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Some new results on modified diagonals

CLAIRE VOISIN

O’Grady studied mth modified diagonals for a smooth connected projective variety,
generalizing the Gross–Schoen modified small diagonal. These cycles �m.X; a/

depend on a choice of reference point a 2 X (or more generally a degree-1 zero-
cycle). We prove that for any X , a , the cycle �m.X; a/ vanishes for large m .
We also prove the following conjecture of O’Grady: If X is a double cover of Y

and �m.Y; a/ vanishes (where a belongs to the branch locus), then �2m�1.X; a/

vanishes, and we provide a generalization to higher-degree finite covers. We finally
prove that �nC1.X; oX /D0 when X DS Œm� , where S is a K3 surface, and nD2m ,
which was conjectured by O’Grady and proved by him for mD 2; 3 .

14C15, 14C25

1 Introduction

Let X be a connected smooth projective variety of dimension n. We will denote by
CHi.X / the Chow groups of X with rational coefficients and CHi.X /=alg the groups
of i –cycles of X with Q–coefficients modulo algebraic equivalence. Let a 2CH0.X /

be a 0–cycle of degree 1 on X . Following Gross and Schoen [9] and O’Grady [12], let
us consider for m� 2 the following n–cycle �m.X; a/ in X m , which is a modification
of the mth small diagonal of X :

(1) �m.X; a/D
X

I�f1;:::;mg;jI jDi<m

.�1/ip�I .a
�i/ �p�J�m�i 2 CHn.X

m/Q;

where

� f1; : : : ;mg is the disjoint union of I and J ,

� pI W X
m!X i , resp. pJ W X

m!X m�i are the projections onto the products
of factors indexed by I , resp. J ,

� �m�i is the small diagonal of X m�i , �1 DX ,

� a�i 2 CH0.X
i/ is defined by

(2) a�i D p�1a � � �p�i a:

Published: 6 January 2016 DOI: 10.2140/gt.2015.19.3307

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=14C15, 14C25
http://dx.doi.org/10.2140/gt.2015.19.3307


3308 Claire Voisin

For example, for mD 2, we have �2.X; a/D�X �a�X �X �a and �2.X; a/D 0

if and only if X D P1 or a point. The modified small diagonal �3.X; a/ appears in
several recent works. Gross and Schoen prove that �3.X; a/D 0 if X is a hyperelliptic
curve and a is a Weierstrass point. This result was greatly extended in [5] by Colombo
and van Geemen, who worked with 1–cycles modulo algebraic equivalence and proved
that, for a d –gonal curve X , the cycle �dC1.X; a/ is algebraically equivalent to 0.
Although they do not state their result in this form, but as the vanishing modulo algebraic
equivalence of the components Zs; s � d �1 of the Beauville decomposition [1] of X

in its Jacobian, one can show that this is equivalent to the vanishing of �dC1.X; a/

modulo algebraic equivalence. For completeness, we will prove this fact in Section 4.1.

Concerning higher-dimensional varieties, Beauville and Voisin proved in [2] the fol-
lowing theorem:

Theorem 1.1 Let X be a K3 surface. Then there exists a canonical degree-1 zero-
cycle oX of X such that

(3) �3.X; oX /D 0 in CH2.X
3/:

In fact, oX can be defined as the class in CH0.X / of any point of X lying on a
(singular) rational curve in X .

In the paper [12], O’Grady investigates �m.X; a/ for higher m. He proves the following
results (for X smooth projective connected):

Theorem 1.2 (O’Grady [12]) (i) The cycle �nC1.X; a/ is cohomologous to 0,
for nD dim X and q.X /D 0. More generally �mC1.X; a/ is cohomologous
to 0 if and only if m� dim X Cd , where d is the dimension of the image of X

in its Albanese variety.

(ii) If �m.X; a/D 0 then �m0.X; a/D 0 for m0 �m.

(iii) If pW X ! Y is a ramified double cover and a is a branch point such that
�m.Y; a/D 0, then for mD 2 or mD 3, �2m�1.X; b/D 0, where p.b/D a.

He conjectures that (iii) holds for any m (see [12, Conjecture 5.1]). One of our results
is the proof of O’Grady’s conjecture, see (i) below, and a generalization to any degree,
see (ii) and (iii) below.

Theorem 1.3 Let pW X ! Y be a degree d finite morphism, where X;Y are smooth
projective and connected.

(i) Assume d D 2, a 2 CH0.Y / is a 0–cycle of degree 1 supported on the branch
locus of p , and b WD 1

2
p�a2CH0.X /. If �m.Y; a/D 0, then �2m�1.X; b/D 0.
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(ii) For any d , assume a2Y is a point such that the subscheme p�1.a/ is supported
on a point b 2X . If �m.Y; a/D 0, then �d.m�1/C1.X; b/D 0.

(iii) For any d , let b WD 1
d

p�a for some 0–cycle a 2 CH0.Y / of degree 1. If

�m.Y; a/D 0 in CHn.Y
m/=alg;

then
�d.m�1/C1.X; b/D 0 in CHn.X

d.m�1/C1/=alg:

Statement (i) of Theorem 1.3 has been obtained independently by Moonen and Yin [11].

Remark 1.4 When Y D Pn and d � nC 1, there always exists a point a 2 Pn as in
(ii); see [8]. In this case, we have �m.Y; a/D 0, with mD nC 1, hence we conclude
that for d th covers X of Pn with d � nC 1, �dnC1.X; b/D 0, with b D 1

d
p�.pt/.

Note also that any curve X of genus g admits a morphism of degree d � gC 1 to
P1 , which is totally ramified at one given point x . Hence we get �gC2.X;x/ D 0

for any x 2 X . This last result is also proved by Moonen and Yin [11] using the
Colombo–van Geemen vanishing result.

Remark 1.5 In the case where Y is P1 , so X is a d –gonal curve, Theorem 1.3(iii)
gives the vanishing �dC1.X; b/D 0 in CH1.X

dC1/=alg. As explained in Section 4.1,
this is equivalent to the Colombo–van Geemen theorem [5] mentioned above.

Another application of Theorem 1.3 is the following result, which will be deduced
from it in Section 2 using the smash nilpotence result of Voevodsky [14] for cycles
algebraically equivalent to 0:

Corollary 1.6 Let X be a smooth projective(connected) variety of dimension n. Then
for any a 2 CH0.X / of degree 1, there exists an integer m such that �m.X; a/D 0 in
CH.m�1/n.X m/.

Our second result is the following more precise statement:

Theorem 1.7 Let X be smooth projective connected of dimension n and let a 2

CH0.X / be of degree 1. Then, if X is swept-out by irreducible curves of genus g

supporting a zero-cycle rationally equivalent to a, and m � .nC 1/.gC 1/, one has
�m.X; a/D 0 in CH.m�1/n.X m/.

Note that such a g always exists: Indeed, consider curves in X which are complete
intersections of ample hypersurfaces containing the support of the cycle a. For suf-
ficiently high degree such hypersurfaces, these curves will sweep out X , and thus

Geometry & Topology, Volume 19 (2015)



3310 Claire Voisin

we can take for g the genus of the generic such curves. In the case where X is a
K3 surface, we know that X is swept-out by elliptic curves supporting the canonical
0–cycle. Hence we get from Theorem 1.7 the vanishing �6.X; oX /D 0, which is not
optimal in view of the relation (3) in Theorem 1.1.

We finally turn to the case of hyper-Kähler manifolds. For K3 surfaces, one can get as
a consequence of (3) the following properties of oX (note however that property (1)
below is used to prove (3) so that we do not actually recover it from (3). Nevertheless,
the consequences (1) and (2) indicate that surfaces satisfying (3) are quite special):

(1) The intersection of two divisors D;D0 on X is proportional to oX in CH0.X /.

(2) The second Chern class c2.X / is equal to 24oX .

In the paper [12], O’Grady formulates the following generalization of (3):

Conjecture 1.8 (O’Grady, [12, Conjecture 0.1]) Let X be a hyper-Kähler n–fold.
Then there exists a canonical 0–cycle oX 2 CH0.X / of degree 1 such that

�nC1.X; oX /D 0 in CHn.X
nC1/:

Note that by Theorem 1.2, (i), we have Œ�nC1.X; oX /� D 0 in H�.X nC1;Q/ and
that this is optimal. Conjecture 1.8 thus states that the cycles �k.X; oX / vanish in
CH.X k/ once they vanish in H�.X k ;Q/, which is very different from the situation
encountered in the case of curves (except for the hyperelliptic ones).

O’Grady establishes this conjecture for the punctual Hilbert schemes S Œ2� and S Œ3� of
a K3 surface. The canonical 0–cycle oX , for X D S Œn� , is naturally defined as the
class in CH0.X / of any point of X lying over noS 2 S .n/ , for some representative
oS 2 S of the canonical 0–cycle of S . We prove in Section 5 Conjecture 1.8 for
punctual Hilbert schemes X D S Œn� of K3 surfaces, and for any n, using methods
from Voisin [17] and recent results of Yin [20]:

Theorem 1.9 Let S be a K3 surface, and let X D S Œm� . Then

(4) �nC1.X; oX /D 0 in CHn.X
nC1/;

where oX is the canonical 0–cycle on X coming from the canonical 0–cycle of S ,
and nD dim X D 2m.

Note that one can recover from (4) the following result, which had been in fact already
proved in [17, Theorem 1.5].
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Corollary 1.10 The intersection of n divisors on X is proportional to oX in CH0.X /.

For the proof of Theorem 1.9, we will need three tools. The first ingredient is similar
to what we did in [17], namely we will use the de Cataldo–Migliorini theorem [4] and
will prove Proposition 5.6 in order to reduce to computations in the Chow rings of
the self-products Sk . The second ingredient is very new and it is provided by Yin’s
recent result [20] saying that the cohomological relations between the big diagonals of
a regular surface and the pull-back of the class of a point are generated (modulo trivial
relations) by the pull-backs of the Kimura relation and the cohomological counterpart
Œ�3.S; oS /�D 0 in H 8.S3;Q/ of the relation (3) (see also [12, Proposition 1.3]). We
then argue that the Kimura relation is not needed in our context, while the relation
�3.S; oS /D 0 is satisfied in the Chow ring by Theorem 1.1.

