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On the Hodge conjecture for q–complete manifolds
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A complex manifold X of dimension n is said to be q–complete for some q 2
f1; : : : ; ng if it admits a smooth exhaustion function whose Levi form has at least
n � q C 1 positive eigenvalues at every point; thus, 1–complete manifolds are
Stein manifolds. Such an X is necessarily noncompact and its highest-dimensional
a priori nontrivial cohomology group is H nCq�1.X IZ/ . In this paper we show that
if q < n , nC q � 1 is even, and X has finite topology, then every cohomology
class in H nCq�1.X IZ/ is Poincaré dual to an analytic cycle in X consisting of
proper holomorphic images of the ball. This holds in particular for the complement
X DCP n nA of any complex projective manifold A defined by q < n independent
equations. If X has infinite topology, then the same holds for elements of the group
HnCq�1.X IZ/D limj H nCq�1.Mj IZ/ , where fMj gj2N is an exhaustion of X by
compact smoothly bounded domains. Finally, we provide an example of a quasi-
projective manifold with a cohomology class which is analytic but not algebraic.

14C30, 32F10; 32E10, 32J25

1 Introduction

Every irreducible p–dimensional closed complex subvariety Z in a compact complex
manifold X defines an integral homology class ŒZ� 2H2p.X IZ/ (see [5]). A finite
linear combination Z DPj nj Zj of such subvarieties with integer coefficients is an
analytic cycle in X , and the corresponding homology class

ŒZ�D
X

j

nj ŒZj � 2H2p.X IZ/

is an analytic homology class. A cohomology class u 2 H 2k.X IZ/ is said to be
(complex) analytic if it is Poincaré dual to an analytic homology class z 2H2p.X IZ/
with p D dim X � k . The same notions can be considered with rational coefficients
nj 2 Q. If X is compact Kähler then H 2k.X IC/ DL

iCjD2k H i;j .X / and the
image in H 2k.X IC/ of any analytic cohomology class belongs to H k;k.X /. The
Hodge conjecture [37] states that every rational class u 2H 2k.X IQ/\H k;k.X / of
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type .k; k/ of a compact projective manifold is analytic, hence algebraic by Chow’s
theorem. (Hodge’s conjecture for integer coefficients fails both in the projective and in
the Stein case; see Atiyah and Hirzebruch [5] and Grothendieck [33].) Although the
Hodge conjecture spawned a great number of works (see Atiyah and Hirzebruch [5],
Buhštaber [9], Cornalba and Griffiths [11], Deligne [12], Demailly [14], Soulé and
Voisin [48], Totaro [50] and the references therein), it remains open.

The problem of representing even-dimensional cohomology classes by analytic cycles
is very interesting and highly nontrivial also on nonclosed complex manifolds. Assume
first that M is a compact complex manifold of dimension n with boundary @M . In
view of the Poincaré–Lefschetz duality

(1) H k.M IG/ŠH2n�k.M; @M IG/; k D 0; 1; : : : ; 2n;

which holds for every abelian group G (see [42, Theorem 7.7, page 227] or [49,
Theorem 20, page 298]), the relevant question is whether every cohomology class
in H 2k.M IZ/ (or in H 2k.M IQ/) can be represented by a relative analytic cycle
consisting of closed complex subvarieties of M with boundaries in @M .

Our first main result is the following. We use the notion of q–completeness due to
Grauert [29; 30]; see below for the precise definition. The group H nCq�1.M IZ/
appearing in Theorem 1.1 is the top-dimensional a priori nontrivial cohomology group
of a q–complete manifold (see Equation (2)).

Theorem 1.1 Let X be a complex manifold of dimension n > 1 and M � X be a
compact q–complete domain for some q 2 f1; : : : ; n� 1g. If the number nC q� 1 is
even, then every cohomology class in H nCq�1.M IZ/ is Poincaré dual to an analytic
cycle ZDPj nj Zj of complex dimension pD .n�qC1/=2 with integer coefficients,
where each Zj is an embedded complex submanifold of M (immersed with normal
crossings if q D 1) with smooth boundary @Zj � @M .

If we allow the components Zj of the cycle to have boundaries in a collar around @M ,
or to be proper in the interior M n@M D VM of M , then the analytic cycle representing
a class in H nCq�1.M IZ/ can be chosen to consist of holomorphic images of the
unit ball in Cp (see Theorem 1.2 and Corollaries 1.3 and 6.3). We also prove the
corresponding result for q–complete manifolds without boundary, possibly with infinite
topology; see Theorem 1.4 and Remark 1.6. In the latter case the components of the
cycle are properly immersed images of the open ball in Cp . In particular, our analytic
cycles are purely transcendental even if X is quasi-projective.

Before proceeding, we recall the notions of q–convexity and q–completeness. (See
Grauert [29; 30]. A different version of these properties was introduced by Henkin and
Leiterer [36, Definition 4.3]; here we use Grauert’s original definitions.)
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Let X be a complex manifold of dimension n> 1. The Levi form of a smooth function
�W X ! R is the hermitian quadratic form on the holomorphic tangent bundle TX

which is given in any local holomorphic coordinates z D .z1; : : : ; zn/ on X by

L�.z/.w/D
nX

j ;kD1

@2�.z/

@zj@xzk

wjwk ; w D .w1; : : : ; wn/ 2Cn:

Let q 2N be an integer. The function �W X !R is said to be q–convex on an open
set �� X if its Levi form L� has at least n� qC 1 positive eigenvalues (hence at
most q � 1 negative or zero eigenvalues) at every point of �. The manifold X is
q–convex if it admits a smooth exhaustion function �W X !R which is q–convex on
X nK for some compact set K �X ; X is q–complete if � can be chosen q–convex
on all of X . Note that a 1–convex function is a strongly plurisubharmonic function
and a 1–complete manifold is a Stein manifold (see Grauert [28]). Every complex
manifold of dimension n is trivially q–complete for any q > n, and is n–complete
if it has no compact connected components (see Ohsawa [44] and Demailly [13]). In
particular, manifolds considered in this paper are never compact. A closed complex
submanifold Y of a q–convex (resp. q–complete) complex manifold X is also q–
convex (resp. q–complete). It follows that a q–complete manifold does not contain any
compact complex submanifold of dimension � q and this bound is sharp in general
(see Example 2 in Section 7).

A compact domain M � X with smooth boundary @M DM n VM is said to be q–
complete if M D f� � 0g, where � is a q–convex function on a neighborhood of M

with d�¤ 0 on @M D f�D 0g. If �W X !R is a q–convex exhaustion function then
for any regular value c of � the sublevel set f� � cg is a q–complete domain in X . A
1–complete domain is a Stein domain with strongly pseudoconvex boundary.

The most interesting examples of q–convex manifolds for q>1 arise as complements of
complex subvarieties. For instance, the complement CPnnA of any compact projective
submanifold A�CPn of complex codimension q is q–convex (see Barth [7]). The
same holds for the complement of any compact complex submanifold with Griffiths
positive normal bundle in an arbitrary compact complex manifold (see Schneider [46]).
In general the complement CPn nA is not q–complete but is .2q� 1/–complete (see
Peternell [45]); if however A is defined by q global equations in CPn (ie a complete
intersection) then CPn nA is q–complete. For example, CPn nCPn�q is q–complete
for any pair of integers 1� q� n. More generally, if Y is a compact complex manifold,
L! Y is a positive holomorphic line bundle, and s1; : : : ; sqW Y !L are holomorphic
sections whose common zero set AD fs1 D 0; : : : ; sq D 0g has codimension q in Y ,
then Y nA is q–complete (see Andreotti and Norguet [3]). A more complete list of
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examples and properties of q–convex and q–complete manifolds can be found in the
surveys by Colţoiu [10] and Grauert [30].

The group H nCq�1.M IZ/ appearing in Theorem 1.1 is the top-dimensional a priori
nontrivial cohomology group of a q–complete manifold. Indeed, q–convexity of a
function is a stable property in the fine C2 Whitney topology, so every q–complete
manifold admits a q–convex Morse exhaustion function. The Morse index of any
critical point of such a function is � nC q � 1 (see Forstnerič [25, page 91] for the
quadratic normal form), so it follows from Morse theory that a q–complete manifold M

of dimension n is a handlebody with handles of indices at most nCq�1. In particular
we have

(2) H k.M IG/D 0 8k > nC q� 1;

for any abelian group G .

Before discussing further results, we compare Theorem 1.1 with the known results
in the literature, indicate why the standard proofs do not apply in our situation, and
outline the method that we introduce to address this problem.

There are relatively few results concerning the Hodge conjecture for noncompact mani-
folds. For a Stein manifold X the Hodge conjecture holds for all cohomology groups
H 2k.X IQ/ with rational coefficients, but it fails in general for integer coefficients;
see Atiyah and Hirzebruch [5], Buhštaber [9], and Cornalba and Griffiths [11]. (It
follows from Oka’s theorem on complex line bundles that the Hodge conjecture holds
for the lowest-dimensional integral cohomology group H 2.X IZ/; see Kodaira and
Spencer [41].) Atiyah and Hirzebruch [4] showed that on any complex manifold X ,
a necessary condition for a cohomology class z 2 H 2k.X IZ/ to be analytic is that
z lie in the kernels of all differentials of the Atiyah–Hirzebruch spectral sequence
associated to X . Any given cohomology class z satisfies this necessary condition
after multiplication by some integer N.z/ 2 N . An explicit expression for N.z/

was computed by Buhštaber [9]. It follows from his result that if z belongs to the
top-dimensional a priori nontrivial cohomology group of a q–complete manifold,
then N.z/D 1. This explains why in the present article we do not need to consider
cohomologies with rational coefficients.

