varying m, N ).
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Proof The map SS !MGL induces an isomorphism st
0
SS ! st

0
MGL, and hence

st
0
MGLD 0. As both SS and MGL are in SHeff.S/, it follows that f t

1
MGLDMGL,

and hence f t
nC1

�nMGL^nC1 Š�nMGL^nC1 . From this it follows that

f t
m=N�

nMGL^nC1
D 0 for m�N � nC 1:

Applying fm=N to the distinguished triangle (5-6) completes the proof of (1).

For (2), the restriction �n�f
t;�

m=N
MGL^�C1 is fibrant in Spt†P1.S/

��n

, since by con-
struction f t;�

m=N
MGL^�C1 is a fibrant object in Spt†P1.S/

� . In addition, we have an
isomorphism

�n�f
t;�

m=N
MGL^�C1

Š f
t;��n

m=N
�n�MGL^�C1

in HoSpt†P1.S/
��n

. Thus, by Lemma 5.1, we have a canonical isomorphism

holim
��n

f
t;��n

m=M
�n�MGL^�C1

Š Tot.n/ f
t;�

m=N
MGL^�C1

in SH.S/. Similarly, by Proposition 5.3, we have the isomorphism

holim
��n

f
t;��n

m=M
�n�MGL^�C1

Š holim
�

nC1
0

f
t;�

nC1
0

m=M
'nC1

0
MGL^�C1

in SH.S/; together with (1), these isomorphisms yield (2).

Remark 5.6 For the truncation functors f S;t
n and the Betti realization functor ReSB ,

we have been using the projective model structure on the functor category, while for
the Tot–tower we use the Reedy model structure. To pass from one situation to the
other, we use Lemma 5.1 and Proposition 5.3 to replace the Tot.n/–construction with a
homotopy limit over the punctured .nC 1/–cube. As �nC1

0
is a direct category, the

Reedy model structure agrees with the projective model structure, so we may apply all
these constructions freely. Besides the finiteness of �nC1

0
, this is another reason why

we pass from cosimplicial objects to cubes.

6 Décalage

Deligne’s décalage operation [6, (1.3.3)] constructs a new filtration DecF on a com-
plex K from a given filtration F on K ; this change of filtration has the effect of
accelerating the spectral sequence associated to the filtered complex K . Here we
replace the filtered complex K with a cosimplicial spectrum object together with the
tower Tot.�/ . The tower replacing DecF turns out to arise from a suitable Postnikov
tower, where the nth term is formed by applying the functor of the .n� 1/–connected
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cover termwise to the given cosimplicial object and then applying Tot. Our main
result in this section is an analog of Deligne’s comparison of the spectral sequences for
.K;F / and .K;DecF / [6, Proposition 1.3.4].

For the application of this construction to the comparison of the slice and Adams–
Novikov spectral sequences, we need only consider the model categories of simplicial
sets and suspension spectra. However, with an eye to possible future applications, we
present this section in a somewhat more general setting. We were not able to formulate
a good axiomatic description of the appropriate setting for this construction; rather, we
give a list of examples, which we hope will cover enough ground to be useful.

We take M0 to be one of the pointed closed symmetric monoidal simplicial model
categories detailed in the following examples:

(6-1-1) M0 is Spc� , the category of pointed simplicial sets, with the usual model
structure.

(6-1-2) C is a small category, � a Grothendieck topology on C and M0 the category
of Spc�–valued presheaves on C with the injective model structure (localized
for the topology � ).

(6-1-3) B D Spec k , where k is a perfect field, C D Sm=B is the category of smooth
quasiprojective B –schemes and M0 the category Spc�.B/ with the motivic
model structure, that is, the left Bousfield localization of example (6-1-2) with
C D Sm=B , � the Nisnevich topology and the localization with respect to
maps X ^ .A1; 0/! pt .

Note that these are all cofibrantly generated, cellular and combinatorial model cat-
egories. In case (6-1-2), we recall that weak equivalences are given via the � –
homotopy sheaves ��n .X /, where ��n .X / is the � –sheaf associated to the presheaf
U 7! Œ†nUC;X �HoM . In case (6-1-3), weak equivalences are given via the A1 –
homotopy sheaves �A1

n .X /, where �A1

n .X / is similarly defined as the Nisnevich
sheaf associated to the presheaf U 7! Œ†nUC;X �HoM .

