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The homotopy theory of cyclotomic spectra

ANDREW J BLUMBERG

MICHAEL A MANDELL

We describe spectral model category structures on the categories of cyclotomic
spectra and p–cyclotomic spectra (in orthogonal spectra) with triangulated homotopy
categories. We show that the functors TR and TC are corepresentable in these
categories. Specifically, the derived mapping spectrum out of the sphere spectrum in
the category of cyclotomic spectra corepresents the finite completion of TC and the
derived mapping spectrum out of the sphere spectrum in the category of p–cyclotomic
spectra corepresents the p–completion of TC.�Ip/ .

19D55; 18G55, 55Q91

1 Introduction

Topological cyclic homology (TC) has proved to be an enormously successful tool
for studying algebraic K–theory and K–theoretic phenomena. After finite completion,
relative K–theory for certain pairs is equivalent to relative TC via the cyclotomic trace
map and TC can be computed using the methods of equivariant stable homotopy theory.

The construction of TC begins with a cyclotomic spectrum; this is a T–equivariant
spectrum equipped with additional structure that mimics the structure seen on the
free suspension spectrum of the free loop space, †1

C
ƒX. Here T denotes the circle

group of unit complex numbers and ƒX the T–space of maps from T to X. The nth

root map induces an isomorphism �nWT �D T=Cn , which induces an isomorphism of
T–spaces ��n.ƒX/

Cn �DƒX, where Cn is the cyclic subgroup of order n and ��n is the
change of group functor along �n . This isomorphism then gives rise to an equivalence
of T–spectra ��nˆ

Cn†1
C
ƒX ' †1

C
ƒX, where ˆCn denotes the derived geometric

fixed point functor and ��n denotes both change of groups and change of universe.

Although TC has been around for over twenty years, there has been relatively little
investigation of the nature of cyclotomic spectra or the homotopy theory associated to
the category of cyclotomic spectra. Recently, in the course of proving the degeneration
of the noncommutative “Hodge to de Rham” spectral sequence, Kaledin has described
the close connection between cyclotomic spectra and Dieudonné modules and the
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relationship between TC and syntomic cohomology. This work led him to make
conjectures [7, Section 7] regarding the structure of the category of cyclotomic spectra
and its relationship to TC . The purpose of this paper is to prove these conjectures.

After a review of background, we begin in Section 4 by setting up a point-set category
of cyclotomic spectra as a category of orthogonal T–spectra with extra structure;
see Definition 4.10. Topological Hochschild homology (THH ) provides the primary
source of examples of cyclotomic spectra. We also set up a (significantly simpler)
point-set category of p–cyclotomic spectra: a p–cyclotomic spectrum is an orthogonal
T–spectrum X together with a map of T–spectra

t W ��pˆ
CpT �! T

from the (point-set) geometric fixed points of T back to T such that the composite in
the homotopy category from the derived geometric fixed points is an Fp–equivalence,
i.e., induces an isomorphism on homotopy groups �Cpn

� for all n� 0 (Definition 4.5).
Since in most examples one works with the p–cyclotomic structure, in the remainder
of this introduction we focus on this case for expositional simplicity.

Since the definition of cyclotomic spectra includes a homotopy-theoretic constraint,
it is unreasonable to expect any category of cyclotomic spectra to be closed under
general (or even finite) limits or colimits. Thus, we cannot expect a model category
of cyclotomic spectra; nevertheless, we show that our category of cyclotomic spectra
admits a model structure in the sense of Definition 1.1.3 of Hovey [6]: It has sub-
categories of cofibrations, fibrations and weak equivalences that satisfy Quillen’s closed
model category axioms. Moreover, the category of cyclotomic spectra admits finite
coproducts and products, pushouts over cofibrations, and pullbacks over fibrations.
These limits and colimits suffice to construct the entirety of the homotopy theory set up
in Chapter I of Quillen [12] and much of the abstract homotopy theory developed since;
e.g., see Radulescu-Banu [13], where this is worked out in even greater generality.
As an example, since the category of cyclotomic spectra additionally admits filtered
colimits along cofibrations, we can deduce that it has all homotopy colimits.

1.1 Definition A model* category is a category that has a model structure [6, Defini-
tion 1.1.3] and admits finite coproducts and products, pushouts over cofibrations, and
pullbacks over fibrations.

One big advantage of model* categories over model categories is that any subcategory
of a model* category that is closed under weak equivalences, finite products and
coproducts, pushouts over cofibrations, and pullbacks over fibrations is a model*
category with the inherited model structure. We take advantage of this in the proof
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of the following theorem, which is our main theorem on the homotopy theory of
p–cyclotomic spectra.

1.2 Theorem The category of p–cyclotomic spectra is a model* category with
weak equivalences the weak equivalences of the underlying non-equivariant orthogonal
spectra and fibrations the Fp –fibrations (see [8, Theorem IV.6.5] or Theorem 3.5 below)
of the underlying orthogonal T–spectra, where Fp D fCpng.

The model* category of p–cyclotomic spectra has additional structure. Clearly, it
inherits an enrichment over spaces from the category of orthogonal T–spectra. We
show in Section 4 that it in fact inherits an enrichment over non-equivariant orthogonal
spectra. This enrichment is compatible with the model structure in the sense that the
analogue of Quillen’s SM7 axiom holds; see Theorem 5.9. In particular, the homotopy
category of p–cyclotomic spectra becomes triangulated with the usual definition of
distinguished triangles and we have a good construction of intrinsic mapping spectra.

1.3 Theorem The model structure on p–cyclotomic spectra has an enrichment over
orthogonal spectra. The homotopy category of p–cyclotomic spectra is triangulated
with the shift functor given by suspension and the distinguished triangles determined
by the cofiber sequences specified by the model structure (see [6, Definition 6.2.6]).

In fact, the homotopy type of the mapping spectra turns out to have a relatively
straightforward description in terms of the underlying orthogonal spectra and the
structure map t. See Theorem 5.12 for a precise statement.

Finally, TC.�Ip/ has an intrinsic interpretation in the context of the homotopy category
of p–cyclotomic spectra (after p–completion). The sphere spectrum S has a canonical
cyclotomic structure using the canonical identification of the geometric fixed points of
S as S (see Example 4.11). We can identify the p–completion of the right derived
functor of TC.�Ip/ as the derived mapping spectrum out of S .

1.4 Theorem Let T be a p–cyclotomic spectrum. Then the derived mapping spec-
trum from the sphere spectrum S to T in the homotopy category of p–cyclotomic
spectra becomes naturally isomorphic to the right derived functor of TC.T Ip/ after p–
completion. Moreover, the natural isomorphism of p–completed right derived functors
is canonical.

This confirms the conjecture of Kaledin [7, Remark 7.9]. Also, this theorem gives a
motivic interpretation of TC.�Ip/, viewing the triangulated homotopy category of
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p–cyclotomic spectra as a category of “p–cyclotomic motives” associated to non-
commutative schemes (viewed as spectral categories, with THH as the realization
functor).

See Section 6 for additional corepresentability results.
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1151577. Mandell was supported in part by NSF grant DMS-1105255

2 Review of orthogonal T–spectra

In this section, we give a brief review of the definition of orthogonal T–spectra and
the geometric fixed point functors. Along the way we provide some new technical
results that are needed in later sections. We begin with some preliminaries about the
categories of T–spaces we work with.

We work throughout with the category U of compactly generated weak Hausdorff
spaces, the objects of which we call spaces. (As we never use more general topological
spaces, this will cause no confusion.) We use T to denote the category of based spaces,
which is the undercategory in U of the one-point space � D ffgg. The category U is
complete, cocomplete and cartesian closed. The category T is complete, cocomplete
and closed symmetric monoidal under the smash product; we also regard T as enriched
over U by the forgetful functor, which is lax symmetric monoidal. The categories TU
and TT of T–spaces and based T–spaces are by definition the category of T–objects
in U and T , respectively, where T denotes the circle group, the Lie group of unit
complex numbers. These categories are complete and cocomplete with the limits and
colimits constructed in U and T , respectively. The categories TU and TT are closed
symmetric monoidal, with product given by the cartesian product and smash product,
respectively, and with function objects the function spaces from U and T endowed
with the conjugation T–action. The T–fixed point functors TU ! U and TT ! T
are symmetric monoidal and give U and T enrichments, respectively.

There are several equivalent formulations of the category of orthogonal T–spectra. The
simplest definition of orthogonal T–spectra in Mandell and May [8, Section II.2] turns
out to be less technically convenient for our purposes than the reformulation in [8,
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Section II.4] in terms of diagram spaces. Recall that, for a skeletally small category D
enriched in TT , a D–space is a TT –enriched functor from D to TT and a morphism
of D–spaces is an enriched natural transformation of enriched functors. The category
of D–spaces then has an enrichment in TT given by the usual limit formula.

For brevity, in what follows we write orthogonal T–representation to mean finite-
dimensional real inner product space with T–action by isometries (and not the iso-
morphism class of such an object). As in [8, Definition II.4.1], for orthogonal T–
representations V and W , let I .V;W / denote the T–space of (non-equivariant) linear
isometries from V to W . Let E.V;W / denote the subbundle of the product T–bundle
I .V;W /�W consisting of the points .f; x/ where x is in the orthogonal complement
of f .V /. Let JT .V;W / denote the Thom T–space of E.V;W /. Composition of
isometries and addition in the codomain vector space induces composition maps

JT .W;Z/^JT .V;W / �!JT .V;Z/;

which together with the obvious identity elements make JT a category enriched in
based T–spaces (with objects the orthogonal T–representations).

2.1 Definition [8, Theorem II.4.3] The category of orthogonal T–spectra is the
category of JT –spaces.

As discussed above, the category of orthogonal T–spectra inherits an enrichment in TT .
In addition, the category of orthogonal T–spectra is a closed symmetric monoidal
category under the smash product constructed in [8, Section II.3] and in particular has
internal function objects: for X, Y orthogonal T–spectra, we let FT .X; Y / denote
the orthogonal T–spectrum of maps (analogous to the T–space of maps between T–
spaces). We write its T–fixed point non-equivariant orthogonal spectrum as FT .X; Y /,
which we regard as the spectrum of T–equivariant maps from X to Y .

We now turn to the discussion of the fixed point functors. The advantage of the diagram
space definition (Definition 2.1) over the spacewise definition of orthogonal T–spectra is
that the diagram space definition makes it easier to define the (point-set) fixed point and
geometric fixed point functors. For C � T a closed subgroup, consider J C

T .V;W /,
the T=C–space of C–fixed points of JT .V;W /. Identity elements and composition
in JT restrict appropriately, making J C

T a category enriched in based T=C–spaces.
Moreover, we have an evident T=C–enriched functor zqC WJT=C !J C

T induced by
regarding an orthogonal T=C–representation V as an orthogonal T–representation
q�CV via the quotient map qC WT ! T=C . Given an orthogonal T–spectrum X, the
fixed points .X.V //C form a J C

T –space, i.e., a based T=C–space enriched functor
from J C

T to based T=C–spaces. We can then compose with the enriched functor zqC
to obtain an orthogonal T=C–spectrum.
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2.2 Definition [8, Definition V.3.1] Let X be an orthogonal T–spectrum. For
C � T a closed subgroup, let XC be the orthogonal T=C–spectrum defined by
XC .V /D .X.q�CV //

C, with JT=C –space structure induced via the enriched functor
zqC as above. We call this functor .�/C from orthogonal T–spectra to orthogonal
T=C–spectra the (point-set) categorical fixed point functor.