On a Stein manifold the necessary condition of Atiyah and Hirzebruch is also sufficient
(see Cornalba and Griffiths [11] for a detailed proof). Our results show that the
same is true for the top-dimensional cohomology group of a q–complete manifold.
However, this necessary condition is not sufficient in general. Examples to this effect,
for degree 4 Hodge classes on certain projective hypersurfaces in CP4 , were provided
by Kollár [6, Lemma, page 134]. (See also the papers by Totaro [50] and Soulé
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and Voisin [48, Section 2] for more information.) Kollár’s example, together with
Theorem 1.4, provides an example of a quasi-projective threefold X with a torsion
cohomology class in H 4.X IZ/ which is analytic (represented by a cycle consisting of
properly embedded holomorphic discs) but is not algebraic (see Example 5 in Section 7).

Differentials of the Atiyah–Hirzebruch spectral sequence annihilate any non-torsion
element of a cohomology group. From this point of view it is natural to give an example
of a q–complete manifold X with a nontrivial torsion part in the top cohomology
group H nCq�1.X IZ/. Here is an example with nD 2 and q D 1, ie a Stein surface.
This is a special case of the examples provided by Proposition 7.1.

Example 1 Consider a smooth complex curve C in CP2 of degree d > 1 and genus
g D .d � 1/.d � 2/=2. Its complement X DCP2 nC is a Stein surface and we have
that

H 2.X IZ/D Zd ˚Zˇ1 D Zd ˚Z2g;

where ˇ1 D 2��.C /D 2g is the first Betti number of C and Zd D Z=dZ.

By contrast, the top absolute homology group HnCq�1.X IZ/ is always free. In the
Stein case this is a classical result of Andreotti and Frankel [1]; see also Andreotti and
Narasimhan [2] and Hamm [34] for Stein spaces. The result was generalized to the
q–complete case by Sorani [47] and Hamm [35].

The proofs of the Hodge Conjecture on Stein manifolds, given in [5; 9; 11], proceed by
representing even-dimensional cohomology classes by Chern classes of complex vector
bundles. The Oka–Grauert principle [27] implies that every complex vector bundle
over a Stein manifold admits a compatible holomorphic vector bundle structure. (See
also [25].) The zero set of a generically chosen holomorphic section of such a bundle
is an analytic cycle that is Poincaré dual to the Chern class of the bundle. A similar
approach is used on compact Kähler manifolds with ample holomorphic line bundles.
Analytic cycles obtained in this way are given by holomorphic equations, so one has
no information on the complex structure of their irreducible components.

The Oka–Grauert principle fails in general on q–convex manifolds for q > 1. In the
present paper we introduce a completely different method which relies on the technique
of constructing proper holomorphic maps, immersions and embeddings of strongly
pseudoconvex Stein domains to q–complete manifolds, due to Drinovec Drnovšek
and Forstnerič [19; 21] (see Theorem 3.3 in Section 3). We work with holomorphic
maps from specific strongly pseudoconvex domains into M , inductively stretching
their boundaries towards the boundary @M . This technique does not rely on the
function theory of the target manifold, but only of the source strongly pseudoconvex
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domain where solutions of the @–problem are readily available. This allows us to
keep the same complex structure on these domains during the entire process. At
every critical point of maximal index nC q � 1 of the exhaustion function on M ,
a new component of the analytic cycle may appear, given as a cross-section of the
corresponding handle (see Proposition 2.1). This cross-section can be realized in local
holomorphic coordinates as the intersection of a C–linear subspace L�Cn of complex
dimension p D .n� qC 1/=2 with a thin round tube around the core E of the handle.
Such an intersection is an ellipsoid in Cp (the image of the unit ball in Cp under an
R–linear automorphism). However, it turns out that the precise choice of a domain
in L will not be important as long as it is small enough, strongly pseudoconvex, and
it contains the intersection point E \L. In particular, we are free to choose a ball in
LŠCp . This leads to analytic cycles (representing a given cohomology class) whose
irreducible components are embedded or immersed copies of the ball Bp �Cp .

Due to rigidity phenomena in Cauchy–Riemann geometry one can not push the bound-
aries of immersed balls in our cycle exactly into the boundary of M . We choose instead
an interior collar A�M around the boundary @M ; that is, a compact neighborhood
of @M in M , homeomorphic to @M � Œ0; 1�, with @M D @M � f0g � A. Then
the complement N D M nA is a compact manifold with boundary in VM that is
homeomorphic to M . Since the inclusions N ,!M and @M ,! A are homotopy
equivalences, they induce isomorphisms

(3) H k.M IG/ŠH k.N IG/; Hk.M; @M IG/ŠHk.M;AIG/
for any abelian group G (see Lemma 2.5). By Poincaré–Lefschetz duality we have

(4) H k.N IG/ŠH2n�k.M;M nN IG/
(see [42, Proposition 6.4, page 221]). From (3) and (4) it follows that

H k.M IG/ŠH2n�k.M;AIG/I
that is, cohomology classes of M can be represented by cycles with boundaries in a
collar around @M . In light of this, we have the following version of Theorem 1.1.

Theorem 1.2 Let M be a compact q–complete domain in a complex manifold X of
dimension n, where q 2 f1; : : : ; n� 1g, and let A�M be a collar around @M . If the
number nCq�1 is even, then every class in H nCq�1.M IZ/ is represented by a finite
analytic cycle Z DPj nj Zj of complex dimension p D .n� qC 1/=2 with integer
coefficients, where each Zj is an embedded complex submanifold of M with smooth
boundary @Zj �A (immersed with normal crossings if q D 1) that is biholomorphic
to the ball Bp �Cp .
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When n D 2 and q D 1 (that is, when M is a strongly pseudoconvex domain in a
Stein surface), we get cycles consisting of analytic discs, ie holomorphic images of the
unit disc D D f� 2 C W j�j < 1g. Since one can always push the boundary of a holo-
morphic disc into the boundary of a strongly pseudoconvex domain (see eg Forstnerič
and Globevnik [26]), we obtain the following corollary to Theorem 1.2. (See also
Jöricke [39], especially Corollary 3 on page 78.)

Corollary 1.3 If M is a strongly pseudoconvex Stein domain of dimension 2 then
every class in H 2.M IZ/ is represented by an analytic cycle whose irreducible com-
ponents are properly immersed discs with normal crossings that are smooth up to the
boundary.

We now explain a version of Theorem 1.1 for q–complete manifolds X without
boundary, possibly with infinite topology.

Let �W X ! R be a q–convex Morse exhaustion function. Choose an exhaustion
M1 �M2 � � � � �

S1
jD1 Mj DX; where each Mj D fx 2X W �.x/� cj g is a regular

sublevel set and there is at most one critical point of � in each difference VMjnMj�1 .
The inclusion Mj ,!MjC1 induces a homomorphism H k.MjC1IG/!H k.Mj IG/
and we have a well defined inverse limit

(5) Hk.X IG/D lim
j

H k.Mj IG/:

This definition is due to Atiyah and Hirzebruch [5]; see Section 5 for details. There
is a natural surjective homomorphism H k.X IG/ ! Hk.X IG/ from the singular
cohomology whose kernel can be described by means of the first derived functor of the
inverse limit. This kernel is trivial when G is a field (eg when G DQ), and also when
G D Z and the homology group Hk�1.X / is not too bad (see Section 6).

An irreducible closed subvariety Z of dimension p in X with small singular locus
defines a cohomology class in H 2n�2p.X IZ/. (If Z is smooth, this is the Thom
class of Z in X made absolute; see Section 5 for the general case.) In this setting we
say that the corresponding cohomology class in H2n�2p.X IZ/ is an analytic class
represented by Z .

Theorem 1.4 Let X be a complex manifold of dimension n> 1 which is q–complete
for some q 2 f1; : : : ; n� 1g. If the number nC q � 1 � 2 is even then every class
in HnCq�1.X IZ/ is represented by an analytic cycle

P
r nr Zr , where each Zr is a

properly embedded (immersed with normal crossings if q D 1) complex submanifold
of X biholomorphic to the ball of dimension p D .n� qC 1/=2.
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Remark 1.5 The cycle
P

r nr Zr in Theorem 1.4 is infinite (but locally finite) in
general; it can be chosen finite if X admits a q–convex exhaustion function with
finitely many critical points. If HnCq�2.X IZ/ is the direct sum of a free abelian group
and a torsion abelian group (for example, if it is finitely generated), then the natural
morphism H nCq�1.X IZ/!HnCq�1.X IZ/ is an isomorphism (cf Proposition 6.2)
and hence Theorem 1.4 applies to every cohomology class in H nCq�1.X IZ/.

Remark 1.6 Our proof will show that, in the absence of critical points of index
> m for some even integer 0 � m � nC q � 1, Theorems 1.1, 1.2, and 1.4 hold
for the top-dimensional nontrivial cohomology group H m . In particular, if X is an
odd-dimensional Stein manifold which is subcritical, in the sense that it admits a
strongly plurisubharmonic exhaustion function �W X !R without critical points of
index nD dim X , then Theorem 1.4 holds for the group H n�1.X IZ/.

Our method also applies to analytic cycles of lower dimension, but these are Poincaré
dual to higher-dimensional cohomology classes which are trivial in view of (2). On
the other hand, it does not work for analytic cycles of real dimension > n� qC 1,
and hence for cohomology groups of dimension < nC q� 1, because we are unable
to push the boundaries of such cycles across the critical points of index nC q � 1

of a q–convex exhaustion function. This difficulty is not only apparent as shown
by examples in [21], and is further demonstrated by the fact that even in the Stein
case .q D 1/ the analogues of Theorems 1.1 and 1.4 for integer coefficients fail in
general according to Buhštaber [9]. It is a challenging problem to give a proof of the
corresponding results from [9; 11] for lower-dimensional cohomology groups with
rational coefficients avoiding the use of Chern classes and the Oka–Grauert principle.
By finding such a proof one might hope to answer the following question.

Problem 1.7 Assume that X is an n–dimensional complex manifold which is q–
complete for some q 2 f1; : : : ; n � 1g. Does the Hodge conjecture hold for the
cohomology groups H 2k.X IQ/ when 2� 2k < nC q� 1?

