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Variation of Gieseker moduli spaces via quiver GIT
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We introduce a notion of stability for sheaves with respect to several polarisations that
generalises the usual notion of Gieseker stability. Under a boundedness assumption
which we show to hold on threefolds or for rank two sheaves on base manifolds of
arbitrary dimension, we prove that semistable sheaves have a projective coarse moduli
space that depends on a natural stability parameter. We then give two applications
of this machinery. First, we show that given a real ample class ! 2 N 1.X /R on
a smooth projective threefold X there exists a projective moduli space of sheaves
that are Gieseker semistable with respect to ! . Second, we prove that given any two
ample line bundles on X the corresponding Gieseker moduli spaces are related by
Thaddeus flips.

14D20, 14J60, 32G13; 14L24, 16G20

Introduction

Moduli spaces of sheaves play a central role in algebraic geometry: they provide
intensively studied examples of higher-dimensional varieties, are naturally associated
with the underlying space so can be used to define invariants of its differentiable
structure, and have found application in numerous problems of mathematical physics.
To obtain moduli spaces with nice properties it is necessary to choose a stability
condition, which classically depends on a choice of ample class on the underlying
space. Thus, along with the general existence problem, it is natural to ask how these
moduli spaces vary as this choice changes.

For surfaces there has emerged a rather beautiful answer to this question through the
works of Friedman and Qin [13], Ellingsrud and Göttsche [11], and Hu and Li [24],
among others. Suppose X is a smooth projective complex surface, and that we consider
torsion-free coherent sheaves on X of a given topological type with large second Chern
class. Given a choice of ample class L, the moduli space M�

L
of slope semistable

sheaves (with respect to L) is irreducible and generically smooth. Furthermore, the
ample cone Amp.X / of X is divided up by a locally finite number of rational linear

Published: 4 July 2016 DOI: 10.2140/gt.2016.20.1539

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=14D20, 14J60, 32G13, 14L24, 16G20
http://dx.doi.org/10.2140/gt.2016.20.1539


1540 Daniel Greb, Julius Ross and Matei Toma

walls into chambers within which M�
L

does not change, and if xL lies on one of these
walls, and L1 and L2 are points in adjacent chambers, the moduli spaces undergo a
birational flip:

(�)

M�
L1

!!

M�
L2

}}
M�
xL

In particular, any two such moduli spaces are birational, related by a sequence of
birational transformations through moduli spaces of sheaves. There is an analogous
picture of the moduli spaces ML of Gieseker semistable sheaves on a surface, as
proved by Matsuki and Wentworth [38], which also relies in a crucial way on the fact
that the polarisation xL lying on the wall is rational.

Much less is known when X has higher dimension. In fact, it is not hard to see that
the same techniques used for surfaces do not generalise, essentially for the following
reason: if dim X � 3, then the corresponding walls in Amp.X / that witness the change
in (slope) stability are no longer linear (this is easily seen as the slope of a sheaf with
respect to L is non-linear if dim X � 3). Worse still, there are examples due to
Schmitt [42] in which such a wall may contain no rational points at all! Thus, the
natural candidate to replace xL is a real, but not rational, ample class, and as there is no
obvious candidate for the moduli of Gieseker semistable sheaves taken with respect
to xL, there is not much reason to expect a diagram similar to (�).

In this paper, we propose and execute a new strategy that addresses this problem. The
main idea is to avoid moving the ample class directly and instead work with a stability
notion that depends on a choice of several ample classes at once. We show that on a
smooth projective threefold any two Gieseker moduli spaces are related by Thaddeus
flips. As part of the proof, we also prove the existence of a projective moduli space of
Gieseker semistable sheaves taken with respect to any real ample class, thus answering
a special case of an old question of Tyurin, cf [46, Section 3.2].

Multi-Gieseker stability

Our approach rests on the consideration of the following stability condition. Let X

be a projective manifold and fix a finite collection of ample line bundles Lj on X

for 1 � j � j0 . Furthermore, suppose that � D .�1; : : : ; �j0
/ is a non-zero vector

of non-negative real numbers. We shall say a torsion-free coherent sheaf E on X is
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semistable with respect to this data if for all proper subsheaves F �E the inequalityP
j �j�.F ˝Lm

j /

rank.F /
�

P
j �j�.E˝Lm

j /

rank.E/

holds for all m sufficiently large.

Theorem (Existence of projective moduli spaces, Theorems 9.4 and 9.6, Corollary 4.4)
Suppose the set of semistable sheaves (of a given topological type) is bounded. Then
there exists a projective moduli space M� of semistable sheaves.

As is clear from the definition, the moduli space ML of Gieseker semistable sheaves
with respect to a single ample line bundle L is a special case of this construction
(simply taking j0 D 1). Moreover, just as for ML , the moduli spaces M� contain an
open set parametrising stable sheaves, and the points on the boundary correspond to
S –equivalence classes of sheaves.

The boundedness hypothesis is obviously necessary for such a moduli space to exist,
and we will prove it holds in a number of cases, to be discussed next. In fact, our main
construction holds more generally and, subject to the same boundedness hypothesis,
gives a moduli space of pure sheaves on any projective scheme X over an algebraically
closed field of characteristic zero.

Boundedness

Let X be a smooth d –dimensional projective variety over an algebraically closed
field k of characteristic zero, let LD .L1; : : : ;Lj0

/ be a vector of ample line bundles,
and let � 2B.X /Q , see Definition 1.4. In order to investigate boundedness and moduli
spaces with respect to a whole family of stability conditions, we will say that a set
†� .R�0/

j0 n f0g of stability parameters is bounded (with respect to the data �;L) if
the set of all sheaves of topological type � that are semistable with respect to some
� 2† is bounded. Note that for technical reasons, mostly related to the Hodge index
theorem and Bogomolov’s inequality, we restrict to smooth varieties in this part. Using
this terminology, our two main boundedness results can be formulated as follows.

Theorem (Corollary 6.11) Let X be a smooth projective variety of dimension d ,
� 2 B.X /Q , and L1; : : : ;Lj0

be ample line bundles on X . Furthermore, suppose that
†� .R�0/

j0 is a closed convex polyhedral cone with the origin removed. IfX
j

�j c1.Lj /
d�1
2 Pos.X /R for all .�1; : : : ; �j0

/ 2†;

then † is a bounded set of stability parameters with respect to � and LD .L1; : : : ;Lj0
/.
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Here, the positive cone PosR.X /�N1.X /R is the cone of classes that are .d � 1/st

powers of real ample classes.

