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Derived functors of the divided power functors

LAWRENCE BREEN

ROMAN MIKHAILOV

ANTOINE TOUZÉ

We study the derived functors of the components �dZ.A/ of the divided power algebra
�Z.A/ associated to an abelian group A , with special emphasis on the d D 4 case.
While our results have applications both to representation theory and to algebraic
topology, we illustrate them here by providing a new functorial description of certain
integral homology groups of the Eilenberg–Mac Lane spaces K.A; n/ for A a free
abelian group. In particular, we give a complete functorial description of the groups
H�.K.A; 3/IZ/ for such A .

18G55; 55P20

1 Introduction

We will consider here functors from the category of free R–modules to that of
R–modules (for R a commutative ring) and particularly the functor from such a
module M to the module of d –fold invariant tensors .M˝d /†d. This module of
invariant tensors is canonically isomorphic to the degree d components �dR.M/ of
the divided power algebra �R.M/. Though these are non-additive functors of M
whenever d > 1, they may be derived by the Dold–Puppe theory [11]. This associates
to M a family of i th derived functors Li�dR.M; n/, which depends on an additional
positive integer n. In a wider perspective, Li�dR.M; n/ is the i th homotopy group
of Quillen’s left-derived object L�dR.MŒn�/, where MŒn� is the module M , viewed
as a chain complex concentrated in degree n; see Quillen [24]. When R is a field,
the functors Li�dR.M; n/ are known. Our aim is to compute certain of its values
when R D Z. Such computations are motivated by applications in both algebraic
topology and representation theory.

In algebraic topology, the functors Li�dZ.A; n/, where A is an arbitrary abelian
group, are closely related to the integral homology of the Eilenberg–Mac Lane spaces
K.A; n C 2/, ie those spaces whose only nontrivial homotopy group is A in de-
gree nC 2. Indeed, even though a truly functorial description of the homology groups
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H�.K.A; nC2/IZ/ is complicated, they are endowed with a natural filtration, inducing
for all n� 0 functorial isomorphisms

(1-1)
M
d�0

L��2d�
d
Z.A; n/' gr.H�.K.A; nC 2/IZ//

on the associated graded components. This filtration splits functorially when we restrict
ourselves to the subcategory of free abelian groups, so that there are then functorial
isomorphisms

(1-2)
M
d�0

L��2d�
d
Z.A; n/'H�.K.A; nC 2/IZ/

for all n� 0. When A is non-free, such an isomorphism still exists, but is no longer
functorial in A (we refer to Appendix B for a further discussion of this issue). The
abelian groups Li�dZ.A; n/ are thus quite fundamental for topology and the description
of their dependence on the group A carries much useful information, which remains
hidden when such a (finitely generated) group is decomposed into a direct sum of cyclic
groups.

In representation theory, the representations of integral Schur algebras can be described
in terms of the strict polynomial functors of Friedlander and Suslin [14]. Such strict
polynomial functors can be thought of as functors from finitely generated free abelian
groups to abelian groups, equipped with an additional strict polynomial structure. The
derived category of weight d homogeneous strict polynomial functors D.Pd;Z/ is
equipped with a Ringel duality operator ‚, which is a self-equivalence of D.Pd;Z/.
For A free and finitely generated there is an isomorphism

H�.‚n�dZ.A//' Lnd���
d
Z.A; n/:

The case nD 1 can be written more explicitly as follows, where ExtiPd;Z refers to the
i th derived functor of the internal Hom in Pd;Z :

ExtiPd;Z.ƒ
d
Z; �

d
Z/.A/D Ld�i�

d
Z.A; n/:

Such an isomorphism holds when �dZ is replaced by an arbitrary strict polynomial
functor, but the case of divided powers is fundamental, since these functors constitute
a family of projective generators of the category. In this context, the description of
the L��dZ.A; n/ as functors of A is essential, since the functoriality is necessary in
order to determine the action of the Schur algebra, and hence to obtain the expressions
H�.‚n�dZ.A// as representations and not simply as abelian groups. Actually we need
more than the functoriality in order to understand the action of the Schur algebra; we
really need to describe the strict polynomial structure of these functors.
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Let us briefly review what was previously known regarding the derived functors
L��

d
Z.A; n/. The integral homology of Eilenberg–Mac Lane spaces was computed

by H Cartan: a non-functorial description of these homology groups is given in [9,
Exposé 11, théorème 1], and a functorial one in [9, Exposé 11, théorème 5]. Work
in this direction was pursued by two students of Mac Lane, R M Hamsher [15] and
G J Decker [10], who studied the cases n D 1 and n � 1, respectively. By the
isomorphism (1-1), it is possible to retrieve from these results a description of the
derived functors L��dZ.A; n/. The answers, however, are very complicated. For
example, the homology groups Hi .K.A; n/IZ/ for a finitely generated abelian group
A are described functorially by an infinite list of generators and relations, even though
they are of finite type. Some additional progress in computing the functors L��dZ.A; n/
was made by a direct study of its properties by A K Bousfield [5; 6], and a complete
description of these functors for any A was obtained for d D 2 by H-J Baues and T
Pirashvili [2] and by two of us [8] for d D 3. On the other hand, no description of the
strict polynomial structure of the functors L��dZ.A; n/ has been given so far.

We now list the results which we obtain in this paper. We give full description (as strict
polynomial functors) of:

(1) L��
d
Z.A; 1/ for all d and A free. By (1-2), this determines a new and functorial

description of the groups H�.K.A; 3/IZ/ for A a free abelian group.

(2) L��
d
Z.A; n/ for d � 4 and A free.

Our treatment is elementary and self-contained and does not use computations from
the literature. The strict polynomial structures come in as a help in the computations.
Our computations have a number of interesting byproducts, in particular:

(3) Short proofs of some computations first obtained by one of us [29], including
that of L��dk .V; n/, where k is a field of characteristic 2.

(4) A new family of exact complexes “of Koszul type” involving divided powers
over a field of characteristic 2.

The kernels of these new complexes yield new families of functors, related to the
2–primary component of L��dZ.A; 1/. We describe these functors in a variety of
ways. The simplest one is the 2–primary component of L3�4Z.A; 1/, which we denote
by ˆ4.A/. This can also be described as the cokernel of the natural transformation
ƒ4F2

.A=2/!�4F2
.A=2/ determined by the algebra structure of ��F2.A=2/ (such a map

only exists in characteristic 2).

(5) We give a description of the groups HnCi .K.A; n/IZ/ for A free in the range
0� i � 10 which is both more natural and more precise than Cartan’s [9].
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Finally, in Section 11, we return to the derived functors L��dZ.A; n/ for all n, d and
all abelian groups A. We present a conjectural description of these functors, up to a
filtration, in terms of simpler derived functors of divided and exterior powers. We then
make use of our results here and of our previous ones from [8] in order to provide some
evidence in support of this conjecture.

We will now discuss the content of this article in more detail. In Sections 2 and 3 we
collect the main properties of divided power algebras, strict polynomial functors and
derived functors which will be required. In Section 4, we introduce the useful notion
of a quasi-trivial filtration, which will allow us to prove that certain spectral sequences
degenerate. For V a vector space over a characteristic p field k, the divided power
algebra ��k.V / possesses such a filtration, which we call the principal filtration. We use
this filtration in Section 5 to compute those values of the derived functors Li�dk .V; n/
which will be needed in the sequel.

In Sections 6 and 7 we compute the strict polynomial functors Li�dZ.A; 1/ for any
free abelian group A, with the help of the Bockstein maps. These may be viewed
as a family of differentials on the modp graded groups L��dFp .A=p; 1/ and can be
explicitly described. While in odd characteristic these modp derived functors together
the Bockstein differentials simply provide us with a standard dual Koszul complex, the
result is slightly different in characteristic 2. In that case the Bockstein differentials
determine on L��dF2.A=2; 1/ a sort of dual Koszul complex structure, in which the
differentials are twisted by a Frobenius map. We call this characteristic 2 complex
the skew Koszul complex. In both odd and even characteristic the integral homology
groups L��dZ.A=p; 1/ are simply the groups of cycles in these Koszul and twisted
Koszul complexes, and we are able to analyze these more precisely in a number of
situations.

In Sections 8–10, we present another method for computing the derived functors of
�dZ.A/. Here we use the adic filtration associated to the augmentation ideal of the
algebra ��Z.A/. We call this filtration the maximal filtration on ��Z.A/. It was the
filtration chosen in [8] in order to study the derived functors of �3Z.A/. With the help
of the associated spectral sequence, we determine the values of L��4Z.A; n/. The
easiest cases n D 1, 2 are studied in Section 9, where we pay particular attention
to the first new functor occurring among the derived functors of �4Z.A/. This is the
functor ˆ4.A/ mentioned above, the 2–primary component of L3�4Z.A; 1/, which we
describe in three distinct ways. As n increases, the situation becomes more involved,
and a detailed study of the differentials in the maximal filtration spectral sequence
for �4Z.A; n/ for a general n is carried out in Section 10. The computation of certain
differentials is delicate and involves functorial considerations and careful dimension
counts. This yields an inductive formula for L��4Z.A; n/ (Theorem 10.2), from which
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the complete description of the derived functors of �4Z.A; n/ for all n follows directly
(Theorem 10.1).

In Section 11, we return to the derived functors L��dZ.A; n/ for all n, d and all
abelian groups A. We propose a conjectural description, up to a filtration, of the
functors Lr�dZ.A; n/. To state this requires that we first discuss the stable homology
groups Hr.K.A; n/IZ/, ie those for which n � r < 2n. These additive groups are
discussed in a number of sources, and we first review here for the reader’s convenience
certain aspects of the admissible words formalism of Cartan. We then reformulate in
Theorem 11.3 his admissible words in terms of a simpler labelling, which only involves
those words that do not involve the transpotence operation. We refer in Proposition 11.4
to Cartan’s computation of these stable values, and this is the only place in the text
where we make use (for simplicity) of his results. We then state our Conjecture 11.5
and we verify that it is compatible with Theorems 6.3 and 10.1 as well as with our
results in [8].

We view the appendices as an integral part of our text. In Appendix A, we review
some classical methods of computations of some Hom and Ext1 in functor categories
which are used many times in our arguments. Appendix B begins with a discussion
of the relation between the derived functors of the functor �dZ.A/ and the integral
homology of K.A; n/. We then display a complete table of the functorial values of the
groups HnCi .K.A; n/IZ/ for A free in the range 0� i � 10. While the constraints
in choosing this range of values of i were to some extent typographical, the fact that
we only know the complete set of derived functors of �dZ.A/ for d � 4 would have
precluded the display of a complete table for much higher values of i . This table already
features most of the unexpected phenomena which we encounter in our computations,
as will be seen from the discussion which precedes the table. Finally, Appendix C
provides for convenience a complete list of nontrivial derived functors L��4Z.A; n/
for n� 4.

The following diagram summarizes the relations between the various parts of our text:

Sections 2–5

tt **

Appendix Aoo

qq
ww

Sections 6–7

**

Sections 8–10

tt

Section 11 and Appendix B

Notation Throughout the text the notation A=p , where A is an abelian group and p
prime number, stands for A˝Z Z=p . For any abelian group A, the notation �.A/ will
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stand for �Z.A/, the divided power algebra associated to the Z–module A, unless
otherwise specified. On the other hand, for any Fp –vector space V , the notation �.V /
stands for the divided power algebra �Fp .V / in the category of Fp–vector spaces.
Finally, we will often denote functors by their values, in order to avoid cumbersome
notations. For example, we will write �2F2.A=2

.1// rather than �2F2 ıI
.1/ ıI=2, where

I is the identity functor.
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2 Classical functorial algebras

2.1 The divided power algebra

Let M be an R–module, where R is a commutative ring with unit. The symmetric
algebra SR.M/ and the exterior algebra ƒR.M/ are well known. The divided power
algebra �R.M/ deserves equal attention. We recall here its basic properties, referring
to Roby [26] for the proofs. The algebra �R.M/ is defined as the commutative
R–algebra generated, for all x 2M and all nonnegative integers i , by elements i .x/
which satisfy the following relations for all x , y 2M and � 2R :

0.x/D 1; x ¤ 0;(2-1)

s.x/t .x/D
�sCt
s

�
sCt .x/;(2-2)

n.xCy/D
X
sCtDn

s.x/t .y/; n� 1;(2-3)

n.�x/D �
nn.x/; n� 1:(2-4)

Setting s D t D 1 in (2-2), one finds by induction on n that 1.x/n D nŠn.x/. The
definition �R.M/ is functorial with respect to M : an R–linear map f W M ! N

induces a morphism of R–algebras �R.M/!�R.N / which sends i .x/ to i .f .x//.

The relations (2-1)–(2-4) are homogeneous, so that �R.M/ can be given a graded
algebra structure by setting deg i .x/D i . We denote by �dR.M/ the homogeneous
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component of degree d , so that there is a functorial decomposition

�R.M/D
M
d�0

�dR.M/:

There are in addition functorial R–linear isomorphisms �0R.M/'R and �1R.M/'M .
The latter identifies 1.x/ with x , so that

n.x/D
xn

nŠ

whenever nŠ is invertible in the ring R . It is for this reason that �R.M/ is called the
divided power algebra.

Consider the graded commutative algebra TM WD
L
d�0 V

˝d , equipped with the
shuffle product, and let us denote by TS.M/ the graded subalgebra of invariant tensors
TS.M/ WD

L
d�0.V

˝d /†d . There is a well-defined functorial homomorphism of
graded algebras

(2-5) �R.M/! TS.M/

which sends n.x/ to x˝n . The morphism (2-5) is an isomorphism if M is projective
[26, Proposition IV.5]. In particular, for a projective R–module M we have functorial
isomorphisms

�dR.M/' .M˝d /†d :

This description by invariant tensors of �dR.M/ is no longer valid for arbitrary R–
modules M . For example, it follows by inspection from the relations (2-1)–(2-4) that

(2-6) �2Z.Z=2/' Z=4;

so that this group cannot live in Z=2˝Z=2. This example also shows that divided
power algebras behave differently from symmetric and exterior algebras with respect
to torsion. Indeed, SZ.M/ and SFp .M/ coincide for any Fp–module M , as do
ƒZ.M/ and ƒFp .M/, but the similar assertion is not true for �Z.M/ and �Fp .M/.
For any Fp–module M , we will always carefully distinguish between the functors
�Z.M/ and �Fp .M/, with the convention mentioned above that �.V / will always
stand for �Fp .V /.

2.2 Exponential functors

A functor F from R–modules to R–algebras is said to be an exponential functor if,
for all pairs of R–modules M and N , the composite

(2-7) F.M/˝F.N/
F.i1/˝F.i2/
���������! F.M ˚N/˝F.M ˚N/

mult
��! F.M ˚N/
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induced by the canonical inclusions i1 and i2 of M and N into M ˚ N is an
isomorphism. We refer to the map (2-7) as the exponential isomorphism for F . For
example, the algebras SR.M/, ƒR.M/, and �R.M/ determine exponential functors
(see [26, théorème III.4]).

Exponential functors are endowed with a canonical bialgebra structure. Indeed, there
is a coproduct induced by the diagonal inclusion � of M into M ˚M :

F.M/
F.�/
���! F.M ˚M/' F.M/˝F.M/:

It follows from (2-3) that the coalgebra structure obtained in this way on �R.M/ is
the one determined by the comultiplication map i .x/ 7!

P
iDjCk j .x/˝ k.x/.

2.3 Duality

Given an R–module M , we let M_ WDHomR.M;R/. The (restricted) dual �R.M/]

of the divided power algebra is the R–module

�R.M/] WD
M
d�0

.�dR.M
_//_:

The bialgebra structure on �R.M_/ defines a bialgebra structure on �R.M/] . The dual
of symmetric and exterior algebras are defined similarly. An explicit computation shows
that for all projective R–modules M , there are natural isomorphisms of R–bialgebras

�R.M/] ' SR.M/; SR.M/] ' �R.M/; ƒR.M/] 'ƒR.M/:

For a generalization of such constructions in the context of strict polynomial functors,
see (3-4) .

2.4 Base change

For any R–module M and any commutative R–algebra A, there is a base change
isomorphism of A–algebras [26, théorème III.3], which sends n.x/˝1 to n.x˝1/:

(2-8) �R.M/˝R A' �A.M ˝R A/

There are similar base change isomorphisms for symmetric and exterior algebras:

SR.M/˝R A' SA.M ˝R A/ and ƒR.M/˝R A'ƒA.M ˝R A/:
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3 Derived functors and strict polynomial functors

3.1 Derived functors

The Dold–Kan correspondence states that the normalized chain complex functor N is
an equivalence of categories preserving homotopy equivalences, with inverse K (also
preserving homotopy equivalences):

N W simpl.R-Mod/� Ch�0.R-Mod/ WK:

If F is a functor from R–modules to R0–modules, Dold and Puppe [11] defined its
derived functors LiF.M; n/ by the formula

(3-1) LiF.M; n/D �iFK.P
M Œn�/;

where PM is a projective resolution of the R–module M and Œn� is the degree-n shift
of complexes (ie C Œn�i D Ci�n ). More generally, if C is a complex of R–modules,
we denote by LF.C/ the simplicial R–module F.K.P //, where P is a complex of
projective R–modules quasi-isomorphic to C , and by LiF.C/ its homotopy groups.

Remark 3.1 The definition of the derived functors of F only depends on the restriction
of F to the category of free R–modules. Furthermore, if F commutes with directed
colimits of free R–modules (as the divided power functors do), then F is completely
determined by its restriction to the category of free finitely generated R–modules.
For example, for a free R–module M , we have an isomorphism L��

d .M; n/ D

limi L��d .Mi ; n/, where the limit is taken over the directed system of free finitely
generated submodules Mi of M .

3.2 Strict polynomial functors

We are mainly interested in the divided powers functors and functors related to these. All
these functors actually belong to a class of very rigid functors called “strict polynomial
functors”, introduced by Friedlander and Suslin [14] in the context of the cohomology of
affine algebraic group schemes and related to Bousfield’s “homogeneous functors” [5].
We recommend Krause [19] for a presentation of strict polynomial functors. We will
only recall here the basic facts required for our computations.

3.2.1 The category of strict polynomial functors Let R be a commutative ring.
Strict polynomial functors can be thought of as functors from the category of finitely
generated projective R–modules to the category of R–modules, equipped with an
additional “scheme-theoretic” structure. This additional structure determines a notion
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of weight for strict polynomial functors (this weight is called “degree” in [14]; in the
present article, we prefer to reserve the term degree for the homological degrees).

For all d �0, we denote by Pd;R the abelian category of homogeneous strict polynomial
functors of weight d , as in [19]. Let FR denote the category of functors from finitely
generated projective R–modules to R–modules. There is an exact faithful forgetful
functor

(3-2) PR! FR:

The functors lying in the image of this forgetful functor are the homogeneous functors
of Bousfield [5]. Typical examples of functors lying in the image of the forgetful functor
are the symmetric powers SdR , the exterior powers ƒdR and the divided powers �dR .
For each of these, there is (up to an isomorphism of strict polynomial functors) a unique
way to see it as a strict polynomial functor, so we use the same notation to denote the
corresponding strict polynomial functor.

We define the category of strict polynomial functors as the product category

PR D
Y
d�0

Pd;R:

Thus, a typical strict polynomial functor F is a family of homogeneous functors F d

of weight d , which we denote usually as a direct sum F D
L
d�0 F

d . Gathering all
the forgetful functors (3-2), we obtain an exact faithful forgetful functor preserving
colimits:

(3-3) PR! FR:

Let us mention some useful structures which equip the category PR . First, the usual
tensor product of functors (defined objectwise, ie .F ˝G/.M/D F.M/˝RG.M/)
lifts to a tensor product in the category of strict polynomial functors. Thus, the forgetful
functor (3-3) preserves tensor products. Similarly the composition of strict polynomial
functors is well defined, and the forgetful functor (3-3) preserves composition. Finally,
we have a (restricted) duality functor

(3-4) ]
W P˚R ! PR;

which sends a strict polynomial functor F D
L
d�0 F

d to the functor F ] such
that F ].M/ D

L
d�0 F

d .M_/_ , where _ denotes R–linear duality, ie M_ D

HomR.M;R/. When R is a field, this duality functor is exact.

Observe that the category of strict polynomial functors discussed by Friedlander and
Suslin [14] is the direct sum of the categories Pd;R . Taking the product instead of
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the direct sum is a rather cosmetic change, which we make here in order to be able
to consider the infinite sum �R D

L
d�0 �

d
R of all the divided powers as a strict

polynomial functor, and the multiplication of the divided power algebra as a morphism
of strict polynomial functors �R˝�R! �R .

The advantage of working with strict polynomial functors rather than with ordinary
functors from finitely generated projective R–modules to R–modules is twofold:

(1) The category of strict polynomial functors is graded by the weight. This weight
actually plays an important role in organizing the computations of derived functors
of the divided power algebra. Now, in all computations involving strict polynomial
functors this information is automatically and transparently carried. So we do not have
to pay special attention to the bookkeeping by the weights, since the strict polynomial
setting does it for us. For example, the functors SdR , ƒdR and �dR are homogenous of
weight d . If F and G are homogeneous of respective weights d and e then F ˝G
and F ıG are homogeneous of weights d C e and de , respectively. Moreover all
morphisms of strict polynomial functors preserve the weight. However, when working
with strict polynomial functors, one has to take care that a given ordinary functor may
sometimes be given several non-isomorphic scheme-theoretic structures, as the example
of the Frobenius twists in Section 3.2.2 shows.

(2) It is easier to compute extensions in PR than in FR , and there are often fewer
possible ones in PR . This fact will be of great help in solving certain extension
problems arising from spectral sequences. We have gathered in Appendix A some
standard methods and results regarding the computation of extensions in these categories.
An illustration of the difference between extensions in PR and in FR is provided by
comparing the results from Lemma A.11 with those of (a)–(g) in Section 11.5.

3.2.2 Frobenius twists functors We now take a field k of positive characteristic p
as our ground ring R . We denote by I .r/ the kernel of the morphism

S
pr

k !

pr�1M
kD1

Skk˝S
pr�k
k

induced by the comultiplication of the symmetric power bialgebra. Thus, for all finite-
dimensional k–vector spaces V , the vector space I .r/.V /, also denoted by V .r/ ,
can be identified with the subspace of Sp

r

k .V / generated by the .pr/th powers of the
elements of V . The strict polynomial functor I .r/ is called the r th Frobenius twist
functor. It has an important role in the theory of representations of affine algebraic
group schemes in positive characteristic [14] and it will also appear in our computations.
It enjoys the following basic properties:
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(1) I .r/ is a homogeneous strict polynomial functor of weight pr .

(2) I .r/ is additive.

(3) The dimension of I .r/.V /D V .r/ is equal to the dimension of V .

(4) The functors can be composed according to the rule I .r/ ı I .s/ D I .rCs/ and
I .0/ is the identity functor.

(5) The Frobenius twist functors are self dual: .I .r//]' I .r/ , so that I .r/ is also the
cokernel of the map

Lpr�1

kD1
�kk˝�

pr�k
k ! �

pr

k induced by the multiplication
of the algebra of divided powers.

The inclusion I .r/ ,! S
pr

k is called the Frobenius morphism and the dual epimorphism
�
pr

k � I .r/ therefore deserves to be called the Verschiebung morphism, following the
usage in arithmetic. As explained in Appendix A, these two morphisms provide bases
of the vector spaces HomPk.I

.r/;S
pr

k / and HomPk.�
pr

k ; I .r//, respectively.

Observe that if kDFq with q dividing pr , the strict polynomial functors I .nr/ , n� 0,
are not isomorphic to each other since they do not have the same weight. However, if
we forget their scheme-theoretic structure and view them as ordinary functors, that is
as objects of FFq , they all become isomorphic to the identity functor.

3.3 Derived functors and differential graded PR –algebras

We are interested in computing the derived functors of the divided power functors.
We have seen that these divided power functors are not mere functors: they are strict
polynomial ones and, moreover, their direct sum form an algebra. We will say that they
form a strict polynomial algebra (a PR–algebra, for short). In this section we explain
how such a structure is inherited by its derived functors.

Definition 3.2 A differential graded strict polynomial algebra over R (dg–PR–
algebra, for short) is a graded strict polynomial functor

AD
M
i�0

Ai 2 PR;

equipped with a multiplication Ai˝Aj!AiCj and a differential @W Ai!Ai�1 , satis-
fying the usual axioms of a differential graded algebra. A morphism of dg–PR–algebras
is a morphism of strict polynomial functors A! B commuting with multiplications
and differentials.

Remark 3.3 Strict polynomial functors are always graded by their weight and mor-
phisms of strict polynomial functors preserve the weights. Thus, dg–PR–algebras are
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actually implicitly bigraded. To be more specific, let us denote by Adi the homogeneous
summand of weight d of the strict polynomial functor Ai . Then AD

L
d�0;i�0A

d
i

and the multiplication and the differential restrict to morphisms Adi ˝A
e
j ! AdCeiCj

and Adi ! Adi�1 , respectively.

Definition 3.2 admits obvious variants (eg dg–PR–coalgebras), whose formulation
is left to the reader. A dg–PR–algebra with zero differential is called a graded PR–
algebra, and a graded PR–algebra concentrated in degree zero is simply a PR–algebra.
Here are some basic examples of graded PR–algebras:
� We denote by �R.MŒi�/ the divided power algebra generated by a finitely

generated projective R–module M placed in degree i . This yields a graded
PR–algebra whose homogeneous component of degree di and weight d is the
functor �dR .

� If R D k is a field of positive characteristic p and V is a finite-dimensional
k–vector space, we similarly denote by �k.V

.r/Œi �/ the divided power algebra
generated by a copy of V .r/ placed in degree i . This yields a graded PR–algebra
with �dk ı I

.r/ the homogeneous part of degree di and weight dpr .
� There are of course similar examples based on exterior and symmetric algebras.

Now let us have a look at the effect of derivation of functors on dg–PR–algebras. For
all finitely generated projective R–modules M and all homogeneous strict polynomial
functors F of weight d , we denote by NF.M; n/ the normalized chains of the
simplicial object F.K.MŒn�// D F.K.RŒn�/˝M/. This complex is a complex of
homogeneous strict polynomial functors of weight d in the variable M [28, Observa-
tion 2.5]. In particular, derivation induces (weight-preserving) functors:

PR! PR;

F 7! ŒM 7! LiF.M; n/�;

consistently with (3-1). In the case of a PR–algebra A, the composition of the shuffle
map [30] in the Eilenberg–Zilber theorem with the map induced by the product on A

NA.M; n/˝NA.M; n/!N .A˝A/.M; n/!NA.M; n/

defines a dg–PR–algebra structure on NA.M; n/. Thus we obtain functors

fPR–algebrasg ! fdg–PR–algebrasg;

A 7! ŒM 7!NA.M; n/�;
(3-5)

fPR–algebrasg ! fgraded PR–algebrasg;

A 7! ŒM 7! L�A.M; n/�:
(3-6)
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More generally, if A is a dg–PR–algebra, we define NA.M; n/ by placing the degree-j
object of the complex NAi .M/ in degree i C j , with product defined up to a Koszul
sign by the shuffle map and the product of A, and with differential defined as the sum
of the differential of A and the differential arising from the simplicial structure. We
thus obtain functors

fdg–PR–algebrasg ! fdg–PR–algebrasg;

A 7! ŒM 7!NA.M; n/�;
(3-7)

fdg–PR–algebrasg ! fgraded PR–algebrasg;

A 7! ŒM 7! L�A.M; n/�:
(3-8)

Remark 3.4 If the dg–PR–algebra A is graded commutative and is an exponential
functor, then NA.M; n/ coincides (up to homotopy equivalence) with the n–fold
bar construction of A.M/ [20, Chapter X]. For arbitrary dg–PR–algebras, these two
constructions are different.