To conclude, let us remark that the next conjecture in the same spirit as Conjecture 1.8
was stated first in [17] for K3 surfaces, and then by Shen and Vial in [13] for general
hyper-Kähler manifolds:

Conjecture 1.11 Let X be a projective hyper-Kähler manifold and n>0 be an integer.
Then there exists a canonical 0–cycle oX 2 CH0.X / such that any polynomial relation
between the cohomology classes pr�i ŒoX �, i � n, pr�ij Œ�X �, i 6D j � n, already holds
in CH.X n/.

O’Grady’s Conjecture 1.8 is the particular case of Conjecture 1.11 which concerns
the class �nC1.X; oX /, nD dim X . As explained in [18] in the case of K3 surfaces,
Conjecture 1.11 is extremely strong since it implies finite dimensionality in the Kimura
sense, with very important consequences established by Kimura [10], in particular on
the nilpotency of self-correspondences homologous to 0. O’Grady’s Conjecture 1.8
does not seem to have such implications, so it is possibly of a nature different from
Conjecture 1.11.

The paper is organized as follows: In Section 2 we introduce variants �1;m.X; a/ of the
cycles �m.X; a/ which lie in CHn.X

mC1/, nD dim X , and relate them to �m.X; a/.
In Section 3, we will prove Theorem 1.7. Theorem 1.3 will be proved in Section 4 and
Theorem 1.9 will be proved in Section 5. The last Section 5.2 is devoted to the sketch
of the proof of a general theorem (Theorem 5.12) concerning universally defined cycles
on quasiprojective surfaces, which is used in the proof of Theorem 1.9. This result
is of independent interest and its complete proof will be given together with further
applications in [15].
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2 Cycles �1;m.X; a/

We first introduce the following notation: X being smooth projective, and a 2

CH0.X /Q being a zero-cycle of degree 1, we define �1;m.X; a/ 2CHn.X
mC1/Q by

(5) �1;m.X; a/ WD
Y

1�i�m

.p0i
��X �pi

�a/;

where:

(1) �X �X �X is the diagonal of X .

(2) p0i W X
mC1!X �X is the projection on the product of the first and .i C 1/st

factors.

(3) pi W X
mC1!X is the projection on the .iC1/st factor (our factors are indexed

by f0; : : : ;mg).

The cycles �m.X; a/ and �1;m.X; a/ are related as follows:

Lemma 2.1 We have

(6) �m.X; a/D p01;:::;m��
1;m.X; a/;

where we index the factors of X mC1 by f0; : : : ;mg and p0
1;:::;m

is the projection from
X mC1 to the product X m of its last m factors. We also have

(7) �mC1.X; a/D �1;m.X; a/�p�0a �p01;:::;m
�
.�m.X; a//:

Proof This is almost immediate. Developing the product in (5), we get

(8) �1;m.X; a/D
X

I�f1;:::;mg;jI jDi

.�1/ip0I
�
.a�i/ �p�0;J�mC1�i ;

where I tJ Df1; : : : ;mg, p0;J is the projection from X mC1 to the product X mC1�i

of factors indexed by f0g[J and p0
I

is the projection from X mC1 to the product X i

of the factors indexed by I � f1; : : : ;mg. Applying

p01;:::;m�W CHn.X
mC1/Q! CHn.X

m/Q;
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we get by the projection formula, using the fact that p0
I
D pI ıp0

1;:::;m
:

p01;:::;m��
1;m.X; a/D

X
I�f1;:::;mg;jI jDi

.�1/ip�I .a
�i/ �p01;:::;m�.p

�
0;J�mC1�i/:

Equation (6) then follows from the fact that p�
J
�m�i D p0

1;:::;m�
.p�

0;J
�mC1�i/ in

CHn.X
m/.

As for (7), we first write formula (1) for X mC1 , where as above we index the factors
of X mC1 by f0; : : : ;mg. This gives us

(9) �mC1.X; a/D
X

I�f0;:::;mg;iDjI j�m

.�1/ip0I
�
.a�i/ �p0J

�
�mC1�i 2 CHn.X

mC1/Q:

We now separate the terms where 0 62 I , which by (8) exactly give �1;m.X; a/, and
the terms where 0 2 I , which exactly give �p�

0
a �p0

1;:::;m
�
.�m.X; a//.

We deduce the following:

Proposition 2.2 The vanishing of �m.X; a/ in CHn.X
m/ is equivalent to the vanish-

ing of �1;m.X; a/ in CHn.X
mC1/.

Proof If �1;m.X; a/D 0 then �m.X; a/D 0 by (6). Conversely, if �m.X; a/D 0,
then [12, Proposition 2.4] shows that also �mC1.X; a/D 0. Equation (7) then implies
that �1;m.X; a/D 0.

A consequence of this result is the following statement comparing �m.X; a/ and
�m.X; b/, for two 0–cycles a; b 2 CH0.X / of degree 1.

Corollary 2.3 If �m.X; a/D0 and the cycle b�a satisfies .b�a/�kD0 in CH0.X
k/,

then �mCk.X; b/D 0.

Here we refer to (2) for the definition of the �–product (or external product) of cycles.

Proof Indeed, by Proposition 2.2, the assumption is equivalent to the vanishing
conditions

�1;m.X; a/D

iDmY
iD1

.p�0i.�X /�p�i a/D 0 in CHn.X
mC1/;

iDkY
iD1

p�i .b� a/D 0 in CH0.X
k/;
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where nD dim X . On the other hand, the conclusion is equivalent to the vanishing

�1;mCk.X; a/D

mCkY
iD1

.p�0i.�X /�p�i b/D 0 in CHn.X
mCkC1/:

We now write b D aC .b� a/, getting

�1;mCk.X; b/D

mCkY
iD1

�
.p�0i.�X /�p�i a/�p�i .b� a/

�
and develop the product. In the developed expression, the product of �m terms of the
form p�

0i
.�X /�p�i a is 0 and the product of � k terms of the form p�i .b� a/ is 0.

Hence we conclude that each monomial in the development is 0.

Here is another corollary of Proposition 2.2. It shows how to deduce Corollary 1.6 from
Theorem 1.3, and thus gives another proof of the nilpotency statement of Theorem 1.7,
with no estimate on the nilpotency index.

Corollary 2.4 Let X be a smooth projective connected variety and let a be a 0–cycle
of degree 1 on X such that �m.X; a/D 0 in CH.X m/=alg. Then for any 0–cycle b

of degree 1 on X , there is an integer M such that �M .X; b/D 0 in CH.X M /.

Proof As a and b are algebraically equivalent, we also have �m.X; b/ D 0 in
CH.X m/=alg. By Proposition 2.2, which is true and proved in the same way for
cycles modulo algebraic equivalence (observing that [12, Proposition 2.4] is true
as well for cycles modulo algebraic equivalence), this is equivalent to the fact that
�1;m.X; b/ is algebraically equivalent to 0 in X mC1 . By the smash-nilpotence result
of Voevodsky [14], there is an integer N such that the cycle �1;m.X; b/�N vanishes
identically in CH.X N.mC1//. Thus its restriction to X N mC1 embedded in X N.mC1/

as the small diagonal on the factors of index 0;mC1; 2mC2; : : : ; .N �1/.mC1/ also
vanishes in CH.X N mC1/. But this restricted cycle is nothing but �1;N m.X; b/.

The following criterion for the vanishing of �m.X; a/ will be used in Section 4. Here
we consider more generally the vanishing of �m.X; a/ modulo an adequate equivalence
relation R which in applications will be rational or algebraic equivalence. We need an
assumption on the 0–cycle a of degree 1, namely

(10) p�1a �p�2aD��a in CH0.X �X /=R;

where � is the diagonal inclusion map of X in X �X . This assumption is satisfied
for any R if a is a point, or for any 0–cycle if R is algebraic equivalence, and X is
connected.
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Proposition 2.5 Assume a satisfies (10). Then �m.X; a/D 0 in CH.X m/=R if and
only if

�1;m�1.X; a/D p�0a �� in CHn.X
m/=R; nD dim X;

for some cycle � 2 CH2n.X
m/=R.

The proof of Proposition 2.5 will use the following

Lemma 2.6 Assume the degree-1 zero-cycle a of X satisfies (10). Then for any Y

and any cycle � 2 CH.X �Y /=R, we have

p�X a �� D p�X a �p�Y �a in CH.X �Y /=R;

where
�a WD pY �.p

�
X a ��/ in CH.Y /=R:

Proof Let aD
P

i niai , where ai 2X . Then

p�X a �� D
X

i

nip
�
X ai �� D

X
i

niai ��ai
D

X
i

nip
�
X ai �p

�
Y �ai

;

where �ai
2 CH.Y /=R is the restriction of � to ai � Y . So we need to prove that,

assuming (10),

(11)
X

i

nip
�
X ai �p

�
Y �ai

D p�X a �p�Y �a in CH.X �Y /=R;

where �a D
P

i ni�ai
2 CH.Y /=R. Note that (10) is exactly the case of (11) where

X D Y and � is the diagonal of X . The general case is then deduced from this one by
introducing the following correspondence � 0 between X �X and X �Y . Namely, let:

� pX ;Y W X �X �X �Y !X �Y be the projection onto the product of the second
and last factors.

� pX ;X W X �X �X �Y !X �X be the projection onto the product of the first
and third factors.

Let now � 0 WD p�
X ;X

�X �p
�
X ;Y

� 2 CH.X �X �X �Y /. We clearly have

� 0�..x;y//D p�X x �p�Y �y in CH.X �Y /:

Formula (10) tells us that on X �X , p�
1
a ��X D p�

1
a �p�

2
a modulo R, so that by the

above formula,

� 0�.p
�
1a ��X /D

X
i

nip
�
X ai �p

�
Y �ai

D � 0�.p
�
1a �p�2a/D

X
ij

ninj p�X ai �p
�
Y �aj D p�X a �p�Y �a
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in CH.X �Y /=R. This proves (11).

