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Riemannian foliations of spheres

ALEXANDER LYTCHAK

BURKHARD WILKING

We show that a Riemannian foliation on a topological n–sphere has leaf dimension
1 or 3 unless n D 15 and the Riemannian foliation is given by the fibers of a
Riemannian submersion to an 8–dimensional sphere. This allows us to classify
Riemannian foliations on round spheres up to metric congruence.

53C12, 57R30

1 Introduction

We are going to prove the final piece of the following theorem:

Theorem 1.1 Suppose F is a Riemannian foliation by k–dimensional leaves of a
compact manifold .M;g/ which is homeomorphic to Sn . We assume 0< k < n. Then
one of the following holds:

(a) k D 1 and the foliation is given by an isometric flow with respect to some
Riemannian metric.

(b) k D 3, n� 3 mod 4 and the generic leaves are diffeomorphic to RP3 or S3 .

(c) k D 7, n D 15 and F is given by the fibers of a Riemannian submersion
.M;g/! .B; xg/, where .B; xg/ is homeomorphic to S8 and the fiber is homeo-
morphic to S7 .

Furthermore, all these cases can occur.

A big part of the theorem follows by putting together various pieces in the literature:
Ghys [4] showed that the generic leaves of a Riemannian foliation of a homotopy
sphere are closed, unless the leaf dimension is 1 and the foliation is given by an
isometric flow with respect to a possibly different Riemannian metric. Furthermore,
the generic leaves are rational homotopy spheres. Haefliger [7] observed that, for any
Riemannian foliation of a complete manifold M with closed leaves, one can find a
space yM homotopically equivalent to M such that yM is the total space of a fiber
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bundle, where the fibers are homeomorphic to the generic leaves of the foliation (see
Section 2 for further details). If M is a sphere then the fibers are contractible in yM .
Spanier and Whitehead observed [11] that for any such fibration the fiber must be an
H–space. Furthermore, closed manifolds which are H–spaces and rational homotopy
spheres were classified by Browder [2]: they are homotopically equivalent to S1 , RP3 ,
S3 , RP7 or S7 . With Perelman’s solution of the geometrization conjecture, one can
improve “homotopically equivalent” to “diffeomorphic” if k D 3.

We are left to consider 7–dimensional foliations of homotopy spheres. Our strategy
will be to reduce the situation first to the case of n D 15 and then to show that the
foliation is simple, ie given by the fibers of a Riemannian submersion. By a result of
Browder [2] this automatically rules out the possibility of an RP7–foliation.

To see that all examples can occur, we can again appeal to the literature for the only
non-classical case: the existence of RP3 foliations on S4kC3 . It was shown by
Oliver [9] that, contrary to a previous conjecture, there are almost free smooth actions
of SO.3/ŠRP3 on S4kC3 for k � 1. The actions of Oliver extend to fixed point free
smooth actions on the disc D4kC4 ; different actions were later exhibited by Grove and
Ziller [6].

Our topological result allows us to classify Riemannian foliations of the round sphere
up to metric congruence. We recall that Gromoll and Grove [5] classified Riemannian
foliations of the sphere up to leaf dimension 3. Moreover, due to Wilking [14], a
Riemannian submersion of the round S15 with 7–dimensional fibers is metrically
congruent to the Hopf fibration. Combining this work with Theorem 1.1 gives:

Corollary 1.2 Let F be a Riemannian foliation on a round sphere Sn with leaf
dimension 0 < k < n. Then, up to isometric congruence, either F is given by the
orbits of an isometric action of R or S3 with discrete isotropy groups or it is the Hopf
fibration S15! S8.1=2/ with fiber S7 .

As has been pointed out by Gromoll and Grove, a real representation �W S3! SO.n/

induces an almost free action of S3 on the unit sphere if and only if all irreducible
subrepresentations are even-dimensional.

The paper is structured as follows. In Section 2 we recall the results stated after
Theorem 1.1 and study the fibration yM ! yB from a homotopy n–sphere yM to the
resolution yB of the orbifold B DM=F . The fiber of the fibration is L, the principal
leaf of F , and we only need to consider the cases LD S7 and LDRP7 . From this
fibration we compute the cohomology of yB . The even-degree cohomology ring of yB
turns out to be a truncated polynomial ring Zp Œa� at all odd primes p . Using Steenrod
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powers at pD 3, we deduce that n must be equal to 15. In the two subsequent sections,
we exclude the possibility that the orbifold B is not a manifold. Here we use the local
data of the orbifold to find nontrivial cohomology classes of yB that cannot exist by
the previous computations. We rely on the fact that all isotropy groups of B act freely
on a 7–dimensional sphere or a projective space, a severe restriction on the possible
group structure. In Section 3, we use the computation of the cohomology of yB at the
prime 2 to deduce that all isotropy groups are cyclic of odd order. Here we detect the
forbidden classes by looking at single points of B , ie by finding nonzero restrictions of
the cohomology classes to the classifying spaces of the isotropy groups. In Section 4,
we exclude the possibility that the set Bp of points with nontrivial p–isotropy is non-
empty, otherwise detecting forbidden cohomology classes by their nontrivial restriction
to a component of Bp .