Theorem (Corollary 6.12) Let X be a smooth projective variety, � 2 B.X /Q , and
L1; : : : ;Lj0

be ample line bundles on X . In addition, suppose that either

(1) the rank of the torsion-free sheaves under consideration is at most two, or

(2) the dimension of X is at most three, or

(3) the Picard rank of X is at most two.

Then the whole set .R�0/
j0 n f0g of stability parameters is bounded with respect to �

and LD .L1; : : : ;Lj0
/.

Variation of moduli spaces

As laid out above, our interest in M� really comes from how it changes as � varies.
To discuss this, fix .L1; : : : ;Lj0

/ and suppose †� .R>0/
j0 n f0g is such that the set

of sheaves of a given topological type that are semistable with respect to some � 2†
is bounded.

Theorem (Chamber structure, Proposition 4.2 and Corollary 10.2) The set † is cut
into chambers (such that the moduli space M� is unchanged as � varies in the interior
of a single chamber) by a finite number of linear rational walls. As � moves over a
wall separating two chambers, the corresponding moduli spaces are related by a finite
number of Thaddeus flips.

Here, by a Thaddeus flip we mean a transformation occurring as a change of GIT
stability on a fixed “master space”. More precisely, we say two schemes XC and
X� are related by a Thaddeus flip if there exists a quasi-projective scheme R with an
action of a reductive group G and stability parameters �C; ��; � such that there exists
a diagram of the form

XC DRss;�C==G

 C ((

Rss;��==G DX�

 �vv
Rss;�==G;

where Rss;� denotes the set of points that are GIT semistable with respect to � , and
the morphisms  ˙ are induced by inclusions Rss;�C �Rss;� �Rss;�� . In fact, in our
case R will be affine, G will be a product of general linear groups, and the �; �˙ will
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come from characters of G . We emphasise that a Thaddeus flip is not necessarily a flip
in the sense of birational geometry, since a priori even if all the spaces involved are non-
empty, this transformation could be a divisorial contraction or contract an irreducible
component. However, from the theory of variation of GIT due to Thaddeus [47] and
Dolgachev and Hu [9] it will consist of a sequence of birational flips under certain
circumstances. In fact, our result is slightly stronger in that the same master space R

is used for all the Thaddeus flips that occur between the different M� as � varies in
†. We emphasise that for the above variation result we require that if � 2† then each
�j be strictly positive; this should not really be necessary and we hope to address this
in the future.

As an application of this technology, we prove the following result concerning the
variation of moduli spaces on smooth threefolds.

Theorem (Variation of Gieseker moduli spaces on threefolds, Theorem 12.1) Let X

be a smooth projective threefold over an algebraically closed field of characteristic zero,
let � 2 B.X /Q , and let L1;L2 be ample line bundles on X . Then the moduli spaces
ML1

and ML2
of sheaves of topological type � that are Gieseker semistable with

respect to L1 and L2 , respectively, are related by a finite number of Thaddeus flips.

Semistability and moduli spaces for Kähler polarisations

As a second application of the above, we consider the notion of Gieseker stability with
respect to a real class ! 2 N 1.X /R on a smooth projective manifold X . To define
stability with respect to ! , for a torsion-free sheaf E consider the quantity

pE.m/D
1

rank.E/

Z
X

ch.E/em! Todd.X /;

where Todd.X / is the Todd class of X . We say that E is (semi)stable with respect
to ! if for all proper coherent E0 � E we have pE0.m/ .�/pE.m/ for all m suffi-
ciently large. When ! represents the first Chern class of an ample line bundle L, the
Riemann–Roch theorem states that pE.m/ equals .1=rank.E//�.E˝Lm/, and so
this generalises the notion of Gieseker stability from integral classes to real classes.
Using this notation, our result can be formulated as follows.

Theorem (Projective moduli spaces for !–semistable sheaves, Theorem 11.6) Let
! 2 N 1.X /R be any real ample class on a smooth projective threefold. Then there
exists a projective moduli space M! of torsion-free sheaves of fixed topological type
that are semistable with respect to ! . This moduli space contains an open set consisting
of stable sheaves, and points on the boundary correspond to S –equivalence classes of
properly semistable sheaves.
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It is likely that the assumption that X has dimension three is not really necessary. We
emphasise that the above moduli space is projective despite us using a real class to
define the stability condition, contrary to the expectation expressed for example in [42,
page 217, after Main Theorem]. Note however that algebraicity phenomena similar
to the one observed here have been discovered earlier in Kähler reduction theory and
geometric invariant theory; see for example [23] or [17].

Via the Kobayashi–Hitchin correspondence, the above result thus constructs a modular
compactification of the moduli space of vector bundles of topological type � on X

that carry a Hermite–Einstein connection with respect to a Kähler form representing ! .
In other words, in our situation it yields a positive answer to the important existence
question for compact moduli spaces of semistable sheaves on compact Kähler manifolds,
which was raised by Tyurin and discussed for example by Teleman in [46, Section 3.2],
and which in its general form is wide open.

Method of construction

Our method for constructing the moduli space is based on the functorial approach
introduced by Álvarez-Cónsul and King [2]. This in turn parallels that of Simpson [45]
which we recall first. For a coherent sheaf E we can choose n sufficiently large so that
E˝Ln is globally generated, ie the evaluation map H 0.E˝Ln/˝OX !E˝Ln

is surjective. Thus, choosing an isomorphism H 0.E˝Ln/' V , where V is a fixed
vector space of the appropriate dimension, we can thus consider E as a point in the Quot
scheme of the trivial bundle with fibre V . Expanding slightly, letting H WDH 0.Lm�n/,
we have that for m sufficiently large the natural multiplication

(}) V ˝H 'H 0.E˝Ln/˝H !H 0.E˝Lm/

is surjective, and thus gives a point in a Grassmannian of V ˝H . The different choices
of isomorphism correspond to the orbits of this point under the natural GL.V /–action,
thus the moduli space desired is the quotient with respect to GL.V /. This quotient can
be constructed using GIT, and it is at this stage that the stability condition enters.

