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En genera
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Let R be an E2 ring spectrum with zero odd-dimensional homotopy groups. Every
map of ring spectra MU! R is represented by a map of E2 ring spectra. If 2 is
invertible in �0R , then every map of ring spectra MSO!R is represented by a map
of E2 ring spectra.

55N22; 55P43

1 Introduction

Genera (in the sense we use the word here) are multiplicative cobordism invariants
of manifolds with extra structure. In the past 60 years, the study of various genera
has led to stunning advances throughout mathematics, from algebraic geometry with
the Hirzebruch–Riemann–Roch theorem [18; 19], to differential equations with the
Atiyah–Singer index theorem [29], to mathematical physics with the Witten genus [31],
in addition to innumerable advances inside topology. Because our perspective comes
from stable homotopy theory, we will restrict attention to genera that extend to singular
manifolds on pairs. With only minor additional hypotheses, such genera are precisely
natural transformations of cohomology theories, or better, maps of ring spectra out
of a cobordism spectrum or a related spectrum. These genera lie at the heart of
modern stable homotopy theory, in particular, its organization in terms of chromatic
phenomena, which derives from Quillen’s identification of genera of stably almost
complex manifolds (ie ring spectrum maps out of MU) in terms of formal coordinates
for formal group laws.

The three most basic cobordism spectra MO (unoriented cobordism), MSO (oriented
cobordism), and MU (complex cobordism) are all examples of E1 ring spectra
(now usually called commutative S –algebras). These are ring spectra where the
multiplication is not just associative, commutative, and unital in the stable category,
but actually in a point-set symmetric monoidal category of spectra. The E1 structures
on these cobordism spectra derive from products and powers of manifolds, and work
of Ando, Hopkins, Rezk, and Strickland (and their collaborators, among others) shows
that refining maps out of cobordism spectra and related spectra to E1 (or H1 ) ring
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maps has implications in geometry as well as topology and stable homotopy theory
(see, for example, [2; 3; 5]). An E1 ring structure brings with it many extra tools and
much of the work of stable homotopy in the past two decades has involved producing
E1 ring structures and E1 ring maps.

Recent work of Johnson and Noel [20], however, shows that maps out of MU that
come from p–typical orientations usually do not commute with power operations. As
a consequence, many of the maps of ring spectra out of MU that are fundamental in
the chromatic picture of stable homotopy theory cannot be represented by E1 ring
maps. This mandates consideration of less rigid structures than E1 ring structures,
and an obvious place to start is the Boardman–Vogt hierarchy of En structures, of
which E1 is the apex. An E1 ring structure is also called an A1 ring structure (or
associative S –algebra structure) and retains all of the homotopy coherent associativity
without the commutativity. An E2 ring spectrum is homotopy commutative and as n

gets higher, En ring spectra become more coherently homotopy commutative and have
more of the power operations in an E1 ring spectrum.

The purpose of this paper is to study which genera of oriented manifolds and stably
almost complex manifolds are represented by maps of En ring spectra. For reasons
explained at the end of Section 2, the easiest case is when nD 2, where we have the
following results.

Theorem 1.1 Let R be an even E2 ring spectrum with 1=2 2 �0R. Then every map
of ring spectra MSO!R lifts to a map of E2 ring spectra MSO!R.

Theorem 1.2 Let R be an even E2 ring spectrum. Then every map of ring spectra
MU!R lifts to a map of E2 ring spectra MU!R.

Here “even” means that the homotopy groups are concentrated in even degrees,
ie �qR D 0 for q odd. Examples of E2 (or better) even ring spectra include the
Brown–Peterson spectrum BP, the Lubin–Tate spectra En , and conjecturally, the
truncated Brown–Peterson spectra BPhni and Johnson–Wilson spectra E.n/. Each of
these spectra comes with a canonical map of ring spectra out of MU that is a p–typical
orientation and that by the Johnson–Noel result [20, 1.3, 1.4] does not come from a map
of E1 ring spectra (at small primes p , and conjecturally at all primes). Theorem 1.2
shows that these maps do come from maps of E2 ring spectra. The case of BP seems
particularly worth highlighting as the coherence of the Quillen map MU! BP has
been an open question since the 1970s.

Corollary 1.3 The Quillen idempotent MU.p/!MU.p/ and the Quillen map MU!
BP are represented by maps of E2 ring spectra.
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In fact, since BP may be constructed as the telescope over the Quillen idempotent, this
gives a new proof that BP is an E2 ring spectrum, independent of that of Basterra and
Mandell [8]; this argument appears in detail in the first author’s 2012 PhD thesis [13].

Our techniques extend to give information for En ring maps for n > 2 as well,
especially the case nD 4, but the picture is more complicated. For example, we prove
the following result in Section 7.

Theorem 1.4 There exists a map of ring spectra MU! MU that does not lift to a
map of E4 ring spectra.

Much of the work in this paper generalizes to study En ring maps out of any “En

Thom spectrum”, an En ring spectrum that arises as the Thom spectrum of an En

stable spherical (quasi)fibration X !BF ; see especially Theorems 4.2 and 5.1. Partly
for our work in the general case of En ring Thom spectra and partly to carry forward
theorems from the 1970s and 1980s into the context of the modern categories of spectra
(including symmetric spectra and orthogonal spectra), we prove some general results
on model structures on categories of algebras over operads in various categories of
spectra; see Sections 3 and 8 for specific statements.

Conventions

Throughout this paper, the word “space” means compactly generated weak Hausdorff
space and Top denotes the category of such spaces. We work in one of the modern
categories of spectra, either symmetric spectra (of spaces), orthogonal spectra, or
EKMM S –modules and we have written the details so that they work in any one of
these categories when no one is specified. The word “spectra” means (objects in) any
one of these categories, and we write “LMS spectra” for (objects in) the category called
spectra in the book by Lewis, May, Steinberger and McClure [21].
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2 Outline of the argument

To explain our approach to studying En ring maps, it is easier if we assume that the
target ring spectrum R is at least EnC1 , and we begin in Section 4 with this hypothesis.
For the source ring spectrum, the body of the paper studies an arbitrary En ring Thom
spectrum (Definition 4.1), but for definiteness in this outline, we concentrate on the
case of MU, which is the primary case of interest. In this case, we can take advantage
of the fact that the Thom diagonal

� W MU �!MU^BUC DMU^†1C BU

is an E1 ring map [21, p. 447] and that for any EnC1 ring spectrum R, the multipli-
cation

�W R^R �!R

is an En ring map [12, 1.6]. Then for a fixed En ring map � W MU!R and a variable
En ring map f W †1C BU!R, the composite

MU
�
���!MU^†1C BU

�^f
���!R^R

�
���!R

is an En ring map. This induces a map from the space of En ring maps †1C BU!R

to the space of En ring maps MU!R,

EnRing.†1C BU;R/ �! EnRing.MU;R/:

The usual algebraic argument then shows that this map is an equivalence.

Theorem 2.1 Let R be an EnC1 ring spectrum. Then the space EnRing.MU;R/
of En ring maps from MU to R is either empty or weakly equivalent to the space
EnRing.†1C BU;R/ of En ring maps from †1C BU to R.

To be precise, the spaces of En ring maps EnRing.�;R/ in the previous theorem
are the derived mapping spaces, ie the homotopy types of the mapping spaces in the
homotopy categories, represented for example by the point set mapping space between
a cofibrant replacement (in the domain) and a fibrant replacement (in the codomain) in
a simplicial or topological model category of En ring spectra.

The analogous theorem also holds for MSO and BSO, and in general for any En Thom
spectrum (see Theorem 4.2). In the general case considered in Section 4, the algebraic
argument reduces to the existence of model structures with the expected properties on
categories of algebras over operads; see Theorem 4.8 and Corollary 4.9 for details.
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We can identify the space of En ring maps †1C BU!R in more familiar terms. Let
SL1R denote the component of the (right derived) zeroth space of R corresponding to
the multiplicative identity element 1 in �0R. Since R is (in particular) an En ring
spectrum, the En multiplication on R induces an En structure on SL1R. The space
of En ring maps †1C BU!R can be identified as the space of En maps from BU
to SL1R [26, IV.1.8], which is just the space Top�.B

nBU;BnSL1R/ of based maps
of topological spaces BnBU! BnSL1R (where Bn denotes an n–fold delooping
functor).

In the case when R is an E1 ring spectrum, SL1R and BnSL1R are infinite loop
spaces, and the Atiyah–Hirzebruch spectral sequence

E
s;t
2
DH s.BnBU; �tB

nSL1R/DH s.BnBU; �Ct�nR/

H) �t�s Top�.B
nBU;BnSL1R/D �t�s EnRing.†1C BU;R/

calculates the homotopy groups of EnRing.†1C BU;R/. Note that �tB
nSL1R D

�t�nSL1R is �t�nR for t � n > 0 and 0 for t � n � 0, and we use the notation
�Ct R WD �t SL1R for these groups.

When R is just an EnC1 ring spectrum as in Theorem 2.1, BnSL1R is a loop space,
and the Postnikov tower of BnSL1R is a sequence of principal fibrations of loop spaces
of the form

.BnSL1R/t �! .BnSL1R/t�1 �!K.�Ct�nR; t C 1/:

Mapping BnBU into the tower BnSL1Rt in the category of based spaces, we get a
tower of principal fibrations of loop spaces

Top�.B
nBU; .BnSL1R/t / �! Top�.B

nBU; .BnSL1R/t�1/

�! Top�.B
nBU;K.�Ct�nR; t C 1//

with homotopy limit weakly equivalent to Top�.B
nBU;BnSL1R/. This then again

gives a spectral sequence for calculating the homotopy groups of EnRing.†1C BU;R/,
whose E2 term is again

E
s;t
2
DH s.BnBU; �Ct�nR/

and which generalizes the Atiyah–Hirzebruch spectral sequence displayed above.

In the case when R is just an En ring spectrum, Theorem 2.1 does not apply; never-
theless, we can identify EnRing.MU;R/ as the homotopy limit of a tower of principal
fibrations, using the Postnikov tower of R in the category of En ring spectra (after
replacing R with its connective cover, if necessary). Basterra and the second author
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studied this tower in [7; 8], and using the work there, we prove the following theorem
in Section 5.

Theorem 2.2 Let R be an En ring spectrum, and if n D 1, assume that �0R is
commutative. Then the space of En ring maps from MU to R is weakly equivalent to
the homotopy limit of a tower of principal fibrations of the form

EnRing.MU;Rq/ �! EnRing.MU;Rq�1/ �! Top�.B
nBU;K.�qR; qC nC 1//

for q � 1.

We can think of the previous theorem as giving an “obstructed spectral sequence”
(cf [11]) of the form

E
s;t
2
DH s.BnBU; �Ct�nR/ H) �t�s EnRing.MU;R/

(for tDqCn). In particular, it then gives an approach to calculating �0 EnRing.MU;R/,
which we apply (in the generalized form of Theorem 5.1) in Section 6 to prove
Theorems 1.1 and 1.2.

The discussion above shows why the cases of E2 and E4 maps are the most tractable:
for nD 2 and nD 4, H�.BnBU/ consists of finitely generated free abelian groups
and is concentrated in even degrees. In particular, when ��R is concentrated in even
degrees, the obstructions to lifting maps up the Postnikov tower vanish and we can
compute �0 EnRing.MU;R/ as

H nC2.BnBU; �2R/�H nC4.BnBU; �4R/� � � �

(as a set; �0 EnRing.MU;R/ has no natural structure). We cannot expect this to hold
in general if n¤ 2; 4.

