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Hyperbolic structures from Sol
on pseudo-Anosov mapping tori

KENJI KOZAI

The invariant measured foliations of a pseudo-Anosov homeomorphism induce a
natural (singular) Sol structure on mapping tori of surfaces with pseudo-Anosov
monodromy. We show that when the pseudo-Anosov �W S ! S has orientable
foliations and does not have 1 as an eigenvalue of the induced cohomology action on
the closed surface, then the Sol structure can be deformed to nearby cone hyperbolic
structures, in the sense of projective structures. The cone angles can be chosen to be
decreasing from multiples of 2� .

57M50; 57R20, 55N25

1 Introduction

Let S D Sg;n be a surface of genus g with n punctures such that 2gC n> 2. Given
a homeomorphism �W S ! S , we can define the mapping torus

M� D
S � Œ0; 1�

.x; 1/� .�.x/; 0/
:

Thurston’s hyperbolization theorem [22] states that M� is hyperbolic if and only
if � is pseudo-Anosov. A pseudo-Anosov homeomorphism �W S ! S has two
transverse (possibly singular) foliations Fs and Fu with transverse measures �s

and �u , respectively, and a constant � > 1 such that � preserves Fs and Fu and
scales the measures by ��1 and �. When S is not closed, the map � induces a
pseudo-Anosov map on the closed surface xS of genus g , where the n punctures have
been filled in. We will also call this map �W xS ! xS .

The measured foliations .Fs; �s/ and .Fu; �u/ endow S with a singular Euclidean
metric. The corresponding suspension flow �t on M� , expanding the leaves of Fu

by a factor of et and contracting the leaves of Fs by e�t , has period log�, so that
�log� D � . One model for Sol geometry is to take R3 with the metric

ds2
D e2zdx2

C e�2zdy2
C dz2;
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so the suspension flow can be viewed as an isometry of Sol translating the surface S

in the z direction. The identification .x;y; zC log�/ � .�.x;y/; z/ then defines a
singular Sol structure on M� , with singular locus † given by the orbits of the singular
points and punctures of Fs and Fu .

In the case where S is a punctured torus, Hodgson [14] studied how to deform
representations of �1.M�/ near a representation corresponding to a projection of the
Sol structure. Sol space contains embedded hyperbolic planes, and the representations
studied in [14] correspond to projecting the 3–manifold onto a hyperbolic plane inside
Sol, resulting in a reducible representation that gives M� the structure of a transversely
hyperbolic foliation (recall that a representation �W �1.M�/!PSL.2;C/ is irreducible
if the only subspaces of C2 that are invariant under � are trivial). Further results about
deforming reducible representations to irreducible representations can be found in
Frohman and Klassen [8], Heusener and Kroll [10] and Abdelghani and Lines [2].
Heusener, Porti and Suárez [12] have also shown that hyperbolic structures can be
regenerated from Sol, constructing a path of nearby hyperbolic structures that collapse
onto a circle, and rescaling the metric as it collapses to obtain the Sol metric on M� .

In the case where S is not the punctured torus, such a regeneration theorem is not
known. In this paper, we utilize half-pipe (HP) geometry, studied by Danciger [4], to
regenerate hyperbolic structures in a more general setting. In particular, we will prove
the following result.

Theorem 6.3 Let �W S ! S be a pseudo-Anosov homeomorphism whose stable and
unstable foliations, Fs and Fu , are orientable and ��W H 1. xS/! H 1. xS/ does not
have 1 as an eigenvalue. Then there exists a family of singular hyperbolic structures
on M� , smooth on the complement of † and with cone singularities along †, that
degenerate to a transversely hyperbolic foliation. Furthermore, the Sol structure on
M� is obtained as a rescaled limit, as projective structures, of the path of degenerating
structures. Moreover, the cone angles can be chosen to be decreasing.

The proof of Theorem 6.3 uses HP structures as an intermediate. We find a family of HP
structures that collapse, such that rescaling the collapse in an appropriate manner yields
Sol. The HP structures involved are built from a representation �0W �1.M� n†/!

PSL.2;C/ arising from projecting the 3–dimensional Sol space to one of its embedded
hyperbolic planes, along with a first-order deformation of the representation. The
following result of Danciger is an application of the Ehresmann–Thurston principle:

Theorem [4, Proposition 3.6] Let M0 be a compact n–manifold with boundary
and let M be a thickening of M0 so that M nM0 is a collar neighborhood of @M0 .
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Suppose M has an HP structure defined by the developing map DHP , and holonomy
representation �HP . Let X be either Hn or AdSn and let �t W �1.M0/! Isom.X / be
a family of representations compatible to first order at time t D 0 with �HP . Then we
can construct a family of X–structures on M0 with holonomy �t for short time.

As noted in [4], given an HP structure, the regeneration of a hyperbolic structure only
requires that it exists on the level of representations. In Theorem 6.3, the conditions
that the invariant foliations Fs and Fu are orientable and that �� does not have 1 as
an eigenvalue guarantee smoothness of the representation variety at �0 , so we can find
a nearby family of representations �t . We also do a simple computation to generalize
Danciger’s notion of infinitesimal cone angle to multiple components. This allows us
to adapt the HP machinery to show that there are singular hyperbolic structures near
the HP structures, which give the Sol structure as a rescaled limit. We will then show
that the singular locus can be controlled so that the family of H3 structures are cone
manifolds.

Outline In Section 2, we present an overview of geometric structures and infinitesimal
deformations. Section 3 describes the collapsed structure as a metabelian representation
and establishes the notation used in the following section. Section 4 proves smoothness
of the representation variety at the metabelian representation, which is used in Section 5
to show that we can find nearby 3–dimensional hyperbolic structures via HP geometry.
Section 6 analyzes the behavior of the singular locus to show that the singularities can
be realized as cone singularities, providing the final step to Theorem 6.3.

Acknowledgments The author would like to thank Steven Kerckhoff for advising
much of this work at Stanford University and Jeffrey Danciger for many useful con-
versations about HP structures. The author would also like to thank the reviewer for
helpful comments and references.

2 Background

Let X be a manifold and G be a group of analytic diffeomorphisms of X . We will study
geometric structures on a manifold M through the framework of .X;G/–structures
described by Ehresmann [5] and Thurston [21].

2.1 .X; G /–structures

An .X;G/–structure on a manifold M is a collection of charts f ˛W U˛!X g, where
the fU˛g are an open cover of M and the transition maps  ˛ �1

ˇ
are restrictions of

elements g˛ˇ 2G .
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In the context of this paper, we will take X to be (a subset of) RP3 and G to be (a
subgroup of) PGL.4;R/, with H3 and Sol being described as projective structures.
An .X;G/–structure on M defines a developing map DW zM !X that is equivariant
under the holonomy representation �W �1.M /!X .

A smooth family of .X;G/–structures on a manifold M can be described by a fam-
ily of developing maps Dt W

zM ! X and corresponding holonomy representations
�t W �1.M /!G . Two families of .X;G/–structures Dt and Ft such that D0 D F0

are equivalent if there exists a smooth family gt of elements in G and a smooth
family of diffeomorphisms �t defined on all but a neighborhood of @M such that
Dt D gt ıFt ı

z�t , where z�t is the lift of �t , g0 D 1 and z�0 is the identity. Such
a deformation Dt is trivial if D0 is equivalent to the family of structures Ft DD0 .
In this case, the holonomy representations also differ by conjugation by a smooth
family gt , ie �t D gt�0g�1

t .

We will study deformations of geometric structures through their representations. Let
R.�1.M /;G/DHom.�1.M /;G/ be the variety of representations of �1.M / into G ,
X .�1.M /;G/ D R.�1.M /;G/==G be the character variety, where the quotient is
the GIT quotient as G acts by conjugation, and let D.M; .X;G// be the space of
.X;G/–structures on M up to the equivalence defined. The Ehresmann–Thurston
principle states that, locally, deformations of geometric structures can be studied by
their holonomy representations (see [9] for a proof of the theorem).

