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An arithmetic Zariski 4–tuple of twelve lines

BENOÎT GUERVILLE-BALLÉ

Using the invariant developed by E Artal, V Florens and the author, we differentiate
four arrangements with the same combinatorial information but in different deforma-
tion classes. From these arrangements, we construct four other arrangements such
that there is no orientation-preserving homeomorphism between them. Furthermore,
some pairs of arrangements among this 4–tuple form new arithmetic Zariski pairs,
ie a pair of arrangements conjugate in a number field with the same combinatorial
information but with different embedding topology in CP2 .

32S22; 32Q55, 54F65

1 Introduction

The study of the relation between topology and algebraic geometry was initiated by
F Klein and H Poincaré at the beginning of the twentieth century. It was known by
the work of O Zariski [21; 22; 23] that the topology of the embedding of an algebraic
curve C in the complex projective plane CP2 is not determined by the local topology
of its singular points. Indeed, he used the fundamental group of their complement
ECi
D CP2 n Ci as a strong topological invariant to prove that two sextics C1; C2

have the same combinatorial information but different topological types. Such a pair of
curves was called a Zariski pair by E Artal [1]. There are many examples of Zariski pairs
(or larger k–tuples) that have been discovered (for examples see E Artal, J I Cogolludo
and H Tokunaga [5], P Cassou-Noguès, C Eyral and M Oka [8], A Degtyarev [10],
M Oka [16] or I Shimada [19]), while essentially two Zariski pairs of line arrangements
are known. The first is a pair of arrangements with complex equations constructed by
G Rybnikov [18; 4], and the second is a pair of complexified real arrangements obtained
by E Artal, J Carmona, J I Cogolludo and M A Marco [3]. The proof of the former
is done using the lower central series of the fundamental group, and the latter using
the braid monodromy. Computers were used in both proofs. This small number of
examples for line arrangements, and the routine use of a computer, show the difficulty
in understanding what characterizes the topological type of an arrangement.

In the present paper, new counterexamples to the combinatoriality of the topological
type of arrangements are explicitly constructed. These arrangements are defined
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in the 10 th cyclotomic field, and their equations are connected by the action of an
element of the Galois group of Q.�10/. These new pairs are arithmetic Zariski pairs;
in particular, their fundamental groups have the same profinite completion (ie the
same finite quotients). In contrast with Rybnikov in [18], and as E Artal, J Carmona,
J I Cogolludo and M A Marco in [3], the major part of the computations needed to
single out these arrangements are doable by hand.

In [6], E Artal, V Florens and the author construct a new topological invariant of line
arrangements I.A; �; / based on the inclusion map of the boundary manifold (that is,
the boundary of a regular neighborhood of the arrangement) in the complement. This
invariant depends on a character of the fundamental group of the complement and a
special cycle in the incidence graph of the arrangement; and it can be computed directly
from the wiring diagram of the arrangement. In this paper, we use this invariant to
single out four arrangements (two pairs of complex conjugate arrangements) with the
same combinatorial structure but lying in different deformation classes (ie an oriented
and ordered Zariski 4–tuple). Combinatorially, they contain eleven lines, four points
of multiplicity four, six triple points and some double points. Then, to delete all
automorphisms of the combinatorics, we add a twelfth line to these arrangements (as
in [3]). Thus we construct new Zariski pairs.

Currently, we do not know if they have isomorphic fundamental groups. However, the
invariant I.A; �; / allows us to compute the quasi-projective part of the characteristic
varieties; more precisely, to determine the quasi-projective depth of the character �
(see E Artal [2] and the author [13]). Unfortunately, in the present case they are equal.
Furthermore, the combinatorial structure of the arrangements satisfies the hypotheses
of Dimca, Ibadula and Măcinic [11], so the projective part of the characteristic vari-
eties is combinatorially determined. Thus the question of the combinatoriality of the
characteristic varieties is still open.

