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Asymptotic H–Plateau problem in H3

BARIS COSKUNUZER

We show that for any Jordan curve � in S2
1.H

3/ with at least one smooth point,
there exists an embedded H–plane PH in H3 with @1PH D � for any H 2 Œ0; 1/ .

53A10

1 Introduction

There are two versions of the asymptotic Plateau problem. The first version asks the
existence of a least area plane P in H3 asymptotic to a given simple closed � in
S2
1.H

3/, ie @1PD� . In this version, the surface P must be topologically a disk. The
other version asks the existence of an area-minimizing surface † in H3 asymptotic to
a given collection of Jordan curves b� in S2

1.H
3/, ie @1†D b� . In the latter version,

there is no a priori topological restriction on the surface †, hence † can have positive
genus depending on the given b� . Anderson gave positive answers to both versions of
the problem three decades ago [1; 2].

Constant mean curvature (CMC) surfaces are natural generalizations of minimal sur-
faces, and in many cases, results related to minimal surfaces are studied to see whether
they can be generalized to CMC setting. We will call this natural generalization the
asymptotic H–Plateau problem. A decade after Anderson’s result, the second version
of the asymptotic Plateau problem was generalized to the CMC case by Tonegawa [21].
He showed that for any given collection of Jordan curves b� in S2

1.H
3/, there exists a

minimizing H–surface †H in H3 with @1†H D
b� , where H 2 Œ0; 1/. Indeed, both

Anderson and Tonegawa used geometric measure theory methods, and the solutions
are automatically smoothly embedded surfaces by the regularity results of GMT. Our
survey [7] gives a fairly complete account of the old and new results on the problem.

On the other hand the only result on the generalization of the first (plane) version to the
CMC case was proved a few years ago by Cuschieri [10]. He showed the existence of
immersed H–planes asymptotic to a given smooth Jordan curve in S2

1.H
3/ by using

PDE techniques.

In this paper, we give a positive answer to the asymptotic H–Plateau problem for a
larger family of curves. Furthermore, we show that these solutions are indeed embedded.
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Theorem 1.1 Let � be a simple closed curve � in S2
1.H

3/ which is differentiable at
least at one point. Then, for any H 2 Œ0; 1/, there exists a properly embedded H–plane
PH in H3 with @1PH D � .

Our techniques are also valid for H D 0 case, and we are able to reprove the existence
of least area planes in H3 . Hence, with this result, we also fill a gap in Anderson’s
proof for existence of least area planes in [2] (see Remark 3.1 and Remark 3.4). Note
that by using different techniques, Gabai [12] has also proved the existence of least
area planes in H3 spanning a given Jordan curve in S2

1.H
3/.

On the other hand, our proof indeed works for H 2 .�1; 1/ by considering the orienta-
tion; see Section 2.2. If � is an oriented curve in S2

1.H
3/, it induces an orientation on

the H–plane. Thus, with that induced orientation, there exist two H–planes, PC
H

and
P�

H
, with the same absolute value of the mean curvature, jH j 2 .0; 1/, but different

sign. Hence, by forgetting the sign of the mean curvature, the above theorem shows
that for a given Jordan curve � in S2

1.H
3/ and H 2 .0; 1/, there exists a pair of

complete, embedded H–planes PC
H

and P�
H

with @1P˙
H
D � (see Remark 4.3).

Recently, Meeks, Tinaglia and the author [9] constructed nonproperly embedded H–
planes in H3 for any H 2 Œ0; 1/, where the asymptotic boundary is a pair of infinite
lines in S2

1.H
3/. Here we also show that if the Jordan curve � in S2

1.H
3/ is smooth

enough, then the minimizing H–planes PH with @1PH D � are properly embedded
in H3 (Corollary 4.5).

In the final section, we discuss questions of the generic uniqueness of the H–planes in
H3 , and foliations of H3 with H–planes, and give an outline to answer them.

The organization of the paper is as follows. In Section 2, we go over the basic notions,
and the related results. In Section 3, we prove the main theorem for least area planes
(H D 0 case). In Section 4, we show the existence of embedded H–planes in H3 .
Finally in Section 5, we give some concluding remarks.

Acknowledgements I would like to thank the referee for very valuable comments
and suggestions. I am supported by a Fulbright grant, and a TUBITAK 2219 grant.