The insight of Álvarez-Cónsul and King is that it is possible to delay the point at which
one picks the isomorphism in (}), and thus give a more “functorial” construction. So,
instead of (}) we consider the multiplication map

(|) H 0.E˝Ln/˝H !H 0.E˝Lm/

as representation of a certain quiver. In fact, this is a representation of the so-called
Kronecker-quiver given by

�
H
�! �;
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where the notation means there are dim H arrows between the two vertices; so, by
definition a representation of this quiver is precisely a morphism of vector spaces
V 0˝H !W for some vector spaces V 0 and W , just as in (|). For a given sheaf E

one can show that for m� n� 0 this representation recovers E . In fact more is true,
and this association gives a fully faithful embedding from the category of (suitably
regular) sheaves into the category of representations of this quiver. One can then appeal
to previous work of King [32], which uses GIT to produce a projective moduli space
of semistable representations of a given quiver without oriented cycles. Thus, the
task becomes to relate stability of the sheaf E with stability of the corresponding
representation, which makes up a substantial part of the work in [2].

Now, for stability with respect to several ample line bundles we will do the same, only
with a more complicated quiver. For simplicity, suppose we have only two line bundles
L1 and L2 , and for i; j D 1; 2 let Hij DH 0.L�n

i ˝Lm
j /. Then, given a sheaf E we

will consider the diagram of linear maps

H 0.E˝Ln
1
/ H11

//

H12

))

H 0.E˝Lm
1
/

H 0.E˝Ln
2
/ H22

//
H21

55

H 0.E˝Lm
2
/:

Here, all the maps are given by natural multiplication; for example, the top row is
the linear map H 0.E˝Ln

1
/˝H11 DH 0.E˝Ln

1
/˝H 0.Lm�n

1
/!H 0.E˝Lm

1
/.

Thinking of this as a representation of an appropriate quiver, we will show that the
stability of this representation is, under suitable hypotheses, the same as the stability
of the sheaf E as defined above. Thus, we can again appeal to [32] to get the desired
moduli space. Note that the representation of the Kronecker quiver computed from
a sheaf E with respect to the line bundle Lj appears in the j th row of our quiver.
Heuristically, the diagonal maps ensure that these representations are related in the
correct way, as given by the appropriate multiplication maps. What makes this quiver
adapted to the variation problem at hand is the existence of a non-trivial space of
stability conditions that one can vary to weigh the contribution of the individual rows
(whereas for the Kronecker quiver there is only one) and hence to interpolate between
the semistability conditions coming from the single Kronecker quivers.

Comparison with other works

The variation of the moduli space of (slope) semistable sheaves on a smooth surface
has attracted a lot of interest due to the connection with Donaldson invariants; see
for example [10; 12; 24; 40; 16; 48; 49] in addition to the references above. For the
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most part, these works aim to describe explicitly how the moduli spaces change as the
polarisation varies (often for specific classes of surfaces and for particular topological
types) to understand precisely how these invariants change. Thus, they avoid framing
the problem as one of variation of GIT. The most prominent exception to this is the
work of Matsuki and Wentworth [38] who use GIT to completely solve the problem on
surfaces for Gieseker semistability.

As discussed above, if one wishes to understand the variation problem for the moduli
spaces on bases of higher dimension one has to confront the fact that the walls in the
ample cone may no longer be rational linear or locally finite (as described by explicit
“pathologies” due to Qin [40, Section 2.3] and Schmitt [42, Example 1.1.5]). The main
result of [42] deals with the case that the polarisation crosses a single wall in the ample
cone, under the rather restrictive assumption that this wall contains a rational point. We
will see that we are able to relax this assumption, at least on threefolds.

The notion of Gieseker semistability can be extended in many ways, and Rudakov [41]
was the first to place these in the context of general abelian categories. This has
since been built on by Joyce’s epic [26; 27; 28; 29] who uses this to understand the
information held by Donaldson–Thomas invariants by describing the “wall crossing”
formulae that govern their change as the stability condition varies. The multi-Gieseker
semistability considered here is certainly a special case of one of Joyce’s stability
conditions (who uses the word “permissible” for what we refer to as “bounded”).
Joyce’s work does not consider (nor really has use for) the coarse moduli spaces, and
instead works throughout with the relevant kinds of stacks. Our two main technical
results (namely the embedding theorem and comparison of semistability theorem)
that allow us to pass from sufficiently regular (semistable) sheaves to (semistable)
representations of a certain quiver can also be interpreted as a statement about the
corresponding stacks, but it is not clear what use this might have. We also comment
that our results yield new geometric situations in which the simpler approach of Kiem
and Li can be applied to give similar wall-crossing formulae (see paragraph four of [31,
page 3], where the authors propose using that the moduli spaces in question appear as
a GIT quotient).

Another extension of the notion of Gieseker stability concerns the decorated sheaves of
Schmitt [42; 44] as well as work by Schmitt [43] and Álvarez-Cónsul [1] on quiver
sheaves, by which we mean representations of a given quiver in the category of sheaves
(see also [35] for a survey). In these works stability is also defined in terms of linear
combinations of Hilbert polynomials (where the coefficients are even allowed to be
polynomials), but all with respect to a single polarisation. It seems likely that at least
part of this work could be generalised to include the case of several polarisations. If
this were done, it might be possible to apply it to get similar variation results (perhaps
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by some kind of “diagonal argument”) but it is not at all obvious to the authors how
this should be done. More significantly, perhaps, the cited works do not address
the additional problems encountered with boundedness when dealing with several
polarisations.

The variation of the moduli space of Gieseker semistable sheaves on surfaces due to
Matsuki and Wentworth has recently been interpreted by Bertram in the context of
Bridgeland stability conditions [5]. It is hence a natural question to ask if anything
similar can be said for the generalisation we describe here.

Characteristic of the base field

We have stated most of our main results assuming the base field has characteristic zero.
As is well known, the construction of the moduli space of Gieseker semistable sheaves
in arbitrary characteristic was achieved by Langer [33], and many of the preliminary
results discussed here also hold in that case (for instance, we state and prove our
boundedness results in Section 6 in arbitrary characteristic). In fact, the construction
of Álvarez-Cónsul and King [2], on which our construction is based, also holds in
arbitrary characteristic, up to a complication concerning the scheme structure of the
moduli space produced (coming from the fact that in characteristic zero taking quotient
rings and invariant subrings commute due to the existence of the Reynolds operator,
see [2, Proposition 6.3]). In positive characteristic, this complication leads to problems
with our organisation of the arguments in Chapter 10. These problems can very likely
be solved by taking into account the subtleties of geometric invariant theory in positive
characteristic.

