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The Farrell–Jones conjecture for arbitrary lattices
in virtually connected Lie groups

HOLGER KAMMEYER
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HENRIK RÜPING

We prove the K– and the L–theoretic Farrell–Jones conjectures with coefficients in
additive categories and with finite wreath products for arbitrary lattices in virtually
connected Lie groups.

18F25

Introduction

The Farrell–Jones conjecture predicts the algebraic K–theory and L–theory of group
rings. The original formulation can be found in Farrell and Jones [13]. We will deal
with the more general version with coefficients in additive categories and with finite
wreath products; see Bartels and Lück [3], Bartels and Reich [8], and Bartels, Lück,
Reich and Rüping [7, Definition 6.1]. The relevance of the Farrell–Jones conjecture
comes from the fact that it implies many other prominent conjectures, for instance the
one due to Borel about topological rigidity of aspherical closed manifolds, the one
due to Novikov about the homotopy invariance of higher signatures, and the one due
to Kaplansky about the triviality of idempotents in group rings with coefficients in a
field of torsionfree groups. For an overview of the Farrell–Jones conjecture and its
consequences; see for instance works of Bartels, Lück and Reich [6; 20; 21].

Let FJ be the class of groups satisfying the K– and L–theoretic Farrell–Jones conjec-
ture with coefficients in additive categories and with finite wreath products. Recently,
Rüping [28] proved GL.n;Q/ 2 FJ. In this article we show that the theory of defor-
mations and rigidity of lattices in semisimple Lie groups due to Calabi, Vesentini and
Weil allow the following conclusion. A topological group is called virtually connected
if it has finitely many path components. A discrete subgroup of a locally compact
Hausdorff group is called a lattice if the quotient space G=� has finite covolume with
respect to the Haar measure of G .
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1276 Holger Kammeyer, Wolfgang Lück and Henrik Rüping

Theorem 1 (Lattices in virtually connected Lie groups) Let G be a virtually con-
nected Lie group and let � �G be a lattice. Then � lies in FJ.

This extends a previous result of Bartels, Farrell and Lück [2] from the class of
cocompact lattices to the class of all lattices in virtually connected Lie groups.

Deligne and Mostow [12] have constructed non-cocompact lattices in SU.2; 1/ and
SU.3; 1/ which are neither hyperbolic, nor CAT.0/, nor arithmetic, nor solvable (not
even amenable). So Theorem 1 comprises groups for which the Farrell–Jones conjecture
was a priori unknown. Note that the operator-theoretic version of the Farrell–Jones
conjecture, the Baum–Connes conjecture for the topological K–theory of the reduced
group C �–algebra, is still open for many lattices in virtually connected Lie groups, for
instance for SL.n;Z/ for n� 3.

The most general result, in our view, about lattices will be proved in Theorem 8, where
the virtually connected Lie group is replaced by a second countable locally compact
Hausdorff group.

Acknowledgements This paper has been financially supported by a Leibniz Award
granted to Lück by the Deutsche Forschungsgemeinschaft.

1 The status of the Farrell–Jones conjecture

The next result describes what is known about FJ. We will frequently use some of the
properties of FJ listed below; no more knowledge about the Farrell–Jones conjecture
is required to understand the proofs in this paper.

Theorem 2 (Status of the Farrell–Jones conjecture) The class of groups FJ has the
following properties:

(1) It contains all hyperbolic groups and all CAT.0/–groups.

(2) It contains all solvable groups.

(3) It contains GL.n;Q/ and GL.n;F.t// for any finite field F .

(4) It contains all S–arithmetic groups.

(5) It contains all cocompact lattices in virtually connected Lie groups.

(6) It contains the fundamental group of any manifold of dimension � 3.

(7) It is closed under direct and free products.

(8) It is closed under taking subgroups.
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(9) If f W G!H is a group homomorphism such that H , kerf and f �1.Z/ lie
in FJ for every infinite cyclic subgroup Z �H , then G lies in FJ.

(10) If a finite-index subgroup of a group G lies in FJ, so does G .

Proof See for instance [4; 2; 5; 28; 32; 33] for proofs (without wreath products). The
version and the corresponding proofs with wreath products are just a slight modification
of the version without wreath products, compare [2, Remark 0.4].

