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Anti-trees and right-angled
Artin subgroups of braid groups

SANG-HYUN KIM

THOMAS KOBERDA

We prove that an arbitrary right-angled Artin group G admits a quasi-isometric group
embedding into a right-angled Artin group defined by the opposite graph of a tree,
and, consequently, into a pure braid group. It follows that G is a quasi-isometrically
embedded subgroup of the area-preserving diffeomorphism groups of the 2–disk and
of the 2–sphere with Lp –metrics for suitable p . Another corollary is that there exists
a closed hyperbolic manifold group of each dimension which admits a quasi-isometric
group embedding into a pure braid group. Finally, we show that the isomorphism
problem, conjugacy problem, and membership problem are unsolvable in the class of
finitely presented subgroups of braid groups.

20F36; 53D05, 20F10, 20F67

1 Introduction

A right-angled Artin group on a finite graph � is a group generated by the vertices
of � with commutation relations defined by the adjacency relations in � . In this article,
we adopt the opposite of the usual convention used for discussing right-angled Artin
groups, and we write

G.�/D hV.�/ j Œvi ; vj �D 1 if and only if fvi ; vj g …E.�/i:

Here, V.�/ and E.�/ denote the set of vertices and edges of � .

1.1 Main results

For two groups G and H equipped with metrics, a quasi-isometric group embedding
from G to H (with quasi-isometry constant C ) is an injective group homomorphism
f W G!H such that the following estimate holds for every x and y in G :

dG.x; y/=C �C � dH .f .x/; f .y//� CdG.x; y/CC:
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We will also say that G is a quasi-isometrically embedded subgroup of H . We will
endow each finitely generated group with a word-metric. Note that every quasi-isometric
group embedding between finitely generated groups is bi-Lipschitz.

The principal result of this article is the following:

Theorem 1.1 For each finite graph � , there exists a finite tree T such that G.�/
admits a quasi-isometric group embedding into G.T /.

In the usual convention for describing right-angled Artin groups, the tree T should be
replaced with its opposite graph T opp , a graph which could reasonably be called an
anti-tree. The tree T in Theorem 1.1 is not produced in an ad hoc manner, but is rather
built as a subtree of the universal cover of � .

Let us summarize some consequences of the main theorem. The reader is referred to
the last section for more details and background.

We write Bn for the braid group on n strands, which is identified with the mapping
class group of the n–punctured disk Dn fixing the boundary pointwise. The pure braid
group Pn < Bn is the kernel of the natural puncture permutation representation

Bn! Sn < Aut.H1.Dn;Z//:

We let Symp.D2; @D2/ be the group of area-preserving diffeomorphisms (symplecto-
morphisms) of the unit 2–disk that are the identity in a neighborhood of the boundary.
We endow Symp.D2; @D2/ with the Lp–metric dp ; see Sections 4.2 and 4.3. Crisp
and Wiest [18] proved that the right-angled Artin group on each planar graph (more
generally, each planar-type graph) admits quasi-isometric group embeddings into Pn
for some n, and into .Symp.D2; @D2/; d2/. They asked whether or not an arbitrary
right-angled Artin group embeds into Pn for some n; see Crisp and Wiest [17].

We denote by Symp.S2/ the area-preserving diffeomorphism group of the unit 2–
sphere S2 , again equipped with the Lp–metric. Note that Symp.S2/ is equal to the
group of Hamiltonian symplectomorphisms on S2 [33, Section 1.4.H]. M Kapovich
showed that every right-angled Artin group embeds into Symp.S2/, asking whether or
not this embedding can be chosen to be quasi-isometric with respect to L2–metric [24].
We generalize the result of Crisp and Wiest, and give an affirmative answer to the
Lp–version of Kapovich’s question for p > 2.

Corollary 1.2 Every right-angled Artin group admits quasi-isometric group embed-
dings into the following groups:

(1) Pn for some n.
(2) Symp.D2; @D2/ with Lp–metric for 1� p �1.
(3) Symp.S2/ with Lp–metric for 2 < p �1.
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Although largely influenced by their papers [18; 24], our proof does not rely on the
above-mentioned results of Crisp and Wiest or Kapovich. In Corollary 1.2(1), our
analysis tells us that the number of strands n can be chosen so that log2 log2 n�m

2 ,
where m is the number of the generators of the right-angled Artin group.