Preview

In a sequel to this paper [18], we give further applications of the machinery developed
here. First, we prove that if X is smooth of any dimension, and L0 and L00 are general
polarisations in Amp.X /, then the moduli spaces ML0 and ML00 of torsion-free
sheaves taken with regard to L0 and L00 , respectively, are related by a finite number of
Thaddeus flips. Second, we revisit the threefold case and show, again assuming that L0

and L00 are general, that one can even identify the intermediate spaces that appear in
the sequence of Thaddeus flips as moduli spaces of multi-Gieseker semistable sheaves,
thereby generalising the work of Matsuki and Wentworth from surfaces to threefolds.
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Part I Multi-Gieseker stability

1 Preliminaries

1.1 Notation and terminology

We follow closely the notation and terminology used in the bible [25]. Given polyno-
mials p; q 2 RŒX � we write p � q to mean p.m/ � q.m/ for m� 0 and similarly
for strict inequality, which is the same as the lexicographic order on the vector of
coefficients of the two polynomials. We write “for m� n� 0” to mean there is
an n0 such that for all n � n0 there is an m0 � n such that for all m � m0 the
statement in question holds, and similarly for the expression “m� n� p� 0”. All
the sheaves considered in this paper will be coherent, and we will only emphasise this
when appropriate; in particular, if E is coherent then (semi)stability is to be tested
with respect to coherent subsheaves of E .

A Q–line bundle is a formal tensor power LDM p=q for some line bundle M and
rational number p=q , which we say is ample if M is an ample line bundle and p=q

is a positive rational number. We write degL.E/ for the degree of a coherent sheaf
E with respect to an ample line bundle, which extends to ample Q–line bundles by
linearity.

1.2 Preliminaries on sheaves

For the construction of the moduli space we assume that X is a projective scheme
over an algebraically closed field of characteristic zero. The dimension of a coherent
sheaf E on X is the dimension of its support fx 2X WEx ¤ 0g, and we say that E is
pure of dimension d if all non-trivial coherent subsheaves F �E have dimension d .
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The saturation of a subsheaf E0 �E is the minimal subsheaf F containing E0 such
that E=F is either pure or zero. Given an ample line bundle L on X the Hilbert
polynomial of a coherent sheaf E of dimension d can be written uniquely as

(1.1) PL
E .m/ WD �.E˝Lm/D

dX
iD0

˛L
i .E/

mi

i !

for some ˛L
i .E/2Q. If E is non-zero, then we denote the multiplicity as rL

E
WD˛L

d
.E/,

which is a strictly positive integer. The reduced Hilbert polynomial of E is

pL
E.m/ WD

PL
E
.m/

rL
E

and the slope of E is

y�L.E/ WD
˛L

d�1
.E/

rL
E

:

Thus, by definition

(1.2) pL
E.m/D

md

d!
C y�L.E/

md�1

.d � 1/!
CO.md�2/:

We say that E is Gieseker (semi)stable with respect to L if it is pure and for all proper
coherent subsheaves F we have pL

F
.�/pL

E
. This and similar sentences should be

read as two statements, namely that semistability means pL
F
� pL

E
and stability means

pL
F
< pL

E
. Observe that the definition of Gieseker (semi)stability is unchanged if L is

scaled by a positive multiple, and so extends to the case that L is an ample Q–line
bundle.

Remark 1.1 If the dimension d of E equals dim X , then the rank of E is defined
to be

rank.E/ WD
˛L

d
.E/

˛L
d
.OX /

:

When X is integral, there is an open dense U � X on which E is locally free and
then rank.E/ is the rank of the vector bundle EjU .

Example 1.2 (Riemann–Roch I) Suppose that X is smooth of dimension d and let
L be an ample line bundle. Then, by the Riemann–Roch theorem the multiplicity of a
torsion-free sheaf E is

rL
E D rank.E/

Z
X

c1.L/
d
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and

(1.3) �.E˝Lm/D rL
E

md

d!

C

Z
X

.c1.E/C rank.E/ Todd1.X // � c1.L/
d�1 md�1

.d � 1/!

CO.md�2/;

where Todd1.X /D�c1.KX /=2 is the degree 2 part of the Todd class of X . Thus,

y�L.E/D
1R

X c1.L/d

degL.E/

rank.E/
C

R
X Todd1.X /c1.L/

d�1R
X c1.L/d

:

Note that this differs from the usual slope �L.E/ WD degL.E/=rank.E/ by an affine
linear function that is independent of E . So

�L.F / .�/ �L.E/ if and only if y�L.F / .�/ y�L.E/:

Definition 1.3 Any pure sheaf E of dimension d admits a unique maximally desta-
bilising subsheaf Emax �E with the property that y�L.F /� y�L.Emax/ for all F �E

with equality implying that F �Emax [25, Lemma 1.3.5, Theorem 1.6.6]. We write

y�L
max.E/ WD y�

L.Emax/:

Definition 1.4 Let � be an element of B.X /Q WD B.X /˝Z Q, where B.X / is the
group of cycles on X modulo algebraic equivalence, see [14, Definition 10.3]. We
say that a sheaf E on X is of topological type � if its homological Todd class �X .E/
equals � .

Remark 1.5 The homological Todd class �X .E/ of a sheaf E is usually considered
as an element in A.X /Q WD A.X / ˝ Q, cf [14, Chapter 18]. For our purposes,
it is more convenient to mod out cycles that are algebraically equivalent to zero,
ie to work with B.X /Q , which has the same formal properties as A.X /Q by [14,
Proposition 10.3]. With this definition, the topological type of the members of a flat
family of coherent sheaves over X parametrised by a connected noetherian scheme
is constant, see [14, Example 18.3.8]. The knowledge of the topological type � of
a sheaf completely determines its Hilbert polynomial with respect to any ample line
bundle by [14, Example 18.3.6]. Note also that in the case where X is a smooth variety
over C the class �X .E/ determines the Chern character of E . If one prefers not to use
this machinery, one can, for the most part of this paper, instead fix from the outset the
Hilbert polynomials k 7!�.E˝Lk

j / for all line bundles Lj in question (the exception
to this statement concerns the boundedness results in Section 6 in which the proofs we
give use the topological type rather than the Hilbert polynomials).
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Definition 1.6 A set S of isomorphism classes of coherent sheaves on X is said to
be bounded if there exists a scheme S of finite type and a coherent OS�X –sheaf E
such that every E 2 S is isomorphic to Efsg�X for some closed point s 2 S .