Theorem (Ehresmann–Thurston principle) Let X be a manifold upon which a Lie
group G acts transitively. Let M have a .X;G/–structure with holonomy represen-
tation �W �1.M / ! G . For �0 sufficiently near � in the space of representations
Hom.�1.M /;G/, there exists a nearby .X;G/–structure on M with holonomy repre-
sentation �0 .

Given a smooth family of representations �t W �1.M /!G , we can study the infinites-
imal change in �t at �0 , as in [14]. The derivative of the homomorphism condition
�t .ab/D �t .a/�t .b/ yields

�0t .ab/D �0t .a/�t .b/C �t .a/�
0
t .b/:

In order to normalize the derivative, we multiply on the right by �t .ab/�1 to translate
back to the identity element to obtain

�0t .ab/�t .ab/�1
D �0t .a/�t .a/

�1
C �t .a/�

0
t .b/�t .b/

�1�t .a/
�1:

The second term is defined to be

Ad�t .a/.�
0
t .b/�t .b/

�1/D �t .a/�
0
t .b/�t .b/

�1�t .a/
�1:
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The Lie algebra of G , denoted by g, turns into a �1.M /–module, with �1.M / acting
via Ad�0

. Then a cocycle of �1.M / with coefficients in g twisted by Ad�0
is defined as

a map zW �1.M /! g, where z. /D �0. /�0. /
�1 and �0 is the derivative evaluated

at t D 0, such that the map z satisfies the cocycle condition

(1) z.ab/D z.a/CAd�0.a/ z.b/:

The group of all maps satisfying the condition (1) is defined to be Z1.�1.M /; gAd�0
/.

Differentiating the triviality condition for representations �t D gt�0g�1
t yields the

coboundary condition

(2) z. /D u�Ad�0. / u

for some u 2 g. The set of cocycles satisfying (2) is defined to be B1.�1.M /; gAd�0
/,

the set of coboundaries of �1.M / with coefficients in g twisted by Ad�0
. Weil [23;

16] has noted that Z1.�1.M /; gAd�0
/ contains the tangent space to R.�1.M /;G/

at �0 as a subspace. Provided that we can show that the representation variety at �0 is
smooth, we can study the space of cocycles to determine the first-order behavior of
deformations of a representation �0 .

2.2 Hyperbolic geometry

The hyperboloid model for H3 is described as a subspace of R1;3 . Topologically,
R1;3 is the space R4 , but it is endowed with the Lorentzian metric

ds2
D�dx2

1 C dx2
2 C dx2

3 C dx2
4 :

The hyperboloid model for hyperbolic 3–space is

H3
D fEx D .x1;x2;x3;x4/ 2R1;3

W kExk D �1;x1 > 0g;

with the metric induced by ds . The isometry group of H3 in the hyperboloid model is
the identity component SOC.1; 3/ of SO.1; 3/. Each point in the hyperboloid model
intersects exactly one line through the origin in R1;3 . Hence, we can also identify the
hyperboloid with a subset of RP3 , given by

H3
D fŒEx�D Œx1;x2;x3;x4� 2RP3

W kExk< 0g:

There is a well-known method for taking an isometry of H3 from the upper half-
space model (ie an element A 2 PSL.2;C/) to the corresponding isometry in the
hyperboloid model (see for instance [1, page 66]). First, a point .x1;x2;x3;x4/ from
the hyperboloid model is identified with the matrix

P .x1;x2;x3;x4/D

�
x1Cx2 x3C ix4

x3� ix4 x1�x2

�
:
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Then A acts on the point .x1;x2;x3;x4/ by

AP .x1;x2;x3;x4/A
�;

where A� denotes the Hermitian transpose of A. This operation preserves det P D

x2
1
� x2

2
� x2

3
� x2

4
, so it sends points of the hyperboloid in R1;3 to points of the

hyperboloid. The corresponding isometry in the hyperboloid model is the element
A0 2 SO.1; 3/ so that

AP .x1;x2;x3;x4/A
�
D P .A0.x1;x2;x3;x4//:

2.3 Sol geometry

Topologically, Sol is R3 , with the metric ds2 D e2zdx2C e�2zdy2C dz2 . In this
model for Sol, one can see that by restricting to any plane x D constant, we obtain a
2–dimensional space that is isometric to the hyperbolic plane via the upper half-plane
model. Restricting to the plane y D constant also yields a space isometric to the
hyperbolic plane as the lower half-plane model.

Sol also has an embedding into RP3 given by

.x;y; z/ 7! Œcosh z; sinh z; ezx; e�zy�:

The image of this map gives Sol as the subspace

SolD fŒx1;x2;x3;x4� 2RP3
W �x2

1 Cx2
2 < 0g:

The group PGL.4/ contains the identity component of the isometry group of Sol inside
RP3 as elements of the form2664

cosh c sinh c 0 0

sinh c cosh c 0 0

aec aec 1 0

be�c �be�c 0 1

3775 ;
where a; b; c 2R. Other components can be found by multiplying the diagonal 2� 2

blocks by ˙1 or the upper left 2 � 2 block by
�

0
1

1
0

�
. A further treatment of Sol

geometry can be found in [3].

2.4 HP geometry

There are also multiple copies of H3 lying inside R4 . For each s > 0, we can take the
hyperboloid

H3
s D fEx D .x1;x2;x3;x4/ W �x2

1 Cx2
2 Cx2

3 C s2x2
4 D�1;x1 > 0g;
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and the subgroup Gs of PGL.4;R/ preserving the form

�x2
1 Cx2

2 Cx2
3 C s2x2

4 ;

to obtain a space isometric to H3 . The isometry to the usual hyperboloid model of H3

is given by the rescaling map

rs D

2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 s�1

3775 :
Geometrically, we can think of the family of hyperboloids H3

s as flattening out to
H2 �R in R4 . Taking the limit as s! 0 yields a model for half-pipe geometry.

Danciger [4] studied degenerations of singular hyperbolic structures using the projective
models. An appropriate rescaling of the degeneration yields half-pipe (HP) geometry,
a transition geometry between hyperbolic geometry and anti-de Sitter (AdS) geometry.

Three-dimensional HP geometry HP3 , topologically, is R3 . In terms of representations,
it can be described as a rescaling of the collapse of the structure group from SO.1; 3/
to SO.1; 2/. Begin with a representation �1 of �1.M / into SO.1; 3/, and describe
the collapse of the manifold in the x4 coordinate by a family of representations �t , so
that we end with a representation �0 into SO.1; 2/� SO.1; 3/ of matrices of the form

�0. /D

�
A 2 SO.1; 2/ 0

0 1

�
:

Conjugate the path of representations �t degenerating in this matter by

r.t/D

2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 t�1

3775
and take the limit as t ! 0. This will yield a representation �HP whose image lies in
the set of matrices of SO.1; 3/ of the form

(3) lim
t!0

r.t/�t . /r.t/
�1
D

�
A 2 SO.1; 2/ 0

EvT 1

�
D �HP. /;

where EvT is the transpose of a vector in R3 . The vector Ev can be interpreted as an
infinitesimal deformation of A into SO.1; 3/. A path of representations �t satisfying (3)
is said to be compatible to first order with �HP . The map r.t/ takes the standard copy
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of H3 inside R1;3 to the isometric copy H3
t . As we take the limit t ! 0, we obtain

HP3 as

HP3
D lim

t!0
H3

t D f.x1;x2;x3;x4/ W �x2
1 Cx2

2 Cx2
3 D�1;x1 > 0g:

As a subset of RP3 , we can think of HP3 as

HP3
D fŒx1;x2;x3;x4� W �x2

1 Cx2
2 Cx2

3 < 0g:

The structure group GHP is the set of matrices of the form in (3).

A concrete description of Ev can be found by generalizing the isomorphism SO.1; 3/Š
PSL.2;C/. Let �s be a non-zero element such that �2

s D�s2 , and define an algebra
Bs DRCR�s generated over R by 1 and �s . Furthermore, define a conjugation by

aC b�s 7! aC b�s D a� b�s:

Then let A� be the conjugate transpose of A.

