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On type-preserving representations
of the four-punctured sphere group

TIAN YANG

We give counterexamples to a question of Bowditch that asks whether a nonelementary
type-preserving representation �W �1.†g;n/ ! PSL.2IR/ of a punctured surface
group that sends every nonperipheral simple closed curve to a hyperbolic element
must � be Fuchsian. The counterexamples come from relative Euler class ˙1

representations of the four-punctured sphere group. We also show that the mapping
class group action on each nonextremal component of the character space of type-
preserving representations of the four-punctured sphere group is ergodic, which
confirms a conjecture of Goldman for this case. The main tool we use are Kashaev
and Penner’s lengths coordinates of the decorated character spaces.
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To William Goldman on the occasion of his sixtieth birthday

1 Introduction

Let †g be an oriented closed surface of genus g > 2. The PSL.2;R/–representation
space R.†g/ is the space of group homomorphisms �W �1.†g/!PSL.2;R/ from the
fundamental group of †g into PSL.2;R/, endowed with the compact open topology.
The Euler class e.�/ of � is the Euler class of the associated S1 –bundle on †g , which
satisfies the Milnor–Wood inequality 2� 2g 6 e.�/6 2g� 2. In [9], Goldman proved
that equality holds if and only if � is Fuchsian, ie discrete and faithful; and in [11],
he proved that the connected components of R.†g/ are indexed by the Euler classes.
That is, for each integer k with jkj6 2g�2, representations of Euler class k exist and
form a connected component of R.†g/. The Lie group PSL.2;R/ acts on R.†g/ by
conjugation, and the quotient space

M.†g/DR.†g/=PSL.2;R/

is the character space of †g . Since the Euler classes are preserved by conjugation, the
connected components of M.†g/ are also indexed by the Euler classes, ie

M.†g/D

2g�2a
kD2�2g

Mk.†g/;
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where Mk.†g/ is the space of conjugacy classes of representations of Euler class
k . By the results of Goldman [9; 11], the extremal components M˙.2�2g/.†g/ are
respectively identified with the Teichmüller space of †g and that of †g endowed with
the opposite orientation.

The mapping class group Mod.†g/ of †g is the group of isotopy classes of orientation
preserving self-diffeomorphisms of †g . By the Dehn–Nielsen theorem, Mod.†g/ is
naturally isomorphic to the group of positive outer-automorphisms OutC.�1.†g//,
which acts on M.†g/ and preserves the Euler classes. Therefore Mod.†g/ acts on
each connected component of M.†g/. It is known (see Fricke [8]) that the Mod.†g/–
action is properly discontinuous on the extremal components M˙.2�2g/.†g/, ie the
Teichmüller spaces, and the quotients are the Riemann moduli spaces of complex
structures on †g . On the nonextremal components Mk.†g/, jkj< 2g� 2, Goldman
conjectured in [14] that the Mod.†g/–action is ergodic with respect to the measure
induced by the Goldman symplectic form [10].

Closely related to Goldman’s conjecture is a question of Bowditch [4, Question C] that
asks whether for each nonelementary and nonextremal (ie non-Fuchsian) representation
� in R.†g/, there exists a simple closed curve 
 on †g such that �.Œ
 �/ is an elliptic
or a parabolic element of PSL.2;R/. Recall that a representation is nonelementary if
its image is Zariski-dense in PSL.2;R/. Recently, Marché and Wolff [21] showed that
an affirmative answer to Bowditch’s question implies that Goldman’s conjecture is true.
More precisely, they show that for .g; k/¤ .2; 0/, Mod.†g/ acts ergodically on the
subset of Mk.†g/ consisting of representations that send some simple closed curve on
†g to an elliptic or parabolic element. Therefore, when .g; k/¤ .2; 0/, the Mod.†g/–
action on Mk.†g/ is ergodic if and only if the subset above has full measure in
Mk.†g/. In the same work, they answer Bowditch’s question affirmatively for the
genus-2 surface †2 , implying the ergodicity of the Mod.†2/–action on M˙1.†2/.
For the action on the component M0.†2/, they find two Mod.†2/–invariant open
subsets due to the existence of the hyperelliptic involution, and show that on each of them
the Mod.†2/–action is ergodic. For higher-genus surfaces †g , g > 3, Souto recently
gave an affirmative answer to Bowditch’s question for the Euler class 0 representations
(personal communication), proving the ergodicity of the Mod.†g/–action on M0.†g/.
For g > 3 and k ¤ 0, both Bowditch’s question and Goldman’s conjecture are still
open.

Bowditch’s question was originally asked for the type-preserving representations of
punctured surface groups. Recall that a punctured surface †g;n of genus g with n

punctures is a closed surface †g with n points removed. Throughout this paper, we
required that the Euler characteristic of †g;n be negative. A peripheral element of
�1.†g;n/ is an element that is represented by a curve freely homotopic to a circle that
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goes around a single puncture of †g;n . A representation �W �1.†g;n/! PSL.2;R/ is
called type-preserving if it sends every peripheral element of �1.†g;n/ to a parabolic
element of PSL.2;R/. Bowditch [4, Question C] asks whether a nonelementary type-
preserving representation of a punctured surface group that sends every nonperipheral
simple closed curve to a hyperbolic element must be Fuchsian.

The main result of this paper gives counterexamples to this question. To state the
result, we recall that there is a notion of a relative Euler class e.�/ of a type-preserving
representation � that satisfies the Milnor–Wood inequality

je.�/j6 2g� 2C n;

and equality holds if and only if � is Fuchsian (see [9; 11] and also Proposition A.1).

Theorem 1.1 There are uncountably many nonelementary type-preserving represen-
tations �W �1.†0;4/ ! PSL.2;R/ with relative Euler class e.�/ D ˙1 that send
every nonperipheral simple closed curve to a hyperbolic element. In particular, these
representations are not Fuchsian.

Our method is to use Penner’s lengths coordinates for the decorated character space
defined by Kashaev [17]. Briefly speaking, decorated character space of a punctured
surface is the space of conjugacy classes of decorated representations, namely, nonele-
mentary type-preserving representations together with an assignment of horocycles to
the punctures. The lengths coordinates of a decorated representation depend on the
choice of an ideal triangulation of the surface, and consist of the �–lengths of the
edges determined by the horocycles, and of the signs of the ideal triangles determined
by the representation. The decorated Teichmüller space is a connected component
of the decorated character space, and the restriction of the lengths coordinates to
this component coincides with Penner’s lengths coordinates. (See Kashaev [17; 18]
or Section 2 for more details.) A key ingredient in the proof is Equation (3-1) of
the traces of closed curves in the lengths coordinates, found by Sun and the author.
With a careful choice of an ideal triangulation of the four-punctured sphere, called
a tetrahedral triangulation, we show that the traces of three distinguished simple
closed curves are greater than 2 in the absolute value if and only if the �–lengths of
edges in this triangulation satisfy certain antitriangular inequalities. We then show that
each simple closed curve is distinguished in some tetrahedral triangulation, and all
tetrahedral triangulations are related by a sequence of moves, called the simultaneous
diagonal switches. By the change of �–lengths formula (Proposition 2.3), we show
that the antitriangular inequalities are preserved by the simultaneous diagonal switches.
Therefore, if the three distinguished simple closed curves are hyperbolic, then all the
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simple closed curves are hyperbolic. Finally, we show that there are uncountably many
choices of the �–lengths that satisfy the antitriangular inequalities.

A consequence of Equation (3-1) is Theorem 3.5, which says that each non-Fuchsian
type-preserving representation is dominated by a Fuchsian one, in the sense that the
traces of the simple closed curves of the former representation are less than or equal to
those of the later in the absolute value. This is a counterpart of the result of Gueritaud,
Kassel and Wolff [15] and Deroin and Tholozan [6], where they consider dominance
of closed surface group representations.

Using the same technique, we also give an affirmative answer to Bowditch’s question
for the relative Euler class 0 type-preserving representations of the four-punctured
sphere group.

Theorem 1.2 Every nonelementary type-preserving representation �W �1.†0;4/!

PSL.2;R/ with relative Euler class e.�/D 0 sends some nonperipheral simple closed
curve to an elliptic or parabolic element.

In contrast with the connected components of the character space of a closed surface,
those of a punctured surface are more subtle to describe. For †g;n with n¤ 0, denote
by Mk.†g;n/ be the space of conjugacy classes of type-preserving representations with
relative Euler class k . As explained in Kashaev [17], Mk.†g;n/ can be either empty
or nonconnected. For example, M0.†0;3/DM0.†1;1/D∅. The nonconnectedness
of Mk.†g;n/ comes from the existence of two distinct conjugacy classes of parabolic
elements of PSL.2;R/. More precisely, each parabolic element of PSL.2;R/ is up to
˙I conjugate to an upper-triangular matrix with trace 2, and its conjugacy class is
distinguished by whether the sign of the nonzero off diagonal element is positive or
negative. Therefore, two type-preserving representations of the same relative Euler class
which respectively send the same peripheral element into different conjugacy classes
of parabolic elements cannot be in the same connected components. Throughout
this paper, we respectively call the two conjugacy class of parabolic elements the
positive and the negative conjugacy classes. For a type-preserving representation
�W �1.†g;n/! PSL.2;R/, we say that the sign of a puncture v is positive, denoted
by s.v/ D 1, if � sends a peripheral element around this puncture into the positive
conjugacy class of parabolic elements, and is negative, denoted by s.v/D�1, otherwise.
For s 2 f˙1gn , we denote by Ms

k
.†g;n/ the space of conjugacy classes of type-

preserving representations with relative Euler class k and signs of the punctures s .
It is conjectured in [17] that each Ms

k
.†g;n/, if nonempty, is connected. The result

confirms this for the four-punctured sphere.
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Theorem 1.3 Let s 2 f˙1g4 .
(1) Ms

0
.†0;4/ is nonempty if and only if s contains exactly two �1 and two 1.

(2) Ms
1
.†0;4/ is nonempty if and only if s contains at most one �1.

(3) Ms
�1
.†0;4/ is nonempty if and only if s contains at most one 1.

(4) All the nonempty spaces above are connected.

As a consequence of Theorem 1.3, M0.†0;4/ has six connected components and
each of M˙1.†0;4/ has five connected components. The main tool we use in the
proof are still the lengths coordinates; we hope the technique can be used for the other
punctured surfaces.

The mapping class group Mod.†g;n/ of a punctured surface †g;n is the group of
relative isotopy classes of orientation-preserving self-diffeomorphisms of †g;n that fix
the punctures. By the Dehn–Nielsen theorem, Mod.†g;n/ is isomorphic to the group
of positive outer-automorphisms OutC.�1.†g;n// that preserve the cyclic subgroups
of �1.†g;n/ generated by the peripheral elements, and hence acts on M.†g;n/ and
preserve the relative Euler classes and the signs of the punctures. Therefore, for any
integer k with jkj6 2g�2Cn and for any s 2 f˙1gn , Mod.†g;n/ acts on Ms

k
.†g;n/.

For the four-punctured sphere, we have the following.

Theorem 1.4 The Mod.†0;4/–action on each nonextremal connected component of
M.†0;4/ is ergodic.

By Marché and Wolff [21], it is not surprising that the Mod.†0;4/–action is ergodic on
the connected components of M.†0;4/ where Bowditch’s question has an affirmative
answer. A new and unexpected phenomenon Theorem 1.4 reveals here is that, for
punctured surfaces, the action of the mapping class group can still be ergodic when the
answer to Bowditch’s question is negative. Evidenced by Theorem 1.4, we make the
following conjecture.

Conjecture 1.5 The Mod.†g;n/–action is ergodic on each nonextremal connected
component of M.†g;n/.

The paper is organized as follows. In Section 2, we recall Kashaev’s decorated character
spaces and the lengths coordinates, in Section 3, we obtain a formula for the traces of
closed curves in the lengths coordinates, and in Section 4, we introduce tetrahedral
triangulations, distinguished simple closed curves and simultaneous diagonal switches.
Then we prove Theorems 1.1, 1.2, 1.3 and 1.4 in Sections 5, 6 and 7. The anonymous
referee pointed out that the results concerning representations of relative Euler class
˙1 can be deduced more directly from the results of Goldman in [13]. We present the
referee’s argument in Appendix B for interested readers.
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2 Decorated character spaces

We recall the decorated character spaces and the lengths coordinates in this section. The
readers are recommended to read Kashaev’s papers [17; 18] for the original approach
and for more details.

