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Counting genus-zero real curves in symplectic manifolds

MOHAMMAD FARAJZADEH TEHRANI

PART 2 JOINT WITH ALEKSEY ZINGER

There are two types of J–holomorphic spheres in a symplectic manifold which are
invariant under an anti-symplectic involution: those that have a fixed point locus and
those that do not. The former are described by moduli spaces of J–holomorphic
disks, which are well studied in the literature. In this paper, we first study moduli
spaces describing the latter and then combine the two types of moduli spaces to
get a well-defined theory of counting real curves of genus 0. We use equivariant
localization to show that these invariants (unlike the disk invariants) are essentially
the same for the two (standard) involutions on P 4n�1 .

53D45; 14N35

1 Introduction and main results

Let .X; !; �/ be a symplectic manifold, which we will assume to be connected through-
out this paper, with a real structure � , ie a diffeomorphism �WX ! X such that
�2 D idX and ��! D �! . Let L D Fix.�/ � X be the fixed point locus of � ; so
L is a Lagrangian submanifold of .X; !/ which can be empty. In the simplest case
of .X; !/ D .P1; !FS/, where !FS is the Fubini–Study symplectic form, there are
involutions of both types. An almost complex structure J on TX is called .!; �/–
compatible if ��J D �J and !. � ;J � / is a metric. Denote the set of such almost
complex structures by J!;� or simply J� .

Fix a compatible almost complex structure J . Let uW P1 ! X be an n–marked
somewhere injective J–holomorphic sphere, ie

(1-1) duCJ ı du ı j D 0; u�1.u.z//D fzg for almost every z 2 P1;

where j is the complex structure of P1 . We call such a J–holomorphic map real if its
image (as a marked curve) is invariant under the action of � . In this case, pulling back
� to P1 , we get an involution on P1 , which may or may not have fixed points and
preserves the set of marked points. After a change of coordinates, an anti-symplectic
involution with fixed points can be written as

� W P1
! P1; �.Œz; w�/D Œ xw;xz �;
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while a fixed point free involution can be written as

(1-2) �W P1
! P1; �.Œz; w�/D Œ xw;�xz �:

For k; l 2Z�0 and A2H2.X /, we define Mk;l.X;A/
�;� and Ml.X;A/

�;� to be the
moduli spaces of degree A genus-zero J–holomorphic curves uW P1!X satisfying

(1-3) uD � ıu ı � and uD � ıu ı �;

respectively, with l disjoint ordered conjugate pairs of marked points, along with k

real (� –fixed) marked points in the first case. Similar to McDuff and Salamon [21,
Appendix C], these moduli spaces have real virtual dimension

(1-4) dimvir Mk;l.X;A/
�;�
D dimC X C c1.A/C 2l C k � 3;

dimvir Ml.X;A/
�;�
D dimC X C c1.A/C 2l � 3:

Every J–holomorphic map uW P1 ! X in Mk;l.X;A/
�;� corresponds to two J–

holomorphic disks uW .D2;S1/ ! .X;L/ with k boundary marked points and l

.˙/–decorated1 interior marked points, representing ˇ;���ˇ 2 H2.X;L/; the j th

decoration is .C/ if the first point of the conjugate pair .zj ; �.zj // lies on the chosen
disk and is .�/ otherwise. We define Mdisk

k;l
.X;L; ˇ/dec and Mdisk

k;l
.X;L; ˇ/ to be

the moduli spaces of such J–holomorphic disks with and without decorations, respec-
tively. Let Ml.X;A/

�;� and Mk;l.X;A/
�;� be the stable map compactifications of

Ml.X;A/
�;� and Mk;l.X;A/

�;� , respectively. Let

(1-5) evi WMl.X;A/
�;�
!X; evi.Œu; †; .zj ; �.zj //

l
jD1�/D u.zi/;

evB
i WMk;l.X;A/

�;�
!L; evB

i .Œu; †; .wj /
k
jD1; .zj ; �.zj //

l
jD1�/D u.wi/;

evi WMk;l.X;A/
�;�
!X; evi.Œu; †; .wj /

k
jD1; .zj ; �.zj //

l
jD1�/D u.zi/;

be the natural evaluation maps.

For the classic moduli space Mn.X;A/ of J–holomorphic spheres in a homology
class A, genus-0 Gromov–Witten invariants are defined via integrals of the form

(1-6) h�1; : : : ; �niA D

Z
ŒMn.X ;A/�vir

ev�1.�1/^ � � � ^ ev�n.�n/;

where the �i are cohomology classes on X ; see Fukaya and Ono [9], Li and Tian [20],
and Ruan and Tian [25]. These integrals make sense and are independent of J , because
Mn.X;A/ has a (virtually) orientable fundamental cycle without real codimension-
one boundary. One would like to define similar invariants for the moduli spaces
Mdisk

k;l
.X;L; ˇ/ and the evaluation maps in (1-5). The existence of such invariants is

1Decorated moduli spaces are studied by Georgieva [10].
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predicted by physicists (see Aganagic, Klemm and Vafa [1], Labastida, Mariño and
Vafa [19], Ooguri and Vafa [22], and Witten [29]), but there are obstacles to defining
such invariants mathematically. In addition to the transversality issues (which are also
present in the classical case), issues concerning orientability and codimension-one
boundary arise.

1.1 Disk or �–invariants

Whereas moduli spaces of closed curves have a canonical orientation induced by J ,
Mdisk

k;l
.X;L; ˇ/ is not necessarily orientable. Moreover, if it is orientable, there is no

canonical orientation. If L has a spin (or relative spin) structure, then Mdisk
k;l
.X;L; ˇ/

is orientable and a choice of spin structure canonically determines an orientation on
Mdisk

k;l
.X;L; ˇ/; see [7, Theorem 8.1.1].

Let �W H2.X /! H2.X;L/ be the inclusion homomorphism. The union of moduli
spaces Mdisk

k;l
.X;L; ˇ/dec over all ˇ 2H2.X;L/ such that �.A/Dˇ���ˇ is an étale2

double covering of Mk;l.X;A/
�;� , with the deck transformation

(1-7) �MW
�
u; .wj /

k
jD1; .zj ; �j /

l
jD1

�
!
�
� ıu ı c; .wj /

1
jDk ; .c.zj /;��j /

l
jD1

�
;

where �j D˙ is the decoration and c.z/D xz . See [10, Theorem 1.1(3)] if l > 0, and
[23, Section 1.3.4] if l D 0, for a more detailed description of this covering map. At
several points in the paper, we go back and forth between the two descriptions to relate
the known results for J–holomorphic disks with the corresponding statements for the
.�; �/–real maps.

For every ˇ 2H2.X;L/, k; l � 0, a choice of spin structure on LDFix.�/ determines
an orientation on Mdisk

k;l
.X;L; ˇ/dec , with the anti-complex orientation imposed on the

tangent spaces at the .�/ marked points, as in [10, Section 4]. By [8, Theorem 1.3]
and [11, Corollary 5.4], �M is orientation-preserving if and only if 1

2
�.ˇ/Ck is even,

where �.ˇ/ 2 2Z is the Maslov index of ˇ . In particular, if L is spin and 4 j c1.TX /

(ie 4 j c1.A/ for every A 2H2.X /), then M0;l.X;A/
�;� or simply Ml.X;A/

�;� is
orientable, while �M is orientation-reversing on Mdisk

1;l
.X;L; ˇ/dec .

The boundary of Mk;l.X;A/
�;� , ie the subspace of maps with at least one node, has

two types of real (virtual) codimension-one strata; see Figure 1. The first type, called
disk bubbling, consists of maps from two spheres with a real point in common. This
stratum breaks into unions of components isomorphic to

(1-8) Mk1C1;l1
.X;A1/

�;�
�.evB

1
;evB

1
/Mk2C1;l2

.X;A2/
�;�=G;

2Étale double covering means that over the main stratum Mdisk
k;l
.X;L; ˇ/ , it is a double covering;

however, over the boundary strata it has higher degrees.
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where

l1C l2 D l; k1C k2 D k; A1CA2 DA; G D

�
Z2 if k; l D 0; A1 DA2;

f1g otherwise:

The second type, called sphere bubbling, appears only if k D 0 and ADB ���B for
some B 2H2.X /. It consists of maps from the nodal domain †D P1[q P1 , taking
the node q to L. This stratum is isomorphic to (the Z2 –quotient of)

(1-9)
G

B2H2.X /
B���BDA

.M1Cl.X;B/dec �ev1
L/;

where the intersection point with L, which corresponds to the first marked point in
the 1C l marked points, has no decoration. Note that the natural extension of �M
preserves each component of the domain of every map in the first case and interchanges
them in the second case.

u2u1

Disk bubbling

nodeL

Sphere bubbling

collapsed boundaryL

Figure 1: Half of the curves in the codimension-one boundary strata of Mk;l .X;A/
�;� .

If a codimension one stratum is a boundary, an integral similar to (1-6) depends on
the particular choices of the integrands (and other choices), and thus does not produce
invariants. The boundary problem is present in nearly all cases. In the disk formulation,
it has been overcome in a number of cases by either adding other terms to compensate
for the effect of the boundary [27; 28; 6] or by gluing boundary components to each
other to get moduli spaces without boundary [26; 10]. In the real curve formulation,
the latter approach actually shows that the disk-bubbling stratum is a hypersurface in
the real moduli space across which the orientation extends; see Proposition 3.1. None
of these methods can address the issue of sphere bubbling; we address it in this paper.

1.2 �–invariants

The moduli spaces Ml.X;A/
�;� have mostly been ignored in the literature. As we

show, the codimension-one boundary consists of maps from a wedge of two spheres
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taking the node to L. The restrictions of each map to the two spheres determine
elements of M1Cl.X;B/dec and M1Cl.X;���B/dec that differ by the involution

(1-10) �MWM1Cl.X;B/dec �ev1
L!M1Cl.X;���B/dec �ev1

L;

Œu; z0; .z1; �1/; : : : ; .zl ; �l/�! Œ� ıu ı c; c.z0/; .c.z1/;��1/;

: : : ; .c.zl/;��l/�;

where cW P1! P1 , and c.z/D xz . Thus, the codimension-one boundary breaks into
unions of components isomorphic to (Z2 –quotient)

(1-11) M1Cl.X;B/dec �ev1
L;

with B 2H2.X / such that AD B ���B . In particular, if Fix.�/D∅, there are no
codimension-one boundary components, and we obtain the following result.

Proposition 1.1 If .X; !; �/ is a symplectic manifold with a real structure � and
Fix.�/D∅, then Ml.X;A/

�;� has a topology with respect to which it is compact and
Hausdorff. It has a Kuranishi structure without boundary of virtual real dimension

d D c1.A/C dimC X � 3C 2l:

This proposition and Theorem 1.7 are proved in Section 2 based on [7] by providing
the adjustments to the real case.

Remark 1.2 There are many symplectic manifolds .X; !/ admitting anti-symplectic
involutions without fixed points. For example, the involution �2m�1 on P2m�1 defined
in (1-13) has no fixed points. Furthermore, the symplectic cut of [5, Section 2] associates
to each real symplectic manifold .X; !; �/ with Fix.�/Š Sn;RPn a real symplectic
manifold .XC; !C; �C/ with Fix.�C/D∅ by “cutting out” Fix.�/ and replacing it
with a divisor.

In order to define invariants, we also need to consider the orientation problem, which
has not been studied before. A real structure on a complex vector bundle E!X is
an anti-complex linear involution �E W E! E covering � . A real square root of a
complex line bundle L!X with real structure �L is a complex line bundle L0!X

with real structure �L0 such that

.L; �L/Š .L0˝L0; �L0 ˝�L0/:

The involution � on X canonically lifts to an involution �KX
on the complex line

bundle KX Dƒ
top
C T �X .

Geometry & Topology, Volume 20 (2016)
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Theorem 1.3 Let .X; !; �/ be a symplectic manifold with a real structure. If the
bundle .KX ; �KX

/ admits a real square root, then all moduli spaces Ml.X;A/
�;� are

orientable. Moreover, a choice of real isomorphism .KX ; �KX
/Š .L˝L; �L˝�L/

canonically determines the orientation.

This theorem is proved in Section 2.1. In an abuse of terminology, throughout the
rest of this paper, by a real square root we mean a choice of complex line bundle L
on X with a real structure �L , together with a choice of real bundle isomorphism
.KX ; �KX

/Š .L˝L; �L˝�L/.

Remark 1.4 If L ! P1 is a holomorphic line bundle with a complex anti-linear
involution lift z� of �W P1! P1 , then for all k 2 Z there is a decomposition

H 0.L˝ .T P1/˝k/DH 0
C.L˝ .T P1/˝k/˚H 0

�.L˝ .T P1/˝k/

into the ˙1 eigenspaces of the endomorphism

H 0.L˝ .T P1/˝k/!H 0.L˝ .T P1/˝k/; �! z� ı � ı �I

the two eigenspaces are interchanged by the action of i. Since the action of � on P1

has no fixed points and H 0.L˝ .T P1/˝k/ is nonzero for k large enough, the zeros
of every element of H 0

C.L˝ .T P1/˝k/ come in pairs and thus degL is even. Hence,
if Ml.X;A/

�;� is non-empty, then 2 jKX .A/. Thus, if KX has a real square root,
then 4 jKX .A/ whenever Ml.X;A/

�;� is non-empty. The last requirement can not be
removed. For example, if .X; �/D .P4mC1; �4mC1/, then KX has a real square root
but 4−KX .`/, where `�H2.P

4mC1/ is the homology class of the complex projective
line.

If .X; !; �/ is a Kähler manifold with an anti-holomorphic anti-symplectic involution
� and L0! X is a holomorphic line bundle, then L0˝ ��L0 is a holomorphic line
bundle with a real structure. Hence, if L!X is a holomorphic line bundle, LDL0˝L0 ,
and ��L0 Š L0 , then L admits a real structure. Suppose 4 jKX , ie there is a divisor
D such that KX D Œ4D�. Since ��KX DKX , it follows that ŒD���D� is torsion.

Proposition 1.5 Let .X; !; �/ be a symplectic manifold with a real structure. If either

(1) H 1.X IR/D 0 and c1.TX /D 4˛ for some ˛ 2H 2.X IZ/ such that ˛D���˛ ,
or

(2) X is compact Kähler, � is anti-holomorphic, and KX D Œ4D� for some divisor
D on X such that ŒD�D Œ��D�,

then .KX ; �KX
/ admits a real square root.
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We prove this proposition in Section 2.2. An example with Ml.X;A/
�;� non-orientable

is described in Section 2.2. In the simply connected case, [15, Example 2.6] provides
an example where Ml.X;A/

�;� is not orientable.

1.3 Real GW invariants

If LD Fix.�/¤∅ and sphere bubbling is present (k D 0 and ADB���B for some
B 2H2.X /), we cannot define either the � –invariants or the �–invariants separately.
It is noted in [23, Section 1.5] that in order to get well-defined invariants in these cases,
the moduli spaces Ml.X;A/

�;� and Ml.X;A/
�;� need to be combined somehow.

This is achieved in this paper.

As described in Sections 1.1 and 1.2, the codimension-one boundary corresponding
to sphere bubbling in Ml.X;A/

�;� is the same as the codimension-one boundary
of Ml.X;A/

�;� . By attaching Ml.X;A/
�;� and Ml.X;A/

�;� along their common
boundary (ie considering all genus-0 real curves representing class A), we obtain a
moduli space Ml.X;A/

� whose only possible codimension-one boundary corresponds
to disk bubbling. We then use the results of [26] and [10] and observe that the
codimension-one strata of Ml.X;A/

� corresponding to disk bubbling are in fact
hypersurfaces and therefore Ml.X;A/

� (virtually) does not have any codimension-
one boundary.

If KX has a real square root, L is spin, and 4 j c1.TX /, the moduli spaces Ml.X;A/
�;�

and Ml.X;A/
�;� are oriented. By studying the orientation along the common boundary

we show that the union is also orientable.

If KX admits a real square root, .L; �L/, as above,

(1-12) ƒ
top
R TLD L�L ˝L�L ;

thus the Lagrangian L is orientable and the induced orientation is independent of the
choice of real square root. A spin structure on L is a trivialization LŒ2��RdimR L

of TL over the 2–dimensional skeleton LŒ2� of a triangulation of L. Given such a
trivialization, by taking its determinant we obtain a trivialization of ƒtop

R TL over LŒ2�.
Therefore, if we know that L is orientable, there is a unique choice of orientation on
L which is equal to the one induced by the spin structure on .ƒtop

R TL/
ˇ̌
LŒ2�

as above.

Definition 1.6 We say that a given real square root for KX and a given spin structure
on L are compatible if their induced orientations on L as above are the reverse of
each other.

In the situation of Definition 1.6, we would orient L with the induced orientation of
the spin structure.
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Theorem 1.7 If .X; !; �/ is a symplectic manifold with a real structure � , then
Ml.X;A/

� has a topology with respect to which it is compact and Hausdorff. It has a
Kuranishi structure without boundary of virtual real dimension

d D c1.A/C dimC.X /� 3C 2l:

If in addition 4 j c1.TX /, then a compatible pair of a real square root for KX and a spin
structure on L determines an orientation on Ml.X;A/

� , hence a virtual fundamental
class ŒMl.X;A/

� �vir .

We prove the first part of this theorem in Section 2.3 and the second part in Section 3.
We call the resulting invariants real GW invariants. The moduli space Ml.X;A/

�

provides a framework to define real GW invariants without any restriction on the
topology of the image or the involution. If Ml.X;A/

�;� or Ml.X;A/
�;� is empty,

the real invariants reduce to the disk invariants or �–invariants above. If Ml.X;A/
�

is not orientable, we may still consider invariants with twisted coefficients (coefficients
in the orientation bundle). For example, [11] shows that for some cases where both the
Deligne–Mumford space and Mk;l.X;A/

�;� are not orientable, invariants with twisted
coefficients pulled back from the Deligne–Mumford moduli space exist. In our case,
the Deligne–Mumford space is orientable; however, one may still find non-orientable
geometric cycles within Ml.X;A/

� that provide the necessary twisting coefficients.