We also have a based T=C–space enriched functor �WJ C
T !JT=C which sends the

orthogonal T–representation V to the orthogonal T=C–representation V C. Enriched
left Kan extension along � constructs a functor from J C

T –spaces to JT=C –spaces.
Applying this to the fixed point J C

T –space obtained from a orthogonal T–spectrum,
we get the (point-set) geometric fixed point functor.

2.3 Definition [8, Definition V.4.3] Let X be an orthogonal T–spectrum. For C �T
a closed subgroup, let FixC X be the J C

T –space defined by FixC X.V /D .X.V //C

and let ˆCX be the orthogonal T=C–spectrum obtained from FixC X by enriched
left Kan extension along the enriched functor �WJ C

T !JT=C . We call the functor
ˆC from orthogonal T–spectra to orthogonal T=C–spectra the (point-set) geometric
fixed point functor.

The categorical fixed point functor is a right adjoint [8, Proposition V.3.4] and so
preserves all limits. The geometric fixed point functor is not a left adjoint but has the
feel of a left adjoint, preserving all the colimits preserved by the fixed point functor on
based T–spaces; this includes pushouts over levelwise closed inclusions and sequential
colimits of levelwise closed inclusions. In particular, the geometric fixed point functor
preserves homotopy colimits. The two functors also have right-hand and left-hand
relationships (respectively) to the fixed point functor of spaces. The zeroth space (or
nth space) of the categorical fixed point functor is the fixed point space of the zeroth
space (or nth space) of the orthogonal T–spectrum:

XC .Rn/D .X.Rn//C :

Likewise, the geometric fixed point functor of a suspension T–spectrum (or n–shift
desuspension T–spectrum) is the suspension T–spectrum (or n–shift desuspension
T–spectrum) of the fixed point space

ˆC .FRnA/ �D FRn.AC /

(using the notation of [8, Definition II.4.6]).

It is evident from the definitions that both the categorical fixed point functor and
the geometric fixed point functor have a canonical enrichment in based spaces. For
the construction of function spectra for cyclotomic spectra in Section 5, we need
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an enrichment in orthogonal spectra of the geometric fixed point functors for finite
subgroups. To obtain this, we now describe a natural transformation

(2.4) FT .X; Y / �! FT=C .ˆCX;ˆCY / �D FT .��ˆCX; ��ˆCY /:

Here the isomorphism FT=C .ˆCX;ˆCY / �D FT .��ˆCX; ��ˆCY / on the right
is induced from the evident space-level isomorphism induced by the .#C/th root
isomorphism �WT!T=C (the unique orientation-preserving isomorphism of compact
connected 1–dimensional Lie groups). The left-hand map, on the other hand, arises as
a direct consequence of the following theorem (as we explain below).

2.5 Theorem For X an orthogonal T–spectrum, A a cofibrant non-equivariant
orthogonal spectrum and C a closed subgroup of T , the canonical natural map

ˆC .X/^A �!ˆC .X ^A/

is an isomorphism.

As the previous theorem is a special case of a new foundational observation about
equivariant orthogonal spectra that holds for any compact Lie group G , we state and
prove it in the more general context in the appendix.

To deduce (2.4), we recall that FT .X; Y / is the orthogonal T–spectrum with nth

space FT .X; Y /.Rn/ the space of T–equivariant maps from X ^FRnS0 to Y . As
the geometric fixed point functor is enriched in based spaces, we get an induced map
from FT .X; Y /.Rn/ to the space of T=C–equivariant maps from ˆC .X ^FRnS0/

to ˆCY , which Theorem 2.5 then identifies as the nth space of FT=C .ˆCX;ˆCY /.
This then assembles to the map of orthogonal spectra in (2.4).

Finally, for later use we need a new observation on iterated geometric fixed point
functors. Using the r th root isomorphism �r WT ! T=Cr and the concomitant functor
��r from T=Cr –spaces to T–spaces, for a T–space A we have a canonical natural
identification of T–spaces

��mnA
Cmn D ��m.�

�
nA

Cn/Cm

for m, n 2 N. Using the analogous functor from orthogonal T=Cr –spectra to T–
spectra, we have the following orthogonal spectrum version of this natural transforma-
tion for the geometric fixed point functors.

2.6 Proposition For every m, n 2N, there is a canonical natural map of orthogonal
T–spectra

cm;nW �
�
mnˆ

CmnX �! ��mˆ
Cm.��nˆ

CnX/
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making the following diagram commute:

��mnpˆ
CmnpX

cm;np

��

cmn;p
// ��mnˆ

Cmn.��pˆ
CpX/

cm;n

��

��mˆ
Cm.��npˆ

CnpX/
��mˆ

mcn;p

// ��mˆ
Cm.��nˆ

Cn.��pˆ
CpX//

The map cm;n is an isomorphism when X D FVA or, more generally, when X is
cofibrant (see Theorem 3.3).

Proof In order to construct cm;n , it suffices to construct a natural transformation of
��mnJ

Cmn

T –spaces from ��mn FixCmn X to ��mˆ
Cm.��nˆ

CnX/. For this, it suffices
to construct a natural transformation of ��mnJ

Cmn

T –spaces from ��mn FixCmn X to
��m FixCm.��nˆ

CnX/ and, for this, it suffices to construct a natural transformation of
��mnJ

Cmn

T –spaces from ��mn FixCmn X to ��m.FixCm ��n.FixCn X//. This is induced
by the space-level identity

��mn.X.V //
Cmn D ��m.�

�
n.X.V //

Cn/Cm :

For the diagram, we observe that both composites are ultimately induced by the
same space-level canonical natural isomorphism. For X D FVA, both ��mnˆ

CmnX

and ��mˆ
Cm.��nˆ

nX/ are isomorphic to FV CmnA
Cmn and it follows that cm;n is

an isomorphism from the universal property of FV . The isomorphism for a general
cofibrant X then follows from the fact that the functors ��r and ˆCr preserve pushouts
over cofibrations and sequential colimits of cofibrations.

3 Review of the homotopy theory of orthogonal T–spectra

In the previous section we reviewed the definition of orthogonal T–spectra and the
construction of the point-set fixed point functors. In this section, we give a brief
review of relevant aspects of the homotopy theory of orthogonal T–spectra, including
the homotopy groups, the model structures, and the derived functors of the fixed
point functors.

We begin with the level model structure on orthogonal T–spectra, which is mainly a tool
for construction of the stable model structure, but in the non-equivariant setting plays
a role in later sections allowing us to simplify hypotheses in certain statements (see
Theorems 5.12 and 5.17 and the arguments in Section 6). In the level model structure, the
weak equivalences are the level equivalences, which are the maps X! Y that are equi-
variant weak equivalences X.V /!Y.V / for all orthogonal T–representations V , or in
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other words, the maps that are non-equivariant weak equivalences X.V /C!Y.V /C for
all closed subgroups C �T . The level fibrations are the maps that are equivariant Serre
fibrations X.V /! Y.V / for all V , or in other words, the maps that are non-equivariant
Serre fibrations X.V /C ! Y.V /C for all closed subgroups C � T . In particular,
every object is fibrant. The cofibrations are defined by the left lifting property and
are precisely the retracts of relative cell complexes (defined using sequential colimits;
see e.g., Definition 5.4 of Mandell, May, Schwede and Shipley [9]) built out of the
V–desuspension T–spectra of standard T–space n–cells

FV .T=C �S
n�1/C �! FV .T=C �D

n/C

for any orthogonal T–representation V and any n � 0, where Dn denotes the unit
disk in Rn, Sn�1 its boundary and C � T a closed subgroup. These cofibrations are
also the cofibrations in the stable model structure described next.

In the stable model structure, we define the weak equivalences in terms of homotopy
groups. In fact, we describe two different versions of homotopy groups, both of which
define the same weak equivalences. The homotopy groups of an orthogonal T–spectrum
are the homotopy groups of the underlying T–(pre-)spectrum, which can be defined
concretely as follows. Because of our emphasis on cyclotomic spectra and TC , we
will work in terms of the specific complete “T–universe” (countable-dimensional
equivariant real inner product space) usually used in this context. (The specifics do
not play a significant role here; rather, we follow the notation and exposition of [1,
Section 4] as closely as possible.) Let

U D

1M
nD0

1M
rD1

C.n/;

where C.0/ denotes the complex numbers with trivial T–action, C.1/ denotes the
complex numbers with the standard T–action and C.n/ denotes the complex numbers
with T acting through the nth power map, all regarded as real vector spaces. Here
the inner product is induced by the standard (T–invariant) hermitian product on C.n/
and orthogonal direct sum. Every orthogonal T–representation is then isometric to a
finite-dimensional T–stable subspace of U. Notationally, we write V < U to denote a
finite-dimensional T–stable subspace of U and for V <W <U, we denote by W �V
the orthogonal complement of V in W .

3.1 Definition For an orthogonal T–spectrum X, we define the homotopy groups by

�Cq X D

8<:colim
V<U

�q..�
VX.V //C / q � 0;

colim
C.0/�q<V<U

��q..�
V�C.0/�q

X.V //C / q < 0;
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for q 2 Z and C a closed subgroup of T [8, Definition III.3.2].

The expression above for the homotopy groups �C� provides an intrinsic construction
of the homotopy groups of the underlying non-equivariant spectrum of the right derived
categorical fixed point functor. Analogously, we can construct the homotopy groups
of the underlying non-equivariant spectrum of the left derived geometric fixed point
functor. We call these the “geometric homotopy groups” and use the notation �ˆC�
to emphasize the analogy with �C� . The geometric homotopy groups were denoted as
�Hq in [8, Section V.4].

3.2 Definition For an orthogonal T–spectrum X, we define the geometric homotopy
groups by

�ˆCq X D

8<:colim
V<U

�q.�
V C

.X.V /C // q � 0;

colim
C.0/�q<V<U

��q.�
V C�C.0/�q

.X.V /C // q < 0;

for q 2 Z and C a closed subgroup of T [8, Definition V.4.8(iii) and Proposi-
tion V.4.12].