Let †g;n be a punctured surface of genus g with n punctures, and let �W �1.†g;n/!

PSL.2;R/ be a nonelementary type-preserving representation. A pseudodeveloping
map D� of � is a piecewise smooth �–equivariant map from the universal cover of
†g;n to the hyperbolic plane H2 . By [9], � is the holonomy representation of D� . Let
! be the hyperbolic area form of H2 . Since D� is �–equivariant, the pull-back 2–form
.D�/

�! descends to †g;n . The relative Euler class e.�/ of � can be calculated as

e.�/D
1

2�

Z
†g;n

.D�/
�!:

An ideal arc ˛ on †g;n is an arc connecting two (possibly the same) punctures. The
image D�.z̨/ of a lift z̨ of ˛ is an arc in H2 connecting two (possibly the same)
points on @H2 , each of which is the fixed point of the �–image of certain peripheral
element of �1.†g;n/. We call ˛ �–admissible if the two end points of D�.z̨/ are
distinct. It is easy to see that ˛ being �–admissible is independent of the choice of the
lift z̨ and the pseudodeveloping map D� . An ideal triangulation T of †g;n consists
of a set of disjoint ideal arcs, called the edges, whose complement is a disjoint union of
triangles, called the ideal triangles. We call T �–admissible if all the edges of T are
�–admissible. If �0 is conjugate to � , then it is easy to see that T is �0–admissible if
and only if it is �–admissible.
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Theorem 2.1 (Kashaev [17]) For each ideal triangulation T , the set

MT .†g;n/D fŒ�� 2M.†g;n/ j T is �–admissibleg

is open and dense in M.†g;n/, and there exist finitely many ideal triangulations Ti ,
i D 1; : : : ;m, such that

M.†g;n/D

m[
iD1

MTi
.†g;n/:

Let †g;n and � be as above. A decoration of � is an assignment of horocycles centered
at the fixed points of the �–image of the peripheral elements of �.†g;n/, one for each,
which is invariant under the �.�1.†g;n//–action. In the case that the fixed points of
the �–image of two peripheral elements coincide, which may happen only when � is
non-Fuchsian, we do not require the corresponding assigned horocycles to be the same.
If d is a decoration of � and g is an element of PSL.2;R/, then the g–image of the
horocycles in d form a decoration g �d of the conjugation g�g�1 of � . We call a pair
.�; d/ a decorated representation, and call two decorated representations .�; d/ and
.�0; d 0/ equivalent if �0Dg�g�1 and d 0Dg�d for some g2PSL.2;R/. The decorated
character space of †g;n , denoted by Md .†g;n/, is the space of equivalence classes of
decorated representations. In [17], Kashaev shows that the projection � WMd .†g;n/!

M.†g;n/ defined by �.Œ.�; d/�/D Œ�� is a principal RV
>0

–bundle, where V is the set
of punctures of †g;n , and the preimage of the extremal components are isomorphic as
principal RV

>0
–bundles to Penner’s decorated Teichmüller space [23].

Fixing a �–admissible ideal triangulation T and a pseudodeveloping map D� , the
lengths coordinates of .�; d/ consists of the following two parts: the �–lengths of the
edges and the signs of the ideal triangles. The �–length of an edge e of T is defined as
follows. Since e is �–admissible, for any lift ze of e to the universal cover the image
D�.ze/ connects to distinct points u1 and u2 on @H2 . The decoration d assigns two
horocycles H1 and H2 respectively centered at u1 and u2 . Let l.e/ be the signed
hyperbolic distance between the two horocycles, ie l.e/ > 0 if H1 and H2 are disjoint
and l.e/ 6 0 if otherwise. Then the �–length of e in the decorated representation
.�; d/ is defined by

�.e/D exp
l.e/

2
:

The sign of an ideal triangle t of T is defined as follows. Let v1 , v2 and v3 be the
vertices of t so that the orientation on t determined by the cyclic order v1 7! v2 7!

v3 7! v1 coincides with the one induced from the orientation of †g;n . Let zt be a lift of
t to the universal cover, and let zv1 , zv2 and zv3 be the vertices of zt so that zvi is a lift of
vi , i D 1; 2; 3. Since T is �–admissible, the points D�.zv1/, D�.zv2/ and D�.zv3/ are
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distinct on @H2 , and hence determine a hyperbolic ideal triangle � in H2 with them
as the ideal vertices. The sign of t is positive, denoted by �.t/D 1, if the orientation on
� determined by the cyclic order D�.zv1/ 7!D�.zv2/ 7!D�.zv3/ 7!D�.zv1/ coincides
with the one induced from the orientation of H2 . Otherwise, the sign of t is negative,
and is denoted by �.t/D�1. From the construction, it is easy to see that the �–lengths
�.e/ and the signs �.t/ depend only on the equivalence class of .�; d/. Let T be the
set of ideal triangles of T . Then the integral of the pull-back form .D�/

�! over †g;n

equals
P

t2T �.t/� , and the relative Euler class of � can be calculated as

(2-1) e.�/D
1

2

X
t2T

�.t/:

Let V be the set of punctures of †g;n and let E be the set of edges of T . Then there
is a principal RV

>0
–bundle structure on RE

>0
defined as follows. For � 2 RV

>0
and

� 2 RE
>0

, we define � � � 2 RE
>0

by .� � �/.e/D �.v1/�.e/�.v2/, where v1 and v2

are the punctures connected by the edge e .

Theorem 2.2 (Kashaev) Let � WMd .†g;n/ ! M.†g;n/ be the principal RV
>0

–
bundle, and let Md

T .†g;n/ the preimage of MT .†g;n/. Then

Md
T .†g;n/D

a
�2f˙1gT

R.T ; �/;

where each R.T ; �/ is isomorphic as a principal RV
>0

–bundle to an open subset of
RE
>0

. The isomorphism is given by the �–lengths, and the image of R.T ; �/ is the
complement of the zeros of certain rational function coming from the image of the
peripheral elements not being the identity matrix.

On M.†g;n/ we have the Goldman symplectic form !WP which restricts to the Weil–
Petersson symplectic form on the Teichmüller component [10]. By [17; 18], for each
ideal triangulation T , the pull-back of !WP to Md

T .†g;n/ is expressed in the �–lengths
by

(2-2) ��!WP D
X
t2T

�
d�.e1/^ d�.e2/

�.e1/�.e2/
C

d�.e2/^ d�.e3/

�.e2/�.e3/
C

d�.e3/^ d�.e1/

�.e3/�.e1/

�
;

where e1 , e2 and e3 are the edges of the ideal triangle t in the cyclic order induced
from the orientation of †g;n . This formula was first obtained by Penner [24] for the
decorated Teichmüller space. From (2-2), it is easy to see that the measure on each
R.T ; �/ induced by ��!WP is in the measure class of the pull-back of the Lebesgue
measure on RE

>0
.
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A diagonal switch at an edge e of T replaces the edge e by the other diagonal of the
quadrilateral formed by the union of the two ideal triangles adjacent to e . By [16], any
ideal triangulation can be obtained from another by doing a finite sequence of diagonal
switches. Let .�; d/ be a decorated representation and let T be a �–admissible ideal
triangulation of †g;n . If T 0 is the ideal triangulation of †g;n obtained from T by
doing a diagonal switch at an edge e , then the �–admissibility of T 0 and the lengths
coordinates of .�; d/ in T 0 are determined as follows. Let t1 and t2 be the two ideal
triangles of T adjacent to e , let e0 be the new edge of T 0 and let t 0

1
and t 0

2
be the two

ideal triangles in T 0 adjacent to e0 . We respectively name the edges of the quadrilateral
e1; : : : ; e4 in the way that e1 is adjacent to t1 and t 0

1
, e2 is adjacent to t1 and t 0

2
, e3

is adjacent to t2 and t 0
2

and e4 is adjacent to t2 and t 0
1

. Then e1 is opposite to e3 , and
e2 is opposite to e4 in the quadrilateral.

Proposition 2.3 (Kashaev) (1) If the signs �.t1/D �.t2/, then T 0 is �–admissible.
In this case,

�.t 01/D �.t
0
2/D �.t1/ and �.e0/D

�.e1/�.e3/C�.e2/�.e4/

�.e/
;

and the signs of the common ideal triangles and the �–lengths of the common
edges of T and T 0 do not change.

(2) If �.t1/¤ �.t2/, then T 0 is �–admissible if and only if �.e1/�.e3/¤�.e2/�.e4/.
In this case,
(a) if �.e1/�.e3/ < �.e2/�.e4/, then

�.t 01/D �.t1/; �.t 02/D �.t2/ and �.e0/D
�.e2/�.e4/��.e1/�.e3/

�.e/
;

(b) If �.e2/�.e4/ < �.e1/�.e3/, then

�.t 01/D �.t2/; �.t 02/D �.t1/ and �.e0/D
�.e1/�.e3/��.e2/�.e4/

�.e/
;

and the signs of the common ideal triangles and the �–lengths of the common
edges of T and T 0 do not change,

The rule for the signs in (2)(a) and (2)(b) is that the signs of the ideal triangles adjacent
to the shorter edges do not change. This can be seen as follows. If, for example,
�.t1/D�1, �.t2/D 1 and �.e1/�.e3/ < �.e2/�.e4/, then the hyperbolic ideal triangle
�1 determined by t1 is negatively oriented, the hyperbolic ideal triangle �2 determined
by t2 is positively oriented, and the geodesic arcs a2 and a4 determined by e2 and e4

intersect. See Figure 1. As a consequence, the hyperbolic ideal triangle �0
1

determined
by t 0

1
is negatively oriented and the hyperbolic ideal triangle �0

2
determined by t 0

2
is
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positively oriented, hence �.t 0
1
/D�1 and �.t 0

2
/D 1. The �–lengths of e0 follow from

Penner’s Ptolemy relation [23] that �.e2/�.e4/D �.e1/�.e3/C�.e/�.e
0/. The other

cases can be verified similarly.

✂

✂

✂

e1

e2

e3

e4

e

t1

t2

a

a1 a2

a3

a4
�1

�2

H2

a1

a2 a3a4

a0
�0

1

�0
2

H2

e1

e2

e3

e4

e0

t 0
1

t 0
2

Figure 1

By Theorems 2.1 and 2.2, the family of open subsets fR.T ; �/g, where T goes over all
the ideal triangulations of †g;n together with the �–lengths functions f�W R.T ; �/!
RE
>0
g form a coordinate system of Md .†g;n/, and the transition functions are given

by Proposition 2.3.

Theorem 2.4 (Kashaev) For each relative Euler class k , let Md
k
.†g;n/ be the preim-

age of Mk.†g;n/ under the projection � WMd .†g;n/!M.†g;n/. Then

Md
k .†g;n/D

[
T

a
�

R.T ; �/;

where the union is over all the ideal triangulations T and the disjoint union is over
all � 2 f˙1gT such that

P
t2T �.t/ D 2k . Moreover, the Md

k
.†g;n/ are principal

RV
>0

–bundles, and are disjoint for different k .

3 A trace formula for closed curves

Throughout this section, we let T be an ideal triangulation of †g;n , and let E and T

respectively be the set of edges and ideal triangles of T . Given the lengths coordinates
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.�; �/ 2RE
>0
� f˙1gT , the type-preserving representation �W �1.†g;n/! PSL.2;R/

can be reconstructed up to conjugation as follows. Suppose e is an edge of T , and
t1 and t2 are the two ideal triangles adjacent to e . Let e1 and e2 be the other two
edges of t1 and let e3 and e4 be the other two edges of t2 so that the cyclic orders
e 7! e1 7! e2 7! e and e 7! e3 7! e4 7! e coincide with the one induced from the
orientation of †g;n . Define the quantity X.e/ 2R>0 by

X.e/D
�.e2/�.e4/

�.e1/�.e3/
:

e2

t

e3

e1 e1

t

e3 e2

(a) (b)
Figure 2

Note that if � is discrete and faithful, then X.e/ is the shear parameter of the corre-
sponding hyperbolic structure at e . (See [1].) It is well known that each immersed
closed curve on †g;n is homotopic to a normal one that transversely intersects each
ideal triangle in simple arcs that connect different edges of the triangle. Let 
 be
an immersed oriented closed normal curve on †g;n . For each edge e intersecting

 , define

S.e/D

�
X.e/1=2 0

0 X.e/�1=2

�
:

For each ideal triangle t intersecting 
 , define

R.t/D

�
1 �.t/

0 1

�
if 
 makes a left turn in t (Figure 2(a)), and define

R.t/D

�
1 0

�.t/ 1

�
if 
 makes a right turn in t (Figure 2(b)).