Proof of Proposition 2.5 We have by (7)

�m.X; a/D �1;m�1.X; a/�p�0a �p�1;:::;m�1�
m�1.X; a/

so if �m.X; a/D 0 in CH.X m/=R, we get

�1;m�1.X; a/D p�0a �p�1;:::;m�1�
m�1.X; a/ in CH.X m/=R:

This proves one direction (for which we do not need (10)). In the other direction, we
assume (10) and

(12) �1;m�1.X; a/D p�0a �� in CHn.X
m/=R

for some cycle � 2 CH2n.X
m/=R. We now use Lemma 2.6 which gives

p�0a �� D p�0a �p�1;:::;m�1.p1;:::;m�1�.p
�
0a ��//:

By (12), this gives

p�0a �� D p�0a �p�1;:::;m�1.p1;:::;m�1�.�
1;m�1.X; a/// in CHn.X

m/=R:

As p1;:::;m�1�.�
1;m�1.X; a//D �m�1.X; a/ by (6), we get

�1;m�1.X; a/D p�0a �p�1;:::;m�1.�
m�1.X; a// in CHn.X

m/=R:

Using (7), we conclude that

�m.X; a/D�1;m�1.X; a/�p�0a�p�1;:::;m�1.�
m�1.X; a//D0 in CHn.X

m/=R:

3 Proof of Theorem 1.7

We prove in this section Theorem 1.7, that is the following statement:

Theorem 3.1 Let X be a variety of dimension n and let a 2 CH0.X / be of degree 1.
If X is swept-out by irreducible curves of genus � g supporting a 0–cycle rationally
equivalent to a, and m� .nC 1/.gC 1/, then �m.X; a/D 0.

Note that for g D 0, we get the following corollary:

Corollary 3.2 Let X be a rationally connected manifold of dimension n. Then
�nC1.X; o/D 0 for any point o 2X .

This corollary will be improved at the end of this section in Theorem 3.6.
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Proof of Theorem 3.1 By Proposition 2.2, it suffices to prove the vanishing of
�1;m.X; a/. Let us see �1;m.X; a/ as a correspondence between X and X m . Then
for any x 2X , we have

�1;m.X; a/jx�X m D .x� a/�m in CH0.X
m/Q:

Recall now the following result proved in [14; 16]:

Lemma 3.3 Let C be a smooth connected curve of genus g , and let z 2 CH0.C /Q
be a 0–cycle of degree 0 on C . Then for k > g , z�k D 0 in CH0.C

k/Q .

Our assumption is now that X is swept out by irreducible curves of genus � g

supporting a 0–cycle rationally equivalent to a. This means that for any x 2X , there
is a smooth connected curve Cx of genus � g mapping to X via a morphism fx , a
point x0 2 Cx such that fx.x

0/D x and a 0–cycle a0 2 CH0.Cx/Q of degree 1, such
that fx�.a

0/D a in CH0.X /Q . It is then clear that

f k
x �..x

0
� a0/�k/D .x� a/�k in CH0.X

k/Q:

We thus conclude by Lemma 3.3 that for k > g , and for any x 2X

(13) �1;k.X; a/jx�X k D .x� a/�k D 0 in CH0.X
k/Q:

We use now the following general principle which is behind the Bloch–Srinivas de-
composition of the diagonal [3]; see [18, Section 3.1]:

Theorem 3.4 Let �W W ! Y be a morphism, where W is smooth of dimension m.
Let Z be a codimension-k cycle on W . Assume that, for general y 2Y , the restriction
ZjWy

vanishes in CHk.Wy/. Then there is a dense Zariski open set U � Y , such that
ZU D 0 in CHk.WU /. Equivalently, there exist a nowhere dense closed algebraic
subset D ¤ Y and a cycle Z0 2 CHm�k.WD/Q such that

Z DZ0 in CHk.W /Q:

(Here we use the notation WD WD �
�1.D/;WU WD �

�1.U /.) Applying this statement
to Y DX , W DX kC1 , � the projection to the first factor and Z D �1;k.X; a/, we
conclude from (13) that under the assumptions of Theorem 3.1, there exists for k > g

a proper closed algebraic subset D ¤ X , such that �1;k.X; a/ is rationally equivalent
to a cycle supported on D �X k .

Recall now the formula (5) defining �1;k :

�1;k.X; a/ WD
Y

1�i�k

.p�0i�X �p�i a/:

Geometry & Topology, Volume 19 (2015)



3318 Claire Voisin

It follows immediately that

(14) �1;kCk0.X; a/D p�0;1�i�k�
1;k.X; a/ �p�0;kC1�i�kCk0�

1;k0.X; a/;

where
p0;1�i�k W X

kCk0C1
!X kC1

is the projection on the product of the kC 1 first factors and

p0;kC1�i�kCk0 W X
kCk0C1

!X k0C1

is the projection on the product of the first factor (indexed by 0) and the last k 0 factors.

For m � .nC 1/.gC 1/, we write mD .nC 1/.gC 1/C r , for some r � 0 and we
get from (14):

�1;m.X; a/D p�0;1�i�gC1.�
1;gC1/ �p�0;gC2�i�2.gC1/.�

1;gC1/

� � �p�0;n.gC1/C1�i�.nC1/.gC1/.�
1;gC1/ �p�0;.nC1/.gC1/C1�i�.nC1/.gC1/Cr .�

1;r /:

Now we proved that the cycle �1;gC1 is supported (via the first projection X gC2!X )
over a proper algebraic subset D ¦ X , and by the easy moving Lemma 3.5 below, we
can choose closed algebraic subsets D1; : : : ;DnC1 such that

T
i Di D∅ and �1;gC1

is supported (via the first projection X gC2 ! X ) over the proper algebraic subset
Di ¦ X for each i .

Then we conclude that for m� .nC 1/.gC 1/, �1;m.X; a/ is supported (via the first
projection X .nC1/.gC1/CrC1!X ) over the proper algebraic subset

T
i Di D∅, and

thus is equal to 0.

Lemma 3.5 Let Y be irreducible and let Z be a cycle on a product Y �W . Assume
there exists a proper closed algebraic subset D ¦ Y such that Z is rationally equivalent
to a cycle Z0 supported on D �W . Then for any finite set of points y1; : : : ;yl 2 Y ,
there is a D0¦ Y such that none of the yj belongs to D0 and Z is rationally equivalent
to a cycle Z00 supported on D0 �W .

Proof Let � W zD!D be a desingularization of D
i
,! Y . The cycle Z0 of D �W

with rational coefficients lifts to a cycle zZ0 of zD �W . Let zi D i ı � W zD! Y be the
natural map and let �zi � zD �Y be its graph. Since �zi has codimension nD dim Y ,
and dimension � n� 1, there is a cycle � 0 � zD �Y rationally equivalent to �zi and
not intersecting zD � fy1; : : : ;ylg. In other words, pr2.Supp� 0/ does not contain any
of the points yi . We have by assumption

Z D .i; IdW /�Z
0
D .zi ; IdW /� zZ

0
D .�zi ; IdW /�. zZ

0/D .� 0; IdW /�. zZ
0/
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in CH.Y �W /. Now, the cycle .� 0; IdW /�. zZ
0/ is supported on pr2.Supp� 0/�W ,

so the result is proved with D0 D pr2.Supp� 0/, and Z00 D .� 0; IdW /�. zZ
0/.

To conclude this section, let us observe that the same scheme of proof applies to give
the following result, which is a generalization of Corollary 3.2:

Theorem 3.6 Let X be a connected smooth projective variety with CH0.X / D Z.
Then for the canonical degree-1 0–cycle o on X , �nC1.X; o/ D 0 in CHn.X

nC1/,
where nD dim X .

Proof Indeed, the Bloch–Srinivas decomposition of the diagonal [3] gives an equality

�X �X � oDZ in CHn.X �X /;

where Z is supported over D �X , for some divisor D �X . By Lemma 3.5, we can
write such a decomposition with nC 1 divisors D1; : : : ;DnC1 such that

T
i Di D∅.

We then conclude that �1;nC1.X; o/ D
QnC1

iD1 p�
0i
.�X � X � o/ is equal to 0 in

CHn.X
nC2/, and it follows from Proposition 2.2 that

�nC1.X; o/D 0 in CHn.X
nC1/:

4 Proof of Theorem 1.3

We will first give the proof of Theorem 1.3(i). Let us recall the statement:

Theorem 4.1 Let Y be smooth projective, and let � W X ! Y be a degree-2 finite
morphism, where X is smooth projective. Let a 2 CH0.Y / be a 0–cycle of degree 1

supported on the branch locus of � . Then if �m.Y; a/D 0, we have �2m�1.X; b/D 0,
where b D 1

2
��a 2 CH0.X /.

Remark 4.2 The assumption made on a and b is maybe not optimal, but in any
case the condition b D 1

2
��a is not sufficient. Indeed, consider the case where

Y is connected with �m.Y; a/ D 0, and X consists of two copies of Y with b D
1
2
��a 2 CH0.X /. Then �k.X; b/ is different from 0 for any k (in fact it is not even

cohomologous to 0).