The analogue of the Hodge conjecture has also been considered in the category of
symplectic manifolds. Donaldson [16; 15] constructed symplectic submanifolds of
any even codimension in a given compact symplectic manifold .X; !/ of dimension
2n � 4. In particular, he showed that if the cohomology class Œ!=2�� 2 H 2.X IR/
admits a lift to an integral class h 2H 2.X IZ/, then for any sufficiently large integer
k 2 N the Poincaré dual of kh in H2n�2.X IZ/ can be represented by a compact
symplectic submanifold of real codimension two in X .
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Problem 1.8 Is it possible to represent certain cohomology classes of noncompact
symplectic manifolds by noncompact cycles consisting of proper symplectic submani-
folds?

2 Topological preliminaries

This section reviews the necessary topological background. In particular, Proposition 2.1
gives a precise description of the effect of a handle attachment on the relative homology
(and, by Poincaré–Lefschetz duality, on the cohomology) of a compact manifold with
boundary. Although this is standard, we need very precise geometric information on the
cycles generating the relative homology group. For this reason, and lacking a precise
reference, we provide a detailed proof.

Denote by Bk the closed ball in Rk and by Sk�1 D @Bk the .k � 1/–sphere. Let M

be an orientable closed n–manifold with boundary @M , and let

(6) �W Sk�1 �Bn�k ,! @M

be the attaching map of a k–handle H D Bk �Bn�k . We assume that � is a home-
omorphism onto its image. Set N D M [� H ; this is a compact manifold with
boundary

@N D .@M n im�/[ .Bk �Sn�k�1/:

Proposition 2.1 Assume that .M; @M / is a compact manifold with boundary, and let
N be obtained by adding a handle of index k to M by an attaching map � as in (6).
Assume that for some j 2 f1; : : : ; n� kg the group Hj .M; @M / can be realized by
a collection C of geometric j–cycles in .M; @M n im�/. Then Hj .N; @N / can be
realized by the cycles in C prolonged by inclusion, and, if j D n� k , possibly by an
additional relative disc in any fiber of H (viewed as a j–disc bundle over Bk ).

Before proving the proposition we recall some preliminary material.

Given pairs of topological spaces A �M and B � N , the notation f W .M;A/!
.N;B/ means that f W M !N is a continuous map satisfying f .A/� B . A similar
notation is used for maps of triads; thus f W .M IA1;A2/! .N IB1;B2/ means that
f W M !N is a continuous map satisfying f .Ai/� Bi for i D 1; 2.

By a and ` we denote the cap and the cup product on cohomology, respectively.
For general background on homology and cohomology we refer to Bredon [8] or to
Spanier [49].
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We recall the following naturality property of the cap product (see Spanier [49, Sec-
tion 5.6.16]). This holds for an arbitrary coefficient group which we omit from the
notation.

Lemma 2.2 Let f W M ! N map a subset A1 � M to B1 and A2 � M to B2 ,
that is, f W .M IA1;A2/! .N IB1;B2/ is a map of triads. Let u 2 H q.N;B1/ and
z 2 Hn.M;A1 [ A2/. Let f1W .M;A1/ ! .N;B1/, f2W .M;A2/ ! .N;B2/ and
xf W .M;A1[A2/! .N;B1[B2/ be maps defined by f . Then the relation

f2�
�
f �1 u a z

�D u a xf�z
holds in Hn�q.N;B2/.

In other words, Lemma 2.2 renders the following diagram commutative:

H q.N;B1/ H q.M;A1/

Hn�q.N;B2/ Hn�q.M;A2/

-
f �

1

?
u 7!ua xf�.z/

?

v 7!vaz

�f2�

Let f W .M I im�; @M n im�/! .N IH; @N / and J W .N I∅; @N /! .N IH; @N / be
inclusions of triads, and let xf W .M; @M /! .N;H [@N / and xJ W .N; @N /! .N;H [
@N / be the associated maps of pairs. We choose compatible orientation classes � 2
Hn.M; @M / and � 2Hn.N; @N / in the sense that xf�.�/D xJ�.�/ 2Hn.N;H [@N /.
Consider the following diagram where the horizontal arrows are induced by inclusions
and the vertical arrows by cap-products:

H q.N / H q.N;H / H q.M; im�/ H q.M /

Hn�q.N; @N / Hn�q.N; @N / Hn�q.M; @M nim�/ Hn�q.M; @M /
?

a�

�

?
a xJ�.�/

- -i�

?

a�

?

a�

- � -��

Lemma 2.3 For any q , the above diagram is commutative. All the arrows, with the
possible exception of i� and �� , are isomorphisms when q > 0.

Proof Lemma 2.2 implies that the left square is commutative by virtue of the map of
triads J , and that the middle square is commutative by virtue of f . The right square is
induced by Poincaré–Lefschetz duality for the decomposition @M D @M n im�[ im�

(see [8, Section VI.9, Problems]); all cap-products with � and � are duality isomor-
phisms. The arrow H q.N;H /! H q.N / is an isomorphism when q > 0 because
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H is contractible. By commutativity it follows first that also the cap-product with
xf�.�/D xJ�.�/ is an isomorphism, and second that the central bottom horizontal arrow

is an isomorphism. Finally, the arrow H q.N;H /!H q.M; im�/ is an isomorphism
because the quotients N=H and M= im� are evidently homeomorphic.

Proof of Proposition 2.1 The morphism �� in the above diagram sits in the exact
sequence of the triad .M I im�; @M n im�/ as follows:

(7) Hj .im�; @.im�//!Hj .M; @M n im�/
���!Hj .M; @M /

!Hj�1.im�; @.im�//:

Here, the pair .im�; @.im�// is seen to be the product of pairs Sk�1�.Bn�k ;Sn�k�1/.

If j < n� k , both endgroups in (7) vanish and therefore, �� is an isomorphism.

If j D n� k , the sequence (7) reads

(8) Z!Hj .M; @M n im�/
���!Hj .M; @M /! 0:

Here, the group of integers Z is generated by any relative disc D� D .f�g �Bj ; f�g �
Sj�1/ where � 2Sn�j�1DSk�1 . If �� is not an isomorphism, then, clearly, if we add
to C a relative disc D� (which may generate a torsion element in Hj .M; @M n im�/Š
Hj .N; @N /), we obtain a collection of geometric generators for Hj .M; @M n im�/

which can be prolonged by inclusion to a set of geometric generators for Hj .N; @N /.
We remark that in Hj .N; @N /, the relative discs D� are homologous to the relative
discs in the fibers of the handle H .

Remark 2.4 The assumption in Proposition 2.1, that the group Hj .M; @M / can be
realized by a collection of geometric j–cycles in .M; @M n im�/, is always satisfied
when j � n� k . Indeed, the boundary sphere Sk�1 D @Bk of the core k–disc Bk of
the handle has dimension k�1, while the boundaries of relative cycles representing the
homology classes in Hj .M; @M / have dimension j�1. We can choose these cycles so
that only their boundaries intersect @M . Since .j�1/C.k�1/� .n�k�1/C.k�1/<

n�1D dim @M , a general position argument shows that the (finitely many) generators
of Hj .M; @M / can be represented by relative cycles in .M; @M / whose boundaries
avoid the attaching sphere �.Sk�1/ � @M . By choosing the transverse disc of the
handle to be sufficiently thin we can ensure that these cycles avoid the attaching set
im� of the handle.

Lemma 2.5 Let M be a manifold and A�M a collar of the boundary @M . Then
the inclusion-induced morphisms Hq.M; @M /! Hq.M;A/ are isomorphisms for
all q .
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Proof Since the inclusion @M ,! A is a homotopy equivalence, this follows from
naturality of the long homology exact sequence of the pair in conjunction with the
5–lemma.

Let .X;A/ be a pair of topological spaces. In the following proposition we use
Cp.X;A/ for the group of relative (singular) p–chains with integer coefficients. Let
K be an oriented compact p–manifold in X with @K � A. There is an orientation
p–chain in Cp.K; @K/ which may be viewed also as a p–chain in Cp.X;A/. We
denote the latter p–chain simply by .K; @K/. We say that the corresponding element
in Hp.X;A/ is represented by .K; @K/.

Proposition 2.6 Let M be an oriented manifold with boundary @M . Assume that the
manifold M 0 is obtained from M by adding an exterior collar AŠ @M � Œ0; 1�, so that
@M � @M � f0g and @M 0 D @M � f1g. Let K be an oriented compact p–manifold
in M 0 whose boundary @K is contained in @M � .0; 1�. Furthermore, assume that
K meets @M transversely. Then the geometric intersection of K with M yields a
finite collection fLig of connected oriented p–manifolds with @Li � @M so that the
sum

P
i.Li ; @Li/ is a chain in Cp.M; @M /, homologous to .K; @K/ in Cp.M

0;A/.
Consequently, if an element z0 of Hp.M

0;A/ is represented by a linear combination
of p–manifolds satisfying the conditions on K , there is an element z of Hp.M; @M /

which is also represented by a linear combination of p–manifolds and is mapped to z0
under the isomorphism Hp.M; @M /!Hp.M

0;A/.

Proof As the compact manifold K meets @M transversely (and @K\ @M D∅), the
intersection K\@M is the union of a finite collection C of closed .p�1/–manifolds.
Note that the connected components of K0 DK n @M are contained either in M or
in A. Their closures are connected submanifolds whose boundary components are in
C. Let fLig denote the collection of closures of components of K0 that are contained
in M , and let fL0j g denote the collection of closures of components of K0 that are
contained in A. Assume that all are oriented compatibly with K . Tautologically,P

i.Li ; @Li/ and
P

j .L
0
j ; @L

0
j / can be viewed as chains in Cp.M

0;A/ whose sum
is homologous to .K; @K/. On the other hand, as the L0j are entirely in A, the
chain

P
j .L
0
j ; @L

0
j / is clearly nullhomologous in Hp.M

0;A/. Hence .K; @K/ is
homologous to

P
i.Li ; @Li/, and as the latter forms a chain in Cp.M; @M /, the

assertion has been proved.

