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Geometric generators for braid-like groups

DANIEL ALLCOCK

TATHAGATA BASAK

We study the problem of finding generators for the fundamental group G of a space
of the following sort: one removes a family of complex hyperplanes from Cn , or
complex hyperbolic space CHn , or the Hermitian symmetric space for O.2; n/ ,
and then takes the quotient by a discrete group P� . The classical example is the
braid group, but there are many similar “braid-like” groups that arise in topology
and algebraic geometry. Our main result is that if P� contains reflections in the
hyperplanes nearest the basepoint, and these reflections satisfy a certain property,
then G is generated by the analogues of the generators of the classical braid group.
We apply this to obtain generators for G in a particular intricate example in CH13 .
The interest in this example comes from a conjectured relationship between this
braid-like group and the monster simple group M , that gives geometric meaning to
the generators and relations in the Conway–Simons presentation of .M �M/ W 2 . We
also suggest some other applications of our machinery.

57M05; 20F36, 52C35, 32S22

1 Introduction

The usual n–strand braid group of the plane was described by Fox and Neuwirth [19]
as the fundamental group of Cn , minus the hyperplanes xi D xj , modulo the action
of the group generated by the reflections across them (the symmetric group Sn ). The
idea is that a path .x1.t/; : : : ; xn.t// in this hyperplane complement corresponds to
the braid whose strands are the graphs of the maps t 7! xi .t/, regarded as curves in
Œ0; 1��C . The removal of the hyperplanes corresponds to the condition that the strands
do not meet each other. The fundamental group of the hyperplane complement is the
pure braid group. Impure braids correspond to paths, not loops, in the hyperplane
complement. But these paths become loops once we quotient by Sn , and one obtains
the usual braid group.

The term “braid-like” in the title is meant to suggest groups that arise by this construction,
generalizing the choices of Cn and this particular hyperplane arrangement. Artin
groups (see Brieskorn [13]) and the braid groups of finite complex reflection groups
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748 Daniel Allcock and Tathagata Basak

(see Coxeter [17], Shephard and Todd [37] and Bessis [11]) are examples. The problem
we address is how to find generators for groups of this sort. We are mainly interested
in the case that there are infinitely many hyperplanes, for example coming from
hyperplane arrangements in complex hyperbolic space CHn . Our specific motivation
is a conjecture relating the monster finite simple group to the braid-like group associated
to a certain hyperplane arrangement in CH13 . By our results and those of Heckman
[23] and Heckman and Rieken [25], this conjecture now seems approachable.

The general setting is the following: Let X be complex Euclidean space, or complex
hyperbolic space, or the Hermitian symmetric space for an orthogonal group O.2; n/.
Let M be a locally finite set of complex hyperplanes in X , H their union, and
P� � IsomX a discrete group preserving H . At this point we have no group � in
mind; the notation P� is just for compatibility with Sections 4–5. Let a 2 X �H .
Then the associated “braid-like group” means the orbifold fundamental group

Ga WD �
orb
1

�
.X �H/=P�; a

�
:

See Section 3 for the precise definition of this. In many cases, P� acts freely on X�H ,
so that the orbifold fundamental group is just the ordinary fundamental group.

Our first result describes generators for �1.X �H; a/. This is a subgroup of Ga ,
since X �H is an orbifold covering space of .X �H/=P� . For H 2M we define in
Section 2 a loop aH that travels from a to a point c 2X�H very near H , encircles H
once, and then returns from c to a . We pronounce the notation “a loop H ” or “a
lasso H ”. See Section 2 for details and a slight generalization (Theorem 2.3) of the
following result:

Theorem 1.1 The loops aH , with H varying over M, generate �1.X �H; a/.

If a is generic enough then this follows easily from stratified Morse theory; see Goresky
and MacPherson [22]. But in our applications it is very important to take a non-generic,
because choosing it to have large P�–stabilizer can greatly simplify the analysis of
�orb
1

�
.X �H/=P�; a

�
. So we prove Theorem 1.1 with no genericity conditions on a .

This lack of genericity complicates even the definition of aH . For example, aH may
encircle some hyperplanes other than H , and this difficulty cannot be avoided in any
natural way (see Remark 2.1). One might view Theorem 1.1 as a first step toward a
version of stratified Morse theory for non-generic basepoints.

Next we consider generators for the orbifold fundamental group Ga of .X �H/=P� .
In our motivating examples, P� is generated by complex reflections in the hyperplanes
H 2M. (A complex reflection means an isometry of finite order > 1 that pointwise
fixes a hyperplane, called its mirror.) So suppose H 2M is the mirror of some complex
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�a;H2

Figure 1: The standard generators for the 3–strand braid group, in terms of
the A2 hyperplane arrangement. The endpoints of the paths are the images
of a under the reflections across H1 and H2 .

reflection in P� . Then there is a “best” such reflection RH , characterized by the
following properties: every complex reflection in P� with mirror H is a power of RH ,
and RH acts on the normal bundle of H by exp.2�i=n/, where n is the order of RH .

For each hyperplane H 2M, we will define in Section 3 an element �a;H of Ga ;
these are the analogues of the standard generators for the classical braid group. Figure 1
illustrates the construction for the 3–strand braid group. (We have drawn the subset of
R3 �C3 with coordinate sum 0, and our paths lie in this R2 except where they dodge
the hyperplanes.) Recall that the definition of aH referred to a point c 2X �H very
near H , and a circle around H based at c . We define �a;H to go from a to c as before,
then along the portion of this circle from c to RH .c/, then along the RH–image of the
inverse of the path from a to c . This is a path in X �H , not a loop. But RH sends
its beginning point to its end point, so we have specified a loop in .X �H/=P� . So
we may regard �a;H as an element of Ga . (Because a may have nontrivial stabilizer,
properly speaking we must record the ordered pair .�a;H ; RH / rather than just �a;H ;
see Section 3 for background on the orbifold fundamental group.)

Referring again to Figure 1, generation of the 3–strand braid group �orb
1

�
.C2�H/=S3; a

�
requires only the loops �a;H for the hyperplanes H closest to the basepoint a . This
is proven in Fox and Neuwirth [19] for the n–strand braid group. For this to hold, one
should choose a as we did here, having the same distance to every facet of the Weyl
chamber. Our next theorem shows that the same holds in our more general situation,
provided that a is chosen so that there are “enough” mirrors closest to it. This analogy
with the braid group is the source of the term “geometric generators” in our title.

Theorem 1.2 Suppose C � M is the set of hyperplanes closest to a , and that the
complex reflections RC generate P� , where C varies over C. Suppose that for each
H 2M�C, some power of some RC moves a closer to p , where p is the point of H
closest to a . Then the loops .�a;C ; RC / generate Ga D �orb

1

�
.X �H/=P�; a

�
.
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The hypothesis of being able to move a closer to the various points p appears very
hard to check in practice. But it can be done in some nontrivial cases. The verification
of this hypothesis for our motivating example, in a slightly weakened form, occupies
most of Section 5.

This motivating example is the setting for a conjectural relation between the monster
simple group M and the following braid-like group. We take X to be complex
hyperbolic space CH13 . We take P� to be the group of projective automorphisms
of the unique Hermitian lattice L over ZŒe�i=3� that has signature .13; 1/ and whose
dual lattice coincides with .1=

p
�3/L. (See Definitions 4.1 and 4.2 for two explicit

descriptions of L. These are more useful than the quick-but-nonconstructive definition
just given, and are what we will actually use in the paper.) Until Section 4, it will be
enough to know that P� is a finite-covolume discrete subgroup of AutX , generated by
its complex reflections of order 3. We take M to be the set of mirrors of these complex
reflections, and H WD

S
H2MH as usual. Conjecture 1.3 below, from Allcock [4],

suggests a relationship between the braid-like group �orb
1

�
.X�H/=P�

�
and the monster

simple group.

It turns out that any two of the mirrors are P�–equivalent, so the image of H in X=P�
is irreducible. The positively oriented boundary, of a small disk in X=P� transverse
to a generic point of this image, determines a conjugacy class in �orb

1

�
.X �H/=P�

�
.

Following knot theory terminology, we call the elements of this conjugacy class
meridians.

Conjecture 1.3 [4] The quotient of �orb
1

�
.X �H/=P�

�
by the normal subgroup

generated by the squares of the meridians is the semidirect product of M �M by Z=2.
Here M is the monster simple group and Z=2 exchanges the factors in the obvious way.

Presumably, any proof of this will require generators and relations for �orb
1

�
.X�H/=P�

�
,

which is the motivation for the current paper. In [9] the second author found a point
� 2X �H (called x� there) such that the set C of mirrors closest to � has size 26, and
showed that their complex reflections generate P� . Describing � precisely requires
some preparation, so we refer to Definition 4.1 for details and for now just mention that �
has nontrivial P�–stabilizer. Therefore the corresponding meridians are ordered pairs
.��;C ; RC / rather than just bare paths ��;C . Taking � as our basepoint, we announce
the following result, which we regard as a significant step toward Conjecture 1.3.