For example, if Fix.�/ D L Š S3, X is a real symplectic Calabi–Yau threefold,3

and A 2 H2.X / is non-trivial, then M.X;A/� is (virtually) zero-dimensional and
orientable. In fact, TL is trivializable (hence it is spin), by Proposition 1.5 every
real symplectic Calabi–Yau threefold admits a real square root, and by Theorem 1.7
we should choose the one which is compatible with the chosen spin structure on L.
Therefore, the orientation of M.X;A/� depends on the choice of spin structure on L.
In this case we cannot define disk invariants or �–invariants separately. We define
genus-0 real GW invariants of .X; �/ by

N
�

A
.X /D #ŒM.X;A/� �vir

2Q:

By applying the degeneration technique of [5], we prove the following theorem in
Section 4. It implies that for some J , the only contribution to N

�
A
.X / is from �–curves.

Hence, it demonstrates that considering only J–holomorphic disks does not suffice to
get non-trivial invariants in this set of examples.

3Following [16, Section 14.2], by a “symplectic Calabi–Yau” we mean a connected symplectic manifold
of vanishing first Betti number.
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Theorem 1.8 Let .X; !; �/ be a real symplectic Calabi–Yau threefold. If Fix.�/ŠS3,
then for every nonzero A2H2.X;Z/ there exists an almost complex structure J 2J!;�
such that the � –moduli space M.X;A;J /�;� is empty.

In fact, in [5] we show that there is a natural Hamiltonian S1 –action on a neighborhood
of L in X . Applying the symplectic cut and symplectic sum procedures to this action,
we build a symplectic fibration � W X !� over a disk in C , where the smooth fibers
are symplectomorphic to X and the central fiber is a normal crossing, X0DX�[D XC .
We get an induced anti-symplectic involution on X which leaves X˙ invariant and
which restricted to XC has no fixed point. Moreover, we get a canonical inclusion of
H2.X / in H2.XC/. Via the symplectic sum procedure, every almost complex structure
J0 on X0 — ie union of two almost complex structures JC and J� on XC and X� ,
respectively, where both preserve D — extends to an almost complex structure J on
X which is compatible with the fibration and the symplectic structure. We can think
of J� D J

ˇ̌
X�

, X� D �
�1.�/, as a family of almost complex structures on X which

converge to a singular almost complex structure. Then, for any E > 0, we show that
there exist J0 and 0< �0 such that M.X;A;J�/

�;� is empty whenever 0< � < �0

and !.A/ <E .

1.4 Projective spaces (joint with A Zinger)

We now discuss in some detail the case X D P2m�1 . The involutions �; �W P1! P1

are special cases of the anti-holomorphic involutions

�2m�1; �2m�1W P
2m�1

! P2m�1;

where

(1-13) �2m�1.ŒZ1;Z2; : : : ;Z2m�1;Z2m�/D .Œ xZ2; xZ1; : : : ; xZ2m; xZ2m�1�/;

�2m�1.ŒZ1;Z2; : : : ;Z2m�1;Z2m�/D .Œ� xZ2; xZ1; : : : ;� xZ2m; xZ2m�1�/:

The fixed locus of �2m�1 is the real projective space RP2m�1, while the fixed locus
of �2m�1 is empty. The latter implies

(1-14) Ml.P
2m�1; d/�2m�1;� D∅:

The next observation is established in Section 5.1.

Lemma 1.9 Suppose d;m 2 ZC and l 2 Z�0 . Then

(1-15) Ml.P
2m�1; d/�2m�1;� D∅ if d 62 2Z;

Ml.P
2m�1; d/�2m�1;� D∅ if d 2 2Z:
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Since KP4m�1 D Œ�4mP4m�2� and RP4m�1 is spin, it follows by Proposition 1.5
and Theorem 1.7 that Ml.P

4m�1; d/� is orientable for � D �4m�1; �4m�1 . In fact,
Euler’s sequence of holomorphic vector bundles

(1-16) 0 �! Pn�1
�C

f
�! nOPn�1.1/

h
�! T Pn�1

�! 0

over Pn�1 provides a canonical compatible pair of real square root for KPn�1 and
spin structure for RPn�1 , whenever nD 4m; see Section 5.5. For l; t1; : : : ; tl 2 ZC ,
we can then define

(1-17) N
�

d
.t1; : : : ; tl/D

Z
Ml .P4m�1;d/�

ev�1H t1 ^ � � � ^ ev�l H tl ;

where H 2H 2.P4m�1;Z/ is the hyperplane class.

Theorem 1.10 For all m; d; l; t1; : : : ; tl 2 ZC,

(1-18) N
�4m�1

d
.t1; : : : ; tl/D�N

�4m�1

d
.t1; : : : ; tl/:

Furthermore, these invariants vanish if d 2 2Z or tk 2 2Z for some k .

We prove this theorem in Section 6.3 using the equivariant localization theorem of [2].
While .KP4mC1 ; �4mC1/ does not admit a real square root and Fix.�4mC1/ does not
admit a spin structure, we show that Theorem 1.10 and its proof extend to P4mC1

with the orientations on the moduli spaces explicitly constructed in Section 5.2; see
Remark 6.9.

If d is odd, then

(1-19) Ml.P
4m�1; d/�4m�1 DMl.P

4m�1; d/�4m�1;� ;

Ml.P
4m�1; d/�4m�1 D�Ml.P

4m�1; d/�4m�1;�;

by the first statement in Equations (1-15) and by (1-14), respectively. The sign in (1-18)
and (1-19) occurs because we reverse the orientation of Ml.X;A/

�;� when gluing it to
Ml.X;A/

�;� in order to make the glued moduli space oriented. In fact, the canonical
square root and spin structure described in Section 5.5 give the same orientation on
Fix.�4m�1/. Therefore they are not compatible in the sense of Definition 1.6 and one
of the orientations has to be flipped. As described in Sections 6.1 and 6.2, the torus
fixed loci in

Ml.P
4m�1; d/�4m�1;� and Ml.P

4m�1; d/�4m�1;�;

their normal bundles, and the corresponding restrictions of the cohomology classes
being integrated are the same; this confirms (1-18) for d odd.
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If d is even, N
�4m�1

d
.t1; : : : ; tl/D 0 by (1-14) and the second statement in (1-15). On

the other hand, in this case the fixed loci in

(1-20) Ml.P
4m�1; d/�4m�1;� and Ml.P

4m�1; d/�4m�1;�;

their normal bundles, and the corresponding restrictions of the cohomology classes
being integrated are the same. Since the canonical orientation on the second space
in (1-20) gets flipped when it is glued to the first, the contributions to N

�4m�1

d
.t1; : : : ; tl/

from the fixed loci cancel in pairs. This confirms (1-18) for d even and establishes
Theorem 1.10 whenever 2 j d .

Whether d is odd or even, if 2 j tk , the contributions to N
�

d
.t1; : : : ; tl/ from the fixed

loci in Ml.P
4m�1; d/�;c , for c D �; � fixed, also cancel in pairs. This establishes the

remaining vanishing statement of Theorem 1.10.

In Example 6.3, we show that

(1-21) N
�4m�1

1
.t1; : : : ; tl/D 1

whenever

(1-22) t1; : : : ; tl 2 ZC� 2Z and t1C � � �C tl D 4m� 2C l:

In particular, the signed number of real lines passing through a single non-real point in
P4m�1 with the standard conjugation is C1 with respect to the canonical spin structure
of Section 5.5. In Example 6.4, we show that

(1-23) N
�4m�1

3
.t1; t2; 4m� 1/D�1

whenever

(1-24) t1; t2 2 ZC� 2Z; t1; t2 � 3; and t1C t2 D 4mC 2:

A similar computation shows that

N
�3

5
.3; 3; 3; 3; 3/D 5:

Remark 1.11 All moduli spaces Ml.P
2m�1; d/�;c are given explicit orientations

in Section 5.2. In the c D � case, the orientation turns out to come from a relative
spin structure on RP2m�1 and Proposition 3.1 still applies. We show directly that
so does Proposition 3.3; see Proposition 5.5. Thus, we can also define the numbers
N
�

d
.t1; : : : ; tl/ as in (1-17) using the algebraic orientations of Section 5.2. They can

be computed using the equivariant localization data of Sections 6.1 and 6.2 with only
minor changes; see Remark 6.9. The conclusions of Theorem 1.10 still apply. The
conclusions of (1-21) and (1-23) apply to the algebraic orientations on the moduli
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spaces for P4mC1 , which agree with the orientations by a canonical relative spin
structure for d odd; see Remarks 6.5, 6.6, and 6.9.

1.5 Outline and acknowledgments

In Section 2, we investigate the boundary and orientation problems for moduli spaces
of real curves without fixed points and define �–invariants. In Section 3, we combine
the orientation problem of M.X;A/�;� and M.X;A/�;� and finish the proof of
Theorem 1.7. Theorem 1.8 is proved in Section 4. In Section 5, we study the moduli
spaces of real maps P1 �! P2m�1 in detail. We provide equivariant localization data
for them and establish Theorem 1.10, (1-21), and (1-23) in Section 6.

I would like to thank Professor G Tian for his continuous encouragement and support
and for sharing his inspiring insights, and A Zinger for his patience and help with
the exposition of this paper. I am also grateful to P Georgieva and J Solomon for
many helpful discussions. Finally, I would like to thank the referee for many valuable
comments and suggestions.

Part I Construction of genus-zero real GW invariants

2 Moduli spaces of real curves without fixed points

In this section, we study the moduli space of real curves of genus 0 without real points.
As before, let

(2-1) �; � W P1
! P1; �.z/D

�1

xz
; �.z/D

1

xz
:

Denote by G� the set of Möbius transformations (automorphisms of P1 ),

�.z/D
azCb

czCd
;

commuting with �. It acts freely and transitively on the sphere bundle S.T P1/ of
T P1 . Since S.T P1/ŠRP3 , G� is a compact orientable Lie group. Furthermore, the
induced orientation on S.T P1/ as the boundary of the unit disk bundle D.T P1/ with
its complex orientation, with the convention as in (3-1), induces a canonical orientation
on G� . For this orientation on G� , an ordered set of vectors v1; v2; v3 2 TidG� is
given by

v1C iv2 D
d

da

ˇ̌̌
aD0

zCa

1�az
; v3 D

d
d�

ˇ̌̌
�D0

ei�z:
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Similarly, let G� be the set of Möbius transformations commuting with � . The
automorphism group G� has two connected components: G0

� containing the identity,
and � �G0

� , where �.z/D z�1 . The former is the automorphism group of a disk, and
the latter switches the two disk components of P1 n Fix.�/. Fixing one of the disk
components D as the reference disk, G0

� acts freely and transitively on the sphere
bundle S.TD/ of TD . Since S.TD/ŠD �S1 , G0

� inherits an induced orientation.
Let D be the choice containing z D 0 2 P1 , then u1;u2;u3 2 TidG0

� , where

u1C iu2 D
d

da

ˇ̌̌
aD0

zCa

1Caz
; u3 D

d
d�

ˇ̌̌
�D0

ei�z;

is an oriented basis. We use these conventions in orienting the corresponding moduli
spaces and in the proofs of Theorems 1.3 and 1.7.

The involution � on X induces an involution z� on the moduli space M2l.X;A/ of
all degree A 2l –marked somewhere injective J–holomorphic spheres:

z�.Œu; z1; z2; : : : ; z2l�1; z2l �/D Œ� ıu ı �; �.z2/; �.z1/; : : : ; �.z2n/; �.z2l�1/�:

For every J–holomorphic sphere uW P1!X in the fixed point locus of z� , there exists
at most one anti-holomorphic involution �u such that Fix.�u/D∅ and uD � ıuı�u ;
therefore, the fixed point locus of z� contains Ml.X;A/

�;� . Intuitively, Ml.X;A/
�;�

has half the dimension of M2l.X;A/.

Remark 2.1 If X ŠP1 , �D � , AD Œ1�2H2.P
1/ŠZ, and lD 0, then M0.P

1; Œ1�/

is just one point on which z� acts as the identity while M0.P
1; Œ1�/�;� is empty;

therefore, Fix.z�/¤M0.P
1; Œ1�/�;� .

Let Ml.X;A/
�;� denote the stable map compactification of Ml.X;A/

�;� . This is a
closed subset of M2l.X;A/ consisting of maps Œu; †; z1; : : : ; z2l � with the property
that there exists an anti-holomorphic involution �u on the domain † of u such that

jFix.�u/j � 1; uD � ıu ı �u; �u.z2/D z1; : : : ; �u.z2l/D z2l�1:

Thus, there are two possible cases for �uW †!†:

(1) † D †0 [
S

i.†i t †xi/, �uW †0 ! †0 is an anti-holomorphic involution
without fixed points, and �uW †i!†xi is an anti-holomorphic map with inverse
�uW †xi!†i .

(2) †D
S

i.†i [†xi/, and �uW †i !†xi is an anti-holomorphic map with inverse
�uW †xi!†i .
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In the second case, �u fixes a node of †, which must be mapped by u to Fix.�/;
Ml.X;A/ contains no such elements if Fix.�/D∅.

The virtual codimension of a boundary stratum of Ml.X;A/
�;� is the number of nodes

in the domains of the elements of the stratum. If Fix.�/D∅, then Ml.X;A/
�;� con-

tains no elements of the second type above, and so its boundary strata have codimension
at least two. Thus, Ml.X;A/

�;� is a moduli space without (virtual) codimension-one
boundary if Fix.�/D∅, and there is a hope of defining GW-type invariants directly
from Ml.X;A/

�;� .

We study the orientation problem for Ml.X;A/
�;� in Section 2.1 and describe a

Kuranishi structure in Section 2.3.

2.1 Orientation

Let c D �; �. In the orientation problem for Ml.X;A/
�;c , it is sufficient to consider

the case l D 0 because any pair of marked points .zi ; xzi/ increases the tangent space
by Tzi

P1, which has a canonical orientation. Denote by P0.X;A/
�;c the space of

(parametrized) degree A J–holomorphic maps uW P1! X such that � ı uD u ı c .
The group Gc acts on this space by

Gc �P0.X;A/
�;c
�! P0.X;A/

�;c ; g �uD u ıg�1:

By definition,
M0.X;A/

�;c
D P0.X;A/

�;c=Gc :

For example, P0.P
1; 1/c;c D Gc and M0.P

1; 1/c;c consists of a single point. The
next observation is used in Section 5.

Lemma 2.2 Let c D �; �. If P0.P
1; 1/c;c DGc is oriented with the canonical orien-

tation of Gc as at the beginning of Section 2, then M0.P
1; 1/c;c is a single negative

point.

Proof The group action in this case is given by

Gc �Gc �!Gc ; g � h �! h ıg�1:

The claim is thus equivalent to the statement that the differential of the map

Gc �!Gc ; g �! g�1;

is orientation-reversing at the identity. This differential is the multiplication by �1.
Since the dimension of Gc is odd, it is orientation-reversing.

Geometry & Topology, Volume 20 (2016)



Counting genus-zero real curves in symplectic manifolds 643

The orientation problem for Ml.X;A/
�;� has a long history. Below we focus on the

orientation problem for Ml.X;A/
�;� . In contrast to the group G� , the group G� is

connected. In order to put an orientation on M0.X;A/
�;� , it is thus enough to orient

P0.X;A/
�;� . For this, we need to orient the determinant of the index bundle

detR.E/�ƒtopH 0.E/R˝ƒ
top.H 1.E/R/

�;

where E D u�TX and H 0.E/R and H 1.E/R are the real elements of the kernel and
cokernel of a Cauchy–Riemann operator on E . Recall that E admits an anti-complex
linear involution T� ; see the diagram on the left in (2-11).

Definition 2.3 Let E ! P1 be a complex vector bundle with a real structure �
covering �. We call a trivialization of E over C� � P1 ,

E

�
��

 // C� �Cm

�
��

C�
id // C�;

admissible if the involution � .z/ D  �.z/ ı � ı  
�1
z coincides with the standard

involution C W .z; v/! .�.z/; xv/. Admissible trivializations  and  0 of .E; �/ over
C� are called homotopic if there is a family of such trivializations  t , t 2 Œ0; 1�, such
that  0 D  and  1 D  

0 .

Lemma 2.4 For every complex vector bundle E! P1 with a real structure � cov-
ering �, there are two homotopy classes of admissible trivializations over C� � P1 .
Moreover, for every admissible trivialization  and every map

R.�i /W C
�
�Cm

!C� �Cm; R.�i /.z; v/D .�1v1; : : : ; �mvm/; �i D˙1;

R.�i / ı is another admissible trivialization which is in the same homotopy class as  
if and only if

Q
�i D 1.

Proof (1) As a complex vector bundle, E is trivial over C� . Therefore, we can fix
a trivialization  W E!C� �Cm . The involution � then corresponds to a map

� W C
�
! GL.2m;R/

whose image lies in the set of anti-complex linear matrices. In order to obtain an
admissible trivialization, we find a change of trivialization matrix

(2-2) AW C�! GL.m;C/ such that A�.z/ ı� ıA�1
z D C:
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Let B .z/DC ı� .z/2GL.m;C/. Since � is an involution, B .�.z//B .z/DIm .
Composing on the left by C , we can rewrite (2-2) as

(2-3) A�.z/ ıB ıA�1
z D Im:

Let ˛W H n f0g ! GL.m;C/, where H is the closed upper half-plane, be a family of
matrices such that

˛.r/D

(
Im if r 2RC;

B .�.r// if r 2R�:

Next define

A.z/D

(
˛.z/B .z/ if z 2H n f0g;

˛.�.z// if z 2H n f0g:

It is easy to check that A is continuous and satisfies (2-3).

(2) If  is an admissible trivialization, any other admissible trivialization is of the
form � ı , where

(2-4) �W C�! GL.m;C/ and �.�.z//�.z/�1
D Im:

The question is whether � is homotopic to identity through a family �t of matrices
satisfying the same equation as (2-4).

Let

G D
˚
 W Œ0; 1�! GL.m;C/ j  .0/D  .1/

	
; G0 D f 2G W  .0/D ImgI

the set G is a group under pointwise multiplication, while G0 is its subgroup. The
restriction of � to the upper semi-circle fz D ei� t j t 2 Œ0; 1�g determines an element
of G . In fact, the space of � satisfying (2-4) is homotopic to G . The map

(2-5) � W G! GL.m;C/;  !  .0/;

is a fiber bundle with fiber G0 . From the associated long exact sequence

� � � ! �1.GL.m;C//! �0.G0/! �0.G/! �0.GL.m;C//! 0;

we conclude that �0.G/D Z=2Z. In fact, the connecting homomorphism

�1.GL.m;C//! �0.G0/Š �1.GL.m;C//Š Z

is multiplication by 2 for the following reason.