Corollary 1.2(1) can be applied to recover an algebraic result of Baudisch concerning
the structure of two-generated subgroups of right-angled Artin groups:

Corollary 1.3 (See Baudisch [3]) Every two-generated subgroup of a right-angled
Artin group is either abelian or free.

A group G is called special if G D �1.X/ for some compact CAT(0) cube complex X
that locally isometrically embeds into the Salvetti complex of a right-angled Artin
group. If a group has a finite-index special subgroup, it is called virtually special (see
Haglund and Wise [22]). The class of virtually special groups is surprisingly large,
including all the finite-volume hyperbolic 3–manifold groups; see [22], Wise [35], and
Agol [1].

Corollary 1.4 A special group admits a quasi-isometric group embedding into a pure
braid group.

In particular, every finite-volume hyperbolic 3–manifold group is virtually a quasi-
isometrically embedded subgroup of a pure braid group. Theorem 1.1 also furnishes
examples of quasi-isometrically embedded higher-dimensional closed hyperbolic man-
ifold subgroups of a pure braid group, which to the authors’ knowledge are the first
such examples.

Corollary 1.5 For each n � 2, there exists an n–dimensional closed hyperbolic
manifold whose fundamental group admits a quasi-isometric group embedding into a
pure braid group.

In particular, we will see that the fundamental group of a manifold cover of the 4–
dimensional all-right hyperbolic 120–cell orbifold quasi-isometrically embeds into a
pure braid group. This answers a question posed by Crisp and Wiest in [18].

Recall that the isomorphism problem for a class C of finitely presented groups asks to
find an algorithm which, on an input of two members A;B 2 C, halts and determines
whether or not AŠ B . In [9], Bridson uses right-angled Artin subgroups of mapping
class groups to show that the isomorphism problem is unsolvable when C is the class of
finitely presented subgroups of a sufficiently high-genus surface mapping class group.
Theorem 1.1 allows us to replace the surface mapping class group with a braid group:
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Corollary 1.6 Let Cn be the class of finitely presented subgroups of the planar braid
group Bn . If n is sufficiently large then the isomorphism problem for Cn is unsolvable.

Recall that the conjugacy problem in a finitely presented group H asks whether there
exists an algorithm which, on an input of two elements g; h 2H , halts and determines
whether or not g and h are conjugate to each other in H . The membership problem
for a subgroup K <H asks whether there exists an algorithm which, on an input of
a word w in the generators of H , halts and determines whether or not the element
of H represented by w lies in K . With this setup, Theorem 1.1 has the following
consequence for braid groups:

Corollary 1.7 For all n sufficiently large, there exists a finitely presented subgroup
H < Bn such that the conjugacy problem for H is unsolvable and for which the
membership problem is unsolvable.

The word problem is solvable among all finitely presented subgroups of braid groups
by virtue of their residual finiteness.

1.2 Notes and references

In [24], M Kapovich shows that every right-angled Artin group G.�/ embeds in the
group of hamiltonian symplectomorphisms of the 2–sphere. In the second part of his
proof, Kapovich resolves technical difficulties arising from right-angled Artin groups
on non-planar graphs. As trees are planar, Theorem 1.1 simplifies Kapovich’s argument.
We will also strengthen Kapovich’s theorem to Corollary 1.2(3).

Right-angled Artin subgroups of right-angled Artin groups and of mapping class groups
have been studied by various authors from several points of view. The reader may
consult Kim [26], Clay, Leininger and Mangahas [14], Crisp and Paris [16], Crisp and
Wiest [18], Kim and Koberda [27; 28; 29] and Koberda [31], for instance.

Mapping class groups have proven to be a fruitful setting for the study of right-angled
Artin groups for their own sake. The setup which most easily lends itself to analysis is
when one has a homomorphism

�W G.�/!Mod.S/

such that � maps each vertex generator of G.�/ to a mapping class with a connected
support [14; 31]. When the support of a mapping class is disconnected, various algebraic
pathologies may arise (see [31], for instance).