2 Preliminaries

In this section, we will go over the related results which will be used in the following
sections. For further details on the notions and results we use, see the survey [7].

Definition 2.1 Let M be a 3–manifold.

� A surface S in M is minimal if the mean curvature vanishes everywhere on S .

Geometry & Topology, Volume 20 (2016)



Asymptotic H–Plateau problem in H3 615

� A compact disk D in M with @D D � is the least area disk in M if it has the
smallest area among the disks in M with the boundary � .

Note that minimal surfaces are the critical points of the area functional. Least area
disks and area-minimizing surfaces are the minima of the area functional in the corre-
sponding spaces.

A natural generalization of minimal surfaces are CMC surfaces (H–surfaces). They
can be defined as the critical points of the area functional with a volume constraint as
follows. For an immersion u WD2!M , the critical points of the variational problem

FH .u/D

Z
D2

.juxj
2
Cjuy j

2/C 4
3
H Œu � .ux �uy/� dxdy

are immersed disks with constant mean curvature H [14]. Here, the second summand
in the integral represents the volume constraint.

We can reformulate this variational problem so that it will be independent of the
parametrization of the surface [8]. Let † be a surface in M with boundary ˛ . We fix
a surface T in M with @T D ˛ , and define � to be the domain bounded by T and
†. Again, let

IH .†/D Area.†/C 2H Vol.�/:

If † is a critical point of the functional IH for any variation f , then this will imply
that † has constant mean curvature H . Note also that a critical point of the functional
IH is independent of the choice of the surface T , since if yIH is the functional which
is defined by a different surface bT , then IH � yIH D C for some constant C . Note
that to keep the solution surface away from T , one needs a convexity condition on T

(eg to be H0 –convex for H0 >H ) to employ the maximum principle [8].

Definition 2.2 Let M be a 3–manifold.

� A surface S in M is an H–surface if the mean curvature is equal to H every-
where on S .

� A compact disk D in M with @DD � is a minimizing H–disk in M if IH .D/

(or equivalently FH .D/) has the smallest value among the disks in M with
boundary � .

2.1 Embedded solutions to the H–Plateau problem

Here we quote a generalization of Meeks and Yau’s embeddedness result [15] to
H–disks.

Geometry & Topology, Volume 20 (2016)



616 Baris Coskunuzer

Definition 2.3 (H0 –convex domains) Let � be a compact 3–manifold with piece-
wise smooth boundary. We call � an H0 –convex domain if:

� The mean curvature vector H always points into � along the smooth parts
of @�.

� The mean curvature satisfies jH .p/j �H0 for any smooth point p 2 @�.

� Along the nonsmooth parts of @�, the inner dihedral angle is less than � .

With the definition above, 0–convex domains correspond to mean convex domains in
[16]. A Jordan curve  is called extreme if it is in the boundary of a convex domain.
Following Meeks and Yau [16], we generalize notion of extremeness as follows: A
Jordan curve  is called H0 –extreme if  is in the boundary of a H0 –convex domain.

Meeks and Yau showed that the solution to Plateau problem for 0–extreme curves
must be embedded [16]. The following lemma is a generalization of their result, which
shows that solutions of the H–Plateau problem for H0 –extreme curves are embedded.

Lemma 2.4 [8] Let M be a compact H0 –convex ball. Let � be a Jordan curve
in @M , ie � is H0 –extreme. Then, for any H 2 Œ0;H0/, there exists a minimizing
H–disk †H in M with @†H D � , and any such †H is embedded.

Lemma 2.5 (Maximum principle [14]) Let †1 and †2 be two surfaces in a Rie-
mannian 3–manifold which intersect tangentially at a common point. Let Hi be the
(signed) mean curvature of †i at the common point with respect to the same normal
vector N , ie Hi DHiN . If †2 lie in positive side (the normal vector N direction) of
†1 nearby the common point, then H1 is strictly less than H2 , ie H1 <H2 .

2.2 H–planes in H3

Now we restrict ourselves to H3 . We will use the notion mean curvature with sign,
and H 2 .�1; 1/ throughout the paper. In particular, let � be a simple closed curve in
S2
1.H

3/. Fix an orientation on � , and let P be a plane in H3 with @1P D � . Then
the orientation on � naturally induces an orientation on P , and we denote the induced
normal vector of P by N . If PH is an H–plane in H3 with @1PH D � , then the
mean curvature vector is H DHN , where H 2 .�1; 1/ [4; 21].