Farrell and Jones [14, Proposition 0.10] have proved the L–theoretic Farrell–Jones
conjecture and the K–theoretic Farrell–Jones conjecture in dimensions � 1, both with
untwisted coefficients in Z, for fundamental groups of A–regular negatively curved
complete Riemannian manifolds.

A Riemannian manifold is A–regular if for some nonnegative sequence AD .A/i we
have jriRj �Ai , where the indices i vary over the natural numbers and riR is the
i th covariant derivative of the curvature tensor.

If the lattice is torsionfree, then the quotient of the symmetric space by the action of
that lattice is an A–regular manifold. We want to also include lattices with torsion and
allow twisted coefficients and want to consider all degrees. This makes the use of the
important inheritance properties of the general version possible.

2 Some preliminaries about finitely generated discrete sub-
groups in linear algebraic groups defined over Q

A key ingredient in our proof is the following striking property of lattices whose first
cohomology with coefficients in the adjoint representation vanishes [26, Proposition 6.6
and Theorem 6.7, pages 90–91].

Theorem 3 Let G be a linear algebraic group defined over Q. If � � G .R/ is a
finitely generated discrete subgroup and H 1.�; g/D 0, then there exists a number field
F and an element g 2G .R/ such that g�g�1 �G .F/.

We want to give an idea as to why group cohomology decides about the possibility
of conjugating a lattice into the F–rational points of an algebraic group. For more
information, see [31, Section 6]. Let G D G .R/ and let Hom.�;G/ be the space
of all homomorphisms from � to G with the topology of pointwise convergence. A
base point u 2 Hom.�;G/ is given by the inclusion uW � ,! G . A deformation of
the lattice � in G is a map 'W I ! Hom.�;G/, defined on some open interval I
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containing zero, such that '0Du and such that '. /W I!G is smooth for every  2� .
Given a smooth path gW I ! G with g0 D e 2 G , we obtain a deformation setting
'.g/t D gtug�1

t . These deformations are always present, regardless of the specific
group � and its embedding u in G . Therefore the deformations '.g/ are termed
trivial. Right multiplication with an element h 2 G defines a self-diffeomorphism
R.h/ of G . We identify the Lie algebra g of G with the tangent space Te.G/. Then
any deformation ' defines a function c.'/W �! g setting

c.'/. /D dR.�1/
d
dt
'. /t

ˇ̌̌
tD0

:

One easily verifies that c.'/ is a cocycle of � with values in Ad ıuW � ! g. For a
smooth path gW I!G with g0De let Xg 2g be the velocity vector of g at tD0. Then
for the trivial deformation '.g/ we obtain c.'.g//. /D Xg �Ad ıu. /Xg which
means c.'.g// is a coboundary. This lets one hope that the condition H 1.�; g/D 0

might imply that every deformation of � in G is trivial. Indeed, this can be proved
using, amongst other things, the implicit function theorem.

Let 1; : : : ; n be a choice of generators of � . Then we obtain an embedding
Hom.�;G/ ! Gn by sending a homomorphism r 2 Hom.�;G/ to the n–tuple
.r.1/; : : : ; r.n//. We write each relation of � as a word w D w.1; : : : ; n/ in
the symbols i . Allowing general elements g 2 G to take the place of the i , each
relation w defines a morphism wW Gn! G of real affine varieties defined over Q.
The image of our embedding Hom.�;G/! Gn is then given by

T
w w
�1.e/, the

intersection taken over all relations in � . Thus Hom.�;G/ is embedded as a Q–
subvariety of Gn , no matter whether finitely many relations are sufficient or not. If
H 1.�; g/D 0, then every deformation of � in G is trivial. So in that case the orbit of
u in Hom.�;G/ under the G –action by conjugation contains an open neighborhood
U �Hom.�;G/ of u which also implies that the point u is simple. It is then a lemma
of algebraic geometry [16, Lemma 7.1, page 311] that U contains a Q–rational point
u0 where Q is the algebraic closure of Q. Since u0 is an n–tuple of matrices, clearly
u0 is in fact an F–rational point for a finite extension F of Q. This gives the theorem.
It remains to answer the question of which lattices � have vanishing H 1.�; g/.