We will denote by �2 D .�; �/W X �X ! Y �Y . Let i W X !X be the involution of
X over Y and �i �X �X be its graph. We then have

��2 .�Y /D�X C�i :
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Let
�C

X
D ��2 .�Y /D�X C�i ; �

�
X D�X ��i :

We thus have

(15) 2�X D�
C

X
C��X :

Lemma 4.3 Under the assumptions of Theorem 4.1, we have the following equalities
in CHn.X �X �X /, where n WD dim X ,

p�12�
�
X �p

�
13�

�
X D p�12�

C

X
�p�23�

�
X ;(16)

p�2b �p�23�
�
X D 0;(17)

hence

(18) p�12�
�
X �p

�
13�

�
X D p�12.�

C

X
� 2p�2b/ �p�23�

�
X :

Proof We compute the left-hand side of (16); we have

p�12�
�
X �p

�
13�

�
XDp�12.�X��i/ �p

�
13.�X��i/

Dp�12�X �p
�
13�X�p�12�X �p

�
13�i�p�12�i �p

�
13�XCp�12�i �p

�
13�i :

We observe now that

p�12�X �p
�
13�X D p�12�X �p

�
23�X ; p�12�X �p

�
13�i D p�12�X �p

�
23�i ;

p�12�i �p
�
13�X D p�12�i �p

�
23�i ; p�12�i �p

�
13�i D p�12�i �p

�
23�X :

It thus follows that

(19) p�12�
�
�p�13�

�

D p�12�X �p
�
23�X �p�12�X �p

�
23�i �p�12�i �p

�
23�i Cp�12�i �p

�
23�X :

The right-hand side of (19) is clearly equal to

.p�12�X Cp�12�i/ � .p
�
23�X �p�23�i/;

which is by definition p�
12
�C

X
�p�

23
��

X
, thus proving formula (16).

In order to prove formula (17), we use the fact that the 0–cycle b can be written asP
j nj xj , where the xj are i –invariant. By linearity, it thus suffices to prove (17)

when b is an i –invariant point of X . Now we have

p�2b �p�23�
�
D p�23..b; b/� .b; ib//D 0:
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Proof of Theorem 4.1 By (6), we have to prove that

p1;:::;2m�1�.�
1;2m�1.X; b//D 0 in CHn.X

2m�1/Q:

Now, by (5) and (15), using

2b D ��a; �C
X
D ��2�Y ;

we get

(20) 22m�1�1;2m�1.X; b/D p�01.�
�
2�

a
Y C�

�
X / � � �p

�
0;2m�1.�

�
2�

a
Y C�

�
X /:

Here we use the notation

�a
Y D�Y �p�2a 2 CHn.Y �Y /Q;

so that we have �C
X
� 2p�

2
b D ��

2
�a

Y
and (18) can be written as

(21) p�12�
�
X �p

�
13�

�
X D p�12.�

�
2�

a
Y / �p

�
23�

�
X :

Our assumption �m.Y; a/D 0 on Y can be written using Proposition 2.2 as

(22) q�01�
a
Y � q

�
02�

a
Y � � � q

�
0m�

a
Y D 0 in CHn.Y

mC1/Q;

where the q0i W Y
mC1 ! Y � Y are the projectors onto the product of the first and

.i C 1/st factors.

Denote by �r W X
r ! Y r . We then clearly have for any r

(23) ��rC1.q
�
01�

a
Y � � � q

�
0r�

a
Y /D p�01.�

�
2�

a
Y / � � �p

�
0r .�

�
2�

a
Y / in CH.X r /;

and similarly for any choice of indices i1; : : : ; ir in f1; : : : ; 2m� 1g. Developing now
the product in (20), we get a sum of monomials which up to reordering the factors take
the form

(24) p�01.�
�
2�

a
Y / � � �p

�
0r .�

�
2�

a
Y / �p

�
0;rC1�

�
X � � �p

�
0;2m�1�

�
X

for some r . These terms vanish for r �m by (23) and (22).

We now conclude the proof as follows: The terms p�
0i
��

X
for i � rC1 can be grouped

by pairs, and there are at least b.2m� 1� r/=2c such pairs. By (21), for each such
pair, we have

p�0i�
�
X �p

�
0;iC1�

�
X D p�0i.�

�
2�

a
Y / �p

�
i;iC1�

�:

Hence each such pair produces a summand p�
0i
.��

2
�a

Y
/. In total we get in (24) at least

rCb.2m�1�r/=2c factors of the form p�
0j
.��

2
�a

Y
/. We have rCb.2m�1�r/=2c�m

unless r D 0, and it follows that (24) vanishes for r � 1. Hence we proved that the
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only possibly nonzero monomial of the form (24) in the developed product (20) is
p�

01
.��

X
/ � � �p�

0;2m�1
��

X
. Thus we proved that

(25) 22m�1�1;2m�1.X; b/D p�01.�
�
X / � � �p

�
0;2m�1�

�
X in CH.X 2m/:

Let i 0 be the involution .i; Id; : : : ; Id/ acting on X 2m . Observe that each cycle p�0j�
�
X

is skew-invariant under i 0
� . It follows from (25) that p�01.�

�
X
/ � � �p�0;2m�1�

�
X

is
skew-invariant under i 0

� , hence also under i 0� D i 0
� . But as we have

p1;:::;2m�1 ı i 0 D p1;:::;2m�1;

we get

�2m�1.X; b/D p1;:::;2m�1�.�
1;2m�1.X; b//D p1;:::;2m�1� ı i 0�.�

1;2m�1.X; b//

D�p1;:::;2m�1�.�
1;2m�1.X; b//D��2m�1.X; b/;

so that �2m�1.X; b/D 0 in CHn.X
2m�1/.

We now turn to the proof of Theorem 1.3(ii), (iii): In fact, the result will take the
following more precise form:

Theorem 4.4 Let � W X ! Y be a finite morphism of degree d . If �m.Y; a/D 0 in
CH.Y m/=R for some adequate equivalence relation R, and b D 1

d
p�a satisfies

(26) b � b D��.b/ in CH0.X �X /=R;

where �W X !X �X is the diagonal inclusion map, then �d.m�1/C1.X; b/D 0 in
CH.X dm/=R.

Statement (ii) of Theorem 1.3 is the case where R is rational equivalence (that is RD0)
and b is the class of a point of X , as all points satisfy (26) modulo rational equivalence.
Statement (iii) of Theorem 1.3 is the case where R is algebraic equivalence. Indeed,
Theorem 4.4 applies since the equality b�bD��.b/ in CH0.X�X / modulo algebraic
equivalence is satisfied by 0–cycles of degree 1 on a connected variety.

We first introduce some notation. Let as above �a
Y
WD�Y �p�

2
a 2 CHn.Y �Y / and

similarly �b
X
WD�X �p�

2
b 2 CHn.X �X /. In both expressions, p2 is the projection

from Y �Y , resp. X �X onto its second factor. The proof of Theorem 4.4 will use
the following result (which will replace formula (16) used previously when d D 2):
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Proposition 4.5 The morphism � W X!Y and the 0–cycle b being as in Theorem 4.4,
there exist cycles �i 2 CH.d�1/n.X dC1/ such that

(27)
dY

iD1

p�0i�
b
X D

X
i

p�0i.�
�
2�

a
Y / �p

�
0;Dnfig�i in CHnd .X dC1/=R;

where D is the set f1; : : : ; dg and as usual p0;Dnfig is the projection onto the product
of the factors indexed by the set f0g[D n fig.

Before giving the proof, we will first prove a similar statement of independent interest
for �X and �Y , instead of �b

X
and �a

Y
, as the proof is much simpler to write and we

will use similar but slightly more involved arguments to prove Proposition 4.5. Namely,
we have the following result:

Proposition 4.6 Let � W X ! Y be a finite morphism of degree d . There exist cycles
� 0i 2 CHn.d�1/.X dC1/ such that

(28)
dY

iD1

p�0i�X D

X
i

p�0i.�
�
2�Y / �p

�
0;Dnfig�

0
i in CHnd .X dC1/:

Proof Indeed, let us denote by Ek � CH.X kC1/ the ideal generated by the elements
p�

0i
.��

2
�Y /, i D 1; : : : ; k . Next let

(29) †1 WD �
�1
2 .�Y /��X 2 CH.X �X /:

Note that, because � is finite of degree d , †1 is the class of the Zariski closure in X�X

of the subvariety f.x;x1/ 2X 0�X 0; �.x1/D �.x/;x1 6D xg where X 0 WD ��1.Y 0/

and Y 0 is the open set of Y over which � is étale of degree d . The first projection
pr1W †1! X has degree d � 1. Let us denote more generally by †k � X kC1 the
Zariski closure in X kC1 of the subvariety

(30) f.x;x1; : : : ;xk/2 .X
0/kC1

j�.xi/D�.x/;xi 6Dxj for i 6Dj ;xi 6Dx for all ig:

The contents of formula (28) is that
Qd

iD1 p�
0i
�X belongs to Ed . It is therefore a

consequence of the following statement:

Claim 4.7 For any integer k � 1, one has

(31) ˛k

kY
iD1

p�0i�X D†k in CH.X kC1/=Ek ;

with ˛k D .�1/kk!. In particular,
Qd

iD1 p�
0i
�X D 0 in CH.X dC1/=Ed .
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The second statement follows from the first since †d is empty. The first statement
is proved by induction on k . For k D 1, the result is (29). The induction step is
immediate: we have the following equalities in CH.X kC2/:

kC1Y
iD1

p�0i�X D p�0;:::;k

� kY
iD1

p�0i�X

�
�p�0;kC1�X(32)

D�

� kY
iD1

p�0i�X

�
�p�0;kC1†1 mod EkC1

D�
1

˛k
p�0;:::;k.†k/ �p

�
0;kC1†1 mod EkC1:

On the other hand, we observe that †kC1 is obtained from p�
0;:::;k

.†k/ �p
�
0;kC1

†1

by removing in the fibered product the components where xkC1 equals one of the xi

for i D 1; : : : ; k . This gives rise to the following identity:

(33) p�0;:::;k.†k/ �p
�
0;kC1†1 D†kC1C

kX
iD1

p�0;:::;k.†k/ �p
�
i;kC1�X :

In the right-hand side of (33), we can replace (using again the induction hypothesis)
†k by ˛k

Qk
jD1 p�

0j
�X mod Ek and we also observe that

(34)
kY

jD1

p�0j�X �p
�
i;kC1�X D

kC1Y
iD1

p�0i�X

for any i D 1; : : : ; k . Hence we get, using (32), (33) and (34),

kC1Y
iD1

p�0i�X D�
1

˛k

†kC1� k

kC1Y
iD1

p�0i�X :

This finally provides
˛kC1

kC1Y
iD1

p�0i�X D†kC1

with ˛kC1 D�.kC 1/˛k .