In other words, � separates S2
1.H

3/ into two open disks, DC and D� . Consider
the mean curvature H with sign depending on the direction of the mean curvature
vector, ie H 2 .�1; 1/ such that if H is close to C1 then PH is “close” to D� , and
if H is close to �1 then PH is “close” to DC . For example, if  is a round circle in
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S2
1.H

3/, then for H 2 .0; 1/ there are two spherical caps PC
H

and P�
H

in H3 with
@1P˙

H
D  , where P˙

H
is an H–plane. The mean curvature vectors on PC

H
and P�

H

point to each other. With the notation above, we will denote PC
H

by PH , and we will
denote P�

H
by P�H .

By using the definitions above, we now define least area planes and minimizing H–
planes in H3 .

Definition 2.6 (Least area plane) Let P be a complete surface in H3 which is
topologically a disk. We call P a least area plane in H3 if any compact subdisk D in
P is a least area disk.

Definition 2.7 (Minimizing H–plane) Fix H 2 .�1; 1/. Let PH be a complete
surface in H3 which is topologically a disk. We call PH a minimizing H–plane in
H3 if any compact subdisk D in PH is a minimizing H–disk.

For a given surface S in H3 , we define the asymptotic boundary of S as follows.
If H3 D H3 [ S2

1.H
3/ is the natural (geodesic) compactification of H3 , and S

is the closure of S in H3 , then the asymptotic boundary @1S of S defined as
@1S D S \S2

1.H
3/.

Now we define the shifted convex hulls CHH .�/ as generalizations of the convex
hulls in H3 [7; 4]. Fix H 2 .�1; 1/. Let � be a Jordan curve in S2

1.H
3/. Let ˛ be a

round circle in S2
1.H

3/ with ˛\� D∅. Let P˛
H

be the unique H–plane in H3 with
@1P˛

H
D ˛ . ˛ separates S2

1.H
3/ into two open disks �C˛ and ��˛ . Similarly, P˛

H

divides H3 into two domains �˛C
H

and �˛�
H

, where @1�˛˙H
D �˙˛ . We will call

these regions H–shifted half-spaces. If � ��C˛ , then we will call �˛C
H

a supporting
H–shifted half-space. Similarly, if � � ��˛ , then we will call �˛�

H
a supporting

H–shifted half-space.

Definition 2.8 (Shifted convex hull) Let � be a simple closed curve in S2
1.H

3/.
Fix H 2 .�1; 1/. Then the H–shifted convex hull of � , CHH .�/ is defined as the
intersection of all supporting closed H–shifted half-spaces �˛˙

H
of H3 . For H D 0,

this is the usual convex hull definition in H3 , ie CH.�/D CH0.�/.

The generalization of the convex hull property of minimal surfaces in H3 to H–surfaces
in H3 is as follows [4; 21].

Lemma 2.9 [4; 21] Let † be an H–surface in H3 with @1†D � and H 2 .�1; 1/.
Then † is in the H–shifted convex hull of � , ie †� CHH .�/.
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618 Baris Coskunuzer

Remark 2.10 Note that the result is true for any H–surface. This is a straightforward
generalization of the convex hull property for minimal surfaces. In particular, if † is an
H–surface in H3 with @1†H D� , then † cannot go into a nonsupporting H–shifted
half-space of � , as we can foliate such a half-space by H–planes, and the first point of
touch gives a contradiction with the maximum principle.

Note also that if � is not a round circle in S2
1.H

3/, then @CHH .�/ has two compo-
nents, namely @CHH .�/D @

CCHH .�/[@
�CHH .�/. Let S2

1.H
3/��DDC[D� .

Then for any q 2DC , let �q be the largest round circle in DC with center p . Let Pq
H

be the H–plane (spherical cap) in H3 with @1Pq
H
D �q . Then, by construction of

CHH .�/, @CCHH .�/ is a piecewise smooth (pleated) plane with Pq
H
\@CCHH .�/¤

∅ and each smooth part in @CCHH .�/ belongs to Pq
H

for some q [4; 21]. Similarly,
@�CHH .�/ is a piecewise smooth plane with Pq

H
\@�CHH .�/¤∅, where q 2D� .