Theorem 1.4 The 26 meridians .��;C ; RC /, with C varying over the 26 mirrors
of M closest to � , generate �orb

1

�
.X �H/=P�; �

�
.
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We wish this were a corollary of Theorem 1.2. Unfortunately the hypothesis there
about being able to move � closer to the various p 2H 2M fails badly. Instead, the
proof goes as follows. First, in Section 5 we prove Theorem 1.5 below, which is the
analogue of Theorem 1.4 with a different basepoint � in place of � . For this basepoint,
one can (almost) verify the hypothesis of Theorem 1.2 about being able to move �
closer to the various points p . Considerable calculation is required, plus extra work
dealing with the fact that this hypothesis almost holds but not quite.

Then, given Theorem 1.5, one joins � and � by a path and uses it to identify the
fundamental groups based at these points. One can then prove Theorem 1.4 by studying
how these groups’ generators are related. The argument is delicate, of more specialized
interest, and has little in common with the ideas in this paper. Therefore it will appear
separately [6].

After stating Theorem 1.5 we will explain our real reason for preferring � over � as
a basepoint. An additional reason is that � is not a point of CH13 . Rather, it is a
cusp of P� , and in particular lies in the sphere at infinity @CH13 . This complicates
things in two ways. First, there are infinitely many mirrors “closest” to � , indexed by
the elements of a certain 25–dimensional integral Heisenberg group. And second, the
definition of the meridians “based at �” requires more care. This leads to Theorem 1.5
giving an infinite generating set, consisting of paths that are more complicated than
those of Theorem 1.4.

One can work through these complications as follows. As we did for � , we refer to
Section 4 for the precise definition of � . All we need for now is that it is a cusp of P�
and that there is a closed horoball A centered at � that misses H (Lemma 4.3). We
choose any basepoint a inside A. We call the mirrors that come closest to A the “Leech
mirrors”. The name comes from the fact that they are indexed by the elements of (a
central extension of) the complex Leech lattice ƒ; in particular there are infinitely many
of them. If C is a Leech mirror, let bC 2A be the point of A nearest it. Then �a;A;C
is defined to be the geodesic abC �A followed by �bC ;C followed by RC .bCa/. See
Figure 3 for a picture. These are meridians in the sense of Conjecture 1.3, and we call
them the Leech meridians. As before, because a may have nontrivial P�–stabilizer,
the meridian associated to C is really the ordered pair .�a;A;C ; RC / rather than just
the bare path �a;A;C .

Theorem 1.5 The orbifold fundamental group �orb
1

�
.X �H/=P�; a

�
is generated

by the Leech meridians, that is, by the loops .�a;A;C ; RC / with C varying over the
(infinitely many) mirrors closest to � .

We promised to explain the real reason we prefer Theorem 1.4 to Theorem 1.5, that is,
why we prefer the basepoint to be � rather than � . It is because the 26 meridians of
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Theorem 1.4 are closely related to the coincidences that motivated Conjecture 1.3. In
particular, by results of Basak [10] they satisfy the braid and commutation relations
specified by the incidence graph of the 13 points and 13 lines of P2.F3/. That is, two
generators x; y commute (xy D yx ) or braid (xyx D yxy ) according to whether the
corresponding nodes of this graph are unjoined or joined. We call the abstract group
with 26 generators, subject to these relations, the Artin group of P2.F3/.

There are a family of presentations of the “bimonster” .M �M/Ì Z=2 as a quotient
of this Artin group, due to Conway, Ivanov, Norton, Simons and Soicher in various
combinations. All of them impose the relations that the generators have order 2, which
yields the (infinite) Coxeter group whose Coxeter diagram is the same incidence graph.
Modding out by the squares of meridians in Conjecture 1.3 corresponds to taking this
quotient. There are several different ways to specify additional relations that collapse
this Coxeter group to the bimonster. The most natural one for our purposes seems to be
the “ zA11 deflation” relations of Conway and Simons [16], because these have a good
geometric interpretation in terms of the ��;C and a certain copy of CH9 in CH13 .
See Heckman [23] and Heckman and Rieken [25] for more details. This complex-
hyperbolic reinterpretation of the bimonster’s deflation relations convinces us that � is
the “right” basepoint for further work on Conjecture 1.3.

We also hope that our techniques will be useful more generally. For example, they might
be used to give generators for the fundamental group of the moduli space of Enriques
surfaces. Briefly, this is the quotient of the Hermitian symmetric space for O.2; 10/,
minus a hyperplane arrangement, by a certain discrete group. See Namikawa [34] for
the original result and Allcock [3] for a simpler description of the arrangement. The
symmetric space has two orbits of 1–dimensional cusps, one of which misses all the
hyperplanes. Taking this as the base “point”, the hyperplanes nearest it are analogues
of the Leech mirrors. It seems reasonable to hope that the meridians associated to these
mirrors generate the orbifold fundamental group.

There are many spaces in algebraic geometry with a description .X �H/=P� of the
sort we have studied. For example, the discriminant complements of many hypersurface
singularities (see Looijenga [29; 30]), the moduli spaces of del Pezzo surfaces (see
Allcock, Carlson and Toledo [7], Kondō [27] and Heckman and Looijenga [24]), the
moduli space of curves of genus four (see Kondō [28]), the moduli spaces of smooth
cubic threefolds (see Allcock, Carlson and Toledo [8] and Looijenga and Swierstra [33])
and cubic fourfolds (see Looijenga [32]), and the moduli spaces of lattice-polarized K3
surfaces (see Nikulin [35] and Dolgachev [18]). The orbifold fundamental groups of
these spaces are “braid-like” in the sense of this paper, and we hope that our methods
will be useful in understanding them.

Geometry & Topology, Volume 20 (2016)



Geometric generators for braid-like groups 753

The paper is organized as follows. In Section 2 we study the fundamental group
�1.X �H; a/, in particular proving Theorem 1.1. The proof relies on van Kampen’s
theorem. In Section 3 we study �orb

1

�
.X�H/=P�; a

�
, in particular proving Theorem 1.2.

The core of that proof is Lemma 3.1, which is more general than needed for Theorem 1.2.
The extra generality is needed for our application to CH13 . Section 4 gives background
on complex hyperbolic space and the particular hyperplane arrangement referred to in
Conjecture 1.3 and Theorems 1.4–1.5. Finally, Section 5 proves Theorem 1.5. Most of
the proof consists of tricky calculations verifying the hypothesis of Theorem 1.2 that
the basepoint can be moved closer to the various points p 2H . In a few cases this is
not possible, so we have to do additional work.

Acknowledgements The first author was supported by NSF grant DMS-1101566.
Both authors are very grateful to RIMS at Kyoto University and Kavli-IPMU at
University of Tokyo, respectively, for their hospitality and support while working
on this paper. The authors would also like to thank the referee for suggesting many
improvements to the paper.

2 Loops in arrangement complements

For the rest of the paper we fix X D one of three spaces, MD a locally finite set of
hyperplanes in X , and H D their union. The precise assumption on X is that it is
complex affine space with its Euclidean metric, or complex hyperbolic space, or the
Hermitian symmetric space for O.2; n/. To understand the general machinery in this
section and the next, it is enough to think about the affine case. In our application
in Section 5 we specialize to the case that X is complex hyperbolic 13–space; for
background see Section 4. Most of the other potential applications mentioned in the
introduction would use the O.2; n/ case.

We will freely use a few standard properties of X : it is contractible, and its natural
Riemannian metric is complete and has nonpositive sectional curvature. By [12,
Theorems II.1A.6 and II.4.1], it follows that X is a complete CAT(0) metric space. We
will also use the usual notions of complex lines and complex hyperplanes in X , both
of which are totally geodesic.

For b; c 2X we write bc for the geodesic segment from b to c . Now suppose b; c …H .
It may happen that bc meets H , so we will define a perturbation bc of bc in the obvious
way. The notation may be pronounced “b dodge c” or “b detour c”. We write bcC

for the complex line containing bc . By the local finiteness of M, bcC\H is a discrete
set. Consider the path gotten from bc by using positively oriented semicircular detours
in bcC around the points of bc \H in place of the corresponding segments of bc .
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bH1
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bH2

H
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Figure 2

After taking the radius of these detours small enough, the construction makes sense
and the resulting homotopy class in X �H (rel endpoints) is radius-independent. This
homotopy class is what we mean by bc .

At times we will need to speak of the “restriction of H at p”, where p is a point of X .
So we write Mp for the set of hyperplanes in M that contain p , and Hp for their union.

Now suppose b 2X�H and H 2M. We will define a homotopy class bH of loops in
X �H based at b ; the notation can be pronounced “b loop H ” or “b lasso H ”. We
write p for the point of H nearest b . It exists and is unique by the convexity of H and
the nonpositive curvature of X [12, Proposition II.2.4]. Let U be a ball around p that
is small enough that U \HDU \Hp , and let c be a point of .bp\U/�fpg. Consider
the circular loop in bpC centered at p , based at c , and traveling once around p in
the positive direction. It misses H , because under the exponential map TpX !X the
elements of Mp correspond to complex hyperplanes in TpX , while bpC corresponds
to a complex line. And the line misses the hyperplanes except at 0, because b …H .
Finally, bH means bc followed by this circular loop, followed by reverse. bc/.