Acknowledgements Lytchak was partially supported by a Heisenberg grant of the
DFG and both authors by the SFB Groups, Geometry and Actions. We are grateful to
the anonymous referee for helpful comments.

2 Topology

2.1 Preliminaries

Let .M;F/ be as in Theorem 1.1 and assume that the leaves have dimension k � 2.
Due to [4], all leaves of F are closed. This in turn is equivalent to saying that F is
a generalized Seifert fibration on M , ie the space of leaves B DM=F carries the
natural structure of a smooth Riemannian orbifold such that the induced Riemannian
distance corresponds to the distance between leaves in M . Due to [4], the regular
leaf L of F is a rational homology sphere. Following Haefliger, we consider the
SO.n� k/ bundle Fr M over M given by all oriented horizontal frames in M . Then
the Riemannian foliation F induces a fiber bundle structure on Fr M with the fibers
being diffeomorphic to L and with the base space being the oriented frame bundle
Fr B of the orbifold B . Furthermore, the natural fiber bundle map Fr M ! Fr B is
SO.n� k/–equivariant.

Thus one also gets a fiber bundle f W yM ! yB with total space given by

yM D Fr M �SO.n�k/ESO.n� k/

with fiber L and with base space

yB WD Fr B �SO.n�k/ESO.n� k/:
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Clearly, yM is homotopically equivalent to M and yB is the so-called resolution
(or classifying space) of the orbifold B . Its cohomology is the so-called orbifold
cohomology of B . As has been observed by Haefliger, the natural projection yB!B

is a rational homotopy equivalence.

Since the fiber L is a k–dimensional manifold and yM �heq M �heq Sn is k–connected,
we see that the fiber is contractible in yM . Therefore L is an H–space [11]. Since L
is a rational homology sphere, we may apply [2] and deduce that L is homotopy
equivalent to RP3 , S3 , S7 or RP7 .

The geometrization conjecture shows that for kD 3 the generic leaf F is diffeomorphic
to RP3 or S3 . Moreover, the Gysin sequence with Q–coefficients of the fibration
yM ! yB shows that the dimension n of M is divisible by kC1D 4; see the argument

in the next subsection. This finishes the proof of Theorem 1.1 in the case k D 3.

Thus we only need to consider the case kD 7. Hence, L is either homeomorphic to S7

or it is homotopy equivalent to RP7 and its double cover is homeomorphic to S7 . We
call the first case the spherical case and the second case the projective case.

2.2 Gysin sequence and dimension

Let R be any ring with unit. In the projective case we assume in addition that 2 is
invertible in R, eg RD Z3 or RDQ. Then H�.L;R/DH�.S7;R/. Thus we find
the Gysin sequence of the fibration f with coefficients in R. The Euler class must be
a generator a 2H 8. yB;R/ŠH 0. yB;R/ŠR. Moreover, the cup product

�[ aW H 2i. yB/!H 2iC8. yB/

is an isomorphism if 2i ¤ n� 7.

Since yB has finite rational cohomology, we use this isomorphism for RDQ to see
that nD 8l C 7 for some positive integer l .

2.3 Reduction to n D 15

We want to show l D 1. Assume on the contrary l � 2. Then, due to the above
isomorphism, we have H�. yB;Z3/DZ3Œa� in degrees � 16. To obtain a contradiction,
we first show:

Lemma 2.1 Under the assumptions above there exists a space X and an element
c 2H 8.X;Z3/ such that the cohomology ring H�.X;Z3/ equals the polynomial ring
Z3Œc� in degrees � 24.

Geometry & Topology, Volume 20 (2016)



Riemannian foliations of spheres 1261

Proof For l > 2, one could just take X D B . In general, let Ef be the mapping
cylinder of f , which is a fiber bundle over yB with fiber being the cone over L. Let X

be the Thom space of the fibration f , which is obtained from Ef by identifying all
points on the boundary of Ef . For the subbundle E0 D yB of the bundle Ef ! yB , we
can apply [8, Theorem 4.D.8]. Using the fact that the bundle yM ! yB is orientable,
we deduce that there is an element c 2H 8.E;E0;Z3/DH 8.X;Z3/ (the Thom class
of the fibration) such that b 7! f �.b/[ c induces an isomorphism between H�. yB/

and the reduced cohomology zH�C8.X;Z3/.

The claim follows from this isomorphism and the structure of H�. yB/.

We now get a contradiction to the following application of Steenrod powers; see [8,
Theorem 4.L.9].

Lemma 2.2 Let X be a topological space. If H 12.X;Z3/DH 20.X;Z3/D 0 then
for all c 2H 8.X;Z3/ we have c3 D 0.

Proof Consider the Steenrod operations P i W H n.X;Z3/!H nC4i.X;Z3/. We have
c3 D P4.c/. On the other hand, by the Adem relations, P4.c/ is a linear combination
of P1.P3.c// and P3.P1.c//, which must both be zero, since P1.c/ and P3.c/ are
zero by assumption.