Definition 1.7 Let L be a very ample line bundle on X . We say a coherent sheaf E

is n–regular with respect to L if

H i.E˝Ln�i/D 0 for all i > 0:

When dealing with several line bundles the following definition is convenient.

Definition 1.8 Suppose that LD .L1; : : : ;Lj0
/, where each Lj is a very ample line

bundle on X . We say that a coherent sheaf E is .n;L/–regular if E is n–regular
with respect to Lj for all j 2 f1; : : : ; j0g.

Using [25, Lemma 1.7.6], we see that the set of .n;L/–regular sheaves of a given
topological type is bounded. Conversely, it follows from the Serre vanishing theorem
that if S is a bounded family of sheaves, then for n� 0 each E 2 S is .n;L/–regular.

2 Stability with respect to several polarisations

In this section, we introduce a stability condition for coherent sheaves. This stability
condition depends on a number of (fixed) line bundles L1; : : : ;Lj0

, as well as on a
number of real parameters that will later allow us to interpolate between the different
notions of Gieseker stability with respect to the Lj .

Definition 2.1 By a stability parameter we mean the data

� D .L; �1; : : : ; �j0
/;

where LD .L1; : : : ;Lj0
/ for some ample line bundles Lj on X , and �j 2R�0 are

such that not all the �j are zero. We say that � is rational if all the �j are rational,
and that it is positive if �j > 0 for all j .

In the subsequent discussion the vector L will be fixed, so by abuse of notation we
will sometimes confuse � and the vector .�1; : : : ; �j0

/. Thus, we allow � to vary in a
subset of .R�0/

j0 n f0g. We emphasise that whereas we allow the �j to be irrational,
we will always assume that the Lj are genuine (integral) line bundles. For now we fix
such a stability parameter � .
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Definition 2.2 (Multi-Hilbert polynomial) The multi-Hilbert polynomial of a coher-
ent sheaf E with respect to � is

(2.1) P�
E.m/ WD

X
j

�j�.E˝Lm
j /:

If E has dimension d , we can write

P�
E.m/D

dX
iD0

˛�i .E/
mi

i !
;

where from (1.1) the coefficients are given by ˛�i .E/D
P

j �j˛
Lj
i .E/. We let

r�E WD ˛
�
d .E/D

X
j

�j r
Lj
E
;

which is strictly positive by the hypothesis on � .

Definition 2.3 The reduced multi-Hilbert polynomial of a coherent sheaf of dimen-
sion d is defined to be

p�E.m/ WD
P�

E
.m/

r�
E

:

Thus, defining

y�� .E/ WD
˛�

d�1
.E/

r�
E

we have

p�E.m/D
md

d!
C y�� .E/

md�1

.d � 1/!
CO.md�2/:

Remark 2.4 We will later frequently use the observation that the quantities P�
E

, r�
E

,
y�� .E/ and p�

E
are determined by � and the topological type of E .

Definition 2.5 (Multi-Gieseker stability) We say that a coherent sheaf E is multi-
Gieseker (semi)stable, or just (semi)stable, if it is pure and for all proper subsheaves
F �E we have

(2.2) p�F .�/p�E :

Example 2.6 (Riemann–Roch II) If X is smooth of dimension dim X D d , and if
E is torsion-free (as in the setup of Example 1.2) we have

r�E D rank.E/
X

j

�j

Z
X

c1.Lj /
d
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and

(2.3) y�� .E/D C1

P
j �j degLj

.E/

rank.E/
CC2;

where C1;C2 are given by

C1 D
1P

j �j

R
X c1.Lj /d

and C2 D

P
j �j

R
X Todd1.X /:c1.Lj /

d�1P
j �j

R
X c1.Lj /d

and are therefore in particular independent of E . Moreover,

p�E.m/D C1

P
j �j�.E˝Lm

j /

rank.E/

and so the definition of stability given here agrees with that in the introduction.

Remark 2.7 Clearly, stability of E is unchanged if � is scaled by a positive multiple.
Moreover, it is likewise unchanged if each Lj is replaced by Ls

j for some integer s

(since, up to scaling by a positive constant, the reduced multi-Hilbert polynomial
changes to k 7!p�

E
.sk/). Thus, there is no loss in generality if all the Lj are assumed

to be very ample.

Example 2.8 (Relation with usual Gieseker stability) Let � D ei , where ei D

.0; : : : ; 1; : : : ; 0/ is the standard basis vector. Then, E is (semi)stable with respect
to � if and only if it is Gieseker (semi)stable with respect to Li .

Example 2.9 (Picard number 1) Suppose that the Picard number � WD �.X / of X

is 1. Then for a torsion-free sheaf, stability with respect to any stability parameter is
the same as Gieseker stability. To see this, let � D .L; �1; : : : ; �j0

/ be any stability
parameter. Fix an ample generator A of Pic.X / so Lj D Aaj for some aj 2 Z�1 .
Then, up to an unimportant affine transformation as in Example 2.6,

p�E D
1

rank.E/

X
j

�j PA
E .aj m/:

Since the �j are non-negative, it follows that p�
F
.m/ .�/p�

E
.m/ for m� 0 if and

only if pA
F
.m/ .�/pA

E
.m/ for m� 0.

Example 2.10 (Surfaces) Let X be a smooth projective surface and suppose that
� D .L; �1; : : : ; �j0

/ is a rational stability parameter. Then, E is (semi)stable with
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respect to � if and only if it is Gieseker (semi)stable with respect to the Q–line bundle
j̋ L

�j
j . This is because on a surface,

PL
E .m/D rL

E

m2

2
C˛L

1 .E/mC˛2.E/;

and ˛2.E/ is independent of m (as is apparent, for example, using the Riemann–Roch
theorem). Thus,

p�E.m/D
m2

2
C y�� .E/mC

P
j �jP

j �j r
Lj
E

˛2.E/:

Consequently, p�
F
� p�

E
if and only if (1) y�� .F /� y�� .E/, and (2) if equality holds

then we have ˛2.F /� ˛2.E/. Now clearing denominators we can choose an integer s

so that zL WD j̋ L
s�j
j is an integral line bundle. Then, looking back at Example 2.6

and using that degL on a surface is linear in L we see

y�� .E/D C1

P
j �j degLj

.E/

rank.E/
CC2 D C1

deg zL.E/
s � rank.E/

CC2:

Thus, p�
F
� p�

E
if and only if p

zL
F
� p

zL
E

. The proof of the statement for stability is
similar.