In the right-angled Artin group setting, the analogue of a mapping class with discon-
nected support is an element g of a right-angled Artin group that is not a pure factor,
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ie an element 1¤g 2G.�/ which can be written as a product gDg1 �g2 of non-trivial
elements with no common powers such that Œg1; g2�D 1. If

�W G.ƒ/!G.�/

is a homomorphism of right-angled Artin groups where vertex generators of G.ƒ/ are
sent to elements of G.�/ which are not pure factors, the same algebraic pathologies
which occur in the mapping class group setting can again occur.

Oftentimes, various fortuitous circumstances allow one to circumvent the algebraic
pathologies which occur when studying homomorphisms from a right-angled Artin
group to another right-angled Artin group, or to a mapping class group. Such anal-
yses have been carried out in Casals-Ruiz, Duncan and Kazachkov [12] and Kim
and Koberda [30] in the right-angled Artin group and mapping class group cases,
respectively, for instance.

This article is entirely concerned with injective maps G.�/! G.T / where vertex
generators of G.�/ are sent to elements of G.T / which are never pure factors, and with
compositions of such maps with injective homomorphisms G.T /! Pn , so that the
vertex generators of G.�/ are always sent to mapping classes with disconnected support.

Let us comment on the precursors of Theorem 1.1. Crisp and Wiest proved that G.�/
embeds into G.ƒ/ if ƒ is a finite cover of � [17, Proposition 19], and M Kapovich
extended this result to the case when ƒ is a finite orbi-cover of � [24, Lemma 2.3].
The methods of this paper were also inspired by the analysis in [12] of an injective map
G.C5/!G.L8/, where C5 denotes the cycle on five vertices and where L8 denotes
a path on eight vertices.

Acknowledgements Kim is supported by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (2013R1A1A1058646). Kim is also supported by Samsung
Science and Technology Foundation (SSTF-BA1301-06). Koberda is partially supported
by NSF grant DMS-1203964. The authors are grateful to the referee for several helpful
comments.

2 Preliminaries

Every graph in this paper will be assumed to be simplicial. For two graphs X and Y ,
we write X � Y if a graph X is an induced subgraph of another graph Y . This means
that X is a subgraph of Y such that

E.X/D
� V.X/

2

�
\E.Y /:

Geometry & Topology, Volume 19 (2015)



3294 Sang-hyun Kim and Thomas Koberda

If S is a subset of V.Y /, we often identify S with the induced subgraph of Y on S .
For a vertex x in a graph X , the link and the star of v are defined respectively as:

Lk.v/D fu 2 V.X/ j fu; vg 2E.X/g; St.v/D Lk.v/[fvg:

Let � be a finite graph. Each element in V.�/[V.�/�1 is called a letter in G.�/. A
word in G.�/ is a finite sequence of letters, and usually written as a multiplication
of letters. The word length of an element g 2 G.�/ is the length of a shortest word
representing g and denoted as kgk. A word w is reduced if its length realizes the
word length. The support of g 2G.�/ is the set of the vertices v such that v or v�1

appears in a reduced word for g . The support of g is denoted as supp.g/. For example,
supp.a�1bb�1/D fag if a and b are vertices.

Let w be a (possibly non-reduced) word in G.�/ and v be a vertex of � . A cancellation
of v in w is a subword

v˙1w0v�1

of w such that supp.w0/\Lk.v/D¿. If, furthermore, no letters in w0 are equal to v
or v�1 then we say the word

v˙1w0v�1

is an innermost cancellation of v in w . If v or v�1 is a letter in w and v 62 suppw ,
then there is a cancellation of v in w , and hence there is an innermost one; this follows
from a well-known solution to the word problem in right-angled Artin groups [36;
13]. Hence, every non-reduced word contains an innermost cancellation. If there
are no cancellations of a vertex v in w , then v “survives” in each reduced word w0

representing w , in the sense that the number of occurrences of v or v�1 in w is the
same as that in w0 .