Proof of Proposition 4.5 We follow the above argument with �X , �Y replaced by
�b

X
and �a

Y
, in order to prove Lemma 4.8 below. We use the following notation: We

will work with the n–cycle †b
k

of X kC1 obtained by replacing formally in the definition
(30) of †k each xi by xi � b and developing multilinearly. More rigorously, †k

admits morphisms p;pi W †k !X , obtained by restricting the projections X kC1!

X (where the factors are indexed by f0; : : : ; kg and p D p0 ). Let �i � †k � X
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be the graphs of these projections. Then we can obviously define †k � X kC1 as
.p; prX k /�.

Qk
iD1 pr�

†k ;i
�i/, where:

� prX k W †k�X k!X k is the second projection and .p; prX k /W †k�X k!X kC1

is the obvious morphism.

� pr†k ;i
W †k �X k !†k �X is the projection on the product of the first factor

and the i th factor of X k .

On the other hand, we also have in †k�X the graph †k�fbg of the constant morphism
mapping to b if b is a point, or more generally the n–cycle pr�

X
b if b is any 0–cycle

of degree 1. We then define analogously †b
k

as follows:

(35) †b
k D .p; prX k /�

� kY
iD1

pr�†k ;i
.�i � pr�X b/

�
in CH.X kC1/:

Developing the product above, we see that the formula for †b
k

is of the form

(36) †b
k D

X
I�f1;:::;kg

.�1/k�i�k;i;dp�0;I†i �p
�
J b�j 2 CHn.X

kC1/;

where in the formula above, I tJ D f1; : : : ; kg, i D jI j, and the �k;j ;d are combina-
torial coefficients given by the formula

(37) �k;i;d D .d � i � 1/.d � i � 2/ � � � .d � k/:

Indeed, the reason for (37) is the fact that the projection map

p0;I W †k !†i �X iC1

has degree .d� i�1/.d� i�2/ � � � .d�k/. Note in particular, that †b
k
D 0 for k � d .

Next we define Ek;a;R � CH.X kC1/=R as the ideal generated by the p�
0;i
�a

Y
for

i D 1; : : : ; k . Recall that �1;k.X; b/D
Qk

iD1 p�
0i
�b

X
.

Lemma 4.8 The morphism � W X ! Y and the 0–cycle b being as in Theorem 4.4,
for any integer k � 1, one has

(38) ˛k�1;k.X; b/D†
b
k in CH.X kC1/=Ek;a;R;

Proof We have by (36), (37)

�b
X D �

�
2�

a
Y �†

b
1;
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which can be written as �b
X
D �†b

1
mod E1;a;R , proving the case k D 1. Assume

the formula is proved for k . Then we have

(39) p�0;1;:::;k†
b
k �p

�
0;kC1†

b
1 D�˛kp�0;1;:::;k�

1;k.X; b/ �p�0;kC1�
b
X

D�˛k�
1;kC1.X; b/ in CH.X kC2/=EkC1;b;R:

Next we claim that we have the following relation in CH.X kC2/=R:

(40) p�0;1;:::;k†
b
k �p

�
0;kC1†

b
1

D†b
kC1C

kX
iD1

p�0;:::;k†
b
k �p

�
i;kC1�

b
X �

kX
iD1

p�
0;:::;Oi;kC1

†b
k �p

�
i b:

This relation uses in a crucial way the identity

(41) ��b D p�1b �p�2b in CH0.X �X /=R:

The beginning

p�0;1;:::;k†
b
k �p

�
0;kC1†

b
1 D†

b
kC1C

kX
iD1

p�0;:::;k†
b
k �p

�
i;kC1�

b
X C � � �

of the formula (40) is easily understood: it expresses the fact that in the left-hand side,
we include all possible xkC1 6D x , while in †b

kC1
, we have to take into account the

restriction xkC1 6D xi for i D 1; : : : ; k . The last term in (40) is explained as follows.
The intersection with p�

i;kC1
�b

X
D p�

i;kC1
�X �p�

kC1
b produces a term

��.xi � b/� .xi � b; b/D .xi ;xi/���b� .xi ; b/Cp�i bp�kC1b D .xi ;xi/� .xi ; b/

on the product of the i th and .kC 1/st factors. On the other hand, we had on the left
in (40) the term

.xi � b/� .xi � b/D .xi ;xi/� .xi ; b/� .b;xi/C .b; b/

in the product of the i th and .kC 1/st factors, which is unwanted in the development
of †b

kC1
. Hence we also have to add on the right the extra term �.b;xi � b/ on the

product of the i th and .k C 1/st factors, which is exactly the meaning of the term
�p�

0;:::;Oi;kC1
†b

k
�p�i b . Thus the claim is proved.

Combined with (39) and the inductive assumption, (40) gives

(42) �˛k�
1;kC1.X; b/D†b

kC1C˛k

� kX
iD1

p�0;:::;k�
1;k.X; b/ �p�i;kC1�

b
X

�

kX
iD1

p�
0;:::;Oi;kC1

�1;k.X; b/ �p�i b

�
:
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The equality above holds in CH.X kC2/=EkC1;a;R . Let us now prove that for any i ,

(43) p�0;:::;k�
1;k.X; b/ �p�i;kC1�

b
X �p�

0;:::;Oi;kC1
�1;k.X; b/ �p�i b D �1;kC1.X; b/

in CH.X kC2/=R. As

�1;k.X; b/D

kY
iD1

p�0i�
b
X ; �

1;kC1.X; b/D

kC1Y
iD1

p�0i�
b
X ;

it clearly suffices to show that the cycles

p�01�
b
X �p

�
12�

b
X �p�1b �p�02�

b
X and p�01�

b
X �p

�
02�

b
X

of X 3 are equal in CH.X 3/=R. We have

p�01�
b
X �p

�
12�

b
X �p�1b �p�02�

b
X

D .p�01�X �p�1b/ � .p�12�X �p�2b/�p�1b �p�02�XCp�1b �p�2b

D p�01�X �p
�
12�X�p�01�X �p

�
2b�p�1b�p�12�XCp�1b�p�2b�p�1b�p�02�XCp�1b�p�2b

D p�01�X �p
�
02�X�p�01�X �p

�
2b�p�1b �p�02�XCp�1b �p�2b

in CH.X 3/=R because we assumed p�
1
b � p�

12
�X D p�

1
b � p�

2
b in CH.X 3/=R; see

(26). On the other hand,

p�01�
b
X �p

�
02�

b
X D .p

�
01�X �p�1b/ � .p�02�X �p�2b/

D p�01�X �p
�
02�X �p�01�X �p

�
2b�p�1b �p�02�X Cp�1b �p�2b:

Hence we proved that both terms in (43) are equal; using (42), we then get

�˛k�
1;kC1.X; b/D†kC1;bC˛k

� kX
iD1

�1;kC1.X; b/

�
;

hence
�.kC 1/˛k�

1;kC1.X; b/D†kC1;b in CH.X kC2/=R

and Lemma 4.8 is proved.

Finally, Lemma 4.8 for k D d implies Proposition 4.5 since †b
d
D 0.

Proof of Theorem 4.4 By Proposition 4.5 applied to each set of d indices f1; : : : ; dg,
fd C 1; : : : ; 2dg, f.m� 2/d C 1; : : : ; .m� 1/dg, we can write

Qd.m�1/
iD1

p�
0i
�b

X
as a

sum of products of m� 1 cycles, each of them being of the form p�
0i
.��

2
�a

Y
/ �� 00 for

an adequate index i (one in each of the sets above). We now apply Proposition 2.5 to
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both Y and X . Thus the assumption �m.Y; a/D 0 implies that for some cycle �Y

on Y m ,
m�1Y
iD1

p�0i�
a
Y D p�0a ��Y in CH.Y m/=R:

Applying this relation to each product of m�1 factors
Qm�1

kD1 p�
0ik
.��

2
�a

Y
/ for adequate

indices ik appearing above, we conclude that

�1;d.m�1/.X; b/D

d.m�1/Y
iD1

p�0i�
b
X D p�0b ��X in CH.X d.m�1/C1/=R

for some cycle �X on X d.m�1/C1 . By Proposition 2.5, and using the fact that b

satisfies property (26), (that is, condition (10) in Proposition 2.5), we conclude that
�d.m�1/C1.X; b/D 0 in CH.X d.m�1/C1/=R.

4.1 Case of curves

A special case of Theorem 1.3(iii) is the case where Y D P1 , so X is a d –gonal
curve. We then get the vanishing �dC1.X; b/D 0 in CH1.X

dC1/=alg, where b is any
point of X . Recall now the Beauville decomposition of cycles on an abelian variety A

modulo rational or algebraic equivalence,

CHi.A/D
M

s

CHi.A/s;

with
CHi.A/s WD fz 2 CHi.A/ j �k�z D k2iCsz for all k 2 Z�g

and similarly for Chow groups modulo algebraic equivalence. Here �k W A!A is the
morphism a 7! ka. Let now X be a smooth genus g projective curve and A WD J.X /.
X has an embedding in J.X / which is canonical up to translation, hence determines
a 1–cycle Z in J.X /, well defined modulo algebraic equivalence. Thus we have a
Beauville decomposition

Z D
X

s

Zs in CH1.A/=alg:

For nonvanishing results concerning the cycles Zs (when X is very general) and its
decomposition, let us mention [7; 19] (in the later paper, it is proved that if g � s2=2,
then Zs 6D 0 modulo algebraic equivalence for a very general curve X of genus g ).

Let us show the following:

Proposition 4.9 The vanishing of �dC1.X; b/ in CH1.X
dC1/=alg is equivalent to

the vanishing of Zs , for all s � d � 1, in CH1.J.X //=alg.
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Proof It suffices to prove the result for d �g�1, because we know by Theorem 1.3(iii)
(see Remark 1.5) that �dC1.X; b/D0 in CH1.X

dC1/=alg for some d �g�1. Assum-
ing the proposition proved for d � g�1, this implies that Zs D 0 in CH1.J.X //=alg
for all s � g� 1, and thus for d � g , both vanishing statements are true.