Remark 2.1 (Caution in the non-generic case) This definition has some possibly
unexpected behavior when b is not generic. For example, take M to be the A2
arrangement in X DC2 , let H be one of the three hyperplanes, and take b 2X �H

orthogonal to H . We write H1 and H2 for the other two hyperplanes; see Figure 2. It
is easy to see that bH encircles all three hyperplanes, not just H . Furthermore, this
phenomenon cannot be avoided by any procedure that respects symmetry. To explain
this we note that �1.X �H; b/ �D Z�F2 , where the first factor is generated by bH
and the second is free on bH1 and bH2 . Let f be the isometry of X that fixes b and
acts by negation on H . It exchanges H1 and H2 . So the action of f on �1.X�H; b/
fixes bH and swaps the other two generators. It follows that the group of fixed points
of f in �1.X �H; b/ is just the first factor Z. So any symmetry-respecting definition
of bH must give some power of our definition, at least in this example.
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The main result of this section, Theorem 2.3, shows that the various bH generate
�1.X �H; b/. But for our applications to CH13 in Section 5 it will be useful to
formulate the fundamental group with a “fat basepoint” A in place of b , in the sense
explained below. This is because we will want to choose our basepoint to be a cusp of a
finite-covolume discrete subgroup of PU.13; 1/D Aut CH13 . Strictly speaking this is
not possible, since a cusp is not a point of CH13 . So we will use a closed horoball A
centered at that boundary point in place of a basepoint. For purposes of understanding
the current section, the reader may take A to be a point.

2.2 Standing assumptions Our assumptions so far are that X is one of three spaces,
M is a locally finite hyperplane arrangement, and H is the union of the hyperplanes.
Henceforth we also assume that A is a nonempty closed convex subset of X , disjoint
from H . To avoid some minor technical issues, we assume two more properties,
both automatic when A is a point. First, for every H 2M, there is a unique point
of A closest to H . (This holds if A is strictly convex, by the argument used for [12,
Proposition II.2.4].) Second, some group of isometries of X , preserving M and A,
acts cocompactly on the boundary @A. (This holds in our application to CH13 because
the stabilizer of a cusp acts cocompactly on any horosphere centered there.) We will
think of the open r–neighborhood Br of A for some r > 0 as being “like” an open
ball. If A is a point then of course Br actually is a ball. In any case, the convexity
of A implies that of Br by [12, Corollary II.2.5] and the remark preceding it.

Because A�HD A is simply connected (even contractible), the fundamental groups
of X �H based at any two points of A are canonically identified. So we write just
�1.X �H; A/ for �1.X �H; a/, where a is any point of A. If c 2X then we define
Ac as bc , where b is the point of A nearest c . If c 62H then we also define Ac as bc .
Similarly, if H 2M then we define AH as bH , where b is the point of A closest to
H . We sometimes write b; c and b; c and b;H for bc and bc and bH , and similarly
for A; c and A; c and A;H .

Theorem 2.3 (�1 of a ball-like set minus hyperplanes) Let Br be the open r–
neighborhood of A, where r 2 .0;1�. Then �1.Br �H; A/ is generated by the loops
AH for which d.A;H/ < r .

If A is compact, for example AD fag, then this gives a finite number of generators for
�1.Br �H/. But if A is non-compact then the number of generators may be infinite.
This happens in Theorem 1.5, where A is a horoball in CH13 .

The rest of the section is devoted to the proof of Theorem 2.3, beginning with two
lemmas.
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Lemma 2.4 (�1 of Cn minus hyperplanes through the origin) Suppose X is complex
Euclidean space, every H 2M contains the origin 0, and c 2X�H . Write 1

2
X for the

open halfspace of X that contains c and is bounded by the real orthogonal complement
to c0. (In the trivial case MD∅ we also assume c ¤ 0, so that 1

2
X is defined.)

(1) If c is not orthogonal to any element of M, then �1.X �H; c/ is generated by
�1
�
1
2
X �H; c

�
.

(2) If c is orthogonal to some hyperplane H 2M, then �1.X �H; c/ is generated
by �1

�
1
2
X �H; c

�
together with any element of �1.X �H; c/ having linking

number ˙1 with H , for example cH .

Proof (2) Write H 0 for the translate of H containing c . Every point of X �H is
a nonzero scalar multiple of a unique point of H 0�H . It follows that X �H is the
topological product of H 0�H� 1

2
X �H with C�f0g. The map �1.X �H; c/!Z

corresponding to the projection to the second factor is the linking number with H .
All that remains to prove is that cH has linking number 1 with H . In fact more is
true: essentially by definition, this loop generates the fundamental group of the factor
C�f0g.

(1) We define H as the complex hyperplane through 0 that is orthogonal to c0. We
apply the argument from the previous paragraph to M0 DM[fH g and H0 DH[H .
Using 1

2
X �HD 1

2
X �H0 yields

(�) �1.X �H0; c/D �1
�
1
2
X �H0; c

�
� h cH i D �1

�
1
2
X �H; c

�
� h cH i:

Our goal is to show that the first factor on the right surjects to �1.X �H; c/. Let 
 be
any element of �1.X �H0; c/ that is freely homotopic to the boundary of a small disk
transverse to H at a generic point of H . It dies under the natural map �1.X�H0; c/!
�1.X �H; c/. Because 
 has linking number ˙1 with H , the product decomposition
(�) shows that every element of �1.X �H0; c/ can be written as a power of 
 times
an element of �1

�
1
2
X �H; c

�
. It is standard that �1.X �H0; c/! �1.X �H; c/ is

surjective. (Take any loop in X �H , perturb it to miss H , and then regard it as a
loop in X �H0 .) Since this map kills 
 , it must send the subgroup �1

�
1
2
X �H; c

�
of

�1.X �H0; c/ surjectively to �1.X �H; c/.

Lemma 2.5 (�1 of a ball-like set with a bump, minus hyperplanes) Suppose r > 0,
B is the open r–neighborhood of A, and p 2 @B . Assume U is any open ball centered
at p , small enough that U \HD U \Hp .
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(1) If no H 2Mp is orthogonal to Ap , then �1
�
.B [U/�H; A

�
is generated by

the image of �1.B �H; A/.

(2) If some H 2Mp is orthogonal to Ap , then �1
�
.B [U/�H; A

�
is generated

by the image of �1.B �H; A/, together with any loop of the form ˛�˛�1 , for
example AH . Here ˛ is a path in B �H from A to a point of .B \U/�H

and � is a loop in U �H , based at that point and having linking number ˙1
with H .

Proof For uniformity, in case (1) we choose some path ˛ in B�H beginning in A and
ending in .B \U/�H . In both cases we write c for the final endpoint of ˛ ; without
loss of generality we may suppose c 2 Ap�fpg. Van Kampen’s theorem shows that
�1
�
.B[U/�H; c

�
is generated by the images of �1.B�H; c/ and �1.U �H; c/. We

claim that �1.U�H; c/ is generated by the image of �1
�
.B\U/�H; c/, supplemented

in case (2) by �.

Assuming this, we move the basepoint from c into A along reverse.˛/. This identifies
�1.B � H; c/ with �1.B � H; A/ and identifies � with ˛�˛�1 . It follows that
�1
�
.B [U/�H; A

�
is generated by the image of �1.B �H; A/, supplemented in

case (2) by ˛�˛�1 . This is the statement of the lemma.

So it suffices to prove the claim. We transfer this to a problem in the tangent space
TpX by the exponential map and its inverse (written log). So we must show that
�1.logU�logHp; log c/ is generated by the image of �1

�
log.B\U/�logHp; log c

�
,

supplemented in case (2) by log�. The key to this is that the vertical arrows in the
commutative diagram

(2-1)

log.B \U/� logHp ����! logU � logHp??y ??y
1
2
TpX � logHp ����! TpX � logHp

are homotopy equivalences, as we explain next. Here 1
2
TpX is as in Lemma 2.4: the

open halfspace containing log c and bounded by the (real) orthogonal complement of
log.cp/D log c; 0.

The right vertical arrow in (2-1) is a weak homotopy equivalence by a standard scaling
argument. Namely, any compact set in TpX can be homotoped (by scaling) until it lies
in logU . Since scaling preserves logHp , any compact set in TpX � logHp can be
homotoped into logU � logHp . This shows that logU � logHp! TpX � logHp is
a weak homotopy equivalence.

After making a few observations, the same argument will also work for the left vertical
arrow. First, we claim that B � X contains an open ball D with p in its boundary.
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To understand the rest of the proof below, one may restrict to the case AD fag, when
this claim is trivial by taking D D B . The reason we use D in the general case is that
@B need not be C1 and we wish to avoid fussing over its degree of differentiability.
To construct D , take q to lie in the interior of Ap , and then take D to be the open
d.q; p/–ball around q . This lies in B by the triangle inequality.

Second, we claim that @.logD/ is tangent to the boundary of 1
2
TpX . To see this, note

that the segment qp is orthogonal to @D at p , because any sphere in a Riemannian
manifold is orthogonal to its radial segments. (This is Gauss’ lemma [20, Lemma 3.70].)
Since @

�
1
2
TpX

�
was defined to be orthogonal at p to Ap , which contains qp , it follows

that @.logD/ is tangent to the boundary of 1
2
TpX .

Third, we claim that logB lies in 1
2
TpX . Otherwise, since it is open, logB would

contain some x 2TpX� 12TpX . Because @.logD/ is tangent to @
�
1
2
TpX

�
, continuing

the line segment x0 through 0 yields some element y of logD � logB . Since xy is
a segment in TpX passing through the origin, its image exp.xy/ under the exponential
map is a geodesic of X . Now, B contains exp.xy/ by convexity, so it contains p ,
which is a contradiction.