3 The homotopy theory of En ring spectra

We use this section to review the background on the homotopy theory of En ring
spectra that we need for later sections. Most of the review consists of recording facts
about model categories of operadic algebras that are well-known to experts but scattered
through the literature and difficult to find in the precise form we need. We claim no
originality for theorems in this section.

For much of the work in this paper, we take “En ring spectrum” to mean an algebra
over the Boardman–Vogt little n–cubes operad Cn [10, 2.49; 25, Section 4] of spaces;
however, in part of Section 4, we work instead with an EnC1 ring spectrum that is
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an algebra over the tensor product operad Cn˝Ass. The first background result we
need is therefore the well-known fact that we can model the homotopy category of En

ring spectra using any En operad, ie any †–free operad (with paracompact Hausdorff
underlying spaces) that is weakly equivalent through operad maps to Cn . The following
two theorems proved in Section 8 establish this fact.

Theorem 3.1 Let M denote either the model category †�S of symmetric spectra or
the model category IS of orthogonal spectra with their positive stable model structures
[24, Section 14] or the model category MS of EKMM S –modules with its standard
model structure [16, VII, Section 4]. Let O be an operad in spaces. Then the category
MŒO� of O–algebras in M is a topological closed model category with fibrations and
weak equivalences created in M.

Theorem 3.2 For M as in Theorem 3.1, and �W O ! O0 a map of operads, the
pushforward (left Kan extension) and pullback functors

L� W MŒO� //
oo MŒO0� WR�

form a Quillen adjunction, which is a Quillen equivalence if (and only if) each
�.n/W O.n/!O0.n/ is a (non-equivariant) stable equivalence.

In the course of proving the previous theorems, we develop the tools needed to deduce
the following useful technical result. Note that the initial O–algebra is O.0/C ^S .

Theorem 3.3 Let M and O be as in Theorem 3.1, and assume that each O.n/ is a
retract of a free †n –cell complex. If A is a cofibrant O–algebra, then O.0/C^S!A

is a cofibration in M.

We need two more results geared towards using the Thom diagonal in the context
of En ring spectra. For a fibration of spaces f WB ! BF (where BF denotes the
classifying space for stable spherical fibrations), Lewis constructed the Thom spectrum
Mf as an LMS spectrum [21, IX.3.2] and showed that when f is a map of O–spaces
(for an operad O with a map to the linear isometries operad L), Mf is naturally
an O–algebra in the category of LMS spectra [21, IX.7.1]. It follows that the Thom
diagonal Mf !Mf ^B is a map of O–algebras. Instead of re-proving this in the
context of a modern category of spectra, we just transport this construction and this map
using the following well-known comparison theorems across the different categories of
spectra.
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Theorem 3.4 Let O be an operad of spaces. In the Quillen equivalences

P W †�S
//

oo IS WU ; NW IS //
oo MS WN

#

of [24, page 442] and [23, I.1.1], all four functors preserve O–algebras and induce
Quillen equivalences

P W †�SŒO� //
oo ISŒO� WU ; NW ISŒO� //

oo MS ŒO� WN#

on the categories of O–algebras.

Theorem 3.5 Let O be an operad of spaces. Then the category SLMSŒO � L� of
.O�L/–algebras in LMS spectra is a topological closed model category with fibrations
and weak equivalences created in LMS spectra. Moreover:

(i) SLMSŒO�L� is equivalent to the category SLMSŒL� ŒO� of O–algebras in EKMM
L–spectra [16, Chapter I].

(ii) The forgetful functor from EKMM S –modules to EKMM L–spectra and its
right adjoint S ^L .�/ both preserve O–algebras; the unit and counit of this
adjunction are both natural weak equivalences.

(iii) The right adjoint FL.S;�/W MS ! SLMSŒL� of S ^L .�/ also preserves O–
algebras; the unit and counit of this adjunction are both natural weak equiva-
lences.

(iv) The adjunction

S ^L .�/W SLMSŒL� ŒO� //
oo MS ŒO� WFL.S;�/

is a Quillen equivalence.

The proof of the model structure in Theorem 3.5 is given in Section 8 with the proof
of the model structures in Theorem 3.1. The proof of the remaining statements in
Theorems 3.4 and 3.5 are now easy from the other theorems in the section.

Proof of Theorem 3.4 All four functors are lax symmetric monoidal and therefore
preserve operadic algebra structures. Since fibrations on the algebra categories are
created in the underlying categories of spectra (ie in symmetric spectra, orthogonal
spectra, or S –modules, as the case may be), the adjunctions on algebra categories are
automatically Quillen adjunctions. To prove they are Quillen equivalences, by [24,
A.2(ii)], it suffices to show that the derived functors are equivalences of homotopy
categories. Applying Theorem 3.2, it suffices to consider the case when O satisfies the
hypothesis of Theorem 3.3, ie each O.n/ is a †n –cell complex. In this case, every
cofibrant O–algebra is cofibrant in the underlying category of spectra lying under
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O.0/C^S . Since the unit of the adjunction is a weak equivalence for OC.0/^S , the
unit of the adjunction is a weak equivalence for the codomain of any cofibration with
domain O.0/C^S (see for example the proof of [24, 10.3] and the proof of [23, I.3.5]).
In particular the unit of the adjunction is a weak equivalence for cofibrant O–algebras.
It then follows from [24, A.2(iii)] that the Quillen adjunctions on algebra categories
are Quillen equivalences.

Proof of Theorem 3.5.(i–iv) As in [16, I§4], let L denote the monad L.1/Ë .�/ on
the category of LMS spectra. If we write O for the free O–algebra functor on EKMM
L–spectra, then

OLX D
_
n�0

O.n/C ^†n
.LX /^Ln

D

_
n�0

O.n/C ^†n
.L.n/Ë X Zn/

D

_
n�0

..O.n/�L.n//Ë X Zn/=†n

is the free .O�L/–algebra on X ; an easy composite of monads argument [16, II.6.1]
then shows that the category of O–algebras in SLMSŒL� is equivalent to the category
of .O�L/–algebras in SLMS , which is (i). For (ii) and (iii), the adjunctions are [16,
II.1.3]. The fact that all four functors are lax symmetric monoidal [16, II.1.1] shows
that they preserve O–algebra structures, and the remaining facts are [16, I.8.5(iii)]
and [16, I.8.7]. For (iv), the adjunction is a Quillen adjunction because the adjunction
on the underlying categories MS and SLMSŒL� is a Quillen adjunction [16, VII.4.6],
and the adjunction is a Quillen equivalence since both the unit and counit are weak
equivalences on all objects.

4 Proof of Theorem 2.1

In this section, we prove Theorem 2.1, which relates the space of En ring maps out of
MU to the space of En ring maps out of †1C BU. We view this theorem as the En

ring version of the Thom isomorphism: the usual Thom isomorphism relates maps of
spectra out of MU to maps of spectra out of †1C BU. Indeed, our proof of Theorem 2.1
generalizes to any En ring Thom spectrum; see Theorem 4.2 below. Since the theorem
concerns derived mapping spaces, the proof requires a certain amount of technical
work in the model category of En ring spectra; however, for a statement about maps
in the homotopy category (�0 of the derived mapping space) a simpler argument in
the homotopy category suffices. We give the homotopy category argument first as an
explanation and guide to the slightly more complicated model category argument.
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We work in the context of an En ring Thom spectrum, defined as follows. Let G denote
either O D

S
O.n/, the infinite orthogonal group, or F D

S
F.n/, the grouplike

monoid of stable self-homotopy equivalences of spheres. (The monoid F.n/ is the space
of self-maps of Sn that are homotopy equivalences and that fix 0 and 1.) Associated
to any “good” map f W X ! BG is a Thom spectrum M DMf [21, IX.3.2]. Here
“good” is the technical condition of [21, page 423]: it is the empty condition when
G DO and when G D F it is satisfied in particular when f is a Hurewicz fibration,
which we can always assume without loss of generality [21, pages 411–412, 443]. The
classifying space BG is an E1 space for the linear isometries operad L [9]. When
X is an O�L–space for some operad O and f is an O�L–space map, the Thom
spectrum M inherits the structure of an O�L–spectrum. In the particular case when
O is the little n–cubes operad Cn , we call this an En ring Thom spectrum.

Definition 4.1 Let Cn denote the Boardman–Vogt little n–cubes operad [10, 2.49; 25,
Section 4]. An En ring Thom spectrum is the Thom spectrum of a Cn �L–space map
X ! BO or a “good” Cn �L–space map X ! BF , viewed as an En ring spectrum.

An En ring Thom spectrum is then canonically a Cn –algebra in EKMM L–spectra
and (by applying S ^L .�/) canonically weakly equivalent to a Cn –algebra in EKMM
S –modules (Theorem 3.5), but up to weak equivalence, we can regard it as a Cn –
algebra in any of the modern categories of spectra (Theorem 3.4). We fix one of the
modern categories of spectra, denoting it M (calling its objects “spectra”), and write
MŒCn� for Cn –algebras in this category (calling its objects “En ring spectra”). As a
topological model category (Theorem 3.1), the category of En ring spectra has a nice
theory of derived mapping spaces, constructed for example as the mapping space out of
a cofibrant replacement and into a fibrant replacement. We use EnRing to denote the
derived mapping spaces; the homotopy category of En ring spectra is then �0 EnRing.
The main theorem of this section is the following generalization of Theorem 2.1.

Theorem 4.2 Let M be the En ring Thom spectrum associated to an En space map
f W X ! BG for some connected En space X , and let R be an EnC1 ring spectrum.
Then the derived space of maps of En ring spectra from M to R is either empty or
weakly equivalent to the derived space of maps of En ring spectra from †1CX to R,

EnRing.M;R/' EnRing.†1CX;R/:

At its core, the argument is a straightforward algebraic argument, which gets somewhat
obscured by technical details. To outline and explain the argument, we first prove the
following easier theorem.
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Theorem 4.3 Let M be the En ring Thom spectrum associated to an En space map
f W X ! BG for some connected En space X , and let R be an EnC1 ring spectrum.
If there exists a map M !R in the homotopy category of En ring spectra, then the
set of maps M ! R in the homotopy category of En ring spectra is in one-to-one
correspondence with the set of maps †1CX to R, in the homotopy category of En ring
spectra,

�0 EnRing.M;R/Š �0 EnRing.†1CX;R/:

The proof of Theorem 4.3 is little more than an application of the Thom isomorphism
theorem and an exercise with monoids and modules inside the homotopy category of
En ring spectra. We note that if A and B are En ring spectra, then A^B (point-set
smash product in M) is canonically an En ring spectrum with action of Cn induced by
using the diagonal map Cn! Cn�Cn and the actions on A and B . Since Cn.0/D� and
each space Cn.m/ is a free †m –cell complex, cofibrant En ring spectra are cofibrant
objects in spectra under S (Theorem 3.3). In particular, the smash product with a
cofibrant En ring spectrum preserves weak equivalences in M, and it follows that
^ descends to a symmetric monoidal product on the homotopy category of En ring
spectra, compatibly with the smash product in the stable category.