It is clear from the formula that �ˆCq .�/ sends level equivalences of orthogonal
T–spectra to isomorphisms of abelian groups. Since, by [8, Proposition V.4.12],
�ˆC� X �D ��.ˆ

CX/ when X is level cofibrant, it follows that, for any X, �ˆC� X

calculates the homotopy groups of the underlying non-equivariant spectrum of the left
derived geometric fixed point functor applied to X,

�ˆC� X �D ��.Lˆ
CX/:

Both the homotopy groups and the geometric homotopy groups detect the weak
equivalences on the stable model structure on orthogonal T–spectra: we define a
weak equivalence of orthogonal T–spectra (or stable equivalence when necessary
to distinguish from other notions of weak equivalence) to be a map that induces an
isomorphism on all homotopy groups or, equivalently (by [10, Section XVI.6.4] and [8,
Equation VI.5.1 or Proposition V.4.17]), a map that induces an isomorphism on all
geometric homotopy groups. The cofibrations in the stable model structure are the
same as the cofibrations in the level model structure and we define the fibrations by the
right lifting property. By [8, Proposition III.4.8], a map X ! Y is a fibration in the
stable model structure exactly when it is a level fibration such that the diagram

X.V / //

��

�WX.V ˚W /

��

Y.V / // �W Y.V ˚W /
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is a homotopy pullback for all orthogonal T–representations V and W . In particular,
an object is cofibrant if and only if it is the retract of a cell complex, and an object is
fibrant if and only if it is an equivariant �–spectrum.

3.3 Theorem (Stable model structure [8, Theorem III.4.2]) The category of orthogo-
nal T–spectra is a cofibrantly generated closed model category in which a map X! Y

is

� a weak equivalence if the induced map on homotopy groups �Cq is an isomor-
phism for all q 2 Z and all closed subgroups C � T or, equivalently, if the
induced map on geometric homotopy groups �ˆCq is an isomorphism for all
q 2 Z and all closed subgroups C � T ;

� a cofibration if it is a retract of a relative cell complex; and

� a fibration if it satisfies the right lifting property with respect to the acyclic
cofibrations.

Moreover, the model structure is compatible with the enrichment of orthogonal T–
spectra over orthogonal spectra, meaning that the analogue of Quillen’s axiom SM7 is
satisfied.

For our purposes, we need model structures for some localized homotopy categories.
We start with the homotopy categories local to a family.

3.4 Definition [8, Definition IV.6.1] Let F be a family of subgroups of T , i.e.,
a collection of closed subgroups of T closed under taking closed subgroups (and
conjugation). Let X and Y be orthogonal T–spectra. An F –local equivalence (or
F –equivalence) is a map X ! Y that induces an isomorphism on homotopy groups
�C� for all C in F or, equivalently, on all geometric homotopy groups �ˆC� for all C
in F .

An F –cofibration is a map built as a retract of a relative cell complex using cells

FV .T=C �S
n�1/C �! FV .T=C �D

n/C ;

where we require C 2 F . The F –fibrations are then defined by the right lifting
property. Explicitly, a map X ! Y of orthogonal T–spectra is an F –fibration exactly
when it is levelwise an F –fibration of spaces (the maps .X.V //C ! .Y.V //C are
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non-equivariant Serre fibrations for each orthogonal T–representation V and each
C 2 F ) such that the diagram

.X.V //C //

��

.�WX.V ˚W //C

��

.Y.V //C // .�W Y.V ˚W //C

is a homotopy pullback for all orthogonal T–representations V and W and all C 2 F .

3.5 Theorem (F –local model structure [8, Theorem IV.6.5]) The category of or-
thogonal T–spectra is a cofibrantly generated closed model category in which the weak
equivalences, cofibrations and fibrations are the F –equivalences, F –cofibrations and
F –fibrations, respectively. The model structure is compatible with the enrichment of
orthogonal T–spectra over orthogonal spectra, meaning that the analogue of Quillen’s
axiom SM7 is satisfied.

For our corepresentability results, we use model structures based on the finite complete
or p–complete homotopy categories. Letting M 1

p denote the mod-p Moore space in
dimension 1, we define a p–equivalence to be a map that becomes a weak equivalence
after smashing with M 1

p . Likewise, we define a p–F –equivalence to be a map that
becomes an F –equivalence after smashing with M 1

p . (Note that since M 1
p is a CW

complex, smash product with it preserves F –equivalences for any family F .) We also
have the more general notions of finite equivalence and finite F –equivalence, which
are the maps that are p–equivalences and p–F –equivalences, respectively, for all p .
The argument for [8, Theorem IV.6.3], applied directly starting with the F –local model
structure rather than the standard stable model structure, proves the following theorem:

3.6 Theorem (F –local finite complete model structure) The category of orthog-
onal T–spectra is a cofibrantly generated closed model category in which the weak
equivalences are the finite F –equivalences (resp., finite p–F –equivalences) and the
cofibrations are the F –cofibrations. The model structure is compatible with the enrich-
ment of orthogonal T–spectra over orthogonal spectra, meaning that the analogue of
Quillen’s axiom SM7 is satisfied with respect to the fibrations in the finite complete
(resp., p–complete) model category of orthogonal spectra.

3.7 Remark The model structures reviewed in this section all admit explicit descrip-
tions of the generating cofibrations and acyclic cofibrations; for details, see the cited
references where they are constructed.
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4 The categories of cyclotomic and pre-cyclotomic spectra

The work of the previous two sections provides the background we need for the work
in this section to define the categories of p–cyclotomic and cyclotomic spectra and for
the work in the next section to construct model structures on these categories. Here
we start with the easier category of p–cyclotomic spectra and then turn to the more
complicated category of cyclotomic spectra.

The definition of a p–cyclotomic spectrum requires both extra structure on an or-
thogonal T–spectrum and a homotopical condition, which we break into separate
pieces.

4.1 Definition (Pre-p–cyclotomic spectra) A pre-p–cyclotomic spectrum X is a pair
.X; t/ consisting of an orthogonal T–spectrum X together with a map of orthogonal
T–spectra

t W ��pˆ
CpX �!X;

where �p is the pth root isomorphism T ! T=Cp . A morphism of pre-p–cyclotomic
spectra .X; tX /! .Y; tY / consists of a map of orthogonal T–spectra X ! Y such
that the diagram

��pˆ
CpX

tX
//

��

X

��

��pˆ
CpY

tY
// Y

commutes.

To avoid unnecessary verbosity we will say simply “cyclotomic maps” rather than
“pre-p–cyclotomic maps” when the context is clear.

Clearly the category of pre-p–cyclotomic spectra inherits an enrichment over spaces,
with the set of cyclotomic maps topologized using the subspace topology from the
space of maps of orthogonal T–spectra. In fact, the category of pre-p–cyclotomic
spectra inherits an enrichment over spectra.

4.2 Proposition The category of pre-p–cyclotomic spectra inherits an enrichment over
orthogonal spectra from the enrichment on orthogonal T–spectra and the enrichment of
the functor ��ˆCp.

Proof Using the canonical orthogonal spectrum enrichment on ��p and the orthogonal
spectrum enrichment on ˆCp from (2.4), for orthogonal T–spectra X and Y we get
the spectrum of cyclotomic maps

FCyc.X; Y /D EqŒFT .X; Y /� FT .��pˆ
CpX; Y /�;
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formed as the equalizer of the map

FT .X; Y / �! FT .��pˆ
CpX; Y /;

induced by the structure map for X, and the composite

FT .X; Y / �! FT .��pˆ
CpX; ��pˆ

CpY / �! FT .��pˆ
CpX; Y /;

induced by (2.4) and the structure map for Y . Because equalizers are formed spacewise,
the zeroth space of this mapping spectrum is the space of cyclotomic maps from X

to Y . Composition in FT induces composition on FCyc , which is compatible with the
composition of cyclotomic maps.

The category of pre-p–cyclotomic spectra is complete (has all limits) but only has
certain colimits: the natural map goes from the colimit of the geometric fixed points
to the geometric fixed points of the colimit, so we can typically only construct those
colimits where this map is an isomorphism.

4.3 Proposition The category of pre-p–cyclotomic spectra has all limits. It has all
coproducts, pushouts along maps that are levelwise closed inclusions, and sequential
colimits of maps that are levelwise closed inclusions.

Proof Limits are created in the category of orthogonal T–spectra, using the natural
map from the geometric fixed points of a limit to the limit of the geometric fixed points
as the structure map. The natural map from the colimit of the geometric fixed points to
the geometric fixed points of the colimit is an isomorphism for all of the colimits in the
statement since the space-level fixed point functor commutes with these colimits.

For indexed limits and colimits, similar observations apply.

4.4 Proposition For a cofibrant non-equivariant orthogonal spectrum A, .�/^A
extends to an endofunctor on pre-p–cyclotomic spectra that provides the tensor with A
in the orthogonal spectrum enrichment of pre-p–cyclotomic spectra. For an arbitrary
non-equivariant orthogonal spectrum A, F.A;�/ extends to an endofunctor on pre-
p–cyclotomic spectra that provides the cotensor with A in the orthogonal spectrum
enrichment of pre-p–cyclotomic spectra.

Proof For X ^A, the structure map is induced by the structure map on X and the
map

��pˆ
Cp .X ^A/ �! ��pˆ

CpX ^A
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in Theorem 2.5. For F.A;X/, the structure map is induced by the structure map on X
and the map adjoint to the map

��pˆ
Cp .F.A;X//^A �! ��pˆ

Cp .F.A;X/^A/ �! ��pˆ
CpX:

An easy comparison of equalizers shows that X ^A is the tensor and F.A;X/ is the
cotensor of X with A.

The previous proposition in particular shows that the category of pre-p–cyclotomic
spectra has cotensors by all spaces and tensors by cofibrant spaces. In fact, the category
of pre-p–cyclotomic has tensors by all spaces since the smash product with spaces
commutes with geometric fixed points.

We define a p–cyclotomic spectrum to be a pre-p–cyclotomic spectrum that satisfies
the homotopical condition that the structure map induces an Fp–equivalence in the
equivariant stable category

��pLˆCpX �!X;

where LˆCp denotes the left derived functor of ˆCp (see [8, Proposition V.4.5]) and
Fp denotes the family of p–groups, Fp D fCpng. Since the geometric homotopy
groups of ��pLˆCpX are canonically isomorphic to the geometric homotopy groups
of X [8, Proposition V.4.12],

�ˆCm
� .��pLˆCpX/ �D �

ˆCmp

� .X/;

we can write this condition concisely as follows:

4.5 Definition (p–cyclotomic spectra) The category of p–cyclotomic spectra is the
full subcategory of the category of pre-p–cyclotomic spectra consisting of those objects
X for which the map �ˆCpnC1

q .X/! �ˆCpn

q .X/ induced by

t .V /W ��p.X.V //
Cp �!X.V /

is an isomorphism for all n� 0, q 2 Z.

As a full subcategory, the category of p–cyclotomic spectra inherits mapping spectra and
has those limits and colimits whose objects remain in the category. More specifically:

4.6 Proposition The category of p–cyclotomic spectra has finite products and pull-
backs over fibrations. It has all coproducts, pushouts over maps that are levelwise closed
inclusions, and sequential colimits over levelwise closed inclusions.
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Proof The assertion for colimits follows from the fact that the fixed point functor on
spaces preserves the colimits in the statement. We can deduce the existence of finite
products and pullbacks over fibrations from the fact that these homotopy limits are
naturally weakly equivalent to homotopy colimits.