Let G be a connected semisimple Lie group. The Lie algebra g of G has a decompo-
sition gD g1˚ � � � ˚ gk into simple ideals which is unique up to permutation. The
unique connected Lie subgroup Gi in G with Lie subalgebra gi is a priori not closed.
But since gi is an ideal, the group Gi is normal and hence actually closed by [27].
Multiplication defines an epimorphism

(2-1) G1 � � � � �Gk !G
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with discrete (in fact central) kernel. This is equivalent to G being the almost direct
product of the normal subgroups Gi , ie GDG1 �G2 � � �Gk WD fg1 �g2 � � �gk j gi 2Gi ;

i D 1; 2; : : : ; kg and the intersection of Gi with
Q

j 6Di Gj is discrete for all i . A
compact factor K of G is a connected, normal, compact subgroup of G . It follows
from [27] that K is an almost direct product KDGi1

� � �Gil
with 1� i1< � � �< il � k

and each Gij compact.

Thus a connected semisimple Lie group without compact factors is a connected semisim-
ple Lie group all of whose connected, normal, compact subgroups are trivial. We remark
that there is an equivalent definition in the literature requiring instead that all compact
quotient groups of G are trivial.

Following [26, Definition 5.20, page 86], we call a lattice � �G irreducible if there are
no two normal, connected, infinite subgroups H1;H2 �G such that G is the almost
direct product of H1 and H2 and such that .� \H1/ � .� \H2/ has finite index in � .

Theorem 4 Let G be a connected semisimple Lie group without compact factors
and let � � G be an irreducible lattice. Suppose that G is not locally isomorphic to
SL.2;R/ or SL.2;C/. Then H 1.�; g/D 0.

Proof Since the group Gi appearing in (2-1) is compact if and only if Gi has real rank
zero, we see that a rank one semisimple Lie group without compact factors is actually
simple. Therefore Theorem 4 is a combination of [31, Corollary 7.5 and Theorem 7.7,
page 99].

3 Proof of Theorem 1

We first prove the semisimple case of Theorem 1 and then show how to deduce the
result in general.

Proposition 5 Let G be a connected semisimple Lie group and let � �G be a lattice.
Then � 2 FJ.

Proof Let K �G be the maximal compact factor. Consider the short exact sequences

1 // K // G
p
// G=K // 1

1 // � \K //
?�

OO

� //
?�

OO

p.�/ //
?�

OO

1:

Geometry & Topology, Volume 20 (2016)
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By [31, Corollary 4.10, page 24] the image p.�/ of � is a lattice in G=K . The group
� \K is finite because K is compact and � is discrete. Thus any preimage of a
virtually cyclic subgroup is again virtually cyclic and hence lies in FJ, for example by
Theorem 2(1). It follows from Theorem 2(9) that the lattice � lies in FJ if p.�/ does.
Thus we may assume that G has no compact factors.

Let Z.G/ denote the center of G . It follows now from [26, Corollary 5.17, page 84]
that the product Z.G/� is discrete and in particular closed in G because G is a
Hausdorff group. Since the center Z.G/ is a normal subgroup, we obtain from [26,
Theorem 1.13, page 23] that � \Z.G/ is a lattice in Z.G/, which in this case just
means it has finite index. Thus [24, Theorem 4.7, page 23] says that � projects under
pW G ! G=Z.G/ to a lattice p.�/ � G=Z.G/. Moreover, the center Z.G/ is an
abelian group so that any preimage under p of a virtually cyclic subgroup in G=Z.G/

is virtually solvable, thus lies in FJ by Theorem 2(2) and (10). Again by Theorem 2(9)
we may assume that G has trivial center.

We conclude from [26, Theorem 5.22, page 86] that we have an almost direct product
decomposition G DH1 � � �Hr such that the almost direct product �1 � � ��r has finite
index in � , where �i D � \Hi is an irreducible lattice in Hi for each i D 1; : : : ; r .
Recall that discrete normal subgroups of connected topological groups are central.
Since G has trivial center, both almost direct products are actually direct products.
Thus by Theorem 2(7) and (8) we can assume that � is an irreducible lattice in a
connected semisimple Lie group G with trivial center and without compact factors.