3 Proof of Theorem 1.1

For the purposes of Theorem 1.1, we may assume that � is connected. For otherwise
we can write � D �1 t�2 , so that G.�/DG.�1/�G.�2/. If there are trees T1; T2
and a quasi-isometric group embedding from G.�i / into G.Ti / for each i D 1; 2, then
we simply let T be the tree obtained by joining a vertex in T1 to another vertex in T2
by a length-two path. Since there is a natural isometric embedding from G.T1/�G.T2/

into G.T /, we have a quasi-isometric group embedding from G.�/ into G.T /.

From now on, we will let � be a finite, connected graph and pW z�!� be its universal
cover. We will fix an arbitrary order on V.z�/. Every induced subgraph of z� is a forest.
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Let T be a finite induced subgraph of z� . Then T induces a group homomorphism
�.�; T /W G.�/!G.T /, defined by

�.�; T /W v 7!
Y

t2p�1.v/\T

t;

where we define this product to be the identity if the indexing set is empty. Since no
two vertices in p�1.v/ are adjacent, this product is well-defined.

Suppose w is a word in G.�/ written as xe1

1 x
e2

2 � � � x
e`

`
for x1; x2; : : : ; x` 2 V.�/ and

e1; e2; : : : ; e` D˙1. Let us write the product

�.�; T /.xi /D
Y

t2p�1.xi /\T

t

in increasing order. We define the �.�; T /–homomorphic word of w as the word

Ỳ
iD1

.�.�; T /.xi //
ei :

Note that this (possibly non-reduced) word represents �.�; T /.w/ in G.T /.

Definition 3.1 Let T be a finite induced subgraph of z� and F � V.T /. We say
�.�; T / is F –surviving if, for every reduced word w in G.�/ and v2F , the �.�; T /–
homomorphic word of w does not have a cancellation of v .

We make some immediate observations:

Lemma 3.2 Let T 0 be a finite induced forest in z� and T � T 0 .

(1) For each w 2 G.�/, we have supp.�.�; T /.w// � supp.�.�; T 0/.w//. In
particular, ker�.�; T 0/� ker�.�; T /.

(2) Suppose F 0 � F � V.T /. If �.�; T / is F –surviving, then �.�; T 0/ is F 0–
surviving.

(3) For F1; F2�V.T /, if �.�; T / is F1–surviving and F2–surviving, then �.�; T /
is .F1[F2/–surviving.

Proof There is a natural quotient map �W G.T 0/!G.T / sending the vertices in T 0nT
to the identity. Since supp �.w/� supp.w/ for w 2G.T 0/ and �.�; T /D �ı�.�; T 0/,
we obtain (1). The parts (2) and (3) are clear from definitions.

Lemma 3.3 Let T be a finite subtree of z� and F � V.T / such that p.F /D V.�/.
If �.�; T / is F –surviving then �.�; T / is a quasi-isometric group embedding.
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Proof Let w be a reduced word in G.�/. Note that k�.�; T /.w/k � jV.T /jkwk.
On the other hand, the F –surviving condition implies that some reduced word for
�.�; T /.w/ contains the �.�; F /–homomorphic word of w as a subsequence. This
gives k�.�; T /.w/k � kwk, and, in particular, �.�; T / is injective.

If v is a vertex of � , we denote by � n v the induced subgraph of � on V.�/ n fvg.
The following lemma is a key inductive step in the proof of Theorem 3.5.

Lemma 3.4 Let v be a vertex of � and T0 be a finite tree in z� . If the restriction of
�.�; T0/ to G.� n v/ is injective, then for each vertex v0 2 p�1.v/ there exists a finite
tree T in z� containing T0[fv0g such that �.�; T / is v0–surviving and injective.