We can now adapt the scaling argument. Having proven logB � 1
2
TpX , it now makes

sense to speak of the left vertical arrow in (2-1), and we will show that it is a weak
homotopy equivalence. Because @.logD/ is tangent to @

�
1
2
TpX

�
, any compact set in

1
2
TpX may be scaled down until it lies in logD , hence logB . By further scaling, we

may shrink it into log.B \U/. Since scaling preserves logHp , we have shown that
any compact subset of 1

2
TpX � logHp may be homotoped by scaling until it lies in

log.B \U/� logHp . It follows that log.B \U/� logHp ! 1
2
TpX � logHp is a

weak homotopy equivalence, as claimed.

We have shown that the vertical arrows in (2-1) are weak homotopy equivalences. It
follows from Whitehead’s theorem that they are homotopy equivalences. (One could
avoid quoting this theorem by refining the scaling arguments.) To prove the theorem
it now suffices to show that �1.TpX � logHp; log c/ is generated by the image of
�1
�
1
2
TpX� logHp; log c

�
, supplemented in case (2) by log�. This is just Lemma 2.4,

completing the proof.

Proof of Theorem 2.3 Let R be the set of r 2 .0;1� for which the conclusion of the
theorem holds. Recall our assumption from 2.2 that some group of isometries of X
acts cocompactly on @A while preserving M and A. This implies that the distances
d.A;H/ are bounded away from 0 as H varies over M. Therefore Br \HD∅ for
all sufficiently small r . It follows that R contains all small enough r . We will show
below that if r 2 R� f1g then Œr; r C ı/ � R for some ı > 0. Also, we obviously
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have Br D
S
q<r Bq for any r 2 .0;1�. Therefore .0; r/ � R implies .0; r� � R .

The connectedness of .0;1� then implies RD .0;1�, proving the theorem.

So fix r 2R�f1g; we will exhibit ı > 0 such that Œr; r C ı/�R . Since r 2R we
know that �1.Br �H; A/ is generated by the loops AH for which d.A;H/ < r . We
abbreviate Br to B and define S as the “sphere” @B . For each p 2 S there is an open
ball Up centered at p such that Up \H D Up \Hp . The cocompact action on @A
we used in the previous paragraph is also cocompact on S . Also, we may choose the
balls Up so that the set of all of them is preserved by this action. It follows that there
exists ı > 0 such that BrCı is covered by B and all the Up .

To prove Œr; rCı/�R , suppose we are given some r 0 2 .r; rCı/, and write B 0 for Br 0 .
Since B 0 is covered by B and the Up , every mirror that meets B 0 either meets B or
is tangent to S . So we must prove that �1.B 0�H; A/ is generated by �1.B �H; A/

and the AH with H 2M tangent to S . Lemma 2.5 says that �1
�
.B[Up/�H; A

�
is

generated by �1.B �H; A/, supplemented by AH if p is the point of tangency of S
with some H 2M.

For p 2 S we define Vp D .B [ Up/ \ B
0 . It is easy to see that the inclusion

Vp�H! .B[Up/�H is a homotopy equivalence. (Retract points of Up�B 0 along
geodesics toward p .) So �1.Vp�H; A/ is generated by �1.B�H; A/, supplemented
by AH if p is the point of tangency of S with some H 2M. Because B 0D

S
p2S Vp ,

repeatedly using van Kampen’s theorem shows that �1.B 0�H; A/ is generated by the
images therein of all the �1.Vp �H; A/, finishing the proof.

This use of van Kampen’s theorem requires checking that every set gotten from the Vp
by repeated unions and intersections is connected. To help verify this, we call a subset Y
of X star-shaped (around A) if it contains A and the geodesics Ay for all y 2 Y . The
lemma below shows that each B [Up is star-shaped. Intersecting with B 0 preserves
star-shapedness and yields Vp . Since unions and intersections of star-shaped sets are
again star-shaped, our repeated application of van Kampen’s theorem is legitimate.

Lemma 2.6 In the notation of the previous proof, B [Up is star-shaped around A.

Proof We must show that y 2Up implies Ay �B[Up . It suffices to prove yz�Up ,
where z is the point of @B closest to y . (We remarked above that the convexity of A
implies that of B , and the uniqueness of z then follows from [12, Proposition II.2.4].)
Note that zp lies in the closure of B , since z and p do and B (hence its closure) is
convex.

Consider the triangle p; y; z in X and a comparison triangle, meaning a triangle
p0; y0; z0 in R2 with the same edge lengths. We write � for the angle between zy
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and zp at z , and similarly for � 0 . Since X is a CAT(0) metric space we have � 0� � by
[12, Proposition II.3.1]. And we have � � �

2
, because otherwise one could find a path

from y to A of length < d.y;A/. (A point of zp very near p lies in B by convexity,
hence has distance � r to A. It is also closer to y than z is, by the inequality � < �

2

and the CAT(0) inequality.) Therefore � 0 is the largest angle of the comparison triangle,
so p0y0 is its longest edge. Since the two triangles have the same edge lengths, pz is
shorter than py , so z 2 Up . Since Up is a ball, all of yz lies in Up .

3 Loops in quotients of arrangement complements

We continue using the notation X , M and H from the previous section. We also sup-
pose a group P� acts isometrically and properly discontinuously on X , preserving H .
Our goal is to understand the orbifold fundamental group of .X �H/=P� . We use the
following definition from [31] and [10]; more general formulations exist [36; 26].

Fixing a basepoint a 2X �H , consider the set of pairs .
; g/ where g 2 P� and 
 is
a path in X �H from a to g.a/. We regard one such pair as equivalent to another one
.
 0; g0/ if g D g0 and 
 and 
 0 are homotopic in X �H , rel endpoints. The orbifold
fundamental group Ga WD �orb

1

�
.X �H/=P�; a

�
means the set of equivalence classes.

The group operation is .
; g/ � .
 0; g0/ D .
 followed by g ı 
 0 ; gg0/. Projection of
.
; g/ to g defines a homomorphism Ga ! P� . It is surjective because X �H is
connected. The kernel is obviously �1.X �H; a/, yielding the exact sequence

(3-1) 1! �1.X �H; a/!Ga! P�! 1:

Although we don’t need it, we remark that if a has trivial P� stabilizer then there
is a simpler P�–invariant description of the orbifold fundamental group. Writing o
for the orbit of a , we define Go WD �orb

1

�
.X �H/=P�; o

�
as the set of P�–orbits on

the homotopy classes (rel endpoints) of paths in X �H that begin and end in o. The
P�–action is the obvious one: g 2 P� sends a path 
 to g ı 
 . To define 

 0 , where

; 
 0 2Go , one translates 
 0 so that it begins where 
 ends, and then composes paths
in the usual way. Well-definedness of multiplication, and the identification with the
definition of Ga , uses the fact that every path starting in o has a unique translate
starting at a .

A complex reflection means a finite-order isometry of X whose fixed-point set is a
complex hyperplane, called its mirror. In our applications, P� is generated by complex
reflections whose mirrors are hyperplanes in M. This leads to certain natural elements
of the orbifold fundamental group: for H 2M we next define a loop �a;H 2Ga which
is a fractional power of aH . (The meridians of Conjecture 1.3 and Theorems 1.4–1.5
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a b

c
p
RH .c/

RH .b/

RH .a/

A RH .A/

Figure 3: The path �a;A;H goes from left to right. Here RH is the complex
reflection of order 3 , acting by counterclockwise rotation by 2�

3
. The

hyperplane H is not shown except for its point p closest to A . The small
semicircles indicate that the path from b to c may detour around some points
of H .

are special cases of these loops.) Write p for the point of H closest to a and nH for
the order of the cyclic group generated by the complex reflections in P� with mirror H .
Write RH for the isometry of X that fixes H pointwise and acts on its normal bundle
by exp.2�i=nH /. This is an element of P� , and is either a complex reflection or the
identity map. The latter holds when nH D 1, ie H is not the mirror of any reflection
in P� .

Recall that the definition of aH involved a point c of ap very near p , and a circular
loop in apC centered at p and based at c . We define �a;H as ac followed by the
first .1=nH /th of this loop (going from c to RH .c/), followed by RH

�
reverse.ac/

�
.

(One can see such a path in Figure 3, although the notation there is intended for a more
elaborate situation considered below. The portion of the path in the figure that goes from
b to RH .b/ is �b;H .) This is a path from a to RH .a/, so the pair .�a;H ; RH / is an
element of the orbifold fundamental group Ga . Using the definition of multiplication,
the first component of .�a;H ; RH /nH is the path gotten by following �a;H , then
RH .�a;H /, then R2H .�a;H /; : : : and finally RnH�1

H .�a;H /. It is easy to see that this
path is homotopic to aH . So we have .�a;H ; RH /nH D aH .