Lemma 3.1 Let ei1
; : : : ; eim

be the edges and let tj1
; : : : ; tjm

be the ideal triangles of
T intersecting 
 in the cyclic order induced by the orientation of 
 so that eik

is the
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common edge of tjk�1
and tjk

for each k 2 f1; : : : ;mg. Then up to a conjugation by
an element of PSL.2;R/,

�.Œ
 �/D˙S.ei1
/R.tj1

/S.ei2
/R.tj2

/ � � �S.eim
/R.tjm

/:

Proof The proof is parallel to that of Lemma 3 in [3]. The idea is to keep track of the
image of the unit tangent vector @

@y
at i 2H2 under �.Œ
 �/. The contributions of each

edge e and of each ideal triangle t intersecting 
 to �.Œ
 �/ are respectively ˙S.e/

and ˙R.t/. See also [2, Exercise 8.5–8.7 and 10.14].

For each puncture v of †g;n , let 
v be the simple closed curve going counterclockwise
around v once. By Lemma 3.1, the image of 
v is up to conjugation

�.Œ
v �/D˙

�
1  v;�.�/

0 1

�
;

where  v;� is a rational function of � depending on � . Therefore, � is type-preserving
if and only if  v;�.�/¤ 0 for all punctures v . The following proposition gives a more
precise description of this rational function in Theorem 2.2.

Proposition 3.2 (Kashaev) Let .�; �/ 2RE
>0
�f˙1gT , let V be the set of punctures

of †g;n and let  � be the rational function defined by

 � D
Y
v2V

 v;�:

Then .�; �/ defines a type-preserving representation if and only if  �.�/¤ 0.

The following theorem provides a more direct way to calculate the absolute values of
the traces of closed curves using the �–lengths, which was first found by Sun and the
author. We include a proof here for the reader’s convenience. For each ideal triangle t

intersecting 
 , let e1 be the edge of t at which 
 enters, let e2 be the edge of t at
which 
 leaves and let e3 be the other edge of t . See Figure 2. Define

M.t/D

�
�.e1/ �.t/�.e3/

0 �.e2/

�
if 
 makes a left turn in t , and define

M.t/D

�
�.e2/ 0

�.t/�.e3/ �.e1/

�
if 
 makes a right turn in t .
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Theorem 3.3 For an immersed closed normal curve 
 on †g;n , let ei1
; : : : ; eim

be
the edges and let tj1

; : : : ; tjm
be the ideal triangles of T intersecting 
 in the cyclic

order following the orientation of 
 so that eik
is the common edge of tjk�1

and tjk

for each k 2 f1; : : : ;mg. Then

(3-1) jtr �.Œ
 �/j D
jtr.M.tj1

/ � � �M.tjm
//j

�.ei1
/ � � ��.eim

/
:

Proof For each ideal triangle t and an edge e of t , let e0 and e00 be the other two
edges of t so that the cyclic order e 7! e0 7! e00 7! e coincides with the one induced
by the orientation of †g;n . Define the matrix

S.t; e/D

"p
�.e00/=�.e0/ 0

0
p
�.e0/=�.e00/

#
:

Then

(3-2) S.eik
/D S.tjk�1

; eik
/S.tjk

; eik
/

for each k 2 f1; : : : ;mg, where as a convention tj1�1
D tjm

. A case by case calculation
shows that

(3-3) S.tjk
; eik

/R.tjk
/S.tjk

; eikC1
/D

M.tjk
/p

�.eik
/�.eikC1

/

for each k 2 f1; : : : ;mg, where as a convention eimC1
D ei1

. By Lemma 3.1, (3-2),
(3-3) and the fact that tr.AB/D tr.BA/ for any two matrices A and B , we have

jtr �.Œ
 �/j D jtr.S.ei1
/R.tj1

/ � � �S.eim
/R.tjm

//j

D jtr.S.tj1
; ei1

/R.tj1
/S.tj1

; ei2
/ � � �S.tjm

; eim
/R.tjm

/S.tjm
; ei1

//j

D
jtr.M.tj1

/ � � �M.tjm
//j

�.ei1
/ � � ��.eim

/
:

Remark 3.4 Equation (3-1) was first obtained by Roger and Yang [25] for decorated
hyperbolic surfaces, ie discrete and faithful decorated representations, using the skein
relations, where their formula includes both the traces of closed geodesics and the
�–lengths of geodesics arcs connecting the punctures. It is interesting to know whether
there is a similar formula for the �–lengths of arcs for the non-Fuchsian decorated
representations.

As a consequence of Theorem 3.3, we have the following theorem.
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Theorem 3.5 (1) If �W †g;n! PSL.2;R/ is a non-Fuchsian type-preserving rep-
resentation, there exists a Fuchsian type-preserving representation �0 such that

jtr �.Œ
 �/j6 jtr �0.Œ
 �/j

for each Œ
 � 2 �1.†g;n/, and the strict equality holds for at least one 
 .

(2) Conversely, for almost every Fuchsian type-preserving representation �0W †g;n!

PSL.2;R/ and for each k with jkj < 2g � 2C n and Mk.†g;n/ ¤ ∅, there
exists a type-preserving representation � with e.�/D k such that

jtr �.Œ
 �/j6 jtr �0.Œ
 �/j

for each Œ
 � 2 �1.†g;n/, and the strict equality holds for at least one 
 .

Proof For (1), by Theorem 2.1, there exists a �–admissible ideal triangulation T .
Choose arbitrarily a decoration d of � , and let .�0; d 0/ be the decorated representation
that has the same �–lengths of .�; d/ and has the positive signs for all the ideal triangles.
By (2-1) and Goldman’s result in [9], �0 is Fuchsian. Applying Equation (3-1) to
jtr �.Œ
 �/j and jtr �0.Œ
 �/j, we see that they have the same summands with different
coefficients ˙1, and the coefficients for the later are all positive. Since each summand
is a product of the �–lengths, which is positive, the inequality follows. Since � is
non-Fuchsian, by (2-1), there must be an ideal triangle t that has negative sign in
.�; d/. Therefore, if 
 intersects t , then some of the summands in the expression of
jtr �.Œ
 �/j has negative coefficients, and the inequality for 
 is strict.

For (2), choose arbitrarily an ideal triangulation T of †g;n , and let T be the set of
ideal triangles of T . By Theorems 2.1, 2.2 and 2.4, if Mk.†g;n/ ¤ ∅, then there
exists � 2 f˙1gT such that

P
t2T �.t/D 2k and the subset R.T ; �/ is homeomorphic

via the lengths coordinates to a full measure open subset �.T ; �/ of RE
>0

. For each
� 2 �.T ; �/, let .�; d/ be the decorated representation determined by .�; �/. Then
e.�/Dk . On the other hand, RE

>0
is identified with the decorated Teichmüller space via

the lengths coordinates, hence � determines a Fuchsian type-preserving representation
�0 . By the same argument in (1), the inequality holds for � and �0 , and is strict for 

intersecting the ideal triangles t with �.t/D�1.

Remark 3.6 It would be very interesting to know if Theorem 3.5(2) holds for every
Fuchsian type-preserving representation. This amounts to asking whether[

T ;�

�.T ; �/DRE
>0;

where the union is over all the ideal triangulations T of †g;n and all � that give the
right relative Euler class.
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4 Tetrahedral triangulations

A tetrahedral triangulation of the four-punctured sphere is an ideal triangulation of
†0;4 that is combinatorially equivalent to the boundary of an Euclidean tetrahedron
(Figure 3(a)). A pair of edges of a tetrahedral triangulation are called opposite if they
are opposite edges of the tetrahedron. Let v1; : : : ; v4 be the four punctures of †0;4 .
In the rest of this paper, for each tetrahedral triangulation T , we will let ti be the
unique ideal triangle of T disjoint from the puncture vi and let eij be the unique edge
of T connecting the punctures vi and vj . We respectively denote by x the pair of
opposite edges fe12; e34g, by y the pair fe13; e24g and by z the pair fe14; e23g. See
Figure 3(b).

v3

e13

v1

e12

v2

e24

v4

e34 e14 e23

(a)

v3
y v1

x

v2yv4

x
z z

(b)Figure 3

A nonperipheral simple closed curve on †0;4 is distinguished in a tetrahedral trian-
gulation T if it is disjoint from a pair of opposite edges of T and intersects each of
the other four edges at exactly one point. In each tetrahedral triangulation, there are
exactly three distinguished simple closed curves. We respectively denote by X , Y and
Z the distinguished simple closed curves disjoint from the pair of opposite edges x , y

and z . See Figure 4.

x x Y z z Z

X y

y

Figure 4

The curves X , Y and Z mutually intersect at exactly two points. On the other hand,
for each triple of simple closed curves that mutually intersect at two points, there is
a unique tetrahedral triangulation in which these three curves are distinguished. In
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particular, each nonperipheral simple closed curve on †0;4 is distinguished in some
tetrahedral triangulation. Note that being the X–, Y– or Z–curve is independent of
the choice of the tetrahedral triangulation, since, for example, the curve X always
separates fv1; v2g from fv3; v4g. In the rest of this paper, we will call a simple closed
curve an X– (resp. Y– or Z–) curve if it is disjoint from the pair of opposite edges x

(resp. y or z ) of some tetrahedral triangulation. In this way, we get a tricoloring of the
set of nonperipheral simple closed curves on †0;4 .

A simultaneous diagonal switch at a pair of opposite edges of T is an operation that
simultaneously does diagonal switches at this pair of edges. See Figure 5(a). Denote
respectively by Sx , Sy and Sz the simultaneous diagonal switches at the pair of
opposite edges x , y and z . Then Sx (reps. Sy and Sz ) changes the X– (resp. Y–
and Z–) curve and leaves the other two distinguished simple closed curves unchanged.
See Figure 5(b).

✁

z z z0 z0 z z z0 z0
Sz Z

Sz Z0

(a) (b)Figure 5

The relationship between tetrahedral triangulations, simultaneous diagonal switches
and nonperipheral simple closed curves can be described by (the dual of) the Farey
diagram. Recall that the Farey diagram F is an ideal triangulation of H2 whose vertices
are the extended rational numbers Q[f1g � @H2 , and the dual Ferey diagram F�

is a countably infinite trivalent tree properly embedded in H2 . Each vertex of F
corresponds to a nonperipheral simple closed curve on †0;4 , each edge of F connects
two vertices corresponding to two simple closed curves that intersect at exactly two
points and each ideal triangle of F corresponds to a triple of simple closed curves
mutually intersecting at two points. (See [19].) Therefore, each vertex of the dual graph
F� corresponds to a tetrahedral triangulation of †0;4 , each edge of F� corresponds to
a simultaneous diagonal switch and each connected component of H2nF� corresponds
to a nonperipheral simple closed curves on †0;4 . See Figure 6. Since F� is connected,
any tetrahedral triangulation can be obtained from another by doing a finitely sequence
of simultaneous diagonal switches.

We close up this section by showing the relationship between simultaneous diagonal
switches and the mapping classes of †0;4 .

Geometry & Topology, Volume 20 (2016)



On type-preserving representations of the four-punctured sphere group 1229

✁

✁

Z
T T 0

Sz

Z0 Z

T

Sz

T 0

Z0

Figure 6

Proposition 4.1 A composition of an even number of simultaneous diagonal switches
determines an element of Mod.†0;4/. Conversely, any element of Mod.†0;4/ is
determined by a composition of an even number of simultaneous diagonal switches.

Proof Let T be a tetrahedra triangulation of †0;4 . We write � D S 0S if � is the
self-diffeomorphism of †0;4 such that the tetrahedral triangulation �.T / is obtained
from T by doing the simultaneous diagonal switch S followed by the simultaneous
diagonal switch S 0 . Then DX D SzSy and DY D SxSz . See Figure 7.