In Section 2, we give usual definitions and define arrangements NC;N�;MC and M�

forming the oriented and ordered Zariski 4–tuple. In Section 3, we apply a classical
argument to these four arrangements to construct the new examples of arithmetic
Zariski pairs. The last section is divided into two parts. In the first one, we recall the
construction and the definition of the invariant I.A; �; /; in the second one, we give
the wiring diagrams of NC and MC required to compute the invariant together with
the character � and the cycle  allowing us to distinguish them. Then we compute
the invariant for the four arrangements, and thus we prove that .NC;N�;MC;M�/
forms an oriented and ordered Zariski 4–tuple.
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2 The arrangements

In this section, a brief recall on combinatorics and realization is given (see P Orlik and
H Terao [17] for definitions of classical objects), together with the description of the
arrangements allowing us to construct the new examples of Zariski pairs.

2.1 The combinatorics

Definition 2.1 A combinatorics is a pair C D .L;P/, where L is a finite set and P a
subset of the power set of L, satisfying the conditions:

– ]P � 2 for all P 2 P .

– For any L1; L2 2 L with L1 ¤ L2 , there exists a unique P 2 P such that
L1; L2 2 P .

An ordered combinatorics C is a combinatorics where L is an ordered set. The elements
of P are called points and the one of L lines.

Definition 2.2 Let C D .L;P/ be a combinatorics. An automorphism of C is a
permutation of L preserving P . The set of such automorphisms is the automorphism
group of the combinatorics C .

The combinatorics can be encoded in the incidence graph, which is a subgraph of the
Hasse diagram.

Definition 2.3 The incidence graph �C of a combinatorics C D .L;P/ is a non-
oriented bipartite graph where the set of vertices V.C/ is decomposed in two disjoint sets

VP.C/D fvP j P 2 Pg and VL.C/D fvL j L 2 Lg:

An edge of �C joins vL 2 VL.C/ to vP 2 VP.C/ if and only if L 2 P .

Remark 2.4 The automorphism group of C is isomorphic to the group of automor-
phism of �C respecting the structure of bipartite graph, ie preserving both VP.C/
and VL.C/ setwise. Generally it is smaller than the automorphism group of the graph.
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The starting point to construct and to detect the new example of Zariski pairs is the
combinatorics KD .L;P/ (obtained from a study of the combinatorics with 11 lines)
defined by LD fL1; : : : ; L11g and

P D

8̂̂<̂
:̂
f1; 2g; f1; 3; 5; 7g; f1; 4; 6; 8g; f1; 9g; f1; 10; 11g; f2; 3; 6; 9g; f2; 4; 5; 10g;

f2; 7; 11g; f2; 8g; f3; 4g; f3; 8; 11g; f3; 10g; f4; 7g; f4; 9; 11g; f5; 6g;

f5; 8; 9g; f5; 11g; f6; 7; 10g; f6; 11g; f7; 8g; f7; 9g; f8; 10g; f9; 10g

9>>=>>; ;
where we have written i in place of Li in the sets comprising P .

Proposition 2.5 The automorphism group of K is cyclic of order 4, and is generated
by the permutation

� D .1 3 2 4/.5 6/.7 9 10 8/:

Proof Let � be an automorphism of K . The line L11 is the only one containing
four triple points, thus it is fixed by the � . Since L5 and L6 are the only ones
intersecting L11 in a double point, they are in distinct �–orbits from the other lines.
Similarly, the lines L1 , L2 , L3 and L4 contain two double points, one triple point and
two quadruple points, thus they are in �–orbits distinct from those of the other lines.
The same argument work for the lines L7 , L8 , L9 and L10 . Thus the decomposition
of f1; : : : ; 11g in �–orbits is a sub-decomposition of

(2-1) f1; 2; 3; 4g t f5; 6g t f7; 8; 9; 10g t f11g:

We decompose the following in two parts.

First, we assume that �.5/D 6 and �.6/D 5. Then �.f5; 8; 9g/D f6; 7; 10g and thus
�.f8; 9g/D f7; 10g.

(1) If �.8/D 7 and �.9/D 10 then �.f3; 8; 11g/D f2; 7; 11g and thus �.3/D 2.
Using this and decomposition (2-1), we have �.f3; 10g/ D f2; 8g and then
�.10/ D 8. To finish, using the points f1; 9g, f2; 8g, f3; 10g and f4; 7g and
decomposition (2-1), we obtain that

� D .1 3 2 4/.5 6/.7 9 10 8/:

(2) If �.8/D 10 and �.9/D 7 then in the same way we obtain that

� D .4 2 3 1/.5 6/.8 10 9 7/:

Second, we assume that �.5/D 5 and �.6/D 6. Then the four quadruple points and
decomposition (2-1) imply that �.f7; 10g/D f7; 10g and �.f8; 9g/D f8; 9g.
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(1) If �jf7;8;9;10g D Id then the sets f1; 9g, f2; 8g, f3; 10g, f4; 7g and decomposi-
tion (2-1) imply that

� D Id :

(2) If �jf7;10g D Id, �.8/D 9 and �.9/D 8 then the points f1; 9g, f2; 8g, f3; 10g
and f4; 7g and decomposition (2-1) imply that �.2/ D 1. Thus we have that
�.f2; 7; 11g/D f1; 10; 11g and then �.7/D 10, which is impossible.

(3) If �jf8;9g D Id, �.7/D 10 and �.10/D 7 then in the same way we also obtain
a contradiction.

(4) If �.7/D 10, �.8/D 9, �.9/D 8 and �.10/D 7 then the points f1; 9g, f2; 8g,
f3; 10g, f4; 7g and decomposition (2-1) imply that

� D .1 2/.3 4/.7 10/.8 9/:

We obtain that the automorphism group of K is the cyclic group generated by the
permutation � D .1 3 2 4/.5 6/.7 9 10 8/.

Remark 2.6 The set P of points of K is decomposed into eight orbits by the action
of its automorphism group:

– the four points of multiplicity 4,

– the four points of multiplicity 3 of L11 ,

– the two other points of multiplicity 3,

– two orbits with two double points,

– two orbits with four double points,

– a single isolated orbit composed of the intersection point of L5 and L6 ,

and the set L of lines of K is decomposed into four orbits:

LD fL1; L2; L3; L4g t fL5; L6g t fL7; L8; L9; L10g t fL11g:

2.2 Complex realizations

The following definitions are given over the field of the complex numbers.

Definition 2.7 Let AD fL1; : : : ; Lng be a line arrangement. The combinatorics of A
is the poset of all the intersections of the elements in A, with respect to reverse inclusion.

Remark 2.8 The combinatorics of A encodes the information of which singular point
is on which line.
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Definition 2.9 Let C be a combinatorics. A complex line arrangement A of CP2 is
a realization of C if its combinatorics agrees with C . An ordered realization of an
ordered combinatorics is defined accordingly.

Notation If A is a realization of a combinatorics C , then the incidence graph is also
denoted by �A .

Example The incidence graph of a generic arrangement with three lines is the cyclic
graph with six vertices. Its automorphism group is the dihedral group D3 .

Using the fact that three lines are concurrent if and only if the determinant of their
coefficients is null, it is simple to verify the following proposition.

Proposition 2.10 The arrangements defined by the following equations admit K as
combinatorics:

L1 W z D 0; L2 W xCy � z D 0;

L3 W x D 0; L4 W y D 0;

L5 W x� z D 0; L6 W y � z D 0;

L7 W �˛
3xC z D 0; L8 W y �˛z D 0;

L9 W .˛� 1/x�yC z D 0; L10 W �˛.˛� 1/xCyC˛.˛� 1/z D 0;

L11 W �˛.˛� 1/xCy �˛z D 0;

where ˛ is a root of the 10th cyclotomic polynomial ˆ10.X/DX4�X3CX2�XC1.

We denote by NC and MC the arrangements for which ˛ '�0:31C 0:95i and ˛ '
0:81C0:59i , respectively, and by N� and M� their complex conjugate arrangements.

Remark 2.11 The end of this paper (see Theorem 2.14 and Section 4.2) will prove that
NC , MC , N� and M� are representatives of the four connected components of the
order moduli space; see [3]. Thus, these connected components admit representatives
with complex equations in the ring of polynomials over the 10th cyclotomic field. Their
equations are linked by an element of the Galois group of Q.�10/.

Definition 2.12 The topological type of an arrangement A is the homeomorphism
type of the pair .CP2;A/. If the homeomorphism preserves the orientation of CP2 ,
then we have oriented topological type; and it is ordered, if A is ordered and the
homeomorphisms preserve this order.
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Remark 2.13 If two ordered arrangements with the same combinatorics have different
oriented and ordered topological type then they are in distinct ambient isotopy classes.
The MacLane arrangements [15] are the first such examples.

With these definitions, we can state the main results of the paper.

