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Kontsevich’s Swiss cheese conjecture

JUSTIN THOMAS

We prove a conjecture of Kontsevich, which states that if A is an Ed � 1 algebra
then the Hochschild cochain object of A is the universal Ed algebra acting on A .
The notion of an Ed algebra acting on an Ed�1 algebra was defined by Kontsevich
using the Swiss cheese operad of Voronov. The degree 0 and 1 pieces of the Swiss
cheese operad can be used to build a cofibrant model for A as an Ed�1–A–module.
The theorem amounts to the fact that the Swiss cheese operad is generated up to
homotopy by its degree 0 and 1 pieces.

13D03, 18D50; 18G55

1 Introduction

Gerstenhaber [10] showed that the Hochschild cohomology HH�.A/ of an associative
algebra A is a graded Lie algebra and a graded commutative algebra, and the two
structures are compatible. Any graded vector space with this algebraic structure is now
called a Gerstenhaber algebra. Cohen [7] showed that the homology of the little disks
operad, H�.E2/, is the Gerstenhaber operad. Sinha [20] has also shown this. Deligne
later asked if the action of H�.E2/ on HH�.A/ descends from a natural action at
the level of chains. In other words, is there a natural algebra structure on CH�.A/ of
Chains.E2/ which recovers the structure discovered by Gerstenhaber after passing to
(co)homology?

Already, this question is evidently in the realm of homotopy theory. So let us replace
the associative algebras by E1 algebras. This makes it clear that the question is
fundamentally one about the relationship between the operads E1 and E2 . Indeed,
we can generalize to consider the relationship between Ed and Ed�1 algebras. For
any Ed�1 algebra in a sufficiently rich homotopical category C we can make sense
of its Hochschild cochains as an object of C . The Hochschild cochain object of A is
denoted by Hoch.A/ and is an object of the same category to which A belongs. This
terminology is based on the case where C is the category of differential graded vector
spaces and A is an associative algebra. In that case, Hoch.A/ is the usual Hochschild
cochain complex of A.
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The original Deligne conjecture, where A is an E1 algebra in the category of chain com-
plexes, has been solved by Tamarkin [22], Kontsevich and Soibelman [17], Voronov [26],
McClure and Smith [19], Berger and Fresse [2] and Kaufmann and Schwell [15]. A
cyclic version is also due to Kaufmann [14]. Both cyclic and non-cyclic versions can
be found in Batanin and Berger [1]. Vallette [24] generalized the theorem to include
certain other Koszul operads. The generalized version, where A is an Ed algebra in
a general category like C , has been proven in the 1–operad setting by Lurie [18].
We show here that Hoch.A/ is not just an Ed algebra, but comes equipped with a
universal property. It is the universal Ed algebra acting on the Ed�1 algebra A. A
chain-level realization of the Swiss cheese action is constructed in Dolgushev, Tamarkin
and Tsygan [9].

The notion of an Ed algebra acting on an Ed�1 algebra was introduced by Kontse-
vich [16]. This notion uses the Swiss cheese operad SCd of Voronov [25]. This is a
2–colored operad which interpolates between Ed and Ed�1 . A Swiss cheese algebra
is a pair .B;A/ where B is an Ed algebra, A is an Ed�1 algebra and there is some
extra structure compatible with these, as seen in Definition 2.1.9. We refer to this extra
structure as an action of B on A.

The case d D 1 is enlightening. For simplicity, let us work in the category of vector
spaces. A (non-unital) E0 algebra A in vector spaces is just a vector space with no
extra data. The Hochschild object in this case is hom.A;A/. If B is an associative
algebra, it is in particular an E1 algebra. An SC1 structure on the pair .B;A/ then
amounts to the choice of a B –module structure on A.

In this case, the Swiss cheese conjecture merely states that hom.A;A/ is an associa-
tive algebra and giving an SC1 structure on .B;A/ is equivalent to giving a map of
associative algebras B! Hoch.A/D hom.A;A/. We prove the analog of this when
B is an Ed algebra and A is an Ed�1 algebra, d � 1.

Joseph Hirsh brought to the attention of the author the following helpful characterization
of the results of this paper. Given a bifibrant Ed�1 algebra A the functor from
Ed algebras to spaces

B 7! fthe space of Swiss cheese actions of B on Ag

is represented by the Hochschild cochain object of A.

1.1 Outline of the paper

In Section 2 we define the Ed and SCd operads and give both an imprecise and a
precise statement of the theorem we will prove. We also outline the idea of the proof.
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Kontsevich’s Swiss cheese conjecture 3

In Section 3 we define the Hochschild cochain object for Ed�1 algebras and show that
we can use the Swiss cheese operad to construct a model for the Hochschild cochain
object. We use this model in Section 4 to prove a “universal cheese” theorem which
applies to an arbitrary operad acting on Hochschild cochains. In Section 5 we show
that Ed does indeed act, up to homotopy, on Hochschild cochains, and the universal
cheese theorem specializes to the main theorem of this paper. Finally, in Section 6 we
prove the main theorem that allows the homotopy Ed action: the Swiss cheese operad
is freely generated up to homotopy by its degree 0 and 1 pieces.

Acknowledgements The author would like to thank Kevin Costello, Paul Goerss,
John Francis, Mike Hopkins, Jacob Lurie, Vasily Dolgushev, Bill Dwyer, and Stephan
Stolz for helpful conversations. In addition, thanks go to Haynes Miller, Ezra Getzler,
and Geoffroy Horel for many helpful remarks and to an anonymous referee for a large
number of useful comments, which have greatly improved the presentation of results
in this article.

2 The Swiss cheese operad

We will define K–colored operads in general and the Swiss cheese operad in particular.
We also describe algebras over the Swiss cheese operad and state the main theorem of
this paper.

2.1 The colored operad Swiss cheese

Fix a set K . A K–colored set is a pair .I; col/ where I is a set and colW I !K is a
map of sets, called the coloring. We will often denote such a colored set simply by I ,
leaving the coloring implicit. Let aut I be the group of bijections on the set I which
preserve its coloring. Since we have left the coloring implicit, we use the notation I #

to refer to the underlying uncolored set.

Let .S;˝/ be a symmetric monoidal category. We can speak of categories enriched
over S . In particular, suppose O is a category enriched over S and suppose the objects
of O are finite K–colored sets. We let O.I IJ / denote the S object of morphisms
in O from I to J . If we further suppose that disjoint union of finite K–colored sets
extends to an S–enriched symmetric monoidal structure on O , then each O.I IJ / is
a right aut.I /– and left aut.J /–module in a natural way. In addition, if S contains
finite coproducts, the symmetric monoidal structure on morphisms in O is specified by
equivariant maps

(1)
a

f W I #!J #

O
j2J

O.f �1fj gI fj g/!O.I IJ /:
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The following definition follows Boardman and Vogt [6].

2.1.1 Definition Let .S;˝/ be a symmetric monoidal category containing all finite
coproducts where ˝ distributes over finite coproducts. Let K be a set. The data of a
K–colored operad O in the symmetric monoidal category S is a symmetric monoidal
category, denoted by O , which is enriched over S and whose objects are K–colored
finite sets I ! K . This data must satisfy two conditions. First, on objects, the
symmetric monoidal structure of O is the disjoint union of sets over K . Second, the
map in (1) must be an isomorphism for every I and J .

2.1.2 Remark We will use the unmodified noun operad to mean K–colored operad
when the coloring set K is clear from context. The reader should note that this
differs from an equally plausible convention, where operad is always used to denote
f�g–colored operads.

2.1.3 Notation Let n denote the finite set f1; : : : ; ng. Typically K will be KDff; hg,
where f stands for full-disk and h stands for half-disk. In this case we use .n;m/ to
denote the K–colored set where f1; : : : ; ng has color f and fnC1; : : : ; mg has color h.
If K ' f�g, then a K–colored operad will simply be called a 1–colored operad. Any
1–colored operad E gives, for each m, m0 2 Z�0 , objects E.m0Im/ 2 S . We denote
E.m0Im/ simply by E.m0Im/ and E.mI 1/ simply by E.m/.

Any ff; hg–colored operad O gives, for each n, m, n0, m0 2 Z�0 , objects

O.n0; m0In;m/ WDO..n0; m0/I .n;m// 2 S:

We denote O.n;mI 0; 1/ by Oh.n;m/ and O.n;mI 1; 0/ by Of.n;m/.

2.1.4 Definition Let .Top;�/ denote the symmetric monoidal category of compactly
generated Hausdorff topological spaces with the cartesian product.

2.1.5 Example Let K be the one-point set ffg and let .S;˝/D .Top;�/. The operad
Ed is an ffg–colored operad in the category Top. Let Dd be the closed unit disk
inside Rd . Call a map f W Dd !Dd a little full-disk (or little d disk or simply little
disk) if f is of the form f .x/ D rxC c for some 0 < r � 1 and c 2 Rd . Given a
finite set I , the underlying set of Ed .I / WDE f

d
.I / is the set of embeddings

f W
a
i2I

Dd !Dd ;

where each restriction fi W Dd !Dd is a little full-disk. Using Notation 2.1.3, any
isomorphism I ! n allows us to identify Ed .I / with a subset of RnCdn . This gives
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each Ed .I / a topology. The operadic structure is given by composing little d disks as
maps Dd !Dd . The identity of Ed is the little full-disk idW Dd !Dd . This is the
unital version of Ed , so Ed .0/D � and Ed .1/ consists of more than just the identity.

2.1.6 Example Let K D ff; hg. The K–colored operad SCd is called the (d–
dimensional) Swiss cheese operad and is the principal subject of this paper. Like
Example 2.1.5, it is an operad in .Top;�/.

By Definition 2.1.1 and formula (1), to define SCd as a K–colored operad we only need
to define the spaces SCf

d
.I / and SCh

d
.I / for every K–colored set .I; colW I ! K/.

First, we define the “full-disk output” part of SCd ,

SCf
d .I /D

�
Ed .I / if col�1.f/D I;
∅ else:

To define the “half-disk output” part of SCd , that is SCh
d
.I /, we first need the notion

of little half-disks. Let Dd
C

be the closed d–dimensional half-disk,

DdC D f.x1; : : : ; xd / 2Rd j jxj � 1 and xd � 0g:

A little half-disk is defined to be a map f W Dd
C
!Dd

C
of the form f .x/ D rxC c

for some 0 < r � 1 and c 2 Rd�1 � f0g. As a set, we define SCh
d
.I / to consist of

embeddings

f W
a
i2I

Dd !DdC ;

where each restriction fi W Dd !Dd
C

is a little full-disk (Example 2.1.5) if col.i/D f

or a little half-disk if col.i/D h. It is clear that if jcol�1.f/j D n and jcol�1.h/j Dm,
then SCh

d .I / can be naturally embedded inside RN , where N D .d C 1/nCdm. We
give SCh

d
.I / the subspace topology inherited from such an embedding.

Following Notation 2.1.3, a point in SCh
d
.n;m/ is given by n labeled full-disks and m

labeled half-disks in the unit half-disk, where none of the disks intersect and the half-
disks all lie on the bottom. We allow the degenerate configuration when .n;m/D .0; 1/,
which is the unit half-disk contained in itself. Note that we have SCh

d
.0; 0/D � and

SCh
d
.1; 0/ contains more than one point. Thus we are using the unital Swiss cheese

operad. This differs from [16; 25].

Composition in SCd is given by substituting full-disks and half-disks into each other.
More precisely, we have maps

(2) Ed .n/�Ed .k1/� � � � �Ed .kn/!Ed .k1C � � �C kn/
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and

(3) SCh
d .n;m/�Ed .k1/� � � � �Ed .kn/� SCh

d .knC1; `1/� � � � � SCh
d .knCm; `m/

�! SCh
d .k1C � � �C knCm; `1C � � �C `m/:

Notice that we can identify SCh
d
.0;m/ with Ed�1.m/ so that the restriction of SCd to

the spaces SCh
d
.0; � / is isomorphic to the operad Ed�1 . We say that Ed�1 is the h

color of SCd and Ed is the f color of SCd . We think of SCd as interpolating between
Ed and Ed�1 .

2.1.7 Definition Suppose O is a K–colored operad in S and C is a symmetric
monoidal category enriched over S . An algebra over O in the category C is a strong
symmetric monoidal functor O! C . A morphism of O algebras is a monoidal natural
transformation. The category of O algebras in C will be denoted by AlgO.C/.

2.1.8 Example If C is a symmetric monoidal category enriched over Top, we can
consider algebras over SCd in C . Such an algebra gives the data of a pair .B;A/ of
objects in C together with maps of topological spaces

Ed .n/!mapC.B
˝n; B/

and
SCh
d .n;m/!mapC.B

˝n
˝A˝m; A/;

where mapC.C; C
0/ is the topological space of maps between two objects C and C 0

in C . These data must satisfy conditions guaranteeing they assemble into a strong
symmetric monoidal functor SCd ! C .

The object B corresponds to the object ffg of SCd and the object A corresponds
to fhg. Together these form a K–colored operad End.B;A/ in Top, where, using
Notation 2.1.3,

Endf.B;A/.n;m/Dmap.B˝n˝A˝m; B/;(4)

Endh.B;A/.n;m/Dmap.B˝n˝A˝m; A/:(5)

The definition of the operad morphisms on End.B;A/ are left to the reader. The
collection of SCd algebra structures on a fixed pair .B;A/ is the collection of strong
symmetric monoidal functors

SCd ! End.B;A/;

which restrict to the identity on the set of objects. Simply put, a Swiss cheese algebra
.B;A/ is an Ed algebra B , an Ed�1 algebra A and some chosen mixing of these
structures. We refer to this mixing as an action of B on A.
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Kontsevich’s Swiss cheese conjecture 7

2.1.9 Definition (Kontsevich [16]) Let B be an Ed algebra and A an Ed�1 algebra.
A Swiss cheese action of B on A is the structure of a Swiss cheese algebra on the pair
.B;A/ extending the given Ed and Ed�1 structures. We may also simply call this
“an action of B on A”.