For further details, see [11].

3 Existence of least area planes

In this section, we will focus on the H D 0 case. In other words, we will consider the
original asymptotic Plateau problem, and show the existence of smoothly embedded
least area planes P in H3 with @1P D � for a given Jordan curve � in S2

1.H
3/.

Gabai showed the existence of least area planes in H3 in [12] by using Hass and
Scott’s techniques. Recently, Ripoll and Tomi also showed the existence of complete
embedded minimal planes in Hadamard manifolds [19].

We will adapt Anderson’s techniques from [2] to construct minimizing H–planes. To
generalize his techniques, we need to fill a gap in the proof for least area plane case.
The following remark explains the problem.

Remark 3.1 (Gap in [2, Theorem 4.1]) Anderson showed the existence of least
area planes in [2, Theorem 4.1]. He basically generalized the techniques he used for
absolutely area-minimizing surfaces to the plane case. In particular, let � be a Jordan
curve in S2

1.H
3/, and fDng be a sequence of least area disks in Bn.0/ with @Dn D

n � @Bn.0/, where n! � . Then the idea is to show the existence of a subsequence
of fDng converging to a least area plane P in H3 with @1P D � . In particular, for
every fixed compact domain K in H3 , he showed the sequence Dn\K DDK

n has a
subsequence converging to a smooth disk in K by using compactness and regularity
results of GMT. Then, by using a diagonal sequence argument, he obtained a limit least
area plane P with @P D � .
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Asymptotic H–Plateau problem in H3 619

However, to use the compactness result in this approach, one needs a uniform area
bound on the disks fDK

n g. Let �K
n be the collection of simple closed curves Dn\@K .

If f†ng were a sequence of area-minimizing surfaces, then the area of @K would be a
uniform area bound for f†K

n g as �K
n bounds a surface in @K and †K

n is an absolutely
area-minimizing surface with boundary �K

n . Hence, for any n, Area.†K
n /�Area.@K/.

However, in the disk case, Dn\K may contain many disks or planar surfaces in K ,
and the area of @K cannot give an upper bound for Area.DK

n /. In particular, the
estimate (4.2) in [2, Theorem 4.1] (that is, M .DixBr /�

1
2

Area.S.r//) is not valid
in general.

For example, if DK
n is 2k disjoint disks close to the equator disk in K DBR , then

the area of DK
n would be close to the area of k equator disks, which is much larger

than the area of @BR . The main difference with the area-minimizing case is that if we
have k annuli A1; : : : ;Ak in @K bounding �K

n , we cannot compare the sum of the
areas of the disks with the sum of the areas of the annuli, because if we replace two
disks with an annulus in Dn we get a genus-1 surface, which is no longer a disk. So
the area of an annulus cannot be compared with the area of the two disks, because of
the restriction of the topology on fDng. Since there is no restriction on the topology
of the surface for area-minimizing surfaces, Area.@K/ gives a uniform bound, but in
the least area disk case, Area.@K/ does not give a uniform bound for fDK

n g. In the
following theorem, we will fix the proof by constructing a special (tight) sequence of
least area disks fDng, where the intersection of sufficiently large balls contains only
one component. Hence the uniform area bound holds, and the proof goes through. In
the following section, we will generalize this idea to the CMC setting, and show the
existence of H–planes in H3 spanning given Jordan curve in S2

1.H
3/.

We will show the existence of least area plane in H3 by using Anderson’s techniques.
To get a uniform area bound on fDK

n g for fixed compact set K , we will use ideas
from [5].

Theorem 3.2 Let � be a simple closed curve differentiable at least at one point in
S2
1.H

3/. Then there exists a properly embedded least area plane P in H3 with
@1P D � .

Proof We will define a special sequence of least area disks fDng whose restriction to
a compact subset K has a uniform area bound. Then, by following [2], we get a least
area plane.

Notation and setting Let � be a Jordan curve differentiable at least at one point in
S2
1.H

3/. Let CH.�/ be the convex hull of � in H3 . Near the smooth point p 2 � ,
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620 Baris Coskunuzer

we can have two sufficiently small and close round circles �C and �� in the opposite
sides of � such that �C [ �� bounds a least area annulus A in H3 [22]. Hence, A
cuts through CH.�/.