Theorem 2.14 There is no homeomorphism preserving both orientation and order be-
tween any two pairs among .CP2;NC/, .CP2;N�/, .CP2;MC/ and .CP2;M�/.

Remark 2.15 Complex conjugation induces an orientation-reversing homeomorphism
between .CP2;NC/ and .CP2;N�/, and also between .CP2;MC/ and .CP2;M�/.

Corollary 2.16 There is no order-preserving homeomorphism between .CP2;NC/
and .CP2;MC/, or between .CP2;NC/ and .CP2;M�/, or between .CP2;N�/
and .CP2;MC/, or between .CP2;N�/ and .CP2;M�/.

The proofs of both results are presented in Section 4.2.

3 Zariski pairs

The principal problem which appears while working with the previous combinatorics K
is that its automorphism group is not trivial. Indeed, this group is cyclic of order four
and is generated by the permutation (see Proposition 2.5)

� D .1 3 2 4/.5 6/.7 9 10 8/:

This automorphism induces the automorphism a 7! �a2 in the Galois group of the
10th cyclotomic field Q.�10/, where a is a primitive root of unity. The change of
variables .x; y; z/ 7! .z; xCy�z; y/ realizes this automorphism of the combinatorics.
It cyclically permutes the arrangements NC , MC , N� and M� .

To remove the hypothesis “order-preserving” in Corollary 2.16, we use the same argu-
ment as in [3]: we add lines to the previous combinatorics to reduce the automorphism
group of the combinatorics to the trivial group. Let us consider the combinatorics
K D .L;P/ obtained from K by adding a line L12 at L passing through the point
L1\L3\L5\L7 and generic with the other lines, that is LD fL1; : : : ; L12g and

PD

8̂̂̂̂
<̂
ˆ̂̂:
f1; 2g; f1; 3; 5; 7; 12g; f1; 4; 6; 8g; f1; 9g; f1; 10; 11g; f2; 3; 6; 9g;

f2; 4; 5; 10g; f2; 7; 11g; f2; 8g; f2; 12g; f3; 4g; f3; 8; 11g; f3; 10g; f4; 7g;

f4; 9; 11g; f4; 12g; f5; 6g; f5; 8; 9g; f5; 11g; f6; 7; 10g; f6; 11g; f6; 12g;

f7; 8g; f7; 9g; f8; 10g; f8; 12g; f9; 10g; f9; 12g; f10; 12g; f11; 12g

9>>>>=>>>>; :
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It admits four realizations, denoted by NC , N� , MC and M� (in accordance with
the realizations of K).

Proposition 3.1 The automorphism group of the combinatorics K is trivial.

Proof By construction, the line L12 is the only line containing the point of multiplic-
ity 5 and only double points otherwise. Then it is fixed by all automorphisms. Thus
an automorphism of K fixes the unique point of multiplicity 5. But in K the action of
the automorphism group cyclically permutes the points of multiplicity 4. Since one of
them was transformed into the unique point of multiplicity 5, then the automorphism
group of K is trivial.

Theorem 3.2 There is no homeomorphism between .CP2;NC/ and .CP2;MC/.

Proof By Corollary 2.16, there is no order-preserving homeomorphism between the
pairs .CP2;NC/ and .CP2;MC/. Assume that there is a homeomorphism between
.CP2;NC/ and .CP2;MC/ that does not preserve the order. Then it induces a
non-trivial automorphism of the combinatorics K, which is impossible according to
Proposition 3.1.

Corollary 3.3 There is no homeomorphism between .CP2;NC/ and .CP2;MC/ or
.CP2;M�/, or .CP2;N�/ and .CP2;MC/ or .CP2;M�/.

If the lines added to trivialize the automorphism of the combinatorics are conjugated
in Q.�10/ then the Zariski pairs obtained are arithmetic pairs. In particular, their
fundamental groups have the same profinite completion (ie the same finite quotients).
But if the lines are not conjugated in Q.�10/ then the pairs obtained are not arithmetic.

Lemma 3.4 There is no orientation-preserving homeomorphism between .CP2;NC/
and .CP2;N�/ or between .CP2;MC/ and .CP2;M�/.

Proof By Theorem 2.14, there is no homeomorphism preserving both orientation and
order between the pairs .CP2;NC/ and .CP2;N�/. But, by construction, there is
no non-trivial automorphism of the combinatorics K. Then there is no orientation-
preserving homeomorphism from .CP2;NC/ to .CP2;N�/.