Because the derived geometric fixed point functor commutes with derived smash
product with non-equivariant spectra [8, Proposition V.4.7], p–cyclotomic spectra
are closed under tensor (smash product) with cofibrant non-equivariant orthogonal
spectra. Likewise, p–cyclotomic spectra are closed under cotensor (function spectrum
construction) with cofibrant non-equivariant orthogonal spectra whose underlying object
in the stable category is finite.

We now turn to pre-cyclotomic and cyclotomic spectra. We require structure maps for
all primes p , with some compatibility relations.

4.7 Definition (Pre-cyclotomic spectra) A pre-cyclotomic spectrum X consists of
an orthogonal T–spectrum X together with structure maps

tnW �
�
nˆ

CnX �!X

for all n� 1 such that the following diagram commutes for all m, n 2N :

��mnˆ
CmnX

tmn
//

cm;n

��

X

��mˆ
Cm.��nˆ

CnX/
��mˆ

Cm tn

// ��mˆ
CmX

tm

OO

A map of pre-cyclotomic spectra is a map of orthogonal T–spectra that commutes with
the structure maps.

4.8 Remark Clearly the structure of a pre-cyclotomic spectrum is determined by the
maps tp for p prime. Vigleik Angeltveit has verified that the relation

(4.9) tp ı .�
�
p tq/ ı cp;q D tq ı .�

�
q tp/ ı cq;p

for all primes p and q implies the relation in the previous definition for all m and n.
Specifically, for any orthogonal T–spectrum X there is a commutative diagram (for
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primes p , q and r ):

��pˆ
p��qˆ

q��rˆ
rX ��qˆ

q��pˆ
p��rˆ

rX

��pqˆ
pq��rˆ

rX

gg 88

��pˆ
p��qrˆ

qrX

OO

ww

��qˆ
q��prˆ

prX

OO

''

��pˆ
p��qˆ

q��rˆ
rX ��pqrˆ

pqrX

gg

OO

88

xx

��

''

��qˆ
q��rˆ

r��pˆ
pX

��prˆ
pr��qˆ

qX

gg

��

��qrˆ
qr��pˆ

pX

77

��

��rˆ
r��pqˆ

pqX

xx ''

��rˆ
r��pˆ

p��qˆ
qX ��rˆ

r��qˆ
q��pˆ

pX

If X is equipped with pre-cyclotomic structure maps, then this diagram yields six
different maps ��pqrˆ

pqrX ! X. The relation in (4.9) now implies (after a little
diagram-chasing) that these six maps are equal.

4.10 Definition (Cyclotomic spectra) The category of cyclotomic spectra is the full
subcategory of the category of pre-cyclotomic spectra consisting of those objects for
which the map �ˆCmn

q .X/! �ˆCm
q .X/ induced by

tn.V /W �
�
n.X.V //

Cn �!X.V /

is an isomorphism for all m, n� 1 and q 2 Z.

Once again, we get a spectrum of cyclotomic maps of pre-cyclotomic (or cyclotomic)
spectra as the equalizer

FCyc.X; Y /D Eq
�
FT .X; Y /�

Y
n�1

FT .��nˆ
CnX; Y /

�
of the maps determined by the maps

FT .X; Y / �! FT .��nˆ
CnX; Y /;

induced by the structure map for X, and the composites

FT .X; Y / �! FT .��nˆ
CnX; ��nˆ

CnY / �! FT .��nˆ
CnX; Y /;
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induced by (2.4) and the structure map for Y . Propositions analogous to the ones above
hold for the categories of pre-cyclotomic spectra and cyclotomic spectra.

4.11 Example The S1–equivariant sphere spectrum has a canonical structure as a
cyclotomic spectrum induced by the canonical isomorphisms ��nˆ

CnS Š S .

We close by comparing the definition of cyclotomic spectra here to definitions in
previous work. As far as we know the only definition of a point-set category of cyclo-
tomic spectra entirely in the context of orthogonal T–spectra is our [1, Definition 4.2]
(compare Hesselholt and Madsen [4, Section 1.2]), where the definition and construction
of TC is compared with older definitions in the context of Lewis–May spectra, e.g.,
Hesselholt and Madsen [3]. In [1], the authors lacked Proposition 2.6 and so wrote a
spacewise definition. An easy check of universal properties reveals that the definition
here coincides with the definition there.

5 Model structures on cyclotomic spectra

We now move on to the homotopy theory of p–cyclotomic spectra and cyclotomic
spectra, which we express in terms of model structures. The model structures are
inherited from the ambient categories of pre-p–cyclotomic and pre-cyclotomic spectra,
where they are significantly easier to set up, using standard arguments for categories of
algebras over monads.

5.1 Construction For an orthogonal T–spectrum X, let

CpX DX _ �
�
pˆ

CpX _ ��pˆ
Cp .��pˆ

CpX/_ � � � ;

CX D
_
n�1

��nˆ
CnX:

The functor Cp is a monad on the category of orthogonal T–spectra, the free monad
generated by the endofunctor ��pˆ

Cp. Clearly, the category of pre-p–cyclotomic spectra
is precisely the category of Cp–algebras in orthogonal T–spectra. Because of the
apparent failure of the canonical map

��mnˆ
CmnX �! ��nˆ

Cn.��mˆ
CmX/

of Proposition 2.6 to be an isomorphism, C does not appear to be a monad on the
category of orthogonal T–spectra; however, it is a monad on the full subcategory
of cofibrant orthogonal T–spectra, on which the map is an isomorphism. The unit
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is the inclusion of X as ��C1
ˆC1X. The multiplication is induced by the inverse

isomorphisms
��nˆ

Cn.��mˆ
CmX/ �! ��mnˆ

CmnX:

Pre-cyclotomic spectra with cofibrant underlying orthogonal T–spectra are precisely
the C–algebras in the category of cofibrant orthogonal T–spectra. More generally,
every pre-cyclotomic spectrum comes with a canonical natural map �WCX!X and a
cyclotomic map is precisely a map of orthogonal T–spectra f WX ! Y that makes the
diagram

CX

�
��

Cf
// CY

�
��

X
f

// Y

commute. We cannot say much more, except for the following proposition, which
allows us to treat CX like a free pre-cyclotomic spectrum functor.

5.2 Proposition Let A be a cofibrant orthogonal T–spectrum. Then CpA is a pre-p–
cyclotomic spectrum and CA is a pre-cyclotomic spectrum with structure maps induced
by the monad multiplication. If X is a pre-p–cyclotomic or pre-cyclotomic spectrum,
then maps of orthogonal T–spectra from A to X are in one-to-one correspondence
with cyclotomic maps CpA!X or CA!X, respectively.

The usual theory of model structures on algebra categories tells us to define cells of
pre-p–cyclotomic spectra and pre-cyclotomic spectra using the free functor applied
to cells in the model structure on the underlying category, in this case the Fp–local
or Ffin –local model structure on orthogonal T–spectra, respectively (where Fp is the
family of p–subgroups and Ffin is the family of finite subgroups of T ). Specifically,
for pre-p–cyclotomic spectra, the cells are

CpFV .T=C �S
n�1/C �!CpFV .T=C �D

n/C

for V an orthogonal T–representation, n � 0 and C < T a p–subgroup; and, for
pre-cyclotomic spectra, the cells are

CFV .T=C �S
n�1/C �!CFV .T=C �D

n/C

for V an orthogonal T–representation, n� 0 and C < T a finite subgroup. The first
model structure theorem is then the following:

5.3 Theorem The category of pre-p–cyclotomic spectra has a cofibrantly generated
model structure with
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� weak equivalences the Fp –equivalences of the underlying orthogonal T–spectra,
� cofibrations the retracts of relative cell complexes built out of the cells above,

and
� fibrations the Fp–fibrations of the underlying orthogonal T–spectra.

The category of pre-cyclotomic spectra has a cofibrantly generated model structure with
� weak equivalences the Ffin –equivalences of the underlying orthogonal T–spectra,
� cofibrations the retracts of relative cell complexes built out of the cells above,

and
� fibrations the Ffin –fibrations of the underlying orthogonal T–spectra.

Thus, pre-p–cyclotomic spectra and pre-cyclotomic spectra form model* categories
with the above model structures.

Proof As in [9, Proposition 5.13] (and [8, Section III.8]), the model structure state-
ments follow from a “Cofibration Hypothesis” [9, 5.3] about pushouts and sequential
colimits. Specifically, recall that a map X ! Y of orthogonal T–spectra is an h–
cofibration if it satisfies the homotopy extension property. The cofibration hypothesis
is satisfied for a collection of maps I when the following two conditions hold:

(i) Let i WA! B be a coproduct of maps in I . In any pushout

A //

i
��

X

j

��

B // Y

of pre-p–cyclotomic (or p–cyclotomic) spectra, the cobase change j is an
h–cofibration of orthogonal T–spectra.

(ii) The sequential colimit of a sequence of maps fi in pre-p–cyclotomic (or p–
cyclotomic) spectra that are h–cofibrations of orthogonal T–spectra is computed
as the sequential colimit in the category of orthogonal T–spectra.

In order to construct the model structures, it suffices to show that the cofibration
hypothesis holds for the candidate generating cofibrations and acyclic cofibrations
produced by applying Cp and C to the generating cofibrations and acyclic cofibrations
in the Fp–local and Ffin –local model structures on orthogonal T–spectra. But this
is clear from the fact that the geometric fixed point functor preserves the colimits in
question.

The last statement then follows from Proposition 4.3 and the corresponding proposition
for pre-cyclotomic spectra.
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Similarly, starting with the F –local p– and finite complete model structures on orthog-
onal T–spectra (Theorem 3.6), we obtain the following “complete” model structures
on pre-p–cyclotomic spectra and pre-cyclotomic spectra.

5.4 Theorem The category of pre-p–cyclotomic spectra has a cofibrantly generated
model structure with

� weak equivalences the p–Fp–equivalences of the underlying orthogonal T–
spectra,

� cofibrations the retracts of relative cell complexes built out of the cells above,
and

� fibrations the fibrations of the underlying orthogonal T–spectra in the Fp–local
p–complete model structure.

The category of pre-cyclotomic spectra has a cofibrantly generated model structure with

� weak equivalences the finite complete Ffin –equivalences of the underlying or-
thogonal T–spectra,

� cofibrations the retracts of relative cell complexes built out of the cells above,
and

� fibrations the fibrations of the underlying orthogonal T–spectra in the Ffin –local
finite complete model structure.

Thus, pre-p–cyclotomic spectra and pre-cyclotomic spectra form model* categories
with the above model structures.

Turning to p–cyclotomic and cyclotomic spectra, because F –equivalences are defined
in terms of the geometric homotopy groups (Definition 3.4) we have the following
simpler description of weak equivalences in this context.

5.5 Proposition A cyclotomic map of p–cyclotomic spectra is an Fp–equivalence
of the underlying orthogonal T–spectra if and only if it is a weak equivalence of the
underlying non-equivariant orthogonal spectra. A cyclotomic map of cyclotomic spectra
is an Ffin –equivalence of the underlying orthogonal T–spectra if and only if it is a
weak equivalence of the underlying non-equivariant orthogonal spectra.