The contradiction shows l D 1, hence nD 15. Thus B has dimension 8 and yB has
the rational homology of S8 .

2.4 Cohomology of yB

From the Gysin sequence of the fibration f W yM ! yB we deduce:

Lemma 2.3 Let p be a prime number, with p ¤ 2 in the projective case. Then either
yB is a Zp–homology sphere, or the Zp–cohomology ring of yB has the form

H�. yB;Zp/D Zp Œa; b�=b
2;

where b has degree 15 and a has degree 8.

We will need:

Lemma 2.4 H 4. yB;Z/D 0:
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Proof In the spherical case yB is 7–connected. In the projective case, we know
�2. yB/ D Z2 and �k. yB/ D 0 for k D 1 and 3 � k � 7. Hence the canonical map
from yB to the Eilenberg–MacLane space K.Z2; 2/ induces isomorphisms on all
cohomologies in all degrees � 7. The result follows from the computations of the
cohomology groups of K.Z2; 2/ (see for instance [3]).

The last result about the cohomology of yB which we extract from the fiber bundle
yM ! yB is the following application of the transgression theorem of Borel [1, The-

orem 13.1]. This theorem applies (see [2, last paragraph on page 370]), since in the
projective case, the fiber L has the cohomology of RP7 .

Lemma 2.5 Assume that L is homotopy equivalent to RP7 . Then the cohomol-
ogy ring H�. yB;Z2/ up to degree 14 is freely generated by elements u2;u3;u5

of degrees 2; 3; 5, respectively. In particular, we have dim H 10. yB;Z2/ D 4 and
dim H 14. yB;Z2/D 6.

3 Isotropy groups are cyclic groups of odd order

In this section we use characteristic classes to see that any 2–Sylow subgroup of any
isotropy group is cyclic of order at most 4. Then we use that the isotropy groups
act freely on the generic leaf L to show that all isotropy groups are cyclic groups of
odd order.

Consider B as the quotient space B D Fr B=SO.8/, where Fr B is the bundle of
oriented frames of B with canonical action of SO.8/. Recall that the space yB is
nothing else but the Borel construction yB D Fr B �SO.8/ ESO.8/. We will often
consider the canonical 8–dimensional vector bundle (the tangent bundle of the orbifold)

T yB WD Fr B �SO.8/ESO.8/�R8

over yB .

Lemma 3.1 Let V be a vector bundle over yB . Then the Stiefel–Whitney classes
w2.V / and w4.V / vanish.

Proof We first assume w2.V /D 0 and prove that this implies w4.V /D 0.

By stabilizing with a trivial bundle, we may assume that the rank l of V is at least 5.
Let prW yB!BSO.l/ be the classifying map of the bundle V . In particular, the Stiefel–
Whitney classes of V are given by pullbacks of Stiefel–Whitney classes of the universal
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bundle over BSO.l/. Since w2.V /D 0, pr can be lifted to a map zprW yB! BSpin.l/.
Suppose now on the contrary that w4.V /¤ 0. Then

zpr�W H 4.BSpin.l/;Z2/!H 4. yB;Z2/

is not zero. Since H 4.BSpin.l/;Z/ŠZ there is a natural map BSpin.l/!K.Z; 4/ to
the Eilenberg–MacLane space K.Z; 4/ that induces an isomorphism on 4th cohomology
with integral coefficients. Since this map is 5–connected it also induces an isomorphism
on 4th cohomology with Z2–coefficients. By composing this map with zpr we get a map
yB!K.Z; 4/ which induces a nontrivial map on 4th cohomology with Z2–coefficients.
On the other hand, the homotopy classes of maps yB ! K.Z; 4/ are classified by
H 4. yB;Z/D 0 (see Lemma 2.4) and thus any map yB!K.Z; 4/ is null homotopic; a
contradiction.

Assume now w2.V / ¤ 0. Then w2.V /
2 ¤ 0 as well (see Lemma 2.5). Consider

the bundle W D V ˚ V . Then the total Stiefel–Whitney classes satisfy w�.W / D

w�.V / �w�.V /. Since yB is simply connected, w1.V /D 0. We deduce w2.W /D 0

and w4.W / D w2.V /
2 . Applying the previous observation to the bundle W , we

deduce w4.W /D 0. This contradicts w2.V /
2 ¤ 0.

Lemma 3.2 Let �x � SO.8/ be an isotropy group. Then any element of order 2 is
given by � id 2 SO.8/. The 2–Sylow group of �x is a cyclic group of order at most 4.

Proof Let Qx 2 Fr B be a point in the inverse image of x 2 B such that �x is the
isotropy group of the SO.8/–action on Fr B at Qx . Notice that the image of

SO.8/ ? Qx �ESO.8/� Fr B �ESO.8/

under the natural projection Fr B �ESO.8/! yB can be naturally identified with the
classifying space B�x �

yB of the isotropy group �x . If we restrict the canonical
bundle T yB over yB to B�x , we get an R8–bundle which is isomorphic to E�x��x

R8

where �x � SO.8/ is acting by the canonical representation on R8 . Let �0 � �x be
a subgroup. If we pull back T yB via the covering map B�0! B�x ,! B , we thus
get a bundle which is isomorphic to V DE�0 ��0

R8 over B�0 . By Lemma 3.1, the
second and the fourth Stiefel–Whitney classes of V vanish.