2.2 Statement of main theorem

Now we can informally state the conjecture proven in this paper.

Informal statement of Swiss cheese conjecture The Hochschild cochain object
Hoch.A/ of an Ed�1 algebra A is the universal Ed algebra acting on A. In other
words, for any Ed�1 algebra A, there is an Ed algebra structure on Hoch.A/ such
that, for any Ed algebra B , giving a map of Ed algebras B! Hoch.A/ is equivalent
to giving the structure of an SCd algebra on the pair .B;A/ extending the given Ed
and Ed�1 structures.

The basic structure of the proof is outlined in this diagram:

(6)

OpK Op.Top†/ Op.Top†�1/

SCd SCh
d SCh1

d

SCh1
d ÌE SCh1

d

transfer of

structure

The categories of operads shown in the diagram are defined precisely in Section 2.3.
The category Top† consists of symmetric sequences of topological spaces. Justification
will be given later, but for now think of Op.Top†/ as consisting of K–colored operads
whose f–colored output is trivial. Further, we will introduce a category Op.Top†�1/,
consisting of K–colored operads whose f–colored inputs total 0 or 1. The forgetful
functors are presented below as straight arrows; there is a left adjoint shown as a bent
arrow.

Boardman and Vogt’s W construction [6] is an explicit cofibrant replacement functor,
which we apply to SCd , to get an equivalent cofibrant operad SCd WDW SCd . The W
construction does not strictly commute with the forgetful functors in (6). In particular,
W.SCh

d
/ is not isomorphic to .W SCd /h , but they are homotopy equivalent. We will let

SCh
d denote W.SCh

d
/ and SCh1

d DW.SCh1
d
/.

Proposition 3.2.7 shows that we can use SCh1
d to construct a model for the Hochschild

cochain object. This allows us to prove a weak version of the Swiss cheese theorem in
Proposition 4.1.2, taking place in the context of Op.Top†�1/. Next, we will take the
free extension of SCh1

d 2 Op.Top†�1/ to an operad in Op.Top†/, to get SCh1
d . This
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immediately gives a version of the Swiss cheese theorem in the context of Op.Top†/;
see Corollary 4.1.4. Then we use the fact that SCh1

d is freely generated by its degree
0 and 1 pieces to prove a version of the Swiss cheese theorem in the context of OpK .
None of these three versions of the Swiss cheese theorem make any use of Ed . One
can think of this last “universal cheese” theorem (Proposition 4.1.9) as a construction
of the universal K–colored operad built from Ed�1 and controlling Ed�1–linear actions
on A.

To bring Ed back into the story, we use a technical result, Theorem 5.1.1, which shows
that the canonical map SCh1

d ! SCh
d is an equivalence. Observe that one can view

SCd as SCh
d equipped with the extra structure of a right action of Ed . Now use a

transfer of structure argument to construct an operad E which is equivalent to Ed
and which acts on the right on SCh1

d . This allows us to define SCh1
d ÌE, which we

show is equivalent to SCd in Lemma 5.1.6. The universal property of SCh1
d ÌE with

respect to the Hochschild cochain object is stated in Theorem 2.2.1 and follows from
Proposition 4.1.9.

It should be noted that the theorem rests on the equivalence between SCh1
d and SCh

d .
At first glance, these spaces seem very different. The former has its d–dimensional
disks very spread out. The latter allows its d–dimensional disks to be arbitrarily close
together. Each element of SCh1

d can be broken into a tree where each piece has at most
one d–dimensional disk. Thus, the only interesting topology on SCh1

d , aside from the
topology of Ed�1 , is given by the combinatorics of these trees. The surprising fact is
that these combinatorics are rich enough to account for the topology of configuration
spaces of d–dimensional disks. The best summary explanation for this equivalence
was revealed to me in a conversation with Ralph Kaufmann, where he pointed out that
SCh1

d resembles a kind of cellular structure relative to Ed�1 on SCh
d .

2.2.1 Theorem (Precise version of Kontsevich’s Swiss cheese conjecture) Let C be a
symmetric monoidal model category tensored over Top and satisfying the conditions in
Notation 3.1.9. Let A 2 AlgEd�1

.C/ be cofibrant and fibrant using the projective model
structure (Definition 3.1.8). There is a model of SCd , called SCh1

d ÌE, where E'Ed .
There is also a model for the Hochschild cochain object of A, called Hoch.A/, such that
Hoch.A/ is the universal E algebra acting on A through SCh1

d ÌE. That is, Hoch.A/
is an E algebra and this structure, together with the Ed�1 algebra structure on A, can
be extended to an SCh1

d Ì E algebra structure on .Hoch.A/; A/ in such a way that
there is an equivalence of relative categories

AlgA
.SCh1

d ÌE/
.C/Š AlgE.C/=Hoch.A/:
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Kontsevich’s Swiss cheese conjecture 9

The category on the left consists of E algebras B together with an action of B
on A. The category on the right consists of E algebras B together with an E algebra
map B! Hoch.A/.

Lemma 5.1.6 shows that SCh1
d Ì E is equivalent to SCd . Lemma 5.1.5 shows that

E is equivalent to Ed . Proposition 3.2.7 sets up our choice of model of Hoch.A/.
Proposition 4.1.9, together with the construction of the operad SCh1

d ÌE in Section 5,
shows the desired equivalence of relative categories.

2.3 Defining SCh
d

and SCh1
d

Recall that C is a symmetric monoidal category enriched over S , our basic category in
which our operads live. We will assume that both C and S have all coproducts and
that tensor products distribute over finite coproducts. In the case of operads from OpK
we have .S;˝/D .Top;�/, the symmetric monoidal category of compactly generated
topological spaces with cartesian product. In the case of operads such as SCh

d
and

SCh
d from Op.Top†/, we have .S;˝/D .Top†;˝/ from Definition 2.3.1. Finally, for

SCh1
d and SCh1

d
we use S D Top†�1 as in Definition 2.3.2.

2.3.1 Definition Let † denote the category of finite sets with morphisms given
by bijections and let .D;˝D/ be any symmetric monoidal category. The category
of functors †op ! D , denoted by D† , is usually called the category of symmetric
sequences in D . Such a functor is a sequence .X.n//n�0 of objects in D together with
a right autn action on X.n/ for each n� 0. We endow D† with the usual symmetric
monoidal structure given by left Kan extension of †�†!D�D!D along disjoint
unions of sets †�†!†. Specifically, if X , Y 2 D† , then X ˝Y 2 D† satisfies

.X ˝Y /.n/D
a

nDn1Cn2

IndSnSn1�Sn2
.X.n1/˝D Y.n2//;

where Sn D autn. See Harper [12, Definition 3.3] for more details.

2.3.2 Definition Let †�1 denote the full subcategory of † consisting of finite sets
of size 0 or 1 together with bijections as morphisms. Let D†�1 denote the symmetric
monoidal category of functors †�1! D , with monoidal structure inherited from D† .
Call these the degree 0–1 symmetric sequences in D . Concretely, D†�1 is just the
category D�D endowed with the symmetric monoidal structure

(7) .C0; C1/˝ .D0;D1/D
�
C0˝DD0; .C0˝DD1/q .C1˝DD0/

�
:

The braiding isomorphism .C0; C1/˝ .D0;D1/! .D0;D1/˝ .C0; C1/ is induced
from the braiding isomorphism on D .
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2.3.3 Definition Let OpK denote the category of KDff; hg–colored operads in Top.
There is a forgetful functor OpK ! Op.Top†/. This functor takes O 2 OpK to the
operad Oh whose arity-m component is the symmetric sequence n 7!Oh.n;m/ (see
Notation 2.1.3). We forget the spaces Of.n;m/ and think of elements of Oh.n;m/ as
degree-n, arity-m elements of Oh .

The functor Op.Top†/!Op.Top†�1/ is induced by the symmetric monoidal forgetful
functor Top†!Top†�1 . Write the image of O in Op.Top†�1/ as Oh1 . Furthermore,
the functor Op.Top†�1/! Op.Top/ is induced by the symmetric monoidal functor
Top†�1 ! Top, .X; Y / 7!X . We denote this functor by O 7!O0 .

Observe that if O 2 Op.Top†�1/ then O0 has commuting left and right actions on O .
By this we mean we have maps

O.0;m00/�O.n;m0I 0;m00/�O.0;mI 0;m0/!O.n;m/;

satisfying straightforward conditions which we leave to the reader.

2.3.4 Example We outline the structure of SCh
d as an operad in Op.Top†/. Think of

SCh
d. � ; m/ as the symmetric sequence n 7! SCh

d.n;m/. In (8), ˝ is the tensor product
of symmetric sequences. The operad composition law is

(8) SCh
d. � ; m/˝ SCh

d. � ; `1/˝ � � �˝ SCh
d. � ; `m/! SCh

d. � ; `/;

where `D
P
i `i . The degree-n component of the right-hand symmetric sequence is

SCh
d.n; `/. The degree-n component of the left-hand symmetric sequence isa

n0C���CnmDn

Ind SCh
d.n0; m/� SCh

d.n1; `1/� � � � � SCh
d.nm; `m/;

where Ind is the induction functor giving the correct symmetric group action. The
point is that if we delete all appearances of Ed from (3) then it provides exactly the
data of (8).

2.3.5 Example We outline the structure of SCh1
d

as a 1–colored operad in Top†�1 .
For each m0 and m, define an object SCh1

d
.m0Im/ 2 Top†�1 ,

(9) SCh1
d .m0Im/D .SCh

d .0;m
0
I 0;m/; SCh

d .1;m
0
I 0;m//

Š .Ed�1.m
0
Im/; SCh

d .1;m
0
I 0;m//:

Using the symmetric monoidal structure from Definition 2.3.2 and the identification in
(9), we can write the operad structure maps on SCh1

d
as a triple of morphisms: the map

of degree-0 pieces

Ed�1.m
00
Im/�Ed�1.m

0
Im00/!Ed�1.m

0
Im/;
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and the maps of degree-1 pieces

Ed�1.m
00
Im/� SCh

d .1;m
0
I 0;m00/! SCh

d .1;m
0
I 0;m/

and
SCh
d .1;m

00
I 0;m/�Ed�1.m

0
Im00/! SCh

d .1;m
0
I 0;m/:

3 Hochschild cohomology from Swiss cheese

For the remainder of the paper we replace Ed�1 , Ed and SCd by cofibrant models
given by the Boardman–Vogt W construction [6]. A proof that this gives a cofibrant
replacement for certain operads can be found in Berger and Moerdijk [4]. Recall that
we will denote these cofibrant replacements by Ed�1 , Ed and SCd . We also want to
restrict our attention to Swiss cheese algebras in categories where we can do homotopy
theory. In the proper context the Hochschild cochain object of an Ed�1 algebra A has
a natural model constructed from A and the degree 0–1 parts of SCh

d . This is the
content of Proposition 3.2.7.

3.1 Homotopy-theoretic context

3.1.1 Definition (Hovey [13, Definition 4.2.6]) A symmetric monoidal model cate-
gory S is a closed symmetric monoidal category whose monoidal structure ˝W S�S!S
is a Quillen bifunctor and where the cofibrant replacement Q1! 1 of the monoidal
unit induces weak equivalences Q1˝X !X for every cofibrant X .

3.1.2 Example The category .Top;�/ of compactly generated spaces with the carte-
sian product and Serre model structure is a symmetric monoidal model category.

3.1.3 Definition Let S be a symmetric monoidal model category. A symmetric
monoidal model category tensored over S is a closed symmetric monoidal model
category C , together with a symmetric monoidal Quillen functor S ! C . For more
details see [13, Definition 4.2.20].

In particular, C comes equipped with functors

˝W C � C! C; ˝W S � C! C;

homC W Cop
� C! C; mapC W C

op
� C! S:

The mapping spaces mapC.A;B/ give C the structure of a category enriched over S ,
so we can speak of Ed�1 , Ed and SCd algebras in C .

For any object A of C , the functor �˝A has right adjoints homC.A;�/W C! C and
mapC.A;�/W C! S . This data satisfies Quillen’s SM7 axiom [13, Section 4.2].
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3.1.4 Example The category C†�1 from Definition 2.3.2 is tensored over the sym-
metric monoidal category Top†�1 with

Top†�1 ˝ C†�1 ! C†�1

given by the analogue of (7),

.X0; X1/˝ .C0; C1/D
�
X0˝C0; X0˝C1qX1˝C0

�
;

where Xi 2 Top and Ci 2 C .

3.1.5 Example The symmetric monoidal functor Top ! Top†�1 sending X to
.X;∅/ makes both Top†�1 and C†�1 into symmetric monoidal model categories
tensored over Top. Note that for a topological 1–colored operad O , we can consider
algebras over O in C as well as algebras over O in C†�1 .

The category of degree 0–1 symmetric sequences is naturally home to O–algebras A
and O–A–modules M .