For the stable model categories M WD SptT M0 , we use the model structure induced
from M0 by the construction given in [11, Chapter 7]. In case (6-1-1) we take T DS1 ,
which gives us the category of suspension spectra, with weak equivalences the stable
weak equivalences. In (6-1-2), we take again the category of suspension spectra,
where now T D S1 acts through the simplicial structure. We assume that the weak
equivalences are the stable weak equivalences, that is, maps that induce an isomorphism
on the stable homotopy sheaves �s

n.E/ WD lim
��!N

��
nCN

.EN / if E D .E0; E1; : : : /. In
case (6-1-3), we may take T DS1 , which gives the category of S1 –spectra SptS1.B/,
or SptKet

S1.B/ for the étale version. Here the weak equivalences are the stable weak
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equivalences, using the A1 –homotopy sheaves �A1

n in place of ��n . These are all
cofibrantly generated, cellular, combinatorial stable simplicial M0 model categories.
If at some point we require the stable category to have a symmetric monoidal model
category structure, we will replace the spectrum category with symmetric spectra.

In all cases, one has the following for each object X : homotopy objects �n.X /,
n D 0; 1; : : : , with �n an abelian group object for n � 2 and a group object for
nD 1, so that f�n; n� 0g detects weak equivalences; a loops functor X !�X with
�n.�X /D�nC1.X /, so that a homotopy fiber sequence induces a long exact sequence
in the �n in the usual extended sense, and a functorial (left) Postnikov tower

� � � ! fnC1X ! fnX ! � � � ! f0X D X ;

with fnX ! X inducing an isomorphism on �m for m� n and with �mfnX D f�g
for m< n. Furthermore, for an integer n� 2, there is an Eilenberg–Mac Lane space
K.A; n/ associated to an abelian group (in case (6-1-1)) or � –sheaf of abelian groups
(in case (6-1-2)) or strictly A1 –invariant sheaf of abelian groups (in case (6-1-3)), which
is determined up to unique isomorphism in HoM by the vanishing of �mK.A; n/ for
m¤ n and the choice of an isomorphism AŠ �nK.A; n/.

For the spectrum categories, stabilizing the �n gives the collection of stable homotopy
objects f�n; n 2 Zg, which detect weak equivalences and which are abelian group
objects for all n; one has a functorial (left) Postnikov tower

� � � ! fnC1E! fnE! � � � ! E

and Eilenberg–Mac Lane spectrum EM.A; n/ for A an abelian group object as above
and n 2 Z.

In what follows, we treat all these cases simultaneously; usually we will not need
to distinguish between the stable and unstable setting, and will refer to the model
category at hand as M, whether stable or unstable. We retain the notation K.A; n/

for the Eilenberg–Mac Lane space in the unstable setting, and write K.A; n/ for the
Eilenberg–Mac Lane spectrum EM.A; n/ in the stable case.

We apply the Postnikov tower construction in functor categories, as described in
Examples 3.7 (1), to an object X 2M� , which gives the cosimplicial object fnX 2M� ,

fnX WD Œm 7! fnXm�;

and the resulting tower

� � � ! fnC1X ! fnX ! � � � ! X :
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As the notation suggests, this tower has the property that evaluation at some Œm� 2�
yields the Postnikov tower for Xm .

We assume that we have a double delooping Y of X , that is, a weak equivalence
X !�2Y in HoM� ; we will simply replace X with �2Y , so we may assume that
this weak equivalence is an identity. This assumption is of course fulfilled for all X if
we are in the stable case. We let Z D�Y and use Z as a chosen delooping of X .

Definition 6.1 Fix an integer A and an extended integer B , with 0 � A < B �1.
Let X be in M� . Applying the functor Tot.A=B/ to the Postnikov tower for X gives
the following tower décalé of spaces:

(6-2) � � � ! Tot.A=B/.fnC1X /! Tot.A=B/.fnX /! � � � ! Tot.A=B/.X /:

Using our chosen delooping X D�Z , let fk=mX WD hofib.fmC1Z! fkC1Z/. Since
fn ı� is naturally isomorphic to � ı fnC1 as natural transformations to HoM, the
homotopy fiber sequence

�fmC1Z!�fkC1Z! hofib.fmC1Z! fkC1Z/

gives us the homotopy fiber sequence

fmX ! fkX ! fk=mX :

We have as well induced delooping for fmX , namely fmC1Z .