We can define a map Ps DH3
s �R1;3! Herm.2;Bs/ by

Ps.x1;x2;x3;x4/D

�
x1Cx2 x3C �sx4

x3� �sx4 x1�x2

�
;

where Herm.2;Bs/ is the set of 2� 2 matrices with entries in Bs such that ADA� .
Then define the map PSL.2;Bs/!Gs by A 7!A0 , where A0 is the matrix that satisfies

APs.x1;x2;x3;x4/A
�
D P .A0.x1;x2;x3;x4//:

When s D 1, this is the usual isometry from PSL.2;C/ to SO.1; 3/. Danciger proved
the following:

Theorem [4, Propositions 4.15 and 4.19] For s > 0, the map PSL.2;Bs/! Gs is
an isomorphism. When s D 0, the map PSL.2;B0/!G0 is an isomorphism onto the
group of HP matrices.

Moreover, in the case sD 0, we obtain a geometric interpretation for the vector Ev in (3).
If we have a matrix in PSL.2;B0/, we can write it as ACB�0 , where A is symmetric
and B is skew-symmetric. Similarly, we can write P0.x1;x2;x3;x4/ D X C Y�0 ,
where

X D

�
x1Cx2 x3

x3 x1�x2

�
and Y D

�
0 x4

�x4 0

�
:

Then

.ACB�0/.X CY�0/.ACB�0/
�
DAXAT

C .BXAT
�AXBT

CAYAT /�0:
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In the map PSL.2;B0/! G0 , the symmetric part AXAT determines the first three
rows of the HP matrix, and the skew-symmetric part .BXAT �AXBT CAYAT /

determines the bottom row of the HP matrix.

Lemma [4, Lemma 4.20] Let ACB� have determinant ˙1. Then

det AD det.ACB�/D˙1 and tr BA�1
D 0:

In other words, B is in the tangent space at A of matrices of constant determinant ˙1.

Hence, when mapped into RP3 , the symmetric part is the usual map PSL.2;R/!
SO.1; 2/, and the bottom row of an HP matrix comes from the skew-symmetric part.
The vector Ev in the HP matrix of (3) is an infinitesimal deformation of the SO.1; 2/
matrix from the collapsed structure.

The key result about HP structures is that we can recover hyperbolic structures from
them [4, Proposition 3.6]. Thus, if we can find an HP structure for M� and construct a
transition at the level of representations, then we can deform it to nearby hyperbolic
and AdS structures.

3 The metabelian representation

Let �W S!S be a pseudo-Anosov homeomorphism with orientable invariant foliations
Fs;Fu with singular set � D fs0; s1; : : : ; sng and transverse measures �s and �u .
If S has a puncture p0 , then we can fill in the puncture by taking xS D S [ fp0g.
Either the measured foliations extend smoothly to p0 , or p0 is a singular point of the
foliation. In either case, we simply include p0 in the set � , so we can simplify our
analysis to the case where S is closed. The orientability assumption gives us some
control over the eigenvalues of ��W H 1.S/!H 1.S/. It also implies that the cone
angles at the singular points in the singular Euclidean metric induced by the measured
foliations are multiples of 2� — in particular, they are larger than 2� .

The following is a basic result about the eigenvalues of a pseudo-Anosov map; see [7;
17; 19].

Lemma 3.1 (cf McMullen [17, Theorem 5.3]) Let � be a pseudo-Anosov homeo-
morphism with dilatation factor �. Suppose also that � has orientable unstable and
stable foliations Fu and Fs . Then � and ��1 are simple eigenvalues of �� .

Proof If Fu and Fs are orientable then their transverse measures �u; �s represent
cohomology classes !˙ 2H 1.S/. The fact that � scales the invariant measures by
�˙1 implies that ��.!˙/D �˙1!˙ , so that �˙1 are eigenvalues of �� .
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Let ! 2H 1.S/ be any cohomology class dual to a simple closed curve  . Since � is
pseudo-Anosov, �˙n. / limits to either Fu or Fs . In particular,

(4)
.��/˙n!

�˙n
! c!˙

for some c ¤ 0. Since the classes ! dual to simple closed curves span H 1.S/, the
eigenspaces for �˙1 are 1–dimensional. In fact, �˙1 must be simple eigenvalues by
considering the Jordan canonical form. If there existed a generalized eigenvector !
such that ��! D !˙C �˙1! , we would have .��/˙n.!/D n�˙.n�1/!˙C �

˙n! ,
so that the condition in (4) is not satisfied.

In addition to � and ��1 being simple eigenvalues, we also have that the corre-
sponding eigenvectors come from the measures Fu and Fs . In particular, if we take
1; 2; : : : ; 2g to be a basis for H1.S/, then the eigenvector Ee� is given by

Ee� D .�u.1/; �u.2/; : : : ; �u.2g//
T ;

where the transverse measure �u is taken to be a signed measure, ie �u.� /D��u. /,
if � is the closed curve  taken with the orientation opposite to that of Fu . The
eigenvector corresponding to ��1 is given by

Ee��1 D .�s.1/; �s.2/; : : : ; �s.2g//
T :

Choose a disk D that contains all of the points in � , and fix a point on @D as the base
point for �1.S n �/. Let ı1; ı2; : : : ; ın be generators of �1.S n �/, so that each ıi
encircles exactly one singularity si , each ıi lies entirely inside D , and the product
ı1ı2 � � � ın is homotopic to the boundary @D .

Choose standard generators ˛1; ˛2; : : : ; ˛g and ˇ1; ˇ2; : : : ; ˇg of �1.S/ such that,
for each i , (curves representing) ˛i and ˇi do not intersect @D except at the basepoint
for �1 . We will also refer to these curves as

i D ˛i ; gCi D ˇi ; 2gCj D ıj :

When convenient, we will use ˛i ; ˇi , and ıj to refer to their respective homology
classes.

On the dual generators ˛�i ; ˇ
�
i ; ı
�
j of H 1.S n �/, the map �� has a block upper-

triangular action: the first block on the diagonal corresponds to the action on the closed
surface S , and the second block permutes the generators ı�

1
; : : : ; ı�n coming from the

curves around the singular points. Strictly speaking, this matrix is a square matrix with
dimensions one greater than the dimension of H 1.S n �/. There is one redundancy
in the generators from the relation

Pn
jD1 ıj D 0 in homology. However, using the
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additional generator from the singularities makes the lower right block for �� easier to
understand. When discussing H 1.S n �/ and �� in this section, we mean H 1.S n �/

with this additional generator and the action on H 1.S n�/ with the additional generator,
respectively.

Using these generators for �1.S n �/, we can present � D �1.N� D M� n†/ as
follows: � is generated by the ˛i ; ˇi ; ıj and � , subject to the relations

�˛i�
�1
D �.˛i/; �ˇi�

�1
D �.ˇi/; �ıj�

�1
Dwjıkjw

�1
j ;

gY
iD1

Œ˛i ; ˇi �D

nY
jD1

ıj ;

where the wj are words in the ˛i , ˇi and ıj .

We start with the metabelian representation �0W �! PSL.2;R/ with

�0.i/D

�
1 ai D �u.i/

0 1

�
;

where ai is the signed length of i in Fu . Note that ai D 0 for 2g < i � n. We
also set

�0.�/D

"p
� 0

0
p
�
�1

#
;

where � is the generator in the S1 direction of M� , and � is the pseudo-Anosov
dilatation factor of � . There is a singular Sol structure on M� coming from the
pseudo-Anosov action on Fu and Fs , where Fu and Fs provide a singular Euclidean
structure on the fibers of M� . Recall from Section 2.3 that Sol contains embedded
hyperbolic planes as “vertical” planes. In the singular Sol structure on M� , these can be
seen as products of a leaf of Fs with the S1 direction. The metabelian representation
�0 is a projection of the singular Sol structure along the leaves of Fu onto one of these
hyperbolic planes inside of Sol. Such a projection yields a transversely hyperbolic
foliation; locally, M� can be viewed as an open subset of H2�R, and the pseudometric
is given by the metric on the H2 factor and ignoring the second factor.