Proof We give the argument for cyclotomic spectra; the proof for p–cyclotomic
spectra is analogous. Clearly, a map of cyclotomic spectra which is an Ffin –equivalence
of the underlying orthogonal T–spectra is a weak equivalence of underlying non-
equivariant orthogonal spectra. Conversely, suppose we are given a map X ! Y
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of p–cyclotomic spectra which is a weak equivalence of underlying non-equivariant
orthogonal spectra. In the diagram

��nLˆCnX //

��

��nˆ
CnX

t
//

��

X

��

��nLˆCnY // ��nˆ
CnY

t
// Y;

the composite horizontal maps and the right-hand vertical map are weak equivalences
of underlying non-equivariant spectra, so we conclude that so is the left-hand vertical
map. Therefore, �ˆCn

� X! �ˆCn
� Y is an isomorphism. Inductively, we conclude that

X ! Y is an Ffin –equivalence of T–spectra.

Theorem 1.2, the main theorem on the homotopy theory of p–cyclotomic spectra, is
now an immediate consequence.

Proof of Theorem 1.2 Any subcategory of a model* category that is closed under
weak equivalences, finite products and coproducts, pushouts over cofibrations, and
pullbacks over fibrations is itself a model* category with the inherited model structure.
Clearly, the p–cyclotomic spectra regarded as a subcategory of the model* category
of pre-p–cyclotomic spectra (with the Fp–equivalences) satisfies these conditions.
Proposition 5.5 now yields the characterization of the weak equivalences given in the
statement of the theorem.

Similarly, Proposition 5.5 also implies the corresponding theorem for cyclotomic
spectra.

5.6 Theorem The category of cyclotomic spectra is a model* category with weak
equivalences the weak equivalences of the underlying non-equivariant orthogonal
spectra and fibrations the Ffin –fibrations of the underlying orthogonal T–spectra.

For the “complete” model structures, we should look at the closure of the categories of
p–cyclotomic spectra and cyclotomic spectra under the weak equivalences in those
model structures. We refer to these as “weak” p–cyclotomic and cyclotomic spectra.

5.7 Definition The category of weak p–cyclotomic spectra is the full subcategory of
the category of pre-p–cyclotomic spectra consisting of those objects X for which the
map �ˆCpnC1

q .X ^M 1
p /! �ˆCpn

q .X ^M 1
p / induced by

t .V /W ��p.X.V /^M
1
p /
Cp �!X.V /^M 1

p
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is an isomorphism for all n� 0 and q 2Z, where M 1
p denotes the mod-p Moore space

in dimension 1.

The category of weak cyclotomic spectra is the full subcategory of the category of
pre-cyclotomic spectra consisting of those objects for which the maps

�ˆCmn
q .X ^M 1

p / �! �ˆCm
q .X ^M 1

p /

are isomorphisms for all m, n� 1, q 2 Z and p prime.

Once again, the categories of weak p–cyclotomic spectra and weak cyclotomic spectra
are suitable subcategories of model* categories. Along with Proposition 5.5, this
implies the following result:

5.8 Theorem The category of weak p–cyclotomic spectra is a model* category with
weak equivalences the p–equivalences of the underlying non-equivariant orthogonal
spectra and fibrations the Fp –local p–complete fibrations of the underlying orthogonal
T–spectra.

The category of weak cyclotomic spectra is a model* category with weak equiva-
lences the finite equivalences of the underlying non-equivariant orthogonal spectra
and fibrations the Ffin –local finite complete fibrations of the underlying orthogonal
T–spectra.

Quillen’s SM7 axiomatizes the compatibility between the model structure and the
enrichment. In our context of an enrichment over orthogonal spectra, the statement is
the following theorem:

5.9 Theorem Let i WW !X be a cofibration of pre-p–cyclotomic (resp., pre-cyclo-
tomic) spectra and let f WY ! Z be a fibration of pre-p–cyclotomic (resp., pre-
cyclotomic) spectra in either of the model structures above. Then the map

FCyc.X; Y / �! FCyc.X;Z/�FCyc.W;Z/ FCyc.W; Y /

is a fibration of orthogonal spectra, and is a weak equivalence if either i or f is.

Proof By the usual adjunction argument (using the adjunction of Proposition 4.4), it
is equivalent to show that for every cofibration j WA! B of orthogonal spectra, the
map

F.A; Y / �! F.B;Z/�F.A;Z/ F.B; Y /

is a fibration of pre-p–cyclotomic (resp., pre-cyclotomic) spectra and a weak equivalence
whenever j or f is. But since fibrations of pre-p–cyclotomic (resp., pre-cyclotomic)
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spectra are just Fp–fibrations (resp., Ffin –fibrations) of the underlying orthogonal
T–spectra, this is clear from the corresponding fact in the category of orthogonal
T–spectra. Note that in the p–complete (resp., finite complete) model structure, we
actually obtain a fibration in the p–complete (resp., finite complete) model structure
on orthogonal spectra.

We proved SM7 using one of the usually equivalent adjoint formulations. The other
adjoint formulation, called the pushout–product axiom, is not equivalent in this context
because not all the relevant pushouts and tensors exist; however, the pushout–product
axiom does follow for those pushouts and tensors that exist in the category. Specifically,
given a cofibration of pre-p–cyclotomic (resp., pre-cyclotomic) spectra j WX ! Y and
a cofibration of cofibrant orthogonal spectra i WA! B , the map

.Y ^A/[.X^A/ .X ^B/ �! Y ^B

is a cofibration and a weak equivalence if either i or j is cofibration. An immediate
consequence of this formula is the fact that the model structures on pre-p–cyclotomic
and pre-cyclotomic spectra are stable in the sense that suspension (smash with S1 ) is
an equivalence on the homotopy category with inverse equivalence smash with FRS

0.
As in [6, Section 7], this implies that the associated homotopy categories become
triangulated with the Quillen Puppe cofibration sequences defining the distinguished
triangles and the Quillen suspension defining the shift. In fact, Theorem 5.9 directly
gives the triangulated structure: mapping out of a cofibration sequence of cofibrant
objects into a fibrant object, we get a fibration sequence on the mapping spectra,
and mapping into a fibration sequence of fibrant objects from a cofibrant object, we
get a fibration sequence of mapping spectra. Summarizing, we have the following
proposition:

5.10 Proposition The homotopy categories of pre-p–cyclotomic spectra and pre-
cyclotomic spectra are triangulated, with the distinguished triangles determined by
the cofiber sequences specified by the model structure (see [6, Definition 6.2.6]) and
suspension inducing the shift. The homotopy categories of p–cyclotomic spectra and
cyclotomic spectra are full triangulated subcategories of the homotopy categories of
pre-p–cyclotomic spectra and pre-cyclotomic spectra, respectively.

To compute the derived mapping spectrum using the enrichment, we take the orthogonal
spectrum of maps from a cofibrant cyclotomic spectrum X to a fibrant cyclotomic
spectrum Y . As cofibrant cyclotomic spectra do not typically arise in nature, we
offer the following construction, which will allow us to construct the derived mapping
spectra using the more general class of cyclotomic spectra whose underlying orthogonal
T–spectra are cofibrant.
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5.11 Construction For pre-p–cyclotomic spectra X and Y , let F hCyc.X; Y / be the
homotopy equalizer of the maps xp , ypWF.X; Y /! F.��pˆ

CpX; Y /, where xp is
induced by the structure map for X and yp is the composite

FT .X; Y / �! FT .��pˆ
CpX; ��pˆ

CpY / �! FT .��pˆ
CpX; Y /

induced by (2.4) and the structure map for Y . Specifically, we construct F hCyc.X; Y /

as the pullback

F hCyc.X; Y /
//

��

FT .��pˆ
CpX; Y /I

��

FT .X; Y /
.xp;yp/

// FT .��pˆ
CpX; Y /�FT .��pˆ

CpX; Y /

where .�/I D F.IC;�/ is the orthogonal spectrum of unbased maps out of the unit
interval and the vertical map is induced by the restriction to f0; 1g � I .

5.12 Theorem Let X and Y be pre-p–cyclotomic spectra. If X is cofibrant, then the
canonical map from the equalizer to the homotopy equalizer FCyc.X; Y /!F hCyc.X; Y /

is a level equivalence.

Proof First consider the case when X D CpA for A an Fp–cofibrant orthogonal
T–spectrum. In this case we are looking at the canonical map from the pullback with
J D � to the pullback with J D I (induced by I !�) in the following diagram:Y

n�1

FT .��pn
ˆCpnA; Y /J

��Y
n�0

FT .��pn
ˆCpnA; Y / //

Y
n�1

FT .��pn
ˆCpnA; Y /�

Y
n�1

FT .��pn
ˆCpnA; Y /

This is the map

FT .A; Y / �! FT .A; Y /�Q
n�1 F

T .��pnˆ
CpnA;Y /

�Y
n�1

FT .��pn
ˆCpnA; Y /

�IC
from FT .A; Y / to the mapping path object, which is always a level equivalence of
orthogonal spectra. Looking at pushouts over cofibrations and sequential colimits over
cofibrations, it follows from [8, Theorem III.2.7] that the map is a level equivalence
for cell pre-p–cyclotomic spectra. Finally, since level equivalences are preserved by
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retracts, it follows that the map is a level equivalence for cofibrant pre-p–cyclotomic
spectra.

5.13 Corollary Let X be a pre-p–cyclotomic spectrum whose underlying orthog-
onal T–spectrum is Fp–cofibrant and let X ! X be a cofibrant replacement in the
model* category of pre-p–cyclotomic spectra. Then, for any fibrant pre-p–cyclotomic
spectrum Y , the maps

F hCyc.X; Y / �! F hCyc.X; Y / � FCyc.X; Y /

are weak equivalences; thus, when Y is fibrant, F hCyc.X; Y / represents the derived
mapping spectrum.

Note that, if X is just cofibrant as an orthogonal T–spectrum, X ^EFpC is Fp–
cofibrant; in practice, one expects to apply the previous corollary to X ^EFpC (which
inherits a canonical pre-p–cyclotomic structure from a pre-p–cyclotomic structure
on X ).

We have an analogous construction in the context of pre-cyclotomic spectra. Because
the definition of pre-cyclotomic spectra involves compatibility relations, we need a
homotopy limit over a more complicated category. As above, but for each n > 1, we
have maps

xn; ynWF.X; Y / �! F.��nˆ
CnX; Y /

induced by the structure map on X and the structure map on Y , respectively. More
generally, we write xnIm and ynIm for the maps

F.��mˆ
CmX; Y / �! F.��mnˆ

CmnX; Y /

induced by the map ��mˆ
Cm tn on X,

��mnˆ
CmnX �! ��mˆ

Cm.��nˆ
CnX/

��mˆ
Cm tn

�������!X;

and

FT .��mˆ
CmX; Y /�! FT .��nˆ

Cn.��mˆ
CmX/; ��nˆ

CnY /�! FT .��mnˆ
CmnX; Y /;

induced by the map tn on Y . These maps satisfy the following relations:

(5.14) xnI`mıxmI`D xmnI`; xnI`mıymI`D ymI`nıxnI`; ynI`mıymI`D ymnI`:

The first and last equations follow from the compatibility requirement relating tmn
and tn ı tm (for X and Y , respectively). The middle equation follows from the
functoriality of ��mˆ

Cm.
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5.15 Construction Let ‚ be the category whose objects are the positive integers
and maps freely generated by maps xnIm , ynImWm!mn for all m, n 2N, subject
to the relations (5.14). Construct F hCyc.X; Y / as the homotopy limit of the functor
FT .��mˆ

CmX; Y / from ‚ to orthogonal spectra.