The tower (6-2) gives rise to the spectral sequence

(6-3) E
p;q
1
.Dec;X /D ��p�q Tot.A=B/ f.p=pC1/X ) ��p�q Tot.A=B/ X

for 0�A< B �1.

The constructions fq and Tot.m=k/ are strictly functorial and preserve homotopy fiber
sequences. Thus, we have the commutative diagram of natural transformations

Tot.mC1=N /.fpC1.�// //

��

Tot.mC1=N /.fp.�//

��

Tot.m=N /.fpC1.�// // Tot.m=N /.fp.�//

for 0�m<N �1, 0� p , and the homotopy fiber sequence

Tot.a=N /.fpC1.X //! Tot.a=N /.fp.X //! Tot.a=N /.fp=pC1.X //

for 0� a�N .
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The operation fk=m is also functorial and preserves fiber sequences, except that these
are in terms of the chosen delooping Z for X .

Using the chosen delooping Z , we define Tot.m=mC1/

p=pC1
.X / to be the homotopy fiber of

the map
Tot.mC1=N /.fpC2.Z//! Tot.m=N /.fpC1.Z//:

Note that Tot.m=mC1/

p=pC1
.X / is, as the notation suggests, independent of the choice of N

(up to weak equivalence).

As Tot.a=b/ commutes with �, the homotopy fiber sequence

�Tot.mC1=N /.fpC2.Z//!�Tot.m=N /.fpC1.Z//! Tot.m=mC1/

p=pC1
.X /

yields the homotopy fiber sequence

Tot.mC1=N /.fpC1.X //! Tot.m=N /.fp.X //! Tot.m=mC1/

p=pC1
.X /:

We have maps

˛W Tot.m=mC1/

p=pC1
.X /! Tot.m=N /.fp=pC1.X //;

ˇW Tot.m=mC1/

p=pC1
.X /! Tot.m=mC1/.fp.X //;

defined by taking the induced maps on the homotopy fibers of the horizontal maps in
the following commutative diagrams:

Tot.mC1=N /.fpC2.Z// //

��

Tot.m=N /.fpC1.Z//

Tot.m=N /.fpC2.Z// // Tot.m=N /.fpC1.Z//

(6-4)

Tot.mC1=N /.fpC2.Z// //

��

Tot.m=N /.fpC1.Z//

Tot.mC1=N /.fpC1.Z// // Tot.m=N /.fpC1.Z//

(6-5)

Via the homotopy fiber sequences

Tot.m=mC1/.fpC1.X //! Tot.mC1=N /.fpC2.Z//! Tot.m=N /.fpC2.Z//;

Tot.mC1=N /.fp=pC1.X //! Tot.mC1=N /.fpC2.Z//! Tot.mC1=N /.fpC1.Z//;

the Quetzalcoatl lemma gives the isomorphisms

(6-6) hofib.˛/Š Tot.m=mC1/.fpC1.X //; hofib.ˇ/Š Tot.mC1=N /.fp=pC1.X //:
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Putting all these together gives us the commutative diagram

(6-7)

Tot.mC1=N /.fpC1.X // //

�� ((

Tot.mC1=N /.fp.X //

��

// Tot.mC1=N /.fp=pC1.X //

��

Tot.m=N /.fpC1.X // //

��

Tot.m=N /.fp.X //

��

//

))

Tot.m=N /.fp=pC1.X //

Tot.m=mC1/.fpC1.X // // Tot.m=mC1/.fp.X // Tot.m=mC1/

p=pC1
.X /

ˇ

oo

˛

OO

with the top two rows, the two left-hand columns and the diagonal all homotopy fiber
sequences.

Lemma 6.2 Let p , q be integers with p � 0 and �2p � q � �p . Take N such that
2pC qC 1�N �1, and consider the following diagram extracted from (6-7) with
mD 2pC q :

��p�q Tot.m=N /.fp=pC1.X //

��p�q Tot.m=mC1/.fp.X // ��p�q Tot.m=mC1/

p=pC1
.X /

ˇ

oo

˛

OO

Then the map ˛ is an isomorphism and the map ˇ is injective.