Proof Choose a finite tree T1 � z� containing T0[St.v0/. Let † be the set of deck
transformations � W z�! z� such that �.T1/\ T1 ¤¿. This set † is finite since the
deck transformation group of z� over � acts freely and simplicially. Define

T D
[
�2†

�.T1/:

We first claim that �.�; T / is v0–surviving. For this, let us suppose w is a non-
trivial reduced word in G.�/ such that the �.�; T /–homomorphic word of w has an
innermost cancellation of v0 . We then find a subword

v˙1w1v
�1

of w such that v 62 suppw1 and

supp.�.�; T /.w1//\Lkz�.v
0/D¿:

Since v˙1w1v�1 is reduced, there exists a vertex x 2 suppw1\Lk�.v/. Then

p�1.x/\Lkz�.v
0/D fx0g � Lkz�.v

0/� T1

for some vertex x0 . Since x0 62 supp�.�; T /.w1/, there exists an innermost cancellation
of x0 in the �.�; T /–homomorphic word of w1 . This implies that w1 has a subword

x˙1w2x
�1

such that

(�) supp.�.�; T /.w2//\Lkz�.x
0/D¿:

The restriction of �.�; T1/ to G.�nv/ is injective by the assumption and Lemma 3.2(1).
In particular,

�.�; T1/.x
˙1w2x

�1/¤ �.�; T1/.w2/:

Geometry & Topology, Volume 19 (2015)



Anti-trees and right-angled Artin subgroups of braid groups 3297

So we can find vertices

x00 2 p�1.x/\T1; y 2 supp.�.�; T1/.w2//\Lkz�.x
00/� T1:

Since x0; x00 2p�1.x/\T1 , there is a deck transformation � 2† such that �.x00/Dx0 .
Note that

�.y/ 2 supp.�.�; �.T1//.w2//\Lkz�.x
0/� supp.�.�; T /.w2//\Lkz�.x

0/:

This contradicts (�).

It remains to show that �.�; T / is injective. Suppose w is a reduced word in
ker�.�; T /n1. By the assumption, v 2 suppw , and hence the �.�; T /–homomorphic
word of w contains an innermost cancellation of v0 . This is a contradiction, for �.�; T /
is v0–surviving.

Theorem 1.1 is an immediate consequence of the following theorem.

Theorem 3.5 Let � be a finite connected graph and pW z�! � be a universal cover.
Then there exists a finite tree T in z� such that �.�; T / is a quasi-isometric group
embedding.

Proof We fix an arbitrary order on V.z�/ so that a �.�;ƒ/–homomorphic word is
well-defined for each finite subgraph ƒ of z� . Let F0 be a maximal tree in � and F be
a lift of F0 in z� , so that p.V.F // D V.�/. Choose a valence-one vertex v in F0
and let v0 be the lift of v in F . Note that � n v is connected and each component of
p�1.� n v/ is a universal cover of � n v . Inducting on the number of vertices in � ,
we may assume that for some finite tree T0 contained in p�1.� n v/ � z� the map
�.� n v; T0/ is a quasi-isometric group embedding. By Lemma 3.4, there is a finite
tree T1 containing v0 in z� such that �.�; T1/ is v0–surviving and injective. Then for
each u 2 V.�/, the restriction of �.�; T1/ to G.� n u/ is injective. By a repeated
application of Lemmas 3.2 and 3.4, we can enlarge T1 to another tree T � z� such that
�.�; T / is F –surviving. Lemma 3.3 completes the proof.

Remark Let mD jV.�/j. In Lemma 3.4, assuming additionally that d.v0; T0/� 1,
we see that

jV.T1/j � jV.T0/jC j St.v0/j � jV.T0/jCm:
So

jV.T /j � j†jjV.T1/j � jV.T1/j
3
� .jV.T0/jCm/

3:

Now let us consider the proof of Theorem 3.5. We can inductively choose T0 which
contains F0 , and deduce that

jV.T /j � ..� � � .jV.T0/jCm/
3
Cm/3 � � � Cm/3;
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where the iteration is m times. An easy recursive argument shows that

jV.T /j � 22
.m�1/2

:

4 Applications

4.1 Pure braid groups

Crisp and Wiest proved that if � is a planar graph then G.�/ admits a quasi-isometric
group embedding into a pure braid group [18]. We give an alternative account of this
fact, modulo a general result about faithful homomorphisms from right-angled Artin
groups to mapping class groups and their geometric behavior; see [14].

Lemma 4.1 [18] If � is a planar graph, then for some n we have that G.�/ admits
a quasi-isometric group embedding into Pn .