We thus assume d � g � 1; note that the cycle �dC1.X; b/ is a 1–cycle of X dC1

which is invariant under the action of the symmetric group SdC1 , so that its van-
ishing in CH1.X

dC1/=alg is equivalent to the vanishing of its image �dC1.X; b/ in
CH1.X

.dC1//=alg. We now consider the inclusion

bg�d�1W X
.dC1/

!X .g/; z 7! zC .g� d � 1/b

and claim that
�dC1.X; b/D 0 in CH1.X

.dC1//=alg

if and only if

bg�d�1�.�
dC1.X; b//D 0 in CH1.X

.g//=alg:

Indeed, there is an incidence correspondence

†�X .dC1/
�X .g/; †D f.z; z0/ j z0 D zC z00 for some z00 2X .g�d�1/

g:

It is not hard to see that, due to its special form, the cycle �dC1.X; b/ satisfies

†�
�
bg�d�1�.�

dC1.X; b//
�
D �dC1.X; b/;

which proves the claim.

The next step is to observe that the Griffiths group of 1–cycles homologous to 0

modulo algebraic equivalence is a birational invariant. This is elementary to show using
resolution of indeterminacies of birational maps, as it is invariant under blow-up and is
functorial under pushforward and pullbacks under generically finite morphisms. As
X .g/ is birational to J.X / via the Abel map, we conclude that �dC1.X; b/D 0 in
CH1.X

.dC1//=alg if and only if its image W WD aX �.�
dC1.X; b// in J.X / under

the Abel map aX W C
.dC1/! J.X / vanishes in CH1.J.X //=alg.

Finally, we observe that a cycle appearing in the formula (1) for �dC1.X; b/, which is
up to permutation of the form

f.x; : : : ;x; b; : : : ; b/ j x 2X g;

where x appears k times and b appears d C 1� k times, maps under the Abel map
aX to a 1–cycle of J.X / algebraically equivalent to �k�.Z/. The vanishing of W in
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CH1.J.X //=alg thus gives

(44)
dC1X
kD1

.�1/dC1�k

�
d C 1

k

�
�k�Z D 0 in CH1.J.X //=alg:

Writing the Beauville decomposition

Z D
X

s

Zs;

the vanishing of W in CH1.J.X //=alg is equivalent to

(45)
dC1X
kD1

.�1/dC1�k

�
d C 1

k

�
k2CsZs D 0 in CH1.J.X //=alg

for any s .

We now have the following easy lemma:

Lemma 4.10 We have
dC1X
kD1

.�1/dC1�k

�
d C 1

k

�
k2Cs

D 0 for s � d � 2,

dC1X
kD1

.�1/dC1�k

�
d C 1

k

�
k2Cs

6D 0 for s � d � 1.

This shows that the vanishing (45) is equivalent to the vanishing of Zs for s� d�1.

Remark 4.11 Proposition 4.9 is also proved in [11], where it is used to deduce the
vanishing �gC2.X; a/D 0 of Remark 1.4, for any point a 2X , from the main result
of Colombo and van Geemen [5].

5 Hyper-Kähler manifolds

5.1 Proof of Theorem 1.9

We prove in this section the following theorem (see Theorem 1.9 of the introduction):

Theorem 5.1 Let S be a K3 surface, and let X D S Œn� . Then

(46) �2nC1.X; oX /D 0 in CH2n.X
2nC1/;

where oX is the canonical 0–cycle on X constructed from the canonical 0–cycle of S .
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Here the cycle oS appears in the following theorem from [2] providing a list of relations
which hold in the Chow ring of a self-product of a K3 surface.

Theorem 5.2 Let S be a smooth projective K3 surface. Then there is a degree-1
zero-cycle oS 2 CH0.S/ satisfying the following equalities (which are all polynomial
relations in CH.Sk/ for adequate k , between the cycles p�i oS ;p

�
j L;p�st�S ):

(1) L2� deg.L2/oS D 0 in CH0.S/; for any L 2 Pic S .

(2) �S :p
�
1
L�L� oS � oS �LD 0 in CH1.S �S/ for any L 2 Pic S , where p1

is the first projection from S �S to S , and L� oS D p�
1
L �p�

2
oS .

(3) �3.S; oS /D 0 in CH2.S �S �S/. (Using formula (1) and the identity �3 D

p�
12
�S � p

�
13
�S , we can also view (3) as a polynomial relation in CH.S3/

involving the classes p�ij�S and p�
k
.oS /.)

(4) �2
S
D 24p�

1
oS �p

�
2
oS in CH0.S �S/.

(5) �S :p
�
1
oS �p�

1
oS �p

�
2
oS D 0 in CH0.S �S/.

Note that property (5) is (26) and is easily satisfied because oS is the class of a point
in S . Property (4) is a consequence of Property (3) which implies c2.S/D 24oS in
CH0.S/, and Property (5).

Remark 5.3 The above relations are the nontrivial relations involving p�i .oS /, p�j L,
L 2 CH1.S/ and the p�

kl
�S and with the property that in at least one monomial, an

index is repeated. To make a complete list of such relations, one should add the “trivial
relations”, which hold on any surface, namely:

(1) oX �LD 0 in CH.S/, L 2 CH1.S/.

(2) oX � oX D 0 in CH.S/.

(3) p�
12
�S �p

�
23
�S D p�

13
�S �p

�
23
�S in CH.S �S �S/.

As in [17], the ingredients of the proof of Theorem 5.1 are (1) the results of de Cataldo–
Migliorini [4], which will allow, thanks to Proposition 5.6, to translate the problem
into computations in ordinary self-products SN ;N � .2nC 1/n, of a K3 surface; (2)
the relations listed in Theorem 5.2; (3) the recent result of Yin [20]. The latter says
basically that for a regular surface S , the cohomological polynomial relations on SN

between the diagonal classes and the pull-back under the various projections of the class
of a point are generated by the relations listed above (or rather, their cohomological
counterpart) and the Kimura relation (see [10] and [18, Section 3.2.3]) which holds on
the Chow level when the motive of S is finite-dimensional. A key point of the proof
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will be thus the fact that the Kimura relation is not needed to express the pull-back to
SN of the vanishing relation Œ�2nC1.X; oX /�D 0.

We first recall some notation related to Sn and S Œn� , for any smooth surface S . Let
�DfA1; : : : ;Alg; lDW l.�/ be a partition of f1; : : : ; ng, where all the Ai are nonempty.
Let S� Š S l.�/ � Sn be the set

f.s1; : : : ; sn/ j si D sj if i; j 2Ak for some kg:

The image S .�/ of S� in S .n/ is a stratum of S .n/ . It is not normal in general, but
its normalization S .�/ is the quotient of S� by the subgroup S� of Sn preserving
S� , that is acting on f1; : : : ; ng by permuting the Ai with the same cardinality. Let
cW S Œn� ! S .n/ be the Hilbert–Chow morphism and let E� WD S� �S.n/ S Œn� �

S��S Œn� . It is known that E� is irreducible of dimension nC l.�/. We see E� as a
correspondence between S� and S Œn� .

Theorem 5.4 (de Cataldo–Migliorini [4]) The collection .E�/� of correspondences
identifies the motive of S Œn� with a submotive of the disjoint union

F
� S� . More

precisely, for some combinatorial coefficients �� ,

�X D

X
�

��.E�;E�/�.�S�/ in CH2n.X �X /:

The result above implies in particular:

Corollary 5.5 Let X WD S Œn� . For any integer k , the mapM
.�1;:::;�k/

.E�1
; : : : ;E�k

/�W CH�.X k/!
M

.�1;:::;�k/

CH�.S�1 � � � � �S�k /

is injective.

We now have the following result: Let n and k be fixed. Let us denote by �k �X k

the small diagonal of X k , where X WD S Œn� , for a smooth projective surface S .

Proposition 5.6 For any k –tuple .�1; : : : ; �k/ of partitions of f1; : : : ; ng, there exists
a universal (ie independent of S ) polynomial P�� (in many variables) with the following
property: For any smooth quasiprojective surface S ,

.E�1
; : : : ;E�k

/�.�k/D P��.pr�i c2.S/; pr�j .KS /; pr�st .�S //

in CH.S�1 � � � � �S�k /, where the pri are the projections from
Q

i S�i Š SN to its
factors (isomorphic to S ), and the prst are the projections from

Q
i S�i to the products

of two of its factors (isomorphic to S �S ).
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Proof Proposition 5.6 is a particular case of Theorem 5.12 whose proof will be
sketched in Section 5.2 and will be completed in [15], because the cycles

.E�1
; : : : ;E�k

/�.�k/ 2 CH.SN /

are clearly universally defined cycles in the sense of Definition 5.11. Indeed, for any
family S!B of smooth quasiprojective surfaces, we can construct the smooth family
of relative Hilbert schemes X WD S Œn=B� and its relative small diagonals

�k=B.X /� X k=B:

Then we have the relative correspondences E�i
� S�=B �B X , which are proper over

the first summand, and we have thus the relative cycle

E���.�k=B.X // 2 CH.S ŒN=B�/;N D l.�1/C � � �C l.�k/;

satisfying the functoriality properties stated in Definition 5.11, because the morphisms
E�i
! B are flat.

Remark 5.7 One may have the feeling that the canonical class is not necessary in
Proposition 5.6, as set theoretically one wants the set of .s1; : : : ; sk/2S�1�� � ��S�k

such that there is a subscheme x 2 S Œn� whose associated cycle is si (or rather its
image in S .n/ ) and this does not seem to involve the intrinsic geometry of S , except
for the self-intersection of the diagonal, thus only c2 . In fact, due to excess formulas,
the canonical class actually appears, as the simplest example shows: Let X be S Œ2� ,
k D 3, and �1 D �2 D �3 be the partition of f1; 2g consisting of a single set with 2

elements. Then E�1
DE�2

DE�3
DE is the exceptional divisor of S Œ2� and we have

.E�1
;E�2

;E�3
/�.�3/D��.p�.E

2
jE//;

where �W S ! S3 is the diagonal inclusion, and pW E! S is the natural map. But
p�.E

2
jE
/ 2 CH1.S/ is a nonzero multiple of the canonical class of S .