4 Smoothness of the representation variety

The goal is to deform �0 to a representation into PSL.2;C/, and to realize the rep-
resentation as the holonomy representation of an .H3;PSL.2;C//–structure on N .
We consider �0 2 R.�1.N�/;PSL.2;R// as the metabelian representation from the
previous section. We begin by computing the dimension of the space of classes of
twisted cocycles z 2H 1.�1.N�/; sl.2;C/Ad�0

/.
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Theorem 4.1 Let � be pseudo-Anosov with stable and unstable foliations which are
orientable. Suppose also that ��W H 1.S/!H 1.S/ does not have 1 as an eigenvalue.
Then dim H 1.�; sl.2;C/Ad�0

/ D k , where k is the number of components of the
boundary of N� .

Proof Let z 2 Z1.�1.N�/; sl.2;C/Ad�0
/. Then z is determined by its values on

1; : : : ; 2gCn , and � , subject to the cocycle condition (1) imposed by the relations
in � . These can be computed via the Fox calculus [16, Chapter 3]. Differentiating the
relations

�i�
�1
D �.i/

yields

(5)

@Œ�.i/�
�1
i ��1�

@i
D
@�.i/

@i
��.i/�

�1
i D

@�.i/

@i
� �;

@Œ�.i/�
�1
i ��1�

@j
D
@�.i/

@j
; i ¤ j ;

@Œ�.i/�
�1
i ��1�

@�
D �.i/��.i/�

�1
i ��1

D �.i/� 1:

Choosing the basis

e1 D

�
0 1

0 0

�
; e2 D

�
1 0

0 �1

�
; e3 D

�
0 0

1 0

�
for sl.2;C/, the values z.i/ can be expressed in coordinates .xi ;yi ; zi/, where z.i/

is the matrix

z.i/D

�
yi xi

zi �yi

�
;

and we similarly let z.�/ be given in the coordinates .x0;y0; z0/. We note that by
using the coboundary condition from (2) we can compute the set of coboundaries
B1.�1.N�/; sl.2;C/Ad�0

/ as the set of cocycles z0 satisfying

z0.i/D

�
�aiz 2aiyC a2

i z

0 aiz

�
and z0.�/D

�
0 x��x

z���1z 0

�
;

where x;y; z 2 C parametrize B1.�1.N�/; sl.2;C/Ad�0
/. In particular, adding the

appropriate coboundary z0 to z , we can set x0 D z0 D 0. To simplify the calculation
somewhat, we will assume that z.�/ has the form

z.�/D

�
y0 0

0 �y0

�
:
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We first note that if W is a word in the i , then �.W /D
�

1
0

A
1

�
for some real number A.

Then, under the chosen basis for sl.2;C/, Ad�0.W / acts by241 �2A �A2

0 1 A

0 0 1

35 :
We obtain one term from @�.i/=@j for each instance of j in �.i/ (with a negative
sign if �1

j appears), and each term is a word in the j .

Similarly, we can compute that Ad�0.�/ acts on sl.2;C/ via24� 0 0

0 1 0

0 0 ��1

35 :
We see that Z1.�1.N�/; sl.2;C/Ad�0

/ is determined, as in [13], by a subset of vectors
EvD .x1; : : : ;x2gCn;y0;y1; : : : ;y2gCn; z1; : : : ; z2gCn/

T such that REvD 0, where R

decomposes into blocks

RD

264 V����I �2�Ea K C

0 0 V���I D

0 0 0 V�����1I

375 ; where EaD

0B@ a1
:::

a2gCn

1CA :
Here the zeros represent block matrices of the appropriate sizes, and V��W H 1.S n�/!

H 1.S n�/ is the .2gCn/�.2gCn/ matrix describing the cohomology action induced
by � , which can be written as a block matrix�

�� �

0 P

�
;

where P D .pij / is a permutation matrix denoting the permutation of the singularities
in � by � . In particular, if �ıj��1 D wjıkjw

�1
j , then pjkj D 1. By Lemma 3.1,

����I and �����1I have 1–dimensional kernel. Furthermore, since �� does not
have 1 as an eigenvalue, the dimension of the kernel of V��� I is equal to the number
of disjoint cycles of the permutation of the punctures. But a cycle in the permutation
corresponds to a single boundary component of N� . Hence, the kernel of R has
dimension at most 2C kC 1, where the additional 1 comes from the .2gC nC 1/st

column of R, and

k D # of components of †D # of components of @N:
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Now consider the upper left portion of the matrix R, which we will call U :

U D

"
V����I �2�Ea K

0 0 V���I

#
:

If null.R/ > 2C k , then we must have that null.U / > kC 1.

Since � is a simple eigenvalue of �� and .a1; : : : ; a2g/
T is a corresponding eigenvector

for �, .a1; : : : ; a2g/
T is not in the image of ����I . Hence, for any Ey in the kernel

of ��� I , there is a unique y0 such that K Ey �y0.a1; : : : ; a2g/
T is in the image of

����I . Therefore null.U /D kC 1

Hence null.R/D 2C k . However, the solution arising from the kernel of V����I is
the eigenvector

Ev D .a1; : : : ; a2gCn; 0; : : : ; 0; 0; : : : ; 0/
T ;

which is a coboundary. So we have that dim H 1.�; sl.2;R/Ad�0
/ � k C 1. Finally,

there is one further redundancy since
gY

iD1

Œ˛i ; ˇi �D

nY
jD1

ıj :

From the V�� � I block, we can see that y2gC1; : : : ;y2gCn can be freely chosen
as long as y2gCj D y2gCkj whenever �ıj��1 D wjıkjw

�1
j . Hence, the upper left

(D lower right) entry of z
�Qn

jD1 ıj
�

can be freely chosen to be any quantity

(6) y2gC1Cy2gC2C : : :y2gCn:

The relation
Qg

iD1
Œ˛i ; ˇi � D

Qn
jD1 ıj forces the sum in (6) to be a fixed quantity

coming from the upper left entry of
Qg

iD1
Œ˛i ; ˇi �, which has no dependence on y2gCj ,

for 1� j � n.

Therefore, the relation drops the dimension of the space of cocycles by 1, and

dim H 1.�; sl.2;C/Ad�0
/D k:

In order to show that R.�1.N�/;PSL.2;C// is smooth at �0 , following [13; 11] we
define a formal deformation of �W �1.M /! PSL.2;C/ for a fixed 3–manifold M to
be a homomorphism �1W �1.M /! PSL.2;CŒŒt ��/ of the form

�1. /D˙ exp
� 1P

iD1

t iui. /
�
�. /

where ui W �1.M /!sl.2;C/ are elements of C 1.�1.M /; sl.2;C/Ad� /, and evaluating
�1 at t D 0 yields � . If �1 is a homomorphism modulo tjC1 , we say that �1
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is a formal deformation up to order j. A cocycle u1 2 Z1.�1.M /; sl.2;C/Ad� / is
formally integrable if there is a formal deformation of � with leading term u1 . In
[13] it is shown that, given a deformation of order j , there is an obstruction class
�jC1 2H 2.�1.M /; sl.2;C/Ad� / to extending to a deformation of order j C 1:

Proposition 4.2 [13, Proposition 3.1] Let � 2 R.�1.M /;PSL.2;C// and ui 2

C 1.�1.M /; sl.2;C/Ad� /, 1� i � j be given. If

�j . /D exp
� jP

iD1

t iui. /
�
�. /

is a homomorphism into PSL.2;CŒŒt ��/ modulo tjC1 , then there exists an obstruction
class �.u1;:::;uk/

jC1
2H 2.�1.M /; sl.2;C/Ad� / such that:

(1) There is a cochain ujC1W �1.M /! sl.2;C/ such that

�jC1. /D exp
�jC1P

iD1

t iui. /
�
�. /

is a homomorphism modulo tjC2 if and only if �jC1 D 0.

(2) The obstruction �jC1 is natural, ie if f is a homomorphism then f ��j WD �j ıf

is also a homomorphism modulo tjC1 , and

f �.�
.u1;:::;uj /

jC1
/D �

.f �u1;:::;f
�uj /

jC1
:

We will denote the inclusion map by i W @M !M .