Suppose now that �0ŠZ2 and suppose the nonzero element �2�0� SO.8/ has �1 as
an eigenvalue with multiplicity 2k . Then E�0 ��0

R8 is a bundle over RP1 Š B�0

which decomposes as the sum of 2k canonical line bundles and 8� 2k trivial line
bundles. Thus the total Stiefel–Whitney class is given by .1Cw/2kD .1Cw2/k , where
1 is the generator of H 0.RP1;Z2/ and w is the generator of H 1.RP1;Z2/Š Z2 .
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If k is odd we get w2.V /¤ 0, and if kD 2 we see that w4.V /¤ 0. Since w2.V /D 0

and w4.V /D 0 we obtain a contradiction in both cases. This only leaves us with the
possibility that � has �1 as an eigenvalue with multiplicity 2k D 8, and thus �D� id.

Thus there is at most one order-2 element in �x . Hence a 2–Sylow subgroup S2 � �x

does not contain any abelian non-cyclic subgroup. This implies that S2 is either cyclic
or generalized quaternionic [15; 13]. In order to prove that S2 is cyclic it suffices to
rule out the possibility that we can realize the quaternion group with 8 elements Q8

as a subgroup of an isotropy group �x � SO.8/. Suppose on the contrary we can. As
before, the bundle V8 D EQ8 �Q8

R8 over BQ8 can be seen as a pullback bundle
of the canonical bundle over yB . By Lemma 2.4, H 4. yB;Z/ D 0 and thus the first
Pontryagin class of V8 vanishes, p1.V8/D 0.

The embedding of Q8�SO.8/ is determined by the fact that the center of Q8 is mapped
to ˙ id. The representation of Q8 decomposes into two equivalent 4–dimensional
subrepresentations of Q8 . Thus V8 is isomorphic to the sum of two copies of the
4–dimensional bundle V4DEQ8�Q8

R4 , where Q8 acts by its unique 4–dimensional
irreducible representation on R4 . Since V4 admits a complex structure, we have
c1.V4˝RC/D0, and thus the first Pontryagin class is additive: 2p1.V4/Dp1.V8/D0.
In other words,

p1.V4/ 2 Z2 � Z8 ŠH 4.BQ8;Z/:

If we pull back the bundle V4 to BZ4 via the natural covering BZ4! BQ8 we get
a bundle V �

4
which decomposes into two 2–dimensional subbundles, whose Euler

classes are generators of H 2.BZ4;Z/ Š Z4 . This in turn implies that p1.V
�

4
/ is

given by the order-two element in H 4.BZ4;Z/Š Z4 . On the other hand, p1.V
�

4
/ is

given by the image of p1.V4/ under the natural homomorphism

H 4.BQ8;Z/Š Z8! Z4 ŠH 4.BZ4;Z/I

this is a contradiction since any homomorphism Z8! Z4 has p1.V4/ 2 Z2 � Z8 in
its kernel.

Thus the 2–Sylow group is cyclic. It remains to rule out that there are elements of
order 8. Suppose on the contrary that �0 � �x � SO.8/ is a cyclic group of order 8

and fix a generator  2 �0 . Let � 2 S1 �C be a primitive 8th root of unity, and choose
numbers m1; : : : ;m4 2Z such that �˙mi 2 S1 �C (i D 1; : : : ; 4) are the eigenvalues
of  2 SO.8/ counted with multiplicity. Since we know  4 D� id, all mi are odd.

The bundle W8 DE�0 ��0
R8 over B�0 decomposes into four orientable 2–dimen-

sional subbundles whose Euler classes are given by ˙mi� (i D 1; : : : ; 4), where � is
a generator of H 2.B�0;Z/Š Z8 .
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It follows that the first Pontryagin class of the bundle is given by �
�P4

iD1 m2
i

�
�2 . As

before, p1.W8/D 0, and since �2 is a generator of H 4.B�0;Z/D Z8 , this implies
m2

1
Cm2

2
Cm2

3
Cm2

4
� 0 mod 8. But for any odd number we have m2

i � 1 mod 8, a
contradiction.

Lemma 3.3 Any isotropy group is either cyclic or isomorphic to a semidirect product
Zq Ì Z4 , where Z4 acts on the cyclic group of odd order q by an automorphism of
order 2. Moreover, if � has even order it has a nontrivial 4–periodic Z2–cohomology.

Proof Let � be a (not necessarily proper) subgroup of an isotropy group. Since �
acts freely on the generic leaf L, either � or a Z2–extension of � acts freely on S7

and thus has 8–periodic cohomology (see [13; 15] for this fact and subsequent results
about groups with periodic cohomology). Thus, for all odd p , the p–Sylow groups
are cyclic. By Lemma 3.2, the 2–Sylow group is cyclic as well.

A classical theorem of Burnside implies that such a group is metacyclic, that is, � is
isomorphic to a semidirect product Zq Ì Zr where q and r are relatively prime.