Suppose G was locally isomorphic to SL.2;R/ or SL.2;C/. Since G has trivial
center, G is actually globally isomorphic to PSL.2;R/ or PSL.2;C/. Thus � acts
properly with finite volume quotient on hyperbolic 2– or 3–space. Therefore [10,
Corollary 11.28, page 362] asserts that � is CAT.0/, whence in FJ by Theorem 2(1).
So we may assume that G is neither locally isomorphic to SL.2;R/ nor to SL.2;C/.
By Theorem 4 we then have H 1.�; g/D 0. Moreover, the lattice � � G is finitely
generated, see [26, Remark 13.21, page 210].

Let g be the Lie algebra of G . The adjoint representation AdW G!Aut.g/ embeds G

as the Lie subgroup of inner automorphisms Int.g/�Aut.g/ as is shown in [19, 5.2.(ii),
page 129]. Since g is semisimple, the subgroup Int.g/ is actually just the identity
component of Aut.g/ by [19, Corollary 6.5, page 132]. In addition it is well-known
that a real semisimple Lie algebra admits a basis with rational structure constants [9,
Proposition 3.7, page 118]. It follows that G D Aut.g/� GL.g/ is a linear algebraic
Q–group and G DG .R/0 .

Finally, Theorem 3 asserts that � is conjugate to a subgroup of the F–rational points
G .F/ for a number field F . By restriction of scalars [25, Section 2.1.2] there exists a

Geometry & Topology, Volume 20 (2016)



The Farrell–Jones conjecture for lattices in Lie groups 1281

linear algebraic Q–group resF=Q.G / such that G .F/D resF=Q.G /.Q/� GL.n;Q/.
Theorem 2(3) and (8) complete the proof.

Remark 6 The above proof starts by showing that we can assume the Lie group G

is connected, semisimple, center-free and has no compact factors while the lattice �
is irreducible. If one additionally requires that G has real rank at least two, then the
assumptions of Margulis’ famous arithmeticity theorem [22, Theorem 1] are satisfied
which says in particular that � virtually embeds into GL.n;Z/. The Farrell–Jones
conjecture for � then follows from [7] with no more detours. The existence of
nonarithmetic lattices in real rank one Lie groups, however, necessitates our appealing
to the more classical local rigidity theory. The latter makes weaker assumptions on
G at the cost of the weaker conclusion � � GL.n;Q/. But this turns out to be good
enough for our purposes.

Proof of Theorem 1 We will mostly follow [2, Proof of Proposition 5.1, page 38].
We will prove this by induction on the dimension of the surrounding Lie group G . If
G is zero-dimensional, � is a finite group and thus trivially satisfies the Farrell–Jones
conjecture. Since G has finitely many path components, � \G0 has finite index in �
and is a lattice in G0 so that we may assume that G is connected by Theorem 2(10).
Arguing as in the first part of the proof of Proposition 5, we may moreover assume that
G has no connected, compact, normal subgroup.

Let R be the radical of G given by the maximal connected normal solvable subgroup
of G . Similarly we denote by N the nilradical of G given by the maximal connected
normal nilpotent subgroup of G . Clearly N E R and R=N is abelian. Recall from [30,
Theorem 3.18.13, page 244] that G possesses maximal semisimple subgroups, any such
two are conjugate, and for any such S �G we have the generalized Levi decomposition
G DRS . As a word of warning, in general neither S nor the intersection R\S is a
closed subgroup of G . An example of such an S is given by Alain Valette in [11].

We want to prove that � \ N is a lattice in N . According to [31, Theorem 1.6,
page 106] a sufficient condition is that every compact factor of S acts non-trivially
on R. Suppose K was a compact factor in S acting trivially on R. Any element
g 2G is of the form gD rs with r 2R and s 2 S . We get for k 2K that sks�1 2K

and .sks�1/�1r.sks�1/D r and hence gkg�1 D r.sks�1/r�1 D sks�1 2K . Thus
K is normal in G whence trivial. It follows that � \N is a lattice in N . By [31,
Theorem 4.7, page 23]1 we conclude that �=.� \N / is a lattice in G=N . We have

1Note that Theorem 4.7 in [31] is obviously misprinted. The conclusion should read “. . . if and only if
� \H is a lattice in H .”
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the short exact sequence

1! � \N ! �
p
�!�=.� \N /! 1:

Since G has no connected, compact, normal subgroup, the nilradical is simply con-
nected [18, Lemma 3.1(i), page 229]. It follows from [26, Proposition 3.7, page 52]
that the lattice � \N �N is poly-Z, ie polycyclic with infinite cyclic factor groups.
Hence the preimage of a virtually cyclic subgroup of �=.� \N / under p is virtually
poly-Z as well, thus lies in FJ by Theorem 2(2) and (10). Now if N is non-trivial,
then the Lie group G=N is of lower dimension than G and hence �=.�\N / 2 FJ by
the induction hypothesis. Therefore � 2 FJ by Theorem 2(9). If on the other hand N

is trivial, then RŠR=N is abelian, so R is contained in the nilradical N and thus
trivial. Therefore G is semisimple and Proposition 5 completes the proof.