Proof Let us first consider the map ˛ . The isomorphism (6-6) gives us the homotopy
fiber sequence

(6-8) Tot.m=mC1/.fpC1.X //! Tot.m=mC1/

p=pC1
.X /

˛
�! Tot.m=N /.fp=pC1.X //:

Using the canonical isomorphism in HoM� , fn.�.T //Š�fnC1.T /, and the deloop-
ings X D�Z , Z D�Y , we may replace X ;Z with the pair Z;Y and identify the
sequence (6-8) with � applied to the homotopy fiber sequence

Tot.m=mC1/.fpC2.Z//! Tot.m=mC1/

pC1=pC2
.Z/

˛0

�! Tot.m=N /.fpC1=pC2.Z//:

From this, we see that we may extend ˛ to a homotopy fiber sequence

Tot.m=mC1/

p=pC1
.X /

˛
�! Tot.m=N /.fp=pC1.X //! Tot.m=mC1/.fpC2.Z//:
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We have by Lemma 4.2

Tot.m=mC1/.fpC2.Z//Š�2pCqNfpC2.Z2pCq/;

hence ��p�qC� Tot.m=mC1/.fpC2.Z// Š N.��p�qC�.�
2pCqfpC2.Z2pCq/// is a

subgroup of �pC�fpC2.Z2pCq/. Because �pC�fpC2.Z2pCq/ is zero for �D 0; 1, ˛
is an isomorphism.

For ˇ , we have the homotopy fiber sequence

Tot.mC1=N /.fp=pC1.X //! Tot.m=mC1/

p=pC1
.X /

ˇ
�! Tot.m=mC1/.fp=pC1.X //:

The cosimplicial object fp=pC1.X / is weakly equivalent to the cosimplicial Eilenberg–
Mac Lane object

n 7!K.�p.X n/;p/;

hence �t Tot.mC1=N /.fp=pC1.X // is the cohomology in degree �t of the complex

N�p.X 2pCqC1/!N�p.X 2pCqC2/! � � � !N�p.XN�1/;

concentrated in degrees ŒpCqC1;N�p�1�. So ��p�q Tot.mC1=N /.fp=pC1.X //D0

and ˇ is injective on ��p�q .

We consider the spectral sequences (4-9) and (6-3) for AD 0 and 0< B �1. Take
integers p , q with 0� �p and 0� 2pC q < B . We have

E
m;�p
1

.X /DN�pXm
I

the E1 –complex E
�;�p
1

.X / is the (truncated) normalized complex (shifted to be
supported in degrees d , �p � d � B �p� 1)

�<BN�psX � WDN�pX 0
!� � �!N�pX 2pCq

!N�pX 2pCqC1
!� � �!N�pXB�1

and E
2pCq;�p
2

DH pCq.E
�;�p
1

.X //.

As fp=pC1.X / is weakly equivalent to the cosimplicial object

m 7!K.�p.Xm/;p/;

it follows that E
p;q
1
.Dec;X / WD ��p�q Tot.0=B/ fp=pC1.X / is H pCq of the complex

(shifted to be supported in degrees d , �p � d � B �p� 1)

�<BN�pX � WDN�pX 0
!� � �!N�pX 2pCq

!N�pX 2pCqC1
!� � �!N�pXB�1:

As this complex is equal to E
�;�p
1

.X /, the identity maps on N�pX � induce the
isomorphism

(6-9) 
p;q
1
W E

p;q
1
.Dec;X /!E

2pCq;�p
2

.X /:
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Proposition 6.3 Take AD 0, 0<B�1. The maps (6-9) give rise to an isomorphism
of complexes


�;q
1
W E
�;q
1
.Dec;X /!E

2�Cq;��
2

.X /

and inductively to a sequence of isomorphisms

p;q
r W Ep;q

r .Dec;X /!E
2pCq;�p
rC1

.X /;

which give an isomorphism of complexes

 �;�r W

�M
p;q

Ep;q
r .Dec;X /; dr

�
!

�M
p;q

E
2pCq;�p
rC1

.X /; drC1

�
for each r � 1.

Proof To simplify the notation, we give the proof in case B D1; the proof in the
general case is exactly the same, replacing Tot.�/ with Tot.�=B/ throughout.