3 Analytic and geometric preliminaries

We adopt the usual convention that a map is holomorphic on a closed subset of a
complex manifold if it is holomorphic on an open neighborhood of that set. When
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talking about a homotopy of such maps, it is understood that the neighborhood is
independent of the parameter. By a compact domain (in a manifold) we shall always
mean a compact set with smooth boundary.

We shall need the following transversality theorem, which follows easily from known
results.

Theorem 3.1 Assume that V is a compact strongly pseudoconvex domain with C2

boundary in a Stein manifold S , X is a complex manifold, and M �X is a smooth
submanifold. Let r 2 f0; 1; 2; : : : ;1g. Every map f W V ! X of class Cr which is
holomorphic in the interior VV can be approximated arbitrarily closely in the Cr .V;X /

topology by holomorphic maps zf W zV !X , defined on an open neighborhood zV � S

of V (depending on zf ), such that zf is transverse to M .

Proof By [20, Theorem 1.2] we can approximate the map f W V ! X arbitrarily
closely in the Cr .V;X / topology by a holomorphic map f1W �! X on an open
Stein neighborhood �� S of V . Pick a compact O.�/–convex subset K �� with
V � VK . By Kaliman and Zaidenberg [40] we can approximate f1 as closely as desired,
uniformly on K , by a holomorphic map zf W zV !X on an open neighborhood zV of
K such that zf is transverse to M . (See also [25, Theorem 7.8.12, page 321]. In the
cited sources this transversality theorem is stated for the case when M is a complex
submanifold, or a Whitney stratified complex subvariety of X , but the proofs also
apply to smooth submanifolds; see [51].)

Remark 3.2 We also have the corresponding jet transversality theorem: the map zf
in Theorem 3.1 can be chosen such that its r –jet extension j rf W zV ! Jr . zV ;X / is
transverse to a given smooth submanifold M of the complex manifold Jr . zV ;X / of r –
jets of holomorphic maps zV !X . If X is an Oka manifold, then the jet transversality
theorem holds for holomorphic maps S !X from an arbitrary Stein manifold S to
X ; see [24] or [25, Sec. 7.8]. We shall not need these additions.

Given a function �W X !R, we shall use the notation

X�<a D fx 2X W �.x/ < ag; X�>a D fx 2X W �.x/ > ag;
Xa<�<b D fx 2X W a< �.x/ < bg; X�Da D fx 2X W �.x/D ag;

and similarly for the weak inequalities. If � is an exhaustion function on X then the
sets X��b and Xa���b DX��b nX�<a are compact for every pair a; b 2R.

The following is the main result of the paper [21], stated in the precise way that suits
our present purposes. (The special case when V is a bordered Riemann surface is
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treated in [19]. The case when X is a domain in Cn is due to Dor [17].) This is the
key analytic ingredient in the proof of our main results.

Theorem 3.3 [21, Theorem 1.1] Let X be a complex manifold of dimension n> 1,
�W X !R a smooth exhaustion function, and dist a distance function on X inducing
the manifold topology. Assume that for some pair of numbers a< b , the restriction of
� to Xa���b is a q–convex Morse function. Let V be a compact, smoothly bounded,
strongly pseudoconvex domain in a Stein manifold S of dimension p D dim S , and let
f0W V !X be a holomorphic map such that f0.V /�X�<b and f0.@V /�Xa<�<b

(see Figure 1). Suppose that at least one of the following two conditions holds:

(a) r WD n� qC 1� 2p .

(b) r > p and � has no critical points of index > 2.n�p/ in Xa<�<b .

Given a compact set K � VV and numbers  2 .a; b/ and � > 0, there is a homotopy
ft W V !X .t 2 Œ0; 1�/ of holomorphic maps satisfying the following properties:

(i) ft .V /�X�<b for all s 2 V and t 2 Œ0; 1�.
(ii) f1.@V /�X<�<b (see Figure 1).

(iii) sups2K dist.ft .s/; f0.s// < � for all t 2 Œ0; 1�.
(iv) �.ft .s// > �.f0.s//� � for all s 2 V and t 2 Œ0; 1�.

If 2p < n then the map f1 can be chosen to be an embedding, and if 2p D n then it
can be chosen to be an immersion with simple double points (normal crossings).

If � is Morse and q–convex on X�>a and either of conditions (a) or (b) holds on X�>a ,
then f0 can be approximated uniformly on compacts in VV by proper holomorphic maps
zf W VV !X (embeddings if 2p < n, immersions with normal crossings if 2p D n).

Recall that the number r D n� qC 1 � n, appearing in conditions (a) and (b), is a
pointwise lower bound on the number of positive eigenvalues of the Levi form of � .

Theorem 3.3 is illustrated in Figure 1 which shows the initial and the final image of the
domain V in X . The geometry at a critical point of � is illustrated in Figure 3 below
which will be explained in the sequel. A few comments about the proof are in order,
especially since we shall use not just the result itself, but also some of the key steps in
the proof.

In the noncritical case, ie when � has no critical values in Œa; b�, Theorem 3.3 holds
under the condition that r > p . More precisely, the Levi form of � must have at least
p positive eigenvalues in directions tangent to the level sets of � ; the radial direction
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f1.bV /

X�DX�Db

X�Da

X <�<b

Xa<�<

f1.V /

f0.V /

Figure 1: Theorem 3.3.

is irrelevant in this problem. The construction of a new map f1 with boundary in
X<�<b is achieved in finitely many steps by successively lifting small portions of
the boundary of the image of V in X to higher level sets of � (see property (ii) in
Theorem 3.3), paying attention to remain within X�<b (property (i)) and not to drop
very much anywhere (property (iv)). Every step of the deformation is first carried out
in a local chart on X by pushing the image in a suitable p–dimensional direction,
tangent to the level set of � , on which the Levi form of � is strictly positive. Special
holomorphic peaking functions constructed by Dor [17] are used for this purpose. The
deformation is globalized by the method of gluing holomorphic sprays, developed
in [19].

The second part of condition (b) is used in the following way. When trying to push
the (image in X of the) boundary of V across a critical point of index k of � , we
must be able to ensure that f .@V / (which is of real dimension 2p� 1) avoids the real
k–dimensional stable manifold of the critical point. By a general position argument
this is possible if .2p� 1/C k < 2n, which is equivalent to k � 2.n�p/.

Condition (a), that n�qC1�2p , is equivalent to nCq�1D2n�.n�qC1/�2.n�p/.
Since Morse indices of a q–convex function are � nCq�1, this implies condition (b).

The last statement in Theorem 3.3 (on the existence of proper maps) follows from the
first one by a standard recursive procedure. By combining the general position argument
and approximating sufficiently well at every step, we can also ensure that in the limit
we obtain a proper holomorphic embedding (if 2p < n) or immersion (if 2p D n).
All this is very standard and well known at least since Whitney’s classical work on
immersions and embeddings. In view of [20, Theorem 1.2] the analogous result also
holds if the initial map f0W V !X is merely continuous on V and holomorphic on
VV D V n @V .
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The reader will need a certain amount of familiarity with the proof of Theorem 3.3. To
this end, we recall in some detail the geometry of critical points of q–convex functions.
Our main source is [21, Sections 2 and 3], where the reader can find further details.
(This is also available in [25, Sections 3.9–3.10].)

By Sard’s lemma we may assume that a and b are regular values of � . After a small
deformation of � we may assume that its critical points in Xa<�<b lie on different
level sets. Let x0 be any critical point and k0 its Morse index; hence k0 � nC q� 1.
Set s D q � 1, so r C s D n. By [21, Lemma 2.1, page 9] (or [25, Lemma 3.9.4,
page 91]) there exist

(i) a holomorphic coordinate map z D .�; w/W U ! Cr �Cs D Cn on an open
neighborhood U �X of x0 , with z.x0/D 0,

(ii) an R–linear change of coordinates  .z/ D  .�;w/ D .� C l.w/;g.w// on
Cr �Cs ,

(iii) integers k 2 f0; : : : ; rg and m 2 f0; 1; : : : ; 2sg with kCmD k0 , and

(iv) a quadratic q–convex function Cn ŠCr �R2s!R of the form

(9) z�.�;u/D�jx0j2� ju0j2Cjx00j2Cju00j2C
rX

jD1

�j y2
j ;

where � D .�0; �00/ 2Ck �Cr�k , �0 D x0C iy0 2Ck , �00 D x00C iy00 2Cr�k ,
�j > 1 for j D 1; : : : ; k , �j � 1 for j D k C 1; : : : ; r , and u D .u0;u00/ 2
Rm �R2s�m ,

such that, setting

�.x/D  .z.x//D .�.x/;u.x// 2Cn; x 2 U;

we have

(10) �.x/D �.x0/C z�.�.x//C o.j�.x/j2/; x 2 U:

The function z� of Equation (9) has a critical point of Morse index k0 at the origin
(due to the term �jx0j2� ju0j2 ) and no other critical points. For every fixed u 2R2s ,
the function Cr 3 � 7! z�.�;u/ is strongly plurisubharmonic, so z� is q–convex on
Cr �Cs D Cn . Since the R–linear map  preserves the foliation uD const and is
C–linear on each leaf Cr � fug, the function z� ı is also q–convex on Cn .