We now collect some of the basic properties of stability, several of which are analogous
to those for Gieseker stability.

Lemma 2.11 Suppose y�� .E/ .�/ � for some real number �. Then there exists
a j 2 f1; : : : ; j0g such that �j ¤ 0 and y�Lj .E/ .�/ �. Moreover, the analogous
statement holds with .�/ instead of .�/.

Proof Suppose that y�Lj .E/ � � for all j with �j ¤ 0. Then for all j we have
�j˛

Lj
d�1

.E/� �j r
Lj
E
�, and summing over j yields y�� .E/��. The other statements

are proved similarly.

Definition 2.12 We say that a proper coherent subsheaf E0 � E is destabilising if
p�

E0
� p�

E
. So if E is semistable, a proper subsheaf E0 � E is destabilising if and

only if p�
E0
D p�

E
.

Lemma 2.13 Let E be semistable and E0 �E be destabilising. Then E0 is saturated,
and E0˚ .E=E0/ is semistable.

Geometry & Topology, Volume 20 (2016)



Variation of moduli spaces via quiver GIT 1555

Proof By hypothesis, we have p�
E0
D p�

E
. Let F be the saturation of E0. Then

r�
E0
D r�

F
, and for n� 0 we have

p�E.n/D p�E0.n/D

P
j �j h0.E0˝Ln

j /

r�
E

�

P
j �j h0.F ˝Ln

j /

r�
F

D p�F .n/� p�E.n/;

where the last inequality uses that E is semistable. Thus equality holds throughout. As
h0.E0˝Ln

j /� h0.F ˝Ln
j / for all j, and as all the �j are non-negative, by choosing

some j so that �j ¤ 0 this implies H 0.E0˝Ln
j / D H 0.F ˝Ln

j /. But F ˝Ln
j is

globally generated for n� 0, so this implies that F � E0 , and hence in fact E0 is
saturated. For the second statement observe that as E0 has the same reduced multi-
Hilbert polynomial as E it must also be semistable. Moreover, the quotient E=E0 is
pure (as E0 is saturated) and also has the same reduced multi-Hilbert polynomial as E .
Hence the direct sum E0˚E=E0 is semistable.

Lemma 2.14 Let E be a pure coherent sheaf of dimension d . Then, the following
are equivalent:

(1) E is (semi)stable.

(2) For all proper saturated F �E one has p�
F
.�/p�

E
.

(3) For all proper quotients E!G with ˛�
d
.G/ > 0 one has p�

E
.�/p�

G
.

(4) For all proper pure quotient sheaves E ! G of dimension d it holds that
p�

E
.�/p�

G
.

Proposition 2.15 (Harder–Narasimham filtration) Let E be a non-trivial pure sheaf
of dimension d . Then, there exists a unique Harder–Narasimhan filtration

0DHN0.E/�HN1.E/� � � � �HNl.E/DE

such that the factors grHN
i WDHNi.E/=HNi�1.E/ are semistable sheaves of dimen-

sion d with pi WD p�
grHN

i

satisfying

p�max.E/ WD p1 > � � �> pl DW p
�
min.E/:

Proposition 2.16 (Jordan–Hölder filtration) Let E be a semistable sheaf of dimen-
sion d . Then, there exists a Jordan–Hölder filtration

0DE0 �E1 � � � � �El DE

whose factors gri.E/DEi=Ei�1 are stable with reduced Hilbert polynomial p�
Ei
D

p�
E

. Moreover, up to isomorphism the sheaf gr.E/ WD ˚i gri.E/ does not depend
on the choice of Jordan–Hölder filtration (but may, of course, depend on the stability
parameter).

Geometry & Topology, Volume 20 (2016)



1556 Daniel Greb, Julius Ross and Matei Toma

Definition 2.17 (S –equivalence) We say two semistable sheaves E1 and E2 of the
same topological type are S –equivalent if gr.E1/ is isomorphic to gr.E2/.

The proofs of the above are exactly as in the usual case for Gieseker stability [25,
Propositions 1.2.6 and 1.2.7, Theorem 1.3.4, Proposition 1.5.2], once it is observed
that for any short exact sequence 0! F ! E! G! 0 we have P�

E
D P�

F
CP�

G

and ˛�
d
.E/D ˛�

d
.F /C˛�

d
.G/.

Remark 2.18 Alternatively, one can appeal to the machinery of Rudakov [41] con-
cerning stability conditions on abelian categories. The function P�

E
is an example

of a “generalised Gieseker stability” on the category of coherent sheaves on X [41,
Definition 2.1, 2.7].

Lemma 2.19 For fixed stability parameter � , (semi)stability is an open property.

Proof This is a small adaptation of [25, Proposition 2.3.1]. Suppose E is a flat
family of d –dimensional sheaves of a given topological type on X parametrised by a
connected noetherian scheme S . We have to show that the set of closed points s 2 S

such that Es is semistable is open in S .

Let y� D y�� .Es/ and write p for the reduced multi-Hilbert polynomial of Es for
some (and hence all) s 2 S . Consider the set S of all pure d –dimensional sheaves E00

that arise as proper quotients Es!E00s for some closed point s 2 S with y�� .E00/�
y�. By Lemma 2.11, for such an E00 2 S there exists an i 2 f1; : : : ; j0g such that
y�Li .E00/� y�. Hence, the set S is bounded by Grothendieck’s lemma, see for example
[25, Lemma 1.7.9] or [20, Théorème 2.2]. Thus, the set of polynomials R that arise as
Hilbert polynomials from the family in S is finite; ie

#P WD #fR jRD P
L1

E00
for some E00 2 Sg<1:

Now for each R 2 P consider the relative Quot scheme

Q.R/ WD QuotS .EIR/
�
! S

of X �S over S parametrising quotients Es!E00 with Hilbert polynomial R (taken
with respect to L1 ). This Quot scheme has a finite number of connected components,
and by flatness of the universal family, the topological type of any quotient Es!E00

is constant within each component (see Remark 1.5)

Now fix R 2 P . Then, there is finite set P D P.R/ of vectors of polynomials
P 00 D .P 00

1
; : : : ;P 00j0

/ and a disjoint union

Q.R/D
a

P 002P

Q.RIP 00/;
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where Q.RIP 00/ consists of the union of those components of Q.R/ consisting of
quotients E00 of whose Hilbert polynomials satisfy P 00j .k/ D �.E00 ˝ Lk

j / for all
j 2 f1; : : : ; j0g.