We start from the loop  W Œ0; 1�! GL.m;C/ given by

 .s/D

�
e2� is 01�.m�1/

0.m�1/�1 Id.m�1/�.m�1/

�
:
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This loop generates �1.GL.m;C//. With the projection map � as in (2-5), the restricted
S1 –family ��1. / � G is a non-trivial G0 –bundle. For every s 2 Œ0; 1�, let ˛s 2

��1. .s//�G be the path of matrices

˛s.t/D

�
e2� i.s.1�2t// 01�.m�1/

0.m�1/�1 Id.m�1/�.m�1/

�
; t 2 Œ0; 1�:

Note that ˛0 � id and ˛1 Š 
�2 . Then

(2-6) ��1. .s//D ˛s �G0 D f˛sı j ı 2G0g:

Moving along the family of identifications (2-6) over Œ0; 1�, we find that the holonomy
map of ��1. / is isomorphic to

hW G0!G0; h.ı/D ˛�2
1 ı D  2ı:

In other words,

(2-7) ��1. /ŠG0 � Œ0; 1�=ı� f0g � .
2
� ı/� f1g:

This implies that the connecting homomorphism takes  2 �1.GL.m;Z// to

 2
2 �0.G0/Š �1.GL.m;Z//:

The remaining claim of the lemma is checked by chasing the maps in the long exact
sequence. For �DR.�i / , the corresponding path  in G is the constant path  .t/�
diag.�i/. Inside G , via the path

s.t/D diag.e.1��i /� ifs.t//; t 2 Œ0; 1�; s 2 Œ0; 1�;

where fs.t/D�st C .1C s/=2, we can deform  D 0 to the path 1 2G0 given by

1.t/D diag.e.1��i /� i.1�t//:

Then Œ1� 2 �0.G0/ D �1.G1/ Š Z is equal to n D �jfi W �iD�1gj. Since the
homomorphism

�1.GL.m;C//! �0.G0/Š �1.GL.m;C//Š Z

is multiplication by �2, it follows that  2 �0.G/ is trivial if and only if 2 j n , ie if
and only if

Q
�i D 1.

Lemma 2.5 Let E! P1 be a complex vector bundle with a real structure � lifting �.
Every admissible trivialization of .E; �/ over C� � P1 canonically determines an
orientation of ƒtopH 0.E/R ˝ƒ

top.H 1.E/R/
�. The two orientations given by two

different admissible trivializations coincide if and only if they are in the same homotopy
class.
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Proof The proof is analogous to that of [7, Proposition 8.1.4]. Contracting each of
the two circles

C0;r D fz 2C� W jzj D rg and C1;r D
n
z 2C� W jzj D

1

r

o
to a point, we obtain a nodal curve † D †top [†0 [†bot (see Figure 2) with an
induced fixed point free involution �† . We denote the quotient map by � W P1!†.
Denote by q and �†.q/ the nodal points of †. We may assume that q and �†.q/ are
respectively 0 and 1 in †0 Š P1 .

q

†0 †top†bot

conjugation

Figure 2: Nodal curve † obtained by pinching C0;r and C1;r .

Via the given trivialization, the bundle .E; �/ descends to a bundle . zE; z�/ over † so
that

zE
ˇ̌
†0
Š P1

�Cm

and the involution z�
ˇ̌
†0

sends .z; v/ to .�†.z/; xv/. Over †top [†bot , z� is an anti-
complex linear map of the form

z�W zE
ˇ̌
†top
! zE

ˇ̌
†bot

:

A section of . zE; z�/ is of the form � D .�top; �0; �bot/, with matching conditions at the
nodes. A section � is real if and only if

�bot.�†.z//D z�.�top.z//; 8z 2†top and �0 2 �. zE
ˇ̌
†0
/R:

Therefore, it is determined by an arbitrary section of zE
ˇ̌
†top

and a real section of zE
ˇ̌
†0

which match at q .

The matching condition at the nodes gives a short exact sequence

0!W 1;p. zE/R!W 1;p. zE
ˇ̌
†top

/˚W 1;p. zE
ˇ̌
†0
/R!Cm

q ! 0:

The associated determinant of the pair . zE; z�/ is given by

(2-8) detR. zE/Š detC. zE
ˇ̌
†top

/˝ detR. zE
ˇ̌
†0
/˝ detC.Cm

q /
�:

Geometry & Topology, Volume 20 (2016)



Counting genus-zero real curves in symplectic manifolds 647

Over †0 , the determinant bundle is canonically isomorphic (after deforming the
Cauchy–Riemann operator) to

ƒtopH 0.P1
�Cm/R Dƒ

top
R Rm

�ƒ
top
C Cm:

It inherits an orientation from the choice of trivialization. Since detC. zE
ˇ̌
†top

/ and
detC.Cm

q /
� carry orientations induced by their complex structures, they are canonically

oriented. Thus, (2-8) induces an orientation on detR. zE/.

Proof of Theorem 1.3 By Lemma 2.5, a systematic way of trivializing u�TX over
C� � P1 would orient P0.X;A/

�;� . Let KX Dƒ
top
C T �X be the canonical complex

line bundle over X . It inherits an involution K� W KX !KX (covering � ) from T� .
Therefore, it is a complex line bundle with an involution. Any admissible trivialization of
u�TX

ˇ̌
C� canonically induces an admissible trivialization of u�KX

ˇ̌
C� and changing

the homotopy class of admissible trivialization of the former changes the homotopy
class of the induced admissible trivialization. We can therefore reduce the orientation
problem to the problem of finding a canonical way of admissibly trivializing u�KX .
This is an easier problem because KX is just a line bundle and has less structure
than TX .

Let .L; �L/! .X; �/ be any complex line bundle over X with an anti-complex linear
involution �L covering � . The line bundle L˝2 inherits an involution from the one
on L by

�L˝2.v1˝ v2/D �L.v1/˝�L.v2/:

Every admissible trivialization of u�L
ˇ̌
C� induces an admissible trivialization of

u�L˝2
ˇ̌
C� . However, changing the homotopy class of trivialization of L does not

change the homotopy class of the induced trivialization on L˝2 , since changing the
trivialization of L by the complex linear map R�1 of Lemma 2.4 changes the homotopy
class of admissible trivialization of L˝2 by R�1˝R�1D id. Thus, for the complex line
bundle .L˝2; �L˝C �L/ as above, u�L˝2 has a canonical admissible trivialization.

We conclude that given a choice of real square root .KX ;K�/ Š .L˝2; �L˝C �L/

for KX , it provides a choice of admissible trivialization for every u�TX jC� , hence an
orientation on Pl.X;A/

�;� . Finally, together with the choice of orientation on T G�
given in Section 2, we obtain an orientation on Ml.X;A/

�;� such that

TuPl.X;A/
�;�
Š TfMl.X;A/

�;�
˚TidG�

is an oriented isomorphism of vector spaces; see Lemma 1.9 for the negative sign.
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2.2 Complementary remarks and examples

Proposition 1.5, which we prove below, provides examples of symplectic manifolds
with the canonical bundle admitting a real square root.

Lemma 2.6 Let L be a holomorphic line bundle over a compact Kähler manifold X

with an anti-holomorphic involution � . Up to multiplication by a constant number in
U.1/�C� , L admits at most one anti-holomorphic conjugation lift z� of � .

Proof Assuming the existence, let z�1 and z�2 be two anti-holomorphic conjugation
lifts of � . Then

z�2 D � ı z�1

for some holomorphic automorphism �W X ! C� . Since X is compact, � � ei� is
constant.

Lemma 2.7 Let L be a complex line bundle over a symplectic manifold X with an
anti-symplectic involution � . Assuming H 1.X;R/D 0, every two anti-complex linear
conjugation lifts z� of � are equivariantly isomorphic.

Proof Assuming the existence, as in the proof of Lemma 2.6, let �W X !C� be the
resulting function. From �2

2
D id we conclude that

(2-9) �.�.x//�.x/D id:

Since H 1.X;R/ D 0, for every loop  2 �1.X / we have
R
�
�d� D 0; therefore,

image.�. //�C� is contractible. Thus, there is a well-defined square root
p
�W X !C�;

p
�

2
D �:

From Equation (2-9) together with the identity
p
�.�.x// ı�1.x/ ı

p
�.x/D

p
�.�.x// ı

p
�.x/ ı�1.x/;

we conclude that  D
p
�.�.x//ı�1.x/ı

p
�.x/ is an anti-complex linear involution

isomorphic to either �2 or ��2 . If the former happens, we conclude that .L; �2/ is
equivariantly isomorphic to .L; �1/; otherwise, changing

p
� with i

p
� we obtain the

desired isomorphism.

Proof of Proposition 1.5 If c1.TX / D 4˛ for some ˛ as in the statement of the
proposition, a complex line bundle L with Chern class 2˛ has a real structure given
by the isomorphism

LD L0˝��.L0/;
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where L0 is a complex line bundle with Chern class ˛ . From the isomorphism of
complex line bundles

KX Š L�˝L�

and Lemma 2.7, we conclude that the canonical real structure and the one induced by
the above isomorphism on KX are equivariantly isomorphic; thus, .KX ; �KX

/ admits
a real square root.

Similarly, under the assumptions of the second part, the line bundle Œ2D�Š ŒD�˝ Œ��D�

admits an anti-holomorphic involution. Thus, the line bundle

KX D Œ2D�˝ Œ2D�

admits an anti-holomorphic involution and a real square root. By Lemma 2.6, the
canonical real structure and the one induced by the above isomorphism on KX are
equivariantly isomorphic; thus, .KX ; �KX

/ admits a real square root.

In particular, if either H 1.X;R/ D 0 and c1.TX / D 0, or X is a compact Kähler
Calabi–Yau with anti-holomorphic involution � , then .KX ; �KX

/ admits a real square
root. A similar but weaker result can be found in [3, Lemma 2.9]. Through the
isomorphism (1-12), we showed that the existence of a square root for .KX ; �KX

/

implies that the Lagrangian LD Fix.�/ is orientable. In the case of a Kähler Calabi–
Yau manifold, the orientability of the Lagrangian L can also be seen directly as follows.
It is possible to choose a holomorphic volume form � so that ���D x�. On the fixed
locus, it restricts to a (real-valued) volume form.

In Section 6 we consider .P4m�1; �4m�1/; since 4jKP4m�1 , it has a real square root.
If KX is trivial as a complex line bundle and H1.X;Z/ D 0 (ie X is a symplectic
Calabi–Yau manifold), then KX has a real square root; moreover, in this case we can
fix an admissible trivialization of KX itself over X (independent of any map u) and
thus determine an orientation of the moduli space Ml.X;A/

�;� .

As illustrated by the two examples below, there are cases where the determinant bundle
is not orientable. The first example is similar to the non-orientable example of [7,
Section 8.1.2].

Example 2.8 Let E D S1 �P1 �C! S1 �P1 . Define a family of involutions

�sW E
ˇ̌
fsg�P1 !E

ˇ̌
fsg�P1 ; �s.z; v/D .�.z/; e2� isv/ 8s 2 S1:

The real line bundle F ! S1 given by Fs DH 0.E
ˇ̌
fsg�P1/R is then not orientable.

Geometry & Topology, Volume 20 (2016)



650 M Farajzadeh Tehrani

Example 2.9 Let X DR2=Z2 �P1 �P1 , AD fptg �P1 � fptg 2H2.X;Z/,

(2-10) �W X !X; �.s; t; z; w/D
�
s;�t;

�1

xz
; e2� isw

�
;

Y D
˚
.s; t; w/ 2R2=Z2

�P1
W .�t; e2� isw/D .t; w/

	
:

The space Y is a union of two Klein bottles with double cover

R[f1g�R=Z� f0; 1
2
g ! Y; .a; s; t/! .2s; t; ae2� is/:

Let � W X !R2=Z2 �P1 be the projection to the first and third factors. Since

f WM.X;A/�;�! Y; Œu�! �.Im.u//;

is well-defined and is a diffeomorphism, it follows that M.X;A/�;� is not orientable.
If  �M.X;A/�;� is the preimage of the map S1! Y , s! .s; 0; 0/, then

 �det.TM.X;A/�;�/DƒtopH 0
R.

�TX /˝ .ƒtopLie.G�//� DR˝F;

where F is the unorientable line bundle in Example 2.8.

Remark 2.10 In [3],4 Crétois approaches the orientation problem from a different
point of view. He computes the induced sign of the action of an automorphism of
a complex vector bundle with a real structure .E; cE/ on the orientations of the
determinant line bundle over the space of Cauchy–Riemann operators on .E; cE/. His
method is well suited to the case where the real locus of the underlying curve is not
empty. The case related to our work is when .†; c†/D .P1; �/ and the automorphism
is the lift of either the identity automorphism or '.Œz; w�/ D Œw; z� (with � given
by (1-2)). In this case, he uses (see [4, Section 3.2.3]) a symplectic divisor D (a
polarization), invariant under the involution, which is Poincaré dual of the first Chern
class, and finds an equation [4, Theorem 7] for the first Stiefel–Whitney class of the
moduli of real maps that intersect D transversely. For example, if the canonical bundle
is the square of a complex line bundle admitting a real structure, and if one can find
a nice section of this square root, then the first Stiefel–Whitney class vanishes. One
issue with this approach is that we need to consider different polarizations to cover the
entire moduli space and this increases the complexity of the calculations. In the cases
where the ambient manifold has no real part, it is not clear how to construct a section
of the canonical bundle. Also, this approach does not provide a choice of orienting the
moduli space.

4Originally published in French about the same time as this paper was first published on the arXiv,
with an English summary [4] uploaded later.
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2.3 Kuranishi structure

If Ml.X;A/
�;� is not an orbifold, in order to construct a virtual fundamental class

we need to put a Kuranishi structure on the moduli space. Such a construction for
Mk;l.X;A/

�;� is described in [26, Section 7]; we only describe the necessary adjust-
ments. For simplicity, we ignore the marked points until the end of this construction.

Proof of Proposition 1.1 and the first part of Theorem 1.7 For .u; .zi ; xzi/
l
iD1

/ 2

Ml.X;A/
�;� , let

Eu � u�TX ! P1; E0;1
u � .T �P1/0;1˝C Eu:

There are commutative diagrams

(2-11)
Eu

�
��

T� // Eu

�
��

P1 � // P1;

E
0;1
u

�
��

T 1
� // E0;1

u

�
��

P1 id // P1;

where T�vD d�.v/ and T 1
�
˛D d� ı˛ ıd�. The deformation theory of P0.X;A/

�;�

is described by the linearization of the Cauchy–Riemann operator,

(2-12) LJ ;uW W
k;p.Eu/!W k�1;p.E0;1

u /; p > 2; k � 1I

see [21, Chapter 3] for a similar situation. If r is the Levi-Civita connection of the
metric !. �;J �/, then LJ ;u can be written as

LJ ;u.�/D
1
2
.r�CJr� ı j /� 1

2
J.r�J /@J .u/:

There is a commutative diagram

W k;p.Eu/

zT�
��

LJ;u // W k�1;p.E
0;1
u /

zT 1
� ��

W k;p.Eu/
LJ;u // W k�1;p.E

0;1
u /

where f zT��g.z/D T�.�.�.z/// and f zT 1
�
˛g.z/D T 1

�
.˛.z//. Let

(2-13) W k;p.Eu/R D f� 2W k;p.Eu/ j zT�.�/D �g;

W k�1;p.E0;1
u /R D f˛ 2W k�1;p.E0;1

u / j zT 1
� .˛/D ˛g;
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denote the spaces of real sections. Let H 0.Eu/R and H 1.Eu/R be the kernel and
cokernel, respectively, of the restricted operator

LJ ;uW W
k;p.Eu/R!W k�1;p.E0;1

u /R:

If H 1.Eu/R D 0, then P.X;A/�;� near u is a manifold U.u/ of real dimension

(2-14) dimR H 0.Eu/R D indexR.LJ ;u/D c1.A/C dimC X I

see [21, Theorem C.1.10]. In order to stabilize the domain and kill the action of the
automorphism group, we need to take a slice V .u/ of the G�–action on U.u/. To this
end, we add back a few conjugate pairs of special marked points f.wi ; �.wi//g, fix a
corresponding set of (conjugate pairs of) slicing local divisors Di , and take V .u/ to
be the submanifold of the maps in U.u/ that intersect Di at wi . Then, by restricting
the location of special marked points we will find a slice V .u/ of the G�–action such
that V .u/ is a submanifold of U.u/ and dimR V .u/ D dimR U.u/ � 3. Each pair
of ordinary conjugate marked points increases the dimension by two and we get the
dimension formula (1-4).

If H 1.Eu/R ¤ 0, we construct a Kuranishi chart around u. With this aim, we choose
finite-dimensional complex subspaces Eu �W k;p�1.E

0;1
u / such that

(1) every � 2 Eu is smooth and supported away from the boundary, special, and
marked points;

(2) zT 1
�
.Eu/D Eu ;

(3) LJ ;u modulo Eu is surjective.

After putting enough marked points and slicing conditions to kill the automorphism
group, we choose our Kuranishi neighborhood to be V .u/D Œx@�1.Eu/�R , which is a
smooth manifold of dimension

c1.A/C dimC X � 3C 2l C dimC.Eu/:

The obstruction bundle E.u/ at each f 2 V .u/ is obtained by parallel translation
of Eu with respect to the induced metric of J . We thus get a Kuranishi neighborhood
.V .u/; E.u//. The Kuranishi map in this case is just the Cauchy–Riemann operator
f !x@.f /.

In order to construct Kuranishi charts for u in the boundary strata of Ml.X;A/
�;� ,

we need gluing theorems as in [7, Chapter 7]. The gluing theorems are identical to
those for J–holomorphic disks; we thus omit the details and refer the reader to [7].
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Remark 2.11 If .X; !/ is semi-positive or strongly semi-positive (see [21, Defini-
tion 6.4.5] or [10, Definition 7.1]) then the invariants can be defined via classical
(geometric) methods of [21] or [25]. In the strongly semi-positive case, this is for
example done for the .�; �/–moduli space in [10, Theorem 1.4].

3 Proof of Theorem 1.7 and real GW invariants

We continue this section with the proof of the first part of Theorem 1.7. If LDFix.�/ is
non-empty, the codimension-one boundary of Ml.X;A/

�;� might be non-empty; see
(1-11). An element of a codimension-one boundary is of the form .u; †D†1[q†2/,
where †i D P1 , �W †1!†2 , and u.q/ 2L. After a suitable reparametrization, we
may assume q D 0 2 P1 and �.z/D w . For real parameters � ¤ 0, we can glue †
into a family of smooth curves

†� D f.z; w/ 2C2
W zw D �g:

For � 2R, †� inherits a complex conjugation from �:

��W †�!†�; ��.z; w/D .w; z/:

The fixed point set of �� is S1 if � > 0 and is empty if � < 0. Assuming regularity,
by smoothing in one direction (� negative), we get real curves without fixed points
in Ml.X;A/

�;� ; by smoothing in the other direction (� positive), we get real curves
with fixed points in Ml.X;A/

�;� . We identify the common boundary and glue the two
moduli spaces to get a new moduli space whose only possible boundary component
comes from the disk bubbling. We define M.X;A/� to be the resulting space.