3.4 Some basic facts regarding derived functors of the divided
power algebra

Before starting our computations, we recall in this section some basic facts regarding the
derived functors of the symmetric algebras, the exterior algebras and the divided powers
algebras, which provide a clearer picture of the situation. The following formula is due
to Bousfield [5] and Quillen [25] (see also Illusie [16, Chapitre I, paragraphe 4.3.2]).

Proposition 3.5 Let R be a commutative ring and let M be a finitely generated
projective R–module. There are isomorphisms of graded PR–algebras

(3-9)
M
i;d�0

Li�
d
R.M; n/'

M
i;d�0

LiCdƒ
d
R.M; nC 1/'

M
i;d�0

LiC2dS
d
R.M; nC 2/:

In the sequel, following Illusie [16; 17], we will refer to either of these isomorphisms
as a décalage isomorphism and to their composite as the double décalage. If R is a
Q–algebra, there is an isomorphism of graded PR–algebras SR.MŒi�/' �R.MŒi�/.
Thus the décalage formula implies the following statement:

Corollary 3.6 If R is a Q–algebra and M is a finitely generated R–module, then
the graded PR–algebra L��R.M; n/ is isomorphic to �R.MŒn�/ if n is even and to
ƒR.MŒn�/ if n is odd.
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Thus computing derived functors of derived power algebras over Q–algebras R is not
an issue. Here are some elementary properties of divided powers when R is noetherian:

Proposition 3.7 Let R be noetherian and let M be a finitely generated projective
R–module. Then the R–module Lj�dR.M; n/ is:

� Zero if j < n or j > nd .

� A finitely generated R–module if n� j � nd . If RD Z then, for n� j < nd ,
Lj�

d
R.M; n/ is a finite abelian group.

Finally, the graded PR–subalgebraM
d�0

Lnd�
d
R.M; n/�

M
d;j�0

Lj�
d
R.M; n/D L��R.M; n/

is equal to ƒR.M/ if n is odd and 2¤ 0 in R , and to �R.M/ otherwise.

Proof The first two assertions follow from Dold and Puppe [11, Satz 4.22] and the
final statement is easily verified by making use of the décalage isomorphisms (3-9).

4 A quasi-trivial filtration of the divided power algebra

In this section, we fix a field k of positive characteristic p > 0. All the functors
considered are strict polynomial functors defined over k. We write �d , ƒd and Sd

for �dk , Sdk and ƒdk . A generic finite-dimensional k–vector space will be denoted by
the letter V . The goal of this section is to introduce some particularly nice filtrations of
dg–Pk –algebras, which we call “quasi-trivial”, and to exhibit a quasi-trivial filtration
of the divided power algebra.

4.1 Quasi-trivial filtrations

A nonnegative decreasing filtration on a dg–Pk –algebra A is a family of graded
subfunctors of A\

i�0

F iAD 0� � � � � F iC1A� F iA� � � � � F 0AD A

such that the differential and the multiplication in A restrict to morphisms F iA!F iA

and F iA˝F jA! F iCjA. Since the F iA are graded subfunctors of A and there
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are no morphisms between homogeneous functors of different degrees, the filtration is
actually a direct sum over the indices d and j of the filtrations\

i�0

F iAdj D 0� � � � � F
iC1Adj � F

iAdj � � � � � F
0Adj D A

d
j ;

where Adj is the homogeneous component of weight d and degree j of the dg–Pk –
algebra A and F iAdj WD .F

iA/\Adj . The graded object associated to this filtration is
then a dg–Pk –algebra, which we denote by grA. It follows that

grAD
M

i;j;d�0

griAdj D
M

i;j;d�0

F iAdj

F iC1Adj

and we denote by grAdj the homogeneous component of degree j and weight d
of grA, so that

grAdj D
M
i�0

gri Adj :

Definition 4.1 Let A be a dg–Pk –algebra equipped with a nonnegative decreasing
filtration .F iA/i�0 . We will say that this filtration is quasi-trivial if:

(1) The graded Pk –algebra grA is an exponential functor and, for every finite-
dimensional vector space V , the vector spaces grAdj .V / are finite-dimensional
for all j and d .

(2) There is a weight-preserving isomorphism of differential graded k–algebras
�W A.k/ �!� grA.k/.

The next lemma gives some straightforward consequences of Definition 4.1. Lemma
4.2(c) says that the graded Pk –algebras A and grA are “as close as possible”: the
filtration modifies the functoriality but not the algebra structure of A.V /.

Lemma 4.2 Let A be a dg–Pk –algebra equipped with a quasi-trivial filtration. Then:

(a) The filtration of each summand Adj is bounded.

(b) The dg–Pk –algebra A is an exponential functor.

(c) The choice of a basis of V determines a non-functorial, weight-preserving
isomorphism of differential graded k–algebras A.V /' grA.V /.

Proof (a) Since each Adj is a strict polynomial functor with finite-dimensional
values, it is a finite functor and, in particular, all filtrations are bounded (see Touzé [29,
Lemma 14.1]).
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(b) The map  W A.V /˝A.W /!A.V ˚W / induced by the multiplication preserves
filtrations, and the associated graded map gr W grA.V /˝grA.W /�!� grA.V ˚W /
is an isomorphism by the first condition of Definition 4.1. If we restrict ourselves to
homogeneous components of a given weight d , the filtrations on A.V /˝A.W / and
A.V ˚W / are finite, so that  is an isomorphism.

(c) A basis of V determines an isomorphism V ' ks . We obtain the required
isomorphism of differential graded algebras as the composite

A.ks/' A.k/˝s �!�
�˝s

.grA.k//˝s ' grA.ks/;

where the first and third isomorphisms are induced by the multiplications (and are
isomorphisms since A.V / and grA.V / are exponential).

A key property of quasi-trivial filtrations is that they commute with derivation.

Proposition 4.3 Let A be a graded Pk –algebra, endowed with a quasi-trivial filtration.
For all n � 0, there exists a filtration of the graded Pk –algebra L�A.V; n/ and a
functorial isomorphism of graded Pk –algebras

gr.L�A.V; n//' L�.grA/.V; n/:

Proof The filtration of A induces a filtration of NA.V; n/. The associated spectral
sequence of graded Pk –algebras has the form

(4-1) E1i;j DHiCj .gr�i NA.V; n//H)HiCj .NA.V; n//:

While this is a second quadrant spectral sequence, there is no problem with convergence
since it splits as a direct sum of spectral sequences of homogeneous strict polynomial
functors of given weight d , and Lemma 4.2(a) ensures that each summand boundedly
converges (see Weibel [30, Theorem 5.5.1]). The first page of the spectral sequence
may be rewritten as E1i;j D LiCj .gr�i A/.V; n/. To prove Proposition 4.3 it therefore
suffices to prove that the spectral sequence (4-1) degenerates at E1 . This will be the
case if we are able to prove that, for all i and d , the homogeneous components of
degree i and weight d of the graded Pk –algebras L�A.V; n/ and L�.grA/.V; n/ have
the same dimension (note that we already know that they both are finite-dimensional
by Proposition 3.7).

This equality of dimensions follows directly from the observation that A.K.V; n//
and grA.K.V; n// coincide as semi-simplicial k–vector spaces. Indeed the graded
k–algebras with weights A.k/ and grA.k/ are isomorphic and we claim that, for an ex-
ponential graded Pk –algebra E , the graded k–algebra with weights E.k/ determines
completely the semi-simplicial k–vector space E.K.V; n//.
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The latter claim follows from the explicit construction of the Dold–Kan functor K [30,
Section 8.4]. The simplicial k–vector space K.V Œn�/ is degreewise finite-dimensional,
say of some dimension dk in degree k . If we choose a basis of V , each K.V Œn�/k has a
canonical basis determined by the basis of V and, if we use coordinates relative to these
bases, then for each i the face operator @i W K.V Œn�/k ! K.V Œn�/k�1 is given by a
formula @i .x1; : : : ; xdk /D .y1; : : : ; ydk�1/, where yj D

P
i2Ij

xi and I1; : : : ; Idk�1
is some partition of the set f1; : : : ; dkg. We therefore have commutative diagrams

E.k/˝dk
'

�
//

N@i
��

E.K.V Œn�/k/

@i
��

E.k/˝dk�1
'

�
// E.K.V Œn�/k�1/

where the horizontal isomorphisms � are induced by the multiplication of E.V / and
N@i sends x1˝ � � � ˝ xdk to y1˝ � � � ˝ ydk�1 , with yj D

Q
i2Ij

xi . This proves our
claim and finishes the proof of Proposition 4.3.

Another useful property of quasi-trivial filtrations is their compatibility with kernels. To
be more specific, let A be a filtered dg–Pk –algebra and denote by Z the subalgebra of
cycles of A. The filtration of A induces a filtration on Z by setting F iZ D F iA\Z .
Let Z0 be the subalgebra of cycles of grA. Then we have a canonical injective
morphism of algebras

(4-2) grZ ,!Z0:

In general, this morphism is not surjective, but this nevertheless turns out to be the case
if the filtration of A is quasi-trivial.

Proposition 4.4 Let A be a dg–Pk –algebra, endowed with a quasi-trivial filtration.
Let us denote by Z the cycles of A and by Z0 the cycles of grA. The canonical
morphism (4-2) is an isomorphism of graded Pk –algebras.

Proof It suffices to prove that the homogeneous components .grZ/di and Zdi have
the same dimension for all degrees i and all weights d or, equivalently, that the maps
@W Adi ! Adi�1 and gr @W .grA/di ! .grA/di�1 have the same rank. This follows from
Lemma 4.2(c).

4.2 Truncated polynomial algebras

The truncated polynomial algebra Q.V / is the Pk –algebra obtained as the quotient
of S.V / by the ideal generated by V .1/ . For all i � 0 we denote by Q.V Œi �/ the
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truncated polynomial algebra on a generator V placed in degree i . This is defined in a
similar way, as the quotient of S.V Œi �/ by the ideal generated by V .1/Œi �. Truncated
polynomial algebras enjoy the following properties:

(1) If p D 2, Q.V /Dƒ.V / (but this is no longer true in odd characteristics).
(2) The Pk –algebra Q.V / is an exponential functor (in particular a Pk –bialgebra).
(3) Let us denote by �W S.V /!�.V / the unique morphism of Pk –algebras whose

restriction V D S1.V /! �1.V /D V to the summand of weight 1 is equal to
the identity. It follows that Q.V / is equal to the image of � .

(4) Q.V / is self-dual, ie there is an isomorphism of Pk –bialgebras Q.V /'Q].V /.

All these properties are well known and easy to check; we just indicate how to
retrieve (4) from (3). Since � is a morphism between exponential PR–algebras,
it is actually a morphism of PR–bialgebras. Hence its dual yields a morphism of
PR–bialgebras �]W S.V /'�].V /!S].V /'�.V /. Since � and �] coincide when
restricted to the homogeneous summand of weight 1, they must be equal. So we obtain
Q.V /D Im� ' Im�] DQ].V /.

We finish this paragraph with a slightly less well-known result on truncated polynomials,
namely the construction of the functorial resolution of Q.V /. We equip the graded
Pk –algebra S.V /˝ƒ.V .1/Œ1�/ with a differential @ defined as the composite

Sd .V /˝ƒe.V .1//! Sd .V /˝V .1/˝ƒe�1.V .1//! SdCp.V /˝ƒe�1.V .1//;

where the first map is induced by the comultiplication in ƒ.V .1// and the second by
composition of the inclusion V .1/ ,! Sp.V / and the multiplication in S.V /. The
composite morphism of graded Pk –algebras S.V /˝ƒ.V .1/Œ1�/� S.V /�Q.V /

induces a morphism of differential graded algebras

(4-3) f W .S.V /˝ƒ.V .1/Œ1�/; @/! .Q.V /; 0/:

Proposition 4.5 The morphism f is a quasi-isomorphism.

Proof The graded Pk –algebras S.V / ˝ ƒ.V .1/Œ1�/ and Q.V / are exponential
functors. Hence for V D kd there is a commutative diagram of differential graded
k–algebras whose vertical isomorphisms are induced by the multiplication:�

S.k/˝ƒ.k.1/Œ1�/
�˝d f˝d

//

'

��

Q.k/˝d

'

��

S.kd /˝ƒ.kd.1/Œ1�/
f

// Q.kd /

Thus, by the Künneth formula, the proof reduces to the easy case V D k.
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Example 4.6 In characteristic 2, the weight-4 component of the morphism of dif-
ferential graded algebras (4-3) determines the following resolution of ƒ4.V /, where
@1.x ^y/D x

2˝y �y2˝ x and @0.xy˝ z/D xyz2 :

(4-4) 0 // ƒ2.V .1//
@1
// S2.V /˝V .1/

@0
// S4.V /

f4
// ƒ4.V / // 0:

4.3 The principal filtration on the divided power algebra

We denote by I.V / the ideal of �.V / generated by V D �1.V /. We call this ideal
the principal ideal of �.V / (although it is not strictly speaking a principal ideal). The
adic filtration relative to I.V / will be called the principal filtration of �.V /. The
associated graded object is the Pk –algebra

gr�.V / WD
M
n�0

grn.�.V //D
M
n�0

I.V /n=I.V /nC1:

In this section, we will compute in Proposition 4.9 the graded object associated to this
principal filtration. This result deserves to be compared to the following well-known
assertion [9, Exposé 9, page 9-07]:

Proposition 4.7 The choice of a basis of the finite-dimensional vector space V deter-
mines a (non-natural) weight-preserving algebra isomorphism

�.V / �!� Q.V /˝�.V .1//:

Proof By the exponential properties of �.V / and Q.V /˝�.V .1// (as in the proof
of Lemma 4.2), the proof reduces to the case V D k, which is a straightforward
computation.

To describe the Pk –algebra gr�.V /, we first need to interpret I.V / as a kernel. By the
universal property of the symmetric algebra, the inclusion V .1/ ,! S

pr

k .V / induces an
injective morphism of Pk –algebras Sk.V

.1// ,! Sk.V /. Since Sk.V / is an exponen-
tial functor and Frobenius twists are additive functors, Sk.V

.1// is also an exponential
functor. Thus the natural inclusion above is also a morphism of Pk –bialgebras and it
induces by duality an epimorphism of Pk –bialgebras �.V /� �.V .1//.

Lemma 4.8 The principal ideal I.V / is the kernel of the morphism �.V /��.V .1//.
In other words, the multiplication in �.V / yields an exact sequence

(4-5) V ˝�.V /
mult
��! �.V /� �.V .1//! 0:
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Proof If V D V1˚V2 , by using the exponential properties of �.V / and �.V .1// we
obtain that (4-5) is isomorphic to the exact sequence

V1˝�.V1/˝�.V2/˚�.V1/˝V2˝�.V2/!�.V1/˝�.V2/��.V
.1/
1 /˝�.V

.1/
2 /!0:

Hence it suffices to check exactness for V D k, which is easy.

Proposition 4.9 There is an isomorphism of Pk –algebras, which maps grn �.V /
isomorphically onto Qn.V /˝�.V .1//:

gr�.V /'Q.V /˝�.V .1//:

Proof Let I.V /n
d

be the direct summand of I.V /n contained in �d .V /, so that

grn.�d .V //D I.V /nd=I.V /
nC1
d

:

Then I.V /n
d
D 0 if d < n and, for d � n, the multiplication of �.V / induces an

epimorphism

(4-6) V ˝n˝�d�n.V /� I.V /nd :

Since the multiplication V ˝n ! �n.V / factors through the canonical inclusion of
Qn.V / in �n.V /, the maps (4-6) induce commutative diagrams:

Qn.V /˝V ˝�d�n�1.V /

Qn.V /˝mult
��

// // I.V /nC1
d� _

��

Qn.V /˝�d�n.V / // // I.V /n
d

By Lemma 4.8, the cokernel of the multiplication V ˝ �d�n�1.V /! �d�n.V / is
equal to �.d�n/=p.V .1// if p divides d � n and to zero otherwise. Hence, if p
divides d �n, the map Qn.V /˝�d�n.V /� I.V /n

d
induces an epimorphism

Qn.V /˝�.d�n/=p.V .1//� I.V /nd=I.V /
nC1
d

and the quotient I.V /n
d
=I.V /nC1

d
equals zero if p does not divide d � n. We thus

have a surjective morphism of Pk –algebras

(4-7) Q.V /˝�.V .1//�
M
n�0

grn �.V /;

which sends Qn.V /˝�.V .1// onto grn �.V /. To finish the proof, we observe that
the epimorphism (4-7) is actually an isomorphism for dimension reasons: it follows
from Proposition 4.7 that the direct summands of a given weight d of the source and
the target of the epimorphism (4-7) have the same finite dimension.

Geometry & Topology, Volume 20 (2016)



278 Lawrence Breen, Roman Mikhailov and Antoine Touzé

Propositions 4.7 and 4.9 have the following consequence:

Corollary 4.10 The principal filtration on �.V / is quasi-trivial and determines an
isomorphism of Pk –algebras gr�.V /'Q.V /˝�.V .1//.

In the previous statements, we considered the divided power algebra �.V / as a non-
graded algebra (or equivalently as a graded algebra concentrated in degree zero). But
we can define an extra degree on the divided power algebra by placing the generator V
in degree i . In that case the statements of Propositions 4.7 and 4.9 and Corollary 4.10
remain valid with V replaced by V Œi � and V .1/ replaced by V .1/Œpi �, since all the
morphisms in those propositions preserve the weights, and the extra degree is equal to
i times the weight. By iterating Corollary 4.10 we then obtain the following result:

Corollary 4.11 For any nonnegative integer i , there exists a quasi-trivial filtration
on �.V Œi �/ and an isomorphism of graded Pk –algebras

gr�.V Œi �/'
O
r�0

Q.V .r/Œipr �/:

5 The derived functors of �d
k

.V / in positive characteristic

In this section, k is a field of positive characteristic p . All the functors considered are
strict polynomial functors defined over k. In particular, we write �d , ƒd and Sd for
�dk , Sdk and ƒdk . A generic finite-dimensional k–vector space will be denoted by the
letter V .

The main results of nhis section are Theorems 5.1 and 5.6, which describe the derived
functors of �.V /. These results were already proved by one of us in [29], where the
proof was rather technical and relied heavily on the computations of Cartan [9]. The
proofs which we will give here are more elementary and independent of [29] and [9].
We will require Theorems 5.1 and 5.6 as an input for the computations of Sections 6, 9
and 10.

5.1 The description of L��d.V; n/ in characteristic 2

Theorem 5.1 Let k be a field of characteristic 2, and let V be a finite-dimensional
k–vector space. For all n� 1, there is an isomorphism of graded Pk –algebras

(5-1) L��.V; n/'
O

r1;:::;rn�0

�.V .r1C���Crn/Œ2r2C���CrnC2r3C���CrnC� � �C2rnC1�/:
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For example, there is an isomorphism L��.V; 1/'
N
r�0 �.V

.r/Œ1�/. The homoge-
neous component of weight d of the graded Pk –algebra L��.V; n/ provides us the
derived functors of �d .V /. Let us spell this out in the d D 4 case.

Example 5.2 For n� 1, the derived functors L��4.V; n/ are given by the following
formula (where F.V /Œk� means a copy of the strict polynomial functor F.V / placed
in degree k ):

L��
4.V; n/

' �4.V /Œ4n�˚
M

iD1;:::;n

�2.V /˝V .1/Œ3nC i � 1�

˚

M
1�i<j�n

V .1/˝V .1/Œ2nC i C j � 2�˚
M

iD1;:::;n

�2.V .1//Œ2nC 2i � 2�

˚

M
1�i�j�n

V .2/ŒnC 2i C j � 3�:

Explanation of Example 5.2 In order to unpack the compact formula (5-1), we list
those generators of the graded Pk –algebra L��.V; n/ which can contribute (after
applying a divided power functor or after taking tensor products) to a summand of
weight 4 of L��.V; n/. These generators are of the following four distinct types:

(i) One generator V Œn�, corresponding to the n–tuple .0; : : : ; 0/.

(ii) n generators of the form V .1/Œn C i � 1�, corresponding to the n–tuples
.r1; : : : ; rn/ with ri D 1 and rk D 0 if k ¤ i .

(iii) n generators of the form V .2/Œn C 3i � 3�, corresponding to the n–tuples
.r1; : : : ; rn/ with ri D 2 and rk D 0 if k ¤ i .

(iv) 1
2
n.n� 1/ generators of the form V .2/ŒnC j C 2i � 3�, corresponding to the

n–tuples .r1; : : : ; rn/ with ri D rj D 1 for a given pair fi; j g, i ¤ j , and rkD 0
if k ¤ i , j .

Then we determine all possible manners in which these generators can contribute to a
direct summand of weight 4 of L��.V; n/:

� The generator (i) can contribute to a summand of weight 4 in two ways, namely
(a) via a summand �4.V /, and (b) via a summand �2.V /˝V .1/ , where V .1/

is a generator of type (ii).

� The generators of type (ii) can contribute to a summand of weight 4 in three ways.
First of all by the method (b) listed before, secondly via a summand V .1/˝V .1/

where two generators of type (ii) are involved, or thirdly via a summand �2.V .1//.
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� The generators of type (iii) and (iv) are already of weight 4, hence they can only
contribute to the part of weight 4 as summands of the form V .2/ .

Finally, we compute the degree of each of these summands of weight 4 and thereby
obtain the sought-after expression for L��4.V; n/.

More generally, we may extract from Theorem 5.1 the homogeneous component of an
arbitrary given weight d . This yields the following result:

Corollary 5.3 Let k be a field of characteristic 2, d be a positive integer and V be a
finite-dimensional k–vector space. There exists an isomorphism of strict polynomial
functors

Li�
d .V; n/

'

M
ı

O
r1;:::;rn�0

�ı.r1;:::;rn/.V .r1C���Crn/Œ2r2C���Crn C 2r3C���Crn C � � �C 2rn C 1�/;

where the sum is taken over all the maps ıW Nn ! N satisfying the following two
summability conditions:

(1)
X

r1;:::;rn�0

ı.r1; : : : ; rn/2
r1C���Crn D d .

(2)
X

r1;:::;rn�0

ı.r1; : : : ; rn/.2
r2C���Crn C 2r3C���Crn C � � �C 2rn C 1/D i .

5.2 Proof of Theorem 5.1

In this proof, we will constantly use the graded Pk –algebras �.V .r/Œi �/ and ƒ.V .r/Œi �/.
To keep formulas in a compact form and to handle the degrees and the twists in a
confortable way, we denote these graded Pk –algebras by �.r;i�.V / and ƒ.r;i�.V /,
respectively. For example, the homogeneous summand of weight dpr and degree
di of �.r;i�.V / is �d .V .r//, and the homogeneous summand of weight dpr and
degree di C j of L��.r;i�.V; n/ is equal to LjCdi�d .V .r/; n/. With these notations,
Theorem 5.1 appears as the special case r D i D 0 of the following theorem, which is
the statement that we actually prove.

Theorem 5.4 Let k be a field of characteristic 2 and let V be a finite-dimensional
k–vector space. For all n� 1 and r , i � 0, the graded Pk –algebra L��.r;i�.V; n/ is
isomorphic to the tensor productO

r1;:::;rn�0

�.V .rCr1C���Crn/Œi2r1Cr2C���Crn C 2r2Cr3C���Crn C � � �C 2rn C 1�/:
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Proof We break the proof into three steps.

Step 1 (The quasi-trivial filtration of the divided power algebra) Corollary 4.11
yields a quasi-trivial filtration of �.r;i�.V / with associated graded Pk –algebra

(5-2) gr�.r;i�.V /'
O
s�0

ƒ.rCs;i2
s�.V /:

By Proposition 4.3, derivation commutes with quasi-trivial filtrations. Moreover, by
the Eilenberg–Zilber theorem and the Künneth formula, derivation also commutes with
tensor products. We therefore have isomorphisms of graded Pk –algebras

(5-3) gr.L��.r;i�.V; n//' L�.gr�.r;i�/.V; n/'
O
s�0

L�ƒ
.rCs;i2s�.V; n/:

Step 2 (Décalage) Now we use the décalage formula of Proposition 3.5,

L�ƒ
.rCs;i2s�.V; n/' L��

.rCs;i2sC1�.V; n� 1/;

to rewrite the right-hand side of (5-3). In this way we obtain, for all n � 1, an
isomorphism

(5-4) gr.L��.r;i�.V; n//'
O
s�0

L��
.rCs;i2sC1�.V; n� 1/:

Step 3 (Induction) We now prove Theorem 5.4 by induction on n. For n D 1,
L��

.rCs;i2sC1�.V; 0/ is isomorphic to �.rCs;i2
sC1�.V /, so that Theorem 5.4 holds.

Let us assume that we have computed L��.rCs;i2
sC1�.V; n� 1/. By inserting the

formula giving L��.rCs;i2
sC1�.V; n� 1/ in the right-hand side of (5-4), we obtain

that the isomorphism of Theorem 5.4 holds, up to a filtration. To prove Theorem 5.4, it
remains to verify that the filtration on the left-hand side of (5-4) is trivial. This is a
direct consequence of the following proposition.

Proposition 5.5 [29, Proposition 14.5] Let k be a field of characteristic 2 and let
A.V / be a filtered graded commutative Pk –algebra whose summands Adi .V / are
finite-dimensional. Assume that grA.V / is isomorphic to a tensor product of graded
Pk –algebras of the form �.V .r/Œi �/. Then there exists an isomorphism of graded
Pk –algebras A.V /' grA.V /.

Proof The proof is given in Touzé [29]; we sketch it here for the sake of completeness.
The starting point is the vanishing of Proposition A.6, which yields an isomorphism
of graded strict polynomial functors f W A.V / �!� grA.V /. The isomorphism f

is not an isomorphism of algebras, but we can use it to build one in the following
way. Let us first recall that grA.V / is exponential, hence A.V / also is by the same
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reasoning as in Lemma 4.2. In particular, both algebras also have a coalgebra structure
determined by the multiplication, as explained in Section 2. One can check that the
primitives of an exponential functor form an additive functor. So the isomorphism f

shows that the primitives of A.V / form a direct summand of the primitives of grA.V /.
Let us denote by F.V / the primitive part of grA.V /, that is, the direct sum of all
the generators V .r/Œi �. Then f induces a monomorphism f W A.V / ,! F.V /. But
grA.V / is the universal cofree coalgebra on F.V /, hence f extends uniquely to
a morphism of graded Pk –coalgebras Nf W A.V / ! grA.V /. Since Nf induces an
injection between the primitives of A.V / and those of grA.V /, it is injective, and
it is an isomorphism for dimension reasons. Finally, the coalgebra structure of an
exponential functor uniquely determines its algebra structure and vice versa, so the
isomorphism Nf is also a morphism of algebras.