It remains to check that the homomorphism ˇW Zr ! Aut.Zq/ does not contain any
elements of odd prime order p . In fact, then Lemma 3.2 implies that the image of ˇ
has order at most 2.

We argue by contradiction and assume that � ŠZq Ì Zr is a minimal counterexample.
The minimality easily implies that q is a prime and that r is a prime power r D pk ,
where p ¤ q are both odd.

We consider the normal covering BZq ! B� , whose deck transformation group is
generated by an element � of order pk . Since the order is prime to q , the induced map
H�.B�;Fq/!H�.BZq;Fq/ is injective and its image is given by the fixed point set
of �� , where �� is the induced map on cohomology. Clearly �� acts on H 2.BZq;Fq/

by an element of order p . This in turn implies that H 2k.BZq;Fq/ is fixed by �� if
and only k is divisible by p . Hence the minimal period of H�.�;Z/ is divisible
by 2p , a contradiction since we know that � has 8–periodic cohomology. Thus �
is cyclic and has 2–periodic cohomology, or � Š Zq Ì Z4 , where Z4 acts by an
automorphism � of order two on Zq . To see that in the latter case � has 4–periodic
cohomology we construct a free linear action of � on S3 . Let Zm � Zq be the fixed
point set of �. Since � has order 2, the numbers m and q=m are relatively prime. In
particular, � Š Zm � .Zq=m Ì Z4/. We can now embed � into U.2/ by mapping
the factor Zm injectively to a central subgroup of U.2/ and by mapping Zq=m Ì Z4

injectively to a subgroup of SU.2/. Clearly, the induced action on S3 is free and
thus � has 4–periodic cohomology. The Z2–cohomology of � cannot be trivial as
H 1.B�;Z2/Š Z2 .
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Lemma 3.4 The isotropy groups are cyclic groups of odd order.

Proof By Lemma 3.3 it suffices to show the isotropy groups have odd order. By
Lemma 3.2 the subset B2 � B of points whose isotropy groups have even order
is finite; let B2 D fp1; : : : ;phg. Let �1; : : : ; �h denote the corresponding isotropy
groups. Suppose on the contrary that B2 is not empty.

Let Fr B2 denote the inverse image of B2 in the frame bundle Fr B ! B and let
yB2 D Fr B2 �SO.8/ESO.8/ denote the corresponding subset in the Borel construction
yB D Fr B �SO.8/ESO.8/. By assumption, there is a tubular neighborhood U of yB2

in yB which is homeomorphic to the normal bundle of yB2 in yB . By excision and
the Thom isomorphism the relative cohomology group H�. yB; yB n yB2;Z2/ is given
by

Lh
jD1 H��8.B�j ;Z2/. Furthermore, the Z2–cohomology of yB n yB2 coincides

with the Z2–cohomology of B n B2 and thus is zero in degrees above 8. Since
�i has nontrivial 4–periodic Z2–cohomology we can combine all this with the exact
sequence of the relative cohomology of the pair . yB; yBn yB2/ to see that yB has nontrivial
4–periodic Z2–cohomology in all degrees � 9.

In the spherical case we get a contradiction to Lemma 2.3. In the projective case this
contradicts Lemma 2.5.

Remark 3.1 Once one has established that any order-two element in an isotropy group
is given by � id, one can also proceed differently to rule out isotropy groups of even
order altogether: As above, there are only finitely many points xi 2 B whose isotropy
groups �i (i D 1; : : : ; h) have even order. Moreover, the 2–Sylow group of �i is either
cyclic or generalized quaternionic. By a theorem of Swan [12] this implies that the
Z2–cohomology of �i is nontrivial and 4–periodic. One can then directly pass to the
proof of Lemma 3.4.

4 All isotropy groups are trivial

We have seen in the last section that all isotropy groups are cyclic groups of odd order
(Lemma 3.4). We fix an odd prime p . In this section we plan to prove that the order of
any isotropy group is not divisible by p . We argue by contradiction and assume that
the set Bp of points in B whose isotropy groups have p–torsion is not empty.

In any isotropy group �x with x 2Bp there is a unique normal subgroup of �x which
is isomorphic to Zp . This implies that Bp is a smooth suborbifold of B . Let X denote
a connected component of Bp .
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Let Fr X denote the inverse image of X in the frame bundle Fr B ! B and let
yX D Fr X �SO.8/ESO.8/ denote the corresponding subset in the Borel construction
yB D Fr B �SO.8/ESO.8/. By assumption, there is a tubular neighborhood U of yX in
yB which is homeomorphic to the normal bundle of yX in yB .

Lemma 4.1 The image of the map H�. yB;Zp/!H�. yX ;Zp/ contains the kernel of
the map H�. yX ;Zp/! H�.�1 yX ;Zp/, where �1 yX denotes the unit normal bundle
of yX in yB . If the normal bundle is orientable and e2H�. yX ;Zp/ denotes its Euler class
then the kernel of the latter map is given by the image of H�. yX ;Zp/!H�. yX ;Zp/,
x 7! x[ e .