Every disk-bubbling type nodal curve in (1-8) is of the form .u; †D†1[q†2/, where
†i D P1 , � W †i ! †i , and q 2 Fix.� j†i

/Š S1. After a suitable reparametrization,
we may assume qD .zi D 0/2C�P1 and � jCD c , where c.zi/D xzi . For real �¤ 0,
we can glue † into a family of smooth curves

†� D f.z1; z2/ 2C2
W z1z2 D �g:

For � 2R, †� inherits a complex conjugation from � :

��W †�!†�; ��.z1; z2/D .z1; z2/:

The fixed point set of �� is S1. By the stability condition, for each component i ,
either li ¤ 0 or the map ui � uj†i

is non-trivial. If li ¤ 0, we fix one of the marked
points; if ui is non-trivial and somewhere injective, we fix a somewhere injective
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point of the corresponding domain. By tracking the image of the chosen points,5

we see that gluing the map in positive and negative directions produces different J–
holomorphic curves. If ui is a multiple cover and li D 0, then the obstruction bundle
near ui 2M1;0.X;Ai/

�;� is non-trivial and a Kuranishi neighborhood depends on the
choice of Eui

of the previous section. In this situation, the Cauchy–Riemann equation
gives a section of the obstruction bundle. Then we need to deform this section into close-
by transversal multi-sections to build a virtual fundamental class; see [7, Section 7].
By choosing (the branches of) these multi-sections to be non-symmetric with respect
to the deck transformation of the covering map, we can ensure that gluing in different
directions produces different maps. Therefore, the real codimension-one strata (1-8) and
(1-11), corresponding to �D 0, are indeed hypersurfaces. This establishes the first part
of Theorem 1.7, ie that M.X;A/� has the structure of a closed Kuranishi space; the
real codimension-one strata (1-8) and (1-11) are real codimension-one hypersurfaces
in M.X;A/� .

If 4 j c1.TX /, given a compatible choice of a real square root for KX and a spin struc-
ture on LD Fix.�/, the next two proposition and lemma show that Ml.X;A/

� is ori-
entable (in fact, oriented). Given such a compatible choice, the spaces Ml.X;A/

�;� and
Ml.X;A/

�;� can be oriented; see the beginning of Section 1.1 and Theorem 1.3. The
first proposition below states that the orientation of Ml.X;A/

�;� extends across the hy-
persurface (1-8). Then Proposition 3.3 implies that the orientations of Ml.X;A/

�;� and
Ml.X;A/

�;� are compatible along the common boundary (1-11). In Proposition 3.3,
we consider the induced orientation on the boundary @M of an oriented manifold M

to be the one given by the inward normal vector field; ie

(3-1) T
ˇ̌
@M
D T @M ˚R � vin

is an isomorphism of oriented vector spaces. Therefore, if M1 and M2 are oriented
and the induced orientations on @M � @M1 Š @M2 are the reverse of each other,
M1[@M M2 inherits an orientation.

Proof of the second part of Theorem 1.7

Proposition 3.1 Let .X; !; �/ be a symplectic manifold with a real structure. If
4 j c1.TX /, then a choice of spin structure on LD Fix.�/ determines an orientation
on M.X;A/�;� .

This proposition is a special case of [10, Theorem 1.4] or [8, Theorem 1.1]. We
first lift the orientation problem to the corresponding moduli spaces of decorated

5In one direction, the images of these two points lie in one half disk, and in the other direction, they lie
in different half disks.
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J–holomorphic disks. A spin structure determines an orientation on

M1;l.X;L; ˇ/
disk
dec and Ml.X;L; ˇ/

disk
dec :

This orientation induces6 an orientation on

M1;l1
.X;L; ˇ1/

disk
dec �.evB

1
;evB

1
/M1;l2

.X;L; ˇ2/
disk
dec

which descends to an orientation on (1-8). Let

M1;l1
.X;L; ˇ1/

disk
dec �.evB

1
;evB

1
/M1;l2

.X;L; ˇ2/
disk
dec �R�0 ‰

�!M.X;L; ˇ/disk
dec

be the gluing map. With a proper convention of defining the fiber product orientation,
‰ is orientation preserving. Then we observe that gluing positively or negatively in
the real curve formulation corresponds to flipping one of the disk components via �M
(the map �� in [8, Theorem 1.1]), ie gluing negatively corresponds to .u1;u2; �/!

‰.u1; �M.u2/;��/; cf (1-7). Finally, [10, Theorem 1.4] or [8, Theorem 1.1] shows
that if 4 j c1.TX /, this flipping action is orientation reversing, hence the gluing map

.M1;l1
.X;A1/

�;�
�.evB

1
;evB

1
/M1;l2

.X;A2/
�;�=G/�R �!M.X;A/�;� ;

given by smoothing the domain with respect to the corresponding gluing parameter � ,
is an oriented isomorphism. Therefore, the orientation of M.X;A/�;� extends across
the disk-bubbling codimension-one strata.

Remark 3.2 A relative spin structure ŒV; � � on .X;L/ also determines an orientation
on every moduli space Mdisk

l
.X;L; ˇ/; see [7, Theorem 8.1.1]. These orientations

descend to Ml.X;A/
�;� if

1
2
hc1.TX /;Ai � hw2.V /;Ai mod 2I

see [13, Corollary 5.9]. The conclusion of Proposition 3.1 is still true. For example,
.P4mC1;RP4mC1/ is not spin, but is relatively spin; each choice of the two homotopy
classes of relative spin structures determines an orientation on Ml.X;A/

�;� . In the
more general setting of Pin structures, analogous sign computations are carried out in
[26, Proposition 2.12].

Proposition 3.3 Let .X; !; �/ be a symplectic manifold with a real structure such that
4 j c1.TX /. Given a compatible pair of a real square root for KX and a spin structure
on L D Fix.�/, if A;B 2 H2.X / are such that A D B � ��B , then via the gluing
maps

(3-2) .M1.X;B/�ev1
L/�RC!M.X;A/�;� ;M.X;A/�;�;

6The fiber product orientation depends on the convention.
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the induced orientations on the first component of the left-hand side as the boundary of
M.X;A/�;� and M.X;A/�;� are reverse of each other.

Proof By definition, the induced orientations on L via the given spin structure and
the given real square root are inverses of each other. Without loss of generality, we
may assume that the orientation of L coincides with the induced orientation of the
given spin structure and is the reverse of the one given by the real square root. A curve
in the common boundary of these two moduli spaces is of the form

f D Œu; †D P1
top[q P1

bot �;

with the involution c over † having one fixed point, the node q . We replace each
such f with the unstable map

zf D Œzu; z†D P1
top[P1

0 [P1
bot �;

with zu restricting to the constant u.q/ over the central part P1
0

. We can view zf as an
element of @M.X;A/�;� by extending the involution to P1

0
via cjP1

0
D � and as an

element of @M.X;A/�;� by extending the involution to P1
0

via cjP1
0
D �. The real

automorphism group of zf restricted to the middle component is S1.

First, let’s consider zf with cjP1
0
D � . In this case we can divide zf into two nodal

J–holomorphic disks; let

zftop D Œzu; zD D P1
top[D0 �

be the half including P1
top (the final conclusion is independent of the particular choice).

For simplicity, we may assume that zftop can be glued to a J–holomorphic disk f� over
the glued domain D� ŠD ; otherwise, we need to consider the obstruction bundle. In
order to understand the induced orientation on Tf @M.X;A/�;� , we need to understand
the orientation on Tf�M

disk.X;L; ˇ/ and extend it to the sphere-bubbling boundary.
Following the orientation and gluing argument in [7, Section 8.3] and [7, Section 7.4.1],
in order to orient Tf�M

disk.X;L; ˇ/ we orient the tangent bundle of the parametrized
J–holomorphic disks Tu�Pdisk.X;L; ˇ/ and then consider the quotient orientation on
Tf�M

disk.X;L; ˇ/ for which

Tf�M
disk.X;L; ˇ/˚TidG0

� Š Tu�P
disk.X;L; ˇ/

is an oriented isomorphism of vector spaces; see Lemma 1.9 for the negative sign. In
order to orient Tu�Pdisk.X;L; ˇ/, we trivialize u�j

�
@D�

TL via the given spin structure,
and degenerate u��TX into a bundle over zD , such that over the central part the induced
bundle is trivial. The path fu�g�!0 exactly describes such a degeneration. Over the
central part zujD0

is trivial and by assumption, the orientation of Tu.q/L coincides with
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the one given by the spin structure; therefore, the space of real sections of zujD0
TX is

orientably isomorphic to Tu.q/L.

Now let’s consider zf with cjP1
0
D �. For simplicity, we may again assume that zf can

be glued to a .�; �/–real J–holomorphic map f� over the glued domain †� Š P1 .
Following the orientation procedure of the proof of Lemma 2.5, in order to orient
Tf�M.X;A/�;� we orient the tangent bundle of the parametrized J–holomorphic
spheres Tu�P.X;A/�;� and then consider the quotient orientation as above. In order to
orient Tu�P.X;A/�;� , we fixed an admissible trivialization of u��TX over P1�f0;1g

given by the real square root and degenerated u��TX into a bundle over z†, such that
over the central part the induced bundle is admissibly trivial. The path fu�g�!0 exactly
describes such a degeneration. Once again, over the central part zujP1

0
is trivial and by

assumption, the orientation of Tu.q/L is the reverse of the one induced from the real
square root; therefore, the space of real sections of zujP1

0
TX is orientably isomorphic

to Tu.q/L with the reverse orientation.

Similar to Section 2.3, for zf 2 @M.X;A/�;� ; @M.X;A/�;� , let Ezu � zu
�TX and

E
0;1
zu
�E

0;1
utop ˚E

0;1
u0
˚E

0;1
ubot , where utop , u0 , and ubot are the restrictions of u to the

corresponding components, respectively. The deformation theory of P.X;A/�;� and
P.X;A/�;� at f is described by the linearization of the Cauchy–Riemann operator

LJ ;zuW W
k;p.Ezu/!W k�1;p.E

0;1
zu
/; p > 2; k � 1;

where LJ ;zu DLJ ;utop˚LJ ;u0
˚LJ ;ubot . Let H 0.Ezu/R and H 1.Ezu/R be the kernel

and cokernel respectively of the restricted operator

LJ ;zuW W
k;p.Ezu/R!W k�1;p.E

0;1
zu
/R:

Assuming H 1.Ezu/R D 0 (otherwise we need to work modulo the obstruction bundle),
via the gluing maps f ! ff�g�>0 , we have

(3-3) H 0.Ezu/R ŠH 0.Eu� /R Š Tu�P.X;A/
�;�

and

(3-4) H 0.Ezu/R ŠH 0.Eu� /R Š Tu�P.X;A/
�;�:

As in the proof of Lemma 2.5, the orientation of H 0.Ezu/R is canonically determined by
the orientation of Tu.q/L. By the argument of the past two paragraphs, the orientation
on the left-hand side of (3-3), via the gluing map, gives the orientation on the right-
hand side determined by the spin structure; and the orientation on the left-hand side of
(3-4) (again via the gluing map) gives the reverse orientation on the right-hand side
determined by the real square root.
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Finally, in order to complete the comparison, it remains to compare the automorphism
groups of domains before and after two different gluings. Let

G0 D AutR.ŒP1
top[q P1

bot�/Š Aut.P1
top; q/� PSL.2;C/

be the identity component of the real automorphism group of †. This is a real 2–
dimensional complex Lie group which has a canonical orientation (although we do
not care about its orientation; see Remark 3.4). After replacing † with z†, the real
automorphism group of the domain increases by a factor of S1 and the gluing parameter
of the domain takes values in C . To kill the extra S1 –action in both the automorphism
group and the gluing parameter, as in the statement of the lemma, we consider the
gluing parameter to be positive real (absolute value of the complex one) and restrict to
a real 4–dimensional section of G0 �S1 , given by

G00 D
˚
.g; ei� /�G0 �S1

W dg
ˇ̌
T0P1

top
2RCe�i�

	
;

which is canonically isomorphic to G0 . Let

C D
˚
.zt ; z0; zb; �/ 2 P1

�P1
�P1

�R�0
W ztz0 D �; zbc.z0/D �; � 2R�0

	
:

This is a real one-parameter family of genus-zero real curves over R�0 ,

.zt ; z0; zb; �/! �;

with the fiber-preserving involution

.zt ; z0; zb; �/! . xzb; c.z0/; xzt ; �/

that describes a gluing of the singular real curve z† into smooth real curves.

Over C , consider the group GC
0

generated by the following set of maps
(3-5)

Rr W .zt ; z0; zb; �/! .rzt ; z0; rzb; r�/; r 2RC close to 1;

R� W .zt ; z0; zb; �/! .e�i�zt ; e
i�z0; e

i�zb; �/; ei� 2 S1;

TaW .zt ; z0; zb; �/!

�
zt C .�1/jcj�2xa

1C azt
;

z0C a�

1C .�1/jcj�xaz0

;
zbC .�1/jcja�2

1Cxazb

�
;

a 2C;

with jcj defined as in (5-1). This group extends the action of G0
0

to the whole family.
Restricted to each fiber C� , � ¤ 0, R� and Ta generate the 3–dimensional real
automorphism group of the fiber, G� or G0

� , depending on c . Let

v1 D
d

dr
Rr

ˇ̌
rD1

; v2 D
d

d�
R�

ˇ̌
�D0

; v3C iv4 D
d

da
Ta

ˇ̌
aD0

:
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Restricted to C0 , the vectors �v1; v2; v3; v4 form an oriented basis of TidG0
0

. With the
conventions of Section 2, the restriction of v2; v3; v4 to C� , � ¤ 0, forms an oriented
basis of TidG� or TidG0

� . Finally, v1 (after some positive rescaling) is a lift of the
inward normal vector field @=@� to the family. Let .TfM1.X;B/ �ev1

L/Œ@�� and
.TfM1.X;B/�ev1

L/Œ@�� denote TfM1.X;B/�ev1
L, oriented as the boundary of

.�; �/–space and .�; �/–space, respectively. Then for each choice of c D �; �,

Tf .M1.X;B/�ev1
L/Œ@c�

˚R � v1 Š TfM.X;A/�;c

is an oriented isomorphism of vector spaces. Adding the oriented basis v2; v3; v4 to
both sides, we find that

Tf .M1.X;B/�ev1
L/Œ@c�

˚

4M
iD1

R�viŠTfM.X;A/�;c˚

4M
iD2

R�viŠTf .P.X;A/�;c/

is an oriented isomorphism of vector spaces. Finally, replacing the right-hand side
by H 0.Ezu/R , since the induced orientation on H 0.Ezu/R via the spin structure and
the real square root are the reverse of each other, we conclude that the orientations
Tf .P1.X;B/�ev1

L/Œ@�� and Tf .P1.X;B/�ev1
L/Œ@�� are the reverse of each other.

This finishes the proof of Theorem 1.7.

Thus, if KX has a real square root, L is spin, and 4 j c1.TX /, choosing the spin
structure and the square root compatibly, Ml.X;A/

� is closed and oriented. In this
case, for �1; : : : ; �l 2H�.X /, we define real GW invariants by

N
�

A
.�1; : : : ; �l/D

Z
ŒMl .X ;A/� �vir

ev�1.�1/^ � � � ^ ev�l .�l/:

Remark 3.4 In the proof of Proposition 3.3, we did not calculate the fiber product
orientation on the left-hand side of (3-2); we just showed that the induced boundary ori-
entations are reverses of each other. After fixing a fiber product orientation convention,
it is not hard to compare the induced and fiber product orientations directly.

4 Proof of Theorem 1.8

By [5, Proposition 2.1], there exists a symplectic degeneration � W X !� of X with
an induced real structure �X over a disk ��C (which we can assume to be the unit
disk) such that the central fiber X0 D �

�1.0/ is a simple normal crossing symplectic
manifold with real structure �X

ˇ̌
X0

,

X0 DX�[D XC; D Š P1
�P1; �˙ WD �X

ˇ̌
X˙
;
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where .X�; ��/ is symplectomorphic to real quadratic hypersurface in P4 given by

x2
0 �

4X
iD1

x2
i D 0; D D .x0D0/;

and Fix.�C/D∅. Moreover, the fibers over �� are smooth and symplectically isotopic
to .X; �/. Note that NDXC ŠO.�1/

ˇ̌
D

; therefore, all curves inside D , as curves in
XC , have negative intersection with D .

Via the symplectic sum procedure, every almost complex structure J0 on X0 , ie union
of two almost complex structures JC and J� on XC and X� , respectively, such that
both preserve D , extends to an almost complex structure JX on X . If the J˙ are
.!˙; �˙/–compatible, the resulting JX is also .!X ; �X /–compatible. Each fiber of
X over Œ0; 1��� is invariant under �X . For t ¤ .0; 1�,�

Xt D �
�1.t/; !t D !X

ˇ̌
Xt
; �t D �X

ˇ̌
Xt

�
is isomorphic to .X; !; �/; therefore, we can think of fJt D JX

ˇ̌
Xt
g.0;1� as a family of

compatible almost complex structures on .X; !; �/ converging to the singular almost
complex structure J0 .

Set

(4-1) M.X;A; fJtgt2.0;1� /
�
�

[
t2.0;1�

M.X;A;Jt /
� :

Let M.X;A; fJtgt2Œ0;1�/
� be the relative stable map compactification of (4-1), as in

[5, Section 3.2], which includes “stable” real maps into X0 . Every element .u; †/
of M.X;A; fJtgt2Œ0;1�/

� with image in X0 belongs to a fiber product of real relative
moduli spaces over X� and XC with matching intersections along D , ie

(4-2) M.X�;D; �; ��/
�� �.ev�� ;ev

�C
/M.XC;D; �; �C/

�C ;

where M.X�;D; �; ��/
�� and M.XC;D; �; �C/

�C are the relative moduli spaces of
real curves, possibly with disconnected domains, with the same intersection pattern � .
Here �˙ are the contact points with D , ev�˙ are the evaluation maps at �˙ , and �˙
encodes the data corresponding to the topological types of the domain and image; see
[5, Section 4] for more details on the definition.