Let R be an EnC1 ring spectrum (a CnC1 –algebra in M). We use the map of operads
`W Cn! CnC1 that sends a little n–cube a to the little nC 1–cube a� Œ0; 1� to regard
R as an En ring spectrum. We also have a map of operads r W C1! CnC1 sending
a little 1–cube b to the little nC 1–cube Œ0; 1�n � b ; using r , for any element c of
C1.m/, we then get a map

r.c/W R.m/
DR^ � � � ^R �!R;

where R.m/ denotes the mth smash power of R. Because the actions induced by `
and r on R satisfy the interchange law [12, 1-1], the map r.c/ is a map of En ring
spectra. In particular, working in the homotopy category of En ring spectra and taking
c to be the element � in C1.2/ representing the standard multiplication, we see that
R is a monoid for the smash product in the homotopy category of En ring spectra.
(We will henceforth omit the r and write �W R^R!R for this map.) We use the
following terminology for modules.

Definition 4.4 Let R be an EnC1 ring spectrum. A homotopical R–module in En

ring spectra is a left module for R in the homotopy category of En ring spectra: it
consists of an En ring spectrum N together with an action map

�W R^N �!N
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in the homotopy category of En ring spectra such that the composite map

S ^N �!R^N �!N

is the canonical isomorphism and the associativity diagram

R^R^N
idR ^�

//

�^idN

��

R^N

�

��

R^N
�

// N

commutes, where �W R^R! R is the multiplication discussed above. A map of
homotopical R–modules in En ring spectra is a map in the homotopy category of
En ring spectra N ! N 0 that commutes with the action maps. We use the symbol
ModEn

Ho R
to denote the category of homotopical R–modules in En ring spectra.

We omit “in En ring spectra” from the terminology for homotopical R–modules when
it is clear from context. We have the usual free/forgetful adjunction for these modules.

Proposition 4.5 Let R be an EnC1 ring spectrum. The functor R^ .�/ from the
homotopy category of En ring spectra to the category of homotopical R–modules in
En ring spectra is left adjoint to the forgetful functor: maps in the homotopy category
of En ring spectra from an En ring spectrum E to a homotopical R–module N are in
one-to-one correspondence with maps of homotopical R–modules from R^E to N ,

�0 EnRing.E;N /ŠModEn

Ho R
.R^E;N /:

Proof The correspondence is the usual one: given a map hW E!N in the homotopy
category of En ring spectra, the composite

R^E
idR ^h
����!R^N

�
�!N

is a map of homotopical R–modules and given a map kW R^E!N of homotopical
R–modules, the map E!N is the composite map in the homotopy category of En

ring spectra

E Š S ^E �!R^E
k
�!N:

An easy check shows these are inverse correspondences.

When M is the En ring Thom spectrum associated to an En space map f W X !BG ,
it follows from [21, IX.7.1] (see in particular the top of page 447 in [21]) that the Thom
diagonal

� W M �!M ^XC DM ^†1CX
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lifts to a natural map in the homotopy category of En ring spectra. The following is
then the En ring spectrum version of the homology Thom isomorphism. Recall that a
map � from a Thom spectrum M to a ring spectrum R is an orientation when for
every point x in X , the map S !R obtained by restricting � to the Thom spectrum
of fxg represents a unit in the ring �0R. When X is connected, a map of ring spectra
M !R is always an orientation since the restriction S !R represents the identity
element in �0R.

Proposition 4.6 Let M be the En ring Thom spectrum associated to an En space
map f W X ! BG and let R be an EnC1 ring spectrum. If � W M ! R is a map in
the homotopy category of En ring spectra and also an orientation, then the map

M
�
�!M ^†1CX

�^id†1
C

X
�������!R^†1CX

induces an isomorphism of homotopical R–modules in En –ring spectra

R^M �!R^†1CX:

Proof As the composite map M !R^†1CX is a map in the homotopy category
of En ring spectra, we get an induced map of homotopical R–modules as displayed
above by the free/forgetful adjunction (Proposition 4.5). The question of it being an
isomorphism is a question in the stable category (after forgetting the En ring structures
and just remembering the homotopical ring spectrum structure on R), and this is just
the usual homology version of the Thom isomorphism, the map R^M !R^†1CX ,
being the geometric cap product with the orientation � .

Theorem 4.3 is now an easy consequence. Propositions 4.5 and 4.6 give us bijections

�0 EnRing.M;R/ŠModEn

Ho R
.R^M;R/

ŠModEn

Ho R
.R^†1CX;R/Š EnRing.†1CX;R/;

under the hypothesis that a map � W M !R exists in the homotopy category of En

ring spectra. This completes the proof of Theorem 4.3.

We can prove Theorem 4.2 by the same outline, but using stricter algebraic structures.
Whereas an EnC1 ring spectrum is a monoid for the smash product in the homotopy
category of En ring spectra, it is only an A1 monoid for the point-set smash product
of En ring spectra. A monoid for the point-set smash product of En ring spectra is
precisely an algebra over the operad Cn ˝Ass [12, Section 1.6], where Ass is the
operad defining associative monoids. Theorem C of [12] shows that Cn˝Ass is an
EnC1 operad, and so given an EnC1 ring spectrum R, we can find an equivalent
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Cn˝Ass–algebra R0 , which we can regard as a monoid for the point-set smash product
of En ring spectra. We then have the following point-set category of point-set modules.

Definition 4.7 Let R be a monoid for the point-set smash product of En ring spectra,
or equivalently, an algebra over the operad C0

nC1
WD Cn˝Ass. An R–module in the

category of En ring spectra consists of an En ring spectrum N together with an
action map

�W R^N �!N

in the point-set category of En –ring spectra MŒCn� such that the composite map

S ^N �!R^N �!N

is the canonical isomorphism and the associativity diagram

R^R^N
idR ^�

//

�^idN

��

R^N

�

��

R^N
�

// N

commutes (in MŒCn�). A map of R–modules in En ring spectra is a map N !N 0 in
MŒCn� that commutes with the action maps. We denote the category of R–modules in
En ring spectra as ModEn

R
.

The following theorem does the technical work in extending the outline above for the
proof of Theorem 4.2.

Theorem 4.8 Let R be a C0
nC1

–algebra. Then the category ModEn

R
of R–modules in

En ring spectra is a topological closed model category with the fibrations and weak
equivalences created in MŒCn�.

Proof The topological model structure is a consequence of Theorem 8.1 below, which
generalizes Theorem 3.1 to operads in M. Starting from M, the free functor from M

to ModEn

R
is

R^CnX DR^

� _
m�0

Cn.m/C ^†m
X .m/

�
:

This is the monad associated to the operad R in M defined by R.m/DR^ Cn.m/C ,
with identity

S Š S ^ f�gC �!R^ Cn.1/C;
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equivariance from the equivariance of Cn.m/, and multiplication

R^ Cn.m/C ^ ..R^ Cn.j1/C/^ � � � ^ .R^ Cn.jm/C// �!R^ Cn.j /

induced by the operadic multiplication on Cn , the Cn –action on R,

Cn.m/C ^†m
R.m/

�!R;

and the multiplication �W R^R! R from the monoid structure on R. It follows
that ModEn

R
is isomorphic to the category of R–algebras, hence admits the topological

model structure by Theorem 8.1.

Corollary 4.9 The free functor R ^ .�/W MŒCn� ! ModEn

R
and forgetful functor

ModEn

R
!MŒCn� form a Quillen adjunction.

As we have already noted, the smash product with a cofibrant En ring spectrum
preserves all weak equivalences in M; it follows that the derived functor of the free
functor R ^ .�/ is the derived smash product with R after forgetting down to the
homotopy category of En ring spectra or all the way down to the stable category.
Combining the previous corollary with Proposition 4.6, we then get the following
corollary.

Corollary 4.10 Let M be the En ring Thom spectrum associated to an En space map
f W X ! BG and let R be a C0

nC1
–algebra. If � W M !R is a map in the homotopy

category of En ring spectra and also an orientation, then the map

M
�
�!M ^†1CX

�^id†1
C

X

�������!R^†1CX

in the homotopy category of En ring spectra induces an isomorphism in the homotopy
category of R–modules in En –ring spectra

R^M �!R^†1CX:

Corollary 4.10 is what we need to prove Theorem 4.2.

Proof of Theorem 4.2 Let R be an EnC1 ring spectrum; we can then find an
equivalent C0nC1 –algebra R0 (which is in particular weakly equivalent as an En ring
spectrum). Without loss of generality, we can assume that R0 is fibrant as a C0nC1 –
algebra and therefore also as an En ring spectrum. We choose cofibrant approximations
M 0 ! M and A! †1CX . Suppose there exists a map � W M ! R ' R0 in the
homotopy of En ring spectra; then since X is connected, � is an orientation and
Corollaries 4.9 and 4.10 give us weak equivalences of mapping spaces

MŒCn�.M
0;R0/ŠModEn

R
.R0 ^M 0;R0/'ModEn

R
.R0 ^A;R0/ŠMŒCn�.A;R

0/:
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The composite is then a weak equivalence

EnRing.M;R/' EnRing.†1CX;R/:

5 Proof of Theorem 2.2

In this section we prove the following generalization of Theorem 2.2 from the intro-
duction. (See Definition 4.1 for the definition of an En ring Thom spectrum.)

Theorem 5.1 Let M be an En ring Thom spectrum associated to an En space map
f W X ! BG and assume that X is connected. Let R be an En ring spectrum, and if
nD 1, assume that �0R is commutative. Then the space EnRing.M;R/ of En ring
maps from M to R is weakly equivalent to the homotopy limit of a tower of principal
fibrations of the form

EnRing.M;Rq/ �! EnRing.M;Rq�1/ �! Top�.B
nX;K.�qR; qC nC 1//

for q � 1.

We fix X , M , and R as in the theorem, and we assume without loss of generality
that R is fibrant. Choose a cofibrant approximation M 0!M in the category of En

ring spectra. Let cW xR! R be a connective cover, ie xR is connective (�q
xR D 0

for q < 0) and c induces an isomorphism on non-negative homotopy groups. (The
connective cover can be constructed by applying the small objects argument as if to
construct a cofibrant approximation but only using the non-negative dimensional cells;
alternatively it can be constructed using multiplicative infinite loop space theory applied
to the zeroth space of R [27, §4].) We assume without loss of generality that xR is
fibrant and also cofibrant in the category MŒCn� of En ring spectra. Then the derived
mapping spaces EnRing.M;R/ and EnRing.M; xR/ may be constructed as the point
set mapping spaces MŒCn�.M

0;R/ and MŒCn�.M
0; xR/, respectively. The following

observation reduces to the connective case.

Proposition 5.2 The map cW xR!R induces a weak equivalence EnRing.M; xR/!

EnRing.M;R/.

Proof This can be deduced from the results in [27, Section 4]. A more modern
approach is to observe that the cofibrant approximation M 0!M can be built starting
from S entirely using “positive-dimensional cells”, ie cells of the form

CnSq
c �! CnCSq or CnFmS

mCq
C �! CnFmD

mCqC1
C

(the former when M is EKMM S –modules, the latter when M is symmetric or orthog-
onal spectra) for q � 0, where Cn denotes the free Cn algebra functor.
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Let H D H�0R be a fibrant model of the Eilenberg–Mac Lane ring spectrum; the
hypothesis of Theorem 5.1 allows us to choose the model H with the structure of an
E1 ring spectrum (or commutative S –algebra). The following is an easy induction
argument on the cell structure of a cofibrant approximation of the domain.

Proposition 5.3 If E is any connective En ring spectrum, then the mapping space
EnRing.E;H / is homotopy discrete with �0 the set of ring maps from �0E to �0H .