Corollary 3.5 There is no orientation-preserving homeomorphism between any two
pairs among .CP2;NC/, .CP2;N�/, .CP2;MC/ and .CP2;M�/.

Proof This is a consequence of Corollary 3.3 and Lemma 3.4.
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4 Oriented and ordered topological types

This section is the mathematical cornerstone of the paper. It contains (in Section 4.2) the
distinction of the different ambient isotopy classes of the arrangements NC;N�;MC

and M� previously constructed, and then the proof that they form an oriented and
ordered Zariski 4–tuple (Theorem 2.14).

4.1 The invariant I.A; �; /

4.1.1 An inner-cyclic arrangement For more details on the construction and for
the computation of the invariant I.A; �; / see [6]. We denote by EA the complement
of A D fL1; : : : ; Lng in CP2 , and let ˛i 2 H1.EA/ be the homological meridian
associated with the line Li 2A. Remark that the set f˛2; : : : ; ˛ng generates H1.EA/;
indeed, the meridians satisfy the relation ˛1 C � � � C ˛n D 0. A character on an
arrangement A is a group homomorphism

�W H1.EA/!C�;

with
Q
Li2A �.˛i /D 1 to respect the previous relation.

Definition 4.1 Let A be an arrangement, � be a character on A and  be a cycle
of �A . The triplet .A; �; / is an inner-cyclic arrangement if:

(1) For all vLi
2 VL.C/, if vLi

2  , then �.˛i /D 1.

(2) For all vP 2 VP.C/, if vP 2  , then �.˛i /D 1 for all Li 3 P .

(3) For all vL 2  , if P 2 L then
Q
Li2P

�.˛i /D 1.

Remark 4.2 Suppose that A and A0 are two realizations of the same combinatorics (ie
there is an isomorphism �W CA �!� CA0 of ordered combinatorics). If � is a character
on EA , then it induces on EA0 a character � 0 defined by � 0 ı� D � . Furthermore, if
.A; �; / is an inner-cyclic arrangement, then .A0; � 0;  0/ is an inner-cyclic arrangement
too, where  0 is the cycle of �A0 obtained from  by � . In other words, the existence
of a character � and a cycle  such that .A; �; / is an inner-cyclic arrangement is
determined by the combinatorics of A.

By the previous remark, we can define a character on the combinatorics K and consider
it on NC;N�;MC and M� . Let � be such a character, defined by

�W .L1; : : : ; L11/ 7�! .�; �4; �3; �2; 1; 1; �; �2; �3; �4; 1/;
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where � is a primitive fifth root of unity. Let .5;6;11/ be the cycle of H1.�K/ defined by

vL5
vP5;6 vL6

vP6;11 vL11
vP11;5

.

Proposition 4.3 The triplets .NC; �; .5;6;11//, .N�; �; .5;6;11//, .MC; �; .5;6;11//
and .M�; �; .5;6;11// are inner-cyclic arrangements.

The proof of this proposition is straightforward, because the three conditions of
Definition 4.1 are combinatorial.

4.1.2 Construction of the invariant The boundary manifold BA is the common
boundary of a regular neighborhood

Tub.A/D
�[

B.P /
�
[

�[
Tub.L/

�
of the exterior CP2 n

ı

Tub.A/ and the arrangement A (where the B.P / are 4–balls
centered at the singular points of A). Up to homotopy type, there is a natural projection
Tub.A/ �

�!�A , which induces an isomorphism �� on the first homology groups. A
holed neighborhood Tub./ associated with  is a submanifold of Tub.A/ of the form

Tub./D Tub.A/ n
�� [

vL…

Tub.L/
�
[

� [
vP…

B.P /
��
:

A nearby cycle z 2 H1.BA/ associated with a cycle  2 H1.�A/ is defined as a path
in @.Tub.// isotopic to ��1� ./ in Tub.A/.

We denote by i W BA ,!EA the inclusion map of the boundary manifold in the com-
plement. Let A be a realization of C and � be a torsion character on A. We consider
the map

�.A;�/W H1.BA/
i�
�! H1.EA/

�
�!C�:

If .A; �; / is inner-cyclic and z is a nearby cycle associated with  , then the value
of �.A;�/.z/ is independent of the choice of the nearby cycle z ; see [6, Lemma 2.2].
Thus we define

I.A; �; /D �.A;�/.z/;

where z 2 H1.BA/ is any nearby cycle associated with  .