X Sy Sz

Sz Sx

DX

DY

Y

Figure 7

Similarly, we have SySx D DZ , SySz D D�1
X

, SxSz D D�1
Y

and SxSy D D�1
X

.
Thus, any composition of an even number of simultaneous diagonal switches determines
an element of Mod.†0;4/.
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For the converse statement, we define a cyclic order on the set fx;y; zg of pairs of
opposite edges of T as follows. Since each puncture v of †0;4 is adjacent to three
edges e , e0 and e00 with e 2 x , e0 2 y and e00 2 z , the orientation of †0;4 induces a
cyclic order on the set fe; e0; e00g around v , inducing a cyclic order on the set fx;y; zg.
It is easy to check that this cyclic order is independent of the choose of v , hence is well
defined. We call the sign of a tetrahedral triangulation T positive if the cyclic order
x 7! y 7! z 7! x coincides with the one induced from the orientation, and negative
if otherwise. It easy to see that a simultaneous diagonal switch changes the sign of
T , and an orientation preserving self-diffeomorphism of †0;4 preserves the sign of
T . Since the dual Farey diagram F� is a connected tree, for any self-diffeomorphism
� of †0;4 , up to redundancy there is a unique path of F� connecting the vertices
T and �.T /. Since T and �.T / have the same sign, the path consists of an even
number of edges, corresponding to an even number of simultaneous diagonal switches
S1; : : : ;S2m . Then � D �k ı � � � ı�1 , where �k D S2kS2k�1 .

5 Bowditch’s question

Let � be a type-preserving representation of �1.†0;4/ and let d be a decoration of � .
Suppose T is a �–admissible tetrahedral triangulation of †0;4 , E and T respectively
are the sets of edges and ideal triangles of T , and .�; �/2RE

>0
�f˙1gT are the lengths

coordinates of Œ.�; d/� 2Md
˙1
.†0;4/. Let v1; : : : ; v4 be the punters of †0;4 , let ti be

the ideal triangle of T disjoint from vi and let eij be the edge of T connecting the
punctures vi and vj . Define the quantities �.x/D �.e12/�.e34/, �.y/D �.e13/�.e24/

and �.z/D �.e14/�.e23/. The quantities �.x/, �.y/ and �.z/ will play a central role
in the rest of this paper.

5.1 A proof of Theorem 1.1

Suppose e.�/ D 1. Then by (2-1), there is exactly one ideal triangle, say t1 , such
that �.t1/D�1 and �.ti/D 1 for i ¤ 1. As a direct consequence of Lemma 3.1 and
Theorem 3.3, we have the following lemmas.

Lemma 5.1 Let 
i be the simple closed curve going counterclockwise around the
puncture vi once. Then up to conjugation, the �–image of the peripheral element
Œ
1� 2 �1.†0;4/ is

˙

�
1 �.x/C�.y/C�.z/

0 1

�
;
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and the �–image of the other peripheral elements Œ
2�, Œ
3� and Œ
4� are respectively

˙

�
1 �.y/C�.z/��.x/

0 1

�
;

˙

�
1 �.x/C�.z/��.y/

0 1

�
;

˙

�
1 �.x/C�.y/��.z/

0 1

�
:

Lemma 5.2 (1) The absolute values of the traces of the distinguished simple closed
curves X , Y and Z of T are

(5-1)

jtr �.ŒX �/j D
j�.y/2C�.z/2��.x/2j

�.y/�.z/
;

jtr �.ŒY �/j D
j�.x/2C�.z/2��.y/2j

�.x/�.z/
;

jtr �.ŒZ�/j D
j�.x/2C�.y/2��.z/2j

�.x/�.y/
:

(2) The right-hand sides of the equations in (5-1) are strictly greater than 2 if and
only if �.x/, �.y/ and �.z/ satisfy one of the inequalities

(5-2)

�.x/ > �.y/C�.z/;

�.y/ > �.x/C�.z/;

�.z/ > �.x/C�.y/:

Note that reversing the directions of the inequalities in (5-2), we get the triangular
inequality. The idea of the proof of (2) is that if we regard the quantities �.x/, �.y/
and �.z/ as the edge lengths of a Euclidean triangle, then the right-hand sides of (5-1)
are twice of the cosine of the corresponding inner angles. The next lemma shows the
rule of the change of the quantities �.x/, �.y/ and �.z/ under a simultaneous diagonal
switch.

Lemma 5.3 Suppose T 0 is a tetrahedral triangulation of †0;4 . If T 0 is �–admissible,
then let �0 be the �–lengths of .�; d/ in T 0 , and let �0.x/, �0.y/ and �0.z/ be the
corresponding quantities.

(1) If T 0 is obtained from T by doing Sx , then T 0 is �–admissible if and only if
�.y/¤ �.z/. When T 0 is �–admissible, �0.y/D �.y/, �0.z/D �.z/ and

�0.x/D
j�.y/2��.z/2j

�.x/
:
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(2) If T 0 is obtained from T by doing Sy , then T 0 is �–admissible if and only if
�.x/¤ �.z/. When T 0 is �–admissible, �0.x/D �.x/, �0.z/D �.z/ and

�0.y/D
j�.z/2��.x/2j

�.y/
:

(3) If T 0 is obtained from T by doing Sz , then T 0 is �–admissible if and only if
�.x/¤ �.y/. When T 0 is �–admissible, �0.x/D �.x/, �0.y/D �.y/ and

�0.z/D
j�.x/2��.y/2j

�.z/
:

Proof For (1), we have that the edge e12 is adjacent to the ideal triangle t3 and t4 with
�.t3/D �.t4/ and e34 is adjacent to the ideal triangles t1 and t2 with �.t1/¤ �.t2/. Let
e0

34
and e0

12
respectively be the edges of T 0 obtained from diagonal switches at e12 and

e34 , ie e0
12

is the edge of T 0 connecting the punctures v1 and v2 and e0
34

is the edge
of T 0 connecting the punctures v3 and v4 . By Proposition 2.3, T 0 is �–admissible if
and only if �.e13/�.e24/¤ �.e14/�.e23/, ie �.y/¤ �.z/. By Proposition 2.3 again,
if T 0 is �–admissible, then �0.eij /D �.eij / for fi; j g ¤ f1; 2g or f3; 4g, and

�0.e012/D
j�.e13/�.e24/��.e14/�.e23/j

�.e12/
;

�0.e034/D
�.e13/�.e24/C�.e14/�.e23/

�.e34/
:

Therefore, �0.y/D �.y/, �0.z/D �.z/ and

�0.x/D �0.e012/�
0.e034/D

j�.y/2��.z/2j

�.x/
:

The proofs of (2) and (3) are the similar.

A consequence of Lemma 5.3 is that the inequalities in (5-2) are persevered by simul-
taneous diagonal switches.

Lemma 5.4 Suppose T 0 is a �–admissible tetrahedral triangulation of †0;4 obtained
from T by doing a simultaneous diagonal switch. Let �0 be the �–lengths of .�; d/ in
T 0 , and let �0.x/, �0.y/ and �0.z/ be the corresponding quantities. Then �0.x/, �0.y/
and �0.z/ satisfy one of the inequalities in (5-2) if and only if �.x/, �.y/ and �.z/ do.

Proof Without lost of generality, we assume that T 0 is obtained from T by doing Sx .
If �.x/ > �.y/C�.z/, then by Lemma 5.3,

�0.x/D
j�.y/2��.z/2j

�.x/
<
j�.y/2��.z/2j

�.y/C�.z/
D j�.y/��.z/j D j�0.y/��0.z/j:
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Therefore, either �0.y/ > �0.x/C�0.z/ or �0.z/ > �0.x/C�0.y/. On the other hand,
if either �.y/ > �.x/C�.z/ or �.z/ > �.x/C�.y/, ie �.x/ < j�.y/��.z/j, then by
Lemma 5.3,

�0.x/D
j�.y/2��.z/2j

�.x/
>
j�.y/2��.z/2j

j�.y/��.z/j
D �.y/C�.z/D �0.y/C�0.z/:

Another consequence of Lemma 5.3 is the following.

Proposition 5.5 There are uncountably many Œ�� 2 M˙1.†0;4/ such that all the
tetrahedral triangulations of †0;4 are �–admissible.

Proof Suppose � is a type-preserving representation of �1.†0;4/ with e.�/ D 1,
and d is a decoration of � . Let T be a �–admissible tetrahedral triangulation of
†0;4 and let .�; �/ be the lengths coordinates of .�; d/ in T . Recall that there is
a one-to-one correspondence between the tetrahedral triangulations of †0;4 and the
vertices of the dual Farey diagram F� , which is a countably infinity tree. Therefore,
for each tetrahedral triangulation T 0 , there is up to redundancy a unique path in F�

connecting T and T 0 , which corresponds to a sequence fSig
n
iD1

of simultaneous
diagonal switches. Let T0 D T , and for each i 2 f1; : : : ; ng, let Ti be the tetrahedral
triangulation obtained from Ti�1 by doing Si . Suppose Ti is �–admissible for some
i 2 f1; : : : ; ng, and suppose �i is the �–lengths of .�; d/ in Ti . Then by Lemma 5.3,
TiC1 is �–admissible if and only if the Laurent polynomial

�i.y/
2��i.z/

2

�i.x/
¤ 0:

Inducting on i shows that T 0 D Tn is �–admissible if and only if a certain Laurent
polynomial LT 0.�.x/; �.y/; �.z// ¤ 0. The set of zeros ZT 0 of LT 0 is a Zariski-
closed proper subset of R3

>0
. In particular, it has Lebesgue measure 0. Since F� is a

countably infinite tree, there are in total countably many tetrahedral triangulations T
of †0;4 , and hence m.

S
T ZT /D 0. Therefore, the set C D R3

>0
n
S

T ZT has full
measure in R3

>0
. In particular, C contains uncountable many points.

Now each .a; b; c/ 2 C with aC b ¤ c , aC c ¤ b and bC c ¤ a determines a type-
preserving representation � as follows. Take a tetrahedral triangulation T of †0;4 ,
and let E and T respectively be the set of edges and ideal triangles of T . Choose
� 2 f˙1gT so that

P
t2T �.t/D 2, and define � 2 RE

>0
by �.e12/D �.e34/D a1=2 ,

�.e13/ D �.e24/ D b1=2 and �.e14/ D �.e23/ D c1=2 . Then �.x/ D a, �.y/ D b

and �.z//D c . By Theorem 2.2, Proposition 3.2 and Lemma 5.1, .�; �/ determines
a decorated representation .�; d/ up to conjugation. In particular, by Lemma 5.1,
� is type-preserving. By (2-1), the relative Euler class e.�/ D 1. Finally, since
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.�.x/; �.y/; �.z// 2 C , the Laurent polynomial LT 0.�.x/; �.y/; �.z// ¤ 0 for all
tetrahedral triangulation T 0 . As a consequence, all the tetrahedral triangulations are
�–admissible.

By symmetry, there are also uncountably many type-preserving representations � with
e.�/D�1 such that all the tetrahedral triangulations of †0;4 are �–admissible.

Proof of Theorem 1.1 Let T be a tetrahedral triangulation of †0;4 and let C be
the full-measure subset of R3

>0
constructed in the proof of Proposition 5.5. Then

each .a; b; c/ 2 C satisfying one of the following identities a > b C c , b > aC c

or c > aC b determines a decorated representation .�; d/ with e.�/ D ˙1 such
that all the tetrahedral triangulations of †0;4 are �–admissible. Since elementary
representation have relative Euler class 0 and e.�/ D ˙1, � is nonelementary. For
each tetrahedral triangulation T 0 , let �0 be the �–lengths of .�; d/ in T 0 . Since T 0

can by obtained from T by doing a sequence of simultaneous diagonal switches, by
Lemma 5.4, the quantities �0.x/, �0.y/ and �0.z/ satisfy one of the inequalities in
(5-2). By Lemma 5.2, the traces of the distinguished simple closed curves X , Y and Z

in T 0 are strictly greater than 2 in the absolute value. Since each simple closed curve

 is distinguished in some tetrahedral triangulation T 0 , we have jtr �.Œ
 �/j> 2.