At this point we have defined everything in the statement of Theorem 1.2. But be-
fore proving it we will adapt our construction to accommodate the “fat basepoints”
of the previous section. This is necessary for our application to CH13 . So we
fix A as in Section 2, and assume it contains our basepoint a . We will use A as
the base “point” when discussing �1.X � H/, and a as the basepoint when dis-
cussing �orb

1

�
.X �H/=P�

�
. In particular, the left term of (3-1) could also be written

�1.X �H; A/. The analogue of �a;H is defined as follows, in terms of the point b
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of A that is closest to H . We define �a;A;H to be ab followed by �b;H followed by
RH .ba/. See Figure 3 for a picture. The argument from the previous paragraph goes
through and shows that .�a;A;H ; RH /nH D AH 2 �1.X �H; A/.

In applications one typically has some distinguished set of �a;H or �a;A;H in mind
and wants to prove that they generate Ga . Theorem 1.2 in the introduction is a result
of this sort, and the rest of the section is devoted to proving it. The following lemma is
really the inductive step in the proof, so the reader might prefer to read the theorem’s
proof first. Also, Theorem 1.2 uses only case (1) of the lemma; the other cases are for
our application to CH13 in Section 5.

Lemma 3.1 Suppose C�M is the set of hyperplanes closest to A, and let G be the
subgroup of Ga D �orb

1

�
.X �H/=P�; a

�
generated by the .�a;A;C ; RC / with C 2 C.

Suppose H 2M, write p for the closest point of H to A, r for d.A; p/, and B for
the open r–neighborhood of A. Suppose G contains �1.B �H; A/ and that there
exists a complex reflection R 2 P� with mirror in C, such that one of the following
holds:

(1) R moves A closer to p .

(2) R moves A closer to H , and no farther from p .

(3) There exists an open ball U around p such that

U \HD U \Hp; B \R.B/\U ¤∅; and R.B/\U \H ¤∅:

Then G contains AH .

Proof In every case we have R.B/\H ¤∅, so R�1.H/ is closer to A than H is.
Therefore H … C, or, in other words, the hyperplanes in C lie at distance < r from A.
We will prove the lemma under hypothesis (3), and then show that the other two cases
follow. We hope Figure 4 helps the reader. First we introduce the various objects
pictured. As we did above, we write b for the point of A closest to H . Under our
identification of �1.X �H; A/ with �1.X �H; a/, the loop AH corresponds to ab
followed by bH followed by ba .

The complex reflection R equals RiC for some C 2C. The point marked C in the figure
represents the point of C nearest to A. It lies inside B by the previous paragraph’s
remark that the elements of C are closer to A than H is. It also lies in R.B/, since R
fixes C pointwise.

Consider the first component of .�a;A;C ; RC /i , ie its “path” part. After a homotopy
it may be regarded as a path �1 in B �H from a to a point c 2 .B \R.B//�H ,
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p

y

H

AH �

a

R.a/

C
c

�1

�2

A

R.A/

b




@B

@R.B/

@U

Figure 4: Illustration for the proof of Lemma 3.1.

followed by a path �2 in R.B/�H from c to R.a/. These paths are marked in the
figure. So .�a;A;C ; RC /i D .�1�2; R/ in Ga .

The hypothesis that B\R.B/\U ¤∅ is exactly what we need for some point y to lie
in this intersection, as drawn. The connectedness of U \R.B/ and the hypothesis that
H meets U \R.B/ are exactly what we need to construct a loop � in .R.B/\U/�H ,
based at y , with linking number 1 with H . Finally, the connectedness of B \R.B/
allows us to construct a path 
 in .B \R.B//�H from c to y . This finishes the
construction of the objects in the figure.

Our goal is to prove that G contains AH . Lemma 2.5 shows that this loop lies in
the subgroup of �1.X �H; a/ generated by �1.B �H; a/ and �1
�
�1��11 . This
uses our hypothesis U \HD U \Hp . Since we assumed G contains the image of
�1.B �H; a/, it suffices to show that G contains �1
�
�1��11 , or equivalently the
homotopic loop .�1�2/.��12 
�
�1�2/.�

�1
2 ��11 /.

An element of the orbifold fundamental group Ga is really a pair, so we must prove�
.�1�2/.�

�1
2 
�
�1�2/.�

�1
2 ��11 /; 1

�
2G . One checks that this equals

.�1�2; R/ �
�
R�1.��12 
�
�1�2/; 1

�
�
�
R�1.��12 ��11 /; R�1

�
:

The last term is the inverse of the first, which G contains by definition. So it suffices
to show that the middle term lies in G , which is easy: the loop ��12 
�
�1�2 lies in
R.B/�H , so its image under R�1 lies in B �H . This finishes case (3).
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Next we claim that (1) implies (3). Take U to be any ball around p with U \HD

U \Hp . Then the remaining hypotheses of (3) follow immediately from p 2R.B/,
which is a restatement of (1).

Finally we claim that (2) implies (3). By the previous paragraph it suffices to treat
the case that p 2 @R.B/. Take U to be any ball around p with U \H D U \Hp .
The hypothesis d.R.A/;H/ < r says that H is not orthogonal to R.A/; p . It follows
that R.B/ contains elements of H arbitrarily close to p , so U \R.B/\H ¤ ∅.
Similarly, d.R.A/;H/ < r implies the non-tangency of @B and @R.B/ at p . From
this it follows that B \R.B/ has elements arbitrarily close to p , hence in U . This
finishes the proof.

Proof of Theorem 1.2 We will apply Lemma 3.1 with ADfag, noting that �a;A;H D
�a;H for all H 2M. Write G for the subgroup of Ga generated by the .�a;C ; RC /.
By the exact sequence (3-1) and the assumed surjectivity G! P� , it suffices to show
that G contains �1.X �H; a/. By Theorem 1.1 it suffices to show that it contains
every aH . We do this by induction on d.a;H/.

The base case is H 2 C, for which we use the fact that aH is a power of .�a;H ; RH /.
So suppose H 2 M � C and set r WD d.a;H/. We may assume, by Theorem 2.3
and the inductive hypothesis, that G contains �1.B �H; a/, where B is the open
r–neighborhood of a . Then case (1) of Lemma 3.1 shows that G also contains aH ,
completing the inductive step.

4 A monstrous(?) hyperplane arrangement

In this section we give background information on the conjecturally-monstrous hyper-
plane arrangement in CH13 which is the subject of Conjecture 1.3 and Theorems 1.4
and 1.5. For more information, see [4; 9; 10; 5; 23; 25].

We write Cn;1 for a complex vector space equipped with a Hermitian form h � j � i
of signature .n; 1/, assumed linear in its first argument and antilinear in its second.
The norm v2 of a vector v means hv j vi. Complex hyperbolic space CHn means the
set of negative-definite 1–dimensional subspaces. If V;W 2CHn are represented by
vectors v;w then their hyperbolic distance is

(4-1) d.V;W /D cosh�1
qˇ̌
hv jwi

ˇ̌2
=v2w2:

If s is a vector of positive norm, then s? �Cn;1 defines a hyperplane in CHn , also
written s? , and

(4-2) d.V; s?/D sinh�1
q
�
ˇ̌
hv j si

ˇ̌2
=v2s2:
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These formulas are from [21], up to an unimportant factor of 2.

A null vector means a nonzero vector of norm 0. If v is one then it represents a point V
of the boundary @CHn . For any vector w of non-zero norm we define the height of w
with respect to v by

(4-3) htv.w/ WD �
ˇ̌
hv jwi

ˇ̌2
=w2:

This function is invariant under rescaling w , so it descends to a function on CHn ,
which is positive. The horosphere centered at V , of height h with respect to v , means
the set of p 2CHn with htv.p/D h. We define open and closed horoballs the same
way, replacing D by < and �. (More abstractly, one can define horospheres as the
orbits of the unipotent radical of the PU.n; 1/–stabilizer of V .)

We think of V as the center of these horospheres and horoballs and h as a sort of
generalized radius, even though strictly speaking the distance from any point of CHn

to V is infinite. In particular, if p; p0 2CHn then we say that p is closer to V than p0

is if htv.p/ < htv.p0/. To see that this notion depends on V rather than v , one checks
that replacing v by a nonzero scalar multiple of itself does not affect this inequality.
(It multiplies both sides by the same positive number.) Another way to think about this,
at least for points outside some fixed closed horoball A centered at V , is to regard
“closer to V ” as alternate language for “closer to A”. In any case, in our application
there will be a canonical choice for v , up to roots of unity.

Next we will describe the hyperplane arrangement appearing in Conjecture 1.3 and
Theorems 1.4–1.5. We write ! for a primitive cube root of unity and define the
Eisenstein integers E as ZŒ!�. The Eisenstein integer ! � x! D

p
�3 is so important

that it has its own name � . An E–lattice means a free E–module L equipped with
a Hermitian form taking values in E˝Q D Q.

p
�3/, denoted h � j � i. Sometimes

we think of lattice elements as column vectors and h � j � i as specified by a matrix M
equal to the transpose of its complex conjugate. Then hv jwi D vTM xw .

In Definitions 4.1–4.2 we will describe two E–lattices, from [5] and [1], respectively.
Each has signature .13; 1/ and is equal to � times its dual lattice. By [9] there is only
one lattice with these properties, so we may regard them as two different descriptions
of the same lattice L. We will not actually use this uniqueness in this paper, and the
first description of L is presented only to make precise the statement of Theorem 1.4.
The second one is what we will use for the heavy calculations in the next section.