Proof Consider the Mayer–Vietoris sequence of yB D U [ . yB n yX /:

H�. yB/
j
!H�.U /˚H�. yB n yX /!H�.U n yX /:

Since U is homotopy equivalent to yX , and U n yX is homotopy equivalent to �1. yX /,
the first statement follows. The second statement is an immediate consequence of the
exactness of the Gysin sequence.

We will use that the cohomology H l.BZp;Z/ is given by 0 for all odd l and by Zp

for all even positive l . It is generated by elements in degree 0 and 2. Furthermore
H�.BZp;Zp/Š Zp Œx;y�=x

2Zp Œx;y�, where x has degree 1 and y has degree 2.

We distinguish among three cases.

4.1 Case 1: The normal bundle of yX is orientable

Let x 2 X be a point and let B�x �
yX be the fiber of x with respect to the natural

projection yB! B .

Then there are a unique normal subgroup Zp��x and natural maps BZp!B�x!
yX .

Consider the induced map ˛�W H�. yX ;Zp/! H�.BZp;Zp/. The Euler class e 2

H t . yX ;Zp/ of the normal bundle of yX � yB is mapped to the Euler class ˛�e of the
bundle EZp �� �x. yB/, where �W Zp!O.�x. yB// denotes the natural representation.
The representation � decomposes into 2–dimensional irreducible subrepresentations
and, by construction, each of these is effective. This in turn implies that the Euler
class ˛�e of the bundle is a generator of H t .BZp;Zp/, where t is the codimension
of X . Hence .˛�e/k is not zero for any k � 0. By Lemma 4.1, this nonzero element
lies in the image of H�. yB;Z/!H�.BZp;Zp/. We deduce that H kt . yB;Zp/ does
not vanish for any k 2N . Combining with Lemma 2.3, this gives t D 8. Thus X is a
single point and yX D B�x .
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Since �x is cyclic we have H l.B�x;Zp/Š Zp for all l � 0. Finally, since cupping
with the Euler class induces an isomorphism, we can use Lemma 4.1 once more to see
that H l. yB;Zp/¤ 0 for all l � 8. This contradicts Lemma 2.3.

4.2 Case 2: dim.X/ ¤ 4 and the normal bundle of yX is not orientable

Since B is an orientable orbifold, this assumption implies that X is a nonorientable
orbifold and, in particular, X is not a point. Thus t D .8� dim.X // 2 f2; 6g.

We consider the twofold cover zX ! yX such that the pullback of the normal bundle
is orientable. The map H�. yX ;Zp/!H�. zX ;Zp/ is injective and its image is given
by the fixed point set of �� , where �� is the map induced by the nontrivial deck
transformation � of zX .

By the non-orientability assumption, the Euler class e of the pullback bundle satisfies
��e D �e . As before, we deduce that the image of e in H�.BZp;Zp/ does not
vanish. Therefore, el 2H lt . zX ;Zp/ is a nontrivial element in the kernel of the map
H lt . zX ;Zp/!H lt .�1. zX /;Zp/ for l � 1. If l is even el is the pullback of an element
f l=2 2 H lt . yX ;Zp/, with f 2 H 2t . zX ;Zp/. Clearly, f l=2 is in kernel of the map
H lt . yX ;Zp/!H lt .�1. yX /;Zp/ and, by Lemma 4.1, H lt . yB;Zp/¤ 0 for all even l .
Since t 2 f2; 6g, this is a contradiction to Lemma 2.3.

4.3 Case 3: dim.X/ D 4 and the normal bundle of yX is not orientable

This case is technically more involved and we subdivide its discussion into several
steps.

Step 1 Each normal space �y. yX / of a point y 2 yX decomposes into two inequivalent
2–dimensional subrepresentations of Zp � �y .

Proof It is clear that �y. yX / decomposes into two subrepresentations of Zp � �y . If
the two representations were equivalent, then each element g 2 Zp would naturally
induce a complex structure J on the normal space, and up to sign the complex structure
would not depend on the choice of g . Since ˙J induce the same orientation on
4–dimensional spaces, this would imply that �. yX / is orientable — a contradiction.

Again, instead of working directly with yX we go to a suitable cover zX . This time
we consider a fourfold cover in which the pullback of the bundle � is orientable and
decomposes into the sum of two orientable 2–dimensional subbundles determined by
the first step above. We summarize the properties of this cover zX , which are intuitively
rather clear, but whose exact derivation requires some tedious considerations:

Step 2 There is a normal cover zX of yX whose group of deck transformation is
generated by one element � of order 4, such that the following hold true:
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(1) The pullback bundle �. zX / of � to zX is orientable and sum of two orientable
2–dimensional subbundles. The map � exchanges the subbundles and the map �2

changes the orientation of each of them.

(2) The unit bundle �1. zX / has vanishing cohomology in degrees � 8 with coeffi-
cients in Zp .

(3) zX is the total space of a fiber bundle zX ! zY with fiber BZp and connected
structure group.

(4) The restrictions of both 2–dimensional subbundles of �. zX / to a fiber BZp have
Euler classes which generate H 2.BZp;Z/.