Fix a point O in CH.�/. Let Bn be the closed ball in H3 of radius n with center O .
Then, for sufficiently large N0 , A\CH.�/ is in BN0

. Let @CH.�/D @CCH.�/[
@�CH.�/ (see Remark 2.10). For n > N0 , let ˛Cn D @Bn \ @

CCH.�/ and ˛�n D
@Bn\ @

�CH.�/. Then, since A is a least area annulus, by [15, Theorem 1], the pair
˛Cn [˛

�
n bounds a least area annulus An in CH.�/. Then by [5, Lemma 4.1], the least

area annuli An escapes to infinity. To see this, let f�˙s g be the foliation of a small
neighborhood of � in S2

1.H
3/, where �Cs and ��s are in opposite sides of � and

in between �C and �� (Step 2 of [5, Lemma 4.1]). Let bAs be the least area annulus
with @1bAs D �

C
s [�

�
s . As ˛˙n !1, for each n, there is an sn such that ˛˙n is in

outer side of bAsn
. As An is also least area annulus, An\bAsn

D∅, which shows that
the sequence fAng escapes to infinity too.

Let �n be the compact region which An separates from CH.�/. Let n be an essential,
smooth, simple closed curve in An . As An escapes to infinity and @1CH.�/D� , then
n! � . Let Dn be the least area disk in �n with @Dn D n [15]. By construction,
Dn is also a least area disk in H3 .

We claim that there exists a subsequence of fDng which converges to a least area plane
P in H3 with @1P D � . We will follow the proof of [2, Theorem 4.1]. Hence, if we
show the estimate M .DnxBr /�

1
2

Area.@Br / (see [2, Theorem 4.1, (4.2)]) is valid
for our sequence, we are done.

Let ˇ be a transversal arc in CH.�/ connecting @CCH.�/ and @�CH.�/ through the
point O (center of the balls Bn ). Let l be the length of ˇ . Consider the following
lemma from [5], of which a sketch of a proof is provided. Refer to [5] for more details.

Let Dr be a least area disk in Br with @Dr � @Br \CH.�/. Note that for sufficiently
large r > 0, @Br \CH.�/ is an annulus near � as @1CH.�/D � . Then we call Dr

nonseparating with respect to � in Br (or wrt-� ) if @Dr is not an essential curve in
the annulus @Br \CH.�/.

Lemma 3.3 [5, Lemma 4.1] Let � be a Jordan curve in S2
1.H

3/ differentiable at
least at one point. Let N0.�/ > 0 be as described above. Let Dr be a least area disk,
nonseparating wrt-� in Br for r >N0 . Then there is a monotone increasing function
F W ŒN0;1/!RC such that F.r/!1 as r !1, and d.O;Dr / > F.r/, where d

is the distance.

Let R0 > 0 be sufficiently large so that ˇ �BR0
and F.R0/ > l . Now we will prove

the uniform bound jDn\Br j< Cr for r >R0 , where j � j represents the area.
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By [2, Lemma 4.2], for a given least area disk Dn , Dn\Br is a collection of disjoint
embedded disks for any generic r > 0. This is simply because Dn\Br is a surface
for generic r , and by the convexity of Br , any component in Dn\Br must be a disk.

We claim that for n>maxfN0;R0g, Dn\Br is just a disk (only one component) for
any generic r >R0 . Assume not, and let E1;E2 be two such disks in Dn\Br0

. Since
Dn is an embedded disk in Bn , there is a path ˛ connecting E1 and E2 in Dn . Let
r0< r 0<n be the smallest radius such that E1 and E2 are in the same component bE of
Dn\Br 0 . Hence bE is a least area disk, nonseparating wrt-� in Br 0C� for sufficiently
small � > 0. Hence by Lemma 3.3, d.O; bE / > F.r 0/. However, d.O;Ei/� l as ˇ
intersects Ei by construction. Hence we get d.O; bE /�d.O;Ei/� l<F.R0/<F.r 0/,
which gives a contradiction.

This proves that for n>maxfN0;R0g and for any r >R0 , Dn\Br is a disk (only
one component). Hence, for any fixed r >R0 , jDn\Br j � j@Br j D Cr , which gives
the desired uniform bound. This proves the estimate (4.2) of [2, Theorem 4.1] is valid
for our sequence fDng. The proof follows.