The definitions of P� and M, and some other language we will use, are independent
of the model. We regard L˝E C as a copy of C13;1 , and take � to be the group of
E–linear automorphisms of L that preserve the inner product. As usual, P� means
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the quotient by its subgroup of scalars. A root means a norm-3 lattice vector, the
hyperplane arrangement M consists of the orthogonal complements in CH13 of the
roots, and H means the union of these hyperplanes. The subject of Conjecture 1.3 is
the orbifold fundamental group of .CH13�H/=P� .

The first author showed in [1] that all roots are equivalent under � . Their special role,
and the name “root”, arises as follows. First let s 2 C13;1 be any vector of positive
norm. Then the linear map

x 7! x� .1�!/
hx j si

s2
s

is an isometry of h � j � i, called the !–reflection in s and denoted Rs . Replacing !
by x! gives the x!–reflection in s , which is the inverse of Rs . They are called triflections,
because they are complex reflections of order 3. To see that Rs is a complex reflection
(in particular an isometry) one checks that it fixes s? pointwise and multiplies s by ! .

In the special case that s is a root, Rs preserves L because of a conspiracy among
the coefficients. First, the factor .1�!/ is a unit multiple of � D

p
�3. Second, for

any lattice vector x , hx j si is divisible by � , since all inner products in L are. (This
is what it means for L to lie in � times its dual lattice.) Together these two factors
of � cancel the term s2 D 3 in the denominator, up to a unit. So Rs.x/ is an E–linear
combination of x and s , hence lies in L. When one has a reflection in mind (real or
complex), it is customary to call a vector orthogonal to its fixed-point set a root. When
one also has a lattice in mind, one usually fixes the scale of a root by requiring it to be
a primitive lattice vector. This is why we call norm-3 vectors roots. One can show that
no other elements of P� act on CH13 by complex reflections. (The analogous result
for unimodular E–lattices is contained in [2, Lemmas 8.1–8.2]; for the current case
one uses the fact that L is equal to � times its dual lattice, rather than merely lying
in it.) So M is exactly the set of mirrors of the complex reflections in P� , making
�orb
1

�
.CH13�H/=P�

�
a braid-like group in the sense of this paper.

Definition 4.1 Our first description of L is the “P2.F3/ model” from [5], or in
preliminary form from the proof of [9, Proposition 6.1]. As mentioned above, we
include it to give precise meaning to Theorem 1.4, and we will not refer to it later.
We start with the diagonal inner product matrix Œ�1I 1; : : : ; 1� on C13;1 , and regard
the last 13 coordinates as being indexed by the 13 points of P2.F3/. The “point
roots” are the vectors of the form .0I �; 012/ with the � in any of the last 13 positions.
The “line roots” are the vectors of the form .1I 1; 1; 1; 1; 0; : : : ; 0/, with 1 in positions
corresponding to the points of a line in P2.F3/. L is defined as the span of these 26
roots. This construction obviously has PGL3.F3/ symmetry, and it also has less-obvious
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symmetries exchanging the point roots and line roots (up to scalars). This yields a
subgroup PGL3.F3/ÌZ=2 of P� that acts transitively on these 26 roots. We take � in
Theorem 1.4 to be the unique point of CH13 invariant under this group; its coordinates
are .4C

p
3I 1; : : : ; 1/. Among other results, it was shown in [9, Proposition 6.1] that

the hyperplanes in M that are closest to � are exactly the mirrors of the point and line
roots. We have now described concretely all the objects in Theorem 1.4.

Definition 4.2 Now we give the “Leech model” of L from [1], and make concrete the
objects in Theorem 1.5. We will use this model for the rest of the paper. We define L
as the E–lattice ƒ˚

�
0
�

x�
0

�
, where ƒ is the complex Leech lattice at the smallest scale

at which all inner products lie in E. The complex Leech lattice is studied in detail
in [38]. At our scale it has minimal norm 6, all inner products are divisible by � , and
ƒ is equal to � times its dual lattice. It is called the complex Leech lattice because its
underlying real lattice is a scaled copy of the usual (real) Leech lattice described in [14].
The properties of ƒ that we will use are that its automorphism group is transitive on its
vectors of norms 6 and 9, and that its covering radius is

p
3. The transitivity is proven

in [38]. The meaning of the covering radius is that closed balls of that radius, centered
at lattice points, exactly cover Euclidean space. It is

p
3 because the real Leech lattice,

at its own natural scale, has minimal norm 4 and (by [15]) covering radius
p
2.

We will write vectors of L in the form .xIy; z/, where x 2ƒ and y; z 2 E.

Conceptually, the “basepoint” for the description of generators for�orb
1

�
.CH13�H/=P�

�
in Theorem 1.5 is the cusp of P� represented by the null vector � WD .0I 0; 1/. As
explained in the introduction, really this is a shorthand for choosing a “fat basepoint”:
a closed horoball A centered at � that misses H . The following lemma shows that
such a horoball exists. More precisely, it identifies the largest open horoball centered
at � that misses H ; we may take A to be any closed horoball inside it. We also fix a
basepoint a 2 A, so now the paths �a;A;H in Theorem 1.5 have been defined.

Lemma 4.3 The open horoball fp 2 CH13 j ht�.p/ < 1g is disjoint from H , and
the mirrors that meet its boundary are the orthogonal complements of the roots l that
satisfy jh� j lij2 D 3.

Proof The special property of � we need is that it is orthogonal to no roots. This is
clear because �? D ƒ˚ h�i has no vectors of norm 3. Now, if l is a root then the
point of the mirror of l nearest to � is represented by the vector projection of � to l? ,
namely p D �� 1

3
h� j lil . One computes ht�.p/D 1

3
jh� j lij2 . This is at least 1, with

equality just if jh� j lij2 D 3.
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Lemma 4.3 also identifies the mirrors closest to � , namely the orthogonal complements
of the roots l with h� j li equal to a unit multiple of � . After scaling l by a unit we
may suppose

(4-4) l D
�
�I 1; �

�
1
6
.�2� 3/C �l

��
;

where �2ƒ and �l is purely imaginary and chosen so that the last coordinate lies in E.
The set of possibilities for �l is 1

�

�
1
2
CZ

�
if 6 divides �2 and 1

�
Z otherwise. Despite

its elaborate form, the last coordinate is well-suited for the calculations required in
next section. We call these roots the Leech roots (hence the notation l ), their mirrors
the Leech mirrors and the meridians .�a;A;l? ; Rl/ the Leech meridians. We have now
made concrete all the objects in Theorem 1.5.

We remark that there is a 25–dimensional integral Heisenberg group in P� that acts
simply transitively on the Leech roots. It consists of the “translations” from the proof
of Lemma 5.1. Conceptually, this is a simpler way to index the Leech roots than by
the pairs �; �l , but in the end it is equivalent. Also, these translations act cocompactly
on @A, verifying the technical condition we required on A in paragraph 2.2.

Early in the section we explained how one can meaningfully say that one point of
CH13 is closer to a point of @CH13 than another point of CH13 is. We will also need
to be able to compare the “distance” from a point p 2 CH13 to two different cusps
V; V 0 2 @CH13 of P� . Being cusps, they can be represented by lattice vectors v , v0 ,
which we may choose to be primitive. Then v; v0 are well-defined up to multiplication
by sixth roots of unity, and the corresponding height functions htv , htv0 are independent
of these factors. So we will say that p is closer to V than to V 0 if htv.p/ < htv0.p/.
Note that this construction depends on the fact that V; V 0 can be represented by lattice
vectors; it does not make sense for general points of @CH13 . In our applications, v
and v0 will always be � and a translate of � .

5 The Leech meridians generate

The purpose of this section is to prove Theorem 1.5, showing that the Leech meridians
generate the orbifold fundamental group Ga WD �orb

1

�
.CH13 �H/=P�; a

�
, where

M;H;P�;A; a and the Leech meridians .�a;A;l? ; Rl/ are defined in the previous
section. We write G for the subgroup of Ga they generate, and we must prove that G
is all of Ga .

We begin with an overview of the proof, which follows that of Theorem 1.2. It amounts
to showing that the mirror of any non-Leech root s satisfies one of the hypotheses
(1)–(3) of Lemma 3.1. It turns out (Lemma 5.2) that if jh� j sij2 > 21 then the simplest
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hypothesis (1) holds. If jh� j sij2>9 then the same method shows that the next simplest
hypothesis (2) holds (Lemmas 5.2 and 5.3). For the case jh� j sij2 D 9 we enumerate
the orbits of roots .‹I �; ‹/ under the �–stabilizer of � (Lemma 5.1). There are three
orbits, satisfying hypotheses (1), (2) and (3) of Lemma 3.1, respectively. The last orbit
is especially troublesome (Lemma 5.4). The proof of Theorem 1.5 is then a wrapper
around these results.

The following description of vectors in L˝C is very important in our computations.
We will use it constantly, often specializing to the case of roots. Every vector s 2
.L˝C/� �? can be written uniquely in the form

(5-1) s D
�
� Im;

�

m

�
�2�N

6
C �

��
;

where � 2 ƒ ˝ C , m 2 C � f0g, N is the norm s2 , and � is purely imaginary.
Restricting the first coordinate to ƒ and the others to E gives the elements of L� �? .
Further restricting N to 3 gives the roots of L, and finally restricting m to 1 gives
the Leech roots from (4-4). For vectors of any fixed negative (resp. positive) norm,
the larger the absolute value of the middle coordinate m, the further from � lie the
corresponding points (resp. hyperplanes) in CH13 .