By a small deformation of � in a neighborhood of the critical point x0 we may assume
that the remainder term in Equation (10) vanishes (cf [21, Lemma 2.1, page 9]); a
critical point with this property is said to be nice. Hence we may work in the sequel
with q–convex functions with nice critical points.
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Assume without loss of generality that �.x0/D 0. By shrinking U around the point x0

we may assume that � maps U into a polydisc P �Cr �R2s around the origin. Write

z�.xC iy;u/D�jx0j2� ju0j2CQ.y;x00;u00/;

where � D xC iy 2Cr , u 2R2s and

(11) Q.y;x00;u00/D
rX

jD1

�j y2
j Cjx00j2Cju00j2:

Pick a number c0 2 .0; 1/ small enough such that � has no critical points other than
x0 in the layer X�c0���3c0

b Xa<�<b , and we have

f.xC iy;u/ 2Cr �R2sW jx0j2Cju0j2 � c0; Q.y;x00;u00/� 4c0g � P:

Consider the set

(12) zE D f.xC iy;u/ 2Cr �R2sW jx0j2Cju0j2 � c0; y D 0; x00 D 0; u00 D 0g:
Its preimage E D ��1. zE/� U �X is an embedded real analytic disc of dimension
kCmD k0 (the Morse index of � at x0 ) which is attached to the domain X���c0

along the sphere Sk0�1 Š @E � X�D�c0
. (In the metric on U inherited from the

Euclidean metric on Cn by the coordinate map �W U ! P � Cn , E is the stable
manifold of x0 for the gradient flow of � .)

Let �Dminf�1; : : : ; �kg> 1. Pick a number t0 with 0< t0 < .1� 1=�/2c0 .

By [23, Lemma 6.7, page 178] (or [25, Lemma 3.10.1, page 92]) there exists a smooth
convex increasing function hW R! Œ0;C1/ enjoying the following properties:

(i) h.t/D 0 for t � t0 .

(ii) For t � c0 we have h.t/D t � t1 , where t1 D c0� h.c0/ 2 .t0; c0/.

(iii) For t0 � t � c0 we have t � t1 � h.t/� t � t0 .

(iv) For all t 2R we have 0� Ph.t/� 1 and 2t Rh.t/C Ph.t/ < �.

The graph of h is shown in [21, Figure 2, page 11] and [23, Figure 3.4, page 93]; we
reproduce it here for the convenience of the reader (see Figure 2).

With Q as in (11), we consider the smooth function z� W CnŠCr �R2s!R given by

(13) z�.�;u/D�h
�jx0j2Cju0j2�CQ.y;x00;u00/:

Using the properties of h, it is easily verified that the function Cr 3 � 7! z�.�;u/
is strongly plurisubharmonic for every fixed u 2 R2s , so z� is q–convex on Cn .
By the same argument as above (due to the special form of the R–linear map  ),
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b b bb

t0 t1 c0

t
.0; 0/

h

t � t0

Figure 2: The function h .

the composition z� ı  has the same property and hence is also q–convex on Cn .
Furthermore, 0 is a critical value with critical locus

fjx0j2Cju0j2 � t0; x00 D 0; y D 0; u00 D 0g;
and z� has no critical values in .0;C1/. (See [21, Lemma 3.1, page 10] or [25, Lemma
3.10.1, page 92] for the details.)

Let � D  ı zW U !Cn be as above. Define the function � W X��3c0
!R by

(14) � D
�z� ı� D z� ı ı z on U \X��3c0

;

�C t1 on X��3c0
nU:

It is easily seen that � is well defined and enjoys the following properties:

(˛ ) E [X���c0
�X��0 �E [X���t0

.

(ˇ ) X��c0
�X��2c0

�X�<3c0
.

( ) � is q–convex on the set X�c0���3c0
.

(ı ) � has no critical values in the interval .0; 2c0�. (The level set X�D0 is critical.)

(See [21, Lemma 3.1, page 10] or [25, Lemma 3.10.1, page 92] for details; for the
strongly pseudoconvex case see also [23, Lemma 6.7, page 178].)

The critical locus of � equals fjx0j2Cju0j2 � t0; x00 D 0; y D 0; u00 D 0g �E , and
� vanishes on this set. For every c 2 .0; 2c0� the sublevel set

(15) �c D fx 2X�<3c0
W �.x/� cg b X�<3c0

is a smoothly bounded q–complete domain. As � has no critical values in .0; 2c0�,
these domains are diffeomorphic to each other. If c > 0 is chosen sufficiently small
such that c � t1 < 0 (the number t1 > 0 was defined in property (ii) of h), then �c

is obtained by attaching to the subcritical sublevel set X��c�t1
a handle of index k0
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corresponding to the critical point of � at x0 . Hence every domain �c for c 2 .0; 2c0�

is diffeomorphic to the sublevel set X��c of � which contains the critical point x0 in
its interior (since c> 0). The inclusion E[X��c�t1

,!�c is a homotopy equivalence
since E[X��c�t1

is a strong deformation retract of �c . From the second case in (14)
we also see that

�c nU DX��c�t1
nU:

The sets �c are illustrated in Figure 3 (reproduced from [21, Figure 1, page 10] and
[25, Figure 3.5, page 94]).

.5

X�D�t0

�c

E

b

x0

X��c�t1X��c�t1

Figure 3: The set �c DX��c .

Another observation will be crucial for our purposes. On the set U \fjx0j2Cju0j2� t0g
we have h.x0.x/;u0.x//D 0, and hence �.x/DQ.y.x/;x00.x/;u00.x//. Therefore

�c \U \fjx0j2Cju0j2 � t0g D U \fjx0j2Cju0j2 � t0; Q� cg

is a tube around E which decreases to the disc E \fjx0j2Cju0j2 � t0g as c& 0.

Note that † WD fz 2Cn W y D 0; x00D 0; u00D 0g is the R–linear subspace containing
the disc zE of (12). If ƒ � Cn is any R–linear subspace of dimension dimRƒ D
2n�dimR†D 2n�k0 intersecting † transversely at the origin, then for small enough
c 2 .0; 2c0/ the intersection ƒ\fQ� cg is an ellipsoid in ƒ. If 2n�k0D 2p is even,
we can pick ƒ such that zƒD  �1.ƒ/�Cn is a p–dimensional C–linear subspace
of Cn . The set

Vc WDƒ\fQ� cg

for small c > 0 is an ellipsoid, and zVc WD �1.Vc/ is an ellipsoid in zƒŠCp . The set

(16) Zc WD fx 2�c \U W �.x/ 2 Vcg D fx 2�c \U W z.x/ 2 zVcg

Geometry & Topology, Volume 20 (2016)
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is then a closed complex submanifold of �c D X��c with boundary @Zc � @�c D
X�Dc , which is biholomorphic to an ellipsoid in zƒŠCp via the holomorphic coor-
dinate map zW U !Cn . The submanifold Zc is a holomorphic cross-section of the
handle that was attached to the sublevel set X��c�t1

in order to get the domain �c .

It is now possible to explain how to lift the boundary of the image variety f .V /�X

across a critical level of the q–convex function � . We do this in the following section
in the context of proving Theorem 4.1.

4 Proof of Theorems 1.1 and 1.2

We first explain how Theorem 3.3 and its proof (see Section 3 above) imply the
following result. Theorems 1.1 and 1.2 will follow easily from Theorem 4.1.

Theorem 4.1 (Hypotheses as in Theorem 3.3) Assume that for some 0 2 .a; b/
the function � has no critical values on Œa; 0�, and every element of the relative
homology group H2p.X�<0

;Xa<�<0
IZ/ can be represented by a finite analytic

cycle
P

i niZi , where every Zi is a holomorphic image of a strongly pseudoconvex
Stein domain Vi . Then for any 1 2 .0; b/, each element of the homology group
H2p.X�<b;X1<�<bIZ/ can also be represented by a finite analytic cycle of the same
form. If in addition the elements of H2p.X�<0

;Xa<�<0
IZ/ are representable by

cycles as above in which every domain Vi is the ball Bp �Cp , then the same is true
for the group H2p.X�<b;X1<�<bIZ/.

Proof Let us first consider the noncritical case when � has no critical values in Œa; b�.
As there is no change in topology of the sublevel sets of � , the relative homology groups
Hj .X��t ;X�Dt IZ/ are isomorphic to each other for all t 2 Œa; b� and all j 2 ZC .
Furthermore, for any pair of numbers ˛; ˇ with a� ˛ < ˇ � b , the set X˛���ˇ is an
interior collar around the boundary X�Dˇ of the manifold with boundary X��ˇ , and
also an exterior collar of X�D˛ D @.X��˛/. By Lemma 2.5 and excision we thus get
an isomorphism

(17) Hj .X�<0
;Xa<�<0

IZ/ŠHj .X�<b;X1<�<bIZ/
for every 1 2 .0; b/ and j 2 ZC . Assume that V is a strongly pseudoconvex
Stein domain of dimension p and f0W V ! X is a holomorphic map with range in
X�<0

such that f0.@V /�Xa<�<0
. Then f0.V / represents an element of the group

H2p.X�<0
;Xa<�<0

IZ/. Assuming that p < n�qC1, Theorem 3.3 tells us that f0

is homotopic to another holomorphic map f1W V !X , whose image f1.V / represents

Geometry & Topology, Volume 20 (2016)



On the Hodge conjecture for q–complete manifolds 373

the same element in H2p.X�<b;X1<�<bIZ/ under the isomorphism of (17). This
holds in particular if 2p D n� qC 1, the case of interest to us.

It follows that we can lift an analytic p–cycle
P

nifi.Vi/ in .X�<0
;Xa<�<0

/, with
p < n�qC1, to an analytic p–cycle

P
ni
zfi.Vi/ in .X�<b;X1<�<b/ such that these

two cycles represent the same homology class under the isomorphism of (17) with
j D 2p . In the new cycle we use the same domains Vi and weights ni , only the maps
change.

This completes the analysis of the noncritical case.

Assume now that � has critical points in Xa���b . We may assume that a and b are
regular values, so � (being Morse) has only finitely many critical points in Xa<�<b .
By a small deformation of � we may assume that these points lie on different level
sets of � and each of them is nice, in the sense that � can be represented in the normal
form of (10) without the remainder term. It suffices to prove Theorem 4.1 in the case
when � has only one critical point in Xa<�<b ; the general case then follows by a finite
induction.

Thus, let x0 2 Xa<�<b be the unique (nice) critical point of � in Xa���b . We may
assume that �.x0/D 0. By the inductive hypothesis there exists a number 0 2 .a; 0/
such that every homology class in H2p.X�<0

;Xa<�<0
IZ/ is represented by an

analytic cycle consisting of images of strongly pseudoconvex Stein domains.