Let us denote by PMod.S/ the pure mapping class group on the surface S . We let
Sbg;n denote the surface of genus g with n punctures and b boundary components. We
write S0;n for S00;n .

Proof Since we have isomorphisms [15, Theorem 8]

Pn�1 Š PMod.S10;n�1/Š PMod.S0;n/�Z;

it suffices to embed G.�/ into PMod.S0;n/. Embed � in the sphere and replace each
vertex v of � with a small disk. Deform these disks along the edges of � to get a
configuration of disks fDvg in the sphere which are in bijective correspondence with
the vertices of � and which intersect precisely when the corresponding vertices in �
are adjacent. We require that the boundaries of an overlapping pair of disks intersect at
two points, and also that there are no triple intersection of disks.

We now introduce n punctures in the disks as follows: puncture Dv in the interior
of each intersection with another disk Du . Then introduce three punctures in the
interior of

Dv n
[
u¤v

Du

for each v , and also three punctures in the exterior of
S
vDv . It is now easy to produce

a pseudo-Anosov mapping class  v whose support is the entirety of Dv . Evidently,
the collection f vg � PMod.S0;n/ is a collection of non-trivial mapping classes of the
multiply punctured sphere which commute if and only if the corresponding vertices

Geometry & Topology, Volume 19 (2015)



Anti-trees and right-angled Artin subgroups of braid groups 3299

are not adjacent in � , and furthermore no two of these mapping classes generate a
cyclic subgroup of PMod.S0;n/. By [14, Theorem 1.1], we see that sufficiently high
powers of these mapping classes generate a quasi-isometrically embedded subgroup of
PMod.S0;n/ isomorphic to G.�/.

The proof of Corollary 1.2(1) is immediate from Theorem 1.1 and the preceding lemma.
We further claim that if mD jV.�/j, then G.�/ embeds into Pn for

nD 22
m2

:

To see this, we first embed G.�/ into G.T / for some tree satisfying jV.T /j� 22
.m�1/2

,
as in the previous section. Note from the proof of Lemma 4.1 that for G.T / to embed
into Pn we have only to place three punctures at each vertex and on the exterior, and
one puncture at each edge. So it suffices to consider

n� jE.T /jC 3jV.T /jC 3D 4jV.T /jC 2:

It follows that, for m� 2,

n� 4 � 22
.m�1/2

C 2� 22
m2

:

4.2 Area-preserving diffeomorphisms of the 2–sphere

We let M D S2 and G D Symp.S2/, where M is equipped with the round metric. For
1� p �1 and a vector field X on M , we define

kXkp D

(�R
M jX j

p dx
�1=p if p <1;

supx2M jX.x/j if p D1:

For each path ˛W I ! G , we define the Lp–length as

p̀.˛/D

Z 1

0

k@˛=@tkp dt:

Then we have a non-degenerate right-invariant metric on G given by

dp.�;  /D inf p̀.˛/;

where the infimum is taken over all paths ˛ � G from ˛.0/D � to ˛.1/D  . We let
k�kp D dp.Id; �/ so that k� ı kp � k�kpCk kp ; see [2, Section IV.7.A] and [25,
Section II.3.6].

Let us fix a set of distinct points P D fm1; m2; : : : ; mng in M for some n. Choose
small disjoint closed disks D1;D2; : : : ;Dn such that each Di is centered at mi . We
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let Pn.M/ be the subgroup of G consisting of diffeomorphisms which restrict to the
identity on D1[D2[ � � � [Dn . Following [8], we let Xn be the configuration space
of n distinct points in M with the base point mD .m1; : : : ; mn/. The n–strand pure
braid group on M is Pn.M/D �1.Xn; m/. If f 2 G and x D .x1; x2; : : : ; xn/ 2Xn ,
we let f .x/ denote .f .x1/; f .x2/; : : : ; f .xn//.