Moreover, p � 1 mod 4.

Proof As before, Fr X � Fr B denotes the inverse image of X in the frame bundle
of B . Let x 2 X be a point, with isotropy group �x � SO.8/. Let � be the unique
normal subgroup of �x isomorphic to Zp .

We have seen above that � acts on R8 as the sum of two inequivalent representations
and a trivial four-dimensional representation. Therefore, the normalizer N of � which
is contained in O.4/ � O.4/ \ SO.8/ has connected component N0 D SO.4/ � T2 .
Moreover, N0 coincides with the centralizer of � . We see that N has either two or
four connected components.

Let L� Fr X be a fixed point component of � , whose projection to X is surjective.
Then L is N0–invariant. If L is not N–invariant, or if N has only two connected
components, then we could make a continuous choice of pairs fg;g�1g 2 � along L.
We can then argue, similarly to the first paragraph of Step 1, that the normal bundle
of yX is orientable, in contradiction to the assumption.

We deduce that N=N0 has 4 elements. Thus N is isomorphic to SO.4/Ì .T2 Ì Z4/,
where Z4 acts effectively on T2 and T2 Ì Z4 acts on SO.4/ as Z2 . Moreover, N acts
on � as the group Z4 . In particular, p � 1 mod 4 because otherwise Aut.Zp/ does
not contain elements of order 4.

The generator � of this group Z4 exchanges the 2–dimensional �–invariant subspaces
of R4 � R8 . The square �2 preserves the subspaces and changes the orientation on
each of them.

Since all isotropy groups of points in L with respect to the SO.8/–action on Fr X are
contained in N and the SO.8/–orbit through any point of Fr X intersects L, we see
that Fr X is SO.8/–equivariantly diffeomorphic to L�N SO.8/. This in turn shows
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that yX D Fr X �SO.8/ESO.8/ is homeomorphic to L�N EN, once we have identified
EN with ESO.8/.

We now consider the 4–fold cyclic cover zX D L �N0 EN of yX with the group of
deck transformations N=N0 D Z4 . Note that the normal bundle �.L/ decomposes
as a sum of N0–invariant orientable 2–dimensional subbundles. Hence, the bundle
�.L/�N0 EN decomposes as a sum of orientable 2–dimensional subbundles. But this
bundle is just the pullback to zX of the normal bundle of yX .

The description of the action of � on R4 above finishes the proof of (1).

The unit bundle �1. zX / is a covering of the unit bundle �1. yX /. The latter space is
homotopy equivalent to the resolution of a 7–dimensional orbifold without p–isotropy.
This implies (2).

In order to see (3), observe that �DZp lies in the kernel of the action of N on L. Thus
we have a canonical action of N=� (which is isomorphic to N) on L. Consider now the
canonical action of N on EN and via N=� on E.N=�/. Then, for the diagonal action
of N on L�EN�E.N=�/, we see that zX is homotopic to L�N0 .EN�E.N=�//.
The canonical projection of this space to zY WDL�N0 E.N=�/ is a fiber bundle with
fiber B� . Moreover, the structure group of this bundle is the connected group N0 .

The restriction of each of the 2–dimensional subbundles to the fiber BZp is given by
EZp �.Zp;�i /R2 , where �1 and �2 are the two inequivalent faithful representations
mentioned at the beginning. This proves (4).

The last statement, namely p � 1 mod 4, implies that any endomorphism of order 4

on any finite-dimensional Zp–vector space is diagonalizable with eigenvalues � 2 Zp

satisfying �4D 12Zp . In particular, it applies to the endomorphism �� of H�. zX ;Zp/.

If e denotes the Euler class (with any coefficients) of the bundle �. zX / and ei denote
the Euler classes of the two 2–dimensional subbundles, then the first statement of
Step 2 reads as follows: e1[e2D e ; �� preserves the set of four elements f˙e1;˙e2g;
and .��/2.ei/D�ei , for i D 1; 2.

Step 3 Let I� denote the graded subalgebra of H�. zX ;Zp/ that consists of ��–
invariant elements divisible by the Euler class e of �. zX /. Then dim.I8/ D 1 and
Ik D 0 for 0< k < 15, k ¤ 8.

Proof The natural map H�. yX ;Zp/!H�. zX ;Zp/ is injective, and as in Case 2 its
image is given by the ��–invariant elements. The subalgebra I� is thus isomorphic to
the kernel of H�. yX ;Zp/!H�.�1. yX /;Zp/. Combining Lemma 4.1 and Lemma 2.3,
Step 3 follows.
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Step 4 H 1. zX ;Zp/D 0.

Proof Otherwise, choose a nonzero eigenvector w2H 1. zX ;Zp/ of �� . In the subspace
H 2. zX ;Zp/ spanned by e1 and e2 we can find an eigenvector f of �� which is not in
the kernel of the restriction to H 2.BZp;Zp/. Of course, the Euler class e satisfies
��e D�e . Since f 2 restricts to a generator of H 4.BZp;Zp/, we see that ��f D hf

with h2 ��1 mod p .