3.1.6 Definition Suppose O is a 1–colored operad in Top and let .A;M/ be an
object of C†�1 . The structure of an O algebra on the degree 0–1 symmetric sequence
.A;M/ is the structure of an O algebra on A together with the data of maps

O.m/˝M ˝A˝m�1!M;

satisfying certain conditions (see diagram (16)). We call this data the structure of
an O–A–module on M . Given a fixed O algebra A 2 C , the category ModAO.C/ of
O–A–modules has objects M 2 C , together with the structure of an O algebra on
.A;M/ 2 C†�1 extending the given O algebra structure on A.

The author was shown the following quick way to see that the category of O–A–
modules is naturally enriched over Top. First, one can show that this category is
equivalent to the category of algebras (classical associative algebras, not E1 ) over the
universal enveloping monoid of A. Then this implies that the free A–module monad
is a strong and enriched monad, from which it follows that ModAO.C/ is enriched.

3.1.7 Example Let O be a 1–colored topological operad and let A 2 C be an O
algebra; then the degree 0–1 symmetric sequence .A;A/ is naturally an O algebra.
That is, A is naturally an O–A–module.

3.1.8 Definition Let O be an operad in Top†�1 and let P be the image of O under
the functor Op.Top†�1/ ! Op.Top/ (for example, if O is SCh1

d then P is Ed�1 ).
Since C†�1 is enriched over Top†�1 by Example 3.1.4, we can consider O algebras
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in C†�1 . In addition, by Example 3.1.5 we can consider P algebras in C†�1 . There
are adjunctions

C� AlgP.C/; C�ModAP .C/ and C � C� AlgP.C
†�1/� AlgO.C

†�1/:

We describe the right adjoints only. On the top left the P algebra A is sent to the
underlying object A of C . The top right functor sends the P–A–module M to the
underlying object M of C . In the pair of composable adjunctions, a P algebra .A;M/

can be considered as a P algebra by forgetting the structure maps in (13). For the final
adjunction, any P algebra in C†�1 has an underlying pair of C–objects .A;M/.

3.1.9 Notation Throughout the remainder of this paper C will be a cofibrantly gener-
ated symmetric monoidal model category tensored over Top such that the adjunctions
in Definition 3.1.8 are Quillen adjunctions.

3.1.10 Remark Spitzweck [21, Theorem 6] shows that ModAO.C/� C is a Quillen
adjunction if A is cofibrant in C . In addition, Berger and Moerdijk [3, Proposition 4.1]
show that, if D is a symmetric monoidal model category which is cofibrantly generated
and has a cofibrant unit and a symmetric monoidal fibrant replacement functor, then
the category AlgO.D/ has the projective model structure induced from the forgetful
functor to D . The operad O in this theorem is an operad in D . However, their result is
more general, as seen in [3, Remark 4.6.4]. Their argument extends without change
to show that AlgO.D/ has the desired model structure in the case that O is an operad
in Top and D is tensored over Top as in Definition 3.1.1, and the generating trivial
cofibrations of D have cofibrant domains. The condition that the monoidal unit of D is
cofibrant is not necessary in this situation. The cofibrance of the monoidal unit in Top

is enough. Taking OD Ed�1 or OD SCh1
d and DD C or DD C†�1 , we conclude that

the assumptions in Notation 3.1.9, and in the main theorem of this paper, hold when C
is the category of compactly generated Hausdorff spaces .Top/, or spectra, or chain
complexes.

We use the model structure on the category of P–A–modules to define the Hochschild
cochain object.

3.1.11 Definition Given a 1–colored topological operad P and a P algebra A 2 C ,
let the Hochschild cochain object of A be

Hoch.A/D homAP .A
c ; Af /;

where homAP is given by the equalizer in Definition 3.1.6. The P–A–modules Ac

and Af are cofibrant and fibrant replacements for A, respectively. Note that Hoch.A/
is an object of C .
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3.2 Swiss cheese in degrees zero and one

Let O be a (1–colored) operad in Top†�1 . A (1–colored) O algebra (see Definition
3.1.8 and Example 2.3.5) is a pair .A;M/ of objects of C together with maps in C†�1 ,
for every m,

(10) .O.0;m/;O.1;m//˝ .A;M/˝m! .A;M/:

Alternatively, we can view the morphism in (10) as three separate maps in C :

O.0;m/˝A˝m! A;(11)

O.0;m/˝M ˝A˝m�1!M;(12)

O.1;m/˝A˝m!M:(13)

The condition that the maps in (10) define an O structure on the pair .A;M/ is the
condition that the diagram (14) commutes in the Top†�1 –enriched category C†�1 :

(14)
O.m0/˝O.mIm0/˝ .A;M/˝m O.m/˝ .A;M/˝m

O.m0/˝ .A;M/˝m
0

.A;M/

In terms of equations (11), (12) and (13), the C†�1 diagram (14) splits into four
diagrams in C . Each diagram is determined by the degrees of the three tensor factors
in the upper left-hand corner of (14). In the first the degrees are 0, 0, 0; in the second
the degrees are 0, 0, 1; in the third, 1, 0, 0; and in the fourth, 0, 1, 0.

The following diagram commutes for all m0 and m if and only if A is an O0 algebra
(see Definition 2.3.3):

(15)
O.0;m0/˝O.0;mI 0;m0/˝A˝m O.0;m/˝A˝m

O.0;m0/˝A˝m0 A

Diagram (16) commutes if and only if M is an O0–A–module:

(16)
O.0;m0/˝O.0;mI 0;m0/˝M ˝A˝m�1 O.0;m/˝M ˝A˝m0�1

O.0;m/˝M ˝A˝m�1 M
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Diagram (17) shows a compatibility condition between the degree 0 and degree 1
structures:

(17)
O.1;m0/˝O.0;mI 0;m0/˝A˝m O.1;m/˝A˝m

O.1;m0/˝A˝m0 M

Diagram (18) presents another compatibility condition between the degree 0 and
degree 1 structures:

(18)
O.0;m0/˝O.1;mI 0;m0/˝A˝m O.1;m/˝A˝m

O.0;m0/˝M ˝A˝m0�1 M

3.2.1 Example In this example we construct the universal extension of an O0 algebra
A to an O algebra. We denote this universal pair by .A;Ao/. The composite forgetful
functor

AlgO.C
†�1/! AlgO0.C

†�1/! AlgO0.C/;

has a left adjoint, which sends the O0 algebra A to the pair .A;Ao/, where Ao is a
quotient of

(19) Ao D
a
m�0

O.1;m/˝Sm A
˝m:

We can think of Ao heuristically as O.1; � /˝A˝� . Now, both A and O.1; � / carry
an action of O0 , so we can form the quotient Ao WDO.1; � /˝O0 A

˝� . More precisely,
Ao is defined as the coequalizer

(20)
a
m;m0

O.1;m/˝O.0;m0I 0;m/˝A˝m
0

� Ao
coeq
��! Ao;

where one of the arrows is given by the operadic composition on Swiss cheese and the
other by the O0 structure on A.

Verifying that .A;Ao/ is a 1–colored O algebra is a matter of using the commuting
left and right actions of O0 on O . By this we mean the morphism below uses both left
and right actions, and can be obtained by performing the left action first then the right,
or vice versa,

O.0;m00/�O.1;m0I 0;m00/�O.0;mI 0;m0/!O.1;m/:

Geometry & Topology, Volume 20 (2016)
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The left action defines a map

(21) O.0;m/˝Ao˝A˝m�1! Ao;

using the ı1 operad composition. Since the left and right O0 actions on O commute,
the arrow in (21) descends to give the data of an O0–A–module structure on Ao , ie
(12) for M D Ao . Of course, the maps from (13) with M D Ao are simply given
by Ao! Ao .

Now let us observe that the four diagrams (15)–(18) commute for .A;Ao/. The first
diagram, (15), is trivial since A is an O0 algebra. The second diagram, (16), commutes
since the left action of O0 on O is indeed an action. That is, it is compatible with
composition in O0 . The third diagram, (17), clearly commutes. Indeed, this diagram
is the reason the coequalizer Ao! Ao in (20) was defined in the first place. Finally,
the fourth diagram, (18), certainly commutes if M D Ao . In this case, note that the
bottom map in diagram (18) corresponds to (21). Thus, if we pass from Ao to Ao this
last diagram still commutes since, by definition, the O0–A–module structure on Ao is
defined using the quotient map Ao! Ao together with (21).

3.2.2 Lemma Fix an O0 algebra A and consider Ao as an O0–A module. There is
an equivalence of relative categories

ModAO.C/ŠModAO0.C/Ao= ;

where ModAO.C/ is the fiber over A of the forgetful functor AlgO.C†�1/! AlgO0.C/.

Proof Let .A;M/ be an SCh1
d algebra extending the existing O0 algebra structure

on A. Then M 2ModAO0.C/ and the structure maps in (13), when combined for all m,
give a map Ao!M . This descends to an O0–A–module map Ao!M .

On the other hand, if M is an O–A–module, then M is already equipped with the
data of (12). If Ao!M is a morphism of O–A–modules, then M is equipped with
the data of (13). The diagram (14) commutes because of the relation defining Ao in
(20) and because Ao!M is a morphism of O0–A–modules.

3.2.3 Corollary Take O D SCh1
d and denote Ao by Asc . Let A be a cofibrant Ed�1

algebra. Then Asc is a cofibrant Ed�1–A–module.

Proof The forgetful functor AlgSCh1
d
.C/!AlgEd�1

.C/ preserves fibrations (Definition
3.1.8). Thus the left adjoint of this forgetful functor, applied to the cofibrant object
A, gives a cofibrant SCh1

d algebra .A;Asc/. Thus Asc is cofibrant in ModASCh1
d
.C/.

Lemma 3.2.2 shows that the forgetful functor ModASCh1
d
.C/!ModAEd�1

.C/ preserves
pushouts. The model structures here are cofibrantly generated, so Asc is also cofibrant
as an object of ModAEd�1

.C/.
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3.2.4 Definition Let p.m/W SCh
d.1;m/! SCh

d.0;m/ ' Ed�1.m/ be the projection
which forgets the single full-disk. Let p be the morphism .p.m//m�0 of operads
in Top†�1 . For each m consider the degree 0–1 symmetric sequence .Ed�1/

�1.m/ WD

.Ed�1.m/;Ed�1.m//. The structure of Ed�1 as an operad in Top can be used to make

.Ed�1/
�1 an operad in Top†�1 . This makes .id; p/W SCh1

d ! .Ed�1/
�1 into a morphism

of operads.

If A is an Ed�1 algebra we can define a morphism in C ,

Asc
D

a
m�0

SCh
d.1;m/˝Sm A

˝m
!

a
m�0

Ed�1.m/˝Sm A
˝m
! A;

where the first arrow uses p and the second arrow uses the Ed�1 algebra structure
on A. This map factors to give a morphism of Ed�1–A–modules pAW Asc! A.

3.2.5 Remark By [21, Section 5] we can conclude that Op.Top†�1/ is tensored
over Top. If O D .O0;O1/ is an operad in degree 0–1 symmetric sequences of
topological spaces and K 2 Top, then K˝O is defined to be the coequalizer

F.F.K˝O//� F.K˝O/
coeq
��!K˝O;

where K˝O is the symmetric sequence of degree 0–1 symmetric sequences whose
arity-m, degree-i component is K �Oi .m/, and F is the free operad functor.

If O is a cofibrant operad in Top†�1 , then Œ0; 1�˝O is a cylinder object and a homotopy
hW Œ0; 1�˝ O ! P gives the data of maps hi .m/W Œ0; 1� � Oi .m/ ! P i .m/, which
assemble into hi .m0Im/W Œ0; 1��Oi .m0Im/! P.m0Im/ for i D 0, 1 and m0 , m� 0.
The homotopy h is compatible with operad composition in the sense that, if ˛ 2Oi .m/
and ˇ 2Oj .m0Im/, i C j � 1 and t 2 Œ0; 1�, then

hi .m/.t; ˛/ ı hj .m0Im/.t; ˇ/D hiCj .m0/.t; ˛ ıˇ/:

3.2.6 Lemma For any Ed�1 algebra A 2 C , the map Asc! A is a weak equivalence
of Ed�1–A–modules.

Proof Abusing notation, we write p WD .id; p/ for the morphism of operads from
Definition 3.2.4. One can show that p is a weak equivalence of fibrant and cofibrant
operads in degree 0–1 symmetric sequences of topological spaces. Therefore, there is
a map of operads �W .Ed�1/

�1! SCh1
d and there are homotopies hW idSCh1

d
' �p and

gW id.Ed�1/�1
' p�. Since Œ0; 1�˝� distributes over coequalizers, we can use h to
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define a homotopy hAW Œ0; 1�˝Asc! Asc :a
m

Œ0; 1�˝ SCh
d.1;m/˝A

˝m
˝Asc

a
m

SCh
d.1;m/˝A

˝m Asc;

th1.m/˝ id
˝m
A

hA

where h1.m/ is defined from h as in Remark 3.2.5. When t D 1, hA.1;�/ factors asa
m

SCh
d.1;m/˝A

˝m Asc

a
m

Ed�1.m/˝A
˝m A

a
m

SCh
d.1;m/˝A

˝m Asc;

pAs

�A

where pA is the map from Definition 3.2.4 and �A is the evident composite in the
diagram using s . The map s is a section of the middle horizontal arrow, defined using
the identity of the operad Ed�1 ,

A' f1Ed�1g˝A! Ed�1.1/˝A!
a
m

Ed�1.m/˝A
˝m:

The map �A is a map of Ed�1–A–modules and hA is a homotopy idAsc' �ApA . Similarly,
g defines a homotopy gAW idA! pA�A .