The moduli space M.X;A; fJtgt2Œ0;1� /
� gives a cobordism between the moduli space

of real curves M.X;J1;A/
� over a smooth fiber and the moduli space of real curves

in the singular fiber. By [5, Proposition 2.1], c1.TXC/D�PD.D/. Therefore, if the
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images of the maps in M.XC;D; �; �C/
�C have homology class B 2 H2.XC;Z/

with B �D > 0, then

dimvir.M.XC;D; �; �C/
�C/� c1.TXC/.B/ < 0:

This implies that for “generic” J0 , we should expect the limit maps in X0 to lie entirely
in XC nD or X� nD . On the other hand, note that the degree (or symplectic area) of
every J�–holomorphic map in X� is proportionate to its intersection number with D ,
because D is the hyperplane class in X� ; therefore, every non-trivial J�–holomorphic
map in X� has non-trivial intersection with D . We conclude that for such generic J0 ,
the only non-empty terms in (4-2) correspond to real JC–holomorphic maps inside XC .
Since �C has no fixed points, the proof then follows from the Gromov compactness
theorem.

The argument for finding such generic J0 is almost identical to that of [21, Theo-
rem 3.1.5]. We provide the necessary adjustments. Let JD;wC;�C be the space of
almost complex structures in JwC;�C which preserve7 TD . Similar to the argument
in the middle of [21, page 47], the tangent space

TJCJD;wC;�C

consists of those Y 2 End.TXC/ where

(4-3) YJCCJCY D 0; !C.Y v;w/C!C.v;Yw/D 0;

��CY D�Y; and Y .TD/� TD:

The extra conditions in the second row correspond to compatibility with �C and D re-
spectively. In the following argument, we consider two types of moduli spaces. Fix some
B 2H2.XC;Z/ such that B �D > 0. For every JC 2 JD;wC;�C , let M�.XC;B;JC/
be the (ordinary) moduli space of somewhere injective JC–holomorphic spheres of
degree B whose image, as a set in XC , is “not” invariant under the action of �C .
Every element of M�.XC;B;JC/ intersects D in a finite set of points with total
multiplicity B �D . Similarly, let M�.XC;B;JC/�C;� be the moduli space of degree
B somewhere injective .�C; �/–maps uW .P1; �/! .XC; �C/. By adjusting the proof
of [21, Theorem 3.1.5], we prove the following proposition.

Proposition 4.1 For every B 2 H2.XC;Z/ with B �D > 0, there exists a set of
second category J �D;wC;�C � JD;wC;�C such that for every JC 2 J �D;wC;�C , the
moduli spaces M�.XC;B;JC/ and M�.XC;B;JC/�C;� are empty.

7We can impose more regularity conditions along D and it will not affect the argument below. In fact
we may even assume that JC is holomorphic in a neighborhood of D .
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Proof In order to prove this proposition, we show that the proof of [21, Proposi-
tion 3.2.1] can be adjusted to the smaller set of almost complex structures JD;wC;�C

considered here.

Set

(4-4) M�.XC;B;JD;wC;�C/�
[

JC2JD;wC;�C

M�.XC;B;JC/:

Let uW P1!XC be a JC–holomorphic map in M�.XC;B;JD;wC;�C/. With notation
similar to the proof of [21, Proposition 3.2.1], we have to show that

Dx@u;JC W W
1;p.u�TXC/�TJCJD;wC;�C !W 0..T �P1/0;1˝u�TXC/

is surjective. Assume, for the sake of contradiction, that there exists a non-trivial

 2Lq..T �P1/0;1˝u�TXC/;

with 1=pC1=qD 1, which annihilates the image of Dx@u;JC . Then  is of class W 1;p

as well. By assumption, the set of points z 2 P1 where u is injective (ie (1-1) holds),
u.z/ 62D , and

�C.u.z// 62 image.u/

is an open dense subset of P1. Choose one such point z 2 P1 such that  .z/ ¤ 0.
Then, as in the proof of [21, Proposition 3.2.1], there exists some Y 2 End.TXC/,
supported in a neighborhood U �XC of u.z/, such that

U \D D∅; �C.U /\ image.u/D∅;
Z

u�1.U /

h;Y ı du ı j i> 0;

and Y satisfies the first two conditions of (4-3); here j is the complex structure of P1.
We replace Y over �C.U / by ���CY and denote the result by Y 0 . Then, Y 0 satisfies
all the conditions in (4-3) andZ

P1

h;Y 0 ı du ı j i D

Z
u�1.U /

h;Y ı du ı j i> 0:

Thus, Y 0 is an element of TJCJD;wC;�C which is not annihilated by  ; this is a
contradiction.

Next, we consider

(4-5) M�.XC;B;JD;wC;�C/
�C;� D

[
JC2JD;wC;�C

M�.XC;B;JC/�C;�:

Let uW .P1; �/ ! .XC; �C/ be a real JC–holomorphic map in the moduli space
M�.XC;B;JD;wC;�C/

�C;� . The proof is similar, but involves the real version of
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Banach spaces considered above. With notation as in Section 2.3, we have to show that

Dx@u;JC W W
1;p.u�TXC/R �TJCJD;wC;�C !W 0..T �P1/0;1˝u�TXC/R

is surjective. Assume, for the sake of contradiction, that there exists some non-trivial  2
Lq..T �P1/0;1˝u�TXC/R which annihilates the image of Dx@u;JC . By assumption,
the set of points z 2 P1 where u is injective and u.z/ 62D is an open dense subset
of P1. Choose one such point z 2 P1 such that  .z/¤ 0. Then, as in the proof of [21,
Proposition 3.2.1], there exists some Y 2 End.TXC/, supported in a neighborhood
U �XC of u.z/, such that

U \D D∅; �C.U /\U D∅;
Z

u�1.U /

h;Y ı du ı j i> 0;

and Y satisfies the first two conditions of (4-3). We replace Y over �C.U / by ���CY

and denote the result by Y 0 . Then, Y 0 satisfies all the conditions in (4-3) andZ
P1

h;Y 0 ı du ı j i D 2

Z
u�1.U /

h;Y ı du ı j i> 0:

Thus, Y 0 is an element of TJCJD;wC;�C which is not annihilated by  ; this is a
contradiction.

Lemma 4.2 For some JC 2 JD;wC;�C , let uW P1! XC be a somewhere injective
JC–holomorphic map whose image, as a set, is invariant under the action of �C . Then
there exists an antiholomorphic involution c on P1, conjugate to �, such that u is a
.�C; c/–real map.

The lemma implies that every degree B somewhere injective JC–holomorphic sphere u,
where B �D > 0, either belongs to M�.XC;B;JC/ or can be enhanced to an element
of M�.XC;B;JC/�C;� .

Proof By assumption, outside a finite set of points S � P1 , every z 2 P1 n S

is a somewhere injective point and u.P1 n S/ is �C–invariant. The involution �C
canonically lifts to an antiholomorphic involution c on P1 n S with no fixed point.
Then, every such involution has a unique extension across entire P1 which, after a
reparametrization, is isomorphic to �.

Let us come back to the proof of Theorem 1.8. By the Gromov compactness theorem and
in light of Proposition 4.1, for every E > 0 there exists a JC 2JD;wC;�C such that for
all B 2H2.XC;Z/ with B �D> 0 and !.B/<E , the moduli spaces M�.XC;B;JC/
and M�.XC;B;JC/�C;� are empty. For such JC , assume by way of contradiction
that there exists a non-trivial element f in M.XC;D; �; �C/

�C with homology class
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B and !.B/ < E . This element should have a smooth component, ie a map over
some P1 , which is a multiple cover of some somewhere injective map with non-
trivial homology class B0 , with !.B0/ > 0 and B0 �D > 0. This somewhere injective
map either belongs to M�.XC;B0;JC/, or it belongs to M�.XC;B0;JC/�C;� , or
by Lemma 4.2 it can be enhanced to an element of M�.XC;B0;JC/�C;� . This is a
contradiction to the assumption on JC .

Starting from a JC as in Proposition 4.1 and extending it to JX on X , in light of
the Gromov compactness theorem and the fact that a limit of � –maps has non-trivial
components in X� , the conclusion of the previous paragraph implies that for some
t0 > 0, all the moduli spaces fM.X;A;Jt /

�;�g0<t<t0
, where A is non-trivial and

!.A/ <E , should be empty. This finishes the proof of Theorem 1.8.

Part II Odd-dimensional projective spaces (joint with A Zinger)

5 Orientations for the moduli spaces

We give an explicit description of real maps from P1 to P2m�1 in Section 5.1 and
use it in Section 5.2 to endow the moduli spaces of such maps with orientations. In
Section 5.3, we show that the sign of the diffeomorphism

ev1WM1.P
2m�1; 1/�;c �! P2m�1; Œu; .zC; z�/� �! u.zC/;

is .�1/m�1 with the respect to the algebraic orientation of Section 5.2 on the domain
and the complex orientation in the target whenever

.�; c/D .�2m�1; �/; .�2m�1; �/I

otherwise, the moduli space above is empty. This is also the sign of the real line through
a pair of conjugate points with respect to these orientations. In Section 5.4, we focus
on the even-degree maps and show the conclusion of Proposition 3.3 applies to the
algebraic orientations of Section 5.2; see Proposition 5.5. In Section 5.5, we describe
the canonical real square root structure on KP4m�1 and spin structure on RP4m�1

induced by the exact sequence (1-16) and used to define the numbers (1-17).

The algebraic orientations and the orientations on the moduli spaces arising from the
structures of Section 5.5 are compared in Corollary 6.8; its conclusions are summarized
at the end of Section 5.2. Along with this corollary, Proposition 5.5 provides a direct
verification of the claim of Proposition 3.3 for .P4m�1; �4m�1/ with the real square
root structure and spin structure of Section 5.5.
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For the remainder of the paper, c D �; � and � D �2m�1; �2m�1 . Define

(5-1) jcj D

�
0 if c D �;

1 if c D �I
j�j D

�
0 if � D �2m�1;

1 if � D �2m�1:

We identify 0 2C and 1 with Œ1; 0� 2 P1 and Œ0; 1� 2 P1, respectively.

5.1 Spaces of parametrized maps

For m; d 2 ZC , the space P0.P
2m�1; d/�;c of (parametrized) .�; c/–real degree d

holomorphic maps consists of maps of the form

(5-2) uW P1
�! P2m�1; Œx;y��! Œp1.x;y/; q1.x;y/; : : : ;pm.x;y/; qm.x;y/�;

where p1; q1; : : : ;pm; qm are degree d homogeneous polynomials in two variables
without a common factor which satisfy some compatibility properties. Suppose

pi.x;y/DAi

dY
rD1

.aiIr xC .�1/jcjbiIr y/; qi.x;y/D xBi

dY
rD1

.a0iIr xC b0iIr y/:

The condition u ı c D � ı � is then equivalent to the existence of � 2C� such that

.�1/j�jBi.xa
0
iIr ;
xb0iIr /D � � .�1/jcjdAi.biIr ; aiIr /;

xAi.xaiIr ; .�1/jcjxbiIr /D � � xBi.b
0
iIr ; .�1/jcja0iIr /

for all i and r . These two requirements are in turn equivalent to

(5-3) j�jC jcjd 2 2Z; j�j D 1; � xBi

�
a0iIr ; b

0
iIr

�
D xAi

�
xbiIr ; xaiIr

�
8 i; r:

Proof of Lemma 1.9 For c D �, the first condition in (5-3) becomes j�j C d 2 2Z.
If it is not satisfied, the space P0.P

2m�1; d/�;� of parametrized maps is empty. This
immediately implies that the stratum of the moduli space Ml.P

2m�1; d/�;� consisting
of smooth maps is empty. The claims of Lemma 1.9 are then obtained by observing
that any map in a boundary stratum contains a real map from .P1; �/ whose degree is
of the same parity as d .

From (5-3), we obtain the following observation.

Lemma 5.1 Suppose c D �; �, � D �2m�1; �2m�1 , and d 2 ZC are such that j�jC
jcjd 2 2Z. The map (5-2) is .�; c/–real if and only if

pi.x;y/DAi

dY
rD1

.aiIr xC .�1/jcjbiIr y/; qi.x;y/D xBi

dY
rD1

.xbiIr xCxaiIr y/;
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for some Ai ;Bi 2C and ŒaiIr ; biIr � 2 P1 such that

jAi j D jBi j 8i D 1; : : : ;m; ŒA1; : : : ;Am�D ŒB1; : : : ;Bm� 2 Pm�1;

ie .B1; : : : ;Bm/D �.A1; : : : ;Am/ for some � 2 S1 �C .

For a; b 2C define

pa;bW C
2
�!C; pa;b.x;y/D axC by:

Taking mD 1, � D c , and d D 1 in Lemma 5.1, we find that

f.a; b/ 2C2
W jaj ¤ jbjg=R� �!G� � Aut.P1; �/; Œa; b� �! Œpa;b;pxb;xa�;

f.a; b/ 2C2
� 0g=R� �!G� � Aut.P1; �/; Œa; b� �! Œpa;�b;pxb;xa�;

are diffeomorphisms. In particular, G� has two topological components, with the
automorphism

# W P1
�! P1; #.Œx;y�/D Œy;x�;

contained in the non-identity component.

5.2 Algebraic orientations

For m; d 2 ZC , let ��
m;d
D∅ and

��m;d D

�
.Œb1I1; : : : ; b1Id �; : : : ; ŒbmI1; : : : ; bmId �/ 2 .SymdC/m W

S1
\

m\
iD1

fbiIr W r D 1; : : : ; dg ¤∅
�
:

We identify RP2m�1 with .Cm�f0g/=R� , viewing the i th complex coordinate as the
.2i � 1/ and 2i th real components.

Suppose c D �; �, � D �2m�1; �2m�1 , and d 2ZC are such that j�jC jcjd 2 2Z. By
Lemma 5.1, the map

‚c W ..SymdC/m��c
m;d /�RP2m�1

�! P0.P
2m�1; d/�;c

given by

.Œb1I1; : : : ; b1Id �; : : : ; ŒbmI1; : : : ; bmId �; ŒA1; : : : ;Am�/

�!

�
A1

dY
rD1

p1;.�1/jcjb1Ir
; xA1

dY
rD1

pxb1Ir ;1
; : : : ;Am

dY
rD1

p1;.�1/jcjbmIr
; xAm

dY
rD1

pxbmIr ;1

�
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is a diffeomorphism over the open subset of P0.P
2m�1; d/�;c consisting of maps u

such that u.Œ1; 0�/ does not lie in any of the coordinate subspaces of P2m�1. Since
the complement of this subspace is of codimension 2, ‚c induces an orientation on
P0.P

2m�1; d/�;c . The map

‚0c W ..SymdC/m��c
m;d /�RP2m�1

�! P0.P
2m�1; d/�;c

given by

.Œa1I1; : : : ; a1Id �; : : : ; ŒamI1; : : : ; amId �; ŒB1; : : : ;Bm�/

�!

�
xB1

dY
rD1

pxa1Ir ;.�1/jcj ;B1

dY
rD1

p1;a1Ir
; : : : ; xBm

dY
rD1

pxamIr ;.�1/jcj ;Bm

dY
rD1

p1;amIr

�

is also a diffeomorphism over this open subset of P0.P
2m�1; d/�;c . The two diffeomor-

phisms induce the same orientation on P0.P
2m�1; d/�;c if and only if .d C 1/m 2 2Z.

In particular, the two orientations are the same if d 62 2Z.

The action of the automorphism # of .P1; �/ lifts over ‚ and ‚0 as

..SymdC/m���m;d /�RP2m�1
�! ..SymdC/m���m;d /�RP2m�1;

.Œb1I1; : : : ; b1Id �; : : : ; ŒbmI1; : : : ; bmId �; ŒA1; : : : ;Am�/

�! .Œb�1
1I1; : : : ; b

�1
1Id �; : : : ; Œb

�1
mI1; : : : ; b

�1
mId �; ŒA1b1I1 : : : b1Id ; : : : ;AmbmI1 : : : bmId �/:

This lift is orientation-preserving. Since the group G� has two topological components,
with # contained in the non-identity component, and the group G� is connected, it
follows that the above orientations descend to orientations on the quotient

M0.P
2m�1; d/�;c D P0.P

2m�1; d/�;c=Gc :

This implies that the moduli space Ml.P
2m�1; d/�;c is orientable for all c , � and

all m, d , l .

Let � W Cm � 0 �! RP2m�1 be the projection map. The standard action of R� on
Cm� 0 determines an isomorphism

ƒ
top
R Cm

ˇ̌
Cm�0

� ��ƒ
top
R .RP2m�1/˝R R

of real line bundles over Cm� 0. We orient RP2m�1 from the standard orientations
of Cm and RC via this isomorphism. Thus, v1; : : : ; v2m�1 2 TwCm descends to
an oriented basis for RP2m�1 if v1; : : : ; v2m�1; w is an oriented basis for Cm. For
example, an oriented pair of vectors in each of m� 1 of the complex components
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of Cm and the negative rotation in the remaining component determine an oriented
basis on RP2m�1 . In particular, the covering projection

S1
�!RP1

DC�=R�; � �! Œ��;

is orientation-reversing with respect to the standard orientation on S1 � C and our
orientation on RP1 .

We will call the orientations on P0.P
2m�1; d/�;c and Ml.P

2m�1; d/�;c induced
by ‚c the algebraic orientations; they agree with the orientations induced by ‚0c unless
d 22Z and m 622Z. By Corollary 6.8, the algebraic orientation of Ml.P

2m�1; d/�;c is

� the opposite of the orientation induced by the spin structure on RP2m�1 de-
scribed in Section 5.5 if m 2 2Z, d 62 2Z, and .�; c/D .�2m�1; �/;

� the opposite of the orientation induced by the real square root of KP2m�1

described in Section 5.5 if m 2 2Z, d 62 2Z, and .�; c/D .�2m�1; �/;

� the same as the orientation induced by the relative spin structure on RP2m�1

described at the end of Section 6.4 if m 62 2Z, d 62 2Z, and .�; c/D .�2m�1; �/;

� the same as the orientation induced by the spin sub-structure on the real line
bundle KP2m�1 described at the end of Section 6.4 if m 62 2Z, d 62 2Z, and
.�; c/D .�2m�1; �/.

5.3 Moduli spaces of degree 1 maps

We will next note some properties of the algebraic orientation on Ml.P
2m�1; 1/�;c .