Remark 5.8 We proved in [17] a similar statement where instead of the small diagonal,
arbitrary polynomials in the Chern classes of the tautological sheaf on X Œn� and the
Chern classes of the ideal sheaf of the incidence correspondence in S Œn�1� �S ) are
considered; the same kind of arguments used there, which are in fact borrowed from [6],
can be applied to prove Proposition 5.6, but the proofs are very intricate and lengthy
and in fact all these results can also be obtained as Proposition 5.6, as a consequence
of Theorem 5.12.

We now show how Theorem 5.1 follows from Proposition 5.6.
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Proof of Theorem 5.1 We have to prove the vanishing of �2nC1.X; oX /, where S

is a smooth projective K3 surface and X D S Œn� . By Corollary 5.5, it suffices to show
that for any 2nC 1–tuple .�1; : : : ; �2nC1/ of partitions of f1; : : : ; ng, we have

(47) .E�1
; : : : ;E�2nC1

/�.�2nC1.X; oX //D 0

in CH.S�1 � � � � � S�2nC1/. As �2nC1.X; oX / is a combination of cycles which
up to permutation of factors are of the form �k � o2nC1�k

X
and E��oX D 0 if � 6D

ff1g; : : : ; fngg, and is equal to n!.oS ; : : : ; oS / if �D ff1g; : : : ; fngg, it follows from
Proposition 5.6 that there exists a polynomial Q�� (in many variables) with the following
property: For any smooth projective surface S , and any point oS 2 S ,

(48) .E�1
; : : : ;E�2nC1

/�.�2nC1.X; oX //

DQ��

�
pr�i c2.S/; pr�j .KS /; pr�l oS ; pr�st .�S /

�
in CH.S�1�� � ��S�2nC1/. We know by [12, Proposition 1.3] (see also Theorem 1.2(i))
that for any regular surface S , and any point oS 2 S , �2nC1.X; oX / is cohomologous
to 0, where oX is any point of X D S Œn� over noS 2 S .n/ . It follows that for each
2nC 1–tuple .�1; : : : ; �2nC1/ as above, the cycle

.E�1
; : : : ;E�2nC1

/�.�2nC1.X; oX //

is cohomologous to 0 in S�1 � � � � � S�2nC1 . Hence the polynomial Q�� has the
property that for a regular surface S ,

(49) Q��

�
pr�i Œc2.S/�; pr�j .ŒKS �/; pr�l ŒoS �; pr�st .Œ�S �/

�
D 0

in H�.S�1 � � � � �S�2nC1 ;Q/. Here the brackets denote the cohomology class of the
corresponding cycles. In this equation, we can of course replace Œc2.S/� by �top.S/ŒoS �,
with �top.S/ determined by the polynomial relation (this is relation (4) in Theorem 5.2)
Œ�S �

2 D �top.S/ pr�
1
ŒoS �[ pr�

2
ŒoS � in H 4.S �S;Q/. We now follow [17] (see also

[20]): The cohomological version of the equations given in Theorem 5.2 with LDKS

holds on any smooth projective surface with b1 D 0, and if the canonical class satisfies
ŒKS � D 0 or ŒKS �

2 6D 0, one can reduce modulo these relations any polynomial
expression in the variables

pr�i Œpt�; pr�j ŒKS �; pr�st Œ�S �

to a linear combination of monomials in the variables pr�i Œpt�, pr�j ŒKS �, pr�st Œ�S �
0 ,

with the property that no index appears twice in the monomial. Here the class Œ�S �
0 is

the class
Œ�S �� pr�1 Œpt�� pr�2 Œpt��� pr�1 ŒKS �[ pr�2 ŒKS �;

Geometry & Topology, Volume 19 (2015)



Some new results on modified diagonals 3335

where the coefficient �, when KS 6D 0, is determined by the relation �ŒKS �
2 D 1 (the

class Œ�S �
0 2H 4.S �S;Q/) is the projector onto H 2.S;Q/?ŒKS � ). Now, it is clear

by Künneth decomposition that if a linear combination of such monomials vanishes
in H�.SN ;Q/DH�.S;Q/˝N , then for fixed distinct indices i1; : : : ; im , j1; : : : ; jp ,
k1; : : : ; kq , the sum of such monomials of the form

pr�i1
Œpt� � � � pr�im

Œpt� � pr�j1
ŒKS � � � � pr�jp

ŒKS � � pr�k1
1S � � � pr�kq

1S �

Y
s1;t1;:::;sl ;tl

pr�si ;ti
Œ�S �

0;

where the indices si ; tj exhaust the remaining indices, are all distinct and are different
from the is; js; ks , has to be 0. This way, we reduced the problem to linear combinations
of monomials of the form

(50) pr�s1t1
Œ�S �

0
� � � pr�sl tl

Œ�S �
0

on S2l , where no index is repeated. We now have the following result due to Yin
[20]: The “Kimura relation” is a relation between monomials of the above type.
It says that, for M D dim H 2.S;Q/?ŒKS � , the cohomology class of the projector
onto

VMC1
H 2.S;Q/?ŒKS � � H 2MC2.SMC1;Q/ is 0, which is obvious sinceVMC1

H 2.S;Q/?ŒKS � D 0. The class of this projector is the class

(51)
X

�2SMC1

�.�/

MC1Y
iD1

pr�i;MC1C�.i/Œ�S �
0
2H 4MC4.S2MC2;Q/

and the Kimura relation is thus the vanishing of (51).

Theorem 5.9 (Yin [20]) For any integer m, the relations in H�.Sm;Q/ between
the monomials (50) with no repeated indices are generated by the pull-back to Sm of
the Kimura relation via a projection (and a permutation) Sm! S2NC2 .

We deduce the following:

Corollary 5.10 The polynomial Q�� belongs to the ideal generated by the trivial
relations (see Remark 5.3), the relation c2.S/D �top.S/oS (where we recover �top.S/

as the self-intersection of �S ) and the relations listed in Theorem 5.2 with LDKS .

Proof Indeed, choose for S a smooth projective surface with b1.S/D 0 and b2.S/ >

n.2nC1/=2. Then by Theorem 5.9, there are no linear relations between the monomials
(50) with no repeated index if s � .2nC1/n. On the other hand, we have the vanishing
of the cohomology class

Q��

�
pr�i Œc2.S/�; pr�j ŒKS �; pr�l ŒoS �; pr�st Œ�S �

�
2H�.SN ;Q/;
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where N D
P

i l.�i/� .2nC 1/n. It then follows from the above reduction that the
polynomial Q�� , where one substitutes �top.S/ŒoS � to Œc2.S/�, belongs to the ideal
generated by the cohomological version of the relations given in Theorem 5.2, with
LDKS .

The proof of Theorem 5.1 is now finished. Indeed, S being now a K3 surface, we
know by Theorem 5.2 that the relation �top.S/oS D c2.S/ holds in CH0.S/ and that
the relations listed in Theorem 5.2 hold in CH.Sk/ for adequate k . As the polynomial
Q�� , where one substitutes �top.S/oS to c2.S/, belongs to the ideal generated by the
relations given in Theorem 5.2 and the trivial relations, we conclude that Q�� D 0 in
CH.SN /. By (48), we proved the vanishing (47)

.E�1
; : : : ;E�2nC1

/�.�2nC1.X; oX //D 0 in CH.SN /;

which concludes the proof.

5.2 Universally defined cycles

This subsection is devoted to introducing the notion of “universally defined cycles” and
to sketching the proof of a quite general statement which will be fully proved in [15]. It
concerns “universally defined” cycles on self-products of surfaces. We first explain the
meaning of this expression. In the following, we work with Chow groups with integral
coefficients, and we will write CH.X /Q for cycles with Q–coefficients.

Definition 5.11 Let n;N be integers. A universally defined cycle on the N th power
of smooth algebraic varieties X of a given dimension n consists in the following
data: For each smooth family of n–dimensional algebraic varieties X ! B defined
over a field k , where B is smooth quasiprojective, a cycle zX 2 CH.XN=B/ is given,
satisfying the following conditions:

(i) If r W B0! B is a morphism, with induced morphism

RN W .X 0/N=B
0

! XN=B; X 0 WD X �B B0;

then
zX 0 DR�N zX in CH..X 0/N=B

0

/:

(ii) If X ! B is a family as above and Y � X is a Zariski open set, then

zY D zX jYN=B in CH.YN=B/:
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Theorem 5.12 For any universally defined cycle z on N th powers of surfaces, there
exists a polynomial P with rational coefficients, depending only on z , such that for
any smooth algebraic surface S defined over C ,

zS D P
�
pr�i c1.S/; pr�j c2.S/; pr�rs �S

�
in CH.SN /Q:

Remark 5.13 One could introduce as well universally defined cycles with Q–coef-
ficients, by replacing everywhere in the definition above CH by CHQ . It is possible
that the conclusion holds as well for universally defined cycles with Q–coefficients,
but our present proof uses the integral structure.