5.3 The computation of L��d.V; 1/ over a field of odd characteristic

Theorem 5.6 Let k be a field of odd characteristic p and let V be a finite-dimensional
k–vector space. There is an isomorphism of graded Pk –algebras

(5-5) L��.V; 1/'
O
r�1

�.V .r/Œ2�/˝
O
r�0

ƒ.V .r/Œ1�/:

Remark 5.7 The reader might find it surprising that derived functors of � are
so different in characteristic 2 from what they are in odd characteristic. However,
Proposition 4.7 shows that Theorem 5.6 is valid in characteristic 2 in a nonnatural way.
Also, Proposition 4.9 shows that Theorem 5.6 remains valid in characteristic 2, up to a
filtration.

Proof The proof is similar to the characteristic 2 case, ie to the proof of Theorem 5.4.

Step 1 (The quasi-trivial filtration of the divided power algebra) Corollary 4.11 yields
a quasi-trivial filtration of �.V / with associated graded Pk –algebra

N
s�0Q.V

.s//.
Thus, by Proposition 4.3 and the Eilenberg–Zilber theorem, the graded Pk –algebra
L��.V; 1/ is filtered and we have isomorphisms

(5-6) gr.L��.V; 1//' L�.gr�/.V .s/; 1/'
O
s�0

L�Q.V
.s/; 1/:

Step 2 (Derived functors of truncated polynomials) In characteristic 2, the derived
functors of truncated polynomials (ie of exterior powers) can be computed by the
décalage formula of (3-9). This is no longer the case in odd characteristic. The aim
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of step 2 is to prove an analogue of the décalage formula (for n D 1), namely an
isomorphism of graded Pk –algebras

(5-7) L�Q.V
.s/; 1/'ƒ.V .s/Œ1�/˝�.V .sC1/Œ2�/:

Since Frobenius twist functors are additive, derivation commutes with precomposition
by the Frobenius twist. So it suffices to prove (5-7) for s D 0. Let us denote by
A.V / the differential graded Pk –algebra .S.V /˝ƒ.V .1/Œ1�/; @/ introduced in (4-3).
There is a quasi-isomorphism f W A.V /!Q.V /, where the target has zero differential.
By deriving this quasi-isomorphism, we obtain a morphism of differential graded
Pk –algebras

(5-8) NA.V; 1/!NQ.V; 1/:

By definition, NA.V; 1/ is the total object of a bigraded Pk –algebra equipped with
two differentials: the differential @ of the dg–Pk –algebra A.V / and the differential d
coming from the simplicial structure. Thus we have two spectral sequences of graded
Pk –algebras converging to the homology of NA.V; 1/. The first one is obtained by
computing first the homology along the differential @ and secondly the homology along
the differential d . Thus, its second page is given by E20;t D LtQ.V; 1/ and E2s;t D 0
if s¤ 0, which proves that (5-8) is a quasi-isomorphism. The second spectral sequence
is given by computing first the homology along the simplicial differential d . By the
décalage formula of (3-9), its first page is given by

8E1s;t Dƒ
t�s.V /˝�s.V .1//;

with the convention that ƒt�s.V / is zero if t � s < 0. We observe that 8E1s;t is a
strict polynomial functor of weight t C .p� 1/s . Since the differentials of the spectral
sequence are weight-preserving maps di W 8Eis;t !

8EisCi;t�iC1 , they must be zero for
lacunary reasons. Hence 8E1s;t D

8E1s;t . Thus we can conclude that there exists a filtration
on the graded Pk –algebra L�Q.V; 1/ such that the quasi-isomorphism (5-8) induces
an isomorphism of graded Pk –algebras

gr.L�Q.V .s/; 1//'ƒ.V .s/Œ1�/˝�.V .sC1/Œ2�/:

This is almost the formula (5-7) that we want to prove. To finish the proof, we have to
get rid of the filtration on the left-hand side. This follows from Proposition 5.8 below.

Step 3 (Conclusion) The isomorphisms (5-6) and (5-7) together yield the formula of
Theorem 5.6 up to a filtration. To finish the proof of Theorem 5.6, we prove that this
filtration splits by applying Proposition 5.8 once more.

In the course of the proof of Theorem 5.6, we have made use of the following statement,
whose proof is similar to that of Proposition 5.5.
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Proposition 5.8 [29] Let k be a field of odd characteristic and let A.V / be a filtered
graded commutative Pk –algebra whose summands Adi .V / are finite-dimensional.
If grA.V / is isomorphic to a tensor product of graded Pk –algebras of the form
�.V .r/Œ2i �/ or ƒ.V .r/Œ2i C 1�/, then there exists an isomorphism of graded Pk –
algebras A.V /' grA.V /.

6 The first derived functors of � over the integers

In this section, we work over the ground ring Z. In particular, we write �d , ƒd

and Sd for �dZ , SdZ and ƒdZ . A generic free finitely generated abelian group will
be denoted by the letter A, and we will denote by A=p the quotient A=pA. Strict
polynomial functors defined over prime fields will enter the picture in the following
form: if F 2 Pd;Fp , the functor A 7! F.A=p/ lives in Pd;Z . In particular, Frobenius
twist functors yield strict polynomial functors .A=p/.r/ . We most often drop the
parentheses and simply denote those functors by A=p.r/ . We denote by �dFp , ƒdFp
and SdFp the symmetric, exterior and divided powers functors considered as objects
of Pd;Fp .

The goal of this section is to compute the derived functors L��.A; 1/. The main
result in this section is Theorem 6.3, which gives a first description of these derived
functors. In Section 6.1 we present and illustrate this result. The proof will be given
in Section 6.4, while Sections 6.2 and 6.3 contain preliminary results which will be
needed for this proof. We will further elaborate on this theorem in Section 7 to obtain
other forms of the result, in the hope that one or another of these descriptions will be
of direct use to the reader.

6.1 The description of L��.A; 1/

Recall from Proposition 3.7 that the graded PZ –algebra L��.A; 1/ decomposes as

L��.A; 1/D
M
d�0

Ld�
d .A; 1/

„ ƒ‚ …
D.A/

˚

M
0<i<d

Li�
d .A; 1/„ ƒ‚ …

I.A/

;

where the diagonal subalgebra D.A/ is isomorphic to ƒ.AŒ1�/ and the ideal I.A/ has
values in torsion abelian groups. Thus, if .p/L��.A; 1/ denotes the p–primary part of
the abelian group L��.A; 1/, there is an equality

I.A/D
M
p prime

.p/L��.A; 1/:
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To describe the graded PZ –algebra L��.A; 1/, it therefore suffices to compute the
p–primary summands .p/L��.A; 1/ as graded PZ –algebras (without unit) and to
describe their D.A/–module structure D.A/˝ .p/L��.A; 1/! .p/L��.A; 1/.

We shall describe the p–primary summands .p/L��.A; 1/ by the means of “Koszul
kernel algebras” (for odd p ) and “skew Koszul kernel algebras” (for p D 2), which
we now introduce.

Definition 6.1 Let p be a prime.

(1) We denote by @Kos the unique differential of graded PZ –algebras on the connected
algebra

LFp .A=p/ WDƒFp .A=pŒ1�/˝
O
r�1

�
�Fp .A=p

.r/Œ2�/˝ƒFp .A=p
.r/Œ1�/

�
sending the generators A=p.r/Œ2�D �1.A=p.r/Œ2�/ identically to the corresponding
generators A=p.r/Œ1�Dƒ1.A=p.r/Œ1�/.

(2) We define the Koszul kernel algebra KFp .A=p/ as the graded PZ –subalgebra of
LFp .A=p/, consisting of the cycles relative to the differential @Kos .

As a consequence of Corollary 6.11, the dg–PZ –algebra .LFp .A=p/; @Kos/ is the
tensor product of the algebras �Fp .A=p

.r/Œ2�/˝ƒFp .A=p
.r/Œ1�/ with a Koszul dif-

ferential and of the algebra ƒFp .A=pŒ1�/ with the zero differential. This justifies the
name “Koszul kernel algebra” and the notation @Kos . We showed in Theorem 5.6 that
LFp .A=p/ is isomorphic to the algebra L��Fp .A=p; 1/ when p is odd. When pD 2,
the algebra L��Fp .A=p; 1/ has a different description, which leads us to introduce the
following skew Koszul kernel algebra SKF2.A=2/. We will prove in Corollary 6.20
that the latter is closely related to the Koszul kernel algebra KF2.A=2/.

Definition 6.2 (1) We let @SKos be the unique differential of graded PZ –algebras on

L��F2.A=2; 1/D
O
r�0

�F2.A=2
.r/Œ1�/

whose restriction to each of the summands �2F2.A=2
.r/Œ1�/, r � 0 is equal to the

Verschiebung map
� W �2F2.A=2

.r/Œ1�/! A=2.rC1/Œ1�:

(2) We define the skew Koszul kernel algebra SKF2.A=2/ as the graded PZ –sub-
algebra of L��F2.A=2; 1/, consisting of the cycles relative to the differential @SKos .
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The next theorem provides our first description of the graded PZ –algebra L��.A; 1/.
It will be proved in Section 6.4.

Theorem 6.3 Let A be a finitely generated free abelian group.

(i) The diagonal algebra D.A/ is isomorphic to ƒ.AŒ1�/.

(ii) For any prime number p , the p–primary component .p/L��.A; 1/ is entirely
p–torsion. In particular, there is an isomorphism of graded PZ –algebras

L��.A; 1/˝Fp 'D.A/˝Fp˚ .p/L��.A; 1/:

(iii) There are isomorphisms of graded PZ –algebras

L��.A; 1/˝Fp 'KFp .A=p/ if p is an odd prime,(6-1)

L��.A; 1/˝F2 ' SKF2.A=2/ if p D 2.(6-2)

Remark 6.4 The description of the D.A/–module structure on .p/L��.A; 1/ is
contained in Theorem 6.3(iii). Indeed, part (ii) yields an isomorphism

D.A/˝ .p/L��.A; 1/' .D.A/˝Fp/˝ .p/L��.A; 1/;

so that the D.A/–module structure is obtained by restriction of the multiplication of
L��.A; 1/˝Fp to .D.A/˝Fp/˝ .p/L��.A; 1/.

The differentials @Kos and @SKos will be very precisely described in Sections 6.2
and 6.3, so that one can easily write down explicitly the homogeneous component
of weight d of each of the differential graded algebras .L��Fp .A=p; 1/; @Kos/ and
.L��F2.A=2; 1/; @SKos/, and thereby compute explicitly L��d .A; 1/ for a given d .
More details regarding the systematic description of L��d .A; 1/ will be given in
Section 7.

For the moment, we simply provide the flavour of the explicit description of L��d .A; 1/
by writing down in detail, for low d , the homogeneous summands of weight d of
.L��F2.A=2; 1/; @SKos/. The family of complexes of functors obtained here does not
seem to have appeared elsewhere in the literature. In weight 1, the complex consists
simply of a copy of A=2, placed in degree 1. The complexes corresponding to the
homogeneous summands of weight d ranging from 2 to 6 are the following ones,
where each differential can be characterized as the unique nonzero morphism having
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the specified strict polynomial functors as source and target:

�2F2.A=2/„ ƒ‚ …
deg 2

f2
�! A=2.1/„ƒ‚…

deg 1

;(6-3)

�3F2.A=2/„ ƒ‚ …
deg 3

f3
�! A=2˝A=2.1/„ ƒ‚ …

deg 2

;(6-4)

�4F2.A=2/„ ƒ‚ …
deg 4

f4
�! �2F2.A=2/˝A=2

.1/„ ƒ‚ …
deg 3

g4
�! �2F2.A=2

.1//„ ƒ‚ …
deg 2

h4
�! A=2.2/„ƒ‚…

deg 1

;(6-5)

�5F2.A=2/„ ƒ‚ …
deg 5

f5
�!�3F2.A=2/˝A=2

.1/„ ƒ‚ …
deg 4

g5
�!A=2˝�2F2.A=2

.1//„ ƒ‚ …
deg 3

h5
�!A=2˝A=2.2/„ ƒ‚ …

deg 2

;(6-6)

�6F2.A=2/„ ƒ‚ …
deg 6

f6
�! �4F2.A=2/˝A=2

.1/„ ƒ‚ …
deg 5

g6
�! �2F2.A=2/˝�

2
F2
.A=2.1//„ ƒ‚ …

deg 4h
h6
h06

i
����! �2F2.A=2/˝A=2

.2/
˚�3F2.A=2

.1//„ ƒ‚ …
degree 3

k6Cf
.1/
3

������! A=2.1/˝A=2.2/„ ƒ‚ …
degree 2

:

(6-7)

More explicitly, the morphisms fn above are defined as the composites

�nF2.A=2/! �n�2F2
.A=2/˝�2F2.A=2/! �n�2F2

.A=2/˝A=2.1/;

where the first map is induced by the comultiplication of �F2.A=2/ and the second
one by the Verschiebung morphism. The morphisms gn are defined as the composites

�n�2F2
.A=2/˝A=2.1/!�n�4F2

.A=2/˝�2F2.A=2/˝A=2
.1/
!�n�4F2

.A=2/˝�2F2.A=2
.1//;

where the first map is induced by the comultiplication of �F2.A=2/ and the second one
by the Verschiebung morphism and the multiplication A=2.1/˝A=2.1/!�2F2

.A=2.1//.
The maps hn and kn are induced by the Verschiebung morphism and the map h06 is
induced by the Verschiebung morphism and the multiplication of the algebra �F2.A=2/.

Example 6.5 The 2–primary component of L��4.A; 1/ is given by

.2/L��
4
Z.A; 1/D A=2

.2/Œ1�˚ƒ2F2.A=2
.1//Œ2�˚ˆ4.A/Œ3�;

where ˆ4.A/ is the kernel of the morphism g4W �
2
F2
.A=2/˝A=2.1/!ƒ2F2

.A=2.1//,
and a term F.A/Œi � means a copy of the functor F.A/ placed in degree i .
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6.2 The Koszul kernel algebra

The purpose of this section is to justify Definition 6.1, that is, to define the differential
@Kos and to study some of its properties.

6.2.1 Koszul algebras Let M be a projective finitely generated module over a
commutative ring R . We equip the graded PR–algebra �R.MŒ2�/˝ƒR.MŒ1�/ with
the differential dKos , defined as the composite

�dR.M/˝ƒeR.M/! �d�1R .M/˝M ˝ƒeR.M/! �d�1R .M/˝ƒeC1R .M/;

where the first map is induced by the comultiplication in �R.M/ and the second one
by the multiplication in ƒR.M/ (if d D 0, the differential with source ƒeR.M/ is
zero). The resulting commutative dg–PR–algebra .�R.MŒ2�/˝ƒR.MŒ1�/; dKos/ is
called the Koszul algebra (on M ).

Proposition 6.6 The homology of the Koszul algebra is equal to R in degree zero and
is zero in all other degrees.

Proof Using the fact that �R.MŒ2�/˝ƒR.MŒ1�/ is exponential (proceed as in the
proof of Proposition 4.5), the proof reduces to the elementary case M DR .

Remark 6.7 The Koszul algebra is a particular case of more general constructions
(Illusie [16; 17] and Franjou, Friedlander, Scorichenko and Suslin [13]). Its name is
illustrated by the fact that its summand of weight d is the dual (via the duality ] ) of
the more familiar Koszul complex

ƒdR.M/! S1R.M/˝ƒd�1R .M/! � � � ! Sd�1R .M/˝ƒ1R.M/! SdR.M/:

6.2.2 The Koszul differential on L��Fp
.A=p; 1/ Let p be a prime integer. To be

concise, we denote by LFp .A=p/ the graded commutative PZ –algebra

(6-8) LFp .A=p/DƒFp .A=pŒ1�/˝
O
r�1

�
�Fp .A=p

.r/Œ2�/˝ƒFp .A=p
.r/Œ1�/

�
:

If p is odd, LFp .A=p/ is isomorphic to the derived functors L��Fp .A=p; 1/ by
Theorem 5.6, but this is not the case for p D 2. However, the algebra LF2.A=2/ will
be considered later on. We can endow LFp .A=p/ with the structure of a commutative
dg–PZ –algebra in the following way. Let us consider the factor ƒFp .A=pŒ1�/ as
a differential graded algebra with zero differential and the other factors of (6-8) as
Koszul algebras on the vector spaces A=p.r/ . We define .LFp .A=p/; @Kos/ to be the
tensor product of these differential graded PZ –algebras. By the Künneth formula and
Proposition 6.6 we have:
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Proposition 6.8 The homology of .L��Fp .A=p; 1/; @Kos/ is isomorphic to the graded
PZ –algebra ƒFp .A=pŒ1�/.

We will now justify Definition 6.1, that is, we will characterize the differential @Kos

by its values on the generators �1.A=p.r/Œ2�/ of LFp .A=p/. For this, we use the
following tool:

Lemma 6.9 (Uniqueness principle) Let k be a field of positive characteristic p and
let V be a finite-dimensional k–vector space. Let A.V / be a graded commutative
Pk –algebra of the form

A.V /D
�O

k

�k.V
.rk/Œik�/

�
˝

�O
`

ƒk.V
.r`/Œj`�/

�
:

We denote by G.V / the graded functor

G.V /D
�M

k

�1k.V
.rk/Œik�/

�
˚

�M
`

ƒ1k.V
.r`/Œj`�/

�
and by � W A.V /�G.V / the surjection induced by the projections of �k.V

.rk/Œik�/

and ƒk.V
.r`/Œj`�/ onto V .rk/Œik� and V .r`/Œj`�, respectively. Then the map @ 7!� ı@

induces an injection between the set of differentials on the graded Pk –algebra A.V /
and the set of degree �1 morphisms of graded functors A.V /!G.V /:

fdifferentials on A.V /g ,! Hom�1.A.V /;G.V //;

@ 7! � ı @:

Proof of Lemma 6.9 Since A.V / is exponential and graded commutative, the multipli-
cation in A.V / induces an isomorphism of bialgebras �W A.V /˝A.W /'A.V ˚W /.
A morphism @W A.V /!A.V / of degree �1 is a derivation if and only if @ commutes
with � , which holds if and only if @] commutes with �] , which holds if and only if
@]W A.V /]! A.V /] is a derivation. By duality, Lemma 6.9 is therefore equivalent to
the statement that differentials on A].V / are completely determined by their restriction
G].V /! A].V /. The latter statement is true since A].V / is the free graded commu-
tative algebra on G].V /.

Proposition 6.10 Let @ be a differential on the graded PZ –algebra LFp .A=p/.

(i) @ is determined by its restriction to the summands �1Fp .A=p
.r/Œ2�/ for all r � 1.

(ii) The restriction of @ sends the summand �1Fp .A=p
.r/Œ2�/ into ƒ1Fp .A=p

.1/Œ1�/.
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Proof To prove (ii), we observe that, by definition, @ must send the summand
�1.A=p.r/Œ2�/ into the homogeneous summand of degree 1 and weight pr , which is
equal to ƒ1.A=p.1/Œ1�/. We now prove (i). By Lemma 6.9, @ is uniquely determined
by the morphism

(6-9) � ı @KosW LFp .A=p/! A=pŒ1�˚
M
r�0

.A=p.r/Œ2�˚A=p.r/Œ1�/:

If we denote by �r , � 0r and � 00 the canonical projections of the right-hand side of (6-9)
onto the summands A=p.r/Œ2�, A=p.r/Œ1� and A=pŒ1�, respectively, then

� ı @D � 00 ı .� ı @/C
X

� 0r ı .� ı @/C
X

�r ı .� ı @/:

The source of the morphism � 00ı.�ı@/ is the direct summand of weight 1 and degree 2
of LFp .A=p/, which is equal to zero, so that � 00 ı .� ı @/D 0.

The source of � 0r ı .� ı @/ is the summand of weight pr and degree 2 of LFp .A=p/,
which equals �1Fp .A=p

.r / Œ2�/ if p is odd and �1F2.A=2
.r / Œ2�/˚ƒ2F2

.A=2.r�1/ Œ1�/

if p D 2. Now an easy computation shows that HomPF2
.ƒ2.V .r�1/ /; V .r / / is zero

so that, for any prime p , � 0r ı .� ı@/ is determined by the restriction of @ to the direct
summand �1Fp .A=p

.r / Œ2�/.

Similarly, the source of �r ı .� ı @/ is the summand of weight pr and degree 3 of
LFp .A=p/. The latter is equal to 0 if p � 5, to ƒ3F3.A=3A

.r�1/Œ1�/ if p D 3 and to

�1F2.A=2
.r�1/Œ2�/˝ƒ1F2.A=2

.r�1/Œ1�/˚ƒ2F2.A=2
.r�2/Œ1�/˝ƒ1F2.A=2

.r�1/Œ1�/

if p D 2. An easy computation shows that there are no nonzero morphisms from such
functors to the functor A=p.r/ such that �r ı.� ı@/D 0. It follows that � ı@ (hence @)
is completely determined by the restriction of @ to the summands �1Fp .A=p

.r/Œ2�/.

Corollary 6.11 The morphism @Kos is the unique differential on the graded PZ –alge-
bra LFp .A=p/ that sends the generators �1Fp .A=p

.r/Œ2�/ identically to ƒ1Fp .A=pŒ1�/.

The following variant of Corollary 6.11 will be useful in the proof of Theorem 6.3.

Corollary 6.12 Let @ be a differential of the graded PZ –algebra LFp .A=p/. Assume
that all the summands ƒ1.A=p.r/Œ1�/, r � 1, lie in the image of @. Then there exists
an isomorphism of dg–PZ –algebras

.LFp .A=p/; @/' .LFp .A=p/; @Kos/:

Geometry & Topology, Volume 20 (2016)



Derived functors of the divided power functors 291

Proof The only morphisms of strict polynomial functors f W A=p.r/! A=p.r/ are
the scalar multiples of the identity. By Proposition 6.10, ı is completely determined
by its restrictions to �1.A=p.r/Œ2�/. These restrictions must be nonzero in order
to ensure that the expressions ƒ1.A=p.r/Œ1�/ lie in the image of ı , so they are of
the form �r Id with �r 2 F�p . Now the required isomorphism is induced by the
automorphism of the graded PZ –algebra LFp .A=p/ which sends the generators A=pŒ1�
and A=p.r/Œ1�, r � 1, identically to themselves and whose restrictions to the generators
A=p.r/Œ2�, r � 1, are equal to �r Id.

6.3 The skew Koszul kernel algebra

The purpose of this section is to justify Definition 6.2, that is, to define the differential
@SKos and to study some of its properties. We also prove that the skew Koszul kernel
algebra is, up to a filtration, isomorphic to the Koszul kernel algebra introduced in
Definition 6.1.

6.3.1 The skew Koszul algebras in characteristic 2 Let k be a field of charac-
teristic 2 and let V be a finite-dimensional k–vector space. Consider the graded
Pk –algebra �k.V Œ1�/˝�k.V

.1/Œ1�/, equipped with the differential dSKos defined as
a composite

�dk .V /˝�
e
k.V

.1//! �d�2k .V /˝�2k.V /˝�
e
k.V

.1//! �d�2k .V /˝�eC1k .V .1//;

where the first map is induced by the comultiplication of �k.V / and the second one is
induced by the Verschiebung map �2k.V /� V .1/ and the multiplication of �k.V

.1//

(if d � 1, the differential with source �0k.V /˝ �
e
k.V

.1// is zero). The resulting
commutative differential graded Pk –algebra .�k.V Œ1�/˝�k.V

.1/Œ1�/; dSKos/ will be
called the skew Koszul algebra (on V ). This name is justified by the following result,
which is a differential graded algebra version of Corollary 4.10.

Proposition 6.13 Let V be a finite-dimensional vector space over a field k of charac-
teristic 2. The tensor product of the principal filtrations of �k.V Œ1�/ and of �k.V

.1/Œ1�/

yields a quasi-trivial filtration of the skew Koszul algebra and the associated graded
object is isomorphic to the dg–Pk –algebra

ƒk.V Œ1�/˝
�
�k.V

.1/Œ2�/˝ƒk.V
.1/Œ1�/

�
˝�k.V

.2/Œ2�/

via Idƒk.V Œ1�/˝dKos˝ Id�k.V .2/Œ2�/
.

Proof Let us denote by .A.V /; dSKos/ the skew Koszul algebra and by .B.V /; d/ the
tensor product of .ƒk.V Œ1�/; 0/, of the Koszul algebra on a generator V .1/Œ1� and of
.�k.V

.2/Œ2�; 0/.
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The tensor product of the principal filtration of �k.V Œ1�/ and �k.V
.1/Œ1�/ coin-

cides with the adic filtration of A.V / relative to the ideal J.V / that is generated by
�1k.V Œ1�/˚�

1
k.V

.1/Œ1�/. By definition, the image of the differential dSKos is contained
in the image of the multiplication A.V /˝V .1/Œ2�!A.V /. In particular, dSKos sends
J.V / to J.V /, so the J.V /–adic filtration yields a filtration on the dg–Pk –algebra
.A.V /; dSKos/.

By Proposition 4.9, we have an isomorphism of graded Pk –algebras grA.V /'B.V /.
We have to prove that gr.dSKos/ D d . By Proposition 6.10 it suffices to show that
the restriction of gr.dSKos/ to the direct summand �1k.V

.1/Œ2�/D V .1/Œ2� sends this
generator identically to V .1/Œ1�Dƒ1k.V

.1/Œ1�/. To prove this, we write down explicitly
the homogeneous weight-2 component of the J.V /–adic filtration. We have

A.V /2 D �
2
k.V Œ1�/˚�

1
k.V

.1/Œ1�/; J.V /2 Dƒ
2
k.V Œ1�/;

and the component of weight 2 of the power J.V /n is zero for all n�2. The restriction
of dSKos to �2k.V Œ1�/ is the Verschiebung map, so that the arrow

gr.dSKos/W ƒ
2
k.V Œ1�/˚V

.1/Œ2�! V .1/Œ1�

is zero on the summand ƒ2k.V Œ1�/ and maps V .1/Œ2� identically to V .1/Œ1�. The fact
that .A.k/; dSKos/ is isomorphic to .B.k/; d/ is easily proved by direct inspection.

6.3.2 The skew Koszul differential on L��F2
.A=2; 1/ We are going to define a

differential @SKos on the graded PZ –algebra

L��F2.A=2; 1/'
O
r�0

�F2.A=2
.r/Œ1�/:

To do this, we consider for all r � 0 the factor �F2.A=2
.r/Œ1�/˝�F2.A=2

.rC1/Œ1�/

as the skew Koszul algebra (on the vector space A=2.r/ ). Tensoring by identities on
the left and the right, this defines a differential @r on L��F2.A=2; 1/. In other words,
each element in L��F2.A=2; 1/ can be written as a finite tensor product of elements
xi 2 �F2.A=2

.i/Œ1�/ and @r is given by

@r.x0˝ � � �˝ xr ˝ xrC1˝ � � �˝ xn/D x0˝ � � �˝ dSKos.xr ˝ xrC1/˝ � � �˝ xn:

Lemma 6.14 The differentials @r commute with each other.