We shall use the notation from the previous section; this pertains in particular to the
positive numbers c0; t0; t1 > 0, the coordinate map � D  ı zW U ! P � Cn on a
neighborhood U � X of x0 , the core E D ��1. zE/ of the handle (12) at x0 , the
function � of (14), its sublevel sets �c DX��c in (15), and the ellipsoids Zc ��c

of (16). We may assume that 0 < �t0 < 0 and 0< 3c0 < b .

It suffices to deal separately with each of the subvarieties in the given cycle. Let
f0.V / � X�<0

be such a subvariety, with f0.@V / � Xa<�<0
. By the noncritical

case, applied on Œa;�t0=2�, we can represent the homology class

Œf0.V /� 2H2p.X�<0
;Xa<�<0

IZ/
by a subvariety zf0.V /�X�<�t0=2 , with zf0.@V /�X�t0<�<�t0=2 , such that

Œ zf0.V /� 2H2p.X�<�t0=2;X�t0<�<�t0=2IZ/ŠH2p.X�<0
;Xa<�<0

IZ/:
As 2p� n�qC1, the general position argument (cf Theorem 3.1) allows us to deform
zf0 slightly to ensure that zf0.@V /\E D∅, so we have zf0.@V /�X�t0<�<�t0=2 nE .

Recall that f� D 0g\X���t0
DE\X���t0

(see property (˛ ) below (14)). Hence for
c > 0 small enough, we have zf0.@V /�X�>c , so zf0.V / also determines a homology
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class in H2p.X�<c1
;Xc<�<c1

IZ/ for some constant c1 satisfying c < c1 < 2c0 . The
domain X��c1

is diffeomorphic to X��c1
, ie it is the manifold obtained by attaching

to X���t0
a handle of index k0 , representing the change of topology at the critical

point x0 . The homology class Œ zf0.V /� 2 H2p.X�<c1
;Xc<�<c1

IZ/ is simply the
prolongation of the same class in H2p.X�<�t0=2;X�t0<�<�t0=2IZ/ in the sense of
Proposition 2.1.

By using the noncritical case with the function � of (14), we lift the boundary of
the variety zf0.V / into the layer Xc0<�<3c0

above the critical level �.x0/ D 0; see
conditions (˛ ) and (ˇ ) following (14). Next, we use the noncritical case, this time
again with the function � , to lift the boundary of the variety, obtained in the previous
substep, closer towards the level set X�Db . The result of these two modifications is
that we replaced zf0.V / by a homologous analytic cycle f1.V / � X�<b satisfying
f1.@V /�X1<�<b , where 1 is any number with 3c0 < 1 < b .

This shows that all analytic p–cycles with 2p � n� qC 1, coming from below the
critical level of � at x0 , survive the passage of the critical level �D �.x0/ with the
same normalizing strongly pseudoconvex domains.

In the subcritical case 2p < n � q C 1 this completes the proof since the relative
homology group H2p.X�<t ;X�Dt IZ/ does not change as t passes the value �.x0/.
The same is true if 2p D n� qC 1 and the Morse index of x0 is < nC q� 1.

If 2pD n�qC1, a critical point x0 of maximal Morse index nCq�1 of � may give
birth to an additional generator of the relative homology (cf Proposition 2.1). As we
have seen in Section 3, this new generator can be represented by a properly embedded
complex ellipsoid Zc �X��c with @Zc �X�Dc , as in (16). We now explain how to
replace this ellipsoid Zc by a ball in the subsequent construction.

Pick a closed domain B � Zc , biholomorphic to the closed ball B
p � Cp , which

contains the (unique) intersection point fx0g DZc\E in its relative interior. We have
B D g.B

p
/ for a holomorphic embedding gW Bp!X . There is a constant c0 2 .0; c/

such that Zc \X��c0 is contained in the relative interior of B . (See Figure 4.)

The function � of (14) has no critical values in the interval .0; 2c0� by property (ı ), so
we see by the same argument as above that Zc and B determine the same element in
the relative homology group H2p.X�<2c0

;Xc0<�<2c0
IZ/.

Applying the noncritical case, first with the function � (to push the boundary of the
ball B into a �–layer above the critical level) and subsequently with the function � ,
we can replace this new component by another holomorphic immersion (embedding
if 2p < n) of .B

p
; @Bp/ into .X�<b;X1<�<b/. This proves Theorem 4.1.
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B

Zc \ X��c0

X�Dc

X�Dc0

Zc

b
x0

E

Figure 4: Crossection Zc of the tube X��c .

Proof of Theorem 1.2 Choose a q–convex Morse function � on a neighborhood of
M in X such that M Df��0g and d�¤0 on @M . Pick numbers a<0<1<bD0

such that 0 < minM � < 1 , and 1 is close enough to 0 so that � has no critical
values on Œ1; 0�. Then X1���0 is a collar around @M D X�D0 , and by choosing
1 sufficiently close to 0 we may assume that it is contained in the given collar A.
Since X�<0

D ∅, the hypotheses of Theorem 4.1 are trivially satisfied. The result
now follows directly from Theorem 4.1.

Proof of Theorem 1.1 Let M be a compact q–complete domain in a complex
manifold X . Let A�X be an interior collar and B �X be an exterior collar around
@M , and set zM DM [B . For any j 2N we have natural isomorphisms

Hj .M; @M IZ/ŠHj .M;AIZ/ŠHj . zM ;BIZ/:

Let 2p D n� qC 1. By Theorem 1.2, every homology class z 2 H2p.M; @M IZ/
is represented by an analytic cycle Z D P

i niZi , where each Zi D fi.B
p
/ is a

holomorphic image of the ball B
p �Cp and @Zi D fi.@Bp/�A. By the noncritical

case of Theorem 4.1 we can replace Z by a homologous analytic cycle zZ DPi ni
zZi

in . zM ;B/, where zZi D zfi.xBp/ for some holomorphic map

zfi W Bp! zM ; zfi.@B
p/� B n @M:

In view of Theorem 3.1 we can assume that each zfi is transverse to @M . By
Proposition 2.6, a suitable integral linear combination of the intersections of the
components of zZ with M gives an analytic cycle in .M; @M / which determines
the homology class z 2H2p.M; @M IZ/. The cycle in .M; @M / obtained in this way
has the form

P
i;j ni;j

zfi.Wi;j /, where Wi;j are smoothly bounded connected domains
in Bp . This proves Theorem 1.1.
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5 Proof of Theorem 1.4

In this section we prove Theorem 1.4 which pertains to arbitrary q–complete manifolds,
possibly of infinite topology. We begin with some preparations.

Let X be a q–complete manifold without boundary, and let �W X !R be a q–convex
Morse exhaustion function. Pick an exhaustion M1 �M2 � � � � �

S1
jD1 Mj D X ,

where each Mj is a regular sublevel set of � and there is at most one critical point of �
in each difference VMj nMj�1 . Recall the definition Hk.X IG/ D limj H k.Mj IG/
in (5) and note that the inverse limit does not depend on the particular choice of � or
the sublevel sets. The easiest way to see this is to define Hk.X IG/, in analogy with
Atiyah and Hirzebruch [5], as the inverse limit of groups H k.M IG/ where M ranges
over all compact subdomains of X . A particular exhaustion gives rise to a countable
cofinal subset; hence the two inverse limits are isomorphic.

From now on, homology and cohomology will be taken with integer coefficients; we
drop coefficients from the notation.

Let X have complex dimension n and let Z be a closed analytic subspace of complex
dimension p D n� k D .n� qC 1/=2. We assume that the singular subspace Zs of
Z is either empty (ie Z is a submanifold) or discrete. (These are the only cases that
we need to consider for our purposes.) We define the cohomology class dual to Z

as follows. (See Atiyah and Hirzebruch [5, Section 5], and also Douady [18, Section
V.A].) As Z0DZ�Zs is a closed submanifold of X 0DX �Zs , it admits a (smooth)
tubular neighborhood, say W 0 , in X 0 . There is a Thom class in H 2k.W 0;W 0�Z0/
induced by the canonical orientation of the complex normal bundle, and consequently,
by excision, the corresponding class in H 2k.X 0;X 0�Z0/. By restriction, we obtain
a class in H 2k.X 0/ and hence a class �0 2H2k.X 0/. By [5, Lemma 5.3], the natural
“restriction” morphism H2k.X /!H2k.X 0/ is an isomorphism and we get an element
� 2 H2k.X /. The element � will be referred to as the cohomology class dual to Z .
More generally, let fZr j rg be a countable, locally finite collection of closed analytic
subspaces of X whose singular sets are either empty or discrete. Let �r 2 H2k.X /

denote the cohomology class dual to Zr and let nr be integers. Local finiteness ensures
that the possibly infinite sum

P
r nr�r makes sense in H2k.X /. To make this precise,

consider the canonical projections

(18) P i W H2k.X /!H 2k.Mi/:

By local finiteness, P i.�r / is nontrivial for at most finitely many r , and henceP
r nr P i.�r / is an honest element of H 2k.Mi/. The sequence

˚P
r nr P i.�r / j i

	
then defines an element of the inverse limit limi H 2k.Mi/DH2k.X / which we denote
by
P

r nr�r .
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We propose the following definition which is a slight generalization of the definition in
[5, Section 5.D].

Definition 5.1 The cohomology class
P

r nr�r 2H2k.X / described above is complex
analytic, and it is dual to the complex analytic cycle

P
r nr Zr .