Remark 3.4 As explained in Remark 3.1, Anderson’s proof has a gap because the
sequence of disks he constructed does not satisfy a uniform area estimate in a ball, as
there might be more than one disk component. However, each component does satisfy
an area estimate and thus curvature estimates by a result of Schoen and Simon [20].
Therefore, one still can obtain convergence to a lamination � with @1� D � . One
then needs to show that each leaf in � is in fact topologically a disk. For this, see for
instance [3]. There, they deal with the harder case of possible singularities forming. In
fact, Schoen and Simon curvature estimates can also be used in the proof of Theorem 4.2
to avoid working with integral currents.

4 Minimizing H–planes

In this section, we will show the existence of solutions of the asymptotic H–Plateau
problem in H3 for H 2 .�1; 1/. In particular, we will generalize the techniques in
the previous section to the CMC case, and show that for any simple closed curve
� in S2

1.H
3/ with one smooth point, there exists an embedded H–plane PH with

@1PH D � . First, we need to generalize Lemma 3.3 proven in [5] to the minimizing
H–planes in H3 .

We will use the same notation, ie let O;Br ;Ar ;N0 be as in the previous section. Fix
H 2 .�1; 1/. Let bAH

�
D @Br \CHH .�/ be an annulus in @Br . Again, let Dr be a

minimizing H–disk in Br with @Dr �
bAH
�

. Then we call Dr nonseparating wrt-�
in Br if @Dr is not an essential curve in the annulus bAH

�
.
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Lemma 4.1 Fix H 2 .�1; 1/. Let � be a Jordan curve differentiable at least at one
point in S2

1.H
3/. For r > N0 , let Dr be a minimizing H–disk, and nonseparating

wrt-� in Br . Then there is a monotone increasing function F W ŒN0;1/!RC such
that F.r/!1 as r !1, and d.O;Dr / > F.r/, where d is the distance.

Proof We will adapt the proof of Lemma 3.3 to this case. Lemma 3.3 finishes the
H D 0 case. Hence, we can take H > 0. For H < 0, the same proof works by changing
the orientation. Fix H > 0.

Recall that Ar is the least area annulus in Br with @Ar D ˛
C
r [˛

�
r for generic r >N .

Let bAr be the annulus in @Br with @ bAr D ˛
C
r [˛

� . Let F.r/D d.O;Ar /.

We claim that for any minimizing H–disk Dr which is nonseparating wrt-� in Br ,
Dr \Ar D ∅, ie Dr stays in the solid torus Ur in Br with @Ur D Ar [

bAr ; see
Figure 1. In particular, this shows that d.O;Dr / > F.r/, and the proof will follow.

Now, let Dr be a minimizing H–disk and nonseparating wrt-� in Br with @Dr D

r �
bAr . Since Dr is nonseparating wrt-� , r is a not an essential curve in bAr . In

other words, r bounds a disk Er in bAr ; see Figure 1.

�

O CHH .�/

Br

S2
1.H

3/

˛Cr

bAr

Dr

r

Ur
�r �Ur

˛�r

Er

Ar

˛Cr

H3

Figure 1: If r is a nonessential curve in bAr , the nonseparating minimizing
H–disk Dr in Br with @Dr D r must belong to Ur . This shows that for
any such Dr in Br , d.O;Dr / > d.O;Ar /D F.r/ .

Let �r be the region in Br with @�r DDr [Er . Since Dr is a minimizing H–disk
in Br with H > 0, IH .Dr /D jDr jC 2H j�r j is the smallest among all the disks in
Br with boundary r . Here j � j represents the area or the volume of the corresponding
region.
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Assume that d.O;Dr /<d.O;Ar /. Recall that Ur is the region in Br with @UrDAr[bAr . Let �0r D�r \Ur . Then as d.O;Dr / < d.O;Ar /, j�0r j< j�r j. Furthermore,
let T 0 D Ar \�

0
r be the planar region in Ar with @T 0 D ˇ . Let T be the planar

region in Dr with @T D ˇ . Since Dr is a nonseparating disk, and Ar is an annulus,
D0 D .Dr � T / [ T 0 is also a disk in Br with @D0 D r . Furthermore, as Ar is
a least area annulus, jT 0j < jT j and hence jD0j < jDr j. This implies IH .D

0/ D

jD0jC 2H j�0r j< jDr jC 2H j�0r j D IH .Dr /. However, Dr is a minimizing H–disk
in Br . This is a contradiction. This proves Dr \Ar D∅, and Dr � Ur . Hence, this
shows that d.O;Dr / > d.O;Ar /D F.r/. The lemma follows.