The hypothesis that X is connected implies that �0M is either Z or Z=2, and so
it follows that EnRing.M;H / is either empty or weakly contractible. In the case
when EnRing.M;H / is empty, so is EnRing.M;R/ and Theorem 5.1 holds for trivial
reasons. We henceforth restrict to the case when EnRing.M;H / is weakly contractible
and fix a map M 0!H . Likewise we fix a map xR!H representing the identity map
on �0

xRD �0H . Writing EnRing=H for the derived mapping space in the category of
En ring spectra lying over H , we then have the following result.

Proposition 5.4 The forgetful map

EnRing=H .M
0; xR/ �! EnRing.M 0; xR/' EnRing.M;R/

is a weak equivalence.

Thus, to study EnRing.M;R/, we can study the space of maps in the category MŒCn�=H

of En ring spectra lying over the E1 ring spectrum H . This is precisely the situation
studied in [8, Section 4]. In particular, [8, Theorem 4.2] constructs a Postnikov tower
for xR as a tower of principal fibrations in MŒCn�=H . Specifically, we start with
xR!R0!H a cofibration followed by an acyclic fibration. Then for each q > 0, we

can inductively construct Rq as (a cofibrant approximation of) the homotopy pullback
of maps

H

��

Rq�1
kn

q

// .H _†qC1H�qR/f ;

where .H _†qC1H�qR/f denotes a fibrant approximation of the “square zero” E1

ring spectrum H _†qC1H�qR (meaning that the multiplication on the summand

†qC1H�qR^†qC1H�qR

is the trivial map). Using the path space construction of the homotopy pullback, we can
arrange that the map Rq!Rq�1 is a fibration. The map kn

q is chosen so that there is
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an induced map xR!Rq that is an isomorphism on homotopy groups in dimension q

and below; for formal reasons, the underlying map of spectra

Rq�1 �!H _†qC1H�qR �!†qC1H�qR

is then the qth k –invariant kq in the Postnikov tower for xR. Looking at the space of
maps in MŒCn�=H from M 0 into these squares and this tower, we get the following
result.

Theorem 5.5 The space EnRing.M;R/ of En ring maps from M to R is weakly
equivalent to the homotopy limit of a tower of principal fibrations of the form

EnRing.M;Rq/ �! EnRing.M;Rq�1/ �! EnRing.M;H _†qC1H�qR/

for q � 1.

Since H _H�qR is an E1 ring spectrum, and we have a canonical map in the homo-
topy category of En ring spectra M !H !H _H�qR, we can apply Theorem 4.2
to obtain a weak equivalence

EnRing.M;H _†qC1H�qR/' EnRing.†1CX;H _†qC1H�qR/:

Using primarily [7, Theorem 1.3], we prove the following theorem, which then com-
pletes the proof of Theorem 5.1.

Theorem 5.6 EnRing.†1CX;H _†qC1H�qR/'Top�.B
nX;K.�qR; qCnC1//.

Proof We note that †1CX comes with a canonical map to S induced by the map
X !�. From Proposition 5.3, we see that EnRing.†1CX;H / is weakly contractible
and hence that the map

EnRing=H .†
1
CX;H _†qC1H�qR/ �! EnRing.†1CX;H _†qC1H�qR/

is a weak equivalence. Pulling back along the map S ! H is the right adjoint in
a Quillen adjunction between the category of En ring spectra lying over S and the
category of En ring spectra lying over H , and so we get a weak equivalence

EnRing=S .†
1
CX;S _†qC1H�qR/ �! EnRing=H .†

1
CX;H _†qC1H�qR/;

where S _ †qC1H�qR has the square zero multiplication. In the notation of [7,
Section 7],

S _†qC1H�qRDKZ.†qC1H�qR/;
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where KZ is the square zero multiplication functor from spectra to En ring spectra
lying over S . The Quillen adjunctions of [7, 7.1, 7.2], then give us a weak equivalence

EnRing=S .†
1
CX;S _†qC1H�qR/' S.†�nIR.Bn†1CX /; †qC1H�qR/

' S.IR.Bn†1CX /; †qCnC1H�qR/;

where S denotes the derived space of maps of spectra, IR is the homotopy fiber of the
augmentation, and Bn is the iterated bar construction for En ring spectra lying over
S constructed in [7]. This bar construction commutes with the unbased suspension
spectrum functor, so we get a weak equivalence

S.IR.Bn†1CX /; †qCnC1H�qR/' S.IR†1CBnX; †qCnC1H�qR/:

Since the augmentation †1CBnX ! S is split by the unit S ! †1CBnX , we can
identify the homotopy fiber of the augmentation as the cofiber of the unit. This gives
us a weak equivalence

S.IR†1CBnX; †qCnC1H�qR/' S.†1BnX; †qCnC1H�qR/;

where BnX has its usual basepoint. The usual suspension spectrum, zeroth space (ie
underlying infinite loop space) adjunction then gives the weak equivalence

S.†1BnX; †qCnC1H�qR/' Top�.B
nX; �1.†qCnC1H�qR//

' Top�.B
nX;K.�qR; qC nC 1//;

completing the proof.

6 Proof of Theorems 1.1 and 1.2

The entirety of this section is devoted to the proof of Theorems 1.1 and 1.2. We fix an
even E2 ring spectrum R and carry over the notation xR, Rq , and H from the last
section: xR!R is a connective cover, and

xR �! � � � �!Rq �!Rq�1 �! � � � �!R0 'H

is a Postnikov tower in the category of E2 ring spectra. In the case of MSO we assume
that �0R contains 1

2
.

Our proof is an inductive argument up the Postnikov tower. Both arguments are
essentially the same, so we do the case of MU in detail, with the changes necessary for
MSO in Remark 6.7 below. We write HoRing.MU;Rq/ for the set of maps of ring
spectra (in the stable category) from MU to Rq . The inductive hypothesis (indexed on
integers q � 0) is the following:
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(i) The forgetful map �0E2Ring.MU;Rq/! HoRing.MU;Rq/ is surjective.

(ii) For q > 0, the map from �0 E2Ring.MU;Rq/ to the fiber product of the maps
�0E2Ring.MU;Rq�1/! HoRing.MU;Rq�1/ HoRing.MU;Rq/ is surjec-
tive.

(iii) �1.E2Ring.MU;Rq/; f / is trivial for all basepoints f .

Under the hypothesis that R is even, we have

HoRing.MU;R/Š lim HoRing.MU;Rq/:

Inductive hypothesis (iii) implies

�0 E2Ring.MU;R/Š lim�0 E2Ring.MU;Rq/;

and inductive hypotheses (i) and (ii) then imply that the map �0 E2Ring.MU;R/!
HoRing.MU;R/ is surjective, which will complete the proof of Theorem 1.2.

In the base case q D 0, R0 'H and both �0 E2Ring.MU;H / and HoRing.MU;H /

consist of a single point. Thus, inductive hypothesis (i) holds. Inductive hypothesis (ii)
is empty in this case, and inductive hypothesis (iii) holds since E2Ring.MU;H / is
weakly contractible.

For q � 1, it suffices to consider the case when q is even since the map Rq!Rq�1

is a weak equivalence when q is odd. We look at the fiber sequence

(6.1) �! E2Ring.MU;Rq/ �! E2Ring.MU;Rq�1/

�! E2Ring.MU;H _†qC1H�qR/

and use the identification of Theorems 5.1 and 5.6 of E2Ring.MU;H _†qC1H�qR/

with
Top�.B

2BU;K.�qR; qC 3//' Top�.BSU;K.�qR; qC 3//:

This then gives us a computation of the homotopy groups of the base space:

(6.2) �m E2Ring.MU;H _†qC1H�qR/Š �m Top�.BSU;K.�qR; qC 3//

D zH qC3�m.BSUI�qR/:

The integral cohomology of BSU is well-known: it is a polynomial algebra on the Chern
classes c2 , c3 , etc. We see that the base space of the fibration (6.1) is therefore connected
with non-zero homotopy groups only in odd degrees. The inductive hypothesis (iii)
for q� 1 that �1.E2Ring.MU;Rq�1/; f / is trivial for all basepoints f now implies
the inductive hypothesis (iii) for q that �1.E2Ring.MU;Rq/;g/ is trivial for all
basepoints g .
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For the inductive steps (i) and (ii), we need to relate our fiber sequence (6.1) and the map
HoRing.MU;Rq/!HoRing.MU;Rq�1/. For this, we use the well-known fact that a
ring spectrum map f W MU!Rq is completely determined by its restriction to MU.1/
as a map in the stable category (qv [1, II.4.6; 15, 10.10]), where MU.1/'†�2CP1 is
the Thom spectrum associated to the inclusion of BU.1/ in BU (the Thom spectrum of
the 0–dimensional virtual bundle  1�1, where  1 denotes the universal complex line
bundle). Writing S.MU.1/;Rq/ for the derived space of maps in M from MU.1/ to
Rq , let S.MU.1/;Rq/u denote the subspace of components that map to the component
of the unit map S!R in S.S;Rq/ (via the inclusion of S in MU.1/). Then the map

HoRing.MU;Rq/ �! �0S.MU.1/;Rq/u

is a natural bijection and we can think of S.MU.1/;Rq/u as an enrichment of the set
HoRing.MU;Rq/ into �0 of a space. Indeed, the map

HoRing.MU;Rq/ �! HoRing.MU;Rq�1/

is compatible with the fiber sequence

�! S.MU.1/;Rq/u �! S.MU.1/;Rq�1/u �! S.MU.1/;H _†qC1H�qR/u

induced by the principal fibration constructing Rq . We then have a map of fiber
sequences

(6.3)

// E2Ring.MU;Rq/ //

��

E2Ring.MU;Rq�1/ //

��

E2Ring.MU;H_†qC1H�qR/

��

// S.MU.1/;Rq/u // S.MU.1/;Rq�1/u // S.MU.1/;H_†qC1H�qR/u:

We can easily calculate the homotopy groups of S.MU.1/;H _†qC1H�qR/u using
the Thom isomorphism:

(6.4) �mS.MU.1/;H _†qC1H�qR/u Š �mS.†1BU.1/C;H _†qC1H�qR/u

Š zH qC1�m.BU.1/I�qR/:

The next task is to understand the comparison map relating the homotopy groups in (6.2)
and the homotopy groups in (6.4). We prove that it is the obvious one.

Lemma 6.5 The induced map on the homotopy groups of the base spaces in (6.3) is
the map zH qC3�m.BSUI�qR/! zH qC1�m.BU.1/I�qR/ induced by the map

†2BU.1/ �!†2BU �! B2BU' BSU;

where BU.1/!BU is the inclusion and †2BU!B2BU is the adjoint of the canonical
delooping equivalence BU!�2B2BU.
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Proof The weak equivalence

E2Ring.MU;H _†qC1H�qR/' E2Ring.†1C BU;H _†qC1H�qR/

of Theorem 4.2 is induced by a map which is just the usual Thom isomorphism map
on the underlying spectra, and so we have a commuting diagram

E2Ring.MU;H _†qC1H�qR/ '

��

E2Ring.†1C BU;H _†qC1H�qR/

��

S.MU;H _†qC1H�qR/u '

��

S.†1C BU;H _†qC1H�qR/u

��

S.MU.1/;H _†qC1H�qR/u ' S.†1C BU.1/;H _†qC1H�qR/u

with the bottom pair of vertical maps just induced by the inclusions MU.1/!MU
and BU.1/! BU. This gives the first step in the lemma, factoring the map in the
statement through the map zH qC1�m.BU; �qR/! zH qC1�m.BU.1/; �qR/.