5.2 A proof of Theorem 1.2

Suppose e.�/D 0. Then by (2-1), there are exactly two ideal triangles that have the
positive sign and two that have the negative sign. Without loss of generality, we assume
that �.t1/D �.t2/D�1 and �.t3/D �.t4/D 1. Note that under this assumption, the
edges e12 and e34 in the pair x are adjacent to ideal triangles that have the same sign,
and as will be seen later, the X–curves will play a different role than the Y– and Z–
curves do. As a direct consequence of Lemma 3.1, we have:

Lemma 5.6 Let 
i be the simple closed going counterclockwise around the puncture
vi . Then up to conjugation, the �–image of the peripheral elements Œ
1� and Œ
2� of
�1.†0;4/ are

˙

�
1 �.y/C�.z/��.x/

0 1

�
;

and the �–image of the other two peripheral elements Œ
3� and Œ
4� are

˙

�
1 �.x/��.y/��.z/

0 1

�
:
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Lemma 5.7 (1) The absolute values of the traces of the distinguished simple closed
curves X , Y and Z of T are

(5-3)

jtr �.ŒX �/j D
j�.x/2C�.y/2C�.z/2� 2�.x/�.y/� 2�.x/�.z/j

�.y/�.z/
;

jtr �.ŒY �/j D
�.x/2C�.y/2C�.z/2C 2�.y/�.z/� 2�.x/�.y/

�.x/�.z/
;

jtr �.ŒZ�/j D
�.x/2C�.y/2C�.z/2C 2�.y/�.z/� 2�.x/�.z/

�.x/�.y/
:

(2) The right-hand sides of the last two equations in (5-3) are always strictly greater
than 2, whereas the right-hand side of the first equation is less than or equal to 2

if and only if �.x/, �.y/ and �.z/ satisfy the inequalities

(5-4)

p
�.x/6

p
�.y/C

p
�.z/;p

�.y/6
p
�.x/C

p
�.z/;p

�.z/6
p
�.x/C

p
�.y/:

Proof (1) is a direct consequence of Theorem 3.3. For (2), since � is type-preserving,
by Theorem 2.2, Proposition 3.2 and Lemma 5.6, �.x/��.y/��.z/¤ 0. Therefore,
the right-hand side of the second equation of (5-3) equals

.�.x/��.y/��.z//2

�.x/�.z/
C 2> 2;

and the right-hand side of the third equation equals

.�.x/��.y/��.z//2

�.x/�.y/
C 2> 2:

In the case that �.x/2C�.y/2C�.z/2� 2�.x/�.y/� 2�.x/�.z/> 0, the right-hand
side of the first equation of (5-3) equals

.�.x/��.y/��.z//2

�.y/�.z/
� 2> �2:

The quantity also equals

2� .�.x/1=2C�.y/1=2C�.z/1=2/.�.x/1=2C�.y/1=2��.z/1=2/

� .�.x/1=2C�.z/1=2��.y/1=2/.�.y/1=2C�.z/1=2��.x/1=2/=.�.y/�.z//;

which is less than or equal to 2 if and only if the equalities in (5-4) are satisfied. For the
case that �.x/2C�.y/2C�.z/2�2�.x/�.y/�2�.x/�.z/6 0, the proof is similar.

Geometry & Topology, Volume 20 (2016)



1236 Tian Yang

The next lemma shows the rule of the change of the quantities �.x/, �.y/ and �.z/
under a simultaneous diagonal switch.

Lemma 5.8 Suppose T 0 is a tetrahedral triangulation of †0;4 . If T 0 is �–admissible,
then let �0 be the �–lengths of.�; d/ in T 0 , and let �0.x/, �0.y/ and �0.z/ be the
corresponding quantities.

(1) If T 0 is obtained from T by doing Sx , then T 0 is �–admissible. In this case,
�0.y/D �.y/, �0.z/D �.z/ and

�0.x/D
.�.y/C�.z//2

�.x/
:

(2) If T 0 is obtained from T by doing Sy , then T 0 is �–admissible if and only if
�.x/¤ �.z/. In the case that T 0 is �–admissible, �0.x/D �.x/, �0.z/D �.z/
and

�0.y/D
.�.z/��.x//2

�.y/
:

(3) If T 0 is obtained from T by doing Sz , then T 0 is �–admissible if and only if
�.x/¤ �.z/. In the case that T is �–admissible, �0.x/D �.x/, �0.y/D �.y/
and

�0.z/D
.�.x/��.y//2

�.z/
:

Proof This is a consequence of Proposition 2.3, and the proof is similar to that of
Lemma 5.3.

Proof of Theorem 1.2 Let � be a type-preserving representation of �1.†0;4/ with
relative Euler class e.�/D 0, and choose arbitrarily a decoration d of � . Let T be a
tetrahedral triangulation of †0;4 . If T is not �–admissible, then there is an edge e of T
that is not �–admissible, and the element of �1.†0;4/ represented by the distinguished
simple closed curve in T disjoint from e is sent by � to a parabolic element of
PSL.2;R/. If T is �–admissible, then we let .�; �/ be the lengths coordinates of
.�; d/ in T . If the quantities �.x/, �.y/ and �.z/ satisfy the inequalities in (5-4),
then by Lemma 5.7, the element of �1.†0;4/ represented by one of the distinguished
simple closed curves X , Y and Z is sent by � to either an elliptic or a parabolic
element of PSL.2;R/. Therefore, to prove the theorem, it suffices to find a tetrahedral
triangulation T 0 of †0;4 such that either T 0 is not �–admissible or T 0 is �–admissible
with the quantities �0.x/, �0.y/ and �0.z/ satisfying the inequalities in (5-4). Our
strategy of finding T 0 is to construct a sequence of tetrahedral triangulations fTng

N
nD1

with TN D T 0 by the following algorithm:
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Trace reduction algorithm Let T0D T and suppose that Tn is obtained. If Tn is not
�–admissible, then we stop. If Tn is �–admissible, then we let .�n; �n/ be the lengths
coordinates of .�; d/ in Tn . If �n.x/, �n.y/ and �n.z/ satisfy the inequalities in (5-4),
then we stop. If otherwise, then there is a unique maximum among �n.x/, �n.y/ and
�n.z/, since other wise the inequalities (5-4) are satisfied. Suppose feij ; eklg is the
pair of opposite edges of Tn such that �.eij /�.ekl/ equals the maximum of �n.x/,
�n.y/ and �n.z/. Then we let TnC1 be the tetrahedral triangulation obtained from Tn

by doing a simultaneous diagonal switch at eij and ekl .

By Lemma 5.9 below, the algorithm stops at some TN .

Lemma 5.9 The trace reduction algorithm stops in finitely many steps.

Proof For each n, let ti be the ideal triangle of Tn disjoint from the puncture vi ,
and let eij be the edge of Tn connecting the punctures vi and vj . Without loss of
generality, we assume in T that �.t1/D �.t2/D�1 and �.t3/D �.t4/D 1. Then by
Proposition 2.3, �n.t1/D �n.t2/ and �n.t3/D �n.t4/ for each Tn . For each n, we let

an D
�n.x/

�n.x/C�n.y/C�.z/
;

bn D
�n.y/

�n.x/C�n.y/C�n.z/
;

cn D
�n.z/

�n.x/C�n.y/C�n.z/
;

and let

kn Dmaxf
p

an�

p
bn�
p

cn;
p

bn�
p

an�
p

cn;
p

cn�
p

an�

p
bng:

Then �n.x/, �n.y/ and �n.z/ satisfy the inequalities in (5-4) if and only if kn 6 0.

Assume that the sequence fTng is infinite, ie kn > 0 for all n> 0. Then we will find a
contradiction by the following three steps. In Step I we show that kn is decreasing in
n by considering two mutually complementary cases, where in one of them (Case 1)
the gap kn� knC1 is bounded below by the minimum of an; bn and cn . In Step II we
show that there must be a infinite subsequence fTni

g of fTng such that each Tni
is of

Case 1 of Step I, and in Step III we show that for i large enough, minfani
; bni

; cni
g is

increasing. The three steps together imply that kn < 0 for some n large enough, which
is a contradiction.

Step I We show that kn is decreasing in n. There are the following two cases to
verify.
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Case 1
p

an�
p

bn�
p

cn > 0. In this case, by Lemma 5.8,

(5-5) .anC1; bnC1; cnC1/D

�
bnC cn;

anbn

bnC cn
;

ancn

bnC cn

�
:

Without loss of generality, we assume that bn > cn . Then bnC1 is the largest among
anC1 , bnC1 and cnC1 . By a direct calculation and that

p
an >

p
bnC

p
cn , we have

kn� knC1 D .
p

an�

p
bn�
p

cn/� .
p

bnC1�
p

anC1�
p

cnC1/ >
2cn

p
bnC cn

> 0:

Moreover, since anC bnC cn D 1 and an > 0, we have
p

bnC cn < 1, and hence
kn� knC1 > 2cn . Therefore, we have

(5-6) kn� knC1 > 2 minfan; bn; cng:

Case 2 One of
p

bn�
p

an�
p

cn and
p

cn�
p

an�
p

bn is strictly greater than 0.
In this case, we without loss of generality assume that

p
bn�
p

an�
p

cn > 0. Then
by Lemma 5.8,

(5-7) .anC1; bnC1; cnC1/D

�
anbn

anbnC bncnC .an� cn/2
;

.an� cn/
2

anbnC bncnC .an� cn/2
;

bncn

anbnC bncnC .an� cn/2

�
:

Without loss of generality, we assume that an > cn . Then anC1 is the largest among
anC1 , bnC1 and cnC1 . By a direct calculation and that bn D 1� an� cn , we have

knC1

kn
D

p
anC1�

p
bnC1�

p
cnC1

p
bn�
p

an�
p

cn

D

s
anC cn� 2

p
ancn

anC cn� 4ancn
:

From
p

bn >
p

anC
p

cn and anC bnC cn D 1, we have an <
1
2

, cn <
1
2

, and hence
2
p

ancn > 4ancn . As a consequence, knC1=kn < 1.

Step II We show that there is an infinite subsequence fTni
g of fTng such that

.ani
; bni

; cni
/ is in Case 1 of Step I. We use contradiction. For each .an; bn; cn/

in Case 2 of Step I, let An D maxf�n.y/; �n.z/g and let Bn D minf�n.y/; �n.z/g.
Then

p
An >

p
BnC

p
�n.x/. By Lemma 5.8, .anC1; bnC1; cnC1/ is in Case 1 of

Step I if and only if �n.x/ > Bn . Now suppose that there is an m 2 N such that
.am; bm; cm/ is in Case 2 of Step I and Bn>�n.x/ for all n > m. Then by Lemma 5.8,
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we have �nC1.x/D �n.x/ andp
BnC1 D

Bn��n.x/
p

An

<
Bn��n.x/
p

BnC
p
�n.x/

D
p

Bn�
p
�n.x/

for n > m. By induction, �n.x/D �m.x/ and
p

Bn <
p

Bm � .n�m/
p
�m.x/ for

all n>m, which is impossible.

Step III We show that for i large enough, minfani
; bni

; cni
g is increasing. In Figure 8

below, we let � D f.a; b; c/ 2 R3
>0
j aC bC c D 1g, and for each k let Ck be the

intersection of � with the set

f.a; b; c/ 2R3
>0 jmaxf

p
a�
p

b�
p

c;
p

b�
p

a�
p

c;
p

c �
p

a�
p

bg D kg:

A direct calculation shows that the Ck are parts of the concentric circles centered
at .1

3
; 1

3
; 1

3
/ with radii increasing in k , and that C0 is the inscribed circle of �. In

Figure 8(a), let Q be the intersection of � and the set f.a; b; c/2R3
>0
j .bCc/2D acg.

Then Q is a quadratic curve in � going through the points .1; 0; 0/ and .1
2
; 0; 1

2
/. Let

the line segment P be the intersection of � and the plane f.a; b; c/ 2 R3 j a D cg.
Then by (5-5), if .an; bn; cn/ is on Q with bn > cn , then .anC1; bnC1; cnC1/ is on P .
Denote by H the line segment connecting .1

2
; 1

2
; 0/ and .1

2
; 0; 1

2
/, and by L the line

segment connecting .1; 0; 0/ and .0; 1; 0/. Let D be the region of � bounded by Q,
H and L, and let E be the region in � bounded by P , H and L. In Figure 8(b), let
p be the intersection of Q and Ck0

, let � be the third coordinate of p , let L� be the
intersection of � and the plane f.a; b; c/ 2R3 j c D �g, and let F be the region in �
bounded by Ck0

, L� , H and L. Note that F is a subset of D .