The precise sense in which Hochschild cohomology can be obtained from the degree
0–1 pieces of the Swiss cheese operad is contained in the following proposition:

3.2.7 Proposition Let A be a fibrant and cofibrant Ed�1 algebra. Then the Hochschild
cochain object of A can be computed as

Hoch.A/' homAEd�1
.Asc; A/:

Proof We are using the projective model structure from Definition 3.1.8, so A is fibrant
as an object of C and thus as an Ed�1–A–module. By Corollary 3.2.3 and Lemma 3.2.6,
Asc is a cofibrant replacement for A as an Ed�1–A–module. By Definition 3.1.11, this
proves the proposition.

Geometry & Topology, Volume 20 (2016)



Kontsevich’s Swiss cheese conjecture 19

4 The universal cheese theorem

We now shift our attention to K–colored algebras over SCh1
d . Take the K–colored

endomorphism End.B;A/ defined in (4) and (5). Apply the functor in Definition 2.3.3
to this operad to get Endh1.B;A/ 2 Op.Top†�1/. With this endomorphism operad
we have a separate notion of algebra over SCh1

d . We call this notion of algebra a
K–colored algebra over SCh1

d . As a point of contrast, the former notion, detailed
in Section 3.2, might be called a 1–colored algebra. Recall that a 1–colored SCh1

d

algebra on .X; Y / is equivalent to an Ed�1 structure on X , an Ed�1–X structure
on Y and an Ed�1–X –module map X sc ! Y . We will see in Proposition 4.1.2
that a K–colored algebra on .B;A/ is like a family of 1–colored algebra structures
on .A;A/. More precisely, it is an Ed�1 algebra structure on A, together with any
map B ! homAEd�1

.Asc; A/. In other words, Hoch.A/ is the universal object of C
acting on the Ed�1 algebra A through SCh1

d . This result is generalized twice, first in
Corollary 4.1.4, then in Proposition 4.1.9. We refer to Proposition 4.1.9 as the universal
cheese theorem, since it replaces Ed in the Swiss cheese theorem with an arbitrary
operad.

4.1.1 Definition Let A be an Ed�1 algebra. Let C=Hoch.A/ denote the over category
of Hoch.A/ 2 C . More precisely, the objects are C–morphisms B ! Hoch.A/ and
the morphisms are C–morphisms B ! B 0 commuting with the maps to Hoch.A/.
In addition, let AlgASCh1

d
.C/ denote the category of SCh1

d algebras of the form .B;A/,
where the induced Ed�1 structure on A is the one given. Morphisms are maps of SCh1

d

algebras which are the identity on A.

Given a pair of objects .B;A/ of C , we let Endh1.B;A/ denote the operad obtained
by applying the forgetful functor OpK!Op.Top†�1/ to End.B;A/ from (4) and (5).

Let AlgASCh1
d
.C/ denote the category of objects B 2 C together with a morphism

SCh1
d !Endh1.B;A/ in Op.Top†�1/, extending the Ed�1 structure on A. A morphism

B ! B 0 in C induces a map of operads Endh1.B 0; A/ ! Endh1.B;A/. Such a
morphism gives a map in AlgA

SCh1
d

.C/ if this induced map respects maps from SCh1
d .

4.1.2 Proposition There is an equivalence of relative categories

AlgA
SCh1

d

.C/Š C=Hoch.A/:

Proof The data of an algebra on the left-hand side is an object B 2 C together with
maps

(22) SCh
d.1;m/˝B˝A

˝m
! A

Geometry & Topology, Volume 20 (2016)



20 Justin Thomas

for each m� 0. The conditions on (22) are that the following diagrams commute:

(23)
Ed�1.m

0/˝ SCh
d.1;mI 0;m

0/˝B˝A˝m Ed�1.m
0/˝A˝m

0

SCh
d.1;m/˝B˝A

˝m A

(24)
SCh

d.1;m
0/˝Ed�1.mIm

0/˝B˝A˝m SCh
d.1;m/˝B˝A

˝m

SCh
d.1;m

0/˝B˝A˝m
0

A

Equivalently, we can use the hom-tensor adjunction and assemble the maps in (22) to
a single map B ! homC.A

sc; A/ (see (19)). The commutativity of diagram (24) is
equivalent to this map lifting to

(25) B! homC.A
sc; A/:

Note that, dual to (20), homC.A
sc; A/ is given by the equalizer

homC.A
sc; A/

eq
�!homC.A

sc; A/�homC

� a
m;m0

SCh
d.1;m

0/˝Ed�1.mIm
0/˝A˝m; A

�
:

With this observation, we can now rewrite diagram (23) as:

(26)
B˝FAEd�1

.Asc/ FAEd�1
.A/

B˝Asc A

Recall that FAEd�1
W C ! C is the free Ed�1–A module functor from Definition 3.1.6.

Clearly, diagram (23) commutes if and only if diagram (26) commutes and the map (25)
factors through Hoch.A/D homAEd�1

.Asc; A/. We conclude that the data of an SCh1
d

algebra structure on .B;A/ is the data of an Ed�1 algebra structure on A together with
a C–morphism B! Hoch.A/.

It is clear that a map .B;A/! .B 0; A/ which is identity on A gives an SCh1
d algebra

morphism if and only if the map B!B 0 commutes with the corresponding morphisms
to Hoch.A/.

4.1.3 Definition Define SCh1
d 2 Op.Top†/ as the image of the left adjoint of

Op.Top†/!Op.Top†�1/ applied to SCh1
d . As in Definition 4.1.1, define AlgASCh1

d
.C/

as the category of objects B 2 C together with a morphism SCh1
d ! Endh.B;A/ in

Op.Top†/ extending the Ed�1 structure on A.
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4.1.4 Corollary There is an equivalence of relative categories

AlgA
SCh1

d
.C/Š C=Hoch.A/:

Proof The adjunction isomorphism puts operad maps SCh1
d ! Endh1.B;A/ in one-

to-one correspondence with operad maps SCh1
d ! Endh.B;A/. This gives an isomor-

phism between AlgA
SCh1

d
.C/ and AlgA

SCh1
d

.C/. Now apply Proposition 4.1.2.

4.1.5 Definition For n� 0, let SCh1
d .n; � / denote the operad in Op.Top†�1/ whose

arity-m component is the degree 0–1 symmetric sequence .Ed�1.m/; SC
h1
d .n;m//.

One may think of SCh1
d .n; � / as a bimodule over Ed�1 . Let End.SCh1

d / be the
symmetric sequence whose nth space is the Ed�1 bimodule maps

End.SCh1
d /.n/ WDmapEd�1

.SCh1
d .1; � /; SCh1

d .n; � //:

4.1.6 Lemma Operadic composition in SCh1
d induces the structure of an operad on

the symmetric sequence End.SCh1
d /.

Proof Define an operad E 2 Op.Top†/ by setting

E.n;m/DmapTop†.End.SCh1
d /. � In/; SCh1

d . � ; m//:

Let n0C� � �CnmD n and `1C� � �C`mD `. The monoidal structure ˝ on symmetric
sequences gives a map from E.n0; m/�

Qm
iD1 E.ni ; `i / to

(27) mapTop†

� mO
iD0

End.SCh1
d /. � Ini /; SC

h1
d . � ; m/˝

� mO
iD1

SCh1
d . � ; `i /

��
:

Now push forward from (27) via the operad structure on SCh1
d ,

SCh1
d . � ; m/˝

� mO
iD1

SCh1
d . � ; `i /

�
! SCh1

d . � ; `/;

and pull back from (27) by

(28) End.SCh1
d /. � In/!

mO
iD0

End.SCh1
d /. � Ini /:

This defines

E.n0; m/�
mY
iD1

E.ni ; `i /! E.n; `/:
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The morphism in (28) comes from the sequence of maps

End.SCh1
d /.kIn/D

a
f Wk!n

nY
iD1

End.SCh1
d /.f �1.i//

D

a
f Wk!n

Y
j20tm

Y
i2g�1.j /

End.SCh1
d /.f �1.i//

!

a
Qf Wk!0tm

Y
j20tm

End.SCh1
d /. Qf �1.j /Inj /:

The first equality holds by definition; the second is a regrouping. The decompositionPm
iD0 ni D n defines a map gW n! 0 tm, where jg�1.i/j D ni . The third map

sends the component corresponding to f W k! n to the component corresponding to
fgW k! 0tm. For each n and m there is a map

(29) SCh1
d .n;m/! E.n;m/:

When n D 0, 1, the map (29) is canonical. Restricting to degrees 0 and 1 gives
a map of Op.Top†�1/ operads SCh1

d ! E1 , where E1 is the degree 0–1 part of E .
Since SCh1

d is freely generated by its degree 0 and 1 pieces, we get (29) for all n,
assembling into a map of operads in Op.Top†/. This guarantees that (30) can be used
to define an operadic composition law on End.SCh1

d /,

(30) SCh1
d .n;m/�End.SCh1

d /.k1/� � � � �End.SCh1
d /.kn/! SCh1

d .k;m/:

4.1.7 Definition Let O be a 1–colored topological operad and let �WO!End.SCh1
d /

be a map of operads. Define the K–colored operad SCh1
d Ì�O by setting

.SCh1
d Ì�O/

h.n;m/D SCh1
d .n;m/; .SCh1

d Ì�O/
f.n;m/D

�
O.n/ mD 0;

∅ m> 0:

Composition in SCh1
d Ì� O uses composition in O , composition in SCh1

d and the
action of O on SCh1

d defined by � ,

SCh1
d .n;m/�O.kIn/! SCh1

d .n;m/�End.SCh1
d /.kIn/! SCh1

d .k;m/;

where the right arrow above is the one in (30).

4.1.8 Lemma Let O be a topological operad and let �W O! End.SCh1
d / be a map

of operads; then the SCh1
d structure on .H;A/ naturally extends to a SCh1

d Ì� O
structure on .H;A/. In particular, H D Hoch.A/ inherits an O algebra structure.
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Proof We only need to show there is a map of operads End.SCh1
d / ! End.H/

compatible with the action of End.SCh1
d / on SCh1

d and the action of SCh1
d on H .

Indeed, the map

(31) End.SCh1
d /.n/˝H˝n!H

is adjoint to the maps, for all m� 0,

SCh1
d .1;m/˝End.SCh1

d /.n/˝H˝n˝A˝m! SCh1
d .n;m/˝H˝n˝A˝m! A;

where the first arrow is (30) and the second arrow is the SCh1
d structure on .H;A/.

To check that (31) is compatible with composition in End.SCh1
d / observe that there

are two morphisms of operads in Op.Top†/,

SCh1
d � Endh.End.SCh1

d /.H/; A/;

where End.SCh1
d /.H/ is the free End.SCh1

d / algebra generated by H . One of
the arrows uses the action of End.SCh1

d / on SCh1
d , while the other uses the map

End.SCh1
d /.H/!H defined by (31). To check that these arrows agree, we only need

to check that they agree out of SCh1
d .n;m/ when nD 0, 1. This is because SCh1

d is
freely generated in degrees 0 and 1. When nD 0, the maps are obviously the same.
When nD 1, the maps are the same by definition of the SCh1

d structure on .H;A/.

4.1.9 Proposition (The universal cheese theorem) Let O be a topological operad
and let �W O! End.SCh1

d / be a map of operads. Then using the induced SCh1
d Ì�O

structure on .Hoch.A/; A/ from Lemma 4.1.8 gives an equivalence of relative categories

AlgA
.SCh1

d Ì�O/
.C/Š AlgO.C/=Hoch.A/:

Proof Given any C–morphism B ! H we can form the following diagram (for
brevity, we have deleted appearances of ˝):

(32)

SCh1
d .1;m/O.n/BnAm SCh1

d .n;m/BnAm

SCh1
d .1;m/BAm A

SCh1
d .1;m/O.n/HnAm SCh1

d .n;m/HnAm

SCh1
d .1;m/HAm A

D

Let .B;A/ be a SCh1
d Ì� O algebra extending the given Ed�1 structure on A, then

by Corollary 4.1.4 we get a C morphism B!H D Hoch.A/ making the right face
of the cube (32) commute. The front face commutes by Lemma 4.1.8. The back face
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commutes by assumption. The bottom face commutes by definition, and the top face
commutes trivially.

This implies that, after composition with the maps whose codomain is A, the left face
of the cube commutes. By adjointness, the two maps O.B/�H agree, implying that
B!H is indeed an O algebra morphism.

On the other hand, given an O algebra B together with an O algebra map B!H ,
we get an SCh1

d structure on .B;A/ from the underlying C–morphism. We only need
to check that the O structure on B and the SCh1

d structure on .B;A/ are compatible
via � . Indeed, since SCh1

d is freely generated in degrees 0 and 1, it is enough to check
that the back face of the cube commutes. But this holds because all other faces commute.
Most importantly, the left face commutes because B!H is an O algebra map.

It is easy to see that each of these constructions are natural in B and are inverse to one
another.

5 The homotopy Ed structure on Hoch.A/

In light of Proposition 4.1.9, to prove the Swiss cheese theorem, Theorem 2.2.1, we
need to construct E' Ed and an operad morphism E! End.SCh1

d / in such a way
that the corresponding K–colored operad SCh1

d ÌE is equivalent to SCd . While SCh1
d

has no obvious action of Ed , it is equivalent to something that does have an Ed action.
The following theorem is proven in Section 6.