Theorem 4.4 [6] Let A and A0 be two ordered realizations of an ordered combina-
torics C . If .A; �; / and .A0; �; / are two inner-cyclic arrangements with the same
oriented and ordered topological type, then

I.A; �; /D I.A0; �; /:
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4.2 Computation of the invariant

4.2.1 Braided wiring diagrams The invariant I.A; �; / can be computed from the
braided wiring diagram of the arrangement. It is a singular braid associated with the
arrangement (for more details see [7; 9]) and it is defined as follows: Consider a line
L 2A as the line at infinity, and let Aaff �C2 'CP2 n fLg be the associated affine
arrangement. Let pW C2!C be a generic projection for the arrangement Aaff (ie no
line of Aaff is a fiber of p ). Let �W Œ0; 1�!C be a smooth path containing the images
of the singular points of Aaff by p (or continuous and piecewise smooth if the images
of the singularities are in the smooth part of � ).

Definition 4.5 The braided wiring diagram of A associated with � and p is defined by

WA D
˚
.x; y/ 2Aaff

j p.x; y/ 2 �.Œ0; 1�/
	
:

The trace !i DWA\Li is called the wire associated to the line Li .

Figure 1: Paths � used for the computation of the wiring diagrams. Left: the
path �NC . Right: the path �MC .

From the equations of NC and MC , we compute their wiring diagrams. To use the
result on the computation of i�W �1.BA/! �1.EA/ developed in [12] by Florens,
Marco and the author, we choose a line supporting the cycle  as the line at infinity.
With the change of variables x 7! �x and z 7! �x� z , where �D ei�=4 , the line L5
is considered as the line at infinity for the projection pW Œx W y W z� 7! .x=z; y=z/. Note
that with this change of variables the lines L1 , L3 and L7 are vertical (ie fibers of
the projection), so the projection is not generic. Nevertheless, we can draw the wiring
diagram of AnfL1; L3; L7g, and adding these lines as vertical ones (see Figures 2 and 3)
and obtain a non-generic braided wiring diagram. The paths �NC and �MC considered
to obtain these diagrams are pictured in Figure 1. All these computations were done
using Sage [20]. The source [14] can be downloaded from the author’s website.
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Remark 4.6 For smaller and clearer pictures, some braids are simplified (using Rei-
demeister moves) in the non-generic wiring diagrams of NC and MC pictured in
Figures 2 and 3 .

L8
L9
L11
L4
L10
L2
L6

L7 L3 L1

Figure 2: Non-generic braided wiring diagram of NC .

L11
L4
L10
L2
L8
L9
L6

L3 L7 L1

Figure 3: Non-generic braided wiring diagram of MC .

L1
L3
L7
L8
L9
L11
L4
L10
L2
L6

Figure 4: Generic braided wiring diagram of NC .

To obtain the wiring diagrams, we slightly modify the center of the projection p , such
that it is always on L5 and distinct (but very close) to the intersection of the lines
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L1; L3; L5 and L7 . For example, a generic braided wiring diagram of NC is pictured
in Figure 4; the perturbation applied to obtain this wiring diagram is such that the three
vertical lines have a very negative slope and are still parallel (since their intersection
point is still on the line at infinity).

4.2.2 Method to compute the invariant Let AD fD1; : : : ;Dng be a line arrange-
ment, � be a character and .r;s;t/ be the cycle defined by

vDr
vPr;s vDs

vPs;t vDt
vPr;t

We assume that .A; �; .r;s;t// is an inner-cyclic arrangement. Let WA be a wiring
diagram of A such that the line Lr is considered (in WA ) as the line at infinity.

To compute the invariant I.A; �; .r;s;t//, we consider the singular braid formed by
the part of WA from the left of the diagram to the intersection point of Ls and Lt
(excluding this point). Then, we construct a usual braid �A

.r;s;t/
2 Bn�1 by replacing

each singular point with a positive local half-twist, as illustrated in Figure 5.

Figure 5: Construction of the braid �A
.r;s;t/

.