.1; 0; 0/

.1
2
; 0; 1

2
/ .1

2
; 1

2
; 0/

.0; 0; 1/ .0; 1; 0/

C0

Q

D

H

P
E

L

(a)

p
Ck0

F

H

L

L�
(b)Figure 8

Consider the infinite subsequence fTni
g guaranteed by Step II such that .ani

; bni
; cni

/

is in Case 1 of Step I. By (5-6), there exists an i0 such that minfbni
; cni
g< � for all

i > i0 , since otherwise kniC1 < 0 for i large enough, and the algorithm stops. Without
loss of generality, we assume that bni0

> cni0
, and we have the following two claims.
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Claim 1 If .an; bn; cn/2D and bn> cn , then .anC1; bnC1; cnC1/2E , bnC1> cnC1

and
minfanC1; bnC1; cnC1g>minfan; bn; cng:

Indeed, in this case, cn D minfan; bn; cng. By (5-5), .anC1; bnC1; cnC1/ 2 E and
cnC1 > cn . Furthermore, we have bnC1 > cnC1 , since otherwise .anC1; bnC1; cnC1/

would be in the disk bounded by the circle C0 , ie knC1 < 0 and the algorithm stops.
Therefore, cnC1 DminfanC1; bnC1; cnC1g and

minfanC1; bnC1; cnC1g>minfan; bn; cng:

Claim 2 For n> n0 , if .an; bn; cn/ 2E and bn > cn , then .anC1; bnC1; cnC1/ 2D ,
bnC1 > cnC1 and

minfanC1; bnC1; cnC1g>minfan; bn; cng:

Indeed, in this case, cnDminfan; bn; cng. By (5-7), .anC1; bnC1; cnC1/ is in the trian-
gle above H , bnC1> cnC1 and cnC1> cn . Therefore, cnC1DminfanC1; bnC1; cnC1g

and minfanC1; bnC1; cnC1g>minfan; bn; cng. Furthermore, since n> ni0
, we have

cnC1<� , and by Step I, we have knC1< k0 . As a consequence, .anC1; bnC1; cnC1/2

F �D . Since the intersection .2
3
; 1

6
; 1

6
/ of the quadratic curve Q and the circle C0 lies

on the line determined by bD c , F lies on the right half of �, and hence bnC1> cnC1 .

Since kni0
<k0 and by assumption bni0

>cni0
and cni0

<� , we have .ani0
; bni0

; cni0
/2

F �D . By induction and Claims 1 and 2, we have for all m > 0 that

.ani0
C2m; bni0

C2m; cni0
C2m/ 2D

with bni0
C2m > cni0

C2m and

.ani0
C2mC1; bni0

C2mC1; cni0
C2mC1/ 2E

with bni0
C2mC1 > cni0

C2mC1 , and hence for n> ni0
have

minfanC1; bnC1; cnC1g>minfan; bn; cng:

Similar to the relative Euler class ˙1 case, we have this:

Proposition 5.10 There are uncountably many Œ�� 2 M0.†0;4/ such that all the
tetrahedral triangulations of †0;4 are �–admissible. For each such � , there is a simple
closed curve 
 on †0;4 such that �.Œ
 �/ is an elliptic element in PSL.2;R/.

Proof Since the functions in Lemma 5.8 are rational in �.x/, �.y/ and �.z/, the
argument in the proof of Proposition 5.5 applies here and proves the first part. The
second part is a result of the trace reduction algorithm.
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6 Connected components of M.†0;4/

We describe the connected component of the character space M.†0;4/ in this section.
Recall that for a quadruple s of positive and negative signs, Ms

k
.†0;4/ is the space of

conjugacy classes of type-preserving representations with relative Euler class k and
signs of the punctures s . Let V D fv1; : : : ; v4g be the set of punctures of †0;4 . Then
Theorem 1.3 is equivalent to the following theorem.

Theorem 6.1 (1) For fi; j ; k; lg D f1; 2; 3; 4g, let sij 2 f˙1gV be defined by
sij .vi/D sij .vj /D�1 and sij .vk/D sij .vl/DC1. Then

M0.†0;4/D
a

fi;jg�f1;:::;4g

Msij

0
.†0;4/:

(2) For i 2 f1; : : : ; 4g, let si 2 f˙1gV be defined by si.vi/D�1 and si.vj /DC1

for j ¤ i , and let sC 2 f˙1gV be defined by sC.vi/D 1 for all i 2 f1; : : : ; 4g.
Then

M1.†0;4/D

4a
iD1

Msi

1
.†0;4/tM

sC
1
.†0;4/:

(3) For i 2 f1; : : : ; 4g, let s�i 2 f˙1gV be defined by s�i.vi/DC1 and s�i.vj /D

�1 for j ¤ i , and let s� 2 f˙1gV be defined by s�.vi/ D �1 for all i 2

f1; : : : ; 4g. Then

M�1.†0;4/D

4a
iD1

Ms�i

�1
.†0;4/tMs�

�1
.†0;4/:

(4) Msij

0
.†0;4/, M

si

1
.†0;4/, M

sC
1
.†0;4/, M

s�i

�1
.†0;4/ and Ms�

�1
.†0;4/ are con-

nected.

Let T be a tetrahedral triangulation of †0;4 . Recall that MT .†0;4/ is the space of
conjugacy classes of type-preserving representations � such that T is �–admissible.
By Theorem 2.1, MT .†0;4/ is a dense and open subset of M.†0;4/. Let E and
T respectively be the sets of edges and ideal triangles of T , let ti 2 T be the ideal
triangle disjoint from the puncture vi and let eij 2 E be the edge connecting the
punctures vi and vj . For � 2 RE

>0
, let �.x/ D �.e12/�.e34/, �.y/ D �.e13/�.e24/

and �.z/ D �.e14/�.e23/. We first show that the quantities �.x/, �.y/ and �.z/

parametrize the components of MT .†0;4/.

Lemma 6.2 Let RE
>0

be with the principal RV
>0

–bundle structure given by

.� ��/.eij /D �.vi/�.eij /�.vj /;
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and let R3
>0

be with the principal R>0 –bundle structure defined by

r � .a; b; c/D .ra; rb; rc/:

Then the map �W RE
>0
! R3

>0
given by .�.e12/; : : : ; �.e34// 7! .�.x/; �.y/; �.z//

induces a diffeomorphism ��W RE
>0
=RV

>0
!R3

>0
=R>0 .

Proof Since �.� ��/D
Q4

iD1 �.vi/ ��.�/, �� is well defined, and since

�.a1=2; b1=2; c1=2; c1=2; b1=2; a1=2/D .a; b; c/

for all .a; b; c/ 2R3
>0

, �� is surjective. For the injectivity, we suppose that �.�0/D
r ��.�/. Let

�i.�/D
Y
j¤i

�.eij /
2
Y

j ;k¤i

�.ejk/

and let �.vi/D r1=2�i.�
0/1=6=�i.�/

1=6 . Then

�0.eij /D �.vi/�.eij /�.vj /:

Therefore, �� is injective. The differentiability of �� and .��/�1 follows from the
definition of � .

As a consequence of Theorem 2.2, and Lemmas 5.1, 5.6 and 6.2, we have:

Corollary 6.3 Let T be a tetrahedral triangulation of †0;4 with the set of ideal
triangles T . Then

MT .†0;4/Š
a

�2f˙1gT

�.T ; �/;

where each �.T ; �/ is a subset of �D f.a; b; c/ 2 R3
>0
j aC bC c D 1g defined as

follows.

(1) For i 2 f1; : : : ; 4g, let �i 2 f˙1gT be given by �i.ti/D �1 and �i.tj /D 1 for
j ¤ i , and let ��i 2 f˙1gT be given by ��i.ti/D 1 and ��i.tj /D�1 for j ¤ i .
Then

�.T ; �i/D�.T ; ��i/D f.a; b; c/ 2� j a¤ bC c; b ¤ aC c and c ¤ aC bg:

(2) For fi; j ; k; lg D f1; : : : ; 4g, let �ij 2 f˙1gT be given by �ij .ti/D �ij .tj /D�1

and �ij .tk/D �ij .tl/D 1. Then

�.T ; �12/D�.T ; �34/D f.a; b; c/ 2� j a¤ bC cg;

�.T ; �13/D�.T ; �24/D f.a; b; c/ 2� j b ¤ aC cg;

�.T ; �14/D�.T ; �23/D f.a; b; c/ 2� j c ¤ aC bg:
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Proof of Theorem 6.1 Suppose s is a quadruple of positive and negative signs and
k 2 f1; 0;�1g. Let T be a tetrahedral triangulation of †0;4 . Since MT .†0;4/ is dense
and open in M.†0;4/, Ms

k
.†0;4/¤ ∅ if and only if Ms

k
.†0;4/\MT .†0;4/¤ ∅.

For (1), by Lemma 5.6, the only possibility for MT .†0;4/\Ms
0
.†0;4/¤∅ is that

s D sij for some fi; j g � f1; : : : ; 4g. For (2), by Lemma 5.1, the only possibility for
MT .†0;4/\Ms

1
.†0;4/¤∅ is that either sD sC , in which case �.x/, �.y/ and �.z/

satisfy the triangular inequality, or s D si for some i 2 f1; : : : ; 4g, in which case �.x/,
�.y/ and �.z/ satisfy one of the inequalities in (5-2). The proof of (3) is parallel to
that of (2).

For (4), by symmetry, it suffices to prove the connectedness of Ms12

0
.†0;4/, M

s1

1
.†0;4/

and MsC
1
.†0;4/. We consider the following subsets of �. Let �x.T ; �/ (resp.

�y.T ; �/ and �z.T ; �/) be the set of points .a; b; c/ 2� such that a > bC c (resp.
b > aC c and c > aC b ), let �c

x.T ; �/ (resp. �c
y.T ; �/ and �c

z.T ; �/) be the set
of points .a; b; c/ 2 � such that a < b C c (resp. b < aC c and c < aC b ) and
let �c.T ; �/ D �c

x.T ; �/ \�c
y.T ; �/ \�c

z.T ; �/. See Figure 9. By Theorem 2.2,
Lemma 5.1, Lemma 5.6 and Corollary 6.3, we have via the lengths coordinates that:

�x

�c
x

�x

�c

�z �y

Figure 9

(1) �x.T ; �12/t�
c
x.T ; �34/ is diffeomorphic to a dense open subset of Ms12

0
.†0;4/.

(2) �x.T ; �2/t�y.T ; �3/t�z.T ; �4/ is diffeomorphic to a dense open subset of
Ms1

1
.†0;4/.

(3)
`4

iD1�
c.T ; �i/ is diffeomorphic to a dense open subset of MsC

1
.†0;4/.

In the rest of the proof, we let T 0 be the tetrahedral triangulation of †0;4 obtained
from T by doing a simultaneous diagonal switch Sz , let T 0 be the set of ideal triangles
of T 0 , and let �0i and �0ij 2 f˙1gT

0

be sign assignments defined in the same way as �i

and �ij . For .a; b; c/ 2R3
>0

, we let

Œa; b; c�
:
D

�
a

aC bC c
;

b

aC bC c
;

c

aC bC c

�
2�:
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For the connectedness of Ms12

0
.†0;4/, since both �x.T ; �12/ and �c

x.T ; �34/ are
connected, it suffices to choose two points p and q respectively in �x.T ; �12/ and
�c

x.T ; �34/ and find a path in Ms12

0
.†0;4/ connecting p and q . Now let pD .a; b; c/2

�x.T ; �12/ and let q D .a0; b0; c0/ 2�c
x.T ; �34/ with a0 > b0 . By Proposition 2.3 and

Lemma 5.8, p corresponds to the point p0 D Œa; b; .a� b/2=c� 2�x.T 0; �012
/ and q

corresponds to the point q0 D Œa0; b0; .a0� b0/2=c0� 2�x.T 0; �012
/. Since �x.T 0; �012

/

is connected, there is a path in �x.T 0; �012
/ connecting p0 and q0 , giving a path in

Ms12

0
.†0;4/ connecting p and q .

For the connectedness of Ms1

1
.†0;4/, we let p D .a; b; c/ 2 �x.T ; �2/ and let q D

.a0; b0; c0/2�y.T ; �3/. By Proposition 2.3, Lemma 5.3 and Lemma 5.4, p corresponds
to the point p0 D Œa; b; ja2 � b2j=c� 2 �z.T 0; �04/ and q corresponds to the point
q0D Œa0; b0; ja02�b02j=c0� 2�z.T 0; �04/. Since �z.T 0; �04/ is connected, there is a path
in �z.T 0; �04/ connecting p0 and q0 , giving a path in Ms1

1
.†0;4/ connecting p and

q . Similarly, any pair of points q 2 �y.T ; �3/ and r 2 �z.T ; �4/ and any pair of
points p 2 �y.T ; �2/ and r 2 �z.T ; �4/ can respectively be connected by paths in
Ms1

1
.†0;4/. Therefore, Ms1

1
.†0;4/ is connected.