Lemma 5.2 Let c D �; �.

(1) The algebraic orientation on Gc D P0.P
1; 1/c;c is the opposite of the canonical

orientation specified at the beginning of Section 2.

(2) With respect to the algebraic orientation, M0.P
1; 1/c;c is a single positive point.

Proof For m D 1 and d D 1, the map ‚c determining the algebraic orientation
reduces to

.C��c
1;1/�RP1

�! P0.P
1; 1/c;c ;

.b; Œei� �/ �! e�i�

ei�
�
xbxCy

xC.�1/jcjby
D e�2i�

�
zCxb

1C.�1/jcjbz
:
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At .0; Œ1�/, the left-hand side above is oriented by the complex orientation of C and
the negative � –direction. The right-hand side is oriented by the complex orientation
of a and the positive � –direction in�

a; ei�
�
�! ei� � zCa

1C.�1/jcjxaz
I

see the beginning of Section 2. Thus, the first map above is orientation-reversing
(orientation-reversing on C and orientation-preserving on � ). This establishes the first
claim. The second claim of this lemma follows from the first and Lemma 2.2.

With c , � , and m as above, let

ev0W P0.P
2m�1; 1/�;c �! P2m�1; u �! u.0/;

denote the evaluation at 0 2 P1 . Let

NmP �
T P2mC1

ˇ̌
T P2m�1

T P2m�1
and NmP �

TP0.P
2mC1; 1/�;c

ˇ̌
P0.P2m�1;1/�;c

TP0.P2m�1; 1/�;c

respectively denote the normal bundle of P2m�1 in P2mC1 and the normal bundle
of P0.P

2m�1; 1/�;c in P0.P
2mC1; 1/�;c . The complex orientations on the projective

spaces induce an orientation on NmP . If j�j D jcj, the algebraic orientations on the
spaces of parametrized maps induce an orientation on NmP . The differential of ev0

descends to an isomorphism

(5-4) dev0W NmP �! ev�0N
mP :

Lemma 5.3 Let c D �; � and � D �2m�1; �2m�1 . If j�j D jcj, the isomorphism (5-4)
is orientation-reversing with respect to the algebraic orientation on the domain and the
complex orientation on the target.

Proof It is sufficient to establish the claim near the image u0 of

.0; : : : ; 0; Œ1; 0; : : : ; 0�/ 2Cm
�RP2m�1

under ‚c . The left-hand side in (5-4) is then oriented by the complex orientations
of AmC1 and bmC1 � bmC1I1 . Near u0 , the map ev0 between the normal neighbor-
hoods can be written as

C2
�!C2; .AmC1; bmC1/ �! .AmC1; xAmC1

xbmC1/:

This map is orientation-reversing near u0 .

Geometry & Topology, Volume 20 (2016)



670 M Farajzadeh Tehrani and A Zinger

The moduli spaces

M0.P
2m�1; 1/�2m�1 DM0.P

2m�1; 1/�2m�1;� ;

M0.P
2m�1; 1/�2m�1 DM0.P

2m�1; 1/�2m�1;�;

are compact manifolds. Using the algebraic orientations on these spaces, we can thus
define the numbers

zN
�
1
.2m� 1/D

Z
ŒM1.P2m�1;1/� �

ev�0H 2m�1

for � D �2m�1; �2m�1 ; they are signed counts of real lines in P2m�1 passing through
a pair of conjugate points.

Corollary 5.4 If � D �2m�1; �2m�1 , then

zN
�
1
.2m� 1/D .�1/m�1:

Proof It is sufficient to show that

(5-5) zN
�
1
.1/D 1; zN

�
1
.2mC 1/D� zN

�
1
.2m� 1/:

The map u0 in the proof of Lemma 5.3 is the only element of M0.P
2m�1; 1/� passing

through the point
P1 � Œ1; 0; : : : ; 0� 2 P2m�1:

The sign of this element is the sign of the isomorphism

(5-6) dŒu0;0�ev1W TŒu0;0�M1.P
2m�1; 1/� �! TP1

P2m�1:

The orientation on the domain of this map is obtained via the exact sequence

(5-7) 0 �! T0P1
�! TŒu0;0�M1.P

2m�1; 1/� �! TŒu0�M0.P
2m�1; 1/� �! 0;

from the algebraic orientation of M0.P
2m�1; 1/� and the complex orientation of P1 .

By the second statement of Lemma 5.2, the first arrow in (5-7) is an orientation-
preserving isomorphism if mD 1. Since its composition with (5-6) is the identity if
mD 1, the first claim in (5-5) holds.

Let NmM denote the normal bundle of M1.P
2m�1; 1/� in M1.P

2mC1; 1/� . The
differential (5-6) induces a commutative diagram

0 // TŒu0;0�M1.P
2m�1; 1/� //

dŒu0;0�

��

TŒu0;0�M1.P
2mC1; 1/� //

dŒu0;0�

��

Nm
Œu0�

M //

dŒu0;0�

��

0

0 // TP1
P2m�1 // TP1

P2mC1 // Nm
P1

P // 0:
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The second claim in (5-5) is equivalent to the isomorphism given by the last vertical
arrow above being orientation-reversing. The projection

P0.P
2mC1; 1/� �!M1.P

2mC1; 1/� ; u �! Œu; 0�;

pulls back this isomorphism to the isomorphism (5-4) at Œu0�. The latter is orientation-
reversing by Lemma 5.3.

5.4 Moduli spaces of even degree maps

Since Fix.�2m�1/D∅,

Ml.P
2m�1; d/�2m�1;� D∅ 8 d 2 Z:

By Lemma 1.9,
Ml.P

2m�1; d/�2m�1;� D∅ 8 d 2 2Z:

On the other hand, Lemma 5.1 implies that the moduli spaces

(5-8) Ml.P
2m�1; 2d/�2m�1;� and Ml.P

2m�1; 2d/�2m�1;�

are both non-empty for all d 2 ZC . They have common codimension-one boundary

(5-9) @1Ml.P
2m�1; 2d/�2m�1;� D @1Ml.P

2m�1; 2d/�2m�1;�

consisting of real maps from a wedge of two copies of P1 interchanged by an orientation-
reversing involution; the corresponding image curves then have an isolated real node.
The first moduli space also has a boundary component consisting of real maps from a
wedge of two copies of P1 with an involution preserving each copy; the corresponding
image curves then have a non-isolated real node. By the next statement, the conclusion
of Proposition 3.3 applies to the algebraic orientations on the moduli spaces (5-8).

Proposition 5.5 For all d 2ZC , the orientations on the codimension 1 boundary (5-9)
induced by the algebraic orientations on the moduli spaces (5-8) are the same.

Proof It is sufficient to consider the case l D 1. Let

P2m�1
2m � f ŒZ1; : : : ;Z2m� 2 P2m�1

WZ2m D 0g:

For c D �; �, define

M�.P2m�1; 2d/�2m�1;c D f Œu; 0� 2M1.P
2m�1; 2d/�2m�1;c W u.0/ 2 P2m�1

2m g

and let
P�.P2m�1; 2d/�2m�1;c � P0.P

2m�1; 2d/�2m�1;c
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be the preimage of M�.P2m�1; 2d/�2m�1;c under the projection

P0.P
2m�1; 2d/�2m�1;c �!M1.P

2m�1; 2d/�2m�1;c ; u �! Œu; 0�:

The action of the subgroup S1 � Gc of rotations around 0 restricts to an action on
P�.P2m�1; 2d/�2m�1;c and

(5-10) M�.P2m�1; 2d/�2m�1;c D P�.P2m�1; 2d/�2m�1;c=S1:

Let P0.P
2m�1; d/ denote the space of (parametrized) degree d holomorphic maps

uW P1 �! P2m�1 . Define

M�.P2m�1; d/RDfŒu; 0;1�2M2.P
2m�1; d/ Wu.0/2P2m�1

2m ;u.1/2Fix.�2m�1/g

and let
P�.P2m�1; d/R � P0.P

2m�1; d/

be the preimage of M�.P2m�1; d/R under the projection

(5-11) P0.P
2m�1; d/ �!M2.P

2m�1; d/; u �! Œu; 0;1�:

Thus,

(5-12) @1M�.P2m�1; 2d/�2m�1;� ; @1M�.P2m�1; 2d/�2m�1;� DM�.P2m�1; d/R:

The actions of the subgroup S1 � PSL.2;C/ of rotations around 0 and the subgroup
RC � PSL.2;C/ of scaling from 1 restrict to actions on P�.P2m�1; d/R and

M�.P2m�1; d/R D P�.P2m�1; d/R=.R
C
�S1/:

Let

LC D P�.P2m�1; d/R �RC RC �! P�.P2m�1; d/R=R
C;

LC.1/D fŒu; �� 2 LC W � < 1g; LC
0
.1/D fŒu; �� 2 LC W � 2 .0; 1/g:

Let
Œd �D f1; : : : ; dg:

For � 2R and b2 .SymdC/2m , let �b be the element of .SymdC/2m obtained from b

by multiplying all coordinates of b by � . The group RC acts on .SymdC/2m by

RC � .SymdC/2m
�! .SymdC/2m; .�;b/ �! ��1b:

Let eLC D .SymdC/2m
�RC RC �! .SymdC/2m=RC:
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We define

RP2m�1
� D .C�/m=R� �RP2m�1;

.SymdC/2m
� D

� �
.biIr /r2Œd �

�
i2Œ2m�

2 .SymdC/2m
W b2mImC1 : : : b2mId D 0;

jbiIr j< 1 8 i; r;

m\
iD1

fbiIr W r 2 Œd �g\

m\
iD1

fbmCiIr W r 2 Œd �g D∅
�
:

The standard action of S1 � C on C and the trivial action on RP2m�1
� induce an

action on
W� � .SymdC/2m

� �RP2m�1
� :

Given an element .b; ŒA�/ of W� and � 2 RC sufficiently close to 1 (depending
on .b; ŒA�/), we define � � .b; ŒA�/ to be the element obtained by multiplying the
components of b by ��1. Let W 0� be the quotient of W� by the resulting equivalence
relation. Define

zLC D zLC �RP2m�1
�

ˇ̌
W 0�
; zLC

0
D zLC�W 0� ;

ˆW zLC
0
.1/� f Œb; ŒA�; �� 2 zLC

0
W � < 1g �!W� ; ˆ.Œb; ŒA�; ��/D .�b; ŒA�/:

For c D �; �, the S1 –equivariant mapb‚c WW� �! P�.P2m�1; 2d/�;c ;

��
.biIr /r2Œd �

�
i2Œ2m�

;
�
.Ai/i2Œm�

��
�!

��
Ai

dY
rD1

pbiIr ;1p
1;.�1/jcjxbmCiIr

;

xAi

dY
rD1

p
1;.�1/jcjxbiIr

pbmCiIr ;1

�
iD1;:::;m

�
;

is a diffeomorphism onto an open subset of the target and induces an orientation
on the latter from the canonical orientation of W� . The induced orientation on the
left-hand side of (5-10) is the orientation induced by the algebraic orientation on
M1.P

2m�1; 2d/�2m�1;c and the complex orientation on P2m�1
2m

. We will call this
orientation the algebraic orientation as well.

The smooth map b‚W W� �! P�.P2m�1; d/R;��
.biIr /r2Œd �

�
i2Œ2m�

;
�
.Ai/i2Œm�

��
�!

��
Ai

dY
rD1

pbiIr ;1;
xAi

dY
rD1

pbmCiIr ;1

�
iD1;:::;m

�
;
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commutes with the S1 –actions and the local RC–actions. Thus, it lifts to an S1 –
equivariant diffeomorphism

z‚W zLC �! LC
ˇ̌b‚.W�/

which is a linear isometry on the fibers. For c D �; �, define

‰c W L
C

0
.1/
ˇ̌b‚.W�/ �! P�.P2m�1; 2d/�2m�1;c ;

‰c.z‚.Œb; ŒA�; ��// D b‚c.ˆ.Œb; ŒA�; ��//:

Thus, the following diagram of S1 –equivariant maps commutes:

zLC
0
.1/ˆ

		

z‚

��

P�.P2m�1; 2d/�2m�1;�

W�

y‚�
44

y‚� **

LC
0
.1/
ˇ̌
y‚.W�/

‰�
kk

‰�
ss

P�.P2m�1; 2d/�2m�1;�

For each .b; ŒA�/ 2W� , the sequence of the equivalence classes of maps

.id; b‚c.�kb; ŒA�//W P1
�! P1

�P2m�1

with �k ! 0 converges to the equivalence class of the map

utop[u0[ubotW P
1
top[P1

0 [P1
bot �! P1

�P2m�1

as in the proof of Proposition 3.3. The second component of u0 is mapped to the point
ŒA� in Fix.�2m�1/, while the second component of utop is the image of y‚.b; ŒA�/
under (5-11). Contracting P1

0
, we obtain the image of y‚.b; ŒA�/ under the identifica-

tion (5-12). This implies that the map

LC.1/=S1
�!M�.P2m�1; 2d/�2m�1;c ;

Œu; �� �!

�
Œ‰c.Œu; ��/� if � ¤ 0;

Œu� if � D 0;

is a homeomorphism onto a neighborhood of

y‚.W�/=S
1
� @1M�.P2m�1; 2d/�2m�1;c

in M�.P2m�1; 2d/�2m�1;c .
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Since the boundary (5-9) is connected, it is sufficient to establish the claim of the
proposition at the boundary elements contained in the image of y‚.W�/ under the
identification (5-12). The substance of this claim is that the bottom diffeomorphisms in
the commutative diagram

P�.P2m�1; 2d/�2m�1;�

��

LC
0
.1/
ˇ̌
y‚.W�/

‰�oo
‰� //

��

P�.P2m�1; 2d/�2m�1;�

��
M�.P2m�1; 2d/�2m�1;� LC

0
.1/
ˇ̌
y‚.W�/

=S1oo //M�.P2m�1; 2d/�2m�1;�

induce the same orientation on their domain from the algebraic orientations on the
targets. The latter are induced from the orientations of the targets of ‰� and ‰�
induced by the diffeomorphisms y‚� and y‚� . Thus, the claim is equivalent to the
orientations on the domain of ‰� and ‰� induced by these orientations of their target
being the same. This is immediate from the commutativity of the preceding diagram.

5.5 The canonical orientations

The first homomorphism f D .f1; : : : ; fn/ in (1-16) is described by

ffi.`; �/g.a1; : : : ; an/D �ai 8 .a1; : : : ; an/ 2 `:

With Ui D f ŒZ1; : : : ;Zn� 2 Pn�1 W Zi ¤ 0g, let

zi D .zi1; : : : ; zin/W Ui!Cn;

where zij DZj=Zi . The second homomorphism in (1-16) over Ui is described by

.p1; : : : ;pn/ �!
X
j¤i

.pj .zi.`//� zij pi.zi.`///
@

@zij
8pj 2OPn�1.1/

ˇ̌
`
:

It is straightforward to check that this homomorphism is independent of the choice
of i and the sequence (1-16) is indeed exact. This short exact sequence gives rise to a
natural isomorphism

(5-13) ƒ
top
C .nOPn�1.1//�ƒ

top
C .Pn�1

�C/˝ƒtop
C .T Pn�1/�K�Pn�1 :

We define antiholomorphic maps c˙
�

on C2m by

c˙� .x1; : : : ;x2m/D .˙1/j�j..�1/j�jxx2; xx1; : : : ; .�1/j�jxx2m; xx2m�1/:
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The involution � D �2m�1; �2m�1 lifts to an involution

ˆW OP2m�1.�1/˚OP2m�1.�1/ �!OP2m�1.�1/˚OP2m�1.�1/;

ˆ.`;x;y/ D .�.`/; c�� .y/; c
C

�
.x//:

In turn, this involution induces an involution on the dual bundle,

(5-14) ˆW OP2m�1.1/˚OP2m�1.1/ �!OP2m�1.1/˚OP2m�1.1/;

fˆ.`; ˛1; ˛2/g.�.`/;x;y/ D f.`; ˛1; ˛2/g.ˆ.�.`/;x;y//;

and thus involutions ˆ on

(5-15) OP2m�1.2/�ƒ
top
C .OP2m�1.1/˚OP2m�1.1//;

2mOP2m�1.1/�m.OP2m�1.1/˚OP2m�1.1//;

OP2m�1.2m/�ƒ
top
C .2mOP2m�1.1//�OP2m�1.2/˝m

lifting � . The last two lifts commute with the homomorphisms in (1-16) and the
isomorphism (5-13), when nD 2m is even.

The isomorphisms (5-13) and (5-15) determine a real square root structure on KP4m�1 ,
as needed for orienting the moduli spaces Ml.P

4m�1; d/�;� . We describe it below.
For i D 1; 2; : : : ; 2m, we define

xi D

�
i C 1 if 2−i;

i � 1 if 2 j i:

A spin structure on RP4m�1 D Fix.�4m�1/ is determined by a trivialization of
T RP4m�1 D Fix.d�4m�1/ over any one of the m circles

RP1
i DRP1

xi
� f ŒZ1; : : : ;Z4m� 2RP4m�1

WZj D 0 8 j ¤ i;xi g;

with i D 1; 2; : : : ; 2m. Via the real part (the fixed loci of the involutions) of the short
exact sequence (1-16), such a trivialization induces a trivialization of

.4mOP4m�1.1//R � Fix.ˆW 4mOP4m�1.1/ �! 4mOP4m�1.1//

� 2m.2OP4m�1.1//R;

with the first trivializing section being f . � ; 1/. The homotopy class of the resulting
trivialization is independent of the lifts of the 4m�1 trivializing sections of T RP4m�1

over the homomorphism g in (1-16) and depends only on the homotopy class of the
trivialization of T RP4m�1 . Furthermore, this induces a bijective correspondence be-
tween the homotopy classes of trivializations of the two bundles. On the other hand, any
trivialization of .2OP4m�1.1//R over RP1

i induces a trivialization of 2.2OP4m�1.1//R ,
the homotopy class of which is independent of the choice of the first trivialization.

Geometry & Topology, Volume 20 (2016)



Counting genus-zero real curves in symplectic manifolds 677

Therefore, there is a canonical homotopy class of trivializations of .4mOP4m�1.1//R

over RP1
i , which in turn determines a homotopy class of trivializations of T RP4m�1

over RP1
i and thus a spin structure on RP4m�1 (which is independent of the choice

of i ). This spin structure determines an orientation on Ml.P
4m�1; d/�4m�1;� .

