Volume 19, issue 5 (2015)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Dynamics on free-by-cyclic groups

Spencer Dowdall, Ilya Kapovich and Christopher J Leininger

Geometry & Topology 19 (2015) 2801–2899
Abstract

Given a free-by-cyclic group G = FN φ determined by any outer automorphism φ Out(FN) which is represented by an expanding irreducible train-track map f, we construct a K(G,1) 2–complex X called the folded mapping torus of f, and equip it with a semiflow. We show that X enjoys many similar properties to those proven by Thurston and Fried for the mapping torus of a pseudo-Anosov homeomorphism. In particular, we construct an open, convex cone A H1(X; ) = Hom(G; ) containing the homomorphism u0: G having ker(u0) = FN, a homology class ϵ H1(X; ), and a continuous, convex, homogeneous of degree 1 function : A with the following properties. Given any primitive integral class u A there is a graph Θu X such that:

  1. The inclusion Θu X is π1–injective and π1(Θu) = ker(u).
  2. u(ϵ) = χ(Θu).
  3. Θu X is a section of the semiflow and the first return map to Θu is an expanding irreducible train track map representing φu Out(ker(u)) such that G = ker(u) φu.
  4. The logarithm of the stretch factor of φu is precisely (u).
  5. If φ was further assumed to be hyperbolic and fully irreducible then for every primitive integral u A the automorphism φu of ker(u) is also hyperbolic and fully irreducible.
Keywords
train track map, free-by-cyclic group, entropy
Mathematical Subject Classification 2010
Primary: 20F65
References
Publication
Received: 6 June 2014
Revised: 30 December 2014
Accepted: 26 January 2015
Published: 20 October 2015
Proposed: Walter Neumann
Seconded: Benson Farb, Danny Calegari
Authors
Spencer Dowdall
Department of Mathematics
Vanderbilt University
1326 Stevenson Center
Nashville, TN 37240
USA
http://www.math.vanderbilt.edu/~dowdalsd/
Ilya Kapovich
Department of Mathematics
University of Illinois at Urbana-Champaign
1409 West Green Street
Urbana, IL 61801
USA
http://www.math.uiuc.edu/~kapovich/
Christopher J Leininger
Department of Mathematics
University of Illinois at Urbana-Champaign
1409 West Green Street
Urbana, IL 61801
USA
http://www.math.uiuc.edu/~clein/