Remark 4.7 The braid �A
.r;s;t/

is, in fact, the conjugating braid of any expression of
the braid monodromy associated with Ls \Lt .

Finally [6, Proposition 4.3] implies that the invariant is the image under � of

(4-1)
nX
iD0

ai;s.�
A
.r;s;t//˛i �

nX
iD0

ai;t .�
A
.r;s;t//˛i ;

where ai;j .�A
.r;s;t/

/ counts with sign how many times the string associated with Di
crosses over the string associated with Dj in �A

.r;s;t/
. The braid �A

.r;s;t/
is oriented

from left to right, and the sign of the crossing is illustrated in Figure 6. For more details
on the computation of the invariant see [6, Section 4].

Remark 4.8 By convention, ai;i D 0 for all i .

Remark 4.9 Since Dr is a fiber of p , no line can cross over it. Thus, we need not
consider this line in the previous computation; the value of the invariant is determined
by what happens to Ds and Dt .
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Figure 6: Sign of the crossing in �A
.r;s;t/

. Left: positive crossing. Right:
negative crossing.

4.2.3 Computation for NC and MC To apply the previous algorithm to NC

and MC , we take Dr D L5 , Ds D L6 and Dt D L11 ; the character � considered is

�W .L1; : : : ; L11/ 7�! .�; �4; �3; �2; 1; 1; �; �2; �3; �4; 1/:

By Proposition 4.3, .NC; �; .5;6;11// and .MC; �; .5;6;11// are inner-cyclic arrange-
ments. In the following, we give full details for the computation of I.NC; �; .5;6;11//.

� For NC : the braid �NC
.5;6;11/ (pictured in Figure 7) is obtained from its generic

braided wiring diagram (see Figure 4).

L6

L2

L10

L4

L11

L9

L8

L7

L3

L1

Figure 7: The braid �NC
.5;6;11/

.

Remark 4.10 The circled crossings indicate the locations where singular points
of WNC become local half-twists.

To determine the value of (4-1) we proceed in a two-fold manner. Firstly, we add (with
sign) the meridians of the lines crossing over wire 6. Secondly, we subtract (with sign)
the meridians of the lines crossing over wire 11.

Wire 6 is over-crossed:

– twice by wire 10 (once positively and once negatively),

– once positively by wire 7.
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Wire 11 is over-crossed:

– three times by wire 9 (twice positively and once negatively),

– once negatively by wire 10,

– twice by wire 6 (one positively and one negatively),

– once positively by wire 7.

Thus, we obtain that

I.NC; �; .5;6;11//D �
�
.˛7/� .˛9�˛10C˛7/

�
D �:

� For MC : from a perturbation of the non-generic braided wiring diagram pictured in
Figure 3, we construct the braid �MC

.5;6;11/
. It is pictured in Figure 8.

L6

L9

L8

L2

L10

L4

L11

L3

L7

L1

Figure 8: The braid �MC
.5;6;11/

.

Remark 4.11 (1) The perturbation applied to obtain the generic braided wiring
diagram from the non-generic one pictured in Figure 3 is such that the three
vertical lines have very negative slope.

(2) The circled crossings indicate the locations where singular points of WMC

become local half-twists.

After computation, we obtain that

I.MC; �; .5;6;11//D �
�
.˛3C˛9C˛2/� .˛3/

�
D �2:

By [6, Proposition 2.5] we know that taking the invariant commutes with complex
conjugation, so

I.N�; �; .5;6;11//D � D �4 and I.M�; �; .5;6;11//D �2 D �3:

By Theorem 4.4, we have proved Theorem 2.14. Thus, to delete the “orientation-
preserving” condition of Theorem 4.4, we consider the following lemma.
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Lemma 4.12 Let A1 and A2 be two arrangements with the same combinatorics and
such that there is no homeomorphism preserving both orientation and order between
.CP2;A1/ and .CP2;A2/. If there is no orientation-preserving homeomorphism
between A2 and the complex conjugate of A1 then there is no order-preserving
homeomorphism between .CP2;A1/ and .CP2;A2/.

This is a consequence of [3, Theorem 4.19] (see also [13, Theorem 6.4.8] for a
complete proof). Applying this lemma to Theorem 2.14 (ie to the pairs .CP2;N˙/
and .CP2;M˙/), we obtain Corollary 2.16.
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