Since we trivialize the summands .2OP4m�1.1//R in the same way, the orientations on

ƒ
top
R .T RP4m�1/D .ƒ

top
C T P4m�1/R �OP4m�1.2m/R˝OP4m�1.2m/R

and thus on RP4m�1 induced by the canonical square root and spin structure, are the
same. The canonical square root and spin structure are therefore not compatible in
the sense of Definition 1.6. By Proposition 3.3, we must thus flip the canonical orien-
tation of either Ml.P

4m�1; d/�4m�1;� or Ml.P
4m�1; d/�4m�1;� when orienting the

moduli spaces Ml.P
4m�1; d/�4m�1 as in Section 3. For the purposes of Sections 1.4

and 6, we flip the orientation of the � moduli space. Thus, the chosen orientation of
Ml.P

4m�1; d/�4m�1 agrees with the canonical orientation on its � –subspace and is
the reverse of the canonical orientation on its �–subspace.

6 Equivariant localization

In this section, we use equivariant localization to prove Theorem 1.10 by summing
over the fixed loci of a torus action on Ml.P

4m�1; d/� . As in [18, Sections 7, 8] and
[23, Section 3], these loci are described by graphs with one half-edge. The contribution
of the complement of the half-edge to the normal bundle of the corresponding locus is
standard. Proposition 6.2 determines the key contribution of the half-edge to the normal
bundle and is thus analogous to [18, (3)] and [23, Lemma 6], though our arguments are
rather different from [18] and [23].

We describe the fixed loci of a natural action of

T � .S1/m � f.�1; : : : ; �m/ 2Cm
W j�k j D 1g

on Ml.P
2m�1; d/� in Section 6.1 and their normal bundles in Section 6.2. In

Section 6.3, we prove Theorem 1.10 and compute some low-degree real invariants.
Proposition 6.2 is proved in Section 6.4.

6.1 Fixed loci

The m–torus T acts on P2m�1 by

.�1; : : : ; �m/ � ŒZ1; : : : ;Z2m�D Œ�1Z1; �
�1
1 Z2; : : : ; �mZ2m�1; �

�1
m Z2m�:
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This action commutes with the involutions �D �2m�1; �2m�1 and has 2m fixed points,

P1 D Œ1; 0; : : : ; 0�; : : : ; P2m D Œ0; : : : ; 1�:

We note that �.Pi/DPxi . By composition on the left T also acts on Ml.P
2m�1; d/�;c ,

where c D �; �.

Lemma 6.1 [24, Lemma 3.1] The irreducible T –fixed curves in P2m�1 are the lines
Lij connecting the points pi and pj , with i ¤ j . Moreover, the irreducible � and
T –fixed curves in P2m�1 are the lines Lixi .

The above T –action on P2m�1 naturally lifts to the tautological line bundle

OP2m�1.�1/ �! P2m�1;

and thus to the line bundle OP2m�1.a/ for every a2Z. Let �i 2H�T be the equivariant
first Chern class of OP2m�1.1/

ˇ̌
Pi

. Thus,

�xi D��i ; H�T DQŒ�1; �3; : : : ; �2m�1�:

Let Œf; .zC
k
; z�

k
/k � be an element of Ml.P

2m�1; d/�;c fixed by the T –action. Since
there are no T –fixed points in P2m�1 that are also fixed by � , the domain † of f
contains a central component †0 , while the remaining irreducible components come in
conjugate pairs. Furthermore, f0 � f j†0

is a cover of some line Lixi of some degree
d0 2 ZC which is branched only over Pi and Pxi . Every nodal and marked point
of † and branched point of f is mapped to a fixed point Pj . If d0 < d or l > 1, the
complement of †0 in † consists of two nodal curves †0 and †00 , each with l C 1

marked points .xk/
l
kD0

so that x0 corresponds to the node shared with †0 and each
of the remaining points is decorated by a sign sk , C or �, depending on whether it is
the first or the second point in the pair .zC; z�

k
/.

Similarly to [17, Section 27.3], every fixed locus of such maps can be modeled on
a labeled tree � , symmetric about the mid-point of a distinguished edge e0 , which
corresponds to the central component †0 of the T –fixed maps in the locus. Every
edge e of � is labeled by some de 2 ZC , indicating the degree of the corresponding
map; these labels are preserved by the reflection symmetry of � . Every vertex v is
labeled by some jv D 1; 2; : : : ; 2m in such a way that the reflection symmetry takes a
vertex labeled j to a vertex labeled xj . The graph � also contains open edges which
correspond to the marked points of the domain †; we denote by v.k/ the vertex to
which the k th marked point is attached. Figure 3(a) shows one such graph describing a
T –locus in M7.P

2m�1; Œ7�/�;c .

Removing e0 from � , we get a disconnected graph � 0t x� 0 , with x� 00 obtained from � 0

by replacing each vertex label j by xj . Choose one of the connected subgraphs, eg � 0 ,
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3

1 1

1 1

i

xi

j1 j2

xj1
xj2

3

1 1

i

j1 j2

(a) (b)

Figure 3: A decorated graph on the left and one of its halves on the right.

and add the corresponding half-edge in place of the central edge; see Figure 3(b). We
denote the total half-graph by �half . All calculations below are based on this half-graph;
it is straightforward to check that the result is independent of which half we choose.

For each vertex v in �half , let

Mv DM0;val.v/;

where val.v/ is the valence of v , ie the number of edges and open edges in � leaving v .
If val.v/D 1; 2, we take M0;val.v/ to be a point. Let

M�half D

Y
v

Mv; D�half D jAut.�half/j d0

Y
e

de;

where the products are taken over the vertices v and edges e in �half , and Aut.�half/

denotes the group of automorphisms of �half .

6.2 Normal bundles

For every flag F D .v; e/, let jF D jv . For every element Œf; .zC; z�/k � in the fixed
locus corresponding to � , there is an exact sequence

0 �! Aut.†; .zC
k
; z�k /k/R �! Def.f /R �! Def.f; .zC

k
; z�k /k/R

�! Def.†; .zC
k
; z�k /k/R �! 0;

where † is the domain of f . Thus,

(6-1) e.N�/D e.Def.f; .zC
k
; z�k /k/

mov
R /

D
e.Def.f /mov

R / e.Def.†; .zC
k
; z�

k
/
k
/mov
R /

e.Aut.†; .zC
k
; z�

k
/
k
/mov
R /

;
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where “mov” means the moving part (the part with the nonzero T –weights) and e. � /

denotes the equivariant Euler class.

Following [17, Section 27.4], we now determine the three terms appearing on the
right-hand side of (6-1).

For each edge e of �half , Aut.†; .zC
k
; z�

k
/k/R contains a T –fixed one-dimensional

complex subspace of infinitesimal automorphisms of the corresponding non-contracted
component †e which fix the two branch points of fe � f j†e

; this subspace cancels
with a similar piece in Def.fe/R . The space Aut.†; .zC

k
; z�

k
/
k
/R also contains a

T –fixed one-dimensional real subspace of infinitesimal automorphisms of the central
component †0 ; this subspace cancels with a similar piece in Def.f0/R , up to sign
taken into account by Proposition 6.2. The remaining automorphisms, none of which
is T –fixed, correspond to the vertices v in �half of valence 1; they describe the
infinitesimal automorphisms moving the branch point xv of fe , where e is the unique
edge containing v that lies over jv . Thus, similarly to [17, Section 27.4],

(6-2) e.Aut.†; .zC
k
; z�k /k/

mov
R /D

Y
v2e

val.v/D1

e.Txv†e/D
Y
v2e

val.v/D1

w.v;e/;

where w.v;fv;v0g/ D .�jv ��jv0 /=dfv;v0g .

A deformation of a contracted component of the domain (as a marked curve) is T –fixed.
The moving deformations come from smoothing (conjugate pairs) of nodes of †. For
each node x of † corresponding to �half , Def.†; .zC

k
; z�

k
/
k
/mov
R contains the complex

one-dimensional space isomorphic to the tensor product of the tangent spaces of the
two components of † sharing x . There are two possibilities.

� Each v 2 �half shared by two edges contributes wF1
CwF2

, where F1 and F2

are the two flags containing v .

� Each flag F D .v; e/ with v 2�half and val.v/� 3 contributes wF � F , where
 F 2H 2.Mv/ is the first Chern class of the universal cotangent bundle on Mv

corresponding to the marked point determined by F on the contracted curve
determined by the vertex v .

Thus,

(6-3) e.Def.†; .zC
k
; z�k /k/

mov
R / D

Y
val.v/D2

v2e1;e2I e1¤e2

.w.v;e1/Cw.v;e2//

�

Y
val.v/�3

Y
v2e

.w.v;e/� .v;e//:
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Finally, there is an exact sequence

0 �! Def.f /R

�!H 0.†e0
; f �0 T P2m�1/R˚

M
e¤e0

H 0.†e; f
�

e T P2m�1/˚
M
v

Tpjv
P2m�1

�!

M
F

TpjF
P2m�1

�! 0;

where the direct sums are taken over the vertices v , edges e , and flags F in �half .
Thus,

(6-4) e.Def.f /mov
R /D

Y
v

Y
j¤jv

.�jv ��j /

�
e.H 0.†e0

; f �
0

T P2m�1/mov
R /

Q
e¤e0

e.H 0.†e; f
�

e T P2m�1/mov/Q
F

Q
j¤jF

.�jF
��j /

:

The contribution of e ¤ e0 is standard and given by

(6-5) e.H 0.†e; f
�

e T P2m�1/mov/

D .�1/de
de!2

d
2de
e

.�j1
��j2

/2de

deY
rD0

Y
k¤j1;j2

�
r�j1
C .de � r/�j2

de
��k

�
;

where j1 and j2 are the two vertex labels of the edge e ; see [17, Section 27.4]. The
contribution of the half-edge e0 is described by the next lemma, which is proved in
Section 6.4.

Proposition 6.2 Let � D �4m�1; �4m�1 , c D �; �, and

f0W .P
1; Œ1; 0�; Œ0; 1�/! .P4m�1;Pi ;Pxi/

be the degree d0 cover of a line Lixi branched over only Pi and Pxi and intertwining
the involutions c and � . With respect to the canonical orientation of the moduli space
M0.P

4m�1; d0/
�;c as in Section 5.5,

(6-6) e.H 0.†e0
; f �0 T P4m�1/mov

R /

D .�1/d0d0!

�
2�i

d0

�d0 Y
1�j�4m

j¤i; 2j.j�i/

d0Y
rD0

�
d0� 2r

d0

�i ��j

�
:
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6.3 Applications

By the classical localization theorem of [2],

(6-7) N
�

d
.t1; : : : ; tl/D

X
�F�

1

D�half

Z
M�half

Ql
kD1 s

tkC1

k
�

tk

jv.k/

e.N�/

�

X
�F�

1

D�half

Z
M�half

Ql
kD1 s

tkC1

k
�

tk

jv.k/

e.N�/
;

where the first and second sums are taken over the graphs � corresponding to the fixed
loci in

(6-8) Ml.P
4m�1; d/�;� and Ml.P

4m�1; d/�;�

respectively. By Section 5.1, such graphs satisfy j�j C jcjd0 2 2Z with c D �; �,
respectively. The negative sign in (6-7) arises due to the fact that we flip the orientation of
the second moduli space above when gluing it to the first; see the last paragraph of
Section 5.5. Along with (6-1)–(6-6), (6-7) provides an explicit way of computing the
numbers (1-17).

Proof of Theorem 1.10 Suppose tk 2 2Z for some k . Given any graph � correspond-
ing to a fixed locus in either moduli space in (6-8), let � 0 be the graph obtained from
� by changing the sign of the k th marked point. By (6-7), the contribution of � 0 to
N
�

d
.t1; : : : ; tl/ is the negative of the contribution of � . Thus, N

�

d
.t1; : : : ; tl/ vanishes.

Suppose d 2 2Z. The graphs � describing the fixed loci in the spaces (6-8) with
� D �4m�1 are the same. By (6-7), this implies that N

�4m�1

d
.t1; : : : ; tl/ vanishes. By

Lemma 1.9, both spaces (6-8) are empty for � D �4m�1 . Thus, N
�4m�1

d
.t1; : : : ; tl/

also vanishes.

Suppose d 62 2Z. By Lemma 1.9, the second space in (6-8) for �D �4m�1 and the first
space in (6-8) for � D �4m�1 are empty. The graphs � corresponding to the fixed loci
in the first space in (6-8) for � D �4m�1 and the second space in (6-8) for � D �4m�1

are the same. Along with (6-7), this implies (1-18).

If d; t1; : : : ; tl are odd, (6-7) gives

(6-9) N
�4m�1

d
.t1; : : : ; tl/D�N

�4m�1

d
.t1; : : : ; tl/

D 2l�1
X
�half

1

D�half

Z
M�half

Ql
kD1 �

tk

jv.k/

e.N�/
;
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where the sum is over all half-graphs �half corresponding to Ml.P
4m�1; d/�4m�1;�

containing marked points with the C sign only.

Example 6.3 (d D 1) We now establish (1-21). For d D 1 and t1; : : : ; tl 2ZC odd,
(6-9) and Proposition 6.2 give

N
�4m�1

1
.t1; : : : ; tl/D�2l

2mX
iD1

�
t1C:::Ctl

i

2�i

Q2m
jD1; j¤i.�

2
j ��

2
i /
.2�i/

�.l�1/;

after formally replacing .�1; �3; : : :/ by .�1; �2; : : :/. Using the second condition
in (1-22) and the residue theorem on S2 , we obtain

(6-10) N
�4m�1

1
.t1; : : : ; tl/D

2mX
iD1

Res
zD�2

i

z2m�1dzQ2m
jD1.z��

2
j /
D� Res

zD1

z2m�1dzQ2m
jD1.z��

2
j /
D 1:

Example 6.4 (d D 3) We now establish (1-23) using Pandharipande’s trick of
twisting by the equivariant weights to reduce the number of the contributing torus fixed
loci; the restrictions of the integrand to the remaining loci vanish. Let

J D f1; 3; : : : ; 4m� 1g� f1; 3g:

By the last condition in (1-24), J DJ1tJ2 for some J1;J2�J with jJi jD .ti�3/=2.
Set

˛k D .H C�1/.H
2
��2

3/
Y

j2Jk

.H 2
��2

j /; k D 1; 2;

˛3 D .H C�3/.H
2
��2

1/
Y
j2J

.H 2
��2

j /:

We now apply the equivariant localization theorem of [2] to compute

(6-11) N
�4m�1

3
.t1; t2; 4m� 1/D

Z
M3.P4m�1;3/�4m�1

ev�1˛1 ev�2˛2 ev�3˛3 :

The restriction of ev�
3
˛3 to a torus fixed locus vanishes unless the marked point 3 is

sent to P3 . For k D 1; 2, the restriction of ev�
k
˛k to a fixed locus vanishes unless the

marked point i is sent to Pj with j D 1, or j 2 J � Jk , or xj 2R� Jk . Since any
half-graph has at most two vertices in this case and J � J1[J2 , the restriction of the
integrand in (6-11) to a torus fixed locus vanishes unless the marked points 1 and 2 are
sent to P1 . Thus, Figure 4 shows all half-graphs contributing to (6-11). From (6-9)
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and Proposition 6.2, we thus obtain

N
�4m�1

3
.t1; t2; 4m� 1/D

.3�1��3/.�1C�3/

2�1.�1��3/
C
.3�1C�3/.�1��3/

2�1.�1C�3/

C
�1.�3C�1/

�3.�3��1/
�
�1.�3��1/

�3.�3C�1/

D�1:

1 31
2

C

1
C

3
C

1

1
2

C

1
C

3
�

4

1
1

1 3
2

C

1
C

3
C

1 3
3

C

2
2

�

1
�

1 1
1

.1/ .2/ .3/ .4/

Figure 4: The half-graphs contributing to the localization computation of
N
�2m�1

3 .t1; t2; 4m� 1/ with the constraints ˛1; ˛2; ˛3 .

6.4 Comparisons of orientations

Most of this section is dedicated to establishing Proposition 6.2. We then compare the
orientation on Ml.P

4m�1; d/�;c induced by the real square root and the spin structure
of Section 5.5 with the algebraic orientation defined in Section 5.2; see Corollary 6.8.

Proof of Proposition 6.2 For i D 1; : : : ; 2m, let

L�
ixi
�Lixi �fPi ;Pxig

denote the complement of the torus fixed points of the line Lixi . The involution ˆ on
OP2m�1.1/˝OP2m�1.1/ induced by (5-14) is given by

fˆ.`; ˛/g.�.`/;x˝y/D�˛.c�
�
.y/˝ cC

�
.x//:

The restriction of

OP2m�1.1/˝OP2m�1.1/�ƒ
top
C .OP2m�1.1/˚OP2m�1.1//

to L�
ixi

is trivialized by the homomorphism

.`; ˛/! .`; iz�1
ixi
˛.zi.`/˝ zi.`///:
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Via this trivialization, the above involution on OP2m�1.1/˝OP2m�1.1/ corresponds to
the standard involution on L�

ixi
�C lifting the restriction of � . Thus, the trivialization

(6-12) OP2m�1.2m/
ˇ̌
L�

ixi

�!L�
ixi
�C;

.`; ˛/ �! .`; imz�m
ixi
˛.zi.`/

˝2m//;

is an admissible trivialization of .OP2m�1.2m/; ˆ/ induced by a trivialization of its
real square root via the canonical isomorphism

OP2m�1.2m/�OP2m�1.m/˝OP2m�1.m/

if m 2 2Z.

In the case � D �2m�1 ,

.2OP2m�1.1//R D f.˛1; ˛2/ 2 2OP2m�1.1/
ˇ̌
`
W ` 2RP2m�1;

˛2.x/D ˛1.c
C

�
.x// 8x 2 `g:

Thus, we can trivialize .2OP2m�1.1//R over RP1
i by

(6-13) .`; ˛1; ˛2/! .`; ˛1.zi.`/// 2RP1
i �C:

Therefore, by Section 5.5, the trivialization

(6-14) ‰W .2mOP2m�1.1//R!RP1
i �Cfj W2j.j�i/g;

‰.`; ˛1; : : : ; ˛2m/j D j̨ .zi.`//;

determines the canonical spin structure on RP2m�1 if m 2 2Z.