The situation for a compact domain M with boundary is as follows. Let Z be an
embedded complex submanifold of M with smooth boundary, and assume that Z meets
@M transversely in @Z . As above, we assume that Z has complex dimension pDn�k .
Thus, the pair .Z; @Z/ defines a homology class ŒZ; @Z� in H2n�2k.M; @M /. Then
the cohomology class x 2H 2k.M / that corresponds to ŒZ; @Z� under Poincaré duality
is exactly the restriction of the Thom class of Z in M . Precisely, let W be a tubular
neighborhood of Z in M. By the transversality assumption, W \ @M is a tubular
neighborhood of @Z in @M. Thus there is a Thom class �W

Z
2 H 2k.W;W n Z/

induced by the canonical orientation of the normal bundle. The image of �W
Z

under
the zig-zag composite

H 2k.W;W nZ/
excision ����Š H 2k.M;M nZ/

restriction������!H 2k.M /

equals x . (See Bredon [8, page 371].)

Proof of Theorem 1.4 Let fMig be an exhaustion of X as above. Take x 2H2k.X /,
let xi D P i.x/ 2H 2k.Mi/ be the “restrictions” of x to Mi , and let

zi 2H2n�2k.X;X nMi/ŠH2n�2k.Mi ; @Mi/

be the dual homology classes.

We summarize the consequences of Theorems 1.2, 1.1, and 4.1 and their proofs. Each
homology group H2n�2k.X;X nMi/ has a distinguished set of generators

f�i
r j 1� r � �ig;

where 0� �i�1 � �i � �i�1C 1, and

�i W H2n�2k.X;X nMi/!H2n�2k.X;X nMi�1/

maps each �i
r to �i�1

r , for r � �i�1 . If �i > �i�1 (ie when passing a critical point
of the highest index), then �i.�i

�i
/D 0. Since �i.zi/D zi�1 for all i , we can use (8)

to express

zi D
�iX

rD1

ni
r�

i
r ;
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where ni
r D ni�1

r for all r � �i�1 . In particular, it makes sense to define

nr D lim
i!1ni

r :

We describe and make use of the geometric representatives of �i
r constructed above.

Assume that r D �i , and �i
r 2H2n�2k.X;X nMi/ is an additional generator. Then

�i
r D Œf .V /; f .@V /�, where V D xBp is the ball in Cp and f D f i W .V; @V / !
.X;X nMi/ is a holomorphic embedding (immersion with normal crossings when
q D 1). This gives rise to an inverse sequence of liftings

f j W .V; @V /! .X;X nMj /

such that Œf j .V /; f j .@V /�D �j
r for all j > i . In addition, we may arrange that f j

and f j�1 are arbitrarily close on the compact subset fv 2 V W d.v; bV /� 1=j g of V .
Finally, we may achieve by Theorem 3.1 that each f j is transverse to @Mj .

By choosing f j close enough to f j�1 for each j , we can make the sequence ff j g
converge uniformly on compact subsets of VV D Bp to a holomorphic embedding
�W VV !X that is transverse to all @Mj . For each j � i the geometric intersection of the
image �. VV / with Mj yields a cycle Œ�. VV /\Mj ; �. VV /\@Mj � 2H2n�2k.Mj ; @Mj /

homologous to that obtained by intersecting f j .V / with Mj . That in turn cor-
responds to Œf j .V /; f j .@V /� D �

j
r under the isomorphism H2n�2k.Mj ; @Mj / Š

H2n�2k.X;X nMj /.

We let Zr denote the image �. VV /. By doing this for each additional generator we
obtain our collection of submanifolds Z D fZr j 1 � r � supj �j g. Note that this
collection is locally finite in X (this is because the new generator which may appear
at any of the critical points of maximal index does not enter into any of the previous
subdomains during the subsequent lifting procedure, cf Theorem 3.3 and the proof of
Theorem 4.1), and also that the cardinality of Z is precisely the number of critical
points of the highest index. Let �r 2 H2k.X / be the cohomology class dual to Zr .
To complete the proof we need to show that x DP

r nr�r . To this end, fix some
r and assume, as above, that Zr has resulted from an additional generator �i

r ; thus
r D �i > �i�1 . Write i D i.r/ in this context. Let W be a tubular neighborhood
of Zr in X . By transversality, we may construct W so that each intersection Wj D
W \Mj is either empty or a tubular neighborhood of Zr \Mj in Mj ; the latter
for all j � i . Assume that W \Mj is nonempty. Recall that P j is the canonical
projection (18). Naturality of the Thom class guarantees that P j .�r / 2H 2k.Mj / is
the Poincaré dual of ŒZr \Mj ;Zr \ @Mj � 2H2n�2k.Mj ; @Mj /. On the other hand,
ŒZr \Mj ;Zr \ @Mj � corresponds to �j

r 2H2n�2k.X;X nMj /, as explained above.
Thus, P j .�r / corresponds to �j

r for j � i.r/ and to 0 for j < i.r/. Consequently,
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P j .
P

r nr�r /D P j .
P

r W i.r/�j nr�r / corresponds precisely to
P�j

rD1
n

j
r �

j
r D zj for

all j . Thus, P j .
P

r nr�r /D xj for all j , which implies x DPr nr�r , as claimed.

This completes the proof for q > 1. The straightforward adjustments necessary to
prove the case q D 1 will be left to the reader.

6 Equality of Hk.X I G / and H k.X I G /

Let X be a noncompact smooth manifold without boundary. As is well-known in
homological algebra (see eg Milnor [43]), we have the short exact sequence

(19) 0! lim
i

1 H k�1.Mi IG/!H k.X IG/! lim
i

H k.Mi IG/DHk.X IG/! 0:

Here, lim1 denotes the first (right) derived functor of the inverse limit. For inverse
limits of abelian groups, it can be described as follows. If � � � �!A3

p3�!A2

p2�!A1

is an inverse sequence of abelian groups, also called a tower of abelian groups, then
the collection of the “bonding” morphisms pi W Ai !Ai�1 gives rise to a morphism
P W Q1iD1 Ai !

Q1
iD1 Ai . The kernel of 1�P is the inverse limit limi Ai , and the

cokernel can be taken as the definition of limi
1 Ai .

We discuss two particular cases.

If fAig is a tower of finite-dimensional vector spaces over some field, then lim1 Ai

is trivial (see Weibel [52, Exercise 3.5.2]). Thus if G is a field, limi
1 H k�1.Mi IG/

vanishes and H k.X IG/!Hk.X IG/ is an isomorphism.

If fAig is a tower of finitely generated abelian groups, then limi
1 Ai is a divisible

abelian group of the form Ext.B;Z/ where B is a countable torsion-free abelian group.
It follows that if nontrivial, it is uncountable. See Jensen [38, Théorème 2.7] for a more
precise description; we deal here with the case of our interest where Ai DH k.Mi IZ/.
First we need a lemma.

Lemma 6.1 Let 0! fAig ! fBig ! fCig ! 0 be a short exact sequence of towers
of abelian groups. Then there is a natural six-term exact sequence

0! lim
i

Ai! lim
i

Bi! lim
i

Ci! lim
i

1 Ai! lim
i

1 Bi! lim
i

1 Ci! 0:

The proof is an easy consequence of the above definition of lim1 and the snake lemma.

Proposition 6.2 Let fMig be an exhaustion of X and let T denote the torsion sub-
group of Hk�1.X /. Then limi

1 H k�1.Mi IZ/ is isomorphic to Ext.Hk�1.X /=T;Z/.
Hence if Ext.Hk�1.X /=T;Z/D0, then the natural morphism H k.X IZ/!Hk.X IZ/
is an isomorphism.
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Proof Universal coefficients yield a short exact sequence of towers

0! fExt.Hk�2Mi ;Z/ j ig ! fH k�1.Mi IZ/ j ig ! fHom.Hk�1Mi ;Z/ j ig ! 0:

As fExt.Hk�2Mi ;Z/g is a tower of finite groups, Lemma 6.1 and Jensen [38, Propo-
sition 2.3] yield an isomorphism limi

1 H k�1.Mi IZ/Š limi
1 Hom.Hk�1Mi ;Z/.

Set Ti D T .Hk�1Mi/ and note that Hom.Hk�1Mi ;Z/ is naturally isomorphic to
Hom.Hk�1Mi=Ti ;Z/. As Hk�1Mi=Ti is free, the group limi

1 Hom.Hk�1Mi ;Z/
is isomorphic to Ext.colimi.Hk�1Mi=Ti/;Z/ (see [38, page 16]). In turn, we have
that colimi.Hk�1Mi=Ti/ is isomorphic to Hk�1X=T , where T D T .Hk�1X /.

The following immediate corollary to Proposition 6.2 is an addendum to Theorem 1.4
in Section 1.

Corollary 6.3 Let X be an n–dimensional q–complete manifold with nCq�1D 2k

even. Denote by T the torsion subgroup of HnCq�2.X /. If Ext .HnCq�2.X /=T;Z/D
0, then Theorem 1.4 applies to every cohomology class in H nCq�1.X IZ/. This holds
in particular if HnCq�2.X IZ/ is the direct sum of a free abelian group and a torsion
abelian group; for instance, if it is finitely generated.

7 Examples

In this section we give a few examples which illustrate the scope of our results.

Recall that, if X is a complex manifold of dimension n and �W X !R is a smooth
exhaustion function which is q–convex on the set X�>c for some c 2R, then any com-
pact complex subvariety A of X of dimension dim A� q is contained in the sublevel
set X��c . This is an easy consequence of the maximum principle for plurisubharmonic
functions. In particular, a q–complete manifold does not contain any compact complex
subvarieties of dimension � q ; this bound is sharp, as shown by the following example.

Example 2 The manifold X DCPn nCPn�q is q–complete for any pair of integers
1 � q � n. More generally, if A � CPn is a closed projective manifold of complex
codimension q , then X D CPn nA is q–convex, and is q–complete if A is a com-
plete intersection. (See Barth [7] and Peternell [45].) Such a manifold X contains
homologically nontrivial compact complex submanifolds of any dimension from 1 up
to q � 1 (for example, projective linear subspaces avoiding A), but every compact
complex subvariety of dimension � q in CPn intersects A by Bezout’s theorem.