Proof We have to check that @i ı@j D @j ı@i . Since the @i are differentials of algebras,
we can use the exponential property to reduce the proof to the trivial case in which
A=2 is one-dimensional.
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We define the skew Koszul differential @SKos as the sum @SKos D
P
r�0 @r (this

infinite sum reduces to a finite one on each summand of given degree and weight).
We will now justify Definition 6.2, that is, characterize @SKos by its value on the
summands �2F2.A=2

.r//. The following proposition is proved in the same way as
Proposition 6.10.

Proposition 6.15 Let @ be a differential of the graded PZ –algebra L��F2.A=2; 1/.

(i) @ is determined by its restriction to the summands �2F2.A=2
.r/Œ1�/ for r � 0.

(ii) The restriction of @ sends the summand �2F2.A=2
.r/Œ1�/ into �1F2.A=2

.rC1/Œ1�/.

Corollary 6.16 The morphism @SKos is the unique differential on the graded PZ –
algebra

L��F2.A=2; 1/D
O
r�0

�F2.A=2
.r/Œ1�/

whose restriction to the summands �2F2.A=2
.r/Œ1�/, r � 0, equals the Verschiebung

map �2F2.A=2
.r/Œ1�/! A=2.rC1/Œ1�.

We also have the analogue of Corollary 6.12. Since the Verschiebung is the only
nonzero morphism �2F2

.A=2.r//! A=2.rC1/ , this characteristic 2 analogue yields a
slightly stronger statement:

Corollary 6.17 The differential @SKos is the unique differential on the graded PZ –alge-
bra L��F2.A=2; 1/ whose image contains all the generators �1F2.A=2

.r/Œ1�/ for r � 1.

6.3.3 Koszul versus skew Koszul kernels The definition of the Koszul differential
on LF2.A=2/ and of the Skew Koszul differential on L��F2.A=2; 1/ are completely
parallel. We now compare explicitly these two constructions. The following proposition
follows directly from Proposition 6.13.

Proposition 6.18 The tensor product of the principal filtrations on the graded PZ –alge-
bras �F2.A=2

.r/Œ1�/, r � 1, yields a quasi-trivial filtration on .L��F2.A=2; 1/; @SKos/

and its associated graded object is the dg–PZ –algebra .LF2.A=2; 1/; @Kos/.

Corollary 6.19 The homology of .L��F2.A=2; 1/; @SKos/ is isomorphic to the graded
PZ –algebra ƒF2.A=2Œ1�/.
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Proof of Corollary 6.19 The morphism of algebras ƒF2.A=2/ ,!�F2.A=2/ induces
a morphism of algebras ƒF2.A=2Œ1�/ ,!L��F2.A=2; 1/. The image of this morphism
consists of cycles and, since .L��F2.A=2; 1//

d
i is zero for i > d , there is an injective

morphism

(6-10) ƒF2.A=2Œ1�/ ,!H�.L��F2.A=2; 1/; @SKos/:

We want to prove that the morphism (6-10) is an isomorphism. For this purpose,
it suffices to check that its source and its target have the same dimensions in each
summand of a given weight and degree. But Proposition 6.18 and Lemma 4.2(c)
yield a non-functorial isomorphism of differential graded algebras which preserves the
weights:

.L��F2.A=2; 1/; @SKos/' .LF2.A=2/; @Kos/

By Proposition 7.1, the homology of .LF2.A=2/; @Kos/ is isomorphic to ƒF2.A=2Œ1�/.
Hence the dimensions of the source and the target of morphism (6-10) agree.

We also mention another consequence of Proposition 6.18, which shows that the skew
Koszul kernel algebra is very close to the Koszul kernel algebra. It follows directly
from the properties of quasi-trivial filtrations (Lemma 4.2 and Proposition 4.4).

Corollary 6.20 Let A be a finitely generated free abelian group. The choice of a basis
of A determines a non-functorial isomorphism of algebras which preserves the weights:

SKF2.A=2/'KF2.A=2/:

Moreover, there is a filtration of the graded PZ algebra SKF2.A=2/ and a functorial
isomorphism of graded PZ –algebras

grSKF2.A=2/'KF2.A=2/:

6.4 Proof of Theorem 6.3

Theorem 6.3(i) is already known by Proposition 3.7. In this section, we will prove
Theorem 6.3(ii)–(iii) in Corollary 6.23. The proof is carried out by examining the
Bockstein spectral sequence. We first need the following result:

Lemma 6.21 Let r be a positive integer and let p be a prime integer. Then the
p–primary part of the functor L1�p

r

.A; 1/ is equal to A=p.r/ . Moreover, the mor-
phism induced by modp reduction yields an isomorphism

.p/L1�
d .A; 1/D L1�

d .A; 1/˝Fp �!
� L1�

d
Fp
.A=p; 1/:
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Proof The complex N�pr .A; 1/˝Fp is isomorphic to the complex N�p
r

Fp
.A=p; 1/

and N�pr .A; 1/ is zero in degree zero. Thus, from the long exact sequence associated
to the short exact sequence of complexes

0!N�p
r

.A; 1/
�p
�!N�p

r

.A; 1/!N�p
r

Fp
.A=p; 1/! 0;

we obtain an isomorphism L1�
pr .A; 1/˝ Fp ' L1�

pr

Fp
.A=p; 1/. But we know by

[11, Korollar 10.2] that the p–primary part of L1�d .A; 1/ only contains p–torsion.
The result follows.

Let p be a prime number. The Bockstein spectral sequence, as in Weibel [30, Sec-
tion 5.9.9], is a device which enables one to recover the p–primary part of homology
of a complex C of free abelian groups from the homology of the complex C ˝ Fp
(provided one is able to compute the differentials in the spectral sequence). We consider
the Bockstein spectral sequence for the complex C DN�.A; 1/, which computes the
derived functors of �.A/. Since N�.A; 1/˝Fp is isomorphic to N�Fp .A=p; 1/, the
Bockstein spectral sequence is a spectral sequence of graded PZ –algebras, starting at
page 0,

E0.A/i D Li�Fp .A=p; 1/H) .Li�.A; 1/=Torsion/˝Fp DƒFp .A=pŒ1�/;

with differentials d r W Er.A/i !Er.A/i�1 . The differentials in this spectral sequence
are related to the p–primary torsion of L��.A; 1/ in the following way:

(i) Given an integer r � 0, the p–torsion of L��.A; 1/ is killed by multiplication
by pr if and only if Er.A/DE1.A/.

(ii) The injective map induced by the modp reduction of the complex L�.A; 1/,

(6-11) L��.A; 1/˝Fp! L��Fp .A=p; 1/DE
0.A/� ;

has an image contained in the permanent cycles of the spectral sequence, and the image
of the p–torsion part of L��.A; 1/ lies in the image of d0 .

We will now completely compute this Bockstein spectral sequence.

Proposition 6.22 The Bockstein spectral sequence degenerates at the first page:
E1.A/DE1.A/, and the kernel of d0 equals KFp .A=p/ if p is odd and SKF2.A=2/

if p D 2.

Proof By condition (ii) and Lemma 6.21, we know that the image of d0 must contain
the generators A=p.1/Œ1�. Thus, by Corollary 6.12 in odd characteristic p or by
Corollary 6.17 in characteristic pD 2, we know that the dg–PZ –algebra is isomorphic
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to .L��Fp .A=p; 1/; @Kos/ if p is odd and to .L��F2.A=2; 1/; @SKos/ if p D 2. This
proves the statement about the kernel of d0 . Both dg–PZ –algebras have homology
equal to ƒFp .A=pŒ1�/, whence the degeneration of the spectral sequence at the E1

page.

Corollary 6.23 (Theorem 6.3(ii)–(iii)) For all primes p , the p–primary compo-
nent of L��.A; 1/ consists only of p–torsion and there are isomorphisms of graded
PZ –algebras

L��.A; 1/˝Fp 'KFp .A=p/ if p is an odd prime,(6-12)

L��.A; 1/˝F2 ' SKF2.A=2/ if p D 2.(6-13)

Proof Since the Bockstein spectral sequence degenerates at the page E1 , the p–
primary component of L��.A; 1/ is entirely p–torsion. In particular, if 0 < i < d the
p–primary component .p/Li�d .A; 1/ is isomorphic to Li�d .A; 1/˝Fp . Hence the
map (6-11) sends .p/Li�d .A; 1/ to the weight d and degree i boundaries of d0 . The
homogeneous part of E1.A/ of degree i and weight d is zero (since this is the case
at the E1.A/ level). It follows that these boundaries are equal to the weight d and
degree i cycles of d0.

7 Further descriptions of the derived functors of � over the
integers

We keep the notations of Section 6, in particular the notation LFp .A=p/ from (6-8).
The purpose of this section is to give a more detailed description of the derived functors
Li�

d .A; 1/ than the one given in Theorem 6.3. By Theorem 6.3, we know that for all
d > 0

Li�
d .A; 1/'

8̂̂<̂
:̂
0 if i > d or i D 0,
ƒd .A/ if i D d ,
SKF2.A=2/

d
i ˚

M
p odd prime

KFp .A=p/
d
i if 0 < i < d ,

where the functors KFp .A=p/
d
i and SKF2.A=2/

d
i denote the homogeneous compo-

nents of weight d and degree i of the Koszul and skew Koszul kernel algebras. Thus,
to give a more detailed description of Li�d .A; 1/, we need to describe these functors
more precisely.

The following description of KFp .A=p/
d
i follows directly from the definition of the

Koszul kernel algebra and the computation of its homology in Proposition 6.8.
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Proposition 7.1 Let p be a prime. Then:

(0) KFp .A=p/
d
d
DƒdFp .A=p/.

(1) KFp .A=p/
d
i D 0 if i < d < p or d �pC 1 < i < d .

(2) The nontrivial component KFp .A=p/
d
i of highest degree i < d is given by

KFp .A=p/
d
d�pC1 D

(
ƒ
d�p
Fp

.A=p/˝A=p.1/ if p ¤ 2,L
1�k�d=p ƒ

d�kp
F2

.A=2/˝�kF2
.A=2.1// if p D 2.

(3) For any positive integer i < d �pC1, KFp .A=p/
d
i can equally be described as

(a) the kernel of the map @KosW .LFp .A=p//
d
i ! .LFp .A=p//

d
i�1 ,

(b) the image of the map @KosW .LFp .A=p//
d
iC1! .LFp .A=p//

d
i ,

(c) the cokernel of the map @KosW .LFp .A=p//
d
iC2! .LFp .A=p//

d
iC1 .

Proof Let us describe explicitly the terms of highest degrees in the homogeneous
component of weight d of LFp .A=p/ (an expression such as F.A/Œk� means a copy
of the functor F.A/ placed in degree k and the exterior powers with a negative weight
are by convention equal to zero, so that the following direct sums are actually finite):

LFp .A=p/

DƒdFp .A=p/Œd �˚
M
k�1

ƒ
d�kp
Fp

.A=p/˝�kFp .A=p
.1//Œd � kpC 2k�

˚

M
k�1

ƒ
d�kp
Fp

.A=p/˝�k�1Fp
.A=p.1//˝ƒ1Fp .A=p

.1//Œd � kpC 2k� 1�

˚ terms of degree less than d � kpC 2k� 1.

The differential @Kos vanishes on the term ƒdFp.A=p/Œd � and maps the rest of the
first line injectively into the terms of the second line. This proves (0) and (1). More-
over, by Proposition 6.8 the homogeneous component of weight d of the complex
.LFp .A=p/; @Kos/ is exact in degrees less than d . Thus, the degree d�pC1 component
of the kernel of @Kos is given by some terms from the first line. If p D 2 all the terms
of the first line have degree d , so all of them but ƒdFp .A=p/Œd � contribute to the
degree d � 1 of the kernel of @Kos , whereas if p � 3 the only contribution to the
component of degree d � 1 of @Kos is that of ƒd�pFp

.A=p/˝ A=p.1/. Finally, (3)
follows from the decomposition of the homogeneous component of weight d of the
complex .LFp .A=p/; @Kos/ into short exact sequences.

The following description of the expressions SKFp .A=2/
d
i is proved exactly in the

same fashion as Proposition 7.1.
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Proposition 7.2 The following holds:

(0) SKF2.A=2/
d
d
DƒdF2

.A=2/.

(1) SKF2.A=2/
d
d�1
D ˆd .A/, where ˆ1.A/ D 0, ˆ2.A/ D A=2.1/ , ˆ3.A/ D

A=2˝A=2.1/ and, for d � 4, ˆd .A/ can equivalently be described as:

(a) The kernel of the unique nonzero morphism .induced by the comultiplica-
tion of �F2.A=2/, the Verschiebung morphism �2F2

.A=2/� A=2.1/ and
the multiplication .A=2.1//˝2! �2F2

.A=2.1///

�d�2F2
.A=2/˝A=2.1/! �d�4F2

.A=2/˝�2F2.A=2
.1//:

(b) The image of the unique nonzero morphism .induced by the comultiplica-
tion of �F2.A=2/ and the Verschiebung morphism �2F2

.A=2/� A=2.1//

�dF2.A=2/! �d�2F2
.A=2/˝ .A=2/.1/:

(c) The cokernel of the canonical inclusion

ƒdF2.A=2/ ,! �dF2.A=2/:

(2) More generally, for i < d � 1, SKF2.A=2/
d
i can be equivalently described as

(a) the kernel of @SKosW .L��F2.A=2; 1//
d
i ! .L��F2.A=2; 1//

d
i�1 ,

(b) the image of @SKosW .L��F2.A=2; 1//
d
iC1! .L��F2.A=2; 1//

d
i ,

(c) the cokernel of @SKosW .L��F2.A=2; 1//
d
iC2! .L��F2.A=2; 1//

d
iC1 .

Propositions 7.1 and 7.2 yield descriptions of the Li�d .A; 1/ as kernels, images or
cokernels of some very explicit complexes. However, most of these kernels, cokernels
or images yield “new” functors which are not direct sums of some familiar functors.
For example, by Corollary 6.20, the functors ˆd .A/ are filtered, with associated
graded object equal to the functor KF2.A=2/

d
d�1

described in Proposition 7.1. In
particular, for d D 4 there is a short exact sequence, which is non-split (as we prove in
Proposition 9.2):

(7-1) 0!ƒ2F2.A=2/˝A=2
.1/
!ˆ4.A/! �2F2.A=2

.1//! 0:

To describe the derived functors Li�d .A; 1/ in more familiar terms (in terms of
classical Weyl functors), we will describe them up to a filtration in Theorem 7.5 below.

By Corollary 6.20, the description of the derived functors Li�d .A; 1/ up to a filtra-
tion reduces to describing the Koszul kernel algebras KFp .A=p/ up to a filtration
for all primes p . These PZ –graded algebras are the cycles of the tensor prod-
uct of the algebra ƒFp .A=pŒ1�/ with trivial differential and of the Koszul algebras
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.ƒFp .A=p
.r/Œ1�/˝ �Fp .A=p

.r/Œ2�/; dKos/ for r � 1. To obtain a description of the
cycles of such a tensor product of complexes, we will use the following result from
elementary algebra:

Lemma 7.3 Let C�.A/ and D�.A/ be finite exact complexes of functors with values
in finite-dimensional Fp–vector spaces and denote by ı the differential on the tensor
product C�.A/˝D�.A/. There is a natural filtration of ker ı , whose associated graded
object is given by

gr..ker ı/k/'
M

iCjDk�1

Ker dCi ˝Ker dDj ˚
M
iCjDk

Ker dCi ˝Ker dDj

Proof The proof is very much in the spirit of the quasi-trivial filtrations of Section 4.
Let us denote by Xk.A/ the kernel of the differential dC

k
W Ck.A/! Ck�1.A/. We

define a two-step decreasing filtration of each functor Ck.A/ by

F kC1Ck.A/D 0; F kCk.A/DXk.A/; F k�1Ck.A/D Ck.A/:

Then C�.A/ becomes a filtered complex and the associated graded complex is isomor-
phic to the split exact complex

(7-2) � � � !Xk.A/˚Xk�1.A/„ ƒ‚ …
degree k

.0;Id/
���!Xk�1.A/˚Xk�2.A/„ ƒ‚ …

degree k�1

! � � � :

There is a non-functorial isomorphism between C�.A/ and the split complex (7-2).
The complex D�.A/ is filtered similarly. The tensor product of these two filtrations
yields a filtration of the complex C�.A/˝D�.A/, whose associated graded complex
.gr.C�.A/˝D�.A//; gr ı/ is the tensor product of two split complexes. Moreover,
the filtration of the complex C�.A/˝D�.A/ induces a filtration of its cycles Ker ı ,
defined by the rule F i .Ker ı/ WD .Ker ı/\F i .C�.A/˝D�.A//, and there is a canonical
injection

(7-3) gr.Ker ı/ ,! Ker.gr ı/:

Now, the complex .gr.C�.A/˝D�.A//; gr ı/ is non-functorially isomorphic to the
complex .C�.A/˝D�.A/; ı/, hence the ranks of the differentials ı and gr ı are equal.
Thus the source and the target of the canonical morphism (7-3) have the same dimension
and the morphism (7-3) is an isomorphism. It follows that, up to a filtration, Ker ı is
the kernel of the differential of the tensor product of the split complex (7-2) and the
similar complex for D�.A/. The formula of Lemma 7.3 follows.

The following result follows from Lemma 7.3 by induction on n:
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Lemma 7.4 Let C i
�
.A/, 1� i � n, be a family of finite exact complexes of functors

with values in finite-dimensional Fp–vector spaces and let us denote by ı the induced
differential on the n–fold tensor product

Nn
iD1 C

i
�
.A/. There is a natural filtration

of ker ı , whose associated graded object is given by

gr..ker ı/k/'
n�1M
jD0

M
i1C���CinDk�j

.Ker dC
1

i1
˝ � � �˝Ker dC

n

in
/˚.

n�1
j /:

To state our description of the derived functors Li�d .A; 1/, we need to introduce the
following combinatorial device. For a fixed prime number p , we can consider all
possible decompositions of a positive integer k as a sum k D

P
i kip

ri , where the ki
are positive integers and the ri are distinct positive integers. Since the ri are positive,
the existence of such a decomposition implies that p divides k . There might however
be many such decompositions. Each of these may be identified with a finite sequence
of pairs of integers ..r1; k1/; : : : ; .ri ; ki /; : : : / satisfying the following conditions:

(i) The integers ri and ki are positive.

(ii) For all i , ri < riC1 .

(iii)
P
kip

ri D k .

We denote by Decomp.p; k/ the set of all such finite sequences.

Theorem 7.5 Let V be a finite-dimensional Fp–vector space and let W d
k;Fp

.V / in
Pd;Fp denote the kernel of the Koszul differential

dKosW �
k
Fp
.V /˝ƒd�kFp

.V /! �k�1Fp
.V /˝ƒd�kC1Fp

.V /:

By convention, W d
k;Fp

.V / is zero if k > d or if k < 0. For 0 < i < d , the p–primary
part of Li�d .A; 1/ is, up to a filtration, isomorphic to the direct sum
dM
kD0

M
..ri ;ki //

n
iD1

in Decomp.p;k/

n�1M
jD0

M
i1C���Cin
DiCk�d�j

�
ƒd�kFp

.A=p/˝

nO
`D1

W
k`
i`�k`;Fp

.A=p.r`//

�̊ .n�1j /
:

Proof Up to a filtration, the p–primary part of Li�d .A; 1/ is given by the functor
KFp .A=p/

d
i . Let us denote by �d

�
.V / the complex given by the homogeneous compo-

nent of weight d of the Koszul algebra .ƒFp .V Œ1�/˝�Fp .V Œ2�/; dKos/. By definition,
KFp .A=p/

d
i is equal to the cycles of degree i in the complex

dM
kD0

ƒd�kFp
.A=pŒ1�/˝

� M
.ri ;ki /2Decomp.p;k/

�k1
�
.A=p.r1//˝ � � �˝ �kn

�
.A=p.rn//

�
;
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with the convention that direct sums over empty sets are equal to zero. The left-hand
factors ƒd�kFp

.A=pŒ1�/ are concentrated in degree d�k . We therefore need to compute
the cycles of degree i C k� d of the right-hand factors. The homogeneous summand
of degree i` of the cycles of the complex �k`

�
.A=p.r`// is W k`

i`�k`;Fp .A=p
.r`//. Given

a sequence ..r1; k1/; : : : ; .rn; kn//, we use Lemma 7.4 to verify that the cycles of
degree i C k� d in the tensor product �k1

�
.A=p.r1//˝ � � �˝ �kn

�
.A=p.rn// are (up to

a filtration) isomorphic to
n�1M
jD0

M
i1C���CinD.iCk�d/�j

W
k1
i1�k1;Fp

.A=p.r1//˝ � � �˝W
kn
in�kn;Fp

.A=p.rn//˚.
n�1
j /:

This proves the formula of Theorem 7.5.

We choose the notation W d
k;Fp

.V / to remind the reader that these kernels of the Koszul
complex are well known to representation theorists as Weyl functors [1; 4]. To be more
specific, recall that, given a partition �D .�1; : : : ; �n/ of d and a commutative ring R ,
the Weyl functor W�.M/ 2 Pd;R is the dual of the Schur functor associated to the
partition �. The functor W�.M/ may be defined as the image of a certain composite
map

��1.M/˝ � � �˝��n.M/ ,!M˝d
��0
�!M˝d �ƒ�

0
1.M/˝ � � �˝ƒ�

0
k .M/;

where ��0 is a specific combinatorial isomorphism and �0 D .�01; : : : ; �
0
k
/ is the

partition dual to �. The Weyl functor W�.M/ is denoted by K�.M/ in [1; 4].
For example K.d/.M/ D �dR.M/ and K.1d /.M/ D ƒdR.M/. In particular, our
functors W d

k;Fp
.V / are the Weyl functors associated to hook partitions, ie there is

an isomorphism W d
k;Fp

.V /'W.kC1;1d�k�1/.V / (see eg [4, Chapter III.1] for more
details).

8 The maximal filtration on �.A/

In this section, we work over the ground ring Z. We use the same notations as in
Section 6. In particular, we write �d , ƒd and Sd for �dZ , SdZ and ƒdZ . A generic
free finitely generated abelian group will be denoted by the letter A. We will denote
by A=p the quotient A=pA and we will abuse notations and write A=p.r/ instead
of .A=pA/.r/ for simplicity. The purpose in this section is to introduce the maximal
filtration of �.A/ and the associated spectral sequence, which will be our main tool
for the computation of the derived functors L��d .A; n/ for low d and all n. As a
warm-up, we finish the section by running through the spectral sequence in the baby
cases d D 2 and d D 3.
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8.1 The maximal filtration

We denote by J .A/ the augmentation ideal of the divided power algebra �.A/:

J .A/ WD �>0.A/D ker.�.A/! �0.A/D Z/:

The adic filtration relative to J .A/ will be called the maximal filtration on �.A/ (even
though J .A/ is not strictly speaking a maximal ideal in this algebra). The associated
graded object is the PZ –algebra

gr�.A/ WD
M
i�0

gr�i .�.A//D
M
i�0

J .A/i=J .A/iC1:

Remark 8.1 The maximal filtration is different from the principal filtration on �.A/
defined in Section 4.3 (compare the definition of J .A/ with Lemma 4.8).

Restricting ourselves to the weight d component of �.A/, the principal filtration yields
a filtration of �d .A/, with

F�i�
d .A/ WD J .A/i \�d .A/

and associated graded components

gr�i �
d .A/ WD F�i�

d .A/=F�i�1�
d .A/:

By definition, the terms of the filtration can be concretely described as

(8-1) F�i�
d .A/D Im

�M
�k1.A/˝ � � �˝�ki .A/ �! �m.A/

�
;

where the sum is taken over all i–tuples of positive integers .k1; : : : ; ki / whose sum
equals d . In particular F�i�d .A/D 0 for i > d , so that the filtration is bounded and

(8-2) gr�d �
d .A/D F�d�

d .A/D Im.A˝d ! �d .A//D Sd .A/;

where the inclusion of Sd .A/ into �d .A/ is determined by the commutative algebra
structure on �.A/. It is also easy to identify the graded component gr�1 �

d .A/.

Lemma 8.2 For any free abelian group A, gr�1 �
d .A/D 0 if d is not a power of a

prime p and gr�1 �
d .A/D A=p.r/ if d D pr .

Proof The composite �d .A/
comult
����! �k.A/˝�`.A/

mult
��! �d .A/ equals the multipli-

cation by
�
d
k

�
, so by (8-1) the integral torsion of gr�1 �

d .A/ is bounded by the gcd of
the binomials

�
d
k

�
, 0 < k < d . This gcd equals p if d is a power of a prime p and 1

otherwise. Hence gr�1 �
d .A/D 0 if d is not a power of a prime and is an Fp –vector

Geometry & Topology, Volume 20 (2016)



Derived functors of the divided power functors 303

space if d D pr . In the latter case, by base change, gr�1 �
d .A/ identifies with the

cokernel of the mapM
�kFp .A=pA/˝�

`
Fp
.A=pA/

mult
��! �dFp .A=pA/;

where the sum is taken over all pairs .k; `/ of positive integers with kC `D d .

For 1 < i < d , the graded components gr�i �
d .A/ are more complicated and their

description involves new classes of functors. We will use the strict polynomial functors
�.1;n/.V /, defined for n� 2 on the category of F2–vector spaces by

(8-3) �.1;n/.V /D Coker
�
ƒ2F2.V

.1//˝Sn�2F2
.V /

u
! V .1/˝SnF2.V /

�
;

where uW .x^y/˝z 7! x˝.y2z/�y˝.x2z/. The map u appears in the resolution of
truncated polynomials introduced in Section 4.2. In particular, Proposition 4.5 implies
that �.1;n/.V / lives in a characteristic 2 exact sequence

(8-4) 0! �.1;n/.V /! SnC2F2
.V /!ƒnC2F2

.V /! 0:

Remark 8.3 The functors �.1;n/.V / belong to a family of functors p�e
.˛;ˇ/

.V / intro-
duced by F Jean in [18, Appendix A].

Lemma 8.4 Let d � 4. Then gr�dC1 �
d .A/' �.1;d�2/.A=2/ for any free abelian

group A.

Proof By definition of the maximal filtration, there is a commutative diagram with
exact rows (the exactness of the upper row follows from Lemma 8.2 for d D 2):

Sd�2.A/˝S2.A/
mult
//

mult
����

Sd�2.A/˝�2.A/ //

mult
����

Sd�2.A/˝A=2.1/ // 0

F�d�
d .A/ // F�dC1�

d .A/ // gr�dC1 �
d .A/ // 0

Hence the surjective morphism Sd�2.A/˝�2.A/� gr�dC1 �
d .A/ factors through

a surjective morphism

(8-5) Sd�2.A/˝A=2.1/ � gr�dC1 �
d .A/:

Now we check that the composite of the morphism u occurring in (8-3) and the
morphism (8-5) is zero. For this, let us take x 2 Sd�4.A/, y , z 2 A, and let us
denote by Ny and Nz the images of 2.y/ and 2.z/ in A=2.1/ . Then it suffices to
check that the surjection (8-5) sends xy2˝ Nz � xz2˝ Ny to zero. This follows from
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the fact that the elements xy2 ˝ 2.z/ and xz2 ˝ 2.y/ are both sent to the same
element 2x2.y/2.z/ in F�dC1�d .A/. Hence the morphism (8-5) factors through a
surjective morphism

(8-6) �.1;d�2/.A=2/� gr�dC1 �
d .A/:

Finally we check that (8-6) is an isomorphism by dimension-counting (the source
and the target are F2–vector spaces). Let .a1; : : : ; an/ be a basis of the free abelian
group A. Then the products ai1 � � � aid with i1 � � � � � id form a basis of F�d�d .A/.
A basis of F�dC1�d .A/ is given by the products ai1 � � � aid for i1 < � � �< id and the
products ai1 � � � aid�22.aid�1/ for i1 � � � � � id�2 . The latter elements can be written
as the elements 1

2
ai1 � � � aid for i1 � � � � � id where at least two of the ik are equal.