Now we prove the main result of the paper.

Theorem 4.2 (Existence of H–planes) Let � be a Jordan curve in S2
1.H

3/ differ-
entiable at least at one point. Let H 2 .�1; 1/. Then there exists a properly embedded
minimizing H–plane PH in H3 with @1PH D � .

Proof Fix H 2 .�1; 1/. Given � in S2
1.H

3/, we will use the same setup as before,
ie let A;Ar ; bAr ;O;Br ;N0 be as in the previous lemma.

Let �nDBn\CHH .�/ for n>N0 . Let n be an essential smooth curve in bAn�@�n .
Then by construction, n! � as @1CHH .�/D � . Recall that the mean curvature
of the geodesic sphere of radius R is coth R. Hence, Bn is 1–convex for any n.
Then, by Lemma 2.4, there exists an embedded minimizing H–disk Dn in Bn with
@Dn D n . Here, the sign of H determines the minimizing H–disk as there are two
minimizing H–disks in Bn facing each other for H ¤ 0 [8]. Furthermore, since
n � CHH .�/, by Lemma 2.9 (see also Remark 2.10), Dn � CHH .�/. Hence, this
implies Dn ��n DBn\CHH .�/.

We claim that the sequence of embedded minimizing H–disks fDng converges to a
minimizing H–plane PH . First, we claim that the sequence of minimizing H–disks
fDng has a convergent subsequence in any compact set K in H3 . Then, by using the
diagonal sequence argument as before, we will get a limit minimizing H–plane in H3 .

Consider the closed balls BK with center O . By using convexity of BK , for generic
K>N0 , we can assume Dn\BK is a collection of disks for any n by [2, Lemma 4.2].

Now, let ˇ be a transversal arc in CHH .�/ connecting @CCHH .�/ and @�CHH .�/

through the point O . Let l be the length of ˇ . Fix a generic K0 > N0 such that
F.K0/ > l . Then by Lemma 4.1, and the proof of Theorem 3.2, D0

n DDn\BK0
is

a closed disk (only one component) for any n. Hence, the sequence of minimizing
H–disks fD0

ng has a uniform area bound, say jD0
nj< j@BK0

j. Then, by following the
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proof of [2, Theorem 4.1], the existence of smoothly embedded minimizing H–plane
†H can be shown as follows:

With the uniform area bound, the sequence of minimizing H–disks fD0
ng has a

convergent subsequence in BK0
by the compactness theorem for integral currents.

Hence by considering them as integral currents, a subsequence of fD0
ng converges to a

properly embedded minimizing H–disk D0 in BK0
. Let Ki be a monotone increasing

sequence with Ki%1. For K1 >K0 , by starting with this subsequence, get another
subsequence converging on BK1

. By iterating this process and the diagonal sequence
argument, we get a sequence of integral currents fDng that converges on compacts to
the integral current †H in H3 . By Allard’s regularity, the convergence is smooth on
compact sets. Also, the asymptotic boundary of the support of †H is � by the convex
hull property (Lemma 2.9), ie @1†H D � as @1CHH .�/D � .

The limit of minimizing H–disks †H is a minimizing H–surface. Hence, by [14], for
any point p in the support of †H , there exists � > 0 with B�.p/\†H is a smooth
embedded disk. Hence, the support of †H is smoothly embedded surface. Finally,
since the convergence is smooth in compact sets, and fDng is a sequence of embedded
disks, †H is a complete minimizing H–plane in H3 with @1†H D � . The proof
follows.

Remark 4.3 (Pairs of H–planes) Notice that if we forget the sign of the mean
curvature H , the theorem above shows that for a given Jordan curve � in S2

1.H
3/,

there exist two minimizing H–planes PC
H

and P�
H

with P˙
H
D � for H 2 .0; 1/.

Furthermore, these H–planes are disjoint, and the convex sides are facing each other.