Lemma 4.3 Let M be a 3–manifold with torus boundary components @M D
Fk

iD1 Ti .
Let �W �1.M / ! PSL.2;C/ be a non-abelian representation such that �.�1.Ti//

contains a non-parabolic element for each component Ti of @M . If

dim H 1.�1.M /; sl.2;C/Ad� /D k;

where k is the number of components of @M , then i�W H 2.M; sl.2;C/Ad� / !

H 2.@M; sl.2;C/Ad� / is injective.

Proof We have the cohomology exact sequence for the pair .M; @M /:

H 1.M; @M / �!H 1.M /
˛
�!H 1.@M /

ˇ
�!H 2.M; @M /

�!H 2.M /
i�
�!H 2.@M / �!H 3.M; @M / �! � � � ;
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where all cohomology groups are taken to be with the twisted coefficients sl.2;C/Ad� .
A standard Poincaré duality argument [13; 15; 20] gives that ˛ has half-dimensional
image. For a torus T ,

dim H 1.�1.T /; sl.2;C//D 2;

as long as �.�1.T // contains a hyperbolic element [20]. Hence, ˛ is injective. Since
ˇ is dual to ˛ under Poincaré duality, then ˇ is surjective. This implies that i�

is injective.

We apply this lemma to the metabelian representation �0 to conclude that the represen-
tation variety is smooth at �0 .

Theorem 4.4 The metabelian representation �0W �1.N�/! PSL.2;C/ is a smooth
point of R.�1.N�/;PSL.2;C//, with local dimension kC 3.

Proof We begin by showing that every cocycle in Z1.�1.N�/; sl.2;C// is integrable.

Suppose we have u1; : : : ;uj W �1.N�/! sl.2;C/ such that

�j . /D exp
� jP

iD1

t iui. /
�
�. /

is a homomorphism modulo tjC1 . We have that @N� D
Fk

iD1 Ti is a disjoint union
of tori, and the restriction �j j�1.Ti / to �1.Ti/ is also a formal deformation of order j .
We have that �0.Ti/ contains a non-parabolic element, namely �0.�/, or a translate.
Then the restriction of �0 to �1.Ti/ is a smooth point of the representation variety
R.�1.Ti/;PSL.2;C//. Hence �j j�1.Ti / extends to a formal deformation of order
j C 1 by the formal implicit function theorem (see [13, Lemma 3.7]). This implies
that the restriction of �.u1;:::;uj /

jC1
to each component H 2.Ti/ <H 2.@N�/ vanishes.

Since

H 2.@N�/D

kM
iD1

H 2.Ti/

we have
i��

.u1;:::;uk/

kC1
D �

.i�u1;:::;i
�uk/

kC1
D 0:

We have shown in Theorem 4.1 that H 1.�1.N�/;PSL.2;C// has dimension k . The
injectivity of i� implies that �.u1;:::;uk/

kC1
D 0.

Applying [13, Proposition 3.6] to the formal deformation �1 results in a convergent
deformation. Hence, �0 is a smooth point of the representation variety. As �0 is
non-abelian, we have that dim B1.�1.N�/;PSL.2;C//D 3, so that the dimension of
R.�1.N�/;PSL.2;R// is kC 3.
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5 Singular hyperbolic structures

In this section, we will use the smoothness result from Theorem 4.4 to find represen-
tations that are near the Sol representation. In order to realize the representations as
geometric structures, we will need the Ehresmann–Thurston principle [21].

Theorem (Ehresmann–Thurston principle) Let X be a manifold upon which a Lie
group G acts transitively. Let M have a .X;G/–structure with holonomy represen-
tation �W �1.M / ! G . For �0 sufficiently near � in the space of representations
Hom.�1.M /;G/, there exists a nearby .X;G/–structure on M with holonomy repre-
sentation �0 .

To utilize the Ehresmann–Thurston principle, we will need to realize all of our structure
groups as subgroups of PGL.4;R/. We first study the process by which Sol can be
seen as a limit of HPD HP3 .

Given s > 0, we let r1.s/ be the rescaling map

r1.s/D

26664
1
2
.sC s�1/ 1

2
.s� s�1/ 0 0

1
2
.s� s�1/ 1

2
.sC s�1/ 0 0

0 0 0 �s

0 0 s�1 0

37775 :
Then r1.s/ takes HP to

HPs D fŒx1;x2;x3;x4� W �x2
1 Cx2

2 C s2x2
4 < 0g;

which we think of as a copy of HP under a projective change of coordinates. Conjugat-
ing GHP by r1.s/ gives the structure group GHPs

of HPs . Regular HP geometry is
given by the case s D 1. Taking the limit as s! 0 gives the subset

HP0 D fŒx1;x2;x3;x4� W �x2
1 Cx2

2 < 0g

of RP3 . Notice that this is exactly the image of the embedding of Sol into RP3 . We
will use this fact to obtain a geometric transition at the level of representations, and
apply the Ehresmann–Thurston principle to obtain corresponding developing maps. The
map r1.s/ can be thought of as the composition of three maps: the first a hyperbolic
translation by log s , which causes the x3 and x4 coordinates to converge to 0 in the
projective sense; followed by a rescaling to recover those coordinates; and then a
change of coordinates between x3 and x4 to obtain the correct form for Sol. Hence,
this can be thought of as a further collapse onto a one-dimensional space, followed by
a rescaling. In order to insure that the developing maps behave correctly, we will use
the following lemma.
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Lemma 5.1 [4, Lemma 3.7] Let K be a compact set and let Ft W K!RP3 be any
continuous family of functions. Suppose F0.K/ is contained in Xs . Then there is an
� > 0 such that jt j< � and jr � sj< � implies that Ft .K/ is contained in Xr .

Now we can prove the following result.

Theorem 5.2 Let �W S ! S be a pseudo-Anosov homeomorphism whose stable and
unstable foliations, Fs and Fu , are orientable and �� does not have 1 as an eigenvalue.
Then there exists a family of singular hyperbolic structures on M� , smooth on the
complement of †, that degenerate to a transversely hyperbolic foliation. Furthermore,
the Sol structure on M� is obtained as a rescaled limit, as projective structures, of the
path of degenerating structures.

Proof From the proof of Theorem 4.1, we can find a cocycle

z 2Z1.�1.N�/; sl.2;R/Ad�0
//

corresponding to Fs . The simple eigenvalue ��1 of V�� has corresponding eigenvector
coming from b1 D �s.1/; : : : ; b2gCn D �s.2gCn/. More specifically, �� does not
have 1 as an eigenvalue, so we can solve

(7) . V��� I/

0B@ y1
:::

y2gCn

1CAD�D

0B@ b1
:::

b2gCn

1CA ;
where D2g�2g is the restriction of D to the upper left 2g� 2g entries.

Finally, since � is a simple eigenvalue of V�� , we can also solve

(8) . V����I/

0B@ x1
:::

x2gCn

1CA� 2�

0B@ a1
:::

a2gCn

1CAy0 D�K

0B@ y1
:::

y2gCn

1CA�C

0B@ b1
:::

b2gCn

1CA :
Now we will use the above cocycle, which has the form

z.i/D

�
yi xi

bi �yi

�
; z.�/D

�
y0 0

0 �y0

�
:

The representation �0 and the cocycle z are converted into an HP representation, using
the description of GHP given in Section 2.4. In particular, �0 and z are combined to
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form a representation of �1.N�/ into PSL.2;B0/ by  7! �0. /Cz. /�0. /�0 ; then
use the isomorphism from PSL.2;B0/ to G0 DGHP to obtain

�HP.i/D

26664
1C 1

2
a2

i �
1
2
a2

i ai 0
1
2
a2

i 1� 1
2
a2

i ai 0

ai �ai 1 0

�bi � a2
i bi C 2aiyi Cxi �bi C a2

i bi � 2aiyi �xi 2yi � 2aibi 1

37775 ;

�HP.�/D

26664
1
2
.�C��1/ 1

2
.����1/ 0 0

1
2
.����1/ 1

2
.�C��1/ 0 0

0 0 1 0

0 0 2y0 1

37775 :
Conjugating the HP representation by

r1.s/D

26664
1
2
.sC s�1/ 1

2
.s� s�1/ 0 0

1
2
.s� s�1/ 1

2
.sC s�1/ 0 0

0 0 0 �s

0 0 s�1 0

37775
and taking s! 0 gives the Sol representation

�Sol.i/D

2664
1 0 0 0

0 1 0 0

bi bi 1 0

ai �ai 0 1

3775 ; �Sol.�/D

26664
1
2
.�C��1/ 1

2
.����1/ 0 0

1
2
.����1/ 1

2
.�C��1/ 0 0

0 0 1 0

0 0 0 1

37775 :
Thus, the Sol representation is obtained as a rescaled limit of a family of HP repre-

sentations, with the rescaling limit given by r1.s/.