The category ‚ is (non-canonically) isomorphic to the opposite of the category I used
in the construction of TC (see [3, Section 3.1] or Definition 6.2 below).

To explain the relationship of this construction to Construction 5.11, let ‚p be the full
subcategory of ‚ consisting of the objects ps for s � 0. The inclusion of the full
subcategory consisting of 1 and p induces a map to the homotopy equalizer of xpI1
and ypI1 from the homotopy limit over ‚p .

5.16 Proposition Let F be any functor from ‚p to orthogonal spectra. The canonical
map to the homotopy equalizer of xpI1 and ypI1 from the homotopy limit over ‚p is a
level equivalence.

Proof By [2, Section XI.9.1], it suffices to see that the inclusion of f1; pg into ‚p
is left cofinal, that is, for every s the category of maps in ‚p from f1; pg to ps has
weakly contractible nerve. The maps from 1 to ps are in one-to-one correspondence
with monomials of the form xiys�i for 0 � i � s and maps from p to ps are in
one-to-one correspondence with monomials of the form xiys�i�1 for 0� i � s� 1.
For xs and ys, there is exactly one non-identity map in the category, namely xs!xs�1

and ys ! ys�1, respectively. For every other monomial xiys�i, there are exactly
two maps, xpI1 and ypI1 , to xi�1ys�i and xiys�i�1, respectively. The nerve of this
category is therefore a generalized interval with sC 1 1–simplices.

Observe that the limit of the functor FT .��mˆ
CmX; Y / from ‚ to orthogonal spectra

is precisely FCyc.X; Y /. As in Theorem 5.12, the canonical map from the limit to the
homotopy limit is a level equivalence when X is cofibrant and therefore F hCyc.X; Y / pro-
vides an explicit model of the derived mapping space in the category of pre-cyclotomic
spectra when Y is fibrant.

5.17 Theorem Let X and Y be pre-cyclotomic spectra. If X is cofibrant, then the
canonical map from the limit to the homotopy limit FCyc.X; Y /! F hCyc.X; Y / is a
level equivalence.

Proof By the usual argument, this reduces to the case of the domain and codomain
of a cell in pre-cyclotomic spectra, X D CFV .T=Cn �B/C , where B D Sq�1 or
B DDq. Let P D fp1; : : : ; prg be the distinct prime factors of n and let ‚ yP be the
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full subcategory of ‚ consisting of the integers not divisible by the primes in P . Then
we have that

‚D‚p1
� � � � �‚pr

�‚ yP

and the Fubini theorem for homotopy limits gives a level equivalence

F hCyc.X; Y /' holim‚p1
� � � holim‚pr

holim‚ yP F
T .��mˆ

CmX; Y /;

compatibly with the map from the limit. Since ˆCmX D � for all m in ‚ yP except
mD 1, the equivalence above reduces to a level equivalence

F hCyc.X; Y /' holim‚p1
� � � holim‚pr

FT .��mˆ
CmX; Y /:

Using the previous proposition, we can identify this homotopy limit as an iterated
homotopy equalizer. As in the proof of Theorem 5.12, we can then identify the map in
question as the map from FV .T=Cn �B/C to an iterated mapping path object.

The analogue of Corollary 5.13 also holds in this context:

5.18 Corollary Let X be a pre-cyclotomic spectrum whose underlying orthogonal
T–spectrum is Ffin –cofibrant and let X !X be a cofibrant replacement in the model*
category of pre-cyclotomic spectra. Then, for any fibrant pre-cyclotomic spectrum Y ,
the maps

F hCyc.X; Y / �! F hCyc.X; Y / � FCyc.X; Y /

are weak equivalences; thus, F hCyc.X; Y / represents the derived mapping spectrum
when Y is fibrant.

6 Corepresentability of TR and TC

We apply the work of the previous section to deduce corepresentability results for TC
and related functors. We begin with a brief review of the constructions, starting with
the “restriction” and “Frobenius” maps.

Following [8], we omit notation for the forgetful functor from orthogonal T–spectra to
non-equivariant orthogonal spectra.

6.1 Definition Let X be cyclotomic spectrum. The restriction map Rn is the map of
non-equivariant orthogonal spectra

RnWX
Cmn �! .��nˆ

Cn/Cm �!XCm
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induced by tn . The Frobenius map Fn is the map of non-equivariant orthogonal spectra

FnWX
Cmn �!XCm

induced by the inclusion of fixed points.

By convention, R1 D F1 D idWX ! X. It is easy to see that Rn and Fn satisfy the
following formulas:

RmRn DRmn; FmRn DRnFm; FmFn D Fmn:

We let I be the category with objects the positive integers and maps Rn , FnWnm!m

subject to the relations above. We write R for the subcategory consisting of all the
objects and the restriction maps, and F for the subcategory consisting of all the objects
and the Frobenius maps.

A cyclotomic spectrum X determines a functor m 7!XCm from I to non-equivariant
orthogonal spectra.

6.2 Definition For a fibrant cyclotomic spectrum X, let

TR.X/D holimR XCm ;

TF.X/D holimF XCm ;

TC.X/D holimI X
Cm :

We have defined TR, TF and TC as point-set functors on the subcategory of fibrant
objects. By taking fibrant approximations, we obtain right derived functors TR, TF
and TC from the homotopy category of cyclotomic spectra to the stable category.

For a p–cyclotomic spectrum, we have the maps Rp and Fp , and the corresponding
full subcategories Rp , Fp and Ip of R , F and I , respectively, consisting of the subset
of objects f1; p; p2; : : : g.

6.3 Definition For a fibrant p–cyclotomic spectrum X, let

TR.X Ip/D holimRp
XCpm;

TF.X Ip/D holimFp
XCpm;

TC.X Ip/D holimIp
XCpm:

We now explain how to realize TR and TC as suitable mapping objects in cyclotomic
spectra.
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6.4 Construction Let STRIp be the p–cyclotomic spectrum with underlying orthog-
onal T–spectrum

STRIp D
_
s�0

F0.T=Cps /C

and structure map from

��pˆ
CpSTRIpŠ

_
s�0

��pˆ
Cp .F0.T=Cps /C/Š

_
s�1

F0.T=Cps�1/CD
_
s�0

F0.T=Cps /C

to STRIp induced by the canonical isomorphism.

For any orthogonal T–spectrum X, we have a canonical natural isomorphism

FT .STRIp; X/ �D
Y
s�0

XCps :

For X a p–cyclotomic spectrum, F hCyc.STRIp; X/ is then the homotopy equalizer

F h.STRIp; X/Š hoEq
hY

XCps �
Y

XCps

i
;

where one map is the identity (induced by the p–cyclotomic structure map on STRIp )
and the other is the product of the maps RpWXCps !X

C
ps�1. This construction is the

“mapping microscope” of the maps Rp , which is a model for the homotopy limit over
Rp [11, Definition 2.2.8]. Since the underlying orthogonal T–spectrum of STRIp is
Fp–cofibrant, we obtain the following theorem as a corollary of Theorem 5.12:

6.5 Theorem The right derived functor of TR.�Ip/ is corepresentable in the homo-
topy category of p–cyclotomic spectra, with corepresenting object STRIp .

For TC.�Ip/, we begin with the following pre-p–cyclotomic spectrum:

6.6 Construction Let STCsIp (for s > 0) be the pre-p–cyclotomic spectrum whose
underlying orthogonal T–spectrum is F0.T=Cps /C and whose structure map is

��pˆ
CpSTCsIp Š F0.T=Cps�1/C �! F0.T=Cps /C D STCsIp;

induced by the quotient map T=Cps�1 ! T=Cps . The map STCsIp ! STCsC1Ip

induced by the quotient is then a map of pre-p–cyclotomic spectra; let STCIp be the
telescope.

We can identify TC.�Ip/ in terms of maps of pre-p–cyclotomic spectra out of STCIp .

Geometry & Topology, Volume 19 (2015)



The homotopy theory of cyclotomic spectra 3135

6.7 Theorem For pre-p–cyclotomic spectra X, there is a natural level equivalence

holimIp
XCpm

�
�! F hCyc.STCIp; X/:

Thus, if X is a fibrant p–cyclotomic spectrum, there is a natural level equivalence

TC.X Ip/
�
�! F hCyc.STCIp; X/:

Proof Since STCIp is the telescope of STCsIp , commuting homotopy limits, we see that
F hCyc.STCIp; X/ is the mapping microscope of the orthogonal spectra F hCyc.STCsIp; X/.
Since FT .STCsIp; X/ and FT .��pˆ

CpSTCsIp; X/ are canonically isomorphic to XCps

and XCps�1, respectively, F hCyc.STCsIp; X/ is canonically isomorphic to a homotopy
equalizer of the form

F hCyc.STCsIp; X/D hoEqŒXCps �X
C

ps�1 �;

with the maps induced by the structure map on STCsIp and the structure map on X.
The structure map on X induces the map RpWX

Cps ! X
C

ps�1 and the structure
map on STCsIp induces the map FpWXCps ! X

C
ps�1. Therefore, we have a natural

isomorphism
F hCyc.STCIp; X/ �DMics hoEqŒXCps �X

C
ps�1 �;

where the maps on the homotopy equalizers are induced by the inclusion of fixed points,
i.e., by the maps Fp . It is a standard fact in TC theory that the above homotopy limit
is level equivalent to the homotopy limit holimIp

XCpm ; we now review the argument.
Let I�sp denote the full subcategory of Ip consisting of the objects m for m� s and let
Ifs�1;sgp denote the full subcategory of Ip consisting of the objects s and s� 1. The
argument of Proposition 5.16 then shows that the inclusion of Ifs�1;sgp in I�sp induces
a level equivalence

holimI�s
p
XCpm

�! holim
Ifs�1;sg

p
XCpm

D hoEqŒXCps �X
C

ps�1 �:

For fixed s � 0, the diagram

holim
I�sC1

p
XCpm //

��

holim
Ifs;sC1g

p
XCpm

��

holimI�s
p
XCpm // holim

Ifs�1;sg
p

XCpm

commutes up to a canonical natural homotopy, where the vertical map on the left is
induced by the inclusion of I�sp in I�sC1p and the vertical map on the right is the
map in the homotopy limit system for FCyc.STCIp; X/. To see this, note that the
down-then-right map is induced by the natural inclusion i of Ifs�1;sgp in I�sC1p and
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the right-then-down map is induced by the functor j W Ifs�1;sgp ! I�sC1p that sends
s � 1 to s and s to s C 1 (with the morphisms Fp and Rp from s to s � 1 going
to the corresponding morphisms from s C 1 to s ) together with Fp viewed as a
natural transformation to the functor XCpm on Ifs�1;sgp from j � of the functor XCpm

on I�sC1p . The maps Fp then become a natural transformation from i to j and induce a
homotopy making the diagram commute, naturally in X. Incorporating these canonical
natural homotopies, we get a canonical map

Mics holimI�s
p
XCpm

�!Mics holim
Ifs�1;sg

p
XCpm �D FCyc.STCIp; X/

that is a level equivalence and natural in X. The composite

holimIp
XCpm �D lims holimI�s

p
XCpm

�
�!Mics holimI�s

p
XCpm

�
�! FCyc.STC; X/

is then the natural level equivalence in the statement.