Remark 7 According to [26, Corollary 8.28, page 150] the criterion that no compact
factor of S acts trivially on R is actually sufficient for �=�\R being a lattice in G=R.
This result would spare us the detour of factoring out the nilradical and using induction
on dim G . However, A N Starkov [29] claimed to have constructed a counterexample
to Corollary 8.28, which earned him a doubtful Mathematical Review and a follow-up
paper by T S Wu [35] counterclaiming a new proof of the result in question. On the
other hand, E B Vinberg V V Gorbatsevich and O V Shvartsman [31, page 107] say the
counterexample of Starkov is correct. We refrain from taking sides in the discussion
and prefer to give our more involved but safe argument.

4 Generalizations

Two assumptions in Theorem 1 can still be relaxed. Firstly, the notion of lattice still
makes sense for locally compact Hausdorff groups because of the existence of a unique
Haar measure. Secondly, one can try and work with less restrictive connectivity. Here
is the most general result we could come up with.

Theorem 8 (Lattices in second countable locally compact Hausdorff groups) Let G

be a second countable locally compact Hausdorff group and let � be a lattice in G . If
�0.G/ is discrete and lies in FJ, then � also lies in FJ.

We remark that the Hausdorff assumption for topological groups is often implicit in
the literature. In fact a topological T0 –group is already Hausdorff. For the proof
of Theorem 8 let us first recall some basic facts about the automorphism group
Aut.G/ of a connected Lie group G . Differentiation defines a homomorphism of Lie
groups dW Aut.G/ ! Aut.g/ which is actually injective and has closed image [24,
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Proposition 4.1, page 49]. If G is simply connected or has trivial center, then
this map is an isomorphism. For the inner automorphisms Int.G/ of G we obtain
d.Int.G//D Ad.G/ by the very definition of the adjoint representation. As remarked
in the proof of Proposition 5 we have Ad.G/ D Int.g/ so that d induces an injec-
tive group homomorphism Out.G/! Out.g/ where Out.G/D Aut.G/= Int.G/ and
Out.g/D Aut.g/= Int.g/ denote the groups of outer automorphisms. If G is moreover
semisimple, then we have seen in the same proof that G DAut.g/ is a linear algebraic
Q–group with G .R/0 D Int.g/. By a theorem of Whitney [34, Theorem 3, page 547]
a real algebraic variety has only finitely many components in the ordinary topology.
Applying this result to the R–variety G .R/ we have come to the following conclusion.

Lemma 9 The group of outer automorphisms Out.G/ of a connected semisimple Lie
group G is finite.

We use this fact to draw the following conclusion.

Proposition 10 Let � be a lattice in a connected Lie group G , and let ' be an
automorphism of G with '.�/D � . Then � Ì' Z lies in FJ.

Proof We will prove this by induction on the dimension of G . The induction beginning
dim.G/D 0 is trivial; in this case G and hence � are trivial so that � Ì ZŠ Z and
hence satisfies the Farrell–Jones conjecture for trivial reasons.

First we want to reduce the general case to the case of a lattice in a semisimple Lie
group. This works similarly to the proof of Theorem 1. The nilradical N of G is
characteristic, therefore '–invariant and hence we get a short exact sequence

1! � \N ! � Ì' Z! �=.� \N /Ì Z! 1:

As we have seen above, the group � \N is a lattice in N and polycyclic. Thus
preimages of virtually cyclic subgroups are virtually polycyclic and hence they lie in
FJ by Theorem 2(2) and (10). If N is non-trivial, it has dimension bigger than zero
and thus G=N has smaller dimension. Hence the lattice �=.� \N /Ì Z lies in FJ by
inductive assumption and so does � Ì' Z by Theorem 2 (9). If N is trivial, then the
radical R is also trivial which means that G is additionally semisimple.