The structure groups for HP, H3 and Sol can be written as subgroups of PGL.4;R/,
giving them .RP3;PGL.4;R//–structures. Since the Sol representation, as a rep-
resentation into PGL.4;R/, comes from an actual Sol structure on N� , then by
the Ehresmann–Thurston principle, for small s , the conjugates r1.s/�HPr1.s/

�1 are
holonomy representations for real projective structures, with developing maps Ds .

Moreover, the Sol structure can be thought of as a .HP0;GHP0
/ structure, and applying

Lemma 5.1 with XD HP to Ds and a compact fundamental domain for N� , we see
that for sufficiently small s , the projective structures from the Ehresmann–Thurston
principle correspond to HPs structures, which are rescaled HP structures.

Fix such an s D s0 , and consider the underlying HP structure. Since �0 is a smooth
point of R.�1.N�/;PSL.2;C//, by work of Danciger [4, Proposition 3.6], there exists
a family of hyperbolic structures on N� , given by their holonomy representations
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�t W �1.N�/! SO.1; 3/, such that at t D 0 we obtain the SO.1; 3/ version of the
representation �0 . Furthermore, conjugating �t by r.t/ yields �HP .

For a fixed s ,
r1.s/r.t/�t r.t/

�1r1.s/
�1

limits to r1.s/�HPr1.s/
�1 . So taking the diagonal path

r1.t/r.t/�t r.t/
�1r1.t/

�1

yields a rescaling of �t that limits to the Sol structure.

Note that the cocycle z has the form

z.i/D

�
yi xi

bi �yi

�
;

where bi D�s.i/. In particular, the deformation of �0 contains the information of Fs .
The deformation from the upper-triangular representation �0 , which is a projection
parallel to Fu onto a leaf of Fs , behaves like a deformation in a direction transverse
to Fs .

6 Behavior of the singular locus

Theorem 5.2 gives a family of hyperbolic structures on M� n†. In general, the singular
locus † may not remain as cone singularities. In this section, we will show that it is
possible to control the singularities so that we obtain a family of nearby cone manifolds.

The manifold N� DM� n† has torus boundary components, @N� D
Fk

iD1 Ti . Let mi

be a meridian curve for Ti , and li a longitudinal curve. There is a model for a torus T

degenerating to the HP structure described by the representation

�HP.m/D

2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 ! 1

3775 ; �HP.l/D

2664
cosh d sinh d 0 0

sinh d cosh d 0 0

0 0 ˙1 0

0 0 � ˙1

3775 ;
which is given in [4]. In particular, take the family of representations into SO.1; 3/
such that

�t .m/D

2664
1 0 0 0

0 1 0 0

0 0 cos!t � sin!t

0 0 sin!t cos!t

3775 ; �t .l/D

2664
cosh d sinh d 0 0

sinh d cosh d 0 0

0 0 ˙ cos�t � sin�t

0 0 sin�t ˙ cos�t

3775 :
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Then, conjugating by 2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 t�1

3775
and taking the limit as t ! 0 yields �HP.m/ and �HP.l/. Thus, ! , which is called the
infinitesimal rotation in [4], describes the infinitesimal change in the cone angle about
that component of the singularity.

In the case that † has multiple components, as in our case, we can modify the com-
putation. From the construction of �0 , we can see that each �0.li/ is a hyperbolic
translation with an axis in H2 having a common endpoint at infinity. Specifically, they
all differ from

�0.�/D

"p
� 0

0
p
�
�1

#

by a parabolic element. Namely, there exists some parabolic of the form�
1 a

0 1

�
2 PSL.2;R/;

taking �0.�/ to �0.li/. If this is deformed by the infinitesimal isometry�
y x

b �y

�
2 sl.2;R/;

the deformation is encapsulated by the HP matrix26664
1C 1

2
a2 �

1
2
a2 a 0

1
2
a2 1� 1

2
a2 a 0

a �a 1 0

�b� a2bC 2ayCx �bC a2b� 2ay �x 2y � 2ab 1

37775 ;
which is the PGL.4;R/ form of the PSL.2;B0/ element�

1 a

0 1

�
C

�
y x

b �y

� �
1 a

0 1

�
�0:

Then, for a general singularity, the representation �HP should be such that �HP.mi/

and �HP.li/ are conjugates of �HP.m/ and �HP.l/, with the conjugating matrix being
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of the above type. This gives the general form

(9)

�HP.mi/D

2664
1 0 0 0

0 1 0 0

0 0 1 0

�a! a! ! 1

3775 ;

�HP.li/D

2664
�a2C .1C a2/C ˙a2� a2C CS a.1� ed / 0

�a2C a2C CS ˙a2CC � a2C a.1� ed / 0

a.�1C e�d / a.˙1� e�d / ˙1 0

f1 f2 2ab.ed � 1/C� ˙1

3775 ;
where

C D cosh d;

S D sinh d;

f1 D�a�� .bC 2a2b� 2ay/.ed
˙ 1/Cx.e�d

� 1/;

f2 D a�C .2a2b� 2ay � b/.ed
� 1/�x.e�d

� 1/:

The curves ıj D 2gCj are meridians of the boundary tori, so we verify that �HP.ıj /

agrees with the description of �HP.mi/. From our computation of �HP.2gCj /, we
notice that a2gCj D b2gCj D 0 since the signed length of ıj around any singular point
of the foliation is 0, so

�HP.ıj /D

2664
1 0 0 0

0 1 0 0

0 0 1 0

x2gCj �x2gCj 2y2gCj 1

3775 :
Hence, the infinitesimal rotation is given by ! D 2y2gCj , where the y2gCj can be
chosen freely as long as they are the same for singular points in the same orbit of � . It
remains to show that x2gCj D�a! D�2ay2gCj , where a is the amount of parabolic
translation that takes the axis between 0 and infinity to the axis given by the orbit of
the singular point sj .

Suppose that m is the order of the orbit of singular points that contains the singularity
encircled by ıj . Then, �m.ıj /D vjıjv

�1
j for some word vj 2 �1.S n�/. Noting that

�0.ıj /D

�
1 0

0 1

�
and �0.vj /D

�
1 A

0 1

�
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for some real number A, the twisted cocycle condition yields, by using (5) with
2gCj D ıj , that

(10)
�
y2gCj �mx2gCj

0 �y2gCj

�
D

�
y2gCj x2gCj � 2y2gCj A

0 �y2gCj

�
:

This follows because b2gCj D 0.

In addition to
�mıj�

�m
D �m.ıj /D vjıjv

�1
j ;

we have that
�mlj�

�m
D vj ljv

�1
j :

As previously noted, �0.lj / is conjugate to �0.�/
m by the parabolic element

�
1
0

a
1

�
.

This yields

�0.lj /D

"p
�

m
a.�
p
�

m
C
p
�
�m
/

0
p
�
�m

#
:

From the relation �mlj�
�m D vj ljv

�1
j , we obtain that"p

�
m

a�m.�
p
�

m
C
p
�
�m
/

0
p
�
�m

#
D

"p
�

m
.AC a/.�

p
�

m
C
p
�
�m
/

0
p
�
�m

#
:

This yields A D �ma � a D a.�m � 1/. The cocycle condition from (10) yields
x2gCj .�

m�1/D�2y2gCj a.�m�1/, which is exactly the desired condition x2gCj D

�2ay2gCj . A similar computation can be used to find the parameters x and b , with
b equaling the �s distance between � and li . The longitudinal curves �HP.li/ are
conjugates of multiples of �HP.�/. Since �HP.�/ has the form stipulated in (9) for
�HP.li/, we have first-order compatibility of the HP representation with representations
of cone singularities. From the previous computation of �HP.�/, we can see that
d Dm log� and �D 2my0 .