The spectral sequence (4-9) is the spectral sequence associated to the exact couple

D1
i1

// D1

�1}}

E1

@1

aa

with
D

p;q
1
WD ��p�q Tot.p/.X /; E

p;q
1
WD ��p�q Tot.p=pC1/.X /;

the maps i
p;q
1
W D

pC1;q�1
1

!D
p;q
1

and �p;q
1
W D

p;q
1
!E

p;q
1

induced by the canonical
morphisms

Tot.pC1/.X /! Tot.p/.X /;

Tot.p/.X /! Tot.p=pC1/.X /;

respectively, and with @
p;q
1
W E

p;q
1
! D

pC1;q
1

the boundary map associated to the
homotopy fiber sequence

Tot.pC1/.X /! Tot.p/.X /! Tot.p=pC1/.X /:

Similarly, the spectral sequence (6-3) arises from the exact couple

D1;Dec
i

// D1;Dec

�
zz

E1;Dec

@

dd
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defined in a similar way, where we replace Tot.p/.X /, Tot.pC1/.X / and Tot.p=pC1/.X /
with Tot.0/ fp.X /, Tot.0/ fpC1.X / and Tot.0/ fp=pC1.X /. To prove the result, it
suffices to define maps

ı
p;q
1
W D

p;q
1;Dec!D

2pCq;�p
2

such that0B@ ı1 ı1

1

1CA W D1;Dec
i1

// D1;Dec

�1
zz

E1;Dec
@1

dd
�!

D2
i2

// D2

�2
{{

E2
@2

cc

defines a map of (reindexed) exact couples.

We recall that E2 is the cohomology of the complex .E1; d1/, with d1 D �1 ı@1 . Let
Z2 � E1 be the kernel of d1 and note that Z2 � �1.D1/. By definition, D

p;q
2
D

i1.D
p;q
1
/�D

p�1;qC1
1

, i2W D2!D2 is the map induced by i1 , the map �2W D2!E2

is defined by the commutative diagram

D2� _

��

�1jD2

//

�2

''

Z2 �
// //

� _

��

E2

D1 �1

// E1

and @2W E2 ! D2 is induced by restricting @1 to Z2 , noting that this restriction
sends Z2 to i1.D1/�D1 , and descends to E2 .

Next, we note that the maps

��p�q Tot.2pCq/ fpX ! ��p�q Tot.0/ fpX ;

��p�q Tot.2pCq/ fp=pC1X ! ��p�q Tot.0/ fp=pC1X ;

��p�q�1 Tot.2pCqC2/ fpC1X ! ��p�q�1 Tot.0/ fpC1X

are surjective and

��p�q Tot.2pCq�1/ fpX ! ��p�q Tot.0/ fpX ;

��p�q Tot.2pCq�1/ fp=pC1X ! ��p�q Tot.0/ fp=pC1X ;

��p�q�1 Tot.2pCqC�/ fpC1X ! ��p�q�1 Tot.0/ fpC1X
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(� � 1) are isomorphisms, by Lemma 4.4. From the commutative diagram

��p�q Tot.2pCq/ fpX // //

��

��p�q Tot.2pCq�1/ fpX
�
//

��

��p�q Tot.0/ fpX

��p�q Tot.2pCq/ X // ��p�q Tot.2pCq�1/ X

we arrive at the well-defined map

D
p;q
1;Dec D ��p�q Tot.0/ fpX

ı
p;q

1
���! imŒ��p�q Tot.2pCq/ X ! ��p�q Tot.2pCq�1/ X �DD

2pCq;�p
2

:

The identity
i2 ı ı1 D ı1 ı i1;Dec

follows directly.

To show that �2 ı ı1 D 1 ı�1;Dec , we consider the following diagram (which is well
defined by Lemma 6.2):

(6-10)

��p�q Tot.0/ fpX

ı
p;q

1

##

�1;Dec
// ��p�q Tot.0/ fp=pC1X 

p;q

1

��

��p�q Tot.2pCq/ fpX //

��

**

OOOO

��p�q Tot.2pCq/ fp=pC1X
_�

ˇı˛�1

��

OOOO

z
p;q

1

��

��p�q Tot.2pCq=2pCqC1/ fpX

��

E
p;q
2

��p�q Tot.2pCq/ X
�1

// ��p�q Tot.2pCq=2pCqC1/ X Z
2pCq;�p
2

? _oo

�

OOOO

D
2pCq;�p
2

� ?