One should think of s from (5-1) as being associated to the vector �=m in the positive-
definite Hermitian vector space ƒ˝E C . By this we mean that the most important
part of hs j s0i is governed by the relative positions of �=m and � 0=m0 in complex
Euclidean space. Namely, by writing out hs j s0i, completing the square and patiently
rearranging, one can check

(5-2) hs j s0i Dmm0
h
1

2

�
N 0

jm0j2
C

N

jmj2
�

�
�

m
�
� 0

m0

�2�
C Im

D
�

m

ˇ̌̌
� 0

m0

E
C 3

�
�0

jm0j2
�

�

jmj2

�i
:

Caution We are using the convention that the imaginary part of a complex number is
imaginary; for example Im � is � rather than

p
3.

In the rest of this section, “s” will only be used for roots. Our first step is to classify
the roots whose mirrors are next-closest to � , after the Leech mirrors.

Lemma 5.1 Suppose �6; �9 are fixed vectors in ƒ with norms 6 and 9. Then under
the �–stabilizer of � , every root with mD � is equivalent to .0I �;�!/ or .�6I �; !/
or .�9I �;�1/.
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Proof The �–stabilizer of � contains the Heisenberg group of “translations”

.l I 0; 0/ 7! .l I 0; x��1hl j�i/;

T�;z W .0I 1; 0/ 7!
�
�I 1; ��1

�
z� 1

2
�2
��
;

.0I 0; 1/ 7! .0I 0; 1/;

where � 2ƒ and z 2 Im C are such that z� 1
2
�2 2 �E. Suppose s 2 L has the form

(5-1) with N D 3 and mD � . Applying T�;z to s changes the first coordinate by ��.
By [38, page 153], every element of ƒ is congruent modulo �ƒ to a vector of norm
0, 6 or 9, so we may suppose � has one of these norms. Since Autƒ fixes � and
acts transitively on the vectors of each of these norms [38, page 155], we may suppose
s D 0, �6 or �9 . That is, s is one of�

0I �; 1
2
� �

�
;

�
�6I �;�

1
2
� �

�
; .�9I �;�1� �/:

In each of the three cases, the possibilities for � differ by the elements of ImE. Applying
T0;z (z 2 ImE) adds z to the third coordinate of s . Therefore we may take � D 1

2
� ,

1
2
x� and 0 in the three cases, yielding the roots in the statement of the lemma. (These

three roots are inequivalent under the �–stabilizer of � , but we don’t need this.)

Lemma 5.2 Suppose s is the root .0I �;�!/ or a root as in (5-1) with jmj D 2 or
jmj >

p
7, and define p as the point of s? nearest � . Then there is a triflection in a

Leech root that moves � closer to p .

Proof This proof grew from simpler arguments used for [1, Theorem 4.1] and [9,
Proposition 4.2].

We have pD�� 1
3
h� j sisD�C 1

�
ms . We want to choose a Leech root l , and �D!˙1 ,

such that the �–reflection in l (call it R) moves � closer to p . This is equivalent to
hp jR.�/i being smaller in absolute value than hp j �i. We will write down these inner
products explicitly and then choose l and � appropriately. Direct calculation gives
hp j �i D �jmj2 . Also,

R.�/D �� .1� �/
h� j li

hl j li
l D �C

1� �

�
l:

It turns out that the necessary estimates on hp jR.�/i are best expressed in terms of
the following parameter:

y WD
�

jmj2
hp j li D

�

jmj2

D
�C

m

�
s
ˇ̌̌
l
E
D�

3

jmj2
C
1

m
hs j li(5-3)

2 �
3

jmj2
C
1

m
�E:(5-4)

Geometry & Topology, Volume 20 (2016)



Geometric generators for braid-like groups 771

v1 v2

v3v4

v5

�2ı

p
3=jmj

!
1�x!

0
1

x!
1�!

!

�1
0 1

x!

Figure 5: See the proof of Lemma 5.2. V is the union of the gray (open)
disks, which have radius

p
3 and centers 1�!˙1 . We seek a Leech root l

so that y lies in this region. U is the closed region bounded by the solid
line, and is where we can arrange for y to be. U varies with jmj; we have
drawn the case jmj D

p
7 , when v5 is on the boundary of V , and the case

jmj D
p
3 , when v4 and v5 coalesce at x! . Hollow circles indicate Eisenstein

integers.

First one works out

(5-5)
ˇ̌̌̌
hp jR.�/i

hp j �i

ˇ̌̌̌
D

ˇ̌̌̌
hp jR.�/i

jmj2

ˇ̌̌̌
D
ˇ̌
1
3
.1�x�/y � 1

ˇ̌
:

Our goal is to choose l and � so that this is less than 1. This is equivalent to

jy � .1� �/j<
p
3:

Because the possibilities for � are !˙1 , this amounts to being able to choose l so that
y lies in the union V of the open balls in C of radius

p
3 around the points 1�!

and 1� x! . So our goal is to choose l such that y lies in the shaded region in Figure 5.

Now we examine how our choice of l affects y . Writing l as in (4-4), choosing it
amounts to choosing � 2 ƒ, and then choosing �l 2 Im C subject to the condition
that the last coordinate of (4-4) is in E. Specializing (5-2) to the case that s has norm
N D 3 and s0 is the Leech root l gives

hs j li Dm
h

3

2jmj2
C
3

2
�
1

2

�
�

m
��

�2
C Im

D
�

m

ˇ̌̌
�
E
C 3

�
�l �

�

jmj2

�i
:

Plugging this into formula (5-3) gives

(5-6) y D�
3

2jmj2
C
3

2
�
1

2

�
�

m
��

�2
C Im

D
�

m

ˇ̌̌
�
E
C 3

�
�l �

�

jmj2

�
:
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The covering radius of a lattice in Euclidean space is defined as the smallest number
such that the closed balls of that radius, centered at lattice points, cover Euclidean
space. The covering radius of ƒ is

p
3, because the underlying real lattice has norms

equal to 3
2

times those of the real Leech lattice, whose covering radius is
p
2 by [15].

Therefore we may take � so that 0� .�=m��/2 � 3. It follows that the real part of
(5-6) lies in

�
�ı; 3

2
� ı
�

where ı WD 3=2jmj2 .

Next we choose �l . The only constraint on it is that the last component of l D .�I 1; ‹/
must lie in E. As mentioned after (4-4), this amounts to �l 2 1

�

�
1
2
C Z

�
if �2 is

divisible by 6, and �l 2 1
�

Z otherwise. In either case, referring to (5-6) shows that
changing our choice of �l allows us to change y by any rational integer multiple of � .
So we may take Imy 2

�
�
�
2
; �
2

�
. After these choices we have

(5-7) Re y 2
�
�ı; 3

2
� ı
�

and Imy 2
�
�
�
2
; �
2

�
:

Now we can derive additional information about y . We have y¤�2ı since �2ı is not
in the rectangle (5-7). Since y 2�2ıC .�=m/E by (5-4), y lies at distance �

p
3=jmj

from �2ı . We define U as the closed rectangle (5-7) in C , minus the open .
p
3=jmj/–

disk around �2ı . We have shown that we may choose a Leech root l such that
y 2 U . We have indicated U in outline in Figure 5 for jmj D

p
7 or

p
3, and in

Figure 6 for jmj D 2. As jmj increases, the rectangle moves to the right, approaching�
0; 3
2

�
�
�
�
�
2
; �
2

�
, the center of the removed disk approaches zero, and its radius

approaches zero more slowly than the center does.

Now suppose jmj2 > 7. We claim U � V . Assuming this for the moment, we may
choose l such that y is in U , hence V , which allows us to choose � D !˙1 so that
�–reflection in l moves � closer to p . This finishes the proof. To prove the claim it
will suffice to show that the lower half of U lies in the open

p
3–ball around 1�! . Ob-

viously it suffices to check this for the points marked v1; : : : ; v5 in Figure 5. These are

v1 D�2ıC
p
3=jmj; v2 D

3
2
� ı; v3 D

3
2
� ı� 1

2
i
p
3; v4 D�ı�

1
2
i
p
3

and
v5 D�ı� i

p
3=jmj2� 9=.4jmj4/:

Using jmj2>7, one can check that each of these lies at distance<
p
3 from 1�! . This

finishes the proof of the jmj2>7 case. (If jmj2D 7 then v5 lies on the boundary of V .
If jmj2 D 4 then v4 and v5 are outside the boundary; see Figure 6. If jmj2 D 3 then
v1D0 is on the boundary and v4Dv5D x! is outside it; see the second part of Figure 5.)

Next we treat the special case s D .0I �;�!/. Choosing � D 0 gives Rey D 1 by
(5-6). Then choosing �l as above, so that Imy lies in

�
�
�
2
; �
2

�
, yields y 2 V . So we

can move � closer to p just as in the jmj2 > 7 case.
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�
3
4

�
2
�
3
4

�
�
2
�
3
4

!

1�x!

0

1

x!

1�!

Figure 6: The analogue of Figure 5 for the special case jmj D 2 in the proof
of Lemma 5.2. The proof shows that y lies in U (bounded by the solid path)
but outside two open disks (indicated by the dotted arcs), hence in V (the
shaded region).