The standard coordinate vector fields on Ui � P2m�1 as in Section 5.5 induce a
trivialization of T P2m�1 along L�

ixi
. Let

ˆi ; z�W L
�

ixi
�C2m�1

�!L�
ixi
�C2m�1

be the conjugation induced by this trivialization and the lift of � to the standard
conjugation, respectively. The composition

z� ıˆi W L
�

ixi
�! GL.2m� 1;C/

is given by

(6-15) .z� ıˆi.zixi//j1j2
D

8̂̂<̂
:̂
.�1/j�jC1z�2

ixi
if j1; j2 D

xi ;

.�1/j�j.iCj1/z�1
ixi

if j1 D
xj2 ¤ i;xi ;

0 otherwise:
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Define
Ai W L

�

ixi
�! GL.2m� 1;C/

by

(6-16) .Ai.zixi//j1j2
D

8̂̂̂̂
<̂
ˆ̂̂:
iaz�1

ixi
if j1; j2 D

xi ;

.�i/j1�j2�1 if j1 2 fj2; xj2g; 2 j .j2� i/;

ij1Cj2z�1
ixi

if j1 2 fj2; xj2g; 2 j .j2�
xi /;

0 otherwise:

By (6-15), the composition of the above trivialization of T P2m�1 over L�
ixi

with
.id;Ai/ intertwines d� with z� whenever a 2R� .

We order the standard coordinate vector fields along L�
ixi

so that @=@zixi is listed first,
followed by the pairs consisting of @=@zij ; @=@zi xj for j ¤ i and 2 j .j � i/. The
corresponding element of ƒtop

C .T P2m�1/ is then mapped to

det.Ai.zixi//D .�1/.m�1/xi im2m�1az�m
ixi

under the trivialization of ƒtop
C .T P2m�1/ over L�

ixi
induced by the composite trivial-

ization of T P2m�1 . On the other hand, the image of this .2m� 1/–tensor under the
canonical isomorphism (5-13) followed by the trivialization (6-12) is .�1/m

xi imz�m
ixi

.
Thus, the two trivializations of .K�

Pn�1 ; ˆ/ over L�
ixi

are homotopic in the sense of
Definition 2.3 if and only if .�1/

xia> 0.

In the case � D �2m�1 , the above composite trivialization restricts to a trivialization of
T RP2m�1 over RP1

i . The first trivializing section is �ia�1zixi @=@zixi , followed by

(6-17) 1

2

�
� i

@

@zij
C izixi

@

@zi xj

�
and .�1/

xi

2

�
@

@zij
C zixi

@

@zi xj

�
;

with j ¤ i and 2 j .j � i/. Lifting these sections over the homomorphism h in the
real part of the short exact sequence (1-16) and combining with the image of f , we
obtain a trivialization of .2mOP2m�1.1//R . The composition of this trivialization with
the trivialization (6-14) sends the two standard real basis elements in one C–factor
to 1 and i=2a, and in .m� 1/ C–factors to �i=2 and .�1/

xi=2. This transformation
is orientation-preserving if and only if .�1/.m�1/xia > 0. If m 2 2Z, the trivializa-
tion of .2mOP2m�1.1//R over RP1

i just discussed thus differs from a canonical one
by a constant matrix-valued function which is orientation-preserving if and only if
.�1/

xia > 0. Therefore, the trivialization of T RP2m�1 over RP1
i induced by the

composite trivialization above corresponds to the chosen spin structure on RP2m�1 if
.�1/.m�1/xia> 0.
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In summary, the orientation of H 0.†0; f
�

0
T P2m�1/R induced by the above composite

trivialization is the orientation induced by

� the chosen square root if c D � and .�1/
xia> 0,

� the chosen spin structure if c D � and .�1/.m�1/xia> 0.

By (6-15), the components of a section s 2H 0.†0; f
�

0
T P2m�1/R with respect to the

trivialization of f �
0

T Pn over P1�f0;1g induced by the coordinate tangent vectors
along L�

ixi
satisfy

sxi.z/D zd0

d0X
rD�d0

sxiIr zr ; sxiIr D .�1/1Cjcjr sxiI�r ;(6-18)

sj .z/D

d0X
rD0

sj Ir zr ; sj Ir D .�1/j�j.iCj/Cjcjr sxj Id0�r 8 j ¤ i;xi :(6-19)

Therefore, the complex coefficients

sxiI�r with r D 1; : : : ; d0; sj Ir with r D 0; 1; : : : ; d0; j ¤xi ; 2 j .j �xi/;

and the real coefficient isxiI0 give coordinates on H 0.†0; f
�

0
T P2m�1/R . With Ai as

in (6-16),

.Ais/j .z/D

d0X
rD�d0

bj Ir zr ;

where bxiIr D iasxiIr and

bj I0 D 2

(
Im.sxj Id0

/ if j ¤ i; 2 j .j � i/;

.�1/
xiRe.sj Id0

/ if j ¤xi ; 2 j .j �xi/;

.bj Ir ; bj I�r /D

(
i.sj Ir ;�sxj Id0�r / if r � 0; j ¤ i; 2 j .j � i/;

.�1/
xi.sxj Ir ; sj Id0�r / if r � 0; j ¤xi ; 2 j .j �xi/:

We note that bj Ir D .�1/jcjr bj I�r for j ¤ i , as expected.

The weights of the T –actions on the coordinate function zixi and the coordinate vector
fields @=@zij are �2�i=d0 and �i � �j , respectively. Thus, the weights of the T –
actions on the sections

zd0 � sxiI�r z�r @

@zixi

with r D 1; : : : ; d0;

sj Id0�r zd0�r @

@zij
with r D 0; 1; : : : ; d0; j ¤ i;xi ;
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are given by �
1� d0

1

d0
C

r

d0

�
2�i and �i ��j �

d0� r

d0

2�i ;

respectively. Under the collapsing procedures of Lemma 2.5 and [7, Proposition 8.1.4],
the parts of Ais involving negative and positive powers of z correspond to the holo-
morphic sections on †top and †bot , respectively. Since we use the complex orientation
of sections on †top , these parts contribute

d0!

�
2�i

d0

�d0 Y
1�j�2m

j¤xi;2j.j�xi /

d0Y
rD1

�
2r � d0

d0

�i ��j

�

D .�1/.m�1/d0d0!

�
2�i

d0

�d0 Y
1�j�2m

j¤i;2j.j�i/

d0Y
rD1

�
d0� 2r

d0

�i ��j

�

to e.H 0.†e0
; f �

0
T P4m�1/mov

R /.

The parts of Ais constant in z correspond to holomorphic sections on †0 commuting
with the involution and constitute the direct sum of the trivial representation of T on
the space of sections fbxiI0z0 W bxiI0 2Rg and of the two-dimensional representations
of weight

.�1/i.��i ��j /D .�1/
xi.�i ��xj /

with j ¤xi and 2 j .j �xi /. Combining with the previous displayed expression, we
find that

e.H 0.†e0
; f �0 T P2m�1/mov

R /

D .�1/.m�1/.xiCd0/d0!

�
2�i

d0

�d0 Y
1�j�2m

j¤i;2j.j�i/

d0Y
rD0

�
d0� 2r

d0

�i ��j

�

if the number a 2R� in (6-16) has the correct sign and the space of sections fbxiI0z0g

is oriented by the positive direction of bxiI0 2R.

The characteristic vector field s for the action of S1 �Gc which fixes the point z D 0

in C � P1 is given by

(6-20) .Ais/xi D iaz�d0
d

d�
.e�i�z/d0

ˇ̌̌
�D0
D ad0; .Ais/j D 0 8 j ¤ i;xi :
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Combining this with the bullet points above, we conclude that

(6-21) e.H 0.†e0
; f �0 T P2m�1/mov

R /

D .�1/.m�1/d0Cmjcjxid0!

�
2�i

d0

�d0 Y
1�j�2m

j¤i;2j.j�i/

d0Y
rD0

�
d0� 2r

d0

�i ��j

�
:

Taking m 2 2Z, we obtain (6-6).

Remark 6.5 For m 2 ZC and i D 1; : : : ; 2m, let LC
ixi
�Lixi denote the disk cut out

by RP1
i that contains Pi . The projection

.2OP2m�1.1//R �!OP2m�1.1/
ˇ̌
RP2m�1

to the first component is an isomorphism. Thus, the trivialization (6-13) induces a
trivialization ‰0i of OP2m�1.1/ over RP1

i . It extends over LC
ixi

by the same formula.
The trivialization obtained from (6-13) by evaluating ˛2 , instead of ˛1 , differs from
this trivialization by the orientation and spin:

˛2.zi.`//D ˛1.c
C

�
.zi.`///D ˛1.zixi.`/zi.`//D zixi.`/˛1.zi.`//:

For m 62 2Z, the reasoning of Section 5.5 determines a canonical spin structure on

T RP2m�1
˚OP2m�1.1/

ˇ̌
RP2m�1 � T RP2m�1

˚ .2OP2m�1.1//R;

and thus a relative spin structure on RP2m�1 . If i is odd, the restriction of this
trivialization to RP1

i is equivalent to the direct sum of the trivialization ‰ used in the
proof of Proposition 6.2 and the trivialization ‰0i . If i is even, this restriction differs
from the direct sum by the orientation and spin.

Remark 6.6 For m; d 2 ZC , let Mdisk
0
.P2m�1; d/ denote the moduli space of holo-

morphic disk maps to P2m�1 with boundary on RP2m�1 that double to degree d

holomorphic maps. Thus,

(6-22) M0.P
2m�1; d/�2m�1;� DMdisk

0 .P2m�1; d/=�M :

For m 62 2Z, the relative spin structure of Remark 6.5 determines an orientation on the
disk space in (6-22); see [7, Theorem 8.1.1]. By [13, Corollary 5.9], this orientation
descends to the left-hand side in (6-22). By Remark 6.5, the last orientation is the
orientation determined in the proof of Proposition 6.2 if i is odd. If i is even and
d0 is odd, the trivialization of f �

0
T RP2m�1 over S1 in this proof differs from the

trivialization induced by the relative spin structure of Remark 6.5 by the orientation
and the spin. Each of these changes by itself would reverse the induced orientation
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on (6-22); the two of them together preserve it. If i and d0 are even, the trivialization
of f �

0
T RP2m�1 over S1 in the proof differs from the relative spin trivialization only

by the orientation; this change reverses the induced orientation on (6-22). In summary,
(6-21) describes the orientation on the moduli space in (6-22) induced by the relative
spin structure of Remark 6.5 unless d0 and i are even.

Remark 6.7 Let aW S1 �! S1 denote the antipodal involution. A spin substructure
on .KP2m�1 ; d�/ in the sense of the paragraph above [13, Corollary 5.10] consists of
a trivialization of this real bundle pair over every real loop

˛W .S1; a/ �! .P2m�1; �/

so that these trivializations extend over homotopies of such loops. Any such substructure
orients M0.P

2m�1; d/�;� . It can be specified by the trivialization over RP1
i viewed

as the boundary of LC
ixi

to be given by (6-12). If m 62 2Z and � D �2m�1 , the proof
of [13, Lemma 3.4] implies that the induced trivialization over RP1

xi
DRP1

i viewed
as the boundary of LC

xii
is then the opposite of (6-12). Since (6-12) is invariant under

the interchange of i and xi , this interchange thus changes the spin substructure used
to orient M0.P

2m�1; d/�;� in Lemma 2.5 and the proof of Proposition 6.2. Thus,
the interchange of i and xi changes the orientation of the moduli space if m 62 2Z,
� D �2m�1 , and d 62 2Z (if d 2 2Z, this moduli space is empty). If � D �2m�1 , then
.KP2m�1 ; d�/ admits a real square. By [15, Corollary 2.4 (2)], reversing the orientation
of a real loop ˛ does not change the trivialization in a spin substructure. Thus, the
interchange of i and xi preserves the orientation of the moduli space if � D �2m�1 and
d 2 2Z (if d 62 2Z, this moduli space is empty).

We note that the right-hand side of (6-21) has the expected behavior if i is replaced
by xi . This interchange changes the sign of the right-hand side of (6-21) if and only if

ıc
m.d0/�m.d0C 1Cjcj/

is even. If the target of the fibration

(6-23) M1.P
2m�1; d/�;c �!M0.P

2m�1; d/�;c

is oriented at Œf0� using (6-12) if c D � and (6-14) if c D � , then (6-21) describes
the corresponding orientation of the domain of (6-23) at the map f0 with the positive
marked point sent to Pi . Interchanging i and xi reverses the orientation of the fiber
of (6-23) over Œf0� and thus of the domain of (6-23). Thus, ıc

m.d0/ should be even if
and only if the orientation on the target in (6-23) does not change under this interchange.
If m 2 2Z, (6-12) and (6-14) are the restrictions of a real square root over P2m�1 and
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of a spin structure on RP2m�1 , respectively, which orient the target in (6-23); in this
case ıc

m.d0/ is even.

Suppose m 62 2Z. If c D � , (6-21) corresponds to the orientation of the target in (6-23)
induced by the relative spin structure of Remark 6.5 unless d0 and i are even; see
Remark 6.6. Thus, replacing i by xi preserves its orientation if d0 62 2Z (when ıc

m.d0/

is even) and reverses it if d0 2 2Z (when ıc
m.d0/ is odd). If c D � and d 2 2Z (and

thus � D �2m�1 ), (6-21) corresponds to the orientation of the target in (6-23) induced
by a spin substructure on .KP2m�1 ; d�/; see Remark 6.7. In this case, ıc

m.d0/ is
indeed even. If c D � and d 62 2Z (and thus � D �2m�1 ), replacing i by xi changes
the spin substructure used to orient the target in (6-23) and reverses its orientation. In
this case, ıc

m.d0/ is indeed odd.

Let c D �; � and � D �2m�1; �2m�1 be such that 2 j .j�j � jcjd0/. Suppose

f0W P
1
D†e0

�! P2m�1

is as above. Along with the characteristic vector field of the S1 –action on the parameter
space, (6-21) determines an orientation on

(6-24) H 0.P1; f �0 T P2m�1/R D Tf0
P0.P

2m�1; d/�;c :

Another orientation on this space is described in Section 5.2.

Corollary 6.8 The two orientations on the vector space in (6-24) are the same if and
only if m..d0C 1/i C 1Cjcjxi / 62 2Z.

Proof The algebraic orientation on (6-24) is induced by the diffeomorphism ‚c in
Section 5.2. The orientation induced by the diffeomorphism ‚0c differs from this
orientation by .�1/m.d0C1/ . Let ‚i denote the first diffeomorphism if i 62 2Z and
the second one if i 2 2Z. The comparison below is thus made with the algebraic
orientation multiplied by .�1/m.d0C1/xi .

Let 1i 2 Cm denote the unit coordinate vector for the component b.i C 1/=2c. It is
sufficient to establish the claim near the image f0 of

.Œ0; : : : ; 0�; : : : ; Œ0; : : : ; 0�; Œ1i �/ 2 .Symd0C/m �RP2m�1

under ‚i . The deformations of the coefficients of zr in

Aj

d0Y
rD1

.1C .�1/jcjbj Ir z/

�
Ai

d0Y
rD1

.1C .�1/jcjbiIr z/;
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for j ¤ i and 2 j .j � i/, correspond to the coefficients sj Ir in (6-19), up to a complex
multiple. The deformations of the coefficients of zd0Cr in

xAi

d0Y
rD1

.xbiIr C z/

�
Ai

d0Y
rD1

.1C .�1/jcjbiIr z/;

with r > 0, correspond to the coefficients sxiId0Cr in (6-18). Thus, the complex
orientations on .Symd0C/m and on Aj 2C with j ¤ i and 2 j .j � i/ give

(6-25) e.H 0.†e0
; f �0 T P2m�1/mov

R /

D .�1/d0d0!

�
2�i

d0

�d0 Y
1�j�2m

j¤i;2j.j�i/

d0Y
rD0

�
d0� 2r

d0

�i ��j

�
:

The characteristic vector field corresponding to the S1 part of the variation of Ai is
�2izd0@=@zixi , ie a positive multiple of the characteristic vector field of the S1 –action
on the parameter space. Our orientation of RP2m�1 is determined by the complex
orientations on Aj 2 C , with j ¤ i and 2 j .j � i/, and the negative characteristic
vector field of the S1 –action on Ai . Comparing (6-21) and (6-25), we then obtain the
claim.

The orientations on the moduli spaces (1-19) induced by the canonical spin structure
on RP4m�1 and the canonical real square root of .KP4m�1 ; �4m�1/ described in
Section 5.5 are thus the opposite of the algebraic orientations of Section 5.2. This is
reflected in the opposite signs for the line counts of Example 6.3 and Corollary 5.4
with m replaced by 2m. By Corollary 6.8 and Remark 6.6, the orientation on
Ml.P

4mC1; d/�4mC1;� induced by the canonical relative spin structure of Remark 6.5
is the same as the algebraic orientation if d 62 2Z and the opposite if d 2 2Z. The orien-
tation on Ml.P

4mC1; d/�4mC1;� induced by the spin substructure on .P4mC1; �4mC1/

as described in Remark 6.7 is the opposite of the algebraic orientation. The orientation
on Ml.P

4mC1; d/�4mC1;� induced by the spin substructure on .P4mC1; �4mC1/ de-
termined by the trivialization (6-12) over RP1

1
oriented as the boundary of LC

12
is the

same as the algebraic orientation.

Remark 6.9 Corollary 6.8 implies that Proposition 6.2 with the leading sign exponent
changed to .�1/.d0C1/.1Cmxi / applies to the moduli spaces

(6-26) Ml.P
2m�1; d/�;� and Ml.P

2m�1; d/�;�

with the algebraic orientations of Section 5.2 for d 622Z, whether m is odd or even. The
resulting half-edge contribution then changes sign when i is replaced by xi , as expected.
With 4m replaced by 2m in Example 6.3, this change introduces the sign of .�1/m�1

Geometry & Topology, Volume 20 (2016)



Counting genus-zero real curves in symplectic manifolds 693

in (6-10) and recovers Corollary 5.4. The remaining considerations of Sections 6.1
and 6.2 apply to the algebraic orientations of these moduli spaces, with one important
difference if m 62 2Z. By [14, Lemma 3.1], the correct orientation for the smoothing of
the disk node differs from the complex one by .�1/mdC , where dC D .d � d0/=2 is
the degree of the graph � 0 attached to the disk. This is also consistent with the sentence
preceding this remark and [12, Remark 2.6]. This introduces two new signs into the
computation of Example 6.3, resulting in the same answer. The statement and proof
of Theorem 1.10 apply to the algebraic orientations of the moduli spaces (6-26), after
reversing the orientation on the second space (as needed for d 2 2Z by Proposition 5.5).
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