Let K be the maximal compact factor of G . It is likewise characteristic and hence
'–invariant. Thus we have a short exact sequence

1! � \K! � Ì' Z
p
! �=.� \K/Ì' Z! 1:

Since K \� is finite, any preimage of a virtually cyclic subgroup under p is again
virtually cyclic and hence it lies in FJ. Thus by Theorem 2 (9) it remains to show
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the statement for �=.� \K/Ì' Z. As explained above �=.� \K/ is a lattice in the
Lie group G=K . If K is non-trivial, then the target has smaller dimension and thus
satisfies the Farrell–Jones conjecture by inductive assumption. It remains to consider
the case where G is semisimple without compact factors.

The outer automorphism group of G is finite by Lemma 9. Since � Ì'n Z has finite
index in � Ì' Z, we can use Theorem 2(10) to replace ' by a power of ' and thus
we may assume that ' is given by conjugation with g 2 G . By [17, Corollary 2.2,
page 313] we have that the Weyl group fg 2G j g�g�1 D �g=� is finite. Thus after
further passing to a power we may assume that ' is given by conjugation with  2 � .
Thus � Ì' ZŠ � �Z. The isomorphism is given by the identity on � and it sends the
generator of Z� �Ì' Z to .; 1/ 2 ��Z. Hence �Ì' Z lies in FJ by Theorem 2(7)
and Proposition 5.

Remark 11 We did not show the Farrell–Jones conjecture for all groups of the form
� Ì Z, where � is a lattice in a connected Lie group. We only showed this for
those automorphisms which extend to an automorphism of the surrounding Lie group.
Nevertheless, in interesting cases these extensions always exist and are unique, most
notably if � is an irreducible lattice in a connected semisimple Lie group without
compact factors, with trivial center and not isomorphic to PSL.2;R/ [23, Theorem 7.5
and Remark 7.6, page 254]. Note that the last requirement is essential because the group
PSL.2;Z/ contains the free group on three letters F3 as a subgroup of index twelve,
so F3 is a lattice in PSL.2;R/. If unique extension of automorphisms held for lattices
in PSL.2;R/, we would obtain an embedding Aut.F3/! Aut.sl.2;R//� GL.3;R/.
It is however well known that Aut.F3/ has no faithful linear representation [15].

Theorem 12 Let � be a lattice in a Lie group G . If �0.G/ lies in FJ, so does � .

Proof Let pW G! �0.G/ be the projection. Its kernel G0 is the path component of
the identity. We get an induced group homomorphism �! p.�/ whose target lies in
FJ. We want to apply Theorem 2(9). Since G0 is open, the path components of G=�

have positive measure. Therefore the index of p.�/ in �0.G/ must be finite. Since
G0 is closed, [31, Theorem 4.7, page 23] asserts that � \G0 is a lattice in G0 . (Mind
the footnote on page 1281!) So the group � \G0 lies in FJ by Theorem 1. Thus it
remains to check that the preimage of every infinite cyclic subgroup Z of p.�/ lies
in FJ. We have short exact sequences

1 // G0 // p�1.Z/ // Z // 1

1 // � \G0 //
?�

OO

p�1.Z/\� //
?�

OO

Z // 1:
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Thus p�1.Z/ \ � can be expressed as a semidirect product G0 \ � Ì' Z. The
automorphism ' is given by conjugation with a preimage  2 p�1.Z/ \ � of a
generator of Z . Thus we can apply Proposition 10 to the lattice � \G0 in G0 with
the automorphism ' .

Proof of Theorem 8 Let K be the unique maximal, compact, normal subgroup of
G0 . The Montgomery–Zippin solution to Hilbert’s fifth problem implies that the
factor group G0=K is a Lie group, see for instance [1, Lemma 1, page 274]. By
uniqueness K is characteristic in G0 and thus normal in G . Consequently G=K is
homeomorphic to the disjoint union of �0.G/–copies of G0=K . The discrete space
�0.G/ is countable because G is second countable, so in fact G=K is a Lie group as
well. Moreover �0.G=K/D �0.G/. As in the beginning of the proof of Proposition 5,
the group �=� \K is a lattice in G=K and �=� \K lies in FJ if and only if �
does. Theorem 12 completes the proof.
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