We will give some hints on the proof, with a complete proof only in the case N D 1

(Proposition 5.18) and the construction of the desired polynomials (Corollary 5.15
and Proposition 5.17). We refer to [15] for a full treatment. Let us first show how to
produce such polynomials. Let G WDG.2; 5/ be the Grassmannian of 2–dimensional
vector subspaces in k5 . Any smooth complex projective surface can be embedded in
G , for example by choosing 5 general sections of a very ample vector bundle E on S .
Let OG.1/ be the Plücker line bundle on G , and let c 2 CH2.G/ be the second Chern
class of the tautological rank-2 vector bundle on G . We choose an integer d , and
consider the universal family Sd ! B of smooth surfaces in G which are complete
intersections of 4 members of jOG.d/j. The smooth variety B is thus the vector space
H 0.G;OG.d//

4 and
Sd � Sd;univ

is the Zariski open set consisting of points where Sd;univ! B is smooth. Here

Sd;univ WD f.b;x/ 2 B �G j b D .f1;b; : : : ; f4;b/; fi;b.x/D 0 for all ig:

There is an obvious morphism
f W Sd !G

given by the restriction to Sd of the second projection Sd;univ!G , which induces for
any N � 1 the morphism

fN W S
N=U

d
!GN

with induced pull-back morphism f �
N
W CH.GN / ! CH.SN=U

d
/. We now use the

following result, which is one of the main ingredients in the proof of Theorem 5.12:

Proposition 5.14 For any integer N > 0 and sufficiently large d , CH.SN=U

d
/ is

generated as a CH.GN /–module by the relative partial diagonals �I=U .Sd /.

Here I denotes as usual a partition of f1; : : : ;N g, determining a partial diagonal.
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Proof of Proposition 5.14 By the localization exact sequence, it suffices to prove the
result with Sd replaced by Sd;univ . Next consider the natural morphism

fN W S
N=B

d;univ!Gd :

The fiber of fN over a N–tuple .x1; : : :xN / consists of the set of 4–tuples .�1; : : : ; �4/

in H 0.G;OG.d//
4 having the property that the �i vanish at all points xi . As d is

large compared to N , any k distinct points of G with k � N impose independent
conditions to H 0.G;OG.d//, and thus, denoting by GN

k
the locally closed subvariety

of GN consisting of N–tuples with exactly k –distinct points, which is the disjoint
union of the diagonals �I .G/ with l.I/ D k (or rather of the �0

I
.G/ WD �I .G/ nS

J ;l.J /<k �J .G/), we find that f �1
N
.GN

k
/ is a Zariski open set in a vector bundle

over GN
k

. It follows from the localization exact sequence and A1 –invariance that

CH.GN
k /

f �
N
�! CH.f �1

N .GN
k //

is surjective. Writing GN as the disjoint union of the �0
I
.G/, we conclude from the

above and the localization exact sequence thatM
I

CH.�I .G//
.jI�ıf

�
I
/

������! CH.SN=B

d;univ/

is surjective, where fI is the restriction of fN to f �1
N
.�I .G//�GN and jI is the

inclusion of f �1
N
.�I .G// in SN=U

d
. Note that f �1

I
.�I .G//D�I=B.Sd;univ/. Finally,

we observe that the restriction map

CH.GN /! CH.�I .G//

is surjective, and that for any ˛ 2 CH.GN /,

jI� ıf
�

I .˛j�I .G//D f
�

N˛ � .jI� ıf
�

I /.1/D f
�

N˛ ��I=B.Sd;univ/;

and this finishes the proof.

Corollary 5.15 For any universally defined cycle z on N th powers of surfaces and for
sufficiently large d , there exists a polynomial Pd with rational coefficients, depending
only on z and d such that for any smooth complete intersection surface Sd � G as
above,

(52) zSd
D Pd

�
pr�i c1.Sd /; pr�j c2.Sd /; pr�rs �Sd

�
in CH.SN

d /Q:

Furthermore, .4d � 5/2N Pd has integral coefficients.
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Proof As z is universal, there exists a cycle zSd
2 CH.SN=B

d
/ such that for any

surface Sd as above,
zSd
D .zSd

/
jSN

d
;

where we see Sd as a fiber of the universal family Sd!B . We next use Proposition 5.14
to write, for d � 0, Zd as a combination

P
I f
�

N
˛I � �I=B.Sd /, where ˛I 2

CH.G.2; 5//. Furthermore, is it immediate to prove that CH.GN / D CH.G/˝N ,
so that we can write each ˛I as a polynomial with integral coefficients in pr�i m,
m WD c1.OG.1// D c1.E/ and pr�j c , c WD c2.E/, where E is the dual of the tau-
tological subbundle on G . Of course, under restriction to SN

d
, only polynomials

of weighted degree � 2 in each set of variables pr�i m, pr�i c will survive. We now
observe that the restriction of m to Sd is a rational multiple of c1.S/ (more precisely,
KSd

DOG.4d � 5/jS by the adjunction formula), and the restriction of c to Sd is an
adequate linear combination of 1

.4d�5/2
c1.Sd /

2; c2.Sd /. Putting everything together
and using the fact that the relative diagonals �I=B.Sd / restrict to �I .Sd /, we get the
result.

Remark 5.16 Note that Corollary 5.15 is true more generally for the regular and
complete intersection locus Sreg of any set of 4 degree d equations on G . The proof
uses Proposition 5.14 (which works for the family Sd ! B of smooth complete
intersection quasiprojective surfaces), and both conditions (i) and (ii) in Definition 5.11.

The corollary above proves Theorem 5.12 for smooth complete intersection surfaces
of degree d , and more generally for the regular and complete intersection locus of
any set of 4 degree d equations on G . What remains to be done is to prove that
the polynomial above works for all surfaces. Note that the polynomial Pd is in fact
not uniquely defined as only its value on the set of variables pr�i c1.Sd /, pr�j c2.Sd /,
pr�st �Sd

is well defined in CH.SN
d
/Q . Hence a priori Pd is only defined modulo the

relations in CH.SN
d
/Q between these variables. However, the following result shows

that a part of Pd is in fact independent of d for large d .

Proposition 5.17 For any universally defined cycle z on N th powers of surfaces,
there exists a polynomial Q in the variables pr�st �S , depending only on z , with the
following property: For any smooth surface S , there is a Zariski dense open set V � S

such that zV DQ.pr�st �S / in CH.V N /Q .

Proof Let Qd be the part of the polynomial Pd which involves only the diagonals.
Then let Ud � Sd be the complement of a hyperplane section defined by the choice of
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a codimension-2 vector subspace W � C5 in general position. As c1.OSd
.1// and

c2.E/ vanish in CH.Ud /, we deduce from (52) that

(53) zUd
DQd .pr�st �Ud

/ in CH.U N
d /:

We observe now that for d 0 � d , a surface Sd 0 which is the complete intersection in
G of hypersurfaces of degree d 0 is an irreducible component of a (singular) surface
†d DSd 0[T defined as the complete intersection in G of four degree d hypersurfaces
containing Sd 0 and that, denoting C WDSd 0\T , the open set U 0

d 0
WDSd 0nC is contained

in the smooth locus of †d . From Remark 5.16, we thus get that

(54) zU 0
d 0
D Pd

�
pr�i c1.U

0
d 0/; pr�j c2.U

0
d 0/; pr�st �U 0

d 0

�
in CH.U 0d 0

N
/Q;

and after restriction to Vd 0 WD Ud 0 \U 0
d 0

, this becomes

(55) zVd 0
DQd .pr�st �Vd 0

/ in CH.V N
d 0 /Q;

On the other hand, we also have (53) for d 0 , which provides after restriction to Vd 0

(56) zVd 0
DQd 0.pr�st �Vd 0

/ in CH.V N
d 0 /Q:

Hence Qd �Qd 0 belongs to the kernel of the map

evd 0 W QŒXrs �1�r 6Ds�N ! CH.V N /; f 7! f .p�rs�V /;

where V is a sufficiently small Zariski open set of a general complete intersection of
four hypersurfaces of degree d 0 in G . On the other hand, it follows from the above
construction that Ker evd � Ker evd 0 for d 0 � d . As the polynomials we consider
are homogeneous of given degree (equal to half the codimension of z ), they live in a
finite-dimensional vector space and we conclude that these kernels are in fact stationary,
equal to K for d � d0 . So we finally conclude that there exists a d0 such that for
d � d 0 � d0 , Qd �Qd 0 belongs to K . It follows that for any d , for any reduced
complete intersection of four degree d hypersurfaces in G , and for a dense Zariski
open set V � S

zV DQd0
.pr�st �V / in CH.V N /Q:

As any smooth quasiprojective surface has a dense Zariski open set which is contained
in the smooth locus of such a complete intersection for d large enough, the proposition
is proved, with QDQd0

.

We finish this section with the proof of Theorem 5.12 in the case N D 1 and for
codimension one cycles.

Geometry & Topology, Volume 19 (2015)



Some new results on modified diagonals 3341

Proposition 5.18 Let z be a universally defined codimension one cycle on surfaces.
Then there is an integer m independent of S such that for any smooth quasiprojective
surface S ,

zS Dmc1.S/ in CH1.S/:

Proof For complete intersections Sd of four hypersurfaces of degree d in G , we
must have by Corollary 5.15

z D ˛dKSd
;

for some rational number ˛d such that .4d�5/˛d 2Z, and for any surface S , choosing
a very ample vector bundle E of rank 2 on S to embed S in G , and choosing d large
enough, we get

(57) zS jU D ˛dKU in CH1.U /Q;

where U D S nC , the surface S [C T D†d being the complete intersection of four
degree-d hypersurfaces containing S in G . The curve C belongs to the linear system
j.4d�5/L�KS j, where LD det EDOG.1/jS . For a general choice of equations and
d large enough, the curve C will be irreducible, so by the localization exact sequence,
(57) rewrites as

(58) zS D ˛dKS CˇdC in CH1.S/Q;

If KS and L are linearly independent in CH1.S/Q , this implies, because the left-hand
side is independent of L, that ˇd D 0 and thus zS D ˛dKS , with ˛d DW ˛ necessarily
independent of d . If not, we simply blow up S at one point and choose L on zS
linearly independent of K zS in CH1. zS/Q . Then the above conclusion applies to zS ,
hence we get

(59) z zS D ˛K zS in CH1. zS/:

As
S n fpg Š zS nEp; CH1.S/Q Š CH1.S n fpg/Q;

(59) is also true for S by condition (ii) in Definition 5.11. Finally ˛ has to be an
integer since .4d � 5/˛ 2 Z for any d . This proves Proposition 5.18.
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