OO

�1jD2

99

The right-hand column may be described explicitly as follows: Let

N�pX � WD ŒN�pX 0
!N�pX 1

! � � � �

be the normalized complex associated to the cosimplicial abelian group object
n 7! �pX n , shifted to be supported in degrees Œ�p;1/. Then the right-hand column
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is the sequence of evident maps

H pCq.N�pX �/� ZpCq.N�pX �/ ,!N�pX 2pCq
DN�pX 2pCq:

The map zp;q
1

is the evident identification of ZpCq.N�pX �/ with Z
2pCq;�p
2

. The
commutativity of (6-10) follows from this computation and the commutativity of
diagram (6-7). Since �2 D � ı�1jD2

, this shows that �2 ı ı1 D 1 ı�1;Dec .

For the remaining identity @2ı1Dı1ı@1 , we extract from diagram (6-7) a commutative
diagram (in M) with rows being homotopy fiber sequences and mD 2pC q :

Tot.mC1/ fpX // Tot.m/ fpX // Tot.m=mC1/ fpX

Tot.mC1/ fpC1X //

��

OO

Tot.m/ fpX // Tot.m=mC1/

p=pC1
X

˛

��

ˇ

OO

Tot.m/ fpC1X // Tot.m/ fpX // Tot.m/ fp=pC1X

This gives us the commutative diagram

��p�q Tot.m=mC1/ X @
// ��p�q�1 Tot.mC1/ X

��p�q Tot.m=mC1/ fpX
@m=mC1

//

z

OO

��p�q�1 Tot.mC1/ fpX

zı

OO

��p�q Tot.m=mC1/

p=pC1
X

�˛

��

� ?
ˇ

OO

z@
// ��p�q�1 Tot.mC1/ fpC1X

� z̨

��

j

OO

��p�q Tot.m/ fp=pC1X
@p=pC1

//

�'

��

��p�q�1 Tot.m/ fpC1X

� z'
��

��p�q Tot.0/ fp=pC1X
@1;Dec

// ��p�q�1 Tot.0/ fpC1X :

The map @2 is induced from @, the map ı1 is induced from zı ı j ı z̨�1 ı z'�1 (noting
that this latter map has image in D

2pCqC2;�p�1
2

) and 1 D z ı ˇ ı ˛
�1 ı '�1 (as

we have noted above). This gives the identity @2 ı 1 D ı1 ı @1;Dec , completing the
proof.
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Remark 6.4 Proposition 6.3 may be viewed as a homotopy-theoretic analog of a
special case of Deligne’s result [6, Proposition 1.3.4]. Indeed, let K�� be a double
complex and let K� be the associated (extended) total complex

Kn
WD

Y
aCbDn

Ka;b:

Give Kn the filtration by taking the stupid filtration in the first variable, that is,

.FmK/n WD
Y

aCbDn
a�m

Ka;b:

Then Deligne’s filtration DecmK� is given by DecmKn D
Q

aCbDn DecmKa;b , with

DecmKa;b
D

8̂<̂
:

Ka;b for b < �m;

0 for b > �m;

ker.@2W K
a;�m!Ka;�mC1/ for b D�m:

That is, DecmK� is the extended total complex of the double complex

a 7! � can
��m.K

a;�; @2/;

where � can
��mC � is the canonical subcomplex of a complex C � .

If Ka;bD 0 for a< 0, we may use the Dold–Kan correspondence to give a cosimplicial
object in complexes

n 7! zKn;�

such that Ka;� DN zKa;� as complexes and the differential @1W K
a;b!KaC1;b is the

differential N zKa;�!N zKaC1;� given as the usual alternating sum of coface maps. If
we let EM zKa;� be the Eilenberg–Mac Lane spectrum associated to the complex zKa;� ,
then TotŒn 7! EM zKn;�� is the Eilenberg–Mac Lane spectrum associated to Tot K� ,
the tower Tot.�/Œn 7! EM zKn;�� is the tower associated to the filtration F�K� , and
the tower Tot Œn 7! f�EM zKn;�� is associated to Dec�K . Furthermore, the spectral
sequences (4-9) and (6-3) are the same as the ones associated to the filtered complex
F�K and Dec�K , respectively, and the isomorphism of Proposition 6.3 is the same
as that of [6, Proposition 1.3.4]. The proof given here is considerably more involved
than that in [6], due to the fact that one could not simply compute with elements, as is
possible in the setting of filtered complexes.
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