From [34], we have homotopy equivalences

G ' DiffC.M/' SO.3/:

So the universal cover pW zG ! G is a two-to-one map. Recall that zG consists of
homotopy classes of paths in G . Let � W I ! SO.3/ denote the rotational isotopy from
Id to itself by a full rotation. For each path ˛W I ! G from Id to a map � 2 Pn.M/,
we define �n.˛/ 2 Pn.M/ to be the braid represented by ˛.I /.m/. The map �n lifts
to a map from p�1.Pn.M// to Pn.M/, which is still denoted by �n . We have a
natural commutative diagram

zG

p

��

p�1.Pn.M//
incl:
oo

�n
//

p

��

Pn.M/

h

��

G Pn.M/
incl:

oo // PMod.S0;n/:

Note that h is the point-pushing map, so h is surjective and ker hD Z2 by the belt
trick; see [21, page 251]. The group PMod.M nP /DPMod.S0;n/ consists of mapping
classes on M fixing each mi pointwise. The groups Pn.M/ and PMod.S0;n/ are given
with word metrics. Suppose � 2 Pn.M/. We have p�1.�/D fŒ˛�; Œ� � ˛�g for some
path ˛W I ! G connecting Id to � . In the above diagram, the square on the right gives

p�1.�/D fŒ˛�; Œ� �˛�g //

p

��

f�n.˛/; �n.� �˛/g

h
��

f�g // fŒ��g:

Since h is a quasi-isometry, there exists C0 > 0 such that

1

C 0
kŒ��k�C0 �min.k�n.˛/k; k�n.� �˛/k/:

Brandenbursky and Shelukhin proved that every finitely generated free abelian group
quasi-isometrically embeds into Symp.S2/; see [8]. Using an estimate given in [8],
we prove the following lemma.

Lemma 4.2 For p > 2, there exists C DC.n; p/ > 0 such that, for each � 2 Pn.M/,
the word-length kŒ��k in PMod.M nP / is at most Ck�kpCC .

Geometry & Topology, Volume 19 (2015)



Anti-trees and right-angled Artin subgroups of braid groups 3301

Proof Let � 2 Pn.M/ and ˛W I ! G be an isotopy from Id to � . Put

D0 DD1 � � � � �Dn �Xn:

Let x be in the interior of D0 . We denote by .x/ the component-wise geodesic
from m to x , and define a loop in Xn as

`.˛; x/D .x/ �˛.I /.x/ � .x/�1:

Let s.x/ be the restriction of the path .x/ to Œ0; s�. From a braid isotopy

H.s/D s.x/ �˛.I /..x/.s// � .s.x//
�1;

we see that Œ`.˛; x/�D�n.˛/. For the point-pushing map h, we have h.�n.˛//D Œ��.
Hence,

1

C0
kŒ��k�C0 � k�n.˛/k D kŒ`.˛; x/�k:

We see from [8, Lemmas 1 and 2] that for p > 2 there exists C2 > 0 independent of �
and ˛ satisfying

(#)
Z
D0

kŒ`.˛; x/�k dx � C2 p̀.˛/CC2:

Finally, we obtain

vol.D0/
�
1

C 0
kŒ��k�C0

�
�

Z
D0

kŒ`.˛; x/�k dx � C2 p̀.˛/CC2:

Taking the infimum of the right-hand side, we have a desired inequality.

Let us complete the proof of Corollary 1.2(3). By Theorem 1.1 and Lemma 4.1, every
right-angled Artin group G.�/ admits a quasi-isometric group embedding f0W G.�/!
PMod.S0;n/ for some n. We can choose  v in the proof of Lemma 4.1 to be area-
preserving; see [18, Theorem 12] or [2, Lemma III.3.5]. So f0 factors through
f1W G.�/!Pn.M/ for some f1 . Let w2G.�/. By Lemma 4.2, there exist C;C 0>0
such that for every w 2G.�/ we have

1

C 0
kwk�C 0 � kf0.w/k D kŒf1.w/�k � Ckf1.w/kpCC:

By the following lemma, we see that f1 is the desired quasi-isometric group embedding.

Lemma 4.3 Suppose G is a finitely generated torsion-free group with a word-metric
k � k, and H is a group equipped with a non-degenerate right-invariant metric d . For
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h 2 H , we set khk D d.1; h/. If there exists C > 0 and a group homomorphism
�W G!H such that every g 2G satisfies

kgk � Ck�.g/kCC;

then � is a quasi-isometric group embedding.