Thus the dimension of gr�dC1 �
d .A/ is equal to the number of d –tuples .i1; : : : ; id /

with i1 � � � � � id and at least two ik equal. By the short exact sequence (8-4), this is
exactly the dimension of �.1;n/.A=2/.

We can identify gr�2 �
d .A/ in a similar (and somewhat simpler) fashion.

Lemma 8.5 Let d � 3. For any free abelian group A, gr�2 �
d .A/ is a torsion abelian

group whose p–primary part .p/ gr�2 �
d .A/ is given by

.p/ gr�2 �
d .A/D

8<:
0 if d is not a sum of two powers of p,
A=p.k/˝A=p.`/ if d D pkCp` with k ¤ `,
S2Fp .A=p

.k// if d D 2pk .

Proof Let T 2.A/D
L
kC`Dd �

k.A/˝�`.A/ and let T 3.A/ denote the direct sum

T 3.A/ WD
M

kC`Dd

� M
k1Ck2Dk

�k1.A/˝�k2.A/˝�`.A/

˚

M
`1C`2D`

�k.A/˝�`1.A/˝�`2.A/

�
:

The multiplication in the divided power algebra defines a map T 3.A/! T 2.A/. Let
us denote by C.A/ its cokernel. By Lemma 8.2, C.A/ is a torsion abelian group and
its p–primary part equals A=p.k/˝A=p.`/ if d D pkCp` for a prime p and zero
otherwise. By definition of the maximal filtration, there is a commutative diagram

T 3.A/ //

mult
��

T 2.A/

mult
����

F�3�
d .A/ // F�2.A/
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so the canonical surjection T 2.A/ � gr�2 �
d .A/ factors through a surjective mor-

phism C.A/� gr�2 �
d .A/. In particular, gr�2 �

d .A/ is a torsion abelian group and,
for a given prime p , we have .p/gr�2 �

d .A/D 0 if d is not of the form pkCp` and
we have a surjective morphism

(8-7) A=p.k/˝A=p.`/ � .p/gr�2 �
d .A/:

If k D `, the commutativity of the product in �.A/ implies that the morphism (8-7)
factors further through a surjective morphism

(8-8) S2Fp .A=p
.k//� .p/gr�2 �

d .A/:

To finish the proof, it suffices to check that the morphisms (8-7) and (8-8) are isomor-
phisms for d D pk C p` , k ¤ `, and d D 2pk , respectively. This follows from a
dimension-counting argument similar to that in the proof of Lemma 8.4.

We collect the descriptions of the graded components gr�i �
d .A/ for low d in the

following example. The cases d � 3 already appear in [8].

Example 8.6 For any free abelian group A, gr�1 �
1
Z.A/D 0 and the only nontrivial

values of gr�i �
j
Z.A/ for 2� j � 4 are:

gr�i �
2.A/D

�
A=2.1/ i D 1;

S2.A/ i D 2;
(8-9)

gr�i �
3.A/D

8<:
A=3.1/ i D 1;

A˝A=2.1/ i D 2;

S3.A/ i D 3;

(8-10)

gr�i �
4.A/D

8̂̂̂<̂
ˆ̂:
A=2.2/ i D 1;

.A˝A=3.1//˚S2F2
.A=2.1// i D 2;

�.1;2/.A=2/ i D 3;

S4.A/ i D 4:

(8-11)

8.2 The spectral sequence associated to the maximal filtration

In order to study derived functors of �d .A/ for d > 2, we consider the spectral
sequence associated to the maximal filtration of �d .A/. This is obtained by filtering
the simplicial abelian group �dK.AŒn�/ componentwise according to the maximal
filtration. This yields the homological spectral sequence

(8-12) E1p;q D LpCq.grp �
d /.A; n/H) LpCq�

d .A; n/
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with d rp;qW E
r
p;q!Erp�r;qCr�1 as usual. The maximal filtration on �d .A/ is bounded

for any fixed integer d , so that the associated spectral sequence (8-12) converges to
L��

d .A; n/ in the strong sense.

We now use this spectral sequence in order to compute the most elementary cases, that
is, the derived functors Li�d .A; n/ for A free and d D 2 or 3.

8.3 The derived functors of �2.A/ for A free

For d D 2, there are only two nontrivial terms in the graded object associated to the
maximal filtration of �2.A/ by (8-9), so that the spectral sequence (8-12) has only two
nonzero columns. For any additive functor F ,

LiF.A; n/D

�
F.A/ if i D n;
0 otherwise:

Furthermore the Frobenius twist functors are additive, so that

E1�1;q D

�
A=2.1/ if q D nC 1;
0 otherwise;

(8-13)

E2�2;q D Lq�2S
2.A; n/:(8-14)

If n D 1, then LiS2.A; 1/ D ƒ2.A/ if i D 2 and is zero otherwise. The spectral
sequence degenerates at E1 for lacunary reasons and we obtain

(8-15) L��
2.A; 1/D A=2.1/Œ1�˚ƒ2.A/Œ2�:

If n� 2, LiS2.A; n/DLi�4�2.A; n� 2/ by the double décalage isomorphism (3-9).
So the spectral sequence gives a relation between L��2.A; n/ and L��2.A; n� 2/.
This gives us the following result:

Proposition 8.7 For any n� 0 and free abelian group A, the only nontrivial values
of Li�2.A; n/ are

(8-16) Li�
2.A; n/D

8̂̂̂<̂
ˆ̂:
A=2.1/ if i D n; nC 2; nC 4; : : : ; 2n� 2; n even,
A=2.1/ if i D n; nC 2; nC 4; : : : ; 2n� 1; n odd,
�2.A/ if i D 2n; n even,
ƒ2.A/ if i D 2n; n odd.

Proof The assertion is trivial for nD 0 and is known for nD 1 by (8-15). We prove
by induction that if it is true for n� 2, then it is also valid for n. Indeed, the spectral
sequence degenerates at E1 for lacunary reasons. Thus the result for n is valid up to
a filtration. And since there is at most one nonzero term in each total degree in the
spectral sequence, the filtration on the abutment is trivial.
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8.4 The derived functors of �3.A/ for A free

By (8-10), there are only three nontrivial terms in the graded object associated to the
maximal filtration of �3.A/. So, for d D 3, the spectral sequence (8-12) has only
three nonzero columns, namely

E1�1;q D A=3
.1/ if q D nC 1 and zero if q ¤ nC 1,(8-17)

E1�2;q D A˝ .A=2/
.1/ if q D 4 and zero if q ¤ 4,(8-18)

E1�3;q D Lq�3S
3.A; n/:(8-19)

If nD 1, then by décalage L�S3.A; 1/Dƒ3.A/Œ3�, so the spectral sequence degener-
ates at E1 for lacunary reasons and we obtain

(8-20) L��
3.A; 1/D A=3.1/Œ1�˚A˝A=2.1/Œ2�˚ƒ3.A/Œ3�:

If n� 2, then LiS3.A; n/DLi�6�3.A; n�2/ by the double décalage of Proposition
3.5, so the spectral sequence essentially gives a relation between L��3.A; n/ and
L��

3.A; n� 2/. The next result is proved in exactly the same way as Proposition 8.7.

Proposition 8.8 Let A be a free abelian group.

(i) For any odd positive integer n, the only nontrivial values of Li�3.A; n/ are

(8-21) Li�
3.A; n/D

8<:
A=3.1/ if i D n; nC 4; nC 8; : : : ; 3n� 2;
A˝A=2.1/ if i D 2n; 2nC 2; 2nC 4; : : : ; 3n� 1;
ƒ3.A/ if i D 3n:

(ii) For any even nonnegative integer n, the only nontrivial values of Li�3.A; n/ are

(8-22) Li�
3.A; n/D

8<:
A=3.1/ if i D n; nC 4; nC 8; : : : ; 3n� 4;
A˝A=2.1/ if i D 2n; 2nC 2; 2nC 4; : : : ; 3n� 2;
�3.A/ if i D 3n:

Remark 8.9 For a general abelian group A, the values of the derived functors
L��

2.A; n/ and L��3.A; n/ are more complicated and we refer to [8, Proposition 4.1
and Theorem 5.2] for a complete discussion. The present discussion of the derived
functors L��3.A; n/ is related to that in [8], since the functor W3.A/ emphasized
there is the quotient group F�1�3.A/=F�3�3.A/ for the maximal filtration.

Geometry & Topology, Volume 20 (2016)



308 Lawrence Breen, Roman Mikhailov and Antoine Touzé

9 The derived functors L��
4.A; 1/ and L��

4.A; 2/ for A

free

In this section, we keep the notations of Section 8, in particular A denotes a generic free
finitely generated abelian group and �.A/ stands for �Z.A/. We compute the derived
functors L��4.A; 1/ and L��4.A; 2/, by the same methods as in Propositions 8.7
and 8.8. The situation is slightly more complicated here. Indeed, although the spectral
sequence (8-12) degenerates at E1 for lacunary reasons as in the computations of
the derived functors of �2.A/ and �3.A/, we will have to solve nontrivial extension
problems both to compute the E1 page of the spectral sequence and to recover the
derived functors of �4.A/ from the E1–term of the spectral sequence.

The derived functors L��4.A; 1/ were already computed in Sections 6 and 7. The
proof given here is more elementary and independent from the techniques developed
there.

9.1 The derived functor L��4.A; 1/ for A free

The description of gr�4.A/ is given in Example 8.6. Most of the graded terms are
elementary, so that the corresponding initial terms of the spectral sequence (8-12) for
d D 4 and nD 1 are easy to compute:

E1�1;q D

�
A=2.2/ if q D 2,
0 if q ¤ 2,

E1�2;q D

�
A˝A=3.1/˚ƒ2F2

.A=2.1// if q D 4,
0 if q ¤ 4,

E1�4;q D

�
ƒ4.A/ if q D 8,
0 if q ¤ 8.

To complete the description of the first page, we have to describe the column E1
�3;� ,

that is, the derived functors of gr�3 �
4.A/D �.1;2/.A=2/. The presentation (8-3) of

�.1;2/.A=2/ determines for each n a short exact sequence of simplicial F2–vector
spaces (since, for �.1;2/.A=2/, the map u is injective):

(9-1) 0!ƒ2F2K.A=2
.1/Œn�/!S2F2K.A=2Œn�/˝K.A=2

.1/Œn�/!�.1;2/K.A=2Œn�/!0:

For n D 1 the associated long exact sequence of homotopy groups induces, by the
décalage isomorphisms (3-9), a short exact sequence

(9-2) 0!ƒ2F2.A=2/˝ .A=2/
.1/
! �3.�1;2K.A=2Œ1�//! �2F2.A=2

.1//! 0
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in the category of F2–vector spaces. By (8-11), this describes E1
�3;6 as the middle

term in (9-2). It also follows from (9-1) that the terms E1
�3;q are trivial for q ¤ 6.

The spectral sequence degenerates for lacunary reasons and, since it has only one
nontrivial term in each total degree, there is no filtration issue on the abutment. So we
immediately obtain the following result:

Proposition 9.1 We have

(9-3) Li�
4.A; 1/D

8<:
A=2.2/ i D 1;

.A˝A=3.1//˚ƒ2F2
.A=2.1// i D 2;

ƒ4.A/ i D 4;

and there is a short exact sequence

(9-4) 0!ƒ2F2.A=2/˝A=2
.1/
! L3�

4.A; 1/! �2F2.A=2
.1//! 0

whose middle term was denoted ˆ4.A/ in (7-1) (see also Lemma A.12).

To solve the extension issue involved in this description of L3�4.A; 1/, we prove the
following statement:

Proposition 9.2 The extension (9-4) cannot be functorially split. In fact,

(9-5) Ext1.�2F2.A=2
.1//;ƒ2F2.A=2/˝A=2

.1//' Z=2

in either the category of strict polynomial functors or the category of ordinary functors
and L3�4.A; 1/ can be characterized as the unique nontrivial extension of �2F2.A=2

.1//

by ƒ2F2.A=2/˝A=2
.1/ .

Proof Suppose that the exact sequence (9-4) is functorially split, so that the 2–primary
component .2/L3�4.A; 2/ is isomorphic to ƒ2F2.A=2/˝A=2

.1/˚�2F2
.A=2.1//. In

that case the universal coefficient theorem yields a short exact sequence

0! L3�
4
Z.A; 1/˝Z=2! L3�

4
F2
.A=2; 1/! Tor.L2�4Z.A; 1/;Z=2/! 0:

The term in the middle is the value for V WD A=2 of L3�4F2.V; 1/. By Example 5.2,
this is equal to �2F2.A=2/˝A=2

.1/ . We would therefore have an injective map

ƒ2F2.A=2/˝A=2
.1/
˚�2F2.A=2

.1// ,! �2F2.A=2/˝A=2
.1/:

By the methods of Section A.2, we see that there is no nonzero morphism from
�2F2

.A=2.1// to �2F2.A=2/˝A=2
.1/ , hence the exact sequence (9-4) cannot be functo-

rially split. We refer to Lemma A.12 for the proof of formula (9-5).
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p

q �4 �3 �2 �1

12 �4.A/ 0 0 0
11 0 0 0 0
10 0 0 0 0
9 0 �2F2

.A=2/˝A=2.1/ 0 0
8 0 �2F2

.A=2.1// 0 0
7 0 A=2.2/ 0 0
6 0 0 �2F2

.A=2.1//˚ .A˝A=3.1// 0
5 0 0 0 0
4 0 0 0 0
3 0 0 0 A=2.2/

Table 1: The initial terms E1p;q of the maximal filtration spectral sequence for L�4.A; 2/ .

9.2 The derived functor L��4.A; 2/ for A free

We compute the derived functors of gr�3 �
4.A/D �.1;2/.A=2/ as in Section 9.1, that

is, by the exact sequence (9-1). If n� 2, there is no extension problem arising from
the induced long exact sequence and we obtain

(9-6) Li�.1;2/.A=2; n/D

8̂̂̂<̂
ˆ̂:
�2F2

.A=2/˝A=2.1/ if i D 3n;
A=2.1/˝A=2.1/ if 2nC 2� i � 3n� 1;
�2F2

.A=2.1// if i D 2nC 1;
A=2.2/ if nC 2� i � 2n:

So we can compute the E1 page of the spectral sequence (8-12) for �4 for n D 2.
The result is displayed in Table 1.

In particular, the spectral sequence degenerates at E1 for lacunary reasons. So we
obtain the following result:

Proposition 9.3 For A free, the only nontrivial values of Li�4.A; 2/ are

(9-7) Li�
4.A; 2/D

8̂̂̂<̂
ˆ̂:
�4.A/ if i D 8;
�2F2

.A=2/˝A=2.1/ if i D 6;
�2F2

.A=2.1// if i D 5;
A=2.2/ if i D 2;

together with L4�4.A; 2/, which fits into a short exact sequence

(9-8) 0! A=2.2/! L4�
4.A; 2/! �2F2.A=2

.1//˚ .A˝A=3.1//! 0:
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To complete the description of L��4.A; 2/, we have to solve the extension issue
involved in this description of the functor L4�4.A; 2/. This is the purpose of the
following result:

Proposition 9.4 The extension (9-8) is not split. More precisely,

(9-9) Ext1PZ
.�2F2.A=2

.1/
˚A˝A=3.1/; A=2.2//D Z=2;

so that L4�4.A; 2/ is the unique nontrivial extension of �2F2.A=2
.1//˚A˝A=3.1/

by A=2.2/ . In particular, we obtain an isomorphism of strict polynomial functors:

L4�
4.A; 2/' �2Z.A=2

.1//˚A˝A=3.1/:

Proof The universal coefficient theorem yields a short exact sequence

(9-10) 0! L5�
4
Z.A; 2/˝Z=2! L5�

4
F2
.A=2; 2/! Tor.L4�4Z.A; 2/;Z=2/! 0:

The term in the middle was already computed in Example 5.2. If the extension (9-8) was
functorially split, then .2/L4�

4.A; 2/ would be isomorphic to A=2.2/˚�2F2.A=2
.1//,

so that the short exact sequence (9-10) could be restated as

0 // �2F2
.A=2.1//

i
// .A=2.1/˝A=2.1//˚A=2.2/

j
// A=2.2/˚�2F2

.A=2.1// // 0:

A dimension count in the category of F2–vector spaces makes it clear that such a short
exact sequence cannot exist. It follows that (9-8) is not split. The formula (9-9) and
the identification of L4�4.A; 2/ follow from Lemma A.11.

10 The derived functors of �4.A/ for A free

In this section we assume that A is a free abelian group. We will give a complete
description of the derived functors Li�4.A; n/ for all i � 0 and n� 1.

10.1 The description of L��4.A; n/ for A free

The main result of Section 10 is the following computation:

Theorem 10.1 Let n be a positive integer. If nD2mC1 then we have an isomorphism
of graded strict polynomial functors (where F.A/Œk� denotes a copy of F.A/ placed
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in degree k and sums over empty sets mean zero):

L��
4.A; n/

'ƒ4.A/Œ4n�˚ˆ4.A/Œ4n� 1�˚

m�1M
iD0

�2F2.A=2/˝A=2
.1/Œ3nC 2i�

˚

mM
iD0

ƒ2F2.A=2
.1//Œ2nC 4i�˚

m�1M
iD0

�2F2.A=2
.1//Œ2nC 4i C 1�

˚

m�1M
iD0

n�3M
jD2i

A=2.1/˝A=2.1/Œ2nC 2i C j C 2�˚

mM
iD0

A˝A=3.1/Œ2nC 4i�

˚

mM
iD0

A=2.2/ŒnC 6i�˚

m�1M
iD0

n�2M
jD2i

A=2.2/ŒnC 4i C j C 2�:

Here ˆ4.A/ WD L3�
4.A; 1/ is, as shown in Propositions 9.1 and 9.2, the unique

nontrivial extension of �2F2.A=2
.1// by ƒ2F2.A=2/˝A=2

.1/ . Similarly, if n D 2m
there is an isomorphism of graded strict polynomial functors

L��
4.A; n/

' �4.A/Œ4n�˚

m�1M
iD0

�2F2.A=2/˝A=2
.1/Œ3nC 2i�˚

m�1M
iD0

�2Z.A=2
.1//Œ2nC 4i�

˚

m�1M
iD0

�2F2.A=2
.1//Œ2nC 4i C 1�˚

m�2M
iD0

n�3M
jD2i

A=2.1/˝A=2.1/Œ2nC 2i C j C 2�

˚

m�1M
iD0

A˝A=3.1/Œ2nC4i�˚

m�1M
iD0

A=2.2/ŒnC6i�˚

m�2M
iD0

n�3M
jD2i

A=2.2/ŒnC4iCjC2�:

Although the formulas describing the derived functors L��4.A; n/ look very similar
for n even and odd, there are at least two major differences for the 2–primary part.
First of all, if n is even there is some 4–torsion in L��4.A; n/, provided by the sum-
mands �2Z.A=2

.1//. On the contrary, when n is odd, L��4.A; n/ has only 2–torsion.
Secondly, the functor ˆ4.A/ appears as a direct summand (with multiplicity one) in
L��

4.A; n/ when n is odd and does not appear in the formula when n is even. We
observe that the formula for L��4F2.V; n/ in Example 5.2 did not depend on the parity
of n.
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For nD 1, Theorem 10.1 is equivalent to Proposition 9.1 and, for nD 2, it is equivalent
to Proposition 9.3. Now Theorem 10.1 easily follows, by induction on n, from the
following statement:

Theorem 10.2 Let n � 3. If n is odd, there is an isomorphism of graded strict
polynomial functors

(10-1) L��
4.A; n/

D L��
4.A; n� 2/Œ8�˚A=2.2/Œn�˚

2nM
iDnC2

A=2.2/Œi �

˚

3n�1M
iD2nC2

A=2.1/˝A=2.1/Œi �˚�2F2.A=2/˝A=2
.1/Œ3n�

˚ƒ2F2.A=2
.1//Œ2n�˚�2F2.A=2

.1//Œ2nC 1�˚A˝A=3Œ2n�:

Similarly, if n is even, there is an isomorphism

(10-2) L��
4.A; n/

D L��
4.A; n� 2/Œ8�˚A=2.2/Œn�˚

2n�1M
iDnC2

A=2.2/Œi �

˚

3n�1M
iD2nC2

A=2.1/˝A=2.1/Œi �˚�2F2.A=2/˝A=2
.1/Œ3n�˚�2Z.A=2

.1//Œ2n�

˚�2F2.A=2
.1//Œ2nC 1�˚A˝A=3Œ2n�:

The remainder of Section 10 is devoted to the proof of Theorem 10.2. The proof goes
along the same lines as the computation of L��4.A; 1/ and L��4.A; 2/ in Section 9,
that is, the relation between L��

4.A; n/ and L��
4.A; n � 2/ is provided by the

analysis of the spectral sequence (8-12) induced by the maximal filtration of �4.A/.
However, for n � 3, the analysis of the spectral sequence is more delicate than in
Section 9 as there now are nontrivial differentials in the spectral sequence. Also, we
will have to solve extension problems in order to recover L��4.A; n/ from the E1

page of the spectral sequence.

10.2 Proof of Theorem 10.2

From now on, n � 3 and we assume that Theorem 10.1 has been proved for n� 2.
We are going to prove that Theorem 10.2 holds for n. The first page of the maximal
filtration spectral sequence (8-12) for d D 4 and n� 3 can be computed by the methods
introduced in Sections 9.1 and 9.2 for nD 1, 2. In particular, the terms in the p D�3
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p

q �4 �3 �2 �1

4nC 4 L4n�8�
4.A; n� 2/ 0 0 0

4nC 3 L4n�9�
4.A; n� 2/ 0 0 0

:::
:::

:::
:::

:::

3nC 4 L3n�8�
4.A; n� 2/ 0 0 0

3nC 3 L3n�9�
4.A; n� 2/ �2F2

.A=2/˝A=2.1/ 0 0
3nC 2 L3n�10�

4.A; n� 2/ A=2.1/˝A=2.1/ 0 0
:::

:::
:::

:::
:::

2nC 5 L2n�7�
4.A; n� 2/ A=2.1/˝A=2.1/ 0 0

2nC 4 L2n�8�4.A;n� 2/ �2F2
.A=2.1// 0 0

2nC 3 L2n�9�
4.A; n� 2/ A=2.2/ 0 0

2nC 2 L2n�10�
4.A; n� 2/ A=2.2/ �2

F2
.A=2.1//˚A˝A=3.1/ 0

2nC 1 L2n�11�
4.A; n� 2/ A=2.2/ A=2.2/ 0

:::
:::

:::
:::

:::

nC 5 Ln�7�
4.A; n� 2/D 0 A=2.2/ A=2.2/ 0

nC 4 0 0 A=2.2/ 0
nC 3 0 0 0 0
nC 2 0 0 0 0
nC 1 0 0 0 A=2.2/

Table 2: The initial terms E1p;q of the maximal filtration spectral sequence
for �4.A; n/ with n > 2 .

column follow from (9-6) and those in the p D�4 column from the double décalage
formula (3-9). The E1 page therefore has the form depicted in Table 2.

The boldface expressions in Table 2 are the terms of total degree 2n. They will play a
special role in the proof. We will indeed prove that all the differentials of the spectral
sequence are zero, except some of the differentials with terms of total degree 2n as
source or target. In order to obtain some information regarding the differentials of the
spectral sequence, we are going to use mod 2 reduction, in the spirit of the proof of
Propositions 9.2 and 9.4. The universal coefficient theorem yields short exact sequences
of strict polynomial functors (where 2G denotes the 2–torsion subgroup of an abelian
group G ):

0! Li�
4.A; n/˝F2! Li�

4
F2
.A=2; n/! 2Li�1�

4.A; n/! 0;(10-3)

0!Li�
4.A; n� 2/˝F2!Li�

4
F2
.A=2; n� 2/!2Li�1�

4.A; n� 2/!0:(10-4)
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Moreover, we have already computed Li�4F2.A=2; n/ in Example 5.2. The following
mod 2 analogue of Theorem 10.1 is a straightforward consequence of Example 5.2:

Lemma 10.3 There are isomorphisms of strict polynomial functors

Li�
4
F2
.A=2; n/' Li�8�

4
F2
.A=2; n� 2/˚Ci .A; n/;

where

Ci .A; n/'

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

0 if i > 3nC 1;
�2F2

.A=2/˝A=2.1/ if i D 3nC 1;
�2F2

.A=2/˝A=2.1/˚A=2.1/˝A=2.1/ if i D 3n;
A=2.1/˝A=2.1/˚A=2.1/˝A=2.1/ if 2nC 2 < i < 3n;
A=2.1/˝A=2.1/˚�2F2

.A=2.1// if i D 2nC 2;
A=2.1/˝A=2.1/˚A=2.2/ if i D 2nC 1;
�2F2

.A=2.1//˚A=2.2/ if i D 2n;
A=2.2/˚A=2.2/ if nC 2 < i < 2n;
A=2.2/ if n� i � nC 2:

Let Eri denote the part of total degree i of the r th page of the spectral sequence,
Eri WD

L
jCkDi E

r
j;k

, and let d ri W E
r
i ! Eri�1 denote the total differential. We

distinguish three steps in the analysis of the spectral sequence:

� We first analyze the spectral sequence in total degrees i < 2n. Formulas (10-5),
(10-6) and (10-7) show that Theorem 10.2 holds in degrees i < 2n.

� Then we analyze the spectral sequence in total degrees i > 2n. Formulas (10-9)
and (10-10) show that Theorem 10.2 holds in degrees i > 2n.

� Finally, we analyze the spectral sequence in total degree 2n. Formulas (10-16)
and (10-17) show that Theorem 10.2 holds in degree 2n.

10.2.1 The spectral sequence in total degree i < 2n For i D n or nC1, we have
E1i DE

1
i for lacunary reasons. Since there is only one nontrivial term in total degree i

there is no extension issue to recover the abutment. Hence we obtain

Ln�
4.A; n/D A=2.2/ D A=2.2/˚Ln�8�

4.A; n� 2/;(10-5)

LnC1�
4.A; n/D 0D LnC1�8�

4.A; n� 2/:(10-6)

The case i � nC 2 is slightly more involved.

Proposition 10.4 For nC 2� i � 2n� 1 we have

(10-7) Li�
4.A; n/' Li�

4.A; n� 2/˚A=2.2/:
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Moreover, if n is even, the differentials d12nW E
1
2n!E12n�1 and d22nW E

2
2n!E22n�1

are zero. If n is odd, one of the two differentials d12n and d22n has A=2.2/ as its image
and the other one is the zero map.