We claim that w[f l [ e ¤ 0 for any l � 0. We choose a circle S1 � zY in the base
of the fiber bundle zX! zY (see Step 2(3)) such that w restricts to a nonzero element
in the first Zp cohomology group of the inverse image zS of S1 in zX . We get a fiber
bundle BZp!

zS ! S1 , and since the structure group is connected this bundle must
be trivial. Since f and e restrict to nonzero elements of the Zp–cohomology of the
fiber BZp , the claim follows.

Depending on the eigenvalue of w , we can choose some l 2 f0; 1; 2; 3g such that
w[f l[e is fixed by �� . The existence of this nonzero element of Ik with k25; 7; 9; 11

contradicts Step 3.

Step 5 For all j > 0, we have dim.H 2j . zX ;Zp//� 2.

Proof By the previous step, H 1. zX ;Zp/D 0. The group H1. zX ;Z/ is finite without
p–torsion, thus H 2. zX ;Z/ does not have p–torsion either.

Let R be the ring obtained by localizing Z at p , ie

RD ZŒf1=q j q is a prime with q ¤ pg��Q:

From the universal coefficient theorem, H 1. zX ;R/ D 0 and H 2. zX ;R/ D Rr for
some r . Let Oe1; Oe2 2H 2. zX ;R/ denote the Euler classes with R coefficients of the
two 2–dimensional subbundles of �. zX /. Due to Step 2, they restrict to generators of
H 2.BZp;R/Š Zp . In particular Oei ¤ 0. Moreover .��/2 Oei D�Oei . Thus �� acts as
an endomorphism of order four on H 2. zX ;R/DRr . Therefore r � 2.

We consider the fibration BZp!
zX! zY . Clearly H 2. zY ;R/ has rank at least 2 as well.

We look at the cohomology Serre spectral sequence with coefficients in R corresponding
to this fibration. Since the action of the fundamental group on the cohomology of the
fiber is trivial, the E2 page is given by E

i;j
2
DH i. zY ;H j .BZp;R//. The 0th column

E
0;j
2

survives throughout the sequence since H�. zX ;R/!H�.BZp;R/ is surjective.
Therefore also the 0th entry E

2;0
2

of the second column survives throughout. In
the second column of the E2 page, all odd entries are zero while the even positive entries
are all isomorphic to H 2. zY ;Zp/. For each of these even-dimensional entries the natural
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image of H 2. zY ;R/!H 2. zY ;Zp/ coincides with the image of E
0;2j
2
˝E

2;0
2

in E
2;2j
2

with respect to the multiplicative structure since the multiplicative structure is induced
by the cup product. Clearly these subgroups survive until the E1 term. Notice that
the image of H 2. zY ;R/ in H 2. zY ;Zp/ is given by .Zp/

r for some r � 2. Therefore
H 2k. zX ;R/ is the domain of a surjective homomorphism to .Zp/

2 for all positive k .

A contradiction in Case 3 now arises as follows. Since �1. zX / can be seen as a resolution
of a 7–dimensional orbifold whose isotropy groups do not have p–torsion, it follows
that H i.�1. zX /;Zp/ D 0 for all i � 8. We see from the Gysin sequence for �1. zX /

that cupping with e induces an isomorphism of the cohomology groups in degrees � 5.
Since e D e1[ e2 , the same holds for cupping with e1 . Moreover, cupping with e is
surjective onto H 8. zX ;Zp/.

By Step 5 we can choose an ��–eigenvector w 2H 8. zX ;Zp/, which is linearly inde-
pendent of the fixed point e2 .

If ��w D w , then dim.I8/� 2. If ��w D�w , then w[ e 2H 12. zX ;Zp/ would be a
nonzero element of I12 . In both cases we get a contradiction to Step 3.

Otherwise we have that .��/2w D�w . Then w[ e1 is a nonzero fixed point of .��/2 .
This in turn implies that H 10. zX ;Zp/ contains an eigenvector of �� to the eigenvalue
of 1 or �1. In the latter case cupping with e gives a nontrivial element of I14 . In the
former case we have a nonzero element in I10 , providing a contradiction to Step 3 in
both cases.

5 Final remarks

In summary, we have ruled out all orbifold singularities in B . Thus B is a Riemannian
manifold, and F is given by the fibers of a Riemannian submersion M ! B . By [2,
Theorem 5.1] (or Lemma 2.5 above), it follows that we are in the spherical case. From
the homotopy sequence of the fiber bundle, we see that the base B of the submersion
is a homotopy sphere, hence B is a topological sphere. This finishes the proof of
Theorem 1.1.

Remark 5.1 It is well known [10] that there are many exotic 15–spheres that fiber
over S8 . Of course, the base manifold B in part (c) of the main theorem can also be an
exotic sphere; in fact one can just pull back the Hopf fibration to the exotic 8–sphere by
a smooth degree-1 map from the exotic 8–sphere to S8 . What is not known, however,
is whether the fibers of such a fibration can be exotic 7–spheres. This seems to be
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closely related to the question of how closely the diffeomorphism group of an exotic
7–sphere is linked to the diffeomorphism group of S7 .
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