The preceding theorem now leads to the following characterization:

6.8 Theorem For X a fibrant weak p–cyclotomic spectrum, TC.X Ip/ is naturally
weakly equivalent to F hCyc.S ^ EFpC; X/, which represents the derived mapping
spectrum RFCyc.S;X/.

Proof We have compatible canonical maps from STCsIp to the sphere spectrum S ,
induced by the collapse map T=Cps !�. Using the canonical cyclotomic structure
on S of Example 4.11, we obtain a canonical map of pre-p–cyclotomic spectra from
STCIp to S . Looking at mod-p homology, we see that the unique map from the telescope
of T=Cps to a point is a p–equivalence and it follows that the map of pre-p–cyclotomic
spectra STCIp! S is a p–Fp–equivalence of the underlying orthogonal T–spectra.
We then have a zigzag of p–Fp–equivalences

STCIp � STCIp ^EFpC �! S ^EFpC;

where all of the above weak p–cyclotomic spectra have underlying orthogonal T–
spectra that are cofibrant in both the Fp–local model structure and the Fp–local
p–complete model structure. Since we have assumed that X is fibrant in the Fp –local
p–complete model structure, the functors FT .�; X/ and FT .��pˆ

Cp .�/; X/ convert
the p–Fp –equivalences of weak p–cyclotomic spectra above to weak equivalences of
orthogonal spectra. Thus, we obtain a zigzag of weak equivalences

F hCyc.STCIp; X/ �! F hCyc.STCIp ^EFpC; X/ � F hCyc.S ^EFpC; X/:

Theorem 6.7 gives a weak equivalence with TC.X Ip/ and Corollary 5.13 shows that
F hCyc.S ^EFpC; X/ represents the derived mapping spectrum RFCyc.S;X/.
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We also have the following standard relationship between p–completion and mapping
spectra:

6.9 Lemma Let X be a fibrant p–cyclotomic spectrum and X^p a fibrant replacement
for X in the category of weak p–cyclotomic spectra. For any pre-p–cyclotomic spec-
trum Y that is Fp –cofibrant as an orthogonal T–spectrum, F hCyc.Y;X/! F h.Y;X^p /

is a p–equivalence.

Proof Because the orthogonal T–spectra Y and ��pˆ
CpY are Fp–cofibrant and

the orthogonal T–spectra X and X^p are Fp–fibrant, the non-equivariant orthogonal
spectra FT .Y;X/, FT .��pˆ

CpY;X/, FT .Y;X^p / and FT .��pˆ
CpY;X^p / are all

fibrant. For fibrant orthogonal spectra, a map is a p–equivalence if and only if the
induced map on F.M 1

p ;�/ is a weak equivalence. It follows that the maps

FT .Y;X/ �! FT .Y;X^p / and FT .��pˆ
CpY;X/ �! FT .��pˆ

CpY;X^p /

are p–equivalences and that the induced map on homotopy equalizers

F hCyc.Y;X/ �! F h.Y;X^p /

is a p–equivalence.

Finally, to prove Theorem 1.4, we need the following standard fact about the relationship
between TC.�/^p and TC.�Ip/, rewritten in the terminology of Section 5.

6.10 Theorem Let X be a fibrant p–cyclotomic spectrum and X^p a fibrant re-
placement for X in the category of weak p–cyclotomic spectra. Then the canonical
map TC.X Ip/ ! TC.X^p Ip/ is a p–equivalence and TC.X^p Ip/ is fibrant in the
p–complete model structure on orthogonal spectra.

Proof The p–equivalence follows from the previous lemma and Theorem 6.7. To see
that TC.X^p Ip/ is fibrant in the p–complete model structure on orthogonal spectra, we
note that each .X^p /

Cps DFT .F0.T=Cps /C; X
^
p / is fibrant in the p–complete model

structure of orthogonal spectra and homotopy limits of fibrant objects are fibrant [5,
Theorem 18.5.2].

Theorem 1.4 follows directly from the statements above, but to illustrate how the
constructions fit together, we write out the argument as a whole.

Proof of Theorem 1.4 Given a p–cyclotomic spectrum X, let zX be a fibrant re-
placement in the model* category of p–cyclotomic spectra and let X^p be a fibrant
replacement of zX in the model* category of weak p–cyclotomic spectra; then X^p is
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also a fibrant replacement for X in the model* category of weak p–cyclotomic spectra.
We then have a commutative diagram

F hCyc.S ^EFpC; zX/
'p //

��

F hCyc.S ^EFpC; X^p /

'
��

F hCyc.STCIp ^EFpC; zX/
'p // F hCyc.STCIp ^EFpC; X^p /

F hCyc.STCIp; zX/

OO

'p // F hCyc.STCIp; X
^
p /

'OO

TC. zX Ip/ 'p //

OO

TC.X^p Ip/

'OO

which (varying X ) extends to a diagram of natural transformations from the homotopy
category of p–cyclotomic spectra to the stable category. The maps marked “'” are
isomorphisms in the stable category (see Theorem 6.7 and the proof of Theorem 6.8)
and the maps marked “'p ” become isomorphisms after p–completion (see Lemma 6.9
and Theorem 6.10). The top-left entry F hCyc.S ^EFpC; zX/ represents the derived
mapping spectrum RFCyc.S;X/ and the bottom-left entry represents the derived func-
tor TC.X Ip/.

We have corresponding corepresentability results for cyclotomic spectra.

6.11 Construction Let STR be the cyclotomic spectrum with underlying orthogonal
T–spectrum

STR D
_
m�0

F0.T=Cm/C

and structure map tn from

��nˆ
CnSTRŠ

_
m�0

��nˆ
Cn.F0.T=Cm/C/Š

_
njm
m�0

��nF0.T=Cm/CŠ
_
m�0

F0.T=Cm/C

to STR induced by the canonical isomorphism.

6.12 Theorem The right derived functor of TR.�/ is corepresentable in the homotopy
category of cyclotomic spectra, with corepresenting object STR .

Proof For any pre-cyclotomic spectrum X, we have

(6.13) F h.STR; X/Š holim
n2‚

FT .�n�ˆ
CnSTR; X/Š holim

n2‚

Y
m�1

XCm ;
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where the x maps are the identity and the y maps are induced by the cyclotomic
structure maps on X. We show that this is level equivalent to holimR XCm, which is
TR.X/ when X is a fibrant cyclotomic spectrum. As in the proof of Theorem 5.17,
we use the Fubini theorem for homotopy limits combined with Proposition 5.16 to
compare the homotopy limit over ‚p with the homotopy equalizer of xp and yp .

Let Pr D fp1; : : : ; prg denote the first r prime numbers and let ‚Pr
denote the full

subcategory of ‚ consisting of the objects n that only have elements of Pr in their
prime factorization. Then ‚Pr

is canonically isomorphic to ‚p1
� � � � �‚pr

. Using
the Bousfield–Kan model for the homotopy limit, we have a canonical isomorphism

limr holim‚pr
� � � holim‚p1

F �D limr holim‚Pr
F �D holim‚ F

for any functor F from ‚ to orthogonal spectra. Likewise, letting RPr
be the corre-

sponding subcategory of R maps, we have a canonical isomorphism

limr holimRpr
� � � holimRp1

F �D limr holimRPr
F �D holimR F:

We note that all of the sequential limits above are limits of towers of levelwise fibrations
(since on the cosimplicial objects at each cosimplicial level the map is a product
projection). Let

F.ps1 ; : : : ; psr /D FT .�n�ˆ
CnSTR; X/; nD p

s1
1 � � �p

sr
r ;

be the restriction of FT .�n�ˆ
CnSTR; X/ to ‚Pr

. Applying Proposition 5.16, we have
a level equivalence

holim‚pr
� � � holim‚p1

F �! hoEqxpr ;ypr
. � � � .hoEqxp1

;yp1
F / � � � /:

Applying (6.13), the homotopy equalizer over xp and yp is the pullback of the diagramY
m

.XCm/I

��Y
m

XCm

.id;Rp/

//
Y
m

XCm �

Y
m

XCm ;

which we can identify as the microscope of

s 7!
Y
p−m

XCmps

over the maps Rp . By induction, we get compatible maps

holim‚pr
� � � holim‚p1

F.s1; : : : ; sr/ �!
Y

Micpsr � � �Micps1 X
Cmn ;
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where nD ps11 � � �p
sr
r and the product is over m not divisible by any element of Pr .

As we vary r , the tower on the right is again a tower of level fibrations and the limit
is then isomorphic (via projection onto the mD 1 factor) to the limit

limr Micsr � � �Mics1 X
Cn :

A functor out of Rp is just a tower, so we have the canonical level equivalence

holimR XCn �D limr holimRpr
� � � holimRp1

XC
n

�! limr Micsr � � �Mics1 X
Cn :

We next construct the representing pre-cyclotomic spectrum for TC . Now, instead of
being a telescope, it will arise as the homotopy colimit over the partially ordered set of
positive integers under divisibility, which we denote by J .

6.14 Construction Let STCm (for m � 1) be the pre-cyclotomic spectrum whose
underlying orthogonal T–spectrum is F0.T=Cm/C and whose structure map

tnW �
n
�ˆ

CnSTCm D F0�
n
�.T=Cm/

Cn

C
�! F0.T=Cm/C D STCm

is either the trivial map �! STCm if n−m or induced by the quotient map

�n�.T=Cm/
Cn D T=Cm=n �! T=Cm

if njm. For any n � 1, we have a map STCm ! STCmn induced by the quotient
T=Cm! T=Cmn that is a map of pre-cyclotomic spectra; let STC be the homotopy
colimit of STCm over J .

We can identify TC.�/ in terms of maps of pre-cyclotomic spectra out of STC .

6.15 Theorem For pre-cyclotomic spectra X, there is a natural level equivalence

holimI X
Cm

�
�! F hCyc.STC; X/:

Thus, if X is a fibrant cyclotomic spectrum, there is a natural level equivalence

TC.X/
�
�! F hCyc.STC; X/:

Proof Write I.m/ for the full subcategory of I consisting of m and its divisors.
Looking at F h.STCm ; X/ and using the fact that ˆCnSTCm D � for n−m, we can
identify F hCyc.STCm ; X/ as the homotopy limit

F hCyc.STCm ; X/D holimI.m/X
Cn;

with the usual interpretation of F and R . Since STC D hocolimJ STCm , we have

F hCyc.STC; X/ �D holimm2J holimn2I.m/X
Cn :
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The natural map in the statement is then the map

holimI X
Cn �D limm2J holimn2I.m/X

Cn �! F hCyc.STC; X/:

Taking a cofinal sequence of m in J and applying [2, Section XI.9.1], we see that the
map is a level equivalence.