Proof First of all, by Theorem 10.1 (which we assume to be proved for n� 2) we
know the terms in the column E1

�4;� . In particular, all the expressions E1i for i < 2n
are direct sums of terms A=2.2/ . A subquotient of a direct sum of copies of A=2.2/

is once again a direct sum of copies of A=2.2/ , so that E1i is also a direct sum of
copies of A=2.2/ if i < 2n. Finally, the strict polynomial functor A=2.2/ has no
self-extensions of degree 1, so that

E1i ' Li�
4.A; n/ for i < 2n:

Since only functors of the form A=2.2/ appear in total degrees i < 2n in the spectral
sequence, there are no functorial issues involved in these degrees and analyzing this
part of the spectral sequence amounts to analyzing a spectral sequence of F2–vector
spaces. To be more specific, if di .n/ denotes the dimension of the F2–vector space
Li�

4.Z; n/ for i < 2n, then the formula (10-7) is equivalent to the following equality
for nC 2� i � 2n� 1:

(10-8) di .n/D di .n� 2/C 1:

We now prove (10-8) by induction on i . We have dnC1.n/DdnC1.n�2/D0 by (10-6)
and, if we denote by ıi .n/ the dimension of the F2–vector space Li�4F2.Z=2; n/, the
exact sequences (10-3) and (10-4) and Lemma 10.3 yield equalities

dnC2.n/D ınC2.n/;

dnC2.n� 2/D ınC2.n� 2/;

ınC2.n/D ınC2.n� 2/C 1:

This shows that (10-8) holds for i D nC 2. Now assume that nC 2 < i < 2n. Then
the exact sequences (10-3) and (10-4) and Lemma 10.3 yield equalities

di .n/D ıi .n/� di�1.n/;

di .n� 2/D ıi .n� 2/� di�1.n� 2/;

ınC2.n/D ınC2.n� 2/C 2:

Thus, assuming that (10-8) holds for i � 1, we obtain that (10-8) holds for i .

It remains to prove the assertion on the differentials of the spectral sequence. By (10-7),
for nC 2� i < 2n E1i has one more copy of A=2.2/ than E1i . Hence there are only
two possibilities for each i :
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.ai / The maps d1i and d2i are both zero, one of the maps d1iC1 or d2iC1 is zero and
the other one has image A=2.2/ .

.bi / One of the maps d1i or d2i is zero and the other one has image A=2.2/ , and the
maps d1iC1 and d2iC1 are both zero.

We observe that .ai /D) .biC1/D) .aiC2/. Since E1nC1 D 0, .anC2/ holds. We can
therefore deduce the result by induction on i .

10.2.2 The spectral sequence in total degree i > 2n If i > 3n then E1i DE
1
i for

lacunary reasons and, since there is only one nontrivial term in total degree i , we have

(10-9) Li�.A; n/' Li�8�.A; n� 2/:

To analyze the spectral sequence in total degree i with 2n< i � 3n, we will use mod 2
reduction. So we first recall basic facts regarding modp reduction. First of all, for
any finite abelian group G , the p–torsion subgroup pG has the same dimension (as
an Fp –vector space) as the modp reduction G˝Fp . Using this basic fact, one easily
proves the following very rough estimate, which will be useful in order to compare the
E1 and the E1 pages of the spectral sequence modulo p .

Lemma 10.5 Let .G�; @�/ be a degreewise finite differential graded abelian group
with @i W Gi !Gi�1 . Given a prime p , we denote by .pG�; .p/@/ the subcomplex of
p–torsion elements of G� . Then we have

dimFp .Hi .G/˝Fp/� dimFp .Gi ˝Fp/� rk.p@i /:

The next elementary lemma is useful for a modulo p comparison of L��4.A; n/ and
the E1 page of the spectral sequence.

Lemma 10.6 Let G be a filtered finite abelian group. For all primes p we have

dimFp .G˝Fp/� dimFp .gr.G/˝Fp/:

Moreover, the equality holds if and only if there exists an isomorphism of groups
between the p–primary parts, pG ' .p/gr.G/.

Proposition 10.7 Let 2n < i � 3n. There is an isomorphism

(10-10) Li�
4.A; n/' Li�8�

4.A; n�2/˚

8<:
�2F2

.A=2/˝A=2.1/ i D 3n;

A=2.1/˝A=2.1/ 2nC1 < i < 3n;

�2F2
.A=2.1// i D 2nC1:

Moreover, the differential d1
�3;2nC4W �

2
F2
.A=2.1//! L2n�8�

4.A; n� 2/ is zero.
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Proof Lemmas 10.6 and 10.5 yield the inequalities

dim.E1i ˝F2/� rk.d1i /� dim.E1i ˝F2/� dim.Li�4.A; n/˝F2/;(10-11)

dim.2E1i�1/� rk.d1i�1/� dim.2E1i�1/� dim.2Li�1�4.A; n//:(10-12)

We will now verify that the expressions (10-11)–(10-12) are actually equalities for
2nC 1 < i � 3n, thereby proving that the total differential d1i is zero in degrees
2n < i � 3n. The universal coefficient exact sequence (10-3) yields an equality

(10-13) dim.Li�4.A; n/˝F2/C dim.2Li�1�4.A; n//D dimLi�
4
F2
.A=2; n/:

The short exact sequence (10-4) and Lemma 10.3 imply that

dimLi�
4
F2
.A=2; n/D dim.E1�4;iC4˝F2/C dim.2E1�4;iC3/C dimCi .A=2; n/:

We observe that E1
�3;iC3˚E

1
�3;iC2 ' Ci .A=2; n/ for 2nC 1 < i � 3n. It follows

that

(10-14) dimLi�
4
F2
.A=2; n/D dim.E1i ˝F2/C dim.2E1i�1/:

By comparing the sum of the inequalities (10-11) and (10-12) with the equality provided
by (10-13) and (10-14), we can now conclude that the expression (10-11) and (10-12)
are actually equalities for 2nC 1 < i � 3n.

Since the total differential d1i is zero in degrees 2n < i � 3n (and d13nC1 is zero by
lacunarity), we have d1

�3;2nC4D 0 and E1i DE
1
i for 2n< i � 3n. Furthermore, since

(10-11) and (10-12) are equalities, Lemma 10.6 yields a non-functorial isomorphism

(10-15) E1i�4;4˚E
1
i�3;3 DE

1
i ' Li�

4.A; n/:

To finish the proof, we have to prove a functorial isomorphism E1i�4;4˚E
1
i�4;3 '

Li�
4.A; n/. But the 2–primary part of E1i�4;4 is a direct sum of functors of the types

A=2.2/; �2F2.A=2
.1//; A=2.1/˝A=2.1/; �2Z.A=2

.1// and ƒ2F2.A=2
.1//

(as no term of the form �4.A/, ƒ4.A/, �2F2.A=2/˝A=2
.1/ or ˆ4.A/ occurs in the

degrees which we are considering here). In addition, E1i�4;3 is one of the functors

�2F2.A=2
.1//; A=2.1/˝A=2.1/ or �2F2.A=2/˝A=2

.1/:

It follows from the Ext1 computations of Appendix A that there can be no non-split
extension of E1i�4;3 by E1i�4;4 , except in the case E1i�4;3 D �2F2

.A=2.1//. In the
latter case, the only possible nontrivial extension is an extension of �2F2.A=2

.1// by a
functor of the form .A=2.2//˚k . The middle term of such a nontrivial extension is a
functor �2Z.A=2

.1//˚.A=2.2//˚k�1 , which has 4–torsion. Such a nontrivial extension
is therefore excluded, as this would contradict the isomorphism (10-15). Since all
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possible extensions are split, we obtain an isomorphism of functors E1i 'Li�
4.A; n/.

This finishes the proof of Proposition 10.7.

10.2.3 The spectral sequence in total degree i D 2n The study of the spectral
sequence in total degrees i > 2n and i < 2n has already provided us with some partial
information regarding the situation for i D 2n. Let us sum up what we know so far:

� The differential d12nC1 is zero, hence E12n is a subfunctor of E12n .

� If n is even, then d12n and d22n are zero, hence E12n DE
1
2n .

� If n is odd, then one of the differentials d12n and d22n is zero and the other has
image equal to A=2.2/ . Hence there are only two possibilities:

(a) E12n D L2n�8�
4.A; n� 2/˚�2F2

.A=2.1//˚A˝A=3.1/ .
(b) E12n D L2n�8�

4.A; n� 2/˚A=2.1/˚ƒ2F2
.A=2.1//˚A˝A=3.1/ .

Proposition 10.8 If n is even, then

(10-16) L2n�
4.A; n/D L2n�8�

4.A; n� 2/˚�2Z.A=2
.1//˚A˝A=3.1/:

Proof We already know that E12n D E
1
2n , so we just have to retrieve L2n�4.A; n/

from E12n . By Theorem 10.1 (which we assume to have been proved for n � 2),
L2n�8�

4.A; n� 2/ is a sum of copies of A=2.2/ . Since A=2.2/ has no self-extension
of degree one, there is no extension problem between the columns pD�4 and pD�3.
The extension problem on the abutment can therefore be restated as a short exact
sequence

0!L2n�8�
4.A; n�2/˚A=2.2/!L2n�

4.A; n/!�2F2.A=2
.1//˚A˝A=3.1/! 0:

But the only nontrivial extension of �2F2.A=2
.1// by a functor of the form .A=2.2//˚k

is given by a functor of the form �2Z.A=2
.1//˚ .A=2.2//˚k�1 . Thus we have only

two possibilities for L2n�4.A; n/, namely:

(i) L2n�8�
4.A; n� 2/˚�2Z.A=2

.1//˚A˝A=3.1/ .

(ii) L2n�8�
4.A; n� 2/˚A=2.2/˚�2F2

.A=2.1//˚A˝A=3.1/ .

The difference between (i) and (ii) can be seen in the dimension of the F2–vector space
L2n�

4.A; n/˝ F2 . So we can use mod 2 reduction to determine which of the two
possibilities is correct. Let di .n/ and ıi .n/ be the dimensions of Li�4.A; n/˝ F2
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and Li�4F2.A=2; n/˝F2 , respectively. By Proposition 10.4, L2n�1�4.A; n/ is an F2–
vector space, hence d2n�1.n/ D dim.2L2n�1�4.A; n//. Similarly, d2n�9.n� 2/ D
dim.2L2n�1�4.A; n//. We have:

d2n.n/

D ı2n.n/�d2n�1.n/ by (10-3)

D ı2n�8.n�2/Cdim�2F2.A=2
.1//CdimA=2.2/�d2n�1.n/ by Lemma 10.3

D ı2n�8.n�2/Cdim�2F2.A=2
.1//Cd2n�9.n�2/ by Proposition 10.4

D d2n�8.n�2/Cdim�2F2.A=2/ by (10-4).

Thus the possibility (ii) is excluded for dimension reasons, so that (i) holds.

Proposition 10.9 If n is odd, then

(10-17) L2n�4.A; n/DL2n�8�4.A; n�2/˚ƒ2F2.A=2
.1//˚A=2.2/˚A˝A=3.1/:

Proof Recall that there are only two possibilities for E12n , namely:

(a) E12n D L2n�8�
4.A; n� 2/˚�2F2

.A=2.1//˚A˝A=3.1/ .

(b) E12n D L2n�8�
4.A; n� 2/˚A=2.1/˚ƒ2F2

.A=2.1//˚A˝A=3.1/ .

We now list the possibilities for L2n�4.A; n/. By the same reasoning as in Proposition
10.8, one finds the following three possibilities, where L2n�8�4.A; n� 2/0 denotes
the expression L2n�8�4.A; n� 2/ with one copy of A=2.2/ deleted:

(i) L2n�8�
4.A; n� 2/0˚�Z.A=2

.1//˚A˝A=3.1/ .

(ii) L2n�8�
4.A; n� 2/˚�2F2

.A=2.1//˚A˝A=3.1/ .

(iii) L2n�8�
4.A; n� 2/˚A=2.2/˚ƒ2F2

.A=2.1//˚A˝A=3.1/ .

To be specific, (i) and (ii) correspond to the possible reconstructions of L2n�4.A; n/
if (a) holds, and (ii) and (iii) correspond to the possible reconstructions if (b) holds.

We can exclude (i) for dimension reasons. Indeed, we can compute the dimen-
sion of L2n�4F2.A=2; n/ ˝ F2 as in the proof of Proposition 10.8. We find that
dimL2n�

4.A; n/˝F2DdimE12n˝F2 . By Lemma 10.6 this implies that L2n�4.A; n/
is (non-functorially) isomorphic to E12n , hence it is an F2–vector space. Thus (i) does
not hold.

On the other hand, we can exclude (ii) for functoriality reasons. Indeed, the universal
coefficient theorem yields a surjective morphism of strict polynomial functors

L2nC1�
4.A=2; n/� 2L2n�

4.A; n/:
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If (ii) holds, then we can compose this surjective morphism with the projection onto
the summand �2F2.A=2

.1// of L2n�4.A; n/ to get a surjective morphism

(10-18) L2nC1�
4.A=2; n/� �2F2.A=2

.1//:

But the source of this map was computed in Example 5.2. It is of the form

L2nC1�
4.A=2; n/' .A=2.1/˝A=2.1//˚ .A=2.2//˚k

for some value of k . By the Hom computations of Appendix A, there is no nonzero map
from A=2.2/ to �2F2.A=2

.1// and the only nonzero morphism from A=2.1/˝A=2.1/

to �2F2
.A=2.1// is not surjective. This contradicts the existence of the surjective

morphism (10-18). Thus (ii) does not hold. It follows that (iii) holds.

11 A conjectural description of the functors Li �
d
Z

.A; n/

In this section, we return to the study of the derived functors Li�d .A; n/ for arbitrary
abelian groups A. We therefore drop strict polynomial structures and consider the
derived functors as genuine functors of the abelian group A. The combinatorics of
weights, however, will still be present in the picture. We begin with a new description
of the stable homology of Eilenberg–Mac Lane spaces, equivalent to Cartan’s classical
one. We then use this new parametrization of the stable homology groups in order
to formulate a conjectural functorial description of the derived functors L��d .A; n/
for all abelian groups A and positive integers n and d . We finally show that the
computations of the present article as well as some computations of [8] agree with the
conjecture.

11.1 A new description of the stable homology

We begin this section by quoting Cartan’s computation of the stable homology:

H st
i .A/ WD lim

n
HnCi .K.A; n/;Z/'HnCi .K.A; n/;Z/ if i < n:

To this purpose, we first recall Cartan’s admissible words for the reader’s convenience.
Fix a prime number p . A p–admissible word is a non-empty word ˛ of finite length
formed with the letters �p , p and � . These correspond to the homological operations
that he refers to as the transpotence, the pth divided power operation and the suspension,
respectively. They must satisfy the following two conditions:

(1) The word ˛ starts with the letter � or �p .

(2) The number of letters � on the right of each letter p or �p in ˛ is even.
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A p–admissible word is of first type (“de première espèce”) if it ends with a � and of
second type (“de deuxième espèce”) if it ends with a �p (words finishing on the right
with the letter p will not be considered here). There are two basic integers associated
to a p–admissible word ˛ :
� The degree of ˛ is the integer deg˛ , defined recursively as follows. The degree

of the empty word is zero, and

deg.�pˇ/D 2Cp degˇ; deg.�ˇ/D 1C degˇ; deg.pˇ/D p degˇ:

� The height of ˛ is the integer h.˛/ corresponding to the number of letters �
and �p in ˛ .

Theorem 11.1 [9, Exposé 11, théorème 2] There is a graded isomorphism, functorial
with respect to the abelian group A:

H st
� .A/' AŒ0�˚

M
p prime

� M
˛2X1.p/

A=pŒdeg˛� h.˛/�˚
M

˛2X2.p/

pAŒdeg˛� h.˛/�
�
;

where Xi .p/ stands for the set of p–admissible words of i th type for i D 1, 2, starting
on the left with the letters �p .

Remark 11.2 Cartan’s proof of Theorem 11.1 is based on the integral computation
of [9, Exposé 11, théorème 1]. However, it can also be deduced from the modp
computations of [9, Exposés 9 and 10] (see also Betley [3]) and the universal coefficient
theorem if one knows in advance that, for all primes p , the stable homology only
contains p–torsion. A simple proof of the latter fact is contained in Dold and Puppe
[11, Korollar 10.2].

We now propose a compact reformulation of Theorem 11.1. Denote by A the set of
sequences of integers ˛ D .t1; : : : ; tm/ (for some m� 1) such that t1 � � � � � tm > 0.
For every ˛ 2A let o.˛/ denote the number of distinct strictly positive integers tj in
the sequence ˛D .t1; : : : ; tm/. For any abelian group A, we define an object St.A/ of
the derived category of abelian groups by the formula

(11-1) St.A/ WD
M

˛D.t1;:::;tm/2A

M
p prime

A
L
˝ Z=p

L

˝o.˛/Œ2.pt1 C � � �Cptm �m/�:

Cartan’s description of the integral stable homology H st
� .A/ of an Eilenberg–Mac Lane

space K.A; n/ may then be rephrased as follows:

Theorem 11.3 There exists, functorially in the abelian group A, a graded isomorphism

(11-2) H st
� .A/'H�.A˚ St.A//:
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Proof We observe that there is a bijection �W X1.p/ �!
� X2.p/, where �.˛/ is

obtained from ˛ by replacing the last two letters �2 of ˛ by the single letter �p . This
bijection preserves the degree and decreases the height by one, so that the p–primary
part in the description of H st

� .A/ Theorem 11.1 can be rewritten as

(11-3)
M

˛2X1.p/

�
A=pŒdeg˛� h.˛/�˚pAŒdeg˛� h.˛/C 1�

�
:

We define an equivalence relation R on X1.p/ as follows. For a word ˛ 2 X1.p/,
its �2p–substitution is the word of X1.p/ obtained by replacing each occurrence
of the letter �p by the group of letters �2p . For example, the �2p–substitution of
�p�p�

4�p�
2 is the word �p�2p�6p�2 . We say that two words of X1.p/ are

equivalent if they have the same �2p–substitution. Let ˛ be a p–admissible word
beginning with the letter �p . We say that a word ˛ is restricted if it begins on the
left with �p and is composed only of the letters � and p (ie no �p occurs in the
word ˛ ). We define R.p/ to be the subset of X1.p/ consisting of those p–admissible
words in X1.p/ which are restricted. Each equivalence class in X1.p/ contains exactly
one restricted admissible word, so that we can rewrite the direct sum (11-3) as

(11-4)
M

˛2R.p/

M
ˇR˛

.A=pŒdegˇ� h.ˇ/�˚pAŒdegˇ� h.ˇ/C 1�/:

We can replace the indexing set R.p/ in (11-4) by the set A. Indeed, there is a bijection
�W R.p/ �!� A defined as follows. Each restricted p–admissible word has the form

(11-5) �p .�
2/ � � � .�2/„ ƒ‚ …
k1 terms

p .�
2/ � � � .�2/„ ƒ‚ …
k2 terms

p � � � p .�
2/ � � � .�2/„ ƒ‚ …
ks terms

;

where s is the number of occurrences of p and the ki are nonnegative. Our bijection
� is defined by sending such a restricted p–admissible word to the sequence of integers

(11-6) .s; : : : ; s„ ƒ‚ …
ks terms

; s� 1; : : : ; s� 1„ ƒ‚ …
ks�1 terms

; : : : ; 1; : : : ; 1„ ƒ‚ …
k1 terms

/:

If we define the degree of a sequence .t1; : : : ; tn/ 2A as the sum 2.pt1 C � � �Cptn/,
and its height as 2n, then the bijection � preserves the degree and the height.

Let us now describe the R–equivalence classes in X1.p/. Let C be one such equiva-
lence class, containing a restricted admissible word ˛ of the form (11-5). The elements
in C are all the words which can be obtained from ˛ by substituting, for some groups of
terms �2p , the letter �p . Observe that the number of groups of terms �2p available
for such a substitution is equal to the number of positive ki , and this is o.˛/�1 (where
o.˛/ is the number of distinct positive integers in the associated sequence (11-6)). Thus
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C contains 2o.˛/�1 elements. Moreover, there are
�
o.˛/�1
i

�
distinct words ˇ obtained

from ˛ by exactly i substitutions and they all satisfy the conditions degˇ D deg˛
and h.ˇ/D h.˛/� i . As a consequence, (11-4) can be rewritten as a direct sum

(11-7)
M
˛2A

o.˛/�1M
iD0

�
A=pŒdeg˛� h.˛/� i �˚pAŒdeg˛� h.˛/� i C 1�

�˚.o.˛/�1i /
:

Finally, the homology of the complex

A
L
˝ Z=p

is the graded abelian group pAŒ1�˚A=pŒ0� and the object

Z=p
L
˝ Z=p

is isomorphic to Z=pŒ0�˚Z=pŒ1� in the derived category. This determines by induction
on n a functorial isomorphism of graded abelian groups:

(11-8) H�.A
L
˝ Z=p

L

˝n/'

n�1M
iD0

.pAŒ1C i �˚A=pŒi �/
˚.n�1i /:

The statement of Theorem 11.3 follows by combining (11-7) and (11-8).

Just as one speaks of stable homology, one defines, following [11, Section 8.3], the
stable derived functors

Lst
i F.A/D lim

n
LnCiF.A; n/' LnCiF.A; n/ if i < n:

As explained in Appendix B, there exists a graded isomorphism, natural with respect
to the abelian group A,

(11-9) H st
� .A/'

M
d�0

Lst
�S

d .A/:

By décalage the (stable) derived functors of symmetric powers are isomorphic to the
(stable) derived functors of the divided power functors. Hence, (11-9) can be used to
obtain a description of Lst

��
d .A/. However, to obtain such a description, we have to

separate the various summands. In other words, we have to determine which summands
pA and A=p contribute to which stable derived functors Lst

��
d .A/. To this purpose,

we define yet another integer associated to p–admissible words:

Let r.˛/ be the number of occurrences of the letters �p and p in a p–admissible
word ˛ . Then the weight w.˛/ is defined by w.˛/D pr.˛/ if ˛ is of first type, and
w.˛/D pr.˛/�1 if ˛ is of second type.
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As explained for example in Touzé [29, Section 10.2], the direct summand of H st
� .A/

corresponding to Lst
�S

d .A/ is given by the admissible words of weight d . We have
to translate this into the new indexation provided by Theorem 11.3. We obtain the
following description of the stable derived functors of the functor �d .A/:

Proposition 11.4 If the integer d is not a prime power, then

Lst
i �

d .A/D 0 for all i � 0:

For any prime number p and any integer r > 0,

Lst
i �

pr .A/DHi

� M
˛D.t1;:::;tm/2A; t1Dr

A
L
˝ Z=p

L

˝o.˛/Œ2.pt2 C � � �Cptm �m/�

�
:

Proof Returning to the proof of Theorem 11.3, we see that the bijection � preserves
the weights. Moreover, all the words in the same equivalence class in X1.p/ also have
the same weight. Thus all the terms corresponding to the homology of the summand

A
L
˝ Z=p˝o.˛/

have the same weight as ˛ . Now, if ˛ is a restricted p–admissible word corresponding
to the sequence �.˛/D .t1; : : : ; tn/2A then w.˛/Dpt1 . Proposition 11.4 follows.

11.2 The conjecture

We observed in Proposition 11.4 that the stable derived functors of �d .A/ may con-
veniently be repackaged by appropriately deriving those summands A=p which most
obviously occur in Cartan’s computation, these being the summands which correspond
to restricted admissible words, that is, the words which do not involve the transpotence
operation �p . Our contention in what follows is that a similar mechanism also works
unstably. To be more specific, let A�m � A denote the subset containing all the
sequences of length less than or equal to m. We can reformulate the definition of A�m
as

(11-10) A�m D f.t1; : : : ; tm/ W t1 � t2 � � � � � tm � 0 and t1 ¤ 0g:

For every ˛ 2 A�m we still denote by o.˛/ the number of distinct strictly positive
integers tj in the sequence ˛ D .t1; : : : ; tm/. The A�m form an increasing family
of subsets which exhaust A. Moreover, A�m can be interpreted as an indexing set
for those stable summands A=p corresponding to restricted admissible words which
already appear in the unstable homology of K.A; 2mC 1/ or, equivalently, in the
derived functors L��.A; 2m� 1/.
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Our conjecture asserts that the derived functors L��.A; n/ are filtered and that the
associated graded pieces have the following description. If n D 2mC 1 there is an
isomorphism (functorial with respect to an arbitrary abelian group A)

(11-11) gr.L��.A; n//' ��

�
Lƒ.A/˝

O
p prime

O
˛2A�mC1

Lƒ.A
L
˝ Z=p

L

˝o.˛//

�

and, similarly, if nD 2m there is a functorial isomorphism

(11-12) gr.L��.A; n//' ��

�
L�.A/˝

O
p prime

O
˛2A�m

L�.A
L
˝ Z=p

L

˝o.˛//

�
:

The two isomorphisms above do not preserve the homological grading. We will explain
below how to introduce appropriate shifts of degrees on the right-hand side so as to
obtain graded isomorphisms. For the moment, we keep things simple by discussing the
ungraded version of the conjecture.

Both sides of (11-11) and (11-12) are equipped with weights and our conjectural
isomorphisms preserve the weights. To be more specific, the weight is defined on the
left-hand sides of (11-11) and (11-12) by viewing gr.L��d .A; n// as the homogeneous
summand of weight d . The weights on the right-hand sides of (11-11) and (11-12) are
defined as follows. We view

L�ƒ
d .A/ and L��

d .A/

as functors of weight d and the expressions

Lƒd .A
L
˝ Z=p

L

˝o.˛// and L�d .A
L
˝ Z=p

L

˝o.˛//

corresponding to a sequence ˛ D .t1; : : : / as functors of weight pt1 (as we did in
Proposition 11.4). Finally, weights are additive with respect to tensor products.

To describe more concretely the homogeneous component of weight d of the right-
hand sides of isomorphisms (11-11) and (11-12), we introduce the following notation.
Given a prime integer p , a nonnegative integer m, a nonnegative integer d0 and a
family of nonnegative integers .d˛/˛2A�m which is not identically zero, we denote by
d.d0; .d˛/;mIp/ the positive integer defined by

(11-13) d.d0; .d˛/;mIp/ WD d0C
X

˛2A�m

d˛p
t1.˛/;
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where t1.˛/ denotes the first integer in the sequence ˛ , that is, ˛ D .t1.˛/; : : : /. The
integer d.d0; .d˛/;mIp/ is the weight of the following objects of the derived category:

E.d0; .d˛/;mIp/ WD Lƒd0.A/˝
O

˛2A�m

Lƒd˛ .A
L
˝ Z=p

L

˝o.˛//;(11-14)

D.d0; .d˛/;mIp/ WD L�d0.A/˝
O

˛2A�m

L�d˛ .A
L
˝ Z=p

L

˝o.˛//:(11-15)

With these notations, the homogeneous component of weight d of the right-hand side
of the isomorphism (11-11) is given by the homotopy groups of the direct sum of
Lƒd .A/ and all the terms E.d0; .d˛/;mC 1Ip/ such that d.d0; .d˛/;mC 1Ip/D d
for all nonnegative integers d0 , all families of integers .d˛/ which are not identically
zero and all prime integers p . The right-hand side of the isomorphism (11-12) has an
obvious similar description.