In order to show that the components of the singular locus remain as cone singularities,
we will additionally need to show that the subset of structures where the meridian
curves remain elliptic is smooth so that the first-order compatibility can be realized
by a path of structures on N� . The proof generalizes [4, Lemma 4.25] to multiple
components.

Lemma 6.1 The subset of H 1.�1.N�/; sl.2;C/Ad�0
/ corresponding to singular hy-

perbolic structures near �0 such that �t .mi/ remains elliptic has real dimension k .

Geometry & Topology, Volume 20 (2016)



460 Kenji Kozai

Proof The complex dimension of H 1.�1.Ti/; sl.2;C/Ad�0
/, where Ti is a boundary

component homeomorphic to a torus, is 2, given by the differentials dl.li/ and dl.mi/

of the lengths l.li/ and l.mi/. The subspace of H 1.�1.Ti/; sl.2;C/Ad�0
/ where

�.mi/ remains elliptic as it is deformed by a cocycle has real dimension equal to 3.

For each torus component Ti , by the Poincaré duality argument, the real dimension
of the image of H 1.�1.N�/; sl.2;C/Ad�0

/ in H 1.�1.Ti/; sl.2;C/Ad�0
/ is 2. More-

over, from the computation of the space of cocycles, we can pick an element z 2

H 1.�1.N�/; sl.2;C/Ad�0
/ with y2gCi arbitrarily large, so that z.mi/ increases trans-

lation length. Thus, the image is transverse to the subset of H 1.�1.Ti/; sl.2;C/Ad�0
/

where �.mi/ remains elliptic. Noting that @N� is a disjoint union
F

Ti , the subset
of the image of H 1.�1.N�/; sl.2;C/Ad�0

/ in H 1.�1.@N�/; sl.2;C/Ad�0
/ has real

dimension k .

Lemma 6.1, along with Theorem 5.2, tells us that the we can choose a family of
hyperbolic structures on N� near the Sol structure on N� such that the restriction
of the corresponding representations to the boundary tori agree with representations
of the models for cone singularities. After a finite number of applications of [4,
Propositions 4.3 and 4.10], once on each component of †, we conclude that the
representations can be realized as actual hyperbolic cone structures. We restate those
propositions here.

Proposition [4, Proposition 4.3] Let M be a manifold with a projective structure on
N DM n† with cone-like singularities along †Df g. Let B be a small neighborhood
of a point p 2†, with †B D†\B . Then:

(1) The developing map D on ABn†B extends to the universal branched cover
zB D ABn†B [†B of B branched over †B .

(2) D maps †B diffeomorphically onto an interval of a line L in RP3 .

(3) The holonomy �.�1.B n†B// point-wise fixes L.

Proposition [4, Proposition 4.10] Suppose �t W �1.M /! PGL.4;R/ is a path of
representations such that:

(1) �0 is the holonomy representation of a projective structure on N D M n†

with cone-like singularities along †D f g, and L is the line in RP3 fixed by
�0.�1.@M //.

(2) �t .m/ point-wise fixes a line Lt with Lt ! L.

Then, for all t sufficient small, �t is the holonomy representation for a projective
structure on N with cone-like singularities along †.
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A computation of the commutator �HP.Œ˛i ; ˇi �/ yields a matrix of the form2664
1 0 0 0

0 1 0 0

0 0 1 0

�f f g 1

3775 ;
in (9), where

f D a2
gCibi C 2agCiyi � a2

i bgCi � 2aiygCi ; g D�2agCibi C 2aibgCi :

Therefore, the product of the commutators �HP
�Qg

iD1
Œ˛i ; ˇi �

�
also has this form. In

the case where 2gCj D ıj , we also have that

�HP.ıj /D �HP.2gCj /D

2664
1 0 0 0

0 1 0 0

0 0 1 0

x2gCj �x2gCj 2y2gCj 1

3775 :
Note that y2gCj Dy2gCj 0 if ıj and ıj 0 belong in the same cycle of the permutation (ie
they are meridians for the same component of †). In other words, we have cone-type
singularities that develop in the singular hyperbolic structure, and for each component
of †, there is freedom in choosing the infinitesimal cone angle about that component.
Moreover, the commutator/singularities relation

gY
iD1

Œ˛i ; ˇi �D

nY
jD1

ıj

says that the sum of the infinitesimal cone angles about each component, weighted by
the number of singularities in the permutation for that component, must equal some
quantity !tot determined by the loop

Qg
iD1

Œ˛i ; ˇi � that encircles all of the singularities.

Lemma 6.2 The total infinitesimal cone angle !tot is non-zero.

Proof A straight-forward computation shows that the !D!tot entry in the commutator
�HP.Œ˛i ; ˇi �/ is given by 2.aibgCi � agCibi/. Hence, the ! entry in the product

�HP

� gY
iD1

Œ˛i ; ˇi �

�
is the negative of the algebraic intersection pairing Oi.Ee�; Ee��1/. We note that the
algebraic intersection is a symplectic form on H 1.S/.

Geometry & Topology, Volume 20 (2016)



462 Kenji Kozai

Suppose Ee� is an eigenvector of �� with eigenvalue �¤ �. Then

Oi.Ee�; Ee��1/D Oi.��Ee�; �
�
Ee��1/D ���1Oi.Ee�; Ee��1/:

Since �¤ �, this means that Oi.Ee�; Ee��1/D 0.

If Ee�;p is a generalized eigenvector such that .�� ��I/p Ee�;p D 0, then we induct
on p . Notice that ��Ee�;p D �Ee�;p C cEe�;p�1 , where .�� � �I/p�1Ee�;p�1 D 0.
Hence, if Oi.Ee�;p�1; Ee��1/D 0, then it must be that Oi.Ee�;p; Ee��1/D 0 as well, since

Oi.Ee�;p; Ee��1/D Oi.��Ee�;p; �
�
Ee��1/D ���1Oi.Ee�;p; Ee��1/:

The generalized eigenvectors of �� span R2g and � is a simple eigenvalue, so that
means that if Oi.Ee�; Ee��1/D 0, then Oi.Eu; Ee��1/D 0 for all Eu 2R2g , contradicting the
non-degeneracy condition for symplectic forms.

We can now prove Theorem 6.3.

Theorem 6.3 Let �W S ! S be a pseudo-Anosov homeomorphism whose stable and
unstable foliations, Fs and Fu , are orientable and ��W H 1. xS/! H 1. xS/ does not
have 1 as an eigenvalue. Then there exists a family of singular hyperbolic structures
on M� , smooth on the complement of † and with cone singularities along †, that
degenerate to a transversely hyperbolic foliation. The degeneration can be rescaled
so that the path of rescaled structures limits to the singular Sol structure on M� , as
projective structures. Moreover, the cone angles can be chosen to be decreasing.

Proof Lemma 6.1 and Theorem 5.2 imply that there exists a family of hyperbolic
structures on N� near the Sol structure on N� such that the meridian and longitudinal
curves of the boundary tori have the form in (9).

Apply Proposition 4.3 and Proposition 4.10 from [4] on one component  of † to
show that M� n .† n  / has a projective structure with holonomy �t with cone-like
singularities along  for sufficiently small t . Proceed inductively on each component
of †.

Lemma 6.2 implies that the infinitesimal cone angles of each boundary component can
be chosen to be negative, so that the cone angles are all decreasing. The total infinitesi-
mal cone angle !tot is non-zero, and the proof of Lemma 6.2 shows that it is the negative
of Oi.Ee�; Ee��1/, and taking a positive orientation for fEe�; Ee��1g leads to !tot < 0.