5.1.1 Theorem The natural map SCh1
d ! SCh

d is an acyclic cofibration of operads
in Op.Top†/.

In this section, we define the precise sense in which Theorem 5.1.1 gives us our Ed
action on SCh1

d up to homotopy. First, we have a lift p in the following diagram:

SCh1
d SCh1

d

SCh
d

id

�
p

We know that SCh
d is cofibrant since it is obtained as the W construction applied to a

†–cofibrant, well-pointed operad SCh
d

, so it fits into the context covered by Berger and
Moerdijk [4; 5]. In Spitzweck [21] we see that the corner axiom (or Quillen’s SM7)
for monoidal model categories tensored over topological spaces applies to categories
of operads in topological spaces. Thus we have an acyclic fibration

map.SCh
d ; SC

h
d/

��
�!map.SCh1

d ; SCh
d/
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given by pre-composing with �. Since both �p and id live over �, they must be
homotopic. Let hW Œ0;1�˝ SCh

d ! SCh
d be a homotopy with h0 D id and h1 D �p .

We will use this h to define a homotopy right Ed –module structure on SCh1
d . For this

we will use a homotopy equivalent version of Ed which sits inside the W construction.
For simplicity we denote it by E. First we define the category LEd . This category is
not monoidal, but will be used to build E. The letter L stands for level trees. The objects
of the topological category LEd are finite sets and the morphism space LEd .n; n0/ is
defined to be a quotient ofa

k�0
n1;:::;nk

Ed .n1; n
0/�Ed .n2; n1/� � � � �Ed .n; nk/� Œ0;1�

k :

A point of the space above is given by a sequence ˛i 2Ed .ni ; ni�1/ for 1� i � kC1
and ti 2 Œ0;1� for 1� i � k . For convenience of notation, we set n0D n0 , nkC1D n,
t0 D1 and tkC1 D1. We impose the following relations:

5.1.2 Relations If ti D 0, then we can delete ti and replace . : : : ; ˛i ; ˛iC1; : : : /
by the composition . : : : ; ˛i ı ˛iC1; : : : /. If ni D ni�1 and ˛i is the identity, and
ti�1 D 1 D ti , then we can delete ˛i from the sequence and delete ti from the
sequence.

5.1.3 Remark In the W construction, we could always delete the appearance of an
identity and sum the lengths of the surrounding edges. We do not allow that here since
we do not have hsCt D hs ı ht .

Composition in the category LEd is given by concatenating sequences, setting the
new coordinate in the factor Œ0;1� between the two sequences to be 1.

We can use the action of Ed on SCh
d as well as the maps ht , p and � to define

(33) LEd .n; n
0/!map.SCh1

d .n0; m/; SCh1
d .n;m//:

To do this, represent ˛ 2 LEd .n; n0/ with a sequence n0 D n0; n1; : : : ; nk; nkC1 D n
together with ˛i 2Ed .ni ; ni�1/ for 1� i � kC1 and ti 2 Œ0;1� for 1� i � k . This
gives a chain of maps

(34) SCh1
d .n0; m/

�
�! SCh

d.n0; m/
˛1
�! SCh

d.n1; m/
ht1
��! SCh

d.n1; m/
˛2
�! � � �

� � �
htk
��! SCh

d.nk; m/
˛kC1
���! SCh

d.nkC1; m/
p
�! SCh1

d .n;m/:

The maps SCh
d.ni ; m/

˛i
�! SCh

d.niC1; m/ are defined by the action of Ed on SCh
d ,

SCh
d.ni ; m/�Ed .niC1; ni /! SCh

d.niC1; m/:
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Let us check that Relations 5.1.2 in LEd are satisfied and that composition in Ed
corresponds to composition of maps of SCh1

d .

Suppose ti D 0 for some i . Then h0 D id, so our chain of arrows contains

SCh
d.ni�1; m/

˛i
�! SCh

d.ni ; m/
˛iC1
���! SCh

d.niC1; m/:

The composition of these two is equal to the map given by ˛i˛iC1 2Ed .niC1; ni�1/.
This is because SCh

d.�; m/ is a right Ed –module.

If ni Dni�1 , ˛i is the identity and ti�1D ti D1, then the composition hti�1 ı˛i ıhti
is equal to hti�1 D h1 , so we are justified in deleting ˛i and ti from the sequence.

Now suppose we have some ti D1, so that ˛ 2LEd .n; n0/ decomposes as ˇ1ˇ2 for
some ˇ1 2 E.ni ; n

0/ and ˇ2 2 E.n; ni /. The chain of compositions defining the action
of ˛ from SCh1

d .1;m/ to SCh1
d .n;m/ contains the segment:

� � � SCh
d.ni ; m/

h1
��! SCh

d.ni ; m/! � � �

The composite of the actions of ˇ1 and ˇ2 is computed by joining the chains for ˇ1
and for ˇ2 . This joined chain agrees with the chain for ˛ except for the segment above,
which is replaced with the segment:

� � � ! SCh
d.ni ; m/

p
�! SCh1

d .ni ; m/
�
�! SCh

d.ni ; m/! � � �

Since h1 D �p , these chains of maps have the same composition.

The maps (33) define a functor

(35) LEd ! End.SCh1
d /:

There is no obvious operad structure on LEd , so we take the smallest operad con-
taining LEd . More precisely, (35) is a morphism of topological categories whose
objects are finite sets. There is a forgetful functor from operads to the category of such
topological categories. The operad E is defined to be the result of applying the left
adjoint of this forgetful functor to the category LEd .

5.1.4 Definition Let F.LEd / be the free 1–colored operad generated by the sym-
metric sequence n 7! LEd .n; 1/. For each n, n0 � 0 let E.n; n0/ be the topological
space given by the coequalizera

n00

LEd .n
00; n0/�LEd .n; n

00/� F.LEd /.n; n
0/

eq
�! E.n; n0/;

where the two maps are given by composition in either F.LEd / or LEd and the
inclusion of LEd into F.LEd /.
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5.1.5 Lemma The category E is an operad and is equivalent to Ed .

Proof Given a tree with its internal edges labeled by lengths Œ0;1�, call it a level
tree if edges equidistant from the root vertex have the same length. Every morphism
in LEd .n; 1/ can be represented by a level tree with vertices labeled by Ed . We
can represent a point of F.LEd / with a tree whose vertices are labeled by level trees
in LEd . The relation defining F.LEd /! E allows us to break up a level tree with
at least one level of length 1 into several level trees all of whose levels have finite
length. We conclude that E consists of trees labeled by Ed on the vertices and Œ0;1�
on the internal edges, satisfying the condition that every maximal finite subtree is level.

There is an operad morphism E!Ed which collapses all edge lengths to 0. On the
level of symmetric sequences, there is a homotopy inverse Ed ! E. The homotopy
gt W E! E first collapses lengths of the edges furthest from the root to zero. This
preserves the condition that every maximal finite subtree is level. Continuing in this
way, we collapse all edge lengths to zero.

The adjoint to (35) is an operad morphism E! End.SCh1
d /, which by Definition 4.1.7

we can use to define the K–colored operad SCh1
d ÌE.

5.1.6 Lemma The ff; hg–colored operad SCh1
d ÌE is weakly equivalent to the Swiss

cheese operad.

Proof First, note that SCd is equivalent to the semi-direct product of SCh
d and Ed

where the action of Ed factors through the map Ed!Ed which sends all lengths of
internal edges to zero. This is because the map SCh

d ! SCh
d

which collapses trees is a
weak equivalence and respects the action of Ed .

The action of E on SCh1
d can be extended to an action on all of SCh

d . The sequence
˛1; t1; : : : ; tk; ˛kC1 acts via the composition

(36) SCh
d.n0; m/

˛1
�! SCh

d.n1; m/
ht1
��! SCh

d.n1; m/! � � � ! SCh
d.nl�1; m/

htl
��! SCh

d.nl�1; m/
˛l
�! SCh

d.nl ; m/
h1
��! SCh

d.nl ; m/:

Define, for each s 2 Œ0;1�, a homotopy hŒ0;s�W Œ0;1� ˝ SCh
d ! SCh

d by setting
h
Œ0;s�
t D hmin.s;t/ . We have hŒ0;s�0 D id and h

Œ0;s�
1 D hs ; therefore, we can define an

action of E on Œ0;1�s˝ SCh
d by replacing hti in (36) with hŒ0;s�ti

. Then, when s D 0,
each hŒ0;0�ti

is the identity, so the action factors through the map E!Ed collapsing
all edges to 0. When s D1 we have hŒ0;1�ti

D hti , so the action of E on SCh
d is (36).

Thus we have a diagram of equivalences

SCd  SCh
d ÌsD0 E! .Œ0; 1�˝ SCh

d/ÌE SCh
d ÌsD1 E! SCh1

d ÌE;
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where the map on the left collapses all edge lengths to 0.

6 The equivalence SCh1

d ! SCh
d

This section is dedicated to proving Theorem 5.1.1.

The proof uses a recasting Definition 6.1.4 of Definition 2.1.1 which is equivalent when
considering operads in Top; see Getzler [11]. First we set the context for this new
definition, then we prove that SCh1

d ! SCh
d is a cofibration. Finally, we show that it is

a weak equivalence.

6.1 The category of forests

The following definition is an amalgamation of those found in [17; 8; 11].

6.1.1 Definition Fix a set K . A K–colored young forest is an uncolored map of
finite K–colored sets xW Ix! Jx . A K–colored forest f W x! y is a color-preserving
isomorphism f W Iy tJx! Jy t Ix satisfying certain conditions. Before mentioning
the conditions, it helps to think of Iy as the set of incoming edges of f , Jx as the set
of internal vertices of f , Jy as the set of outgoing vertices of f and Ix as the set of
internal edges of f .

To form the conditions f must satisfy to qualify as a K–colored forest, we use
f , x and y to build an endomorphism .y; f; id; x/ of Iy t Jx t Jy t Ix which is
y on Iy , f on Jx , the identity on Jy and x on Ix . We require that, for every
p 2 Iy t Jx t Jy t Ix , there is a k � 0 such that .y; f; id; x/k.p/ 2 Jy . More-
over, if p 2 Iy , we require .y; f; id; x/k.p/ to be equal to y.p/. An example is
shown in Figure 1. We will abuse notation and write .f ı x/k.p/ when p 2 Ix ,
.y; f; id; x/k.p/ 2 Jy and .y; f; id; x/k�1.p/ 62 Jy .

6.1.2 Definition Given a K–colored forest f W x! y , we call V.f / WD Jx the set
of internal vertices of f . We call in.f / WD Iy the set of input vertices of f and
rt.f / WD Jy the set of root vertices of f . In addition, Edge.f /D Jx t Iy Š Jy t Ix
is called the set of extended edges of f and E.f / WD Jx �f Ix is the set of internal
edges of f .

6.1.3 Definition If gW x! y and f W y! z are forests, we can define a composite
forest fgW x! z . We use concatenation to denote this composition and ı to denote
composition of maps of finite sets. The forest fg , as a map Iz t Jx ! Jz t Ix ,
is defined by the following rule. If i 2 Iz , then there is a k � 0 and an " 2 f0; 1g
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iy1

��

iy2

��
ix1

��

iy2

��
jx1

��

iy3

��

iy4

��
ix3

��

ix4

��

ix5

~~
jx2

��
ix1

��

ix2

��

ix3

��

ix4

��

ix5

��

jy1 iy1

&&

iy2

��

iy3

��

iy4

xxf Wx!y

//

jx1 jx2 jy1

Figure 1: Here, f is a forest from x to y , where xW Ix!Jx and yW Iy!Jy
are maps of finite K–colored sets for Ix D fix1 ; ix2 ; ix3 ; ix4 ; ix4 ; ix5g and
Jx D fjx1 ; jx2g . Similarly, Iy D fiy1 ; iy2 ; iy3 ; iy4 ; iy4g and Jy D fjy1 ; jy2g .
The map x is denoted by dotted edges. The map y is denoted by dashed
edges, and the map f is denoted, where applicable, by solid edges. The
picture demonstrates the second condition for f to qualify as a forest.
Namely, f .x.f .x.f .iy1///// D f .x.f .x.f .iy2///// D f .x.f .iy3/// D

f .x.f .iy4///D y.iy1/D y.iy2/D y.iy3/D y.iy4/D jy1 .

such that g".f ı g/k.i/ 2 Jz t Ix . Similarly, if i 2 Jx there is a k and " such that
f ".g ıf /k.i/ 2 Jz tIx . In [23], we show that forest composition is associative. This,
together with disjoint union, makes young forests the objects and forests the morphisms
of a symmetric monoidal category denoted For .

6.1.4 Definition A K–colored operad O is a strong symmetric monoidal functor
.ForK ;t/! .Top;�/. The category of operads is the category Fun˝.ForK ;Top/ of
symmetric monoidal functors and natural transformations. We denote this category by
OpK just as in Definition 2.3.3.

6.1.5 Remark The category of K–colored operads OpK as defined in Definition 2.3.3
is naturally isomorphic to the functor category Fun˝.ForK ;Top/. Indeed, given O
from Definition 2.1.1, as in Definition 2.3.3 we define O.x/ for a young forest x to
be
N
j2Jx

O.x�1.j /I j /.
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6.1.6 Remark When the set of colors K is understood, we often drop it from the
notation. Forests and young forests are always K–colored for some set K . The category
ForK will be abbreviated For and OpK will be denoted by Op.