The collapse maps T=Cm!� induce a map of pre-cyclotomic spectra from STC to
the cyclotomic spectrum S , which is clearly a finite complete Ffin –equivalence of the
underlying orthogonal T–spectra. The argument of Theorem 6.8 now generalizes to
prove the following theorem:

6.16 Theorem For X a fibrant weak cyclotomic spectrum, TC.X/ is naturally weakly
equivalent to F hCyc.S ^EFfinC; X/, which represents the derived mapping spectrum
RFCyc.S;X/.

Appendix: A technical result on the geometric fixed point
functor for orthogonal G –spectra

Let G be a compact Lie group and U a G–universe, and consider the category of orthog-
onal G–spectra modeled on U [8, Chapter II]. Fix a closed normal subgroup N CG .
For cofibrant orthogonal G–spectra X and Y , the canonical natural map (of orthogonal
G=N–spectra)

ˆNX ^ˆNY �!ˆN .X ^Y /

is an isomorphism [8, Proposition V.4.7]. In this appendix, we generalize this statement
to the case when X is not cofibrant.

A.1 Lemma Let X and Y be orthogonal G–spectra and assume that Y is cofibrant.
The canonical natural map

ˆNX ^ˆNY �!ˆN .X ^Y /

is an isomorphism.

The proof occupies the entirety of the appendix.

Since both sides commute with pushouts over Hurewicz cofibrations, the statement
reduces to the case when Y D FABC for B a G–CW complex (space) and A < U.
Since smashing with an unbased G–space commutes appropriately with geometric
fixed points [8, Corollary V.4.6 and Proposition V.4.7],

ˆNT ^ .BC/
N �DˆN .T ^BC/;
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the statement reduces to the case when B D � and Y D FAS0.

Following the notation of [8, Definition V.4.1], we write E for the extension

1 �!N
�
�!G

�
�!J �! 1;

where J DG=N, and we write JE for .JG/
N. Recall that the geometric fixed point

functor ˆNX is formed from the JE –space FixN X

FixN X.V /D .X.V //N

by enriched left Kan extension to JJ along the functor �WJE !JJ sending V
to V N. The evident functor

˚WJE ^JE �!JE

sending .V;W / to V ˚W induces a smash product of JE –spaces. Since the diagram

JE ^JE
˚
//

�^�

��

JE

�

��

JJ ^JJ
˚

// JJ

commutes, enriched left Kan extension along � takes the smash product of JE –spaces
to the smash product of orthogonal G=N–spectra. Thus, we are reduced to showing
that the canonical natural map

FixN X ^FixN .FAS0/ �! FixN .X ^FAS0/

is an isomorphism.

We now write formulas for .FixN X^FixN .FAS0//.V / and FixN .X^FAS0/.V /. By
definition, X^FAS0 is the enriched left Kan extension of the functor JG^JG!JG ,
the V th space of which we can write as the coequalizer:

_
W;W 0;Z;Z0<U

JG.W
0
˚Z0; V /^ .J .W;W 0/^JG.Z;Z

0//^X.W /^FAS
0.Z/

����_
W;Z<U

JG.W ˚Z; V /^X.W /^FAS
0.Z/
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From the universal property of FAS0, we have that FAS0.Z/DJG.A;Z/ and so the
coequalizer above simplifies to the coequalizer:_

W;W 0<U

JG.W
0
˚A; V /^J .W;W 0/^X.W /

����_
W<U

JG.W ˚A; V /^X.W /

Let aDdim jAj. We have that JG.W˚A; V /D� when dimV <a , so the coequalizer
is just the basepoint unless dimV � a . Let nD dimV � a . Since in JG every W is
isomorphic to Rm for some m, every map in JG from W ˚A to V factors through
a map from Rn˚A to V . The coequalizer above then reduces to the coequalizer:_

W<U

JG.R
n
˚A; V /^J .W;Rn/^X.W /

����

JG.R
n
˚A; V /^X.Rn/

Using the same observation on Rn, we can identify this with the orbit space

JG.R
n
˚A; V /^O.n/X.R

n/:

An analogous argument for .FixN X ^ FixN .FAS0//.V / yields an identification as
the orbit space

JE .W ˚A; V /^O.W /N X.W /
N;

where V is isomorphic to W ˚A as an orthogonal N–representation. (In the case
when no such decomposition exists, .FixN X^FixN .FAS0//.V / is just the basepoint.)
Thus, we must show that the map

(A.2) � WJE .W ˚A; V /^O.W /N X.W /
N
�! .JG.R

n
˚A; V /^O.n/X.R

n//N

is a homeomorphism. We prove this by constructing an explicit inverse homeomorphism
below. First, it is useful to describe � concretely in terms of elements. For this,
choose and fix an orthonormal basis of W , which we can regard as a (non-equivariant)
isometric isomorphism hWRn! W . For a representative element .f; x/ on the left,
with f 2JE .W ˚A; V / and x 2X.W /N,

�.f; x/D .f ı .h˚ idA/; .h�1/�x/;

where .h�1/� denotes the (non-equivariant) map X.W / ! X.Rn/ associated to
h�1WW !Rn. In the formula,

f ı .h˚ idA/ 2JG.R
n
˚A; V /; .h�1/�x 2X.R

n/;
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and by the abstract definition of the map we must have that

.f ı .h˚ idA/; .h�1/�x/ 2JG.R
n
˚A; V /^O.n/X.R

n/

is

(i) independent of the choice of h,

(ii) independent of the choice of representative .f; x/, and

(iii) in the N–fixed point subspace .JG.Rn˚A; V /^O.n/X.R
n//N;

however, it is trivial to check each of these facts explicitly in terms of the elementwise
formula for � , and doing this check will (we hope) help give some insight into how
the formula works. For (i), if we chose a different h0WRn!W , then we would have
h0 D h ı j for some j in O.n/, and

.f ı .h0˚ idA/; .h0�1/�x/D
�
f ı .h˚ idA/ ı .j ˚ idA/; j�1� ..h�1/�x/

�
represents the same element of JG.Rn˚A;V /^O.n/X.R

n/ as .f ı.h˚idA/; .h�1/�x/
since the right O.n/ action on JG.Rn˚A; V / is by right multiplication by j ˚ idA .
For (ii), any other representative of .f; x/ is .f ı.�˚idA/; ��1� x/ for some �2O.W /N,
and

�.f ı .�˚ idA/; ��1� x/D
�
f ı ..� ı h/˚ idA/; ..� ı h/�1/�x

�
:

Since h0 D � ı h is a (non-equivariant) isometric isomorphism Rn! W , it follows
by (i) that this represents the same element of JG.Rn ˚ A; V / ^O.n/ X.R

n/ as
�.f; x/D .f ı.h˚ idA/; .h�1/�x/. Finally, for (iii), first note that � is G–equivariant;
this follows from the abstract definition of the map, but again, we check it explicitly:
The action of G on JG.Rn˚A; V /^O.n/X.R

n/ is diagonal, so

g � �.f; x/D
�
g � .f ı .h˚ idA//; g � ..h�1/�x/

�
D
�
.g �f / ı ..g � h/˚ idA/; ..g � h/�1/�.g � x/

�
D ..g �f / ı .h˚ idA/; .h�1/�.g � x// (by (i), taking h0 D g � h)

D �.g �f; g � x/:

In the second equality, the G–action distributes over composition with the isometric
isomorphism h˚ idA on JE by inspection and over the action by the isometric
isomorphism h�1 on X by the definition of orthogonal spectrum. When g 2N, we
have g �f D f since f 2JE .W ˚A; V /D .JG.W ˚A; V //

N, and g �xD x since
x 2X.W /N.

We construct an inverse to the map � of (A.2) as follows. We note that JG.Rn˚A; V /
is the G–equivariant space of (non-equivariant) isometric isomorphisms from Rn˚A
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to V plus a disjoint basepoint. Let ‰ denote the subset of JG.Rn˚A; V /^X.Rn/
which the quotient map sends into the N fixed points .JG.Rn˚A; V /^O.n/X.R

n//N.
Writing .f; x/ for a typical element of JG.Rn˚A; V /^X.Rn/, consider an element
.f; x/ 2‰ , where x is not the basepoint. Then, for every � in N,

.� �f; � � x/D .f ı .j�1� ˚ idA/; j��x/

for some j� in O.n/; note that j� is determined uniquely since O.n/ acts freely
on JG.Rn˚A; V /. In particular, the restriction of f to A must be N–equivariant
and the image f .Rn/ of the restriction to Rn must be stable under the action of N.
Thus, f induces an N–equivariant isometric isomorphism from f .Rn/˚A to V . In
particular, in the case when V does not contain a N–representation isomorphic to A,
.JG.Rn˚A; V /^O.n/X.R

n//N consists of just the basepoint and the map � of (A.2)
is a homeomorphism.

Otherwise, we fix the N–equivariant isometric isomorphism V �DW ˚A and, for each
non-basepoint element .f; x/ in ‰ , we choose an N–equivariant isometric isomorphism

g.f;x/Wf .R
n/ �!W:

Then g�1
.f;x/

together with the restriction of f to A specify an element .f;x/ in

.JG.W ˚A; V //
N
DJE .W ˚A; V /

and g.f;x/ ı f is an element of JG.Rn; W /. The hypothesis that .f; x/ is in ‰ then
implies that .g.f;x/ ıf /�x 2X.W / is an N fixed point:

� � ..g.f;x/ ıf /�x/D .� � .g.f;x/ ıf //�.� � x/D .� �g.f;x/ ı � �f /�.� � x/

D .g.f;x/ ıf ı j
�1
� /�.j��x/D .g.f;x/ ıf /�x:

We then get a basepoint-preserving function  on ‰ that sends .f; x/ to

..f;x/; .g.f;x/ ıf /�x/ 2JE .W ˚A; V /^O.W /N X.W /
N:

Because any two possible choices of g.f;x/ are related by an element of O.W /N,
it follows that  is independent of the choice of g.f;x/ . It is easy to see that  is
continuous at the basepoint and, since, for any non-basepoint x , we can choose g.f;x/
locally to be a continuous function of .f; x/, it follows that  is continuous. Finally,
for j 2O.n/,

 .f ı .j�1˚ idA/; j�x/D ..f;x/; .g.f;x/ ıf ı j
�1/�.j�x//

D ..f;x/; .g.f;x/ ıf /�x/D  .f; x/;
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so  descends to a continuous map

.JG.R
n
˚A; V /^O.n/X.R

n//N �!JE .W ˚A; V /^O.W /N X.W /
N:

Using the formula above, both composites of � and  are easily seen to be the
appropriate identity maps.
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