Finally, we introduce suitable shifts in order to transform the isomorphisms (11-11)
and (11-12) into graded isomorphisms. Given a prime integer p , nonnegative integers
m and d0 , and a family of nonnegative integers .d˛/˛2A�m which is not identically
zero, we set

(11-16) `.d0; .d˛/;mIp/ WD .2mC 1/d0C
X

˛2A�m

`.˛Ip/d˛;

where the integer `.˛Ip/ associated to a sequence ˛ D .t1; : : : ; tm/ is given by

(11-17) `.˛Ip/ WD

�
2pt2 C � � �C 2ptm C 1 if m> 1;
1 if mD 1:

We also set

(11-18) e.d0; .d˛/;mIp/ WD

� X
˛2A�m

d˛

�
� d0:

We may now state the graded version of our conjecture:

Conjecture 11.5 Let s and n be positive integers.

(1) Assume that nD 2mC 1. Then there exists a filtration on Ls�d .A; n/ such that
the associated graded functor is isomorphic to the direct sum of the term

Ls�ndƒ
d .A/

together with the terms

�s
�
E.d0; .d˛/;mC 1Ip/Œ`.d0; .d˛/;mC 1Ip/�

�
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for all primes p , all nonnegative integers d0 and all families of integers .d˛/˛2A�mC1
which are not identically zero that satisfy d.d0; .d˛/;mIp/D d .

(2) Similarly, if nD 2m, there exists a filtration on Ls�d .A; n/ such that the associ-
ated graded functor is isomorphic to the direct sum of the term

Ls�nd�
d .A/

together with the terms

�s
�
D.d0; .d˛/;mIp/Œ`.d0; .d˛/;mIp/C e.d0; .d˛/;mIp/�

�
for all primes p , all nonnegative integers d0 and all families of integers .d˛/˛2A�m
which are not identically zero that satisfy d.d0; .d˛/;mIp/D d .

The remainder of the present section is devoted to proving that the conjecture holds in
a certain number of cases.

11.3 The cases d D 2 and d D 3 for all A and all n

For s , m � 1, and d D 2, 3, there is no filtration to consider and Conjecture 11.5
reduces to the natural isomorphisms

Ls�
2.A; 2mC 1/(11-19)

' �s

� mM
iD0

.A
L
˝ Z=2Œ2mC 2i C 1�/˚Lƒ2.A/Œ4mC 2�

�
;

Ls�
2.A; 2m/' �s

�m�1M
iD0

.A
L
˝ Z=2Œ2mC 2i�/˚L�2.A/Œ4m�

�
;(11-20)

Ls�
3.A; 2mC 1/' �s

� mM
iD0

�
A
L
˝ Z=3Œ2mC 4i C 1�(11-21)

˚A
L
˝ A

L
˝ Z=2Œ4mC 2i C 2�

�
˚Lƒ3.A/Œ6mC 3�

�
;

Ls�
3.A; 2m/' �s

�m�1M
iD0

.A
L
˝ Z=3Œ2mC 4i�(11-22)

˚A
L
˝ A

L
˝ Z=2Œ4mC 2i�/˚L�3.A/Œ6m�

�
;

consistently with the results in [8, Sections 4 and 5].
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11.4 The case d D 4 for A free and n odd

We now proceed to prove that the conjecture agrees with our previous computations
for d D 4, A free and nD 2mC 1 with m� 0. In that case the conjecture says that
(up to a filtration) L��4.A; n/ is isomorphic to the homology groups of the following
complexes (i)–(vii). At the prime p D 3, there is a single sort of complex:

A
L
˝ A

L
˝ Z=3 Œ4mC 4kC 2�; 0� k �m:(i)

At the prime p D 2, we have the five types of complexes

Lƒ2.A/
L
˝ A

L
˝ Z=2 Œ6mC 2kC 3�; 0� k �m;(ii)

Lƒ2.A
L
˝ Z=2/Œ4mC 4kC 2�; 0� k �m;(iii)

A
L
˝ Z=2

L
˝ Z=2 Œ2mC 6kC 2l C 1�; 0� kC l �m; l ¤ 0;(iv)

A
L
˝ Z=2 Œ2mC 6kC 1�; 0� k �m;(v)

A
L
˝ A

L
˝ Z=2

L
˝ Z=2 Œ4mC 2kC 2l C 2�; 0� l < k �m;(vi)

together with the final term

Lƒ4.A/Œ8mC 4�:(vii)

To verify that these expressions coincide with our computations from Section 10, we
proceed by induction on m. For mD 0, the formula for L��4.A; 1/ was described
in Proposition 9.1. We filter the term L3�

4.A; 1/ D ˆ4.A/ in (9-4) and replace it
here by the direct sum ƒ2.A/˝ A=2/˚ �2F2

.A=2/. The result of Proposition 9.1
then coincides with the present m D 0 case, once we observe that L�ƒ2.A=2/ '
ƒ2.A=2/Œ0�˚�2F2

.A=2/Œ1� [8, Section 2.2; 2].

To prove that the formulas provided by the conjecture agree for a general nD 2mC 1
with the computations of Theorem 10.1, it suffices to show that the additional summands
predicted by the conjecture when passing from L��

4.A; n�2/Œ8� to L��4.A; n/ agree
with those obtained in (10-1). Let us denote by G.m/ the sum of all the terms (i)–(vii).
One verifies that G.m/DG.m� 1/Œ8�˚�.m/, where �.m/ is given by

(11-23) �.m/

D A˝A=3Œ2n�˚Lƒ2.A/˝A=2Œ3n�˚Lƒ2.A=2/Œ2n�

˚

� mM
`D1

A
L
˝ Z=2

L

˝2

�
˚A=2Œn�˚

� mM
kD1

A
L
˝ A

L
˝ Z=2

L

˝2Œ2nC 2k�

�
:
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In �.m/ we replace the expression Z=2
L

˝2 by Z=2Œ0�˚Z=2Œ1� and Lƒ2.A=2/ by
ƒ2.A=2/Œ0�˚ �2F2

.A=2/Œ1�. Then �.m/ coincides with the additional summands
occurring when one passes, for n odd, from L��

4.A; n� 2/Œ8� to L��4.A; n� 2/ in
Theorem 10.2, provided we replace the summand �2F2.A=2/˝A=2

.1/Œ3n� in (10-1)
by the direct sum ƒ2.A=2/˝A=2Œ3n�˚A=2˝A=2Œ3n�. This proves the conjecture
for d D 4, A free and nD 2mC 1 odd.

11.5 The case d D 4 for A free and n even

We now proceed to prove that the conjecture agrees with our previous computations
for d D 4, A free and n D 2m with m � 1. It is straightforward to verify that the
conjecture agrees for mD 1 with the computation of Proposition 9.3, since we know
that L��2.A=2/' �2Z.A=2/Œ0�˚�

2
F2
.A=2/Œ1� [8; 2, Section 4] (there is no filtration

to consider in this situation). The conjecture says that (up to a filtration) L��4.A; n/
is isomorphic to the homology groups of the following complexes (a)–(g). At the
prime p D 3, there is a single sort of complex:

A
L
˝ A

L
˝ Z=3Œ4mC 4k� 0� k �m� 1:(a)

For the prime p D 2, we have the complexes

L�2.A/
L
˝ A

L
˝ Z=2Œ6mC 2k� 0� k �m� 1;(b)

L�2.A
L
˝ Z=2/Œ4mC 4k� 0� k �m� 1;(c)

A
L
˝ Z=2

L
˝ Z=2Œ2mC 6kC 2l� 0� kC l �m� 1; l ¤ 0;(d)

A
L
˝ Z=2Œ2mC 6k� 0� k �m� 1;(e)

A
L
˝ A

L
˝ Z=2

L
˝ Z=2Œ4mC 2kC 2l� 0� l < k �m� 1;(f)

together with the final term

L�4.A/Œ8m�:(g)

To prove that the formulas provided by the conjecture agree for nD u2m with the com-
putations of Theorem 10.1, it suffices to show, as above, that the additional summands
predicted by the conjecture when passing from L��

4.A; n�2/Œ8� to L��4.A; n/ agree
with those obtained in (10-2). Let us denote by J.m/ the sum of all the terms (a)–(g).
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One verifies that J.m/D J.m� 1/Œ8�˚�0.m/, where

(11-24) �0.m/D A˝A=3Œ2n�˚�2A˝A=2Œ3n�˚L�2.A=2/Œ2n�

˚

�m�1M
lD1

A
L
˝ Z=2

L
˝ Z=2Œ2nC 2l�

�
˚A=2

˚

�m�1M
kD1

A=2
L
˝ A=2Œ4mC 2k�

�
:

We replace in �0.m/ the summand L�2.A=2/ by its value �2Z.A=2/Œ0�˚�
2
F2
.A=2/Œ1�

(as in [8, Section 2.2; 2, Section 4)] and, once more, replace

Z=2
L
˝ Z=2

by Z=2Œ0�˚ Z=2Œ1�. Then �0.m/ coincides with the additional summands occur-
ing when one passes, for n even, from L��

4.A; n � 2/Œ8� to L��
4.A; n � 2/ in

Theorem 10.2. Note that in this n even case, no summand in �0.m/ requires any
filtering.

11.6 The case nD 1 for A free and all d

In the case nD1 and A free, the conjecture asserts that, up to a filtration, the p–primary
part of L��d .A; 1/ is isomorphic to

(11-25) ��

� M
.k0;:::;kd /

ƒk0.A/
L
˝Lƒk1.A=p/

L
˝ � � �

L
˝Lƒkd .A=p/Œk0C� � �Ckd �

�
;

where the sum runs over all sequences of nonnegative integers .k0; k1; : : : ; kd / of
length exactly d C 1 satisfying

P
kip

i D d .

On the other hand, we have explicitly computed the derived functors L��.A; 1/ in
Section 6. By Theorem 6.3 and Proposition 6.18, the p–primary part of Li�d .A; 1/ is
concentrated in degrees i < d and it is isomorphic (up to a filtration) in these degrees
to the homogeneous component of degree i and weight d of the cycles of the tensor
product of an exterior algebra with trivial differential and a family of Koszul algebras:

(11-26)
�
ƒFp .A=pŒ1�/; 0

�
˝

O
r�1

�
ƒFp .A=p

.r/Œ1�/˝�Fp .A=p
.r/Œ2�/; dKos

�
:

We will now reformulate this result in a form closer to (11-25). For this, we consider
the following modification of the Koszul algebra over Z, namely the dg–PZ –algebra
.�.AŒ2�/˝ƒ.AŒ1�/; pdKos/ with the same underlying graded PZ –algebra, but whose
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differential is the Koszul differential multiplied by p . We denote by C k.A/ the
complex of functors given by its homogeneous component of weight k .

Lemma 11.6 For i < d , the p–primary part of the functor Li�d .A; 1/ is isomorphic
to the homology of the complexM

.k0;:::;kd /

.ƒk0.A/Œk0�; 0/˝C
k1.A/˝ � � �˝C kd .A/;

where the sum runs over all sequences of nonnegative integers .k0; : : : ; kd / satisfyingP
kip

i D d .

Remark 11.7 The isomorphism of Lemma 11.6 is really an isomorphism of functors,
not an isomorphism of strict polynomial functors. For example, this isomorphism does
not preserve the weights.

Proof of Lemma 11.6 We break the proof into two steps:

Step 1 Since we are interested in the homogeneous component of weight d of (11-26),
we can limit ourselves to the differential graded subalgebra of (11-26):

(11-27)
�
ƒFp .A=pŒ1�/; 0

�
˝

O
1�r�d

�
ƒFp .A=p

.r/Œ1�/˝�Fp .A=p
.r/Œ2�/; dKos

�
:

By forgetting the strict polynomial structure, the strict polynomial functors A=p.r/

become isomorphic to A=p and the differential graded algebra (11-27) is functorially
isomorphic to the differential graded algebra

(11-28)
�
ƒFp .A=pŒ1�/; 0

�
˝

O
1�r�d

�
ƒFp .A=pŒ1�/˝�Fp .A=pŒ2�/; dKos

�
:

Moreover, under this isomorphism, the homogeneous summand of weight d of (11-27)
corresponds to the homogeneous summand of (11-28) supported by the subfunctors

(11-29)
M

ƒ
k0
Fp
.A=pŒ1�/˝ƒ

a1
Fp
.A=p/˝�

b1
Fp
.A=p/˝�� �˝ƒ

a`
Fp
.A=p/˝�

b`
Fp
.A=p/;

summing over all sequences .k0; a1; b1; : : : ; a`; b`/ that satisfy k0C
P
.aiCbi /p

iDd .

Step 2 We claim that the subalgebra of cycles of positive degree of the functorial
graded algebra (11-28) is isomorphic to the homology algebra of

(11-30) .ƒZ.AŒ1�/; 0/˝
O
1�r�d

�
ƒZ.AŒ1�/˝�Z.AŒ2�/; pdKos

�
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and we claim that the isomorphism sends the kernels of the summand (11-29) of the
differential graded algebra (11-28) isomorphically to the homology of the summand of
the differential graded algebra (11-30)M

.k0;:::;kd /

.ƒk0.AŒ1�/; 0/˝C k1.A/˝ � � �˝C kd .A/;

where the sum runs over all sequences of nonnegative integers .k0; : : : ; kd / satisfyingP
kip

i D d . The statement of Lemma 11.6 follows from this claim, so to finish the
proof of Lemma 11.6 we only have to justify our claim.

Koszul algebras are acyclic in positive degrees by Proposition 6.6. Hence, the positive-
degree homology of the differential graded algebra (11-30) is equal to the modp
reduction of the algebra formed by the cycles of positive degree of

.ƒZ.AŒ1�/; 0/˝
O
1�r�d

.ƒZ.AŒ1�/˝�Z.AŒ2�/; dKos/:

The latter is isomorphic to the algebra formed by the cycles of positive degree of the
algebra (11-28). This justifies our claim.

It follows from the next lemma that the graded functor (11-25) can also be rewritten as
the homology of the complex of Lemma 11.6. Recall that C k.A/ is the homogeneous
part of weight k of .�.AŒ2�/˝ƒ.AŒ1�/; pdKos/, hence its desuspension C k.A/Œ�k�
is the homogeneous part of weight k of .�.AŒ1�/˝ƒ.AŒ0�/; pdKos/.

Lemma 11.8 Let A be a free abelian group, and let k be a positive integer. The
normalized chains of Lƒk.A=p/ are naturally isomorphic to the complex C k.A/Œ�k�.

Proof We have Lƒ.A=p/ D ƒ.K.A
�p
�! A//. The functor K is explicit and we

readily check that, for all complexes C1
@
!C0 , the normalized chains of the simplicial

object ƒ.K.C1
@
!C0// is the complex whose degree-n component is

ƒ>0.C1/
˝n
˝ƒ.C0/;

where ƒ>0.Ci / stands for the augmentation ideal of the exterior algebra and whose
differential maps an element x1˝ � � �˝ xn˝y to the sum

n�1X
iD1

.�1/ix1˝ � � �˝ xixiC1˝ � � �˝ xn˝yC .�1/
nx1˝ � � �˝ xn�1˝ƒ.@/.xn/y:

Consider the normalized chains Nƒ.A=p/ of Lƒ.A=p/ as a differential graded
PZ –algebra. Its homogeneous component of weight k yields the normalized chains
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Nƒk.A=p/ of Lƒk.A=p/. These normalized chains contain C k.A/Œ�k� as a sub-
complex. Indeed the inclusion is given by viewing the object of degree i of C k.A/Œ�k�,
that is, the functor � i .A/˝ƒk�i .A/, as a subfunctor of .ƒ1.A//˝i˝ƒk�i .A/ by the
canonical inclusion of invariants into the tensor product. One readily checks that the dif-
ferential of C k.A/Œ�k� coincides with the restriction of the differential of Nƒk.A=p/.

To finish the proof, it remains to show that the inclusion of complexes

(11-31) C k.A/Œ�k� ,!Nƒk.A=p/

is a quasi-isomorphism. For this, we filter both complexes by the weight of the exterior
power on the right, that is, the term Fs.C

k.A/Œ�k�/ of the filtration is the subcomplex of
Ck.A/ supported by the � i .A/˝ƒk�i .A/ for k�i � s , and the term Fs.Nƒk.A=p//
is the subcomplex of Nƒk.A=p/ supported by the ƒi1.A/˝� � �˝ƒin.A/˝ƒk�

P
ij .A/

for k �
P
ij � s . Both filtrations have finite length and the inclusion of complexes

preserves the filtrations, whence a morphism

(11-32) gr.C k.A/Œ�k�/! gr.Nƒk.A=p//:

Since the filtrations are finite, the fact that (11-31) is a quasi-isomorphism will follow
from the fact that (11-32) is. But we readily check that gr.C k.A/Œ�k�/ is equal to
the complex

Lk
iD0 �

i .A/˝ƒk.A; 0/ with zero differential, that gr.Nƒk.A=p// is
equal to the complex

Lk
iD0Nƒi .A; 1/˝.ƒk.A/; 0/, and that the morphism (11-32) is

simply the morphism constructed from the quasi-isomorphisms � i .A/Œi � ,!Nƒi .A; 1/.
This proves that (11-32) is a quasi-isomorphism, hence that (11-31) is a quasi-iso-
morphism.

The results of Lemma 11.6 and 11.8 together prove:

Proposition 11.9 The conjecture holds for nD 1 and A a free abelian group.

Appendix A: Some computations of Hom and Ext1 in
functor categories

In this appendix, we review some elementary computations of Hom and Ext1 in functor
categories. The functor categories which we consider are the following:

(1) The category FZ of functors from free abelian groups of finite type to abelian
groups.

(2) The category Pk of strict polynomial functors defined over a field k.

(3) The category PZ of strict polynomial functors defined over Z.
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These categories are related by exact faithful functors

PFp ! PZ and PZ! FZ:

To be more specific, the first one sends a functor F 2 PFp to the functor F ı I=p ,
where I=p denotes the functor sending a free abelian group of finite type A to the
Fp–vector space A˝Z Z=p D A=p . The second one is the forgetful functor from
strict polynomial functors to ordinary functors. Since they are exact, these functors
induce morphisms on the level of Ext groups. In particular, the computation of a Hom
or Ext1 in any of these three categories gives us partial information regarding the Hom
or the Ext1 in the other two. We will be more precise about this below.

A.1 General techniques for Ext� computations

We first recall some techniques from standard homological algebra which are efficient
when computing Ext groups in the functor categories that we are considering (we
refer the reader for more details and further techniques for computing Ext groups
to Friedlander and Suslin [14], Franjou, Friedlander, Scorichenko and Suslin [13],
Touzé [29] and Pirashvili [23]). First of all, by the Yoneda lemma, the functors
PB.A/D Z HomZ.B;A/ with A as the variable and a free finitely generated abelian
group B as a parameter are projective generators in FZ and we have, for any functor F ,

(A-1) ExtiFZ
.PB ; F /D

�
F.B/ if i D 0,
0 if i > 0.

Similarly, the functors �d;NR .M/D �dR.HomR.N;M// with M as the variable and a
projective finitely generated R–module N as a parameter provide a family of projective
generators of the categories PR of strict polynomial functors over a commutative ring R .
For any strict polynomial functor F in PR we have a formula analogous to (A-1),
where F d denotes the homogeneous component of weight d of F :

(A-2) ExtiPR.�
d;N
R ; F /D

�
F d .N / if i D 0,
0 if i > 0.

Compared to the category FZ , the categories of strict polynomial functors have the
pleasant additional feature that functors are equipped with weights and that, for any
pair of homogeneous strict polynomial functors F and G of distinct weights, we have

Ext�PR.F;G/D 0:

Among the classical techniques for computing Ext groups in our categories, one of the
most important ones is the sum–diagonal adjunction, which we will now recall. For all
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functors F , G and H in FZ , there are isomorphisms

Ext�FZ
.H; F ˝G/' Ext�FZ.2/

.H�; F �G/;(A-3)

Ext�FZ
.F ˝G;H/' Ext�FZ.2/

.F �G;H�/;(A-4)

where the terms on the right-hand side denote Ext groups computed in the category
FZ.2/ of bifunctors, between the bifunctors

H�W .A;B/ 7!H.A˚B/ and F �GW .A;B/ 7! F.A/˝G.B/:

In many cases (for example if H D �2Z ) one can express H� as a direct sum of
functors of the form H1�H2 . Such bifunctors are sometimes called of separable type.
Thus (A-4) leads us to consider extension groups of the form

Ext�FZ.2/
.H1�H2; F �G/:

There are several situations in which we can actually compute such Ext groups. For
example, these extension groups vanish if H2 is a constant functor and G.0/ D 0.
Together with the sum–diagonal adjunction, this yields the following fundamental
vanishing lemma:

Lemma A.1 [22] Let H be an additive functor and let F and G be a pair of functors
satisfying F.0/DG.0/D 0. Then we have

Ext�FZ
.H; F ˝G/D 0D Ext�FZ

.F ˝G;H/:

The following proposition gives another example for which we can compute Ext groups
between functors of separable type.

Proposition A.2 (Künneth formulas) Let F , G 2 FZ be a pair of functors with
values in Fp –vector spaces and let H1 , H2 2FZ . Assume that H1.A/ is a free abelian
group for all A. Then there is an isomorphism

Ext�FZ
.H1; F /˝Ext�FZ

.H2; G/' Ext�FZ.2/
.H1�H2; F �G/:

Assume instead that, for all A, both H1.A/ and H2.A/ are Fp–vector spaces, and
denote by E� the graded Fp–vector space

E� WD Ext�FZ
.H1; F /˝Ext�FZ

.H2; G/:

Then there is an isomorphism Ext0FZ.2/
.H1 �H2; F �G/ ' E0 and a long exact

sequence of Fp–vector spaces:

0 // Ext1FZ.2/
.H1�H2; F �G/ // E1 // Ext0FZ.2/

.H1�H2; F �G/

@
// Ext2FZ.2/

.H1�H2; F �G/ // E2 // Ext1FZ.2/
.H1�H2; F �G/

@
// � � � :
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Proof In this proof we use the concise notation ŒF;G� for Hom groups between F
and G (the Hom groups are meant to be in the category of functors or of bifunctors,
according to the context). Let PX and P Y be standard projectives of FZ . The
bifunctor PX �P Y is a projective object of FZ.2/ and the Yoneda lemma yields an
isomorphism

ŒPX �P Y ; F �G�' F.X/˝G.Y /:

Moreover, the canonical morphism

(A-5) ŒPX ; F �˝ ŒP Y ; G�! ŒPX �P Y ; F �G�

can be identified via the Yoneda lemma with the identity morphism of F.X/˝G.Y /. In
particular, the map (A-5) is an isomorphism. Let P1� and P2� be projective resolutions
of H1 and H2 , respectively. By (A-5), there is an isomorphism of complexes

(A-6) ŒP1�; F �˝ ŒP2�; G�' ŒP1��P2�; F �G�:

The left-hand side of (A-6) is a tensor product of two complexes of Fp–vector spaces.
Hence, by the Künneth formula, its homology is isomorphic to

Ext�FZ
.H1; F /˝Ext�FZ

.H2; G/:

Assume that H1.A/ is a free abelian group for all A. Then P1��P2� is a projective
resolution of H1�H2 , hence the homology of the right-hand side of (A-6) is isomorphic
to Ext�FZ.2/

.H1�H2; F �G/. We thus obtain the first assertion of Proposition A.2.

Assume instead that H1.A/ and H2.A/ are Fp –vector spaces for all A. Then P1��P2�
is a complex of projectives whose homology is equal to H1�H2 in degrees 0 and 1
and is trivial elsewhere. It follows that there is a hypercohomology spectral sequence
[30, Section 5.7.9] with second page

E
p;q
2 D

�
ExtpFZ.2/

.H1�H2; F �G/ if q D 1; 2;
0 if q ¤ 1; 2;

and differential d2W E
p;q
2 ! E

pC2;q�1
2 , and which converges to the homology of the

right-hand side of (A-6). This implies the second statement in Proposition A.2.

The sum–diagonal adjunction works exactly in the same way for strict polynomial
functors over any commutative ring R . The isomorphism (A-4) remains valid when
FZ is replaced by PR . For extension groups between strict polynomial bifunctors of
separable type, the Künneth formulas of Proposition A.2 remain valid if FZ is replaced
by PZ . The vanishing lemma, Lemma A.1, also holds. If we are interested in strict
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polynomial functors defined over a field k the situation is even nicer: in that case, we
always have an isomorphism

Ext�Pk
.H1; F /˝Ext�Pk

.H2; G/' Ext�Pk.2/
.H1�H2; F �G/:

A.2 Some Hom computations

The following elementary lemma allows us to compare Hom groups between the
functor categories under consideration.

Lemma A.3 The functor PFp ! PZ defined by precomposition by I=p is full and
faithful. The forgetful functor PZ! FZ is faithful.

Proof It is clear that both functors are faithful. The only thing that we have to prove
is the following isomorphism, for all F , G 2 PFp :

(A-7) HomPFp
.F;G/' HomPZ.F ı I=p;G ı I=p/

By left exactness of Hom, the proof reduces to the case where F is a standard projective,
ie F D �d;UFp

, with U D Fnp . Now observe that for all A we have

�d;UFp
.A=p/D �

d;B
Z .A/˝Fp;

with B D Zn . Thus we have a commutative diagram

HomPFp
.�
d;U
Fp

; G/

'.1/

��

// HomPZ.�
d;U
Fp
ı I=p;G ı I=p/

'

��

Gd .U /
'

//
'

// Gd .B=p/ HomPZ.�
d;B
Z ; G ı I=p/

'

.2/

oo

where Gd is the homogeneous component of weight d of G , the maps .1/ and .2/
are provided by the Yoneda lemma and the vertical map on the right is induced by the
canonical projection �d;BZ .A/!�

d;U
Fp

.A=p/. Hence the isomorphism (A-7) holds.

The forgetful functor PZ!FZ is not full in general. For example, there is no nonzero
morphism of strict polynomial functors from I=p ı I .1/ to I=p , because these strict
polynomial functors are homogeneous of different weights. However, the forgetful
functor sends both of these to the same ordinary functor I=p and the identity morphism
is a nonzero morphism I=p ! I=p . The following lemma is proved in a manner
similar to Lemma A.3 (reduce to the case where F is a standard projective and then
use the Yoneda lemma).
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F.V /

G.V / �
pr

k .V / V ˝p
r

V .r/ Sp
r

.V / ƒp
r

.V /

�
pr

k .V / k k 0 k

�
0 if p ¤ 2
k if p D 2

V ˝p
r

k kj†pr j 0 k k
V .r/ k 0 k 0 0

Sp
r

.V / k k k k 0

ƒp
r

.V / 0 k 0

�
0 if p ¤ 2
k if p D 2

k

Table 3: Some values of HomPk.F;G/ for functors F and G of weight pr

with r > 0 , where k is a field of prime characteristic p .

Lemma A.4 Let k be a field. For all strict polynomial functors F and G , precompo-
sition by the Frobenius twist I .1/ induces an isomorphism

HomPk.F;G/ �!
� HomPk.F ı I

.1/; G ı I .1//:

Let k be a field. Table 3 gathers some elementary Hom computations in Pk , which
follow from the left exactness of Hom and the techniques recalled in Section A.1. By
Lemma A.3, these also provide Hom computations in PZ . One can also verify, using the
techniques recalled in Section A.1, that the computations of HomFZ.F ıI=p;GıI=p/

for the functors F and G listed in Table 3 give the same result as in PZ .