We next need to bring in the equivalence in Theorem 5.6 and this requires a detour into
the category of spectra lying over S . If we write S=S for the derived space of maps in
the category of spectra lying over S and similarly S=H for the derived space of maps
in the category of spectra lying over H , then it is easy to see that each of the maps

S=S .†
1
C BU;S _†qC1H�qR/ �! S=H .†

1
C BU;H _†qC1H�qR/

�! S.†1C BU;H _†qC1H�qR/u

is a weak equivalence.

Let IR be the functor from spectra lying over S back to spectra that takes the homotopy
fiber of the map to S . Then we have a weak equivalence

S=S .†
1
C BU;S _†qC1H�qR/ �! S.IR†1C BU; †qC1H�qR/:

The relevance of this that for any augmented E2 ring spectrum A and any spectrum
N , the diagram

S.†�2IRB2A;N / '

��

E2Ring=S .A;S _N /

��

S.IRA;N / ' S=S .A;S _N /

commutes, where the lefthand vertical arrow is induced by the map †2IRA! IRB2A

and the righthand vertical arrow is the forgetful map. The top horizontal map is the map
from [7, 7.4] and the fact that the diagram commutes is clear from explicit construction
given there (in the non-unital context), cf [7, 8.2] (and the discussion preceding it).
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In the case of AD†1BUC , we use the unit S !†1C BU to split the augmentation
†1C BU! S , and then just as in the proof of Theorem 5.6 we can identify IR†1C BU
as †1BU and IRB2†1BUC as †1B2BU. Under these identifications

†2IR†1C BU �! IR†1CB2BU

becomes †1 applied to the based map †2BU! B2BU. We then get a commuting
diagram

S.†�2†1B2BU; †qC1H�qR/ '

��

E2Ring.†1C BU;H _H�qR/

��

S.†1BU; †qC1H�qR/ ' S.†1BUC;H _H�qR/u;

completing the proof of the lemma.

As an immediate consequence of the lemma, we get the following result.

Proposition 6.6 The map

E2Ring.MU;H _H†qC1�qR/ �! S.MU.1/;H _†qC1H�qR/

is a split surjection on homotopy groups.

Proof Applying the lemma, we can compute the induced map on homotopy groups
by computing the map on integral homology

H�BU.1/ �!H�BU �!H�C2BSU

and using universal coefficients. Showing that the map on homology is a split injection
is an easy exercise using the calculation of the Bott map (see Proposition 7.3 below) or
the edge homomorphism in the Rothenberg–Steenrod spectral sequence (applied twice,
each spectral sequence degenerating at E2 for formal reasons).

Finally, we can complete the proof of the inductive step. To simplify notation, we
rewrite the diagram of fibration sequences (6.3) as

// F
i
//

hF
��

E
g
//

hE
��

B

hB
��

// F 0
i0
// E0

g0
// B0:

We have that both base spaces B and B0 are connected. For each basepoint e of E ,
let Fe denote the components of F that lie above the component of e , and similarly
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for E0 and F 0 . Recall that in the long exact sequence of a fibration, at the �0 level
“exact” means that for each e in E , �0Fe is a transitive �1.B;g.e//–set with isotropy
group at the component of e (in Fe ) the image of �1.E; e/.

In our case, by the inductive hypothesis, we have that �1.E; e/ is trivial for all e , and
by inspection, we see that

�1.E
0; e0/Š �1.S.†

1
C BU.1/;Rq�1/u; e

0/

is trivial for all e0 . It follows that for each e , �0Fe is a free transitive �1.B;g.e//–
set and for each e0 , �0F 0e0 is a free transitive �1.B

0;g0.e0//–set. By the previous
proposition, �1.B;g.e//! �1.B

0;g0.hE.e/// is a surjection for every e in E , and
so �0Fe! �0F 0

hE.e/
is a surjection for every e in E . Letting e vary over a choice

of basepoint in each component of E , we then see that the map

�0F �! �0E ��0E0 �0F 0

is surjective, which proves the inductive step for (ii). Since �0E! �0E0 is surjective
by inductive hypothesis (i), it follows that �0F ! �0F 0 is surjective, which proves
the inductive step for (i). This completes the proof of Theorem 1.2.

Remark 6.7 The proof for MSO follows the same outline as the proof for MU,
taking advantage of the 2–local equivalence between BSO and BSp and MSO and
MSp (the latter attributed to [28] in [30]). Since 1

2
2 �0R, every map of ring

spectra from MSO to R extends uniquely to a map of ring spectra from MSp to
R and is determined by its restriction to a map of spectra MSp.1/! R, inducing
a bijection E2Ring.MSO;R/ ! S.MSp.1/;R/u (cf [14, 7.5]). We have here that
H�.B

2BSOIZ.2// Š H�.Sp=SUIZ.2// is torsion free and concentrated in even de-
grees, and the rest of the argument goes through as above.

7 Proof of Theorem 1.4

In this section we show that not all ring spectrum maps MU ! MU are repre-
sented by E4 ring maps. We proceed by studying the forgetful map from the set
�0 EnRing.MU;MU/ of self-maps of MU in the homotopy category of En ring
spectra to the set HoRing.MU;MU/ of self-maps of MU in the category of ring
spectra. Although we do not obtain complete results, we do obtain enough to see that
the map is not surjective for n� 4.

We begin with a refinement of the work in the previous section. Since the target MU is
an E1 ring spectrum and comes with a canonical E1 ring map MU!MU (namely,
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the identity), Theorem 2.1 gives us a canonical weak equivalence

EnRing.MU;MU/' EnRing.†1C BU;MU/

for all n. Using the adjunction of [26, IV.1.8], we can identify EnRing.†1C BU;MU/
as the derived mapping space

EnTop.BU; �1MU�/D EnTop.BU;SL1MU/

in the category of En spaces, where we regard �1MU as an En space via the
multiplicative (rather than additive) E1 structure. Here SL1MU denotes the 1–
component of �1MU; since BU is connected, any En map must land in the 1–
component. As BU and SL1MU are both connected, the theory of iterated loop spaces
gives us a weak equivalence

EnTop.BU;SL1MU/' Top�.B
nBU;BnSL1MU/:

Because SL1MU is a connected E1 space, it is the zeroth space of a connective
spectrum that we denote as sl1MU. We then have an identification of the homotopy
groups of EnRing.MU;MU/ in terms of the cohomology theory sl1MU. Specifically,

(7.1) �q EnRing.MU;MU/Š�q Top�.B
nBU;BnSL1MU/D .esl1MU/n�q.BnBU/

(where tilde indicates the reduced cohomology theory), and in particular

�0 EnRing.MU;MU/Š .esl1MU/n.BnBU/:

We may further identify .esl1MU/n.BnBU/ as .esl1MU/n.BUhnC2i/ when n is even
or .esl1MU/n.U hnC 2i/ when n is odd, by Bott periodicity. We regard (7.1) as a
refinement of Theorem 2.2, as indicated in the introduction.

The parallel (now classical) theory for maps of ring spectra MU to MU, qv [1, II,
Section 4], provides the identification

HoRing.MU;MU/ŠHTop.BU;SL1MU/Š �0 Top�.BU.1/;SL1MU/

D .esl1MU/0.BU.1//;

where HTop denotes the set of maps of H –spaces (maps in the homotopy category
that respect the unit and multiplication in the homotopy category). As both the
identification of �0 EnRing.MU;MU/ and HoRing.MU;MU/ in terms of reduced
sl1MU–cohomology are induced by the Thom isomorphism for the identity map of
MU together with the .†1 , �1/ adjunction, we immediately obtain the following
comparison result.
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Proposition 7.2 The map

.esl1MU/n.BnBU/Š �0 EnRing.MU;MU/
�! HoRing.MU;MU/Š .esl1MU/0.BU.1//

induced by the forgetful map �0 EnRing.MU;MU/! HoRing.MU;MU/ is the map
on reduced sl1MU cohomology induced by the usual map

†nBU.1/ �!†nBU �! BnBU:

When n is even, we can take advantage of Bott periodicity BnBU ' BUhnC 2i to
identify BU.1/ ! BUhnC 2i as the map induced by the Bott map, whose effect
on complex oriented homology theories is well-understood [1, II§12] (at least after
composing with the map BUhnC2i!BU). Of course, sl1MU is not even a ring theory,
so not complex oriented, but we can use the Atiyah–Hirzebruch spectral sequence
to obtain some information. For example, the integral cohomology H�.BU.1// D
H�.CP1/ is the polynomial ring ZŒx� and in particular is in each degree a finitely
generated free abelian group and is concentrated in even degrees. The same is true of
��sl1MU, and so the Atiyah–Hirzebruch spectral sequence has E2 D E1 , with no
extension problems, giving us a non-canonical isomorphism

.esl1MU/q.BU.1//Š
M
m>0

zH mCq.BU.1//˝�mMU;

noting that �msl1MU D �mMU for m > 0 whereas �0sl1MU D 0. Likewise, in
the case n D 2 and n D 4, we have that H�B2BU Š H�BSU is the polynomial
ring ZŒc2; c3; c4; : : : � on Chern classes, and H�B4BUŠH�BUh6i is a polynomial
ring ZŒy3;y4;y5; : : : � on classes in degrees 6; 8; 10; : : : (see [4, 4.7]). We then get
non-canonical isomorphisms

.esl1MU/q.BSU/Š
M
m>0

zH mCq.BSU/˝�mMU;

.esl1MU/q.BUh6i/Š
M
m>0

zH mCq.BUh6i/˝�mMU:

Up to filtration (but only up to filtration), we can identify the maps

.esl1MU/2.BSU/ �! .esl1MU/0.BU.1//;

.esl1MU/4.BUh6i/ �! .esl1MU/0.BU.1//

in terms of the maps zH�C2.BSU/! zH�.BU.1// and zH�C4.BUh6i/! zH�.BU.1//
on ordinary cohomology. We now compute the maps on ordinary cohomology.
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Proposition 7.3 The map H�C2.BSU/!H�.BU.1// kills decomposable elements
and sends cmC1 to .�1/mxm .

Proof The map clearly kills products as it is induced by the map of spaces

†2BU.1/ �!†2BU �! BSU;

and products in H�.†2BU.1// are zero. To see where the element cmC1 goes, we
note that the composite map

†2BU �! BSU �! BU

is the Bott map B , whose effect on homology was studied in [1, II, Section 12]. We
write H�.BU/ D ZŒb1; b2; : : : �, where the bm are the usual generators: bm is the
image of the usual generator of H2m.BU.1// which is dual to xm 2 H 2m.BU.1//.
Then on homology B�W H�.BU/!H�.BU/ kills decomposable elements and sends
bm to .�1/msm , where sm D qm.b1; : : : ; bm/ and qm is the mth Newton polynomial
defined by the relationship

qm.�1; : : : ; �m/D tm
1 C � � �C tm

k

for �j the j th elementary symmetric polynomial in t1; : : : ; tk . Then

smC1 D bmC1
1
C terms involving bj for j > 1:

On cohomology, H�.BU/!H�.BSU/ is the quotient by the Chern class c1 , and so
we can compute the map in the statement by means of the Bott map B�W H�.BU/!
H�.BU/. Using the Kronecker pairing of homology with cohomology, we see that

hB�cmC1; bmi D hcmC1;B�bmi D hcmC1; .�1/msmC1i

D hcmC1; .�1/mbmC1
1
i D .�1/m;

since cmC1 is the dual of bmC1
1

in the monomial basis of the bm .