6.1.7 Definition Let .C;˝/ be a symmetric monoidal category. Call an object
c 2 C indecomposable if it cannot be written as a tensor product c Š c1 ˝ c2 for
any c1 , c2 2 C . Let Fun˝.C;Top/ denote the category of strong symmetric monoidal
functors .C;˝/! .Top;�/. We call a morphism  W O!P in Fun˝.C;Top/ a fibra-
tion (respectively weak equivalence) if  .c/W O.c/! P.c/ is a fibration (respectively
weak equivalence) for every indecomposable c 2 C . Define the class of cofibrations in
the usual manner (see Hovey [13]).

For every symmetric monoidal category C we consider in this paper, we will use
Definition 6.1.7 to define cofibrations, fibrations and weak equivalences regardless of
whether or not these form a model structure.

6.1.8 Remark A young forest x is indecomposable (Definition 6.1.7) if Jx ' �. In
this case we say x is a young tree. We say a forest f W y! x is a tree if x is a young
tree.

6.1.9 Definition For a category C , let C� denote the category with the same objects
as those of C , but only invertible morphisms. Let Cindec denote the full subcategory
(not monoidal) of C consisting indecomposable objects. Let C�indec D .Cindec/

� . The
functor category TopC

�
indec is called the category of C –symmetric sequences, denoted

by C–sSeq.

6.1.10 Remark A forest f W x ! y is invertible if and only if f .Jx/ D Jy and
f .Iy/D Ix . Thus an invertible forest gives a pair of isomorphisms of K–colored finite
sets Jf W Jx! Jy and If W Iy! Ix which are compatible with the maps xW Ix! Jx
and yW Iy! Jy . We conclude that the category For�indec is isomorphic to the opposite
of the category of K–colored finite sets and bijections. In the case K ' f�g, we get
For�indec Š†, where † is as in Definition 2.3.1. Moreover, in this case the category of
For–symmetric sequences is isomorphic to the category Top† of symmetric sequences.

6.1.11 Notation If C ! For is any symmetric monoidal functor, we will denote
the category Fun˝.C;Top/ of strong symmetric monoidal functors by C– Op unless
we say otherwise (for example, we do not use this notation in Definition 6.3.4). We
call the objects of C– Op C –operads. In all cases we consider, the functor C ! For

will be apparent from the category C , so we leave the functor out of the notation.
If C !D! For is a pair of symmetric monoidal functors, we denote the forgetful
functor D– Op! C– Op by UDC and denote its left adjoint by F CD .
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6.2 The W construction

We show how the W construction of [6] can be realized as a coend construction
using For . In nice situations the W construction gives a cofibrant replacement for an
operad, as shown in [4]. We use Œ0;1� as our edge labels as in [16].

Given any young forest z there is a contravariant functor W W For=z! Top from the
over category of z to topological spaces. For any object gWy! z of this over category,
set W.g/Dmap.E.g/; Œ0;1�/. If f W x! y is a forest, the map W.g/!W.gf / is
denoted by W†.f /. This map uses the sum operation on Œ0;1�. This is an extension
of C on Œ0;1/ such that t C1 D1 D1C t for all values of t . Concretely, g
and gf define maps of sets

E.g/
Qg
�! Jz t Ix

�gf
 ��E.gf /

We can turn a function t 2W.g/ to a function W†.t/ 2W.gf / by pushing forward
along Qg then pulling back along �gf .

Pushing forward means summing over fibers, which is well defined since all the sets
we are considering are finite.

If hW z! w is a forest there is a morphism W1.h/WW.g/!W.hg/ which uses the
maps E.g/ ,! Iy  - E.hg/. In this case we do not push forward and pull back
functions. Rather, we extend a function t WE.g/! Œ0;1� to a function on E.hg/ by
setting t .�/D1 if � 62E.g/. This defines a natural transformation W1.h/WW !W h� ,
where h�W For

op
=z
! For

op
=w

is induced by hW z ! w . In other words, this diagram
commutes for all composable triples h, g and f :

(37)
W.g/ W.gf /

W.hg/ W.hgf /

W†.f /

W1.h/ W1.h/
W†.f /

Consider an operad O as a collection of functors Oz W For=z!Top by setting Oz.g/ WD
O.y/ for gWy! z . For a young forest z the topological space WO.z/ is the coend

(38) WO.z/DW ˝For=z Oz D
� a
gWy!z

W.g/�O.y/
�.
� ;

where .W†.f /t; ˛/� .t;O.f /˛/ for every f W x! y , t 2W.g/ and ˛ 2O.x/. Now
a forest hW z! w with the natural transformations above gives us a map

(39) WO.z/DW ˝For=zOz
W1.h/˝id
�������!W h�˝For=zOz!W ˝For=wOw DWO.w/:
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This defines WO as a functor For! Top. This functor is symmetric monoidal, so
WO is a K–colored operad.

6.2.1 Remark The space WO.z/ consists of labeled forests f Wy! z . A labeled
forest is one whose internal edges each have a length in Œ0;1� and whose vertices
j 2 Jx have a corresponding label in O.x�1.j /I j /.

In the sequel, we will define several variants on the category For . Each of these variants
admits a functor to For and we want a corresponding W construction for each.

6.2.2 Definition Suppose O is an operad For ! Top and C is any symmetric
monoidal category equipped with a symmetric monoidal functor GWC ! For . From
this data we can construct an operad WCO 2 C– Op using formulas analogous to (38)
and (39). Specifically, let WC be the composite W ıGc W .C=c/op! .For=G.c//

op!Top,
where c 2 C . We define

(40) WCO.c/DWC ˝C=c .G
�O/c D

� a
f Wb!c

W.G.f //�O.G.y//
�.
�:

We define WCO.c/!WCO.d/ for a C –morphism gW c! d just as in (39).

6.2.3 Example Define the full subcategory D ,! For to be given by those young
forests x where Jx has only color h. Restricting the Swiss cheese operad to this full
subcategory gives the operad SCh

d as WDSCd . To get SCh1
d , we use C ,! For , the full

subcategory of young forests x where Jx has color h and, for each j 2 Jx , there is at
most one element of x�1.j / of color f .

It should be clear that D– Op' Op.Top†/: the forgetful functor OpK ! Op.Top†/
from Definition 2.3.3 is given by pulling back along the symmetric monoidal functor
D! ForK . Finally, note that SCh1

d as defined in Definition 4.1.3 is F CD SCh1
d , where

F CD is as defined in Notation 6.1.11

6.3 Weighted forests

We need to define the category of weighted forests to prove the following half of
Theorem 5.1.1:

6.3.1 Theorem The natural map SCh1
d ! SCh

d is a cofibration in Op.Top†/.
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The proof follows the work of Berger and Moerdijk [4] closely. From an operad O
they construct an increasing chain of symmetric sequences

(41) W0O!W C0 O!W1O!W C1 O!W2O! � � � :

The symmetric sequence W0O is just the underlying symmetric sequence of O . If O
is cofibrant as a symmetric sequence, O is said to be †–cofibrant. If the operadic unit
maps of O are cofibrations, O is said to be well-pointed. In the case O is well-pointed
and †–cofibrant, Berger and Moerdijk show that WO WD colimk WkO is a cofibrant
replacement of O as an operad. In the course of the proof, they show that WkO is a
k–operad, which is a partial operad in a certain sense. This partial operad structure
will be encoded here in the category Opk from Definition 6.3.4. Each W C

k
O is an

operad in OpkC1 and, in our context, is given by the left adjoint to a forgetful functor
OpkC1! Opk applied to WkO . Concretely, the points of WkO are given by trees
with at most k internal edges whose vertices are labeled by O and whose internal
edges are labeled by Œ0;1�.

6.3.2 Definition Let f W x! y be a forest. Let .f j x/ denote the endomorphism of
Iy tJy tIx tJx which is f on Iy tJx , x on Ix and the identity on Jy . Since f is
a forest, there is a k � 0 such that, for every i , we have .f j x/k.i/ 2 Jy . Let Œf j x�
denote .f j x/1 .

6.3.3 Definition For I � Iy tIxtJx and j 2 Jy , let I.j / denote I \ Œf j x��1.j /,
the set of elements of I living over j . A weighted young forest is a pair .x; !x/ where
x is a young forest and !x WJx ! Z�0 is any function, called the weight of x . A
weighted forest f W .x; !x/! .y; !y/ is a forest f W x! y such that, for all j 2 Jy ,

(42) !y.j /� #E.f /C
X

i2Jx.j /

!x.i/:

If gW .y; !y/! .z; !z/ is a weighted forest. then one can show that gf W x! z defines
a weighted forest gf W .x; !x/! .z; !z/.

6.3.4 Definition Disjoint union of forests extends to disjoint union of weighted forests.
Let For! denote the symmetric monoidal category of weighted forests. For each k � 0,
let Fork denote the full subcategory of For! generated by objects of the form .x; !x/

such that !x.j /� k for every j 2 Jx . Let Opk denote the category of .K–colored/
weight-k operads, which are strong symmetric monoidal functors Fork! Top. Note
that there is a symmetric monoidal functor For!! For which forgets the weights.

6.3.5 Remark If a forest f W x! y has no internal edges then f is a disjoint union
of isomorphisms and maps of the form Œ∅!∅�! Œf�g ! f�g�, where � 2K . The
restriction of an operad O to For0 remembers only
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� the spaces O.I I �/ for each K–colored set I and each color � , together with
the right aut I action on O.I I �/, and

� the operadic unit maps �!O.�I �/ for each color � 2K .

Thus O is cofibrant (Definition 6.1.7) as an object of Fun˝.For0;Top/ if and only if it
is well-pointed and †–cofibrant as in [4, Section 3].

Proof of Theorem 6.3.1 In Example 6.2.3 we constructed categories C and D such
that SCh1

d DWC SCd , SCh
d DWDSCd and the map SCh1

d ! SCh
d is

F CDWC SCd !WDSCd :

Lemma 6.3.12 applies since C is a full subcategory of D , which is a full subcategory of
For , and SCd W For! Top is cofibrant as a functor For0! Top (see Remark 6.3.5).

6.3.6 Definition Let C be any full subcategory of For . Define C! to be the full
subcategory of For! given by young weighted forests .x; !x/ such that x 2 C . The
functor For!! For induces a functor C!! C .

If C ,! For is a full subcategory, there is a map of C! operads WC! ! UCC!WCO .
Concretely, for each weighted young forest .x; !x/ we have a map

(43)
a

f W.y;!y/!.x;!x/

W.f /�O.y/!
a

f Wy!x

W.f /�O.y/;

defined in the obvious way. This descends to give a morphism

(44) WC!O! UCC!WCO

6.3.7 Lemma For any full subcategory C ,! For , the left adjoint of (44),

F
C!
C WC!O!WCO;

is an isomorphism.

Proof The left adjoint F C!C WC!O can be computed at a young tree x as

colim
k!1

.WC!O/.x; k/:

For each k , a point of .WC!O/.x; k/ is given by a labeled tree (Remark 6.2.1) f Wy!x

with at most k internal edges. Taking the colimit as k goes to 1, we get all labeled
trees over x , which is WCO.x/.
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6.3.8 Lemma Let C be any symmetric monoidal full subcategory of For! . Suppose
 WO! P is a morphism of operads in C– Op which is a cofibration of C –symmetric
sequences. Further suppose that, for every young forest x 2 C such that there is a tree
f W x! y in C with at least one internal edge, we have that  .x/WO.x/! P.x/ is an
isomorphism. These conditions imply that  is a cofibration of C –operads.

Proof Suppose Q! Q0 is an acyclic fibration of C –operads. By Definition 6.1.7
this means that, for every young tree x 2 C , Q.x/!Q0.x/ is an acyclic fibration of
topological spaces. Suppose we have a commutative diagram of C –operads:

(45)
O Q

P Q0

By assumption, there is a lift �WP!Q of C –symmetric sequences. We claim that �
is automatically a morphism of C –operads. To prove this claim, it is enough to show
that the square on the right in the following diagram commutes for every tree f W x! y

in C :

(46)
P.x/ Q.x/

P.y/ Q.y/

O.x/

O.y/

�.x/

P.f / Q.f /
�.y/

 .x/

O.f /
 .y/

Suppose f is an isomorphism. Then we know the square commutes because � is
a map of C –symmetric sequences. Suppose f is not an isomorphism and has no
internal edges. Since f is a tree it must be of the form Œ∅!∅�! Œfcg ! fcg� for
some c 2K . In this case we have O.x/D P.x/DQ.x/D �; in particular,  .x/ is
an isomorphism. Thus our assumption shows that if f is not an isomorphism then
 .x/ is an isomorphism. We can deduce that the square on the right commutes in this
case from the fact that the square on the left and the outer square commute.

Given a full subcategory D ,! For and a full subcategory C ,!D , we can interpolate
between C! and D! with a sequence of subcategories of For! . For each k � 0, let
Dk be the full subcategory of For! given by disjoint unions of young weighted trees
.x; !x/ where either x 2C , or x 2D and !x � k . Note that D�1DC! . We have left
the inclusion C ,!D implicit in the notation Dk . We have a commutative diagram of
symmetric monoidal functors:

(47)
C

C! DD�1 D0 � � � D!

D
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The bottom row consists of successively larger full subcategories of For! and the top
row consists of full subcategories of For .