For P 00D .P 00
0
; : : : ;P 00j0

/2P , let p00 be the reduced multi-Hilbert polynomial associated
to P 00 (and � ). Consider the set

P0 WD P0.R/ WD fP
00
2 P.R/ j p00 < pg;

where, we recall, p denotes the reduced multi-Hilbert polynomial of the sheaves Es .
Then, a sheaf Es is unstable if and only if there exists a quotient Es!E00 with E00 of
this type for some P 00 2P0.R/ and some R2P . But as the Quot scheme is projective
over S , the image �.Q.R;P 00// is closed in S , and thus the set of semistable points
are those that do not lie in the union of the finitely many closed sets �.Q.R;P 00/� S

for R 2 P , P 00 2 P0 . Thus, semistability is open, as claimed. The proof for openness
of stability is the same, up to replacing P0 with the set fP 00 2 P.R/ j p00 � pg.

3 Slope stability

On occasion (particularly in connection with boundedness questions), we will relate
multi-Gieseker stability to a notion of slope stability. For this, we assume X to be
smooth of dimension d and the sheaves in question to be torsion-free.

Definition 3.1 (Slope stability) Let  2N1.X /R . The slope of a torsion-free coher-
ent sheaf E with respect to  is the quantity

� .E/ WD

R
X c1.E/ � 

rank.E/
:

If ˛ 2N 1.X /R , the slope of E with respect to ˛ is

�˛.E/ WD

R
X c1.E/ �˛

d�1

rank.E/
:

We say that a coherent torsion-free sheaf on E is slope (semi)stable with respect to
 2N1.X /R (resp. ˛ 2N 1.X /R ) if for all proper subsheaves F �E of lower rank
we have

� .F / .�/ � .E/ (resp. �˛.F / .�/ �˛.E/).

Remark 3.2 In order to obtain a theory enjoying the expected basic properties, some
positivity of the class ˛ or  has to be assumed. For example, we will only deal with
movable curve classes  .
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There is a simple connection between slope stability and multi-Gieseker stability which
follows from Riemann–Roch, cf Example 2.6.

Lemma 3.3 (Comparison between slope and multi-Gieseker stability) Suppose X is
smooth of dimension d and .L; �1; : : : ; �j0

/ is a stability parameter, and let

 D
X

j

�j c1.Lj /
d�1:

Then, for any torsion-free coherent sheaf E the following implications hold:

slope stable with respect to  ) stable with respect to �

) semistable with respect to �

) slope semistable with respect to  .

4 Chamber structures

We next show that any set of stability parameters admits a chamber decomposition
such that the notion of stability is unchanged within a chamber. For this we require
that X be a projective integral scheme.

Definition 4.1 Let †�Rj0 n f0g be convex. A chamber structure on † consists of
a collection fWj gj2J of real hypersurfaces in † called walls. Given such data, we
call a subset C �† a chamber if for all j 2 J either C �Wj or C \Wj D∅, and if
in addition C is maximally connected with this property. We say a chamber structure
is linear (resp. rational linear) if all the hypersurfaces Wj are linear (resp. rational
linear).

Now fix L as before and let � 2 B.X /Q . This section is devoted to the proof of the
following proposition.

Proposition 4.2 (Existence of chamber structures on sets of stability parameters) Let
X be a projective integral scheme and † � .R�0/

j0 n f0g be convex. Then, for all
integers p the set † admits a rational linear chamber structure cut out by finitely many
walls such that if � 0; � 00 belong to the same chamber C , then

(1) any .p;L/–regular torsion-free sheaf E of topological type � is � 0–(semi)stable
if and only if it is � 00–(semi)stable, and

(2) any two .p;L/–regular torsion-free sheaves E and E0 of topological type �
that are semistable with respect to both � 0 and � 00 are S –equivalent with respect
to � 0 if and only if they are S –equivalent with respect to � 00 .
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Remark 4.3 In general, this chamber structure will depend on the integer p chosen.
However, if one is in the situation that the set of semistable sheaves in question is
bounded, then one should take p to be large enough so that all such sheaves are
.p;L/–regular.

The above proposition is to be understood as including the possibility that � 0 or � 00

are irrational. Since each wall in this chamber structure is a rational hyperplane, any
chamber C contains a rational point; ie C \ .Q�0/

j0 is non-empty. Thus, we see that
nothing is lost by restricting to rational � , as made precise in the following.

Corollary 4.4 Let � 0 2†. Then there exists a � 00 2†\ .Q�0/
j0 n f0g such that any

.p;L/–regular torsion-free sheaf of topological type � is (semi)stable with respect
to � 0 if and only if it is (semi)stable with respect to � 00 , and similarly for S –equivalence
classes.

Turning to the proof of Proposition 4.2, fix an integer p . We will use the notation of
Section 2, so that the multi-Hilbert polynomial of a sheaf E of dimension d is written
as

P�
E.m/D

dX
iD0

˛�i .E/
mi

i !
; where ˛�i .E/D

X
j

�j˛
Lj
i .E/:

Consider next the family of subsheaves

S WD
˚
F jE is torsion-free, .p;L/–regular, of top. type � , and F is a saturated

subsheaf of E with y�� .F /� y�� .E/ for some � 2†
	
:

Lemma 4.5 The set S is bounded.

Proof If F 2 S , then by Lemma 2.11 there exists some j 2 f1; : : : ; j0g such that
y�Lj .F / � y�� .E/. Since the set of .p;L/–regular sheaves of topological type �
is bounded, and since the quotients E=F are torsion-free or zero, it follows from
Grothendieck’s lemma [25, Lemma 1.7.9] that S is contained in a finite union of
bounded families, hence is itself bounded.