Finally, for the connectedness of MsC
1
.†0;4/, we let p D .a; b; c/ 2�c.T ; �2/ with

a> b and let qD .a0; b0; c0/2�c.T ; �3/ with b0 > a0 . By Proposition 2.3, Lemma 5.3
and Lemma 5.4, p corresponds to the point p0 D Œa; b; ja2� b2j=c� 2�c.T 0; �0

4
/ and

q corresponds to the point q0 D Œa0; b0; ja02� b02j=c0� 2�c.T 0; �0
4
/. Since �c.T 0; �0

4
/

is connected, there is a path in �c.T 0; �0
4
/ connecting p0 and q0 , giving a path in

MsC
1
.†0;4/ connecting p and q . Similarly, all the other pieces can be connected by

paths in MsC
1
.†0;4/, and MsC

1
.†0;4/ is connected.

7 Ergodicity of the Mod.†0;4/–action

The goal of this section is to prove the ergodicity of the Mod.†0;4/–action on the
nonextremal connected components of M.†0;4/. To use the techniques we used in
the previous sections, we need to understand the measure on M.†0;4/ induced by the
Goldman symplectic 2–form in terms of the quantities �.x/, �.y/ and �.z/. Let T
be a tetrahedral triangulation of †0;4 , and let T be the set of ideal triangles of T . For
each � 2 f˙1gT , let �.T ; �/ be the subset of R3

>0
defined in Corollary 6.3. Then

by Equation (2-2), Lemma 6.2, Corollary 6.3 and a direct calculation, we have the
following proposition.

Proposition 7.1 For each � 2 f˙1gT , the 2–form

! D
d�.x/^ d�.y/

�.x/�.y/
C

d�.y/^ d�.z/

�.y/�.z/
C

d�.z/^ d�.x/

�.z/�.x/
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on �.T ; �/ corresponds to the Goldman symplectic 2–form !WP on M.†0;4/, and
the measure induced by ! is in the same measure class of the Lebesgue measure on
�.T ; �/.

As a consequence, we have:

Proposition 7.2 For k 2 f�1; 0; 1g, the set �k.†0;4/ consisting of conjugacy classes
of type-preserving representations � with the relative Euler class e.�/D k such that
all the tetrahedra triangulation of †0;4 are �–admissible is a full measure subset of
Mk.†0;4/, and is invariant under the Mod.†0;4/–action.

Proof By the proof of Proposition 5.5, M1.†0;4/ n�1.†0;4/ is a countable union
of Lebesgue measure zero subsets, hence is of Lebesgue measure zero. Then by
Proposition 7.1, M1.†0;4/ n�1.†0;4/ is a null set in the measure induced by the
Goldman symplectic 2–form. By the similar argument, �0.†0;4/ and ��1.†0;4/ are
respectively full measure subsets of M0.†0;4/ and M�1.†0;4/. By Proposition 4.1,
since all the simultaneous diagonal switches act on each �k.†0;4/, so does Mod.†0;4/.

Remark 7.3 Since �1.†0;4/ is dense in M1.†0;4/ and since any representation in
�1.†0;4/\

`4
iD1 M

si

1
.†0;4/ sends each simple closed curve to a hyperbolic element,

by continuity, every representation in
`4

iD1 M
si

1
.†0;4/ sends each simple closed curve

to either a hyperbolic or a parabolic element. In [5], Delgado explicitly constructed a
family f�tg of representations in M1.†0;4/ that send every simple closed curve to
either a hyperbolic or a parabolic element, and for each �t , at least one simple closed
curve is sent to a parabolic element. Therefore, the representations f�tg are in the
measure-zero subset M1.†0;4/ n�1.†0;4/.

Let V D fv1; : : : ; v4g be the set of punctures of †0;4 . For k 2 f�1; 0; 1g and s 2

f˙1gV , let �s
k
.†0;4/D�k.†0;4/\Ms

k
.†0;4/. By Theorem 6.1 and Proposition 7.2,

Theorem 1.4 follows from the following theorem.

Theorem 7.4 (1) The Mod.†0;4/–action on �sij

0
.†0;4/ is ergodic for each choice

of fi; j g � f1; : : : ; 4g.

(2) The Mod.†0;4/–action on �sC
1
.†0;4/ and �s�

�1
.†0;4/ is ergodic.

(3) The Mod.†0;4/–action on �si

1
.†0;4/ and �s�i

�1
.†0;4/ is ergodic for each i 2

f1; : : : ; 4g.

Remark 7.5 Maloni, Palesi and Tan [20] were the first to learn of the ergodicity of
the Mod.†0;4/–action on the components of M˙1.†0;4/ using the Markoff triple
technique.
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7.1 A proof of Theorem 7.4(1)

By symmetry, it suffices to prove that the Mod.†0;4/–action on �s12

0
.†0;4/ is ergodic.

Let

�D f.a; b; c/ 2R3
>0 j aC bC c D 1g and �x D f.a; b; c/ 2� j a¤ bC cg:

By Theorem 2.2, Lemma 6.2 and Corollary 6.3, given a tetrahedral triangulation of
†0;4 , �x is diffeomorphic to a dense and open subset of Ms12

0
.†0;4/, where the

diffeomorphism is given by the quantities �.x/, �.y/ and �.z/.

Consider the embedding of i W �!R3
>0

defined by i..a; b; c//D .1; b=a; c=a/. Then

i.�x/D f.1; b; c/ 2R3
>0 j bC c ¤ 1g:

Let �X be the subset of i.�x/ consisting of the elements coming from �
s12

0
.†0;4/.

As an immediate consequences of Lemma 5.8, the simultaneous diagonal switches Sy

and Sz act on �X by

Sy..1; b; c//D

�
1;
.1� c/2

b
; c

�
and Sz..1; b; c//D

�
1; b;

.1� b/2

c

�
:

Lemma 7.6 Let hDX i be the cyclic subgroup of Mod.†0;4/ generated by the Dehn
twist DX along the distinguished simple closed curve X . Then for every k 2 .�2; 2/,
the ellipse

Ek D f.1; b; c/ 2�X j .bC c � 1/2 D .kC 2/bcg

is invariant under the action of hDX i, and for almost every k 2 .�2; 2/, the action of
hDX i on Ek is ergodic.

Proof A direct calculation shows that Ek is invariant under the actions of Sy and Sz

for all k 2 .�2; 2/. Recall that DX DSzSy . Therefore, the ellipse Ek is invariant under
the hDX i–action. By Lemma 5.8, the action of Sy and Sz respectively move a point p

on Ek vertically and horizontally. As show in Figure 10, the an affine transformation
of R2 sending the ellipse Ek to a circle Ck sends the vertical and the horizontal
lines in R2 respectively to two family of parallel lines in Ck . As a consequence, for
each point p on Ck , the angle †pp0DX .p/ is a constant �k=2 depending only on k ,
and the center angle †pODX .p/D 2†pp0DX .p/D �k . Therefore, DX acts on Ck

by a rotation of angle �k . Since �k is an irrational multiple of 2� for almost every
k 2 .�2; 2/, the action of hDX i is ergodic.
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c

DX .p/ �X

Ek
Sz

Sy
p

b

c

DX .p/

Ck
Sz

O
�k

Sy
p0 p

b

Figure 10

Lemma 7.7 Let DY DZ be the self-diffeomorphism of †0;4 given by the Dehn twist
DZ along the distinguished curve Z in T followed by the Dehn twist DY along
the distinguished curve Y in DZ .T /, and let hDY DZ i be the cyclic subgroup of
Mod.†0;4/ generated by DY DZ . Then for every k 2 .�2; 2/, the quartic curve

Qk D f.1; b; c/ 2�X j .bC c/2.bC c � 1/2 D .kC 2/bcg

is invariant under the action of hDY DZ i, and for almost every k 2 .�2; 2/, the action
of hDY DZ i on Qk is ergodic.

Proof A direct calculation shows that Qk is the Sx –image of Ek . Since DY DZ D

SxSzSySx D SxDX Sx , the map Sz W Ek !Qk is Z–equivariant, where 1 2 Z acts
on Ek by DX and acts on Qk by DY DZ . By Lemma 7.6, hDY DZ i acts on Qk for
every k 2 .�2; 2/, and the action is ergodic for almost every k 2 .�2; 2/.

Proof of Theorem 7.4(1) We show that every Mod.†0;4/–invariant measurable func-
tion F W �X !R is almost everywhere a constant. Consider the following region

RD f.1; b; c/ 2�X j .bC c � 1/2 < 4bc; bC c < 1g

in �X inclosed by the parabola P Df.1; b; c/2�X j .bCc�1/2D 4bcg and the line
segment LD f.1; b; c/ 2�X j bC cD 1g. We claim that each point pD .1; b0; c0/ in
R is an intersection an ellipse Ek1

and a quintic curve Qk2
for some k1 , k2 2 .�2; 2/.

Indeed, we can let

k1 D
.b0C c0� 1/2

b0c0

� 2 and k2 D
.b0C c0/

2.b0C c0� 1/2

b0c0

� 2:

Since .b0 C c0 � 1/2 < 4b0c0 , k1 2 .�2; 2/, and since b0 C c0 < 1, k2 2 .�2; 2/.
A direct calculation shows that the intersection of Ek1

and Qk2
is transverse at p ,
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ie the gradients rEk1
.p/ and rQk2

.p/ span the tangent space of �X at p . Then
by Lemma 7.6 and Lemma 7.7, the restriction of F to R is almost everywhere a
constant. For p 2 �X , let O.p/ be the Mod.†0;4/–orbit of p . To show that the
F is almost everywhere a constant in �X , it suffices to show that O.p/\R ¤ ∅
for almost every p in �X . Let R0 be the region in �X enclosed by parabola P ,
ie R0 D f.1; b; c/ 2 �X j .b C c � 1/2 < 4bcg. Then R0 is foliated by the ellipses
fEkg. We note that the parabola P is the i–image of the inscribe circle C0 of �. Then
by the trace reduction algorithm, Lemma 5.9 and Proposition 7.2, for almost every
p in �X , there is a composition � of finitely many, say m, simultaneous diagonal
switches such that �.p/ 2R0 . By Proposition 4.1, if m is even, then � 2Mod.†0;4/

and O.p/\R0 ¤∅; and if m is odd, then �0 D Sy� 2Mod.†0;4/. Since Sy keeps
invariant an ellipse Ek �R0 passing through �.p/, �0.p/D Sy�.p/ 2Ek �R0 , and
hence O.p/\R0 ¤∅. Finally, by Lemma 7.6, for almost every p in R0 , there is n

such that Dn
X
.p/ 2Ek \R�R.

7.2 A proof of Theorem 7.4(2)

By symmetry, it suffices to prove the ergodicity of the Mod.†0;4/–action on �sC
1

. The
strategy is to find two transversely intersecting families of curves fEX ;kg and fEY;kg

foliating MsC
1
.†0;4/ such that the hDX i -action on almost every EX ;k and the hDY i–

action on almost every EY;k is ergodic. Let T be an tetrahedral triangulation of †0;4 ,
and let T be the set of ideal triangles of T . Let �D f.a; b; c/ 2R3

>0
j aCbC cD 1g,

and for � 2 f˙1gT , let �c.T ; �/D f.a; b; c/ 2� j a < bC c; b < aC c; c < bC ag.
By Theorem 2.2, Lemma 5.1 and Corollary 6.3,

`4
iD1�

c.T ; �i/ is diffeomorphic to
a dense and open subset of MsC

1
.†0;4/, where the diffeomorphism is given by the

quantities �.x/, �.y/ and �.z/.

We define the embedding iX W
`4

iD1�
c.T ; �i/!R3 by

iX ..a; b; c//D

8̂̂̂<̂
ˆ̂:
.1; b=a; c=a/ if .a; b; c/ 2�c.T ; �1/;

.1;�b=a;�c=a/ if .a; b; c/ 2�c.T ; �2/;

.1;�b=a; c=a/ if .a; b; c/ 2�c.T ; �3/;

.1; b=a;�c=a/ if .a; b; c/ 2�c.T ; �4/:

For i 2 f1; : : : ; 4g, we let �X ;i be the subset of iX .�
c.T ; �i// consisting of the

elements coming from �
sC
1
.†0;4/, and let �X D

`4
iD1�X ;i . (See Figure 11.)