Proof Suppose S is a finite generating set of G which is used to define the given
word-metric. Then for g D s1 � � � s` , where si 2 S and `D kgk, we have

k�.g/k D
Q
i

�.si /
� sup

s2S

k�.s/k � kgk:

So it suffices to show that � is injective. Suppose �.g/D 1. Then for every n 2 Z
we have

kgnk � Ck�.g/nkCC D C:

This implies that fgn j n 2 Zg is a finite set, and hence g D 1.

4.3 Area-preserving diffeomorphisms of the 2–disk

In order to prove Corollary 1.2(2), we can use the argument in Section 4.2 almost
verbatim by substituting M DD2 and G D Symp.D2; @D2/. Here, the Lp –metric is
defined in the same manner. This case is even simpler, as zGD G and PnŠ PMod.S10;n/
by [34] and [21, Theorem 9.1]. By Hölder’s inequality, we may assume p D 1. The
counterpart to Equation (#) for p D 1 is given in [7, Equations 8,12–14], and hence
Lemma 4.2 again holds verbatim. We remark that, for p D 2, Equation (#) is given
in [4, Lemma 4]. We will omit the details.

Alternatively, one can combine Theorem 1.1 with the following theorem of Crisp and
Wiest to prove Corollary 1.2(2) for pD 2. A right-angled Artin group is of planar type
if the defining graph can be realized as the incidence graph of simple closed curves in
the plane [18].

Theorem 4.4 [18, Theorem 12] Every right-angled Artin group of planar type admits
a quasi-isometric group embedding into .Symp.D2; @D2/; d2/.

4.4 Two-generated subgroups of right-angled Artin groups

Leininger and Margalit showed the following structure theorem for two-generated
subgroups of pure braid groups:

Theorem 4.5 [32] Every two-generator subgroup of a pure braid group is either
abelian or free.
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In [3], Baudisch established the same fact for two-generated subgroups of right-angled
Artin groups. Baudisch’s proof uses somewhat involved combinatorial arguments.
Combining Leininger and Margalit’s result with our main theorem, we obtain a more
transparent proof of Baudisch’s result:

Proof of Corollary 1.3 Each right-angled Artin group embeds into a pure braid group,
in which every two-generated subgroup is either abelian or free.

4.5 Hyperbolic manifolds

It is known that every word-hyperbolic Coxeter group is virtually special [23]. Examples
of discrete cocompact hyperbolic reflection groups are known to exist up to dimension
eight by the work of Bugaenko [10; 11]. By Corollary 1.4, there exist examples of
closed hyperbolic n–manifolds whose fundamental groups admit quasi-isometric group
embeddings into pure braid groups for n� 8.

More concretely, the commutator group of a right-angled Coxeter group is special
[20; 19]. In particular, the commutator subgroup of the reflection group of the all-
right 120–cell in H4 provides a specific example of a closed hyperbolic 4–manifold
group which is special [18]. Theorem 1.1 implies that this 4–manifold group admits a
quasi-isometric group embedding into a pure braid group.

For an arbitrary n, the existence of closed hyperbolic n–manifold groups inside of
right-angled Artin groups follows from the more recent work of Bergeron and Wise [6]
and Bergeron, Haglund and Wise [5].

4.6 The isomorphism, conjugacy, and membership problem for finitely
presented subgroups of braid groups

The proofs of Corollaries 1.6 and 1.7 are straightforward from the work of Bridson,
after combining it with Theorem 1.1.

Theorem 4.6 [9, Theorems 1.1 and 1.2] There exists a right-angled Artin group A1
such that the isomorphism problem for finitely presented subgroups of A1 is unsolv-
able. Furthermore, there exists a right-angled Artin group A2 and a finitely presented
subgroup H < A2 such that the conjugacy and membership problems for H are
unsolvable.

Proofs of Corollaries 1.6 and 1.7 Let A1 and A2 be as in Theorem 4.6. Then
Theorem 1.1 implies that A1 and A2 embed into Bn for every sufficiently large n.
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