Now, for each 1� i � d � 1 and each F 2 S , set

(4.1) Wi;F WD

�
� 2† W

X
j

�j

�
˛

Lj
i .F /

rank.F /
�
˛

Lj
i .E/

rank.E/

�
D 0

�
:

Note that as X is integral and the sheaves E and F are torsion-free, the ranks of E

and F are defined independently of Lj , see Remark 1.1.
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Clearly, Wi;F is either empty, all of †, or a rational hyperplane in †. If Wi;F is empty
or all of †, then it is discarded. We observe that Wi;F depends only on the topological
type of F 2 S , and thus we have a finite number of (non-trivial) rational linear walls
as F varies over the bounded set S and as i varies between 1 and d � 1. In this way,
we obtain a rational linear chamber structure on †.

Lemma 4.6 Suppose that E is torsion-free of topological type � and .p;L/–regular,
and F �E with F 2 S . Let � 0 and � 00 be points in a chamber C . Then p�

0

F
.�/p�

0

E

if and only if p�
00

F
.�/p�

00

E
.

Proof We deal with the case of non-strict inequality. Suppose for contradiction this is
not the case, so swapping � 0 and � 00 if necessary,

p�
0

F � p�
0

E and p�
00

F > p�
00

E :(4.2)

Now write

p�F �p�E D

dX
iD0

c�i
mi

i !
for some c�i 2R:

Let i be the smallest integer such that c�
0

j D c�
00

j D 0 for all j > i . Then, by (4.2) and
by the definition of ordering of polynomials we get c�

0

i � 0 and c�
00

i � 0 (but not both
being equal to zero by choice of i ). Now, let f W†!R be the linear function given by

f .�/D
X

j

�j

�
˛

Lj
i .F /

rank.F /
�
˛

Lj
i .E/

rank.E/

�
;

so by definition Wi;F D f� j f .�/D 0g. Thus, we have

c�i D

P
j �j˛

Lj
i .F /P

j �j˛
Lj
d
.F /
�

P
j �j˛

Lj
i .E/P

j �j˛
Lj
d
.E/
D Cf .�/;

where C WD
�P

j �j˛
Lj
d
.OX /

��1
> 0. Since either c�

0

i or c�
00

i are non-zero, we
conclude that either � 0 or � 00 is not in Wi;F , and thus C is not contained in Wi;F . On
the other hand, there must be a point z� on the line segment between � 0 and � 00 such
that f .z�/D 0. But C is convex so contains this line segment, which implies C\Wi;F

is non-empty, and this is absurd since C is meant to be a chamber. The case for strict
inequality is proved in precisely the same way.

Proof of Proposition 4.2 Let � 0 and � 00 be in the same chamber, and suppose that E

is of topological type � , .p;L/–regular and semistable with respect to � 0 . Let F �E

be saturated. If y��
00

.F / < y��
00

.E/, then F does not destabilise E with respect to � 00 .
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Otherwise, F 2 S and so Lemma 4.6 implies p�
00

F
� p�

00

E
. Thus, E is also semistable

with respect to � 00 . The proof of the statement about S –equivalence is the same, for if
F �E is a saturated subsheaf that is destabilising with respect to � 0 , by definition we
have p�

0

F
D p�

0

E
. So, again by Lemma 4.6 we have p�

00

F
D p�

00

E
, and hence F is also

destabilising with respect to � 00 . Thus, any maximal chain of destabilising subsheaves
(with respect to � 0 ) is such a maximal chain also when semistability is defined by � 00 ,
so the corresponding graded objects are isomorphic. At the same time, this proves the
statement about stability, as if E is semistable then it is stable if and only if gr.E/ is
isomorphic to E .

Part II Construction of moduli spaces

5 Functorial approach to the moduli problem

Following the ideas of Álvarez-Cónsul and King presented in [2], see also the survey [3],
we will embed the category of sheaves of interest into a category of representations
for certain quivers. We first introduce in Section 5.1 the relevant concepts from the
representation theory of quivers, and then prove the fundamental functorial embedding
result, Theorem 5.7, in Section 5.4. In Section 5.5 we show this extends to flat families
of sheaves, and this result in turn is used to identify the image of the embedding functor
in the relevant category of representations.

5.1 Quivers and their representations

We will use the standard notation used in representation theory of quivers, as fixed for
example in [32, Section 3]. We denote by Vectk the category of vector spaces over a
field k .

5.1.1 The quiver Q Given a j0 2NC we define a labelled quiver

QD .Q0;Q1; h; t W Q1!Q0; H W Q1! Vectk/

as follows. Let
Q0 WD fvi ; wj j i; j D 1; : : : ; j0g

be a set of pairwise distinct vertices, and

(5.1) Q1 WD f˛ij j i; j D 1; : : : ; j0g

the set of arrows, whose heads and tails are given by

h.˛ij /D wj ; t.˛ij /D vi :
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The arrows will be each labelled by a vector space, encoded by a function H W Q1!

Vectk written as H.˛ij /DHij , which will be fixed later. This quiver can be pictured
as follows (where for better readability we restrict to the case j0 D 3):

� H11
//

H12

((

H13

""

�

�

H21

66

H22
//

H23

((

�

�

H31

<<

H33
//

H32

66

�

Remark 5.1 In the “Method of construction” section of the introduction, we gave
a heuristic argument as to why it is a natural idea to consider this particular quiver.
One could probably also work with a smaller quiver that does not include all of the
“diagonal” arrows. However, we prefer to work with the quiver defined above, as it
reflects the a priori symmetry between the line bundles Lj in the variation problem for
Gieseker moduli spaces.

5.1.2 Representations of Q A representation of Q over a field k is a collection
Vi ;Wj for i; j D 1; : : : ; n of k –vector spaces together with k –linear maps

�ij W Vi ˝Hij !Wj :

Let now X be a projective scheme of finite type over an algebraically closed field k of
characteristic zero. Here, and henceforth, given line bundles Lj on X for j D1; : : : ; j0

and integers m> n, we consider the sheaf

T WD

j0M
jD1

L�n
j ˚L�m

j ;

together with the finite-dimensional k –algebra

A WDL˚H � EndX .T /
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generated by the projection operators onto the summands L�n
i and L�m

j of T (collected
in the subalgebra L) and

(5.2) H D

j0M
i;jD1

Hij WD

j0M
i;jD1

H 0.X;L�n
i ˝Lm

j /D

j0M
i;jD1

Hom.L�m
j ;L�n

i /:

Note that T is a left A–module and that H is an L–bimodule.

The category of representations of the quiver Q with H.˛ij /DHij is equivalent to
the category