From the symmetric monoidal functors in (47) we get the categories and forgetful
functors in:

(48)
C– Op

C!– OpDD�1– Op D0– Op � � � D!– Op

D– Op

6.3.9 Remark For k , ` 2 f�1; 0; 1; : : : g t f!g with k � l , the forgetful functor
Dk– Op!D`– Op clearly preserves fibrations (Definition 6.1.7); thus, the left adjoint
FD`Dk

preserves cofibrations.

6.3.10 Lemma For each k � 0 there is a natural map in D!– Op,

F
Dk
D!

WDkO!WD!O:

The colimit of these maps as k!1 is an isomorphism.

Proof For each young tree x and weight !xD `2Z�0 , the space .FDkD!
WDkO/.x; `/

can be described as the subspace of .WD!O/.x; `/ given by labeled trees f Wy! x

with at most ` internal edges such that, after cutting apart f at the edges labeled 1,
each remaining subtree of f has at most k internal edges. Taking the colimit as k!1,
we get all labeled trees f W x! y with at most ` internal edges. That is, we get all
of .WD!O/.x; `/.

6.3.11 Lemma Suppose O 2 Op is cofibrant as an object of Fun˝.For0;Top/ (see
Remark 6.3.5). Then, for each k � 0, the natural map �k WF

Dk�1
Dk

WDk�1O!WDkO
is a cofibration in Dk– Op.

Proof Observe that, if f W x ! y is a tree in Dk with at least one internal edge,
then x 2Dk�1 , so �k.x/ is an isomorphism. By Lemma 6.3.8 we only need to show
that �k is a cofibration of Dk –symmetric sequences.

In the case k D 0, if x is a tree in C DD�1 then �0.x; 0/ is an isomorphism. If x is
in D�C then �.x; 0/ is the map ∅!O.x/. The assumption that O is cofibrant as a
functor Fun˝.For0;Top/ implies in particular that each O.x/ is aut.x/–cofibrant. That
is, O is cofibrant as a For–symmetric sequence, so �0 is a cofibration of D0–symmetric
sequences. We now consider the case k>0. We follow [4, Lemma 5.4]. For a young tree
z2Fork and gWy!z a tree in Fork , let .W �O/C

k
.g/ be W.g/�O.y/ if g has at most

k� 1 internal edges. Otherwise, let .W �O/C
k
.g/�W.g/�O.y/ be the set of .t; ˛/
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such that t .�/D 0 or t .�/D1 for some � 2E.g/ or ˛.j /D id for some j 2 V.g/.
Using the techniques of [4, Section 2] one can also show that if O is cofibrant as an
object of Fun˝.For0;Top/ (see Remark 6.3.5) then .W �O/C

k
.g/!W.g/�O.domg/

is an aut.g/–cofibration, where autg is the automorphism group of g as an object of the
category Fork=z . Define the map .W �O/C

k
.g/! FDk�1Dk

WDk�1O.z/ by collapsing
any edge labeled 0 and deleting any vertex labeled with the identity.

In the diagram below, �0Fork=z is the set of isomorphism classes of forests gWy! z

in Fork and the domain, y , of a forest gWy! z is denoted by domg :

(49)

a
Œg�2�0Fork=z

..W �O/C
k
.g//autg .F

Dk�1
Dk

WDk�1O/.z/

a
Œg�2�0Fork=z

.W.g/�O.domg//autg .WDkO/.z/

The square in diagram (49) is a pushout. By remarks above, we know the map on
the left in (49) is an aut.z/–cofibration. We conclude FDk�1Dk

WDk�1O!WDkO is a
cofibration of Dk –symmetric sequences.

6.3.12 Lemma If C is a full subcategory of D and D is a full subcategory of For ,
and O is an operad For! Top which is cofibrant as a functor For0! Top, then the
natural map F CDWCO!WDO is a cofibration of d–operads.

Proof By Lemma 6.3.7 we have

WCOŠ F C!C WC!OD F
C
C!
WD�1O:

The commutative diagram (48) shows that F CD F
C!
C D F

D!
D F

D�1
D!

. This gives the first
equality in

F CD F
C!
C WC!OD F

D!
D F

D�1
D!

WD�1O! F
D!
D colim

k
F
Dk
D!

WDkOD F
D!
D WD!O

ŠWDO:

The second equality comes from Lemma 6.3.10 and the isomorphism from Lemma 6.3.7.
The arrow is a cofibration: Indeed, by repeated application of Lemma 6.3.11 together
with the fact that each FDk�1Dk

preserves cofibrations (Remark 6.3.9) we see that

FDk�1Dk
� � �FD�1D0

WD�1O!WDkO

is a cofibration in Dk– Op. Again, by Remark 6.3.9 FDkD!
and FD!D preserve cofibra-

tions. Thus the arrow is a cofibration in D– Op.
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6.4 Weak equivalence proof

This section contains a proof of:

6.4.1 Theorem The natural map SCh1
d ! SCh

d is a weak equivalence of operads
in Op.Top†/.

The idea of the proof is to consider the maps p1W SCh1
d .n;m/! SCh1

d .n� 1;m/ and
pW SCh

d.n;m/! SCh
d.n� 1;m/ given by forgetting the nth disk. By induction, we

can suppose SCh1
d .n� 1;m/! SCh

d.n� 1;m/ is a weak equivalence. We continue
the induction by showing that p�11 .˛/! p�1.˛/ is a weak equivalence for every
˛ 2 SCh1

d .n� 1;m/.

To make the computation of p�11 .˛/ and p�1.˛/ accessible, we will collapse the nth

disk of ˛ 2 SCh
d.n;m/ to a point. Our goal in the next section is to make this precise.

6.4.1 Defining SCd;�.k; ` j n;m/ When we collapse the nth disk of ˛ 2 SCh
d
.n;m/

to its center, we think of the result y̨ as living in a 4–colored operad, which we denote
by SCd;� . We add the colors f� and h� . Let K� D ff�; h�; f; hg be the set of colors
for this new operad. The color f� stands for collapsed full-disks. It is convenient to
also allow a collapsed half disk, which we color with h� . Let .k; ` j n;m/ denote
the K�–colored finite set with k , `, n and m elements of color f� , h� , f and h,
respectively. Let D� denote the full subcategory of ForK� with objects isomorphic to
disjoint unions of the young trees

(50)
.0; 0 j n;m/! fhg; .1; 0 j n;m/! fhg;

.0; 1 j n;m/! fhg; .1; 0 j 0; 0/! fh�g:

To define SCd;�WD� ! Top we need the notion of the geometric realization of ˇ
in SCh

d
.n;m/.

6.4.2 Definition Given ˇ 2 SCh
d
.n;m/, let jˇj be its geometric realization. This is

the subset of Rd given by deleting the open disks and half-disks of ˇ from the closed
unit half-disk. More precisely, if Dd

C
is the closed unit half-disk in Rd , f.Ddf /j g

m
jD1

are the open disks of ˇ , and f.Ddh /ig
n
iD1 are the open half-disks of ˇ considered as

open disks in Rd whose center lies in Rd�1 , then

jˇj DDdC�

�� n[
iD1

.Ddh /i

�
[

� m[
jD1

.Ddf /j

��
:

Let
@hjˇj WD @

�
DdC�

�[
i

.Ddh /i

��
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2 SChd;�.0; 0I 2; 3/ 2 SChd;�.1; 0I 1; 1/ 2 SChd;�.0; 1I 2; 3/ 2 SChd;�.1; 0I 0; 0/

D D

Figure 2: The collapsed disks are denoted by dots and the collapsed half-
disks by tick marks. Collapsed disks are color f� input edges and collapsed
half-disks are color h� input edges. To keep the collapsed disks and half-
disks from coinciding, we only allow one or the other in any composition.
Composition in SCd;� takes place only in the half-disks and collapsed half
disks. The only composition we can do in a collapsed half-disk is given by
plugging in a collapsed disk. The result is a collapsed disk replacing the
collapsed half-disk.

be the h–colored boundary of jˇj. Let @rt.jˇj/ be the upper hemisphere Sd�1
C
� @Dd

C

and let @i jˇj be the upper hemisphere of @.Ddh /i for 1� i � n.

Now we can set

SCh
d;�.0; 0 j n;m/D SCh

d .n;m/;

SCh
d;�.1; 0 j n;m/D f.˛; q/ j ˛ 2 SCh

d .n;m/; q 2 j˛jg;

SCh
d;�.0; 1 j n;m/D f.˛; q/ j ˛ 2 SCh

d .n;m/; q 2 j˛j \Rd�1g;

SCh�
d;�
.k; ` j n;m/D �:

We think of the point q 2 j˛j as a collapsed disk and the point q 2 j˛j \Rd�1 as a
collapsed half-disk. Composition in SCd;� takes place in the half-disks and collapsed
half-disks only. The un-collapsed disks play no part in composition. However, the
collapsed half-disks and collapsed disks only play a part in composition when we plug
a collapsed disk into a collapsed half-disk. The result is a collapsed disk which happens
to live on the boundary of the geometric realization. See Figure 2.

6.4.3 Definition Let C� denote the full subcategory of D� with objects isomorphic to
disjoint unions of the young forests from (50) with n� 1. Recall from Example 6.2.3
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that we used D to denote the full subcategory of ForK whose young trees are isomorphic
to the trees in (50) with k D `D 0. Likewise, C is the full subcategory of D given by
trees isomorphic to disjoint unions of forests from (50) with k D `D 0 and n� 1. We
write x � 1 if x 2C or x 2C� . We have that SCh1

d is the restriction of SCd to C and
SCh

d is the restriction of SCd to D . Let SCh1
d;�

denote the restriction of SCd;� to C� .

Let
SCh

d;� and SCh1
d;�

denote the W construction applied to the 4–colored operads SCd;� and SCh1
d;� via

Definition 6.2.2. Let F denote Kan extension along C�!D� , that is, F DF C�D� using
Notation 6.1.11.

6.4.4 Definition Define pWD�!D to send the K�–colored young forest xW Ix!Jx
to the K–colored forest px with

Ipx D .Ix/f;h and Jpx D .Jx/f;h;

where for K 0 � K� we set IK0 D col�1I .K 0/, colI W I ! K� . In (50) we see that
x.Ipx/� Jpx , so that we can define px as the restriction of x to Ipx . Observe that
p.1; 0 jn;m/D .n;m/. If f Wy! x is a forest, then pf Wpy!px is defined using f .
Since f preserves the colorings, pf is indeed a forest from py to px . If f is a
morphism in C� then pf is a morphism in C .

If ˇ 2 SCd;�.z/ for a K�–colored young forest z , then we get pˇ 2 SCd .pz/. To
define pˇ write ˇ D . ǰ /j2Jz , where ǰ 2 SCd;�.z�1.j /I j /. Each ǰ is of the form
.j ; qj / with qj 2 jj j or of the form j 2 SCd .z�1.j /I j /. Set pˇ D .j /j2Jpz .

If t 2W.f / and f 2D� , then E.pf /�E.f / and pt 2W.pf / is defined to be the
pullback of t WE.f /! Œ0;1�.

If .f Wy!x; t 2W.f /; ˛2SCd;�.x// represents a point in SCh
d;�.x/ then .pf;pt;p˛/

represents a point in SCh
d.x/. This defines the map pW SCh

d;�.1; 0 j n;m/! SCh
d.n;m/.

The restriction of p to F.SCh1
d;�/.1; 0 j n;m/ factors through the inclusion

SCh1
d .n;m/! SCh

d.n;m/:

Let p1 be the induced map F.SCh1
d;�/.1; 0 j n;m/! SCh1

d .n;m/.

Consider the commutative diagram of topological spaces, where the horizontal arrows
do not assemble to operad maps:

SCh1
d .nC 1;m/ F.SCh1

d;�/.1; 0 j n;m/ SCh1
d .n;m/

SCh
d.nC 1;m/ SCh

d;�.1; 0 j n;m/ SCh
d.n;m/:

� p1

� p
�
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The maps p1 and p delete the collapsed disk and, if necessary, a leftover collapsed
half-disk. By induction on n we assume the right vertical arrow is an equivalence.
We will show that for each ˛ 2 SCh1

d .n;m/ the inclusion p�11 .˛/! p�1.�˛/ is an
equivalence. Then by the long exact sequence of homotopy groups we conclude that
the middle vertical arrow is an equivalence. The top left and bottom right maps collapse
the nth full-disk. One can show that these are equivalences. We conclude that the left
vertical arrow is also an equivalence. This will prove Theorem 6.4.1.

6.4.2 Computing p�1.�˛/ and p�1
1
.˛/ We have shown that the proof rests on

Proposition 6.4.5 below. This section is dedicated to the proof of this proposition.

6.4.5 Proposition Fix ˛ 2 SCh1
d .n;m/. The inclusion of the fiber p�11 .˛/ into the

fiber p�1.�˛/ is a weak equivalence.

Combining the W construction (38) and the left adjoint C– Op! D– Op (that is,
Op.Top†�1/! Op.Top†/) we get

SCh1
d .n;m/D

� a
gWz!y

f Wy!.n;m/

W.g/� SCd .z/
�.
� ;

where y � 1 (Definition 6.4.3). If ˛ 2 SCh1
d .n;m/ is represented by .f; g; t; z̨/

where f Wy! .n;m/, gW z˛ ! y , t 2 W.g/ and z̨ 2 SCd .z/, then �˛ 2 SCh
d.n;m/

is represented by .fg;W1.f /t; z̨/. Let T˛ D fgW z˛ ! .n;m/ and t˛ D W1.f /t .
Without loss of generality, we may assume t˛.i/ > 0 for every i 2 E.T˛/ and that
z̨.j /¤ idSCd for any j 2 Jz˛ .