Finally, we suppose jmj D 2; we may take mD 2 by multiplying s by a unit. Recall
that after we proved that y lies in the rectangle (5-7), we could use (5-4) to show that y
lies outside the open disk used in the definition of U . For mD 2 the argument shows
more. Since ı D 3

8
when jmj D 2, (5-4) shows y 2 �3

4
C
�
2
E. Since both �3

4
˙
�
2

lie in �3
4
C
�
2
E but not in the rectangle (5-7), y lies at distance � 1

2

p
3 from each of

them, just as it lies at distance � 1
2

p
3 from �3

4
. It is easy to check that U , minus the

open 1
2

p
3–balls around �3

4
˙
�
2

, lies in V ; see Figure 6. Therefore y 2 V , finishing
the proof as before. (One can consider analogues of these extra disks for any m. They
are unnecessary if jmj2 > 7, and turn out to be useless if jmj2 D 3 or 7.)

Lemma 5.3 Suppose s is the root .�6I �; !/ or a root as in (5-1) with jmj D
p
7, and

define p as the point of s? nearest � . Then there is a triflection in a Leech root that
either moves � closer to p , or else moves � closer to s? while preserving the distance
between � and p .

Proof Suppose first jmj D
p
7. Then the proof of Lemma 5.2 goes through unless y

is v5 in Figure 5, or its complex conjugate. So suppose y D v5 or xv5 , and take � D !
or x! , respectively. The argument in the proof of Lemma 5.2, that R moves � closer
to p , fails because jy � .1� �/j equals

p
3 rather than being strictly smaller. But it

does show that R.�/ is exactly as far from p as � is. This is one of our claims, and
what remains to show is that R moves � closer to s? .
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To do this we first solve (5-3) for hs j li in terms of y , obtaining hs j liD .3Cjmj2y/=m.
Then one works outˇ̌̌̌

hs jR.�/i

hs j �i

ˇ̌̌̌
D

ˇ̌̌̌
hs j �i � 1

�
.1�x�/hs j li

hs j �i

ˇ̌̌̌
D

ˇ̌̌̌
1� 1

3
.1�x�/

�
3

jmj2
Cy

�ˇ̌̌̌
:

We want this to be less than 1. By copying the argument following (5-5), this is
equivalent to yC 3=jmj2 lying in the open

p
3–disk around 1� � . This is obvious

from the figure because yC 3=jmj2 is 3
7

to the right of y D v5 or xv5 . This finishes
the jmj D

p
7 case.

The case s D .�6I �; !/ is similar. In this case U appears in Figure 5. Writing l as
in (4-4) with �D 0 leads to Rey D 0, so either y 2 V (so the proof of Lemma 5.2
applies) or else y D 0 2 @V . In this case the argument for jmj D

p
7 shows that R.�/

is just as close to p as � is, and that R moves � closer to s? .

Lemma 5.4 Let s D .�9I �;�1/, define p as the point of s? nearest � , and B as the
open horoball centered at � , whose bounding horosphere is tangent to s? at p . Then
there exists an open ball U around p with U \HD U \Hp , and a triflection R in
one of the Leech mirrors, such that B \R.B/\U ¤∅ and R.B/\U \ s? ¤∅.

Proof Since we are verifying hypothesis (3) of Lemma 3.1, we will use that lemma’s
notation H for s? . By definition,

p D �� 1
3
h� j sis D .��9I x�; 2/:

This has norm �3 and lies in L. One computes ht�.p/ D 3, so B is the height-
3 open horoball around � . We take U to have radius sinh�1

p
1=3. To check that

U \HD U \Hp , consider a root s0 not orthogonal to p . Then jhp j s0ij �
p
3 since

p 2 L, so
d.p; s0

?
/D sinh�1

q
�jhp j s0ij2=p2s0

2
� sinh�1

p
1=3;

as desired.

Next we choose R to be the !–reflection in the Leech root l D .0I 1;�!/. (We found l
by applying the proof of Lemma 5.2 as well as we could. That is, we choose l so that
y in that proof equals the lower left corner x! of the second part of Figure 5.) This
yields R.�/D .0I x!; 0/. We must verify R.B/\U \H ¤∅ and B\R.B/\U ¤∅.

Our strategy for showing R.B/\U\H ¤∅ is to begin by defining p0 as the projection
of R.�/ to H , which happens to lie outside U . Then we parametrize p0p �H , find
the point x where it crosses @U , and check that x 2R.B/. So x 2R.B/\H \ @U .
Therefore a point of p0p , slightly closer to p than x is, lies in R.B/\H\U , showing
that this intersection is nonempty.
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Here are the details. Computation gives p0 D .x!�9=� I 2x!;�x!=�/, of norm �1. One
checks hp0 jpi D 2x!x� , so

d.p; p0/D cosh�12 > sinh�1
p
1=3

and p0 lies outside U , as claimed. Also, �!�p0 and p have negative inner product.
Therefore p0p � fpg is parametrized by xt D �!�p0 C tp with t 2 Œ0;1/. One
computes hxt jpi D �3t � 6 and x2t D�3t

2� 12t � 3, yielding

d.xt ; p/D cosh�1
s
jhxt jpij2

x2t p
2
D cosh�1

s
t2C 4t C 4

t2C 4t C 1
:

Now, xt lies in @U just when this equals sinh�1
p
1=3, yielding a quadratic equation

for t . There is just one nonnegative solution, namely t D 2
p
3� 2. So x D x2

p
3�2 .

Then one computes hR.�/ j xi D x!x�.4
p
3� 3/, so

htR.�/.x/D�
jhR.�/ j xij2

x2
D�

3.57� 24
p
3 /

�27
< 3:

That is, x 2R.B/ as desired.

Our strategy for B \R.B/ \ U ¤ ∅ is similar. We parametrize the geodesic x� ,
where x is the point found in the previous paragraph, find the point y where it
crosses @B , and check that y lies in R.B/ and U . Here are the details. Computation
shows hx j �i D �6

p
3 < 0, so x� � f�g is parametrized by yu D x C u� with

u 2 Œ0;1/. Further computation shows hyu j �i D�6
p
3 and y2u D�27�12u

p
3, so

ht�.yu/D 36=.9C 4u
p
3/. Setting this equal to 3 yields uD

p
3=4, so y D yp3=4 .

Now one checks that htR.�/.y/ < 3, so that y 2R.B/. A similar calculation proves
y 2 U . (In fact this last calculation can be omitted, because y; p are the projections
to @B of the two points x; p outside B , but not both in @B . Projection to a closed
horoball decreases the distance between two points, if at least one of them is outside it.
Therefore d.y; p/ < d.x; p/D sinh�1

p
1=3.)

Proof of Theorem 1.5 We will mimic the proof of Theorem 1.2 (see the end of
Section 3), using Lemmas 5.2–5.4 in place of the “moves a closer to p” hypothesis of
that theorem. Write G for the subgroup of Ga D �orb

1

�
.CH13�H/=P�; a

�
generated

by the Leech meridians, ie the pairs .�a;A;l? ; Rl/ with l a Leech root. We must
show that G is all of Ga . It is known (see [9], or [5] for a later proof) that the Rl
generate P� . By the exact sequence (3-1), it therefore suffices to show that G contains
�1.CH13 �H; a/. By Theorem 2.3 it suffices to show that G contains every AH ,
with H varying over M. We do this by induction on the distance from H to � , or,
properly speaking, on jh� j sij, where s is a root with H D s? . The base case is when
s is a Leech root, ie jh� j sij D

p
3, and we just observe AH D .�a;A;H ; Rs/3 .
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Now suppose s is a root but not a Leech root, H D s? , p is the point of H closest
to � , and B is the open horoball centered at � and tangent to H at p . We may assume
by induction that G contains every A; s0? with s0 a root satisfying jh� j s0ij< jh� j sij.
It follows from Theorem 2.3 that G contains �1.B �H; a/.

The smallest possible value of jh� j sij for a non-Leech root s is 3, occurring when
jmj D

p
3 in (5-1). In the case s D .0I �;�!/ (resp. .�6I �; !/, .�9I �;�1/), hypoth-

esis (1) (resp. (2), (3)) of Lemma 3.1 is satisfied, by Lemma 5.2 (resp. Lemma 5.3,
Lemma 5.4). If s is any root with h� j si D 3 then it is equivalent to one of these
examples under the �–stabilizer of � , by Lemma 5.1. Therefore Lemma 3.1 applies
to s? for every root s with h� j si D 3. It follows that G contains the corresponding
loops AH . If jh� j sij D 3 then scaling s by a unit reduces to the h� j si D 3 case.

The next possible value of jh� j sij is 2
p
3, occurring when jmj D 2 in (5-1). In this

case Lemma 5.2 verifies hypothesis (1) of Lemma 3.1, which tells us that G contains
AH . The next possible value of jh� j sij is

p
21, occurring when jmj D

p
7. In this

case Lemma 5.3 verifies hypothesis (2) of Lemma 3.1, which tells us that G contains
AH . The general step of the induction is the same. If jh� j sij is larger than

p
21, then

jmj is larger than
p
7, so Lemma 5.2 verifies hypothesis (1) of Lemma 3.1. This tells

us that G contains AH , completing the inductive step.
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