Proposition 7.4 The map H�C4.BUh6i/!H�.BU.1// kills decomposable elements
and sends the polynomial generator ymC2 in H 2mC4.BUh6i/ to�

.�1/p
t

pt�1xpt�1 mC 1D pt for some prime p; t > 0;

.�1/mC1.mC 1/xm otherwise.

Proof As in the proof of the previous proposition, the map clearly kills decomposables,
and we approach the problem using the Bott map B2W †4BU! BU. Since the Bott
map on homology B� kills decomposables and B�bm D .�1/msmC1 , using

smC1 D .�1/m.mC 1/bmC1C decomposables
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we see that B2
�bmD .�1/mC1.mC1/smC2 and that the composite map H�C4.BU/!

H�.BU.1// takes cmC2 to .�1/mC1.mC 1/xm . Unlike in the previous proposition,
the map H�.BU/! H�.BUh6i/ is not onto. By [4, 4.6], for mC 1 ¤ pt , we can
take the generator in H 2.mC2/.BUh6i/ to be the image of cmC2 . By [4, 4.5], for
m C 1 D pt , the image of cmC2 is up to decomposables p times a generator in
H 2.mC2/.BUh6i/. (It is p1 times a generator rather than some higher power of p

since the trangressive elements uk (in the notation of [4, 4.5]) all have non-trivial
Bocksteins.) This completes the proof.

In the n D 4 case, we have that the maps H 2mC4.BUh6i/ ! H 2m.BU.1// are
surjective for mD 1 and mD 2. This says that for any a1 2 �2MU and a2 2 �4MU,
there exist E4 ring maps MU!MU whose coordinates are of the form

xC a1x2
C � � � and xC a2x3

C � � � ;

but because of the filtration issue above, we cannot be sure exactly which coordinates
of these forms represent E4 ring maps without further work. On the other hand,
the map H 2mC4.BUh6i/!H 2m.BU.1// is not surjective for mD 3 but has image
divisible by 2. This has the consequence that if we look at any map of ring spectra
f W MU!MU corresponding to a coordinate of the form

xC a3x4
C � � � ;

where a3 2 �6MU is not divisible by 2, then f cannot be represented by an E4 ring
map MU!MU. (Similar arguments can obviously be made at other primes.)

8 Proofs for Section 3

In this section we prove Theorems 3.1–3.3 and construct the model structure in
Theorem 3.5. We base our approach on [17, Sections 11–12], which worked in the
context of simplicial sets, but which generalizes to the current context. For convenience
and to make this section more self-contained for future reference, we restate (and
generalize) the results as Theorems 8.1, 8.2, and 8.5 below.

Because we have already proved the theorems in Section 3 that involve functors between
different categories of spectra, we can now work with a single model category of spectra
throughout this section. We let M denote one of the following model categories:

(i) The category †�S of symmetric spectra with its positive stable model structure
[24, Section 14].

(ii) The category IS of orthogonal spectra with its positive model structure [24,
Section 14].
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(iii) The category MS of EKMM S –modules with its standard model structure [16,
VII, Section 4].

(iv) The category SLMSŒL� of EKMM L–spectra with its standard model structure
[16, VII, Section 4].

(We extend the convention used throughout the paper that the unmodified word “spec-
trum” means precisely an object of M.) We regard the category M as a cofibrantly
generated model category in its standard way, and in the arguments below we use I to
denote the standard set of generating cofibrations and J to denote the standard set of
generating acyclic cofibrations.

We will actually prove mild generalizations of the theorems of Section 3 partly because
the extra generality may be useful in future papers, but mainly because the proofs
require the extra generality anyway. In Section 3, we worked in the context of an
operad O of (unbased) spaces; here we let O be an operad of based spaces or an
operad in M. Indeed, for O an operad in unbased spaces, the category MŒO� is the
same as the category of algebras over the operad OC of based spaces, and for the
true symmetric monoidal categories of spectra, it is isomorphic (not just equivalent)
to the category of algebras over the operad OC ^S in M. In the category of EKMM
L–spectra (which we needed for the work involving the Thom isomorphism), operads
in M do not generalize operads in spaces. With this generalization in mind, we have
written the statements and arguments below in the based context: in what follows, O
denotes either an operad in M or an operad in based spaces.

We now need to prove three theorems generalizing the statements in Section 3. The
first establishes the model structures, proving Theorem 3.1 and finishing the proof of
Theorem 3.5. (We also used it in the proof of Theorem 4.8.)

Theorem 8.1 Let O be an operad. Then the category MŒO� of O–algebras in M is a
topological closed model category with fibrations and weak equivalences created in M.

The next proves Theorem 3.2. In the statement O denotes the free O–algebra functor,
which is

OX D
_
n�0

O.n/^†n
X .n/

D .O.0/^S/_ .O.1/^X /_ .O.2/^X^X /=†2 _ � � �

when O is an operad of based spaces or an operad in M when M is one of the true
symmetric monoidal categories. Here we have written ^ both for the smash product
in M and the smash product of a based space with a spectrum, and we have used the
parenthetical exponent

X .n/
DX ^ � � � ^X
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as an abbreviation for smash powers. In the case when M is the category of EKMM
L–spectra and O is an operad in M, the free functor needs the following modifications:
in homogeneous degree 0, we need to use O.0/B S ŠO.0/ in place of O.0/^S and
in homogeneous degree 1, we need to use O.1/C X in place of O.1/^X , where C
and B denote the one-sided unital products of [16, XIII.1.1]. (In general, in the case
of EKMM L–spectra, we need to use a unital product C, B, or ? in place of a smash
product whenever one or both factors comes with a structure map from S ; in what
follows, we refer to this as “the usual modifications”.)

Theorem 8.2 Let �W O ! O0 be a map of operads. The pushforward (left Kan
extension) and pullback functors

L� W MŒO� //
oo MŒO0� WR�

form a Quillen adjunction, which is a Quillen equivalence if (and only if) the induced
map on free algebras

OX �! O0X

is a weak equivalence for all cofibrant objects X .

To deduce Theorem 3.2, we need to show that in the context of operads of unbased
spaces, � induces a weak equivalence on free algebras as in the statement if and
only if each �.n/ is a (non-equivariant) stable equivalence. The “if” direction is a
straightforward generalization of [24, 15.5] (in the case of symmetric spectra and
orthogonal spectra) or [16, III.5.1] (in the case of EKMM S –modules or L–spectra)
that follows by essentially the same argument. The “only if” direction follows by taking
X to be a wedge of cofibrant 0–spheres

W
S0

c ; for a wedge of n or more, OX and
O0X contain

O.n/C ^ .S0
c /
.n/ and O0.n/C ^ .S0

c /
.n/

(respectively) as wedge summands. With an eye toward more generality, we offer the
following additional remark on the criterion in the theorem above in the case when O
is an operad in M.

Remark 8.3 The criterion that OX !O0X is a weak equivalence for every cofibrant
object X is satisfied in particular in the following cases.

(i) In the case when M is the category of symmetric spectra or orthogonal spectra,
the criterion is satisfied whenever each map �.n/W O.n/ ! O0.n/ is a (non-
equivariant) weak equivalence. This follows from the observation that the proof
of [24, 15.5] still works when (in the notation there) X (our O.n/) also has
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a †n action: the †n action remains free on O.q/ (or †q ). Induction up the
cellular filtration of E†n shows that when X is cofibrant,

E†nC ^†n
.O.n/^X .n//

preserves (non-equivariant) weak equivalences in (equivariant) maps of O.n/.

(ii) In the case when M is EKMM S –modules, the criterion is satisfied whenever
each �.n/ is a (non-equivariant) weak equivalence and each O.n/ and O0.n/ has
underlying non-equivariant object in the class xE of [16, VII.6.4] (or Basterra’s
generalization xF of [7, 9.3]), or more generally, the closure of E (or F) under
also the additional operation of smash product with a based space. The proof is
essentially the same as the proof of [16, III.5.1]. In the case of EKMM L–spectra
it also works for the analogous class (where we allow omitting S ^L .�/).

Both cases include in particular operads of the form O^S when O is an operad of
based spaces. For based spaces with non-degenerate basepoints (eg disjoint basepoints),
a map X ! X 0 is a stable equivalence if and only if X ^ S ! X 0 ^ S is a weak
equivalence; however, the same is not necessarily true for based spaces with degenerate
basepoints, so some caution is in order when applying the remarks above in the context
of operads of based spaces.

Finally, the third result generalizes Theorem 3.3. To state it, we need to generalize the
hypothesis on O . We use the following terminology.

Definition 8.4 An operad (or symmetric sequence) O of based spaces is a †–free
cell retract if for each n > 0, O.n/ is the retract of a free based †n –cell complex.
An operad (or symmetric sequence) O in M is a †–free cell retract if each O.n/ is
equivariantly the retract of a †n –equivariant spectrum built equivariantly as a complex
with cells of the form

†nC ^X �!†nC ^Y;

where X ! Y is a wedge of maps in I and/or maps of the form

S
j�1
C ^S �!D

j
C ^S;

where Sj�1!Dj is the inclusion of the boundary of the standard j –dimensional
disk (or the inclusion of the empty set in the one-point space for j D 0). Note that
there is no condition on O.0/.

The previous definition is adapted for ease of use in the proof of the following theorem
that directly generalizes Theorem 3.3.
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Theorem 8.5 Assume either that O is an operad of based spaces or that M is symmet-
ric spectra, orthogonal spectra, or EKMM S –modules. If O is a †–free cell retract,
then every cofibrant object in MŒO� is cofibrant in the category of M under O.�/.

Before going on to the proofs, we make the following remark about generalizing
Theorem 3.4.

Remark 8.6 In order to keep M fixed, we did not restate Theorem 3.4 in this section,
nor do we prove it below; nevertheless, Theorem 3.4 does generalize to the case when O
is an operad in the domain category of the left adjoint, provided we add the hypothesis
that the unit of the adjunction is a weak equivalence for OX for all cofibrant X . The
proof follows the same outline as the proof of Theorem 8.2.

We now move on to the proofs. We fix O an operad of based spaces or an operad in
M, and we write OI and OJ for the sets of maps in MŒO� obtained by applying O to
I and J , respectively (where as indicated above, I and J are the canonical sets of
generating cofibrations and generating acyclic cofibrations, respectively). According to
[24, 5.13], to show that MŒO� is a cofibrantly generated topological model category
with generating cofibrations OI and generating acyclic cofibrations OJ , it suffices to
prove the following lemma.

Lemma 8.7 Let C be an object in MŒO�.

(i) For A!B any coproduct (in MŒO�) of maps in OI and any map of O–algebras
A ! C , the map C ! C qA B from C to the pushout in MŒO� is an h–
cofibration in M.

(ii) For A!B any coproduct (in MŒO�) of maps in OJ and any map of O–algebras
A ! C , the map C ! C qA B from C to the pushout in MŒO� is a weak
equivalence in M.

In the statement above, an h–cofibration is a map X ! Y satisfying the homotopy
extension property, or in other words, such that the map Y [X .X ^ IC/! Y ^ IC
admits a retraction.

The key to proving the lemma is understanding pushouts in MŒO� of the form C !

C qOX OY . We will show that the underlying spectrum has a filtration induced by
powers of Y . To construct this, we use the universal enveloping operad of [6, 8.3] and
[17, Section 12].
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Construction 8.8 For an O–algebra C , define UOC.n/ to be the coequalizer in M,_
k

O.nC k/^†k
.OC /.k/ //

//
_
k

O.nC k/^†k
C .k/ // UOC.n/

(with the usual modifications when M is the category of EKMM L–spectra). Here one
map is induced by the action OC ! C and the other by the operadic multiplication.
The spectra UOC.�/ form an operad in M with †n action on UOC.n/ induced by
the unused †n action on C.kC n/, identity S ! UOC.1/ induced by the identity of
O and operadic multiplication induced by the operadic multiplication of O .