The results of [4] also imply that there are nearby AdS structures that collapse to
the same transversely hyperbolic foliation, such that a similar rescaling gives the HP
structure. The generalizations made here to those results can also easily be made
for AdS structures, so there are also nearby AdS structures with tachyon (cone-like)
singularities.
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˛1

ˇ1

˛2

ˇ2



Figure 1: The curves ˛1; ˛2; ˇ1; ˇ2 which form the basis for H1.S/ , and  .

s1

s2

Figure 2: A train track for Fu .

7 Genus-two example

We will compute the representations and parameters to find the deformation in a
genus-two example. Begin with the curves ˛1; ˛2; ˇ1; ˇ2 , which form the symplectic
basis for H1.S/. We begin with left Dehn twists Tˇ1

;Tˇ2
;T along ˇ1; ˇ2 and  ,

followed by right Dehn twists T �1
˛1
;T �1
˛2

along ˛1 and ˛2 . Since the disjoint sets
of curves f˛1; ˛2g and fˇ1; ˇ2;  g fill, the resulting homeomorphism �W S ! S is
pseudo-Anosov (see [18] or [6, page 398]).

The stable and unstable foliations are orientable with two singular points of cone
angle 4� , one in each of the two components of S n f˛1; ˛2; ˇ1; ˇ2;  g. A train track
for Fu is shown in Figure 2, and we can verify that the foliations are orientable with
two singularities s1 and s2 .

The induced action on cohomology, with the generators ˛1; ˛2; ˇ1; ˇ2 and puncture
curves ı1; ı2 , is

V�� D

266666664

3 �1 �2 1 �1 0

�1 3 1 �2 1 0

�1 0 1 0 0 0

0 �1 0 1 �2 0

0 0 0 0 1 0

0 0 0 0 0 1

377777775
:
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˛1

ˇ1

˛2

ˇ2

Figure 3: Generators for �1.S/ .

The matrix has largest eigenvalue �1 D
1
2
.5C
p

21/. The other eigenvalue �2 > 1 is
given by �2 D

1
2
.3C
p

5/. The eigenvectors of �� for �1 and ��1
1

are

Ee�1
D
�

3C
p

21
2

;�3C
p

21
2

;�1; 1; 0; 0
�T and Ee��1

1
D
�
�

p
21�3
2

;
p

21�3
2

;�1; 1; 0; 0
�T
:

We have a choice for Ee��1
1

as it is only unique up to scale. We make the choice that is
consistent with the orientation of the embedding of Sol into R4 . In particular, in the
standard embedding, the x–coordinate is contracted and the y–coordinate is expanded.
Our choice for Ee�1

and Ee��1
1

has the same orientation in the singular flat metric on S .

Thus, we obtain the parameters

a1 D�a2 D
1
2
.3C
p

21/;

a3 D�a4 D�1;

b1 D�b2 D�
1
2
.
p

21� 3/;

b3 D�b4 D�1:

Fix a basepoint and choose representatives for ˛1; ˛2; ˇ1; ˇ2 in �1.S/, which we
will also call ˛1; ˛2; ˇ1; ˇ2 (see Figure 3). In addition, taking generators ı1 and ı2
for loops around the singularities s1 and s2 , we have the following action of � on
�1.S n �/:

�.˛1/D ˛1ˇ
�1
1 ı�1

1 ˛2ˇ2˛
�2
2 ˛2

1ˇ
�1
1 ;

�.˛2/D ˛
2
2ˇ
�1
2 ˛2

2ˇ
�1
2 ˛�1

2 ı1ˇ1˛
�1
1 ;

�.ˇ1/D ˇ1˛
�1
1 ;

�.ˇ2/D ˛1ˇ
�1
1 ı�1

1 ˛2ˇ2˛
�2
2 ˇ2˛2ˇ

�1
2 ˛�1

2 ı�1
1 ˇ1˛

�1
1 ;

�.ı1/D ı1;

�.ı2/D ˛2ˇ2˛
�2
2 ˛1ˇ

�1
1 ı�1

1 ı2ı1ˇ1˛
�1
1 ˛2

2ˇ
�1
2 ˛�1

2 ;

with a5 D a6 D b5 D b6 D 0.
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Thus, we have that

D D

2666666664

11C 2
p

21 �9�3
p

21
2

�17�3
p

21
2

7C 2
p

21 �13�3
p

21
2

0
3C
p

21
2

15� 2
p

21 �3�
p

21
2

13C
p

21
2

�5�
p

21
2

0
3C
p

21
2

0 �3�
p

21
2

0 0 0
5C
p

21
2

1 �5�
p

21
2

�1 5C
p

21
2

0

0 0 0 0 0 0

0 0 0 0 0 �5�
p

21

3777777775
;

C D

2666666664

�62� 13
p

21 125C5
p

21
2

101C21
p

21
2

�133� 28
p

21 77C17
p

21
2

0
15C3

p
21

2
�103� 20

p
21 �15�3

p
21

2
59C9

p
21

2
�23�5

p
21

2
0

15C3
p

21
2

0 �15�3
p

21
2

0 0 0
13C3

p
21

2
�4�

p
21 �13�3

p
21

2
19� 4

p
21 23C5

p
21

2
0

0 0 0 0 0 0

0 0 0 0 0 23C 5
p

21

3777777775
and K D�2D . From this, we calculate from (7) that0BB@

y1

y2

y3

y4

1CCAD�.��� I/�1

0BB@D4�4

0BB@
b1

b2

b3

b4

1CCAC
0BB@
�y5

y5

0

�2y5

1CCA
1CCAD

0BBB@
1
2
.�3C

p
21/

1
2
.�3C

p
21/� 2y5

�13C 5
p

21� 1
3
y5

1
2
.�53C 17

p
21/� 1

3
5y5

1CCCA
and y5 and y6 are free. The span of ����1I is generated by the first three columns,
so we can take x4 D 0 (taking x4 ¤ 0 would change the solution by a co-boundary).
We then compute the other xi and y0 from (8), yielding

x1 D
1

42
.�18312C 887

p
21/C 1

42
.�3353C 1121

p
21/y5;

x2 D
1

84
.�2835C 2573

p
21/C 1

84
.�812C 40

p
21/y5;

x3 D
1
6
.�2166C 615

p
21/C 1

6
.�853C 169

p
21/y5;

x4 D 0;

x5 D 0;

x6 D
1
3
.6C 2

p
21/y6;

y0 D
1

84
.7119� 1552

p
21/C 1

84
.1183� 267

p
21/y5:

The ! entry in the commutator �HP.Œ˛i ; ˇi �/ is computed to be 2.aib2Ci � a2Cibi/.
Hence, the total infinitesimal cone angle !tot is equal to �4

p
21. The infinitesimal

cone angles about the two boundary components should add up to !tot D�4
p

21, and
the individual infinitesimal cone angles can be chosen so that the cone angles about
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both singularities are decreasing towards 2� . By scaling the bi by a positive scalar, it
is also possible to change !tot to any negative number.

8 Discussion

The hypotheses in Theorem 6.3 are satisfied by pseudo-Anosov maps on the punctured
torus, so the result includes the previously known case for the punctured torus. There
exist examples of pseudo-Anosov maps for other hyperbolic surfaces that satisfy the
conditions in the theorem.

For an arbitrary pseudo-Anosov � , the induced map �� has 1 as an eigenvalue if and
only if the mapping torus M� has first Betti number > 1. If �� does not have 1 as an
eigenvalue but the invariant foliations are not orientable, one can take an orientation
cover for the foliation and lift the pseudo-Anosov to the cover. However, this may
introduce additional eigenvalues for the lifted map. These conditions are needed to
prove Theorem 4.1 in order to guarantee that an infinitesimal deformation can be
realized by a smooth path of deformed structures for small time, but it would be
interesting to know if the deformation can be carried out even when the smoothness
condition is not satisfied.

The result in Theorem 6.3 is local; we can find a deformation of the cone angles for
small time. It would be of further interest to know whether the deformation can be
carried out all the way to the complete structure on M� . This would give a direct
connection between the hyperbolic structure on fibered manifolds and the combinatorial
properties of the pseudo-Anosov monodromy.
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