Remark 4.4 The above result was shown for special families of curves in S2
1.H

3/

like star-shaped curves [13], “mean convex” curves [17], and graph over a line [18],
where they showed that the area-minimizing surface †H is indeed a graph over a
geodesic subspace in H3 .

Corollary 4.5 (Proper embeddings) Let � be a C 3;˛ smooth Jordan curve in
S2
1.H

3/. Let PH be a minimizing H–plane in H3 with @1PH D � . Then PH

is properly embedded in H3 .

Proof By [21], since � is C 3;˛ smooth, PH is regular near infinity. In particular,
there exists a � > 0 such that in the upper half-space model of H3 , PH \fz < �g is a
graph over � � .0; �/. Then, for sufficiently large N , @BN \PH is a Jordan curve
 in @BN . Hence, BN \ PH D D is a minimizing H–disk in BN with @D D 
by the definition of minimizing H–plane. By Lemma 2.4, D is properly embedded.
Since PH �D is a graph over � � .0; �/ in the upper half-space model [21], the proof
follows.
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Remark 4.6 Indeed, it can be showed that the above result is true for far more
generality. By using the techniques in [5], one can naturally generalize the above result
to Jordan curves in S2

1.H
3/ differentiable at least at one point. Even though there is

no regularity near infinity in that case, by using Lemma 4.1, the arguments in [5] can
easily be adapted.

Note also that Meeks, Tinaglia and the author [9] recently showed that there exists a
nonproperly embedded complete H–plane †H in H3 for any H 2 Œ0; 1/. In particular,
†H is an H–plane between two rotationally invariant H–catenoids C1 and C2 where
†H spirals into C1 in one end, and spirals into C2 in the other end. Hence, @1†H is
a pair of infinite lines lC and l� in S2

1.H
3/. Here, if @1Ci D ˛

C
i [˛

�
i , and A˙ is

the annuli in S2
1.H

3/ with @A˙i D ˛
˙
1
[˛˙

2
, then lC �AC and l� �A� where l˙

spirals into ˛˙
1

in one end, and spirals into ˛˙
2

in the other end.

5 Final remarks

5.1 Generic uniqueness of minimizing H–planes

The generic uniqueness results for minimizing H–surfaces in H3 [4] can naturally be
generalized to our context, ie minimizing H–planes. In particular, for fixed H 2 .�1; 1/,
let †1 and †2 be minimizing H–planes with @1†i D �i , where �1 and �2 are
disjoint simple closed curves in S2

1.H
3/. Then, by using the Meeks–Yau exchange

roundoff trick, it can be showed †1 and †2 are disjoint, too. By using this, and
similar ideas to [4], it can be showed that any simple closed curve � bounds either a
unique minimizing H–plane † in H3 , or there are two canonical disjoint minimizing
H–planes †C and †� with @1†˙ D � . Hence, foliating an annular neighborhood
of � in S2

1.H
3/ with simple closed curves, and considering the canonical H–planes

constructed, one can get generic uniqueness result as in [4]. In particular, this shows
that for fixed H 2 .�1; 1/, a generic Jordan curve � in S2

1.H
3/ bounds a unique

minimizing H–plane † in H3 with @1†D � .

5.2 Foliations of H3 by H–planes

Similar to the previous part, it is also possible to show that two H–planes in H3 with
different H values, which are asymptotic to the same asymptotic curve in S2

1.H
3/

are disjoint. In particular, for a given Jordan curve � in S2
1.H

3/, and given �1 <

H1 <H2 < 1, it can be showed that the minimizing H–planes PH1
and PH2

in H3

with PHi
D � are disjoint by using the ideas in [6]. Hence, if � bounds a unique

minimizing H–plane for any H 2 .�1; 1/, it can be showed that the family of planes
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F� D fPH j @1PH D � and � 1 < H < 1g foliates H3 . By the disjointness of
the planes fPH g for different H , in order to get the foliation, all one needs to show
is that there is no gap between the planes fPH g by using the uniqueness. By the
arguments in [6], a gap between the planes, say between fPH j �1 <H �H0g and
fPH jH0 <H < 1g, implies the nonuniqueness for H0 –planes with PH0

D � . This
gives a contradiction, and shows that F� foliates H3 . For example, if � is a star-shaped
curve in S2

1.H
3/, then the family F� foliates H3 [6; 13; 18].
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