Lemma 7.8 For every k 2 .�2; 2/, the ellipse

EX ;k D f.1; b; c/ 2�X j b
2
C c2

� 1D kbcg
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is invariant under the action of hDX i, and for almost every k 2 .�2; 2/, the action of
hDX i on EX ;k is ergodic.

�X ;3 �X ;1

c

�X ;2 �X ;4
DX .p/

EX ;k

b

p

Figure 11

Proof For .x;y; z/ 2R3 , let j.a; b; c/j D .jaj; jbj; jcj/. By Lemma 5.3, the action of
Sy and Sz on �X satisfies

jSy..1; b; c//j D

�
1;

ˇ̌̌̌
c2� 1

b

ˇ̌̌̌
; jcj

�
and jSz..1; b; c//j D

�
1; jbj;

ˇ̌̌̌
b2� 1

c

ˇ̌̌̌�
:

Therefore, we have

jDX ..1; b; c//j D

�
1;

ˇ̌̌̌
c2� 1

b

ˇ̌̌̌
;

ˇ̌̌̌ � c2�1
b

�2
� 1

c

ˇ̌̌̌�
:

We claim that

(7-1) DX ..1; b; c//D

�
1;

c2� 1

b
;

�
c2�1

b

�2
� 1

c

�
:

If (7-1) is true, then a direct calculation shows that DX ..1; b; c// is on EX ;k .

To verify (7-1), we let T 0 be the tetrahedral triangulation obtained from T by doing
Sy , and let T 00 be the tetrahedral triangulation obtained from T 0 by doing Sz . Let �0

and �00 respectively be the signs of � assigned to the ideal triangles of T 0 and T 00 . In
T , T 0 and T 00 , we denote uniformly by ti the ideal triangle disjoint from the puncture
vi . If p D .1; b; c/ 2 �X ;1 , ie i�1

X
.p/ 2 �c.T ; �1/, then we consider the following

cases.
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Case 1 c > 1 and .c2�1/=b > 1. In this case, since �1.t1/D�1 and c > 1, we have
by Proposition 2.3 that �0.t2/D�1. Since .c2� 1/=b > 1, by Proposition 2.3 again,
�00.t1/D�1. Therefore, DX .i

�1
X
.p// 2�c.T 00; �1/, and (7-1) follows.

Case 2 c > 1 and .c2� 1/=b < 1. In this case, by Proposition 2.3, �0.t2/D�1 and
�00.t4/D�1. Therefore, DX .i

�1
X
.p// 2�c.T 00; �4/, and (7-1) follows.

Case 3 c < 1 and .c2� 1/=b > 1. In this case, by Proposition 2.3, �0.t4/D�1 and
�00.t3/D�1. Therefore, DX .i

�1
X
.p// 2�c.T 00; �3/, and (7-1) follows.

Case 4 c < 1 and .c2� 1/=b < 1. In this case, by Proposition 2.3, �0.t4/D�1 and
�00.t2/D�1. Therefore, DX .i

�1
X
.p// 2�c.T 00; �2/, and (7-1) follows.

The verification of (7-1) for p in �X ;2 , �X ;3 and �X ;4 is similar, and is left to the
readers.

By (7-1), the action of DX on EX ;k is a horizontal translation followed by a vertical
translation. See Figure 11. By doing a suitable affine transform, the hDX i–action
is a rotation of an angle �k on a circle, where �k is an irrational multiple of 2� for
almost every k . Therefore, for almost every k 2 .�2; 2/, the hDX i–action on EX ;k

is ergodic.

Consider the embedding iY W
`4

iD1�
c.T ; �i/!R3 by

iY ..a; b; c//D

8̂̂̂<̂
ˆ̂:
.a=b; 1; c=b/ if .a; b; c/ 2�c.T ; �1/;

.�a=b; 1; c=b/ if .a; b; c/ 2�c.T ; �2/;

.�a=b; 1;�c=b/ if .a; b; c/ 2�c.T ; �3/;

.a=b; 1;�c=b/ if .a; b; c/ 2�c.T ; �4/:

For i 2 f1; : : : ; 4g, we let �Y;i be the subset of iY .�
c.T ; �i// consisting of the

elements coming from �sC
1
.†0;4/, and let �Y D

`4
iD1�Y;i . Then we have the

following lemma whose proof is similar to that of Lemma 7.8.

Lemma 7.9 For every k 2 .�2; 2/, the ellipse

EY;k D f.a; 1; c/ 2�Y j a
2
C c2

� 1D kacg

is invariant under the action of hDY i, and for almost every k 2 .�2; 2/, the action of
hDY i on EY;k is ergodic.

Proof of Theorem 7.4(2) A direct calculation shows that the two family of curves
fi�1

X
.EX ;k/g and fi�1

Y
.EY;k/g transversely intersect. Then by Lemmas 7.8 and 7.9,

the Mod.†0;4/–action on MsC
1
.†0;4/ is ergodic.
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7.3 A proof of Theorem 7.4(3)

By symmetry, it suffices to prove the ergodicity of the Mod.†0;4/–action on �s1

1
.†0;4/.

We let �x D f.a; b; c/ 2 � j a > b C cg, �y D f.a; b; c/ 2 � j b > aC cg and
�z D f.a; b; c/ 2 � j c > aC bg. By Theorem 2.2, Lemma 6.2 and Corollary 6.3,
given a tetrahedral triangulation of †0;4 , �x t�y t�z is diffeomorphic to a dense
and open subset of Ms1

1
.†0;4/, where the diffeomorphism is given by the quantities

�.x/, �.y/ and �.z/.

Let

RD f.s; t/ 2R2
j s ¤ 0; t ¤ 0; sC t ¤ 0g;

and consider the two-fold covering map  W R!�x t�y t�z defined by

 ..s; t//D Œsinh jsj; sinh jt j; sinh jsC t j�;

where

Œa; b; c�
:
D

�
a

aC bC c
;

b

aC bC c
;

c

aC bC c

�
:

Let � be the subset of �xt�yt�z consisting of the elements coming from �
s1

1
.†0;t /,

and let �0 D  �1.�/. Then by Proposition 7.2, � is invariant under the Mod.†0;4/–
action. Recall that Mod.†0;4/ is isomorphic to a free group F2 of rank two generated
by the Dehn twists DX and DY . (See [7].) It is well known that F2 is isomorphic to
the quotient group �.2/=˙ I , where

�.2/D

�
A 2 SL.2;Z/

ˇ̌̌
A�

�
1 0

0 1

�
.mod 2/

�
is the mod-2 congruence subgroup of SL.2;Z/, and the matrices

�
1 0
2 1

�
and

�
1 2
0 1

�
correspond to the generators of F2 . This induces a group homomorphism � W �.2/!

Mod.†0;4/ defined by

�

��
1 0

2 1

��
DDX and �

��
1 2

0 1

��
DDY :

By Lemma 5.3 and a direct calculation,  W �0 ! � is � –equivariant, ie  ıA D

�.A/ ı for all A 2 �.2/, where the �.2/–action on �0 is the standard linear action.
By Moore’s Ergodicity theorem [22], the �.2/–action on R2 , hence on �0 , is ergodic.
Therefore, the Mod.†0;4/–action on � is ergodic.

Geometry & Topology, Volume 20 (2016)



1252 Tian Yang

Appendix A: Equivalence of extremal and
Fuchsian representations

Proposition A.1 below is a consequence of Goldman [11, Theorem D] and is stated
without proof in [4]. The purpose of this appendix is to include a proof of it for the
reader’s interest, where the argument is from a discussion with F Palesi and M Wolff.

Proposition A.1 A type-preserving representation �W �1.†g;n/! PSL.2;R/ is ex-
tremal, ie je.�/j D 2g� 2C n, if and only if � is Fuchsian.

Proof By Goldman [11, Theorem D], a representation � is extremal if and only if �
is Fuchsian and the quotient H3=�.�1.†g;n// is homeomorphic to †g;n . Therefore,
to prove the proposition, it suffices to rule out the possibility that � is nonmaximum,
Fuchsian and H3=�.�1.†g;n//D †g0;n0 © †g;;n; , which we will do using a contra-
diction.

Now since H3=�.�1.†g;n//D†g0;n0 , there is an isomorphism

�W �1.†g0;n0/! �.�1.†g;n//I

and since � is type-preserving, �.�1.†g0;n0// D �.�1.†g;n// contains n parabolic
elements from the primitive peripheral elements of �1.†g;n/. On the other hand, since
the only possible parabolic elements of a Fuchsian subgroup of PSL.2;R/ are from
the peripheral elements, the composition

��1
ı �W �1.†g;n/! �1.†g0;n0/

must send the primitive peripheral elements of �1.†g;n/ to the primitive peripheral
elements of �1.†g0;n0/. This is impossible when n> n0 , since �1.†g0;n0/ has only n0

primitive peripheral elements. For the case n< n0 , we recall the fact that in the first
homology H1.†;R/ of a punctured surface †, the full set of vectors represented by
the primitive peripheral elements of �1.†/ are linearly dependent, but the vectors in
any proper subset of it are linearly independent. Therefore, the induced isomorphism

.��1
ı �/�W H1.†g;nIR/!H1.†g0;n0 IR/

sends a set of linearly dependent vectors represented by the primitive peripheral elements
of �1.†g;n/ to a set of linearly indecent vectors, which is a contradiction.
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Appendix B: Relationship with Goldman’s work on the
one-punctured torus

In this appendix, we show that the results concerning representations of relative Euler
class ˙1 in this paper can also be seen, and more straightforwardly, as consequences
of some previous results of Goldman [13, Chapter 4], where the argument presented
here is due to the anonymous referee.

In [13], Goldman considers SL.2;R/–representations of the one-puncture torus group
�.†1;1/, which is the free group of two generators hX;Y i. The character space
Mred.†1;1/ of reducible representations �W �.†1;1/!SL.2;R/ satisfy tr.�ŒX;Y �/D
2, and hence could be described by the equation

(B-1) x2
Cy2

C z2
�xyz� 4D 0;

where x D tr.�.X //;y D tr.�.Y // and z D tr.�.XY //. On the other hand, the funda-
mental group of the four puncture sphere �1.†0;4/Š hA;B;C;D jABCDi, where
the generators are the four primitive peripheral elements corresponding to the four punc-
tures. If �W �1.†0;4/! PSL.2;R/ is type-preserving, then jtr.�.A//j D jtr.�.B//j D
jtr.�.C //j D jtr.�.D//j D 2; and if e.�/D˙1, then one can lift � to a representatione� W �1.†0;4/! SL.2;R/ such that tr.e�.A// tr.e�.B// tr.e�.C // tr.e�.D// < 0. Hence
the character spaces M˙1.†0;4/ can be described by the equation

(B-2) x2
Cy2

C z2
Cxyz� 4D 0;

where x D tr.�.AB//;y D tr.�.BC // and z D tr.�.CA//. (See [12; 20] for more
details.) Comparing (B-1) and (B-2), it is clear that

Mred.†1;1/ŠM˙1.†0;4/:

Moreover, the mapping class group actions are commensurable and the variables x;y; z

correspond in each case to the traces of simple closed curves on the surface, hence all
the results known for Mred.†1;1/ can be translated to the results on M˙1.†0;4/.

To be more precise, by [13, Chapter 4], Mred.†1;1/ has five connected components,
one of which is compact corresponding to Ms

˙1
.†0;4/ and four of which are non-

compact corresponding to Msi

˙1
.†0;4/. A full measure subset of the characters in the

noncompact components have all coordinates x;y; z strictly greater than 2 in absolute
value. Each coordinate corresponds to the trace of the image of a simple closed curve.
Starting from a representation in one of these components and using the transitivity of
the mapping class group action on the set of simple closed curves, one gets that every
simple closed curve is sent to an hyperbolic element. Therefore, a full-measure subset of
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representations in the noncompact components are counterexamples to Bowditch’s ques-
tion. Finally, the ergodicity of the PSL.2;Z/–action on the noncompact components
is already proved in [13, Chapter 4], implying the Mod.†0;4/–action on Msi

˙1
.†0;4/.
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