(In what follows, we never actually use the operadic multiplication, just the identity
and equivariance.)

An easy check of universal properties shows that the coproduct of O–algebras CqOY

has _
n

UOC.n/^†n
Y .n/

as its underlying spectrum when M is one of the true symmetric monoidal categories
of spectra. For EKMM L–spectra, we have the usual modification discussed above

C qOY D .UOC.0//_ .UOC.1/C Y /_
_
n>1

.UOC.n/^†n
Y .n//

when O is an operad in M, but when O is an operad of based spaces, we have a slightly
different formula. (Here for clarity we temporarily break our convention and write ^L
for the smash product of L–spectra, reserving ^ for the smash product with a space.)
For O an operad of based spaces, the summands k D 0 in Construction 8.8 induce a
map of †n –equivariant L–spectra O.n/^S ! UOC . For Z an L–spectrum, define
UOC.n/CO.n/ Z to be the following pushout:

O.n/^S ^L Z //

��

UOC.n/^L Z

��

O.n/^Z // UOC.n/CO.n/ Z

We note that both vertical maps are weak equivalences, as they become isomorphisms
after smashing with S (applying S ^L .�/). If H <†n and Z is an H –equivariant
L–spectrum, then UOC.n/CO.n/Z has a right action of H from UOC.n/ (and O.n/)
and a left action from Z , and we let .UOC.n/CO.n/ Z/H denote the coequalizer of
these actions. Then the universal property of the coproduct gives us

C qOY D
_
n

�
UOC.n/CO.n/ Y .n/

�
†n
:
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In general, when M is EKMM L–spectra and O is an operad of based spaces, when-
ever we encounter a formula involving the universal enveloping operad, we must
replace UOC.n/^H Z with .UOC.n/CO.n/ Z/H ; we add this to our list of “usual
modifications” for the case of EKMM L–spectra.

The discussion above gives us a (split) filtration on C qOY . To get the filtration on
C qOX OY , we also need the following construction from [17, Section 12].

Construction 8.9 For gW X ! Y a map in M, define Qn
i .g/ inductively as follows.

Let Qn
0
.g/DX .n/ and for i > 0, define Qn

i .g/ to be the following pushout:

†nC ^†n�i�†i
X .n�i/ ^Qi

i�1
.g/ //

��

†nC ^†n�i�†i
X .n�i/ ^Y .i/

��

Qn
i�1
.g/ // Qn

i .g/

The basic idea is that (when g is an inclusion) Qn
i .g/ is the †n –equivariant subspec-

trum of Y .n/ with i factors of Y and n�i factors of X . Mainly we need Qn
n�1

.g/ and
we see that Y .n/=Qn

n�1
.g/Š .Y=X /.n/ . Just as in [17, 12.6], we have the following

proposition.

Proposition 8.10 Let C be an O–algebra and let gW X ! Y be a map in M. For
any map X ! C in M, let Fil0.C;g/D C and inductively define Filn.C;g/ to be the
pushout

UOC.n/^†n
Qn

n�1
.g/ //

��

UOC.n/^†n
Y .n/

��

Filn�1.C;g/ // Filn.C;g/

(with the usual modifications when M is the category of EKMM L–spectra). Then
colim Filn.C;g/ is the underlying spectrum of the pushout C qOX OY in MŒO�.

Proof Using the constructions of UOC.n/ and Qn
n�1

.g/, and commuting colimits,
we see that colim Filn.C;g/ can be identified as the coequalizer of the pair of arrows_
i;k

O.kC n/^†k�†n�i�†i
.OC /.k/ ^X .n�i/

^Y .i/

//
//
_
k

O.kC n/^†k�†n
C .k/

^Y .n/

(with the usual modifications when M is the category of EKMM L–spectra), where
one map is induced by the action map OC ! C and the map gW X ! Y and the other
is induced by the operadic multiplication on O and the given map X !C . Comparing
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universal properties, the coequalizer above is easily identified as the pushout CqOX OY

in MŒO�.

The previous proposition leads to an interesting spectral sequence for computing the
homotopy groups (or homology) of a pushout: its E1 –term looks like the homotopy
groups (or homology) of the coproduct in the category of O–algebras. The analogue
of this spectral sequence in algebra for O an E1 operad, where the homology of the
coproduct can be easily calculated, formed an important part of the core argument for
the proof of the Main theorem of [22] (qv Section 14).

Proposition 8.10 is what we need to prove Lemma 8.7 and therefore complete the proof
of Theorem 8.1.

Proof of Lemma 8.7 In both parts, we let gW X ! Y be a wedge of maps in I

(for (i)) or J (for (ii)) such that A! B is Og .

For (i), by Proposition 8.10, it suffices to see that each map Filn�1.C;g/! Filn.C;g/
is an h–cofibration (for n> 1), and for this it suffices to show that each map

(�) UOC.n/^†n
Qn

n�1.g/ �! UOC.n/^†n
Y .n/

is an h–cofibration (with the usual modification when M is the category of EKMM
L–spectra). In the case when M is symmetric or orthogonal spectra, g is a wedge of
maps of the form

FiS
0
^S

j�1
C �! FiS

0
^D

j
C;

where Sj�1!Dj is the inclusion of the boundary into the standard j –dimensional
disk, and FiS

0 is the point-set model of the .�i/–sphere that represents the i th space
functor (see [24, 4.2] or [24, 4.4], where it is denoted FRi S0 ). Then Y .n/ becomes
the wedge of †n –equivariant spectra of the form

†nC ^†m1;:::;mk
..Fi1

S0
^D

j1

C /
.m1/ ^ � � � ^ .Fik

S0
^D

jk

C /
.mk//

Š†nC ^†m1;:::;mk
.Fi S0

^ ..Dj1/m1 � � � � � .Djk /mk /C/;

where †m1;:::;mk
WD†m1

�� � ��†mk
, m1C� � �Cmk Dn, and i WDm1i1C� � �Cmk ik ,

and where we have written i in bold to emphasize that †m1;:::;mk
acts on Fi S0 as

well as on the product of the disks. We can then identify Qn
n�1

.g/ as the wedge
†n –equivariant spectra of the form

†nC ^†m1;:::;mk
.Fi S0

^ @..Dj1/m1 � � � � � .Djk /mk /C/

and the map Qn
n�1

.g/!Y .n/ as the induced by the boundary inclusions. By inspection,
this is a †n –equivariant h–cofibration, and it then follows that the map (�) is an h–
fibration. The case of EKMM S –modules and L–spectra is analogous.
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For (ii), the case of EKMM S –modules and L–spectra is trivial as the map X ! Y

is the inclusion of a deformation retraction, and therefore, the map OX ! OY is
the inclusion of a deformation retract in the category MŒO�; it follows that C !

C qA B is the inclusion of a deformation retract in the category MŒO� and therefore
a homotopy equivalence. For the case of symmetric spectra or orthogonal spectra,
applying Proposition 8.10, it suffices to show that the map Filn�1.C;g/! Filn.C;g/
is a stable equivalence for all n � 1. The argument above shows the map is an
h–cofibration. Its cofiber is

(��) UOC.n/^†n
.Y=X /.n/:

Since Y=X is positive cofibrant and stably equivalent to the trivial spectrum, it follows
from [24, 15.5] that (��) is weakly equivalent to the trivial spectrum, and hence that
Filn�1.C;g/! Filn.C;g/ is a weak equivalence.

Proposition 8.10 is also all we need for the proof of Theorem 8.2.

Proof of Theorem 8.2 Since in both algebra categories fibrations and weak equiv-
alences are created in M and since the right adjoint does not change the underlying
spectrum, the adjunction is a Quillen adjunction. Now assume that � induces a weak
equivalence OX ! O0X for every cofibrant object X . To see that the adjunction
is a Quillen equivalence, it suffices to show that for a cofibrant O–algebra C , the
unit map C ! R�L�C is a weak equivalence. Without loss of generality, we can
assume that C is an OI –cell complex. Then C D colim Ck , where C0 D O.�/ and
Ck D Ck�1qAk

Bk where Ak ! Bk is a coproduct of maps in OI , or equivalently,
is Ogk for gk W Xk ! Yk a wedge of maps in I . We have that L�C0 D O0.�/ and by
hypothesis the map O.�/! O0.�/ is a weak equivalence. Likewise, C1 D O.Y1=X1/,
L�C1 D O0.Y1=X1/ and the unit map is a weak equivalence. This shows that for
any OI –cell complex built in 0 stages or 1 stage, the unit map is a weak equiv-
alence. Assume by induction that for any OI –cell complex built in k or fewer
stages, the unit map is a weak equivalence, and consider CkC1 D Ck qOX OY for
gW X!Y . Proposition 8.10 writes CkC1 as colim Filn.Ck ;g/ and similarly L�CkC1

is colim Filn.L�Ck ;g/ constructed using the operad O0 . The proof of Lemma 8.7
showed that this is a filtration by h–cofibrations, and we note that the associated graded
spectra are_

UOCk.n/^†n
.Y=X /.n/ and

_
UO0.L�Ck/.n/^†n

.Y=X /.n/

(with the usual modifications when M is the category of EKMM L–spectra). These
naturally form algebras: the first is the O–algebra Ck qO.Y=X / and the second is
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the O0–algebra
L�CkqO0.Y=X /DL�.CkqO.Y=X //

(with coproducts taken in the appropriate algebra category MŒO� and MŒO0�, respec-
tively). As Ck q .Y=X / is an O–algebra that can be built in k or fewer stages (as
k � 1), it follows that the unit map

CkqO.Y=X / �!R�L�.CkqO.Y=X //

is a weak equivalence, which shows that each map on quotients

UOCk.n/^†n
.Y=X /.n/ �! UO0L�Ck.n/^†n

.Y=X /.n/:

is a weak equivalence and shows that each map

Filn.Ck ;g/ �! Filn.L�Ck ;g/

is a weak equivalence. It follows that CkC1 ! R�L�CkC1 is a weak equivalence.
Finally, C D colim Ck is the colimit of a sequence of h–cofibrations as is L�C D

colim L�Ck , and so the unit C !R�L�C is a weak equivalence.

Finally, we need to prove Theorem 8.5. For this we need a slight generalization of
Proposition 8.10 that handles the construction of the universal enveloping operad.

Proposition 8.11 Let C be an O–algebra and let gW X!Y be a map in M. For a map
X ! C in M, let Fil0.UOC;g/.m/DUOC.m/. Inductively define Filn.UOC;g/.m/

as the pushout

UOC.mCn/^†n
Qn

n�1
.g/ //

��

UOC.mCn/^†n
Y .n/

��

Filn�1.UOC;g/.m/ // Filn.UOC;g/.m/

(with the usual modifications when M is the category of EKMM L–spectra). Then
colimn Filn.UOC;g/.m/ is the underlying †n –equivariant spectrum of UO.C qOX

OY /.m/.