We begin with an example showing that, in some cases, top-dimensional cohomology
classes may be represented both by compact and also by noncompact analytic cycles.
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Example 3 Assume that X n is a q–complete manifold for some q > 1. A compact
complex submanifold C � X of complex dimension p 2 f1; : : : ; q � 1g represents
a homology class ŒC � 2 H2p.X;Z/, and hence, by Poincaré–Lefschetz duality, a
cohomology class u 2 H 2n�2p.X IZ/. If 2p D n � q C 1 then, by Theorem 1.4,
the class u is also represented by an analytic cycle consisting of noncompact closed
p–dimensional subvarieties of X . The equality 2p D n � q C 1 holds for some
p2f1; : : : ; q�1g if and only if n and q are of different parity and 2�n�qC1�2q�2;
equivalently,

(20) 3� qC 1� n� 3q� 3; p D .n� qC 1/=2:

For any triple of integers .n;p; q/ satisfying (20) we get a nontrivial example by taking
X D CPn nCPn�q and C Š CPp � X . In this case the class ŒC � 2 H2p.X;Z/ Š
H2p.CPn;Z/Š Z is a generator of the corresponding homology group.

We now focus on examples where the Hodge representation of top-dimensional cohomol-
ogy classes by compact analytic cycles is impossible, but our results give representation
by noncompact analytic cycles.

Example 4 Let A�CPn be a smooth complete intersection defined by q independent
holomorphic equations; then X DCPnnA is q–complete (see Example 2). Assume that
nCq�1 is even. By Theorem 1.4 and Remark 1.5 every element of H nCq�1.X IZ/ can
be represented by a noncompact analytic cycle of complex dimension pD .n�qC1/=2.
However, if p � q then a nonzero element of H nCq�1.X IZ/ can not be represented
by a compact analytic p–cycle since every such cycle intersects A in view of Bezout’s
theorem (or by observing that a q–complete manifold does not contain any compact
complex subvarieties of dimension � q ). The inequality p � q is equivalent to
nC 1� 3q . The lowest dimensional non-Stein example arises when p D q D 2 and
n D 5; in this case X D CP5 nA, where A is a 3–fold defined by 2 independent
equations. By the above argument any nonzero element of H 6.X IZ/ is analytic
(represented by a complex 2–cycle), but it can not be represented by a compact cycle.

With X as in Example 4, the top-dimensional cohomology group H nCq�1.X IZ/ can
be quite big and it can contain torsion as shown by the following proposition.

Proposition 7.1 Let A�CPn be a smooth complete intersection of codimension q

and set X DCPn nA. Assume that m WD dim AD n� q � 1 is odd. Then

H nCq�1.X IZ/D Zd ˚Zˇm ;

where d is the degree of A and ˇm DmC 1��.A/ is the mth Betti number of A.
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The Euler characteristic �.A/ can be computed easily from the multidegree of A by
the Hirzebruch formula. For example, if A is the intersection of two quintics in CP5

then its third Betti number is 4504, so we have H 6.CP5 nA/Š Z25˚Z4504 .

Proof We omit the coefficient group Z in the calculations. Poincaré–Lefschetz duality
gives H nCq�1.X /DHn�qC1.CPn;A/DHmC1.CPn;A/. The latter group can be
computed from the exact homology sequence of the pair i W A ,!CPn ,

HmC1.A/
i��!HmC1.CPn/ �!HmC1.CPn;A/

@�!Hm.A/ �!Hm.CPn/:

Since m is odd, we have HmC1.CPn/ D Z and Hm.CPn/ D 0. The Lefschetz
hyperplane theorem yields (abstract) isomorphisms H k.AIZ/ Š H k.CPnIZ/ for
k ¤m, k � 2m. In our case, with k DmC1 even, both groups equal Z and the map
Z i��!Z is multiplication by d . Moreover, H m.AIZ/ is also free, H m.AIZ/DZˇm .
The result follows from the short exact sequence

0! Zd !HmC1.CPn;A/! Zˇm ! 0:

Remark 7.2 It may be interesting to observe that the free part of H nCq�1.X IZ/ in
Proposition 7.1 is not representable by compact cycles, even smoothly. To see this,
let Z be an oriented closed smooth submanifold of X of dimension n� qC 1. By
compactness, there is a smooth tubular neighborhood W of Z in CPn that is contained
in X . The cohomology class dual to Z is the image of the Thom class of the normal
bundle under the composite

H nCq�1.W;W nZIZ/ excision ����H nCq�1.X;X nZIZ/ restriction������!H nCq�1.X IZ/:
But a class in H nCq�1.X;X nZIZ/ excises back to one in H nCq�1.CPn;CPn n
ZIZ/ and therefore the restriction morphism H nCq�1.X;XnZIZ/!H nCq�1.X IZ/
factors through H nCq�1.CPnIZ/! H nCq�1.X IZ/. It follows from the proof of
Proposition 7.1 and duality (see [31, page 55]) that the image of the latter is precisely the
torsion subgroup of H nCq�1.X IZ/, and misses elements of infinite order completely.

The following example was provided by a referee, for which we are most grateful.

Example 5 Let p and d be natural numbers such that p is relatively prime to 6

and d is divisible by p3 . Assume that Y is a very general smooth hypersurface of
degree d in CP4 . Kollár (see [6, Lemma, page 134] and also [48]) has shown that
any algebraic curve C � Y has degree divisible by p , from which it follows that the
generator ˛ of H 4.Y IZ/ Š Z is not algebraic (and hence not analytic by GAGA).
However, the multiple d˛ is algebraic.
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Let P be a generic 2–plane and let C be the intersection of Y and P ; the degree
of C equals d (hence C renders d˛ algebraic). The complement X D Y nC is a
closed submanifold of the 2–complete manifold CP4nP and as such also 2–complete;
H 4.X IZ/ is the top nontrivial cohomology group.

As in the proof of Proposition 7.1, we have H 4.X IZ/DH 4.Y nC IZ/ŠH2.Y;C IZ/
by duality, and the homology exact sequence of the pair .Y;C / yields H 4.X IZ/Š
Zd ˚Zˇ1 , where ˇ1 is the first Betti number of C ; the inclusion-induced morphism
H2.C IZ/!H2.Y IZ/ corresponds to multiplication by d on Z.

Now by Theorem 1.4, every element of H 4.X IZ/ is analytic and can be represented
by a 1–dimensional cycle consisting of proper holomorphic discs in X whose boundary
cluster sets lie on C . However, the generator of the torsion subgroup Zd of H 4.X IZ/
is not represented by a compact algebraic cycle. Namely, in Y that cycle would be
homologous to a .1Ckd/–multiple of the generator of H2.Y IZ/ (for some integer k )
by virtue of the exact sequence H2.C IZ/!H2.Y IZ/!H2.Y;C IZ/; a contradiction
since every closed curve in Y has degree divisible by p .

We thus have an example of a quasi-projective threefold with a torsion cohomology
class which is analytic but not algebraic. Unlike in Example 4, the obstruction can not
be explained by dimension reasons since a generic closed curve in Y avoids C .

In this connection we mention the Griffiths–Harris conjecture [32], which predicts
that for a general hypersurface Y of degree d � 6 in CP4 , the degree of every curve
in Y is divisible by d . If this holds then in the above example no torsion element
of H 4.Y n C IZ/ can be represented compactly. On the other hand, one sees as in
Remark 7.2 that elements of infinite order are not representable by compact cycles
even smoothly.

We conclude by considering a couple of examples of the form X D Y �CP1 with Y

Stein, so X is 2–complete. Let Y denote the Stein surface

(21) Y D ˚Œz0 W z1 W z2� 2CP2 W z2
0 C z2

1 C z2
2 ¤ 0

	
:

For k 2N let Y k denote the k th Cartesian power of Y ; thus Y k is a Stein manifold of
complex dimension 2k . For every pair of integers 1� j � k , the Chern class cj .Y

k/2
H 2j .Y k IZ/ is the nonzero element of the group H 2j .Y k IZ/Š Z2 (cf Forster [22,
Proposition 3]). In particular, c1.Y /¤ 0 and the higher Chern classes of Y vanish.
(Compare with Example 1.)

Example 6 Consider the 3–manifold X D Y � CP1 , where Y is given by (21).
Clearly X is 2–complete and has finite topology. The Künneth theorem yields

H 4.X IZ/ŠH 2.Y IZ/˝H 2.CP1IZ/Š Z2:
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384 Franc Forstnerič, Jaka Smrekar and Alexandre Sukhov

The group H 4.X IZ/ is generated by the cohomological cross product c1.Y / � � ,
where � 2 H 2.CP1IZ/ is the first Chern class of the tautological line bundle. By
Theorem 1.4 and Remark 1.5, the nonzero element of H 4.X IZ/ can be represented
by a noncompact analytic 1–cycle. However, it can not be represented by a compact
analytic 1–cycle. Indeed, every compact analytic 1–cycle in X equals

P
j fyj g�CP1

for some yj 2Y , and is homologous to a multiple of fy0g�CP1DWZ for any y0 2Y .
It is easily seen by standard arguments that the cohomology class in H 4.X IZ/ dual
to Z (in the sense of Section 5) is trivial.

Example 7 Let Y be the surface in (21) and set X D Y 2 � CP1 . We have that
nD dim X D 5, qD 2 (ie X is 2–complete), and nCq�1D 6. The Künneth theorem
yields

H 6.X IZ/ŠH 2.Y IZ/˝H 2.Y IZ/˝H 2.CP1IZ/Š Z2:

It is generated by the cross product c1.Y /� c1.Y /� � , where � 2H 2.CP1IZ/ is the
first Chern class of the tautological line bundle. By Theorem 1.4 and Remark 1.5, the
nonzero element of H 6.X IZ/ can be represented by a noncompact analytic 2–cycle
in X . However, since X is 2–complete, it does not admit any compact analytic
2–cycles.

Similar results hold for the manifolds Xk;mDY k�CPm for higher values of k;m2N .
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[20] B Drinovec-Drnovšek, F Forstnerič, Approximation of holomorphic mappings on
strongly pseudoconvex domains, Forum Math. 20 (2008) 817–840 MR2445119
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