6.4.6 Definition Let Trees.1; 0 j n;m/ denote the over category .D�/=.1;0jn;m/ . Sim-
ilarly, let Trees.n;m/DD=.n;m/ . Let pWTrees.1; 0 j n;m/! Trees.n;m/ denote the
functor induced by p from Definition 6.4.4.

Note that T˛ 2 Trees.n;m/. Let .S; �/ 2 Trees.1; 0 j n;m/=T˛ , where S W x! .1; 0 j

n;m/ is any K�–colored tree and �W z˛!px is a forest such that .pS/�DT˛ . Define
functors W˛WTrees.1; 0 j n;m/

op
=T˛
! Top and SC˛WTrees.1; 0 j n;m/=T˛ ! Top via

the pullbacks:

(51)
SC˛.S/ SCd;�.x/ W˛.S/ W.S/ W.pS/

� SCd .z/ SCd .px/ � W.T˛/

p

z̨ SCd .�/

p

W†.�/
t˛

We want to replace Trees.1; 0 j n;m/ by a much smaller category. First we need the
wedge operation on forests.
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Si;1 Sj;1

Si;0 Sj;0f�

f�

h�

f�

f�

h�

f�

h�

p

i
jT˛ D

Figure 3: The edge i and vertex j of T˛ give a commutative square in
Trees˛ . The input vertices are circles. The output vertex ends in an x . The
internal vertices are filled dots. The input and internal vertices of �0 and
�1 are labeled with their colors. In addition, the image of Si;1 under the
functor p is shown. This makes it clear that the map T˛! pSi;1 is given by
inserting a single vertex.

6.4.7 Definition Let f W x! y be a Kf –colored forest and let gW z! w be a Kg –
colored forest for some finite sets Kf and Kg . Let � WJw ! Jx be any map. Define
x_� z to be the young Kf tKg –colored forest .x; �; z/W Ix tJw tIz! Jx tJz and
define y_�w to be the young forest .y; Œf jx��w/W IytIw!Jy (see Definition 6.3.2).
Finally, set f _� gW x _� z! y _� w to be the forest

.f; g; f; �/W Iy t Iw tJx tJz! Ix tJw t Iz tJy :

6.4.8 Definition Let �0 be the tree with no internal vertices and a single input vertex
of color f� . Let �1 be the tree with a single internal vertex of color h� and a single
input vertex of color f� .

For any edge i 2Edge.T˛/h define �.i/WT˛!T˛.i/ to be the morphism in Trees.n;m/

which inserts a unary vertex along i . Call this new vertex iv . Let Si;k D T˛.i/_iv �k .
For any internal vertex j 2 Jz˛ let Sj;k D T˛ _j �k . Note that pSi;k D T˛.i/

and pSj;k D T˛ .

Let Trees˛ be the full subcategory of Trees.1; 0 j n;m/=T˛ given by the objects Si;k D
.Si;k; �.i// and Sj;k D .Sj;k; idT˛ /, where i 2 .Iz˛ /h t frtg, j 2 Jz˛ and k 2 f0; 1g.

6.4.9 Remark The advantage of T˛ is that it is easy to understand and computes the
space p�1˛ (Lemma 6.4.10). There is a unique morphism S`;1 to S`;0 for every `
and unique morphisms Si;k ! ST�1˛ .i/;k and Si;k ! Sz˛.i/;k . See Figure 3 for an
illustration.
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6.4.10 Lemma The fiber p�1.˛/ is given by the coend W˛˝Trees˛ SC˛ .

Proof Let D ŒS; s; z�2SCh
d;�.1; 0 jn;m/, where S W x! .1; 0 jn;m/ is a forest in D� ,

s2W.S/ and z 2SCd;�.x/. Let us assume that z.j /¤ id for all j 2Jx and s.i/>0 for
all i 2E.S/. Observe that p 2 SCh

d.n;m/ is given by ŒpS; ps; pz�. If p D ˛ there
must be some �WT˛!pS in Trees.n;m/ such that SCd .�/z̨ Dpz and W.�/psD t˛ .
The condition t˛.i/ > 0 for all i 2E.T˛/ implies that t˛ ¤W†.�/.t 0/ for any t 0 and
any � which collapses any edges. Moreover the condition z.j /¤ id for all j implies
that pz.j /¤ id for all j 2 Jx such that x�1.j /f�;h� is not empty. We conclude that
either � D id or � is the insertion of the unique unary (in pS , not in S ) vertex j such
that x�1.j /f�;h� is not empty. In the former case we must have S D Sj;k for some
vertex j 2 Jx and some k 2 f0; 1g. In the latter case we have S D Si;k for some edge
i of T˛ and some k . This defines the map p�1.˛/!W˛˝Trees˛ SC˛ . The map in the
other direction is clear and the verification that they are inverses is left to the reader.

In diagram (52) we have h–colored edges i1 and i2 of T˛ with z˛.i1/D j D T �1˛ .i2/.
Thus we get the commutative diagram on the left. The image of this diagram under
SC˛ is shown on the right:

(52)
Si1;1 Sj;1 Si2;1 jidhj \Rd�1 jz̨.j /j \Rd�1 jidhj \Rd�1

Si1;0 Sj;0 Si2;0 jidhj jz̨.j /j jidhj

The geometric realization of the identity idh is just Sd�1
C

, the top half of the .d�1/–
sphere. The input of z̨.j / corresponding to i1 is a half-disk and the map jidhj! jz̨.j /j
corresponding to Si1;0 ! Sj;0 is just @i1 jz̨.j /j ! jz̨j j (see Definition 6.4.2). On
the other hand, the image of Si2;0 ! Sj;0 is the inclusion of the output boundary
@rtjz̨.j /j ! jz̨.j /j.

6.4.11 Definition Let �� 2 E.S`;1/ be the unique internal edge of color h� . If
i 2 Edge.T˛/ (Definition 6.1.2), let iv denote the vertex inserted by �WT˛! pSi;k .
Let iin and iout denote the incoming and outgoing edges of iv , respectively, con-
sidered as internal edges of Si;k . For any object S`;k of Trees˛ , let E˛.S`;k/ D
f��g

k t .fiin; ioutg\E.S`;k//. This defines a functor E˛WTrees
op
˛ ! Set.

The image under W˛ of the square in diagram (52) is:

(53)
Œ0;1�2 Œ0;1� Œ0;1�2

Œ0;1� � Œ0;1�

.id; 0/ .id;1/

.0; id/ .0; id/0
0 1
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More precisely,

(54) W˛.S/D fsWE˛.S/! Œ0;1� j s.iin/C s.iout/D t˛.i/g;

and W˛.S/ ! W˛.S
0/ for a map S 0 ! S in Trees˛ is given by push forward of

functions along the map of finite sets E˛.S/ ,! E˛.S
0/. There is no condition

on s.��/, the length of the edge of color h� . The isomorphism W˛.Si;1/! Œ0;1�2

sends s to .s.��/; r.s.iout/; s.iin///, where

r.so; si /D
1� e�so

1� e�si
;

which lands in Œ0;1� because so C si D t˛ > 0. Note that so D 0 if and only
if r.so; si / D 0 and so D t˛ if and only if r.so; si / D 1. Since the morphism
Si1;1 ! Sj;1 from diagram (52) collapses the edge .i1/out , we get W˛.Sj;1/ Š
f.r�; r/2W˛.Si1;1/ j rD0g. In the same diagram, the morphism Si2;1!Sj;1 collapses
the edge .i2/in , so we have W˛.Sj;1/Šf.r�; r/2W˛.Si2;1/ j r D1g. The unique mor-
phism Si;1!Si;0 collapses the edge i� , so that W˛.Si;0/Šf.r�; r/2W˛.Si;1/ jr�D0g.
The rest can be deduced from these cases.

6.4.12 Lemma For any functor F WTrees˛ ! Top, the coend W˛ ˝Trees˛ F is the
homotopy colimit of F over Trees˛ .

Proof It is clear from diagrams (53) and (52) that W˛.S/ is the geometric realization
of the nerve of the under category of S for each object S 2 Trees˛ . In addition, the
maps W˛.S/!W˛.S

0/ for S 0! S agree with the maps obtained from the nerves of
under categories.

6.4.13 Lemma We can explicitly compute p�1.�˛/ as

p�1.�˛/' jSCd .T˛/z̨j ' .S
d�1/_n;

where SCd .T˛/z̨ is the composition of all vertex labels from �˛ .

Proof Let Trees˛;0 denote the full subcategory of Trees˛ consisting of objects Sj;0
and Si;0 for internal vertices j and internal edges i . This category is homotopy terminal
so, by Lemma 6.4.12 and Lemma 6.4.10, we have p�1.�˛/ D hocolimTrees˛;0 SC˛ .
This is the same as the homotopy colimit of the coequalizer diagrama

i2E.T˛/

jidhj�
a

j2V.T˛/

jz̨.j /j;

where one arrow is given by including into output parts of the boundaries of the jz̨.j /j
and the other arrow is given by including into input boundaries. These maps are
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cofibrations with disjoint images. Each space in the coequalizer diagram is cofibrant.
Thus the coequalizer diagram is already cofibrant as a functor . �� � /! Top. Thus
we can compute the normal colimit. It is clear that this is the same as composing the
z̨.j / via T˛ then taking the realization of the result. In addition, jˇj is equivalent to a
wedge of n spheres of dimension d � 1 if ˇ 2 SCh

d
.n;m/.

6.4.14 Definition Let Trees˛;1 denote the full subcategory of Trees˛ , where we
discard the objects Sj;0 and Si;0 for j 2 Jz˛ and i 2 E.T˛/. Define a functor
W˛;1WTrees

op
˛;1! Top by setting

W˛;1.S/D

�
sWE˛.S/! Œ0;1�

ˇ̌̌̌ X
i2E˛.S/

s.i/D1

�
:

6.4.15 Lemma Suppose t˛ <1 and nD 1; then p�11 .˛/ is given by the coend

W˛˝Trees˛;1 SC˛;

where SC˛ is the functor in Definition 6.4.6 restricted to Trees˛;1 and W˛;1 is defined
in Definition 6.4.14.

Proof Let  2 F.SCh1
d;�/.1;m/ be such that p1./ D ˛ . Pick a representative

.f; g; s; z/, where f Wy! .1; 0 j 1;m/, y � 1, gW z! y , s 2W.g/ and z 2 SCd;�.z/.
Consider � 2 SCh

d;�.1;m/, which is represented by .fg;W1.f /s; z/. Recall that the
condition y � 1 means that each connected component of the young forest y has at
most one input whose color lives in ff; f�g. This implies that f has at least one internal
edge i 2E.f /. Thus W1.f /s.i/D1 when i is viewed as an internal edge in fg .

We know p� D �˛ , so � is represented by some triple .S; s0; z/ with S 2 Trees˛ ,
s0 2 W˛.S/ and z 2 SC˛.S/. The relations in SCh

d;� preserve edges of length 1,
so we must have s0.i/ D 1 for some i 2 E.S/. We are assuming t˛.i/ <1 for
all i 2E.T˛/, so the infinite edge in S must be in E˛.S/. This implies s0 2W˛;1.S/.
Moreover, we cannot have such an infinite edge if S D Sj;0 for some vertex j or
S D Si;0 for some internal edge i . Thus S 2 Trees˛;1 .

This defines the map from p�1.˛/ to the coend. We leave the rest to the reader.

6.4.16 Lemma For any functor F WTrees˛;1! Top, the coend W˛;1˝Trees˛;1 F is
the homotopy colimit of F over Trees˛;1 .

Proof The argument here is similar to the proof of Lemma 6.4.12.
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t 1

1

Figure 4: On the left is ˛ 2 SCh1
d .2; 3/ . In the middle is p�1.˛/ and on

the right is p�11 .˛/ . Both p�1.˛/ and p�1.˛/ have the homotopy type of a
wedge of spheres, one for each disk in ˛ .

6.4.17 Corollary If t˛ < 0 and n D 1, then the fiber p�11 .˛/ is equivalent to
@hjSCd .T˛/z̨j ' Sd�1 .

Proof By the same argument as in Lemma 6.4.13, hocolimTrees˛;1 SC˛ is equivalent to
colimTrees˛;1 SC˛ . This is easily computed as the h–colored boundary of the composite
of z̨ .

Proof of Proposition 6.4.5 Recall ˛ is represented by f Wy ! .n;m/, y � 1,
gW z˛!y , t 2W.g/ and z̨ 2SCd .z˛/. By applying relations in SCh1

d we may assume
0 < t <1. We may think of .g; t/ as representing an element of SCh1

d .y/, which we
can write as .˛.j //j2Jy . If ˛.j / 2 SCh

d.nj ; mj / then nj � 1. Clearly p�11 .˛.j //'

p�1.˛.j //'� when nj D0. Since t˛.j /<1 we can use Corollary 6.4.17 to conclude
p�11 .˛.j // ' @hj.SCd .g/.˛//.j /j. The fiber p�11 .˛/ is equal to the colimit of the
diagram a

i2E.f /

j1hj�
a

j2V.f /

p�11 .˛.j //;

where one arrow is given by j1hj' @i j˛.y.i//j! @hj.SCd .g/.˛//.y.i//j and the other
by j1hj ' @rtj˛.f .i//j ! @hj.SCd .g/.˛//.y.i//j. This colimit is clearly .Sd�1/_n '
p�1.�˛/.

See Figure 4 for an illustration.
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