Proof As in the proof of Proposition 8.10, unwinding the definitions and interchanging
colimits identifies colimn Filn.UOC;g/.m/ as the coequalizer_
i;k

O.kC nCm/^†k�†n�i�†i
.OC /.k/ ^X .n�i/

^Y .i/

//
//
_
k

O.kC nCm/^†k�†n
C .k/

^Y .n/ �! colimn Filn.UOC;g/.m/
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(with the usual modifications when M is the category of EKMM L–spectra). We can
rewrite this as the coequalizer

UO.O..OC /_X _Y //.m/ //
//
UO.O.C _Y //.m/ // colimn Filn.UOC;g/.m/;

which is the universal enveloping operad construction UO.�/.m/ applied to the reflex-
ive coequalizer

O..OC /_X _Y / //
// O.C _Y / // C qOX OY:

Proof of Theorem 8.5 First consider the case where M is one of the true symmetric
monoidal categories of spectra. It suffices to prove that OI –cell complexes are cofibrant
in M under O.�/. Let C be an OI –cell complex; then C D colim Ck with C0DO.�/
and CkC1DCkqOXk

OYk for Xk!Yk a wedge of maps in I . It therefore suffices to
show that each map Ck! CkC1 is a cofibration in M. Since UO.C0/.n/DO.n/^S ,
by hypothesis UO.C0/ is a †–free cell retract. Assume by induction that UOCk is a
†–free cell retract. The argument in Lemma 8.7 generalizes to show that each map
Qn

n�1
.gk/! Y

.n/

k
is a (non-equivariant) cofibration between cofibrant objects and

each map

UOCk.nCm/^†n
Qn

n�1.gk/ �! UOCk.nCm/^†n
Y
.n/

k

is an h–cofibration. Each map above and therefore each map

Filn�1.Ck ;gk/ �! Filn.Ck ;gk/

(for mD 0) and each map

Filn�1.UOCk ;gk/.m/ �! Filn.UOCk ;gk/.m/

is †m –equivariantly a retract of a relative cell complex built out of cells of the form

†mC ^X �!†mC ^Y;

where X ! Y is a wedge of maps in I . It follows that Ck! CkC1 is a cofibration in
M and that UOCkC1 is a †–free cell retract.

The case when M is EKMM L–spectra and O is an operad of spaces is similar except
that the inductive hypothesis on UOCk is replaced by the hypothesis that for each m,
O.m/^S!UOCk.m/ is the retract of a relative cell complex built out of cells of the
form

†mC ^X �!†mC ^Y

where X ! Y is a wedge of maps in I .

Geometry & Topology, Volume 19 (2015)



En genera 3231

References
[1] J F Adams, Stable homotopy and generalised homology, University of Chicago Press

(1974) MR0402720

[2] M Ando, Isogenies of formal group laws and power operations in the cohomology
theories En , Duke Math. J. 79 (1995) 423–485 MR1344767

[3] M Ando, M J Hopkins, C Rezk, Multiplicative orientations of KO –theory and of
the spectrum of topological modular forms, preprint (2010) Available at http://
www.math.uiuc.edu/~mando/papers/koandtmf.pdf

[4] M Ando, M J Hopkins, N P Strickland, Elliptic spectra, the Witten genus and the
theorem of the cube, Invent. Math. 146 (2001) 595–687 MR1869850

[5] M Ando, M J Hopkins, N P Strickland, The sigma orientation is an H1 map, Amer.
J. Math. 126 (2004) 247–334 MR2045503

[6] M Basterra, M A Mandell, Homology and cohomology of E1 ring spectra, Math. Z.
249 (2005) 903–944 MR2126222

[7] M Basterra, M A Mandell, Homology of En ring spectra and iterated THH , Algebr.
Geom. Topol. 11 (2011) 939–981 MR2782549

[8] M Basterra, M A Mandell, The multiplication on BP, J. Topol. 6 (2013) 285–310
MR3065177

[9] J M Boardman, R M Vogt, Homotopy-everything H –spaces, Bull. Amer. Math. Soc.
74 (1968) 1117–1122 MR0236922

[10] J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological
spaces, Lecture Notes in Mathematics 347, Springer, Berlin (1973) MR0420609

[11] A K Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J.
Math. 109 (1987) 361–394 MR882428

[12] M Brun, Z Fiedorowicz, R M Vogt, On the multiplicative structure of topological
Hochschild homology, Algebr. Geom. Topol. 7 (2007) 1633–1650 MR2366174

[13] S G Chadwick, Structured orientations of Thom spectra, PhD thesis, Indiana Univer-
sity (2012) MR3103696 Available at http://search.proquest.com/docview/
1178990035

[14] P E Conner, E E Floyd, The relation of cobordism to K–theories, Lecture Notes in
Mathematics 28, Springer, Berlin (1966) MR0216511

[15] A Dold, Chern classes in general cohomology, from: “Symposia Mathematica, Vol V”,
Academic Press, London (1971) 385–410 MR0276968

[16] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in sta-
ble homotopy theory, Math. Surv. Monogr. 47, Amer. Math. Soc. (1997) MR1417719

[17] A D Elmendorf, M A Mandell, Rings, modules, and algebras in infinite loop space
theory, Adv. Math. 205 (2006) 163–228 MR2254311

Geometry & Topology, Volume 19 (2015)

http://www.ams.org/mathscinet-getitem?mr=0402720
http://dx.doi.org/10.1215/S0012-7094-95-07911-3
http://dx.doi.org/10.1215/S0012-7094-95-07911-3
http://www.ams.org/mathscinet-getitem?mr=1344767
http://www.math.uiuc.edu/~mando/papers/koandtmf.pdf
http://www.math.uiuc.edu/~mando/papers/koandtmf.pdf
http://dx.doi.org/10.1007/s002220100175
http://dx.doi.org/10.1007/s002220100175
http://www.ams.org/mathscinet-getitem?mr=1869850
http://dx.doi.org/10.1353/ajm.2004.0008
http://www.ams.org/mathscinet-getitem?mr=2045503
http://dx.doi.org/10.1007/s00209-004-0744-y
http://www.ams.org/mathscinet-getitem?mr=2126222
http://dx.doi.org/10.2140/agt.2011.11.939
http://www.ams.org/mathscinet-getitem?mr=2782549
http://dx.doi.org/10.1112/jtopol/jts032
http://www.ams.org/mathscinet-getitem?mr=3065177
http://dx.doi.org/10.1090/S0002-9904-1968-12070-1
http://www.ams.org/mathscinet-getitem?mr=0236922
http://www.ams.org/mathscinet-getitem?mr=0420609
http://dx.doi.org/10.2307/2374579
http://www.ams.org/mathscinet-getitem?mr=882428
http://dx.doi.org/10.2140/agt.2007.7.1633
http://dx.doi.org/10.2140/agt.2007.7.1633
http://www.ams.org/mathscinet-getitem?mr=2366174
http://www.ams.org/mathscinet-getitem?mr=3103696
http://search.proquest.com/docview/1178990035
http://search.proquest.com/docview/1178990035
http://www.ams.org/mathscinet-getitem?mr=0216511
http://www.ams.org/mathscinet-getitem?mr=0276968
http://www.ams.org/mathscinet-getitem?mr=1417719
http://dx.doi.org/10.1016/j.aim.2005.07.007
http://dx.doi.org/10.1016/j.aim.2005.07.007
http://www.ams.org/mathscinet-getitem?mr=2254311


3232 Steven Greg Chadwick and Michael A Mandell

[18] F Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergeb.
Math. Grenzgeb. 9, Springer, Berlin (1956) MR0082174

[19] F Hirzebruch, Topological methods in algebraic geometry, Grund. der math. Wis-
senschaften 131, Springer, Berlin (1978) MR1335917

[20] N Johnson, J Noel, For complex orientations preserving power operations, p–
typicality is atypical, Topology Appl. 157 (2010) 2271–2288 MR2670503

[21] L G Lewis, Jr, J P May, M Steinberger, J E McClure, Equivariant stable homotopy
theory, Lecture Notes in Mathematics 1213, Springer, Berlin (1986) MR866482

[22] M A Mandell, E1 algebras and p–adic homotopy theory, Topology 40 (2001) 43–94
MR1791268

[23] M A Mandell, J P May, Equivariant orthogonal spectra and S –modules, Mem. Amer.
Math. Soc. 755, Amer. Math. Soc. (2002) MR1922205

[24] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra,
Proc. London Math. Soc. 82 (2001) 441–512 MR1806878

[25] J P May, The geometry of iterated loop spaces, Lectures Notes in Mathematics 271,
Springer, Berlin (1972) MR0420610

[26] J P May, E1 ring spaces and E1 ring spectra, Lecture Notes in Mathematics 577,
Springer, Berlin (1977) MR0494077

[27] J P May, Multiplicative infinite loop space theory, J. Pure Appl. Algebra 26 (1982)
1–69 MR669843

[28] S P Novikov, Homotopy properties of Thom complexes, Mat. Sb. 57 (99) (1962) 407–
442 MR0157381

[29] R S Palais, Seminar on the Atiyah–Singer index theorem, Annals of Mathematics
Studies 57, Princeton Univ. Press (1965) MR0198494

[30] R E Stong, Some remarks on symplectic cobordism, Ann. of Math. 86 (1967) 425–433
MR0219079

[31] E Witten, Elliptic genera and quantum field theory, Comm. Math. Phys. 109 (1987)
525–536 MR885560

Department of Mathematics, University of Maryland
4176 Campus Drive – Mathematics Building, College Park, MD 20742-4015, USA

Department of Mathematics, Indiana University
Rawles Hall, 831 E 3rd St, Bloomington, IN 47405, USA

sgc@umd.edu, mmandell@indiana.edu

Proposed: Mark Behrens Received: 18 November 2013
Seconded: Ralph Cohen, Bill Dwyer Revised: 3 March 2015

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://www.ams.org/mathscinet-getitem?mr=0082174
http://hirzebruch.mpim-bonn.mpg.de/114/
http://www.ams.org/mathscinet-getitem?mr=1335917
http://dx.doi.org/10.1016/j.topol.2010.06.007
http://dx.doi.org/10.1016/j.topol.2010.06.007
http://www.ams.org/mathscinet-getitem?mr=2670503
http://www.ams.org/mathscinet-getitem?mr=866482
http://dx.doi.org/10.1016/S0040-9383(99)00053-1
http://www.ams.org/mathscinet-getitem?mr=1791268
http://dx.doi.org/10.1090/memo/0755
http://www.ams.org/mathscinet-getitem?mr=1922205
http://dx.doi.org/10.1112/S0024611501012692
http://www.ams.org/mathscinet-getitem?mr=1806878
http://www.ams.org/mathscinet-getitem?mr=0420610
http://www.ams.org/mathscinet-getitem?mr=0494077
http://dx.doi.org/10.1016/0022-4049(82)90029-9
http://www.ams.org/mathscinet-getitem?mr=669843
http://www.mathnet.ru/links/f7e9c28622a763c6f781d326bb0837f4/sm4658.pdf
http://www.ams.org/mathscinet-getitem?mr=0157381
http://www.ams.org/mathscinet-getitem?mr=0198494
http://dx.doi.org/10.2307/1970608
http://www.ams.org/mathscinet-getitem?mr=0219079
http://dx.doi.org/10.1007/BF01208956
http://www.ams.org/mathscinet-getitem?mr=885560
mailto:sgc@umd.edu
mailto:mmandell@indiana.edu
http://msp.org
http://msp.org

	1. Introduction
	Conventions
	Acknowledgments

	2. Outline of the argument
	3. The homotopy theory of En ring spectra
	4. Proof of Theorem 2.1
	5. Proof of Theorem 2.2
	6. Proof of Theorems 1.1 and 1.2
	7. Proof of Theorem 1.4
	8. Proof of Section 3
	References