A.3 Some Ext1 computations

A.3.1 Computations in Pk , with k a field of positive characteristic The results
given here are all well known as special cases of more general statements — see eg [27;
29] — but we give here some self-contained and elementary proofs.

Lemma A.5 Let k be a field of positive characteristic and consider F , G 2 Pk

with finite-dimensional values. Precomposition by the Frobenius twist induces an
isomorphism

Ext1Pk
.F;G/ �!� Ext1Pk

.F ı I .1/ ; G ı I .1/ /:

Proof There is a short exact sequence 0! KF ! PF ! F ! 0, where PF is
a direct sum of standard projectives (ie of functors of the form �

d;U
k ). Similarly,

there is a short exact sequence 0! G ! JG ! QG ! 0, where JG is a product
of functors of the form Sdk;U 0 W V 7! Sdk .U

0 ˝ V /. By considering the long exact
sequences of Ext associated to these short exact sequences, we can reduce the proof
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to showing that Ext1Pk
.�
d;U
k ı I .1/ ; Sdk;U 0 ı I

.1/ / is zero. By the exponential formula
for divided powers, we can decompose �d;Uk as a direct sum of functors of the form
�
d1
k ˝ � � �˝�

dk
k with

P
dj D d and decompose Sdk;U in a similar manner. By the

sum–diagonal adjunction and the Künneth formula, the vanishing of

Ext1Pk
.�
d;U
k ı I .1/ ; Sdk;U 0 ı I

.1/ /

will then follow from the vanishing of Ext1Pk
.�ekıI

.1/ ; SekıI
.1/ / for all e� d , which

we will now prove. We first prove the vanishing of

Ext1Pk
.�ek ı I

.1/ ; Sek ı I
.1/ /

for e D pr with r � 0. Consider the presentation of �p
r

k ı I
.1/ as in Lemma 4.8 and

let K be the kernel of the projection

�
prC1

k

�
�! �

pr

k ı I
.1/ :

Since �p
rC1

k is projective, we have an epimorphism

HomPk.K; �
pr

k ı I
.1/ /� Ext1Pk

.�
pr

k ı I
.1/ ; S

pr

k ı I
.1/ /

whose left-hand term embeds into HomPk.�
prC1�1
k ˝�1k; S

pr

k ıI
.1/ /, which is zero by

sum–diagonal adjunction. Now we prove the vanishing of Ext1Pk
.�ek ı I

.1/; Sek ı I
.1//

for arbitrary e . Let e D ekpkC � � �C e0 be the p–adic decomposition of e . Then the
canonical inclusion

�ek.V / ,!

kO
iD0

.�
pi

k .V //˝ei DWH.V /

admits a retract, provided by the multiplication in the divided power algebra. Thus �ek
is a direct summand of H , so that Ext1Pk

.�ek ı I
.1/; Sek ı I

.1// is a direct summand of
Ext1Pk

.H ı I .1/ /; Sek ı I
.1/ /. The latter group is zero by sum–diagonal adjunction.

Proposition A.6 Let k be a field of characteristic 2. Any extension of degree one
in Pk between two functors of the form

Nn
iD1.�

di
k ı I

.ri // is trivial.

Proof By iterated use of the sum–diagonal adjunction and the Künneth formula, the
proof reduces to showing that

(A-8) Ext1Pk
.F;G/D 0

for F.V / D �dk ı I
.r/ and G D �ek ı I

.s/ . Since there are no nontrivial extensions
between functors with different weights, we can assume that d2rDe2s . By Lemma A.5,
precomposition by the Frobenius twist induces an isomorphism on the level of Ext1 ,
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so the proof reduces to showing (A-8) when one of the integers r or s is equal to zero.
If r D 0, then (A-8) holds by projectivity of F . Hence it suffices to prove (A-8) for
F D �dk ı I

.r/ and G D �dp
r

k with r > 0. Let ˝dp
r

denote the functor V 7! V ˝dp
r

.
By sum–diagonal adjunction and the Künneth formula, Ext�Pk

.F;˝dp
r

/D 0. Hence

(A-9) Ext1Pk
.F;G/' HomPk.F; C /;

where C is the cokernel of the canonical inclusion �dp
r

k !˝dp
r

. Since C embeds
into ƒ2k˝ .˝

pr�2/ and �dp
r

k surjects onto F , the right-hand side of (A-9) embeds
into HomPk.�

dpr

k ; ƒ2k˝ .˝
pr�2//. The latter group is trivial by (A-2).

There is a more general statement than Proposition A.6 over fields of odd characteristic,
whose proof is completely similar.

Proposition A.7 Let k be a field of odd characteristic p . Any degree-one extension
in Pk between functors of the form

Nn
iD1.�

di ıI .ri //˝
Nm
jD1.ƒ

ej ıI .sj // is trivial.

Remark A.8 Proposition A.7 does not hold when k is a field of characteristic p D 2.
For example Ext1Pk

.I .1/; ƒ2/ is one-dimensional, generated by the extension

0!ƒ2! �2! I .1/! 0;

where the map ƒ2.V /!�2.V / sends x^y to x �y (and is only well defined if pD 2).
This nontrivial extension shows up in many computations and explains why our results
take on different forms, depending on the parity of the characteristic (or of the torsion
over Z).

A.3.2 Computations in PZ The following lemma is a formal consequence of the
fact that precomposition by the functor I=p yields a full and faithful functor PFp!PZ .

Lemma A.9 For all F , G 2 PFp , precomposition by I=p yields an injective map

Ext1PFp
.F;G/ ,! Ext1PZ

.F ı I=p;G ı I=p/:

We cannot expect that precomposition by I=p induces an isomorphism in general.
For example, we have �dFp .A=p/D �

d
Z.A/˝Fp , so we have a short exact sequence

in PZ :
0! �dZ! �dZ! �dFp ı I=p! 0

By taking the Ext long exact sequence associated to the short exact sequence, we obtain
that, for all G 2 PFp;d ,

ExtiPZ
.�dFp ı I=p;G ı I=p/D

�
G.Z=p/ if i D 0; 1,
0 if i > 2.
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On the other hand, by projectivity of �dFp in PFp , there is no nonzero extension of �dFp
by G in PFp . We now describe some explicit elementary computations in PZ . As
in the main body of the article, we abuse notations and denote the functors by their
values to avoid cumbersome notations. For example, we write �2F2.A=2

.1// rather
than �2F2 ı I

.1/ ı I=2.

Lemma A.10 Let p be a prime number. Then Ext1PZ
.A=p.r/; A=p.r// D 0 for all

positive integers r .

Proof There is an exact sequenceM
kC`Dpr

k;`>0

�kZ.A/˝�
`
Z.A/! �

pr

Z .A/! A=p.r/! 0;

where the left-hand map is induced by the multiplication. Let K.A/ be the kernel
of the map �p

r

Z .A/! A=p.r/ . Applying the functor Ext�PZ
.�; A=p.r// to the short

exact sequence

0!K.A/! �
pr

Z .A/! A=p.r/! 0

yields an isomorphism

(A-10) HomPZ.K.A/; A=p
.r//' Ext1PZ

.A=p.r/; A=p.r//:

Since
L
kC`Dpr ;k;`>0 �

k
Z.A/˝�

`
Z.A/ surjects onto K.A/, it follows that the left-hand

side of (A-10) embeds into a direct sum of terms HomPZ.�
k
Z.A/˝�

`
Z.A/; A=p

.r//.
But these expressions are trivial by Lemma A.1, whence the result.

We now compute the extensions of �2F2.A=2
.1// by A=2.2/ . The cokernel of the map

�3Z.A/˝A! �4Z.A/ induced by the multiplication of the divided powers algebra is a
homogeneous strict polynomial functor of weight 4, whose image under the forgetful
functor PZ ! FZ is the ordinary functor �2Z.A=2/. We therefore will denote this
cokernel by �2Z.A=2

.1//. The following computation is used in Proposition 9.4:

Lemma A.11 There is an isomorphism Ext1PZ
.�2F2

.A=2.1//; A=2.2// ' Z=2. The
non-split extension is

0! A=2.2/! �2Z.A=2
.1//! �2F2.A=2

.1//! 0;

where the maps A=2.2/!�2Z.A=2
.1// and �2Z.A=2

.1//!�2F2
.A=2.1// are the unique

nonzero morphisms between these strict polynomial functors.
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Proof Consider the commutative diagram:

�3Z.A/˝A˚�
2
Z.A/˝�

2
Z.A/

��

.2;0/
// �3Z.A/˝A

//

��

�3F2
.A=2/˝A=2

��

// 0

0 // �4Z.A/
�2

//

��

�4Z.A/
//

��

�4F2
.A=2/

��

// 0

0 // A=2.2/
.a/

//

��

�2Z.A=2
.1//

.b/
//

��

�2F2
.A=2.1//

��

// 0

0 0 0

In this diagram, the upper vertical arrows are induced by the multiplication in the
divided power algebra and the rows and columns are exact. The two dashed arrows are
produced by the universal property of cokernels. It is easy to compute that the arrow .a/

is injective when AD Z, hence it is injective for all A by additivity of A=2.2/ . Since
the middle row is exact, an elementary diagram chase then shows that the bottom row
also is. We have thus obtained an extension of �2F2.A=2

.1// by A=2.2/ . It is non-split
because the middle term �2Z.A=2

.1// has 4–torsion.

We know that HomPZ.A=2
.2/; A=2.2//DZ=2 and HomPZ.A=2

.2/; �2F2
.A=2.1///D0.

The left exactness of the functor Hom therefore implies that the dashed arrow .a/ is
the unique nonzero morphism from A=2.2/ to �2Z.A=2

.1//. To prove that the dashed
arrow .b/ is also characterized as the unique nonzero morphism available, we make
use of the fact that �4.A/ surjects onto �2Z.A=2

.1// and that there is only one nonzero
morphism from �4.A/ to �2F2.A=2

.1//.

Finally, let us compute the group Ext1PZ
.�2F2

.A=2.1//; A=2.2//. This is an F2–vector
space and we will now show that it is of dimension one. We already know that its
dimension is at least 1. The short exact sequence

0! �2F2.A=2
.1//! A=2˝2!ƒ2F2.A=2

.1//! 0

therefore induces an isomorphism

Z=2D HomPZ.�
2
F2
.A=2.1//; A=2.2//' Ext1PZ

.ƒ2F2.A=2
.1//; A=2.2//:

By Lemma A.10, the long exact sequence of Ext’s associated to the short exact sequence
0!ƒ2F2

.A=2.1//! �2F2
.A=2.1//! A=2.2/! 0 yields an injective map

Ext1PZ
.�2F2.A=2

.1//; A=2.2// ,! Ext1PZ
.ƒ2F2.A=2

.1//; A=2.2//:

It follows that Ext1PZ
.�2F2

.A=2.1//; A=2.2// has dimension exactly one, as asserted.
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F.A/

G.A/ �2F2
.A=2.1// A=2.1/˝A=2.1/

�2F2
.A=2/˝A=2.1/

D �2Z.A/˝A=2
.1/

A=2.2/ Z=2 0 0

A=2.1/˝A=2.1/ 0 0 0

�2F2
.A=2.1// 0 0 0

ƒ2F2
.A=2.1// 0 0 0

�2Z.A=2
.1// 0 0 0

ƒ2F2
.A=2/˝A=2.1/ Z=2 Z=2˚2 Z=2

Table 4: Some computations of Ext1PZ
.F;G/ for functors F and G of

weight 4 .

The following lemma is used in Proposition 9.2. The middle term in the unique non-
split extension of �2F2.A=2

.1// by ƒ2F2
.A=2/˝ A=2.1/ which is provided by this

computation is the functor which is denoted ˆ4.A/ in Proposition 7.2 and elsewhere
in the text.

Lemma A.12 There is an isomorphism

Ext1PZ
.�2F2.A=2

.1//;ƒ2F2.A=2/˝A=2
.1//' Z=2:

Proof The Ext�PZ
.A=2.rC1/;�/ long exact sequence associated to the short exact

sequence
0!ƒ2F2.A=2

.r//! A=2.r/˝2! S2F2.A=2
.r//! 0

yields an isomorphism

Z=2' HomPZ.A=2
.rC1/; S2F2.A=2

.r///' Ext1PZ
.A=2.rC1/; ƒ2F2.A=2

.r///:

The result of Lemma A.12 follows from this assertion and Lemma A.10 by using the
sum–diagonal adjunction and Proposition A.2.

Table 4 collects the results of Lemmas A.11 and A.12 and some other easy computations
obtained with the same techniques. Some of these computations were used in Section 10.

A.3.3 Examples of computations in FZ One can sometimes compute Ext1 groups
in FZ by methods close to those which we used in PZ . For example, the proof of
Lemma A.11 carries over without change in FZ , so that we obtain the following result:

Lemma A.13 There is an isomorphism Z=2' Ext1FZ
.�2F2

.A=2/;ƒ2F2
.A=2/˝A=2/.
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The reasoning of the proof of Lemma A.11 has to be slightly modified in FZ . Since
�2Z.A=2/ has 4–torsion, the forgetful functor PZ! FZ sends the extension

0! A=2.2/! �2Z.A=2
.1//! �2F2.A=2

.1//! 0

to a non-split extension in FZ . But the forgetful functor sends A=2.2/ to the ordinary
functor A=2, and Ext1FZ

.A=2;A=2/DZ=2 (the middle term in the nontrivial extension
being the non-split extension A=4). Thus, the self-extensions of A=2 come into play.
Reasoning as in the proof of Lemma A.11, we obtain a short exact sequence of
F2–vector spaces

0! Ext1FZ
.A=2;A=2/! Ext1FZ

.�2F2.A=2/; A=2/! Ext1FZ
.ƒ2F2.A=2/; A=2/! 0:

This leads to the following result:

Lemma A.14 Ext1FZ
.�2F2

.A=2/; A=2/D Z=2˚2 .

Appendix B: The integral homology of K.A; n/ for A a free
abelian group

In this appendix, we translate some of the computations of the derived functors of
the divided power functors �d .A/ achieved in this article in terms of the integral
homology of Eilenberg–Mac Lane spaces. We begin with a short survey on the relation
between the functors L��d .A; n/ and the homology of K.A; n/. Then we present a
table giving a functorial description of the groups HnCi .K.A; n/IZ/ in low degrees.

B.1 The homology of K.A; n/ and the derived functors L��.A; n/

As proved by Dold and Puppe [11, Satz 4.16], there exist isomorphisms

(B-1)
M
d�0

LjS
d .B; n/'Hj .K.B; n/IZ/

for all abelian groups B . We will now address the question of the naturality in B of these
isomorphisms, whose definition relies on the construction of a Moore space M.B; n/.
Assume that there exists a full subcategory C �Ab and a functor

(B-2) M.�; n/W C! Ho.Top�/:

One can then verify, by going through the proof of [11, Satz 4.16], that the isomorphism
(B-1) is natural in the object B of C . It is quite obvious how to construct such a functor
(B-2) when C is the category of free abelian groups, since one easily proves that
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the functor Hn.�IZ/ induces an isomorphism ŒM.A; n/;M.A0; n/��'HomZ.A;A
0/

whenever A and A0 are free. It follows that the isomorphism (B-1) is natural in B when-
ever B is free. The isomorphism (B-1), together with the décalage isomorphisms (3-9),
reduces the computation of the homology of K.A; n/ for A free to that of the derived
functors of �d .A/. For nD 1, the functorial isomorphism (B-1) can thus be rewritten
as the well-known isomorphism

ƒj .A/'Hj .K.A; 1/IZ/;

while for n� 2 one obtains, by double décalage, functorial isomorphisms

(B-3)
M
d�0

Lj�2d�
d .A; n� 2/'Hj .K.A; n/IZ/:

The situation is more complicated for arbitrary abelian groups B , since it is known
that there can be no functor (B-2) when C DAb . Indeed, if n� 2 and B is an abelian
group endowed with a free resolution 0! K! L! B ! 0, we can interpret this
resolution as the image by Hn of a cofiber sequence M.K; n/!M.L; n/!M.B; n/.
The associated Barratt–Puppe sequence determines a short exact sequence of groups

0! Ext1Z.B; �nC1M.B
0; n//! ŒM.B; n/;M.B 0; n/��

Hn
��! HomZ.B;B

0/! 0:

The existence of a functorial Moore space construction on the category of all abelian
groups would imply that this sequence always splits. This however is known to be
false, since, for example, ŒM.Z=2/;M.Z=2/�� ' Z=4.

It follows from the previous discussion that if one considers arbitrary abelian groups B ,
the isomorphism (B-1) must be replaced by the second quadrant spectral sequence

(B-4) E1p;q D LpCqS
�p.B; n/H)HpCq.K.B; n/IZ/;

which, by [7], degenerates at E1 . As a result, the expressions involving in this context
the derived functors of the functors Sk.B/ (or equivalently by décalage of �k.B/)
only describe the abutment HpCq.K.B; n/IZ/ up to a filtration, since they live in
E1 DE1 :

(B-5)
M
d�0

Lj�2d�
d .B; n� 2/'

M
d�0

LjS
d .B; n/'

M
d�0

grd .Hj .K.B; n/IZ//:

In the stable range, that is for the homology groups HiCn.K.B; n/IZ/ with i < n,
the filtration splits. Indeed, in the stable range these homology groups are direct sums
of copies of the functors pB (the p–torsion subgroup of B ) and B=p (the modp
reduction of B ), for prime integers p . This follows, for example, from Cartan’s
computation of the stable homology of Eilenberg–Mac Lane spaces [9, Exposé 11,
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théorème 2]. Such functors are simple functors, hence they cannot be nontrivially
filtered. The filtration is usually not split in non-stable degrees. This is already visible
in the simplest case, that of the homology group H3.K.B; 1/IZ/, in other words the
third homology group of the abelian group B . In that case, the spectral sequence (B-4)
reduces to the functorial short exact sequence

(B-6) 0 �!ƒ3.B/ �!H3.B/ �! L1ƒ
2.B; 0/ �! 0:

It is shown in [21, Corollary 3.1] that this exact sequence cannot be functorially split.

B.2 The homology of K.A; n/ in low degrees for A free

Table 5 gives a functorial description of the groups HnCi .K.A; n/IZ/ as a functor of
the free abelian group A for all integers n and i such that 1� n� 11 and 0� i � 10.
The convention in lines nD 1 to 11 of the table is that each empty box is actually filled
with a copy of the expression in the lowest non-empty box above it. These are therefore
all filled with additive groups A=p , since each of these terms arises by suspension
from the one immediately above it. Every expression on the line “adm.” displays
Cartan’s labelling of the stable groups in the corresponding column in terms of his
admissible sequences and its associated prime. In the line above this one, labelled T ,
we display (for those admissible words which we called restricted in Section 11.1) the
corresponding labelling by decreasing sequences of integers mentioned in Theorem 11.3.
The order in which the items in each box in these two lines are listed reflects the order
in which the additive functors to which they correspond occurred in the lines above it.

The table is obtained from our computations of derived functors of divided powers and
the functorial isomorphism (B-3). Indeed, since the functors Lj�2d�d .A; n�2/ vanish
for j �2d �n�2, we need only consider these functors for d � 6. The required values
the derived functors for d � 4 were obtained in Sections 8–10 above. For d D 5, 6, it
is only necessary to know the values of the derived functors Lr�dZ.A; n�2/ for r � 2.
The latter can easily be obtained, either by a partial analysis of the maximal filtration of
�dZ.A/ for such values of d , as provided in Example 8.6 for d � 4, or by reliance for
those values of r on the modp reduction method described in Section 6. This second
method reduces the problem to that of a functorial computation of certain derived
functors of L��dFp .V; n/ for an Fp –vector space V , a question which we discussed in
Section 5.

The table shows that the homology groups within the range of values of the pair .n; i/
considered can be expressed functorially as direct sums of tensor and exterior powers
of the elementary functors A and A=p for primes p � 5 together with divided power
functors � iZ.A/ and �2Z.A=2/. The only exceptions to this rule are the occurrences
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i

n 0 1 2 3 4 5 6 7

1 A ƒ2.A/ ƒ3.A/ ƒ4.A/ ƒ5.A/ ƒ6.A/ ƒ7.A/ ƒ8.A/

2 0 �2.A/ 0 �3.A/ 0 �4.A/ 0
3 A=2 ƒ2.A/ A=3 A˝A=2 ƒ3.A/˚A=2 A˝A=3˚ƒ2.A=2/

4 0 �2.A/˚A=3 0 A˝A=2˚A=2 0
5 A=2˚A=3 ƒ2.A/ A=2 A˝A=2

6 0 �2.A/˚A=2 0
7 A=2˚A=2 ƒ2.A/

8 0
9

T f1I 2g f1; 1I 2g; f1I 3g {1,1,1;2}, {2;2}
adm. .2I 2/ .4I 2/; .4I 3/ .6I 2/; .4; 2I 2/

8 9 10

1 ƒ9.A/ ƒ10.A/ ƒ11.A/

2 �5.A/ 0 �6.A/

3 ˆ4.A/˚A=5 ƒ4.A/˚.A˝A=2/ ƒ2.A/˝A=3˚A˝ƒ2.A=2/

4
�3.A/˚A=5

˚A˝A=3˚�2.A=2/
�2F2

.A=2/ �2.A/˝A=2˚A˝A=2

5 A=3˚A=5˚A=2
ƒ2.A=2/˚A=2

˚.A˝A=2/˚.A˝A=3/
ƒ3.A/˚�2F2

.A=2/

6 .A˝A=2/˚A=3˚A=5˚A=2 A=2 �2.A=2/˚.A˝A=3/

7 A=3˚A=5˚A=2 A=2˚.A˝A=2/ A=2

8 �2.A/˚A=3˚A=5˚A=2 A=2 A=2˚.A˝A=2/

9 A=2˚A=3˚A=5˚A=2 A=2˚ƒ2.A/ A=2

10 A=2 �2.A/˚A=2

11 A=2˚A=2

T
f1; 1; 1; 1I 2g; f1; 1I 3g;

f1I 5g; f2; 1I 2g
f1; 1; 1; 1; 1I 2g; f2; 1; 1I 2g

adm. .8I 2/; .8I 3/; .8I 5/; .6; 2I 2/ .6; 3I 2/ .10I 2/; .8; 2I 2/

Table 5: A functorial description of the groups HnCi .K.A; n/IZ/ as a func-
tor of the free abelian group A for n and i with 1� n� 11 and 0� i � 10 .

of the direct summands �2F2.A=2/ in H13.K.A; 4/IZ/ and H15.K.A; 5/IZ/ and of
the new functor ˆ4.A/ in H11.K.A; 3/IZ/, for which we have provided a number of
descriptions in the main body of our text. The fact that the primes 2, 3 and 5 seem to
play a special role here is simply due to our chosen range of values for the integers n
and i . As these values increase the functors A=p will occur for additional primes p .
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While we obtain in this way a complete understanding of the homology of K.A; n/
for A free in the range mentioned above, we wish to draw the reader’s attention to
the fact that the situation is more complicated when one no longer restricts oneself to
functors on the category of free abelian groups A. Additional functors of A occur in
the general case, whose values are torsion groups. The simplest of these functors are
the additive functors

pA WD ker.pW A! A/:

Immediately after these, one encounters the functors �.A/ and R.A/, which Eilen-
berg and Mac Lane introduced in their foundational text [12, Sections 13 and 22].
These would now be denoted L1ƒ2.A; 0/ and L1�2Z.A; 0/ (or simply L1ƒ2.A/ and
L1�

2
Z.A/), respectively, and they would indeed appear in a table similar to ours for

a general A, as the derived versions of the functors ƒ2.A/ and �2.A/, which are to
be found in positions .n; i/D .1; 1/ and .n; i/D .2; 2/ of our table, respectively. The
décalage morphisms imply that, for A non-free, these functors contribute to the groups
H�.K.A; 1/IZ/ and H�.K.A; 2/IZ/, respectively, so that the first two lines of our
table below are already much more complicated in that case.

In this table we can already observe many of the phenomena discussed in the text. As we
mentioned above, the first of these is the lowest occurrence of the periodic phenomenon
represented by the functor ˆ4.A/, which is the only new functor within our range of
values. The pair of functors �2Z.A=2/ for the values 4 and 6 of n are also noteworthy,
as they produce some 4–torsion in the homology. Finally, it will be seen that the
two 2–torsion expressions �2F2.A=2/, while isomorphic, actually correspond to two
distinct situations. Indeed they may be thought of in the spirit of Conjecture 11.5 as the
first derived functors of �2.A=2/ and ƒ2.A=2/, respectively. This is reflected in the
different behaviour of these two homology groups under suspension. While the functor
�2F2

.A=2/ that lives in bidegree .n; i/D .4; 9/ suspends to an A=2 in H st
9 .K.A/IZ/,

as one would expect, this is not the case for the �2F2.A=2/ in bidegree .5; 10/. One
verifies by the long exact sequence of [11, Korollar 6.11] that the suspension sends
this element of H15.K.A; 5/IZ/ to the summand �2Z.A=2/ of H16.K.A; 6/IZ/ by
the unique nontrivial transformation from �2F2

.A=2/ to �2Z.A=2/; in other words, the
composite map

�2F2.A=2/
V
�!A=2

F
�!S2.A=2/ �! �2Z.A=2/;

where the maps V and F are the Verschiebung and Frobenius maps, respectively.
Since the image of this map is decomposable in �2Z.A=2/, it follows that an additional
suspension sends this image to zero in H17.K.A; 7/IZ/. In particular, this functor
�2F2

.A=2/ does not produce an additional stable summand A=2 in H st
10.AIZ/.
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Appendix C: The derived functors of �4.A; n/ for A free
and 1� n� 4

Table 6 provides a complete description of the derived functors of �4.A; n/ for n� 4.
In particular, the functors LnCi�4.A; n/ are trivial for 1� i � 4 and i > 12.

n

i 1 2 3 4

0 A=2.2/ A=2.2/ A=2.2/ A=2.2/

1
ƒ2.A=2.1//

0 0 0
˚A˝A=3.1/

2 ˆ4.A/
�2.A=2.1//

A=2.2/ A=2.2/
˚A˝A=3.1/

3 ƒ4.A/ �2F2
.A=2.1//

ƒ2.A=2.1//˚A=2.2/
A=2.2/

˚A˝A=3.1/

4 0 �2F2
.A=2/˝A=2.1/ �2F2

.A=2.1// �2.A=2.1//˚A˝A=3.1/

5 0 0 A=2.1/˝A=2.1/ �2F2
.A=2.1//

6 0 �4.A/
�2F2

.A=2/˝A=2.1/

˚A=2.2/
A=2.1/˝A=2.1/˚A=2.2/

7 0 0 ƒ2.A=2.1//
A=2.1/˝A=2.1/

˚A˝A=3.1/

8 0 0 ˆ4.A/
�2.A=2.1//˚�2.A/˝A=2.1/

˚A˝A=3.1/

9 0 0 ƒ4.A/ �2F2
.A=2.1//

10 0 0 0 �2F2
.A=2/˝A=2.1/

11 0 0 0 0
12 0 0 0 �4.A/

Table 6: The derived functors LnCi�4.A; n/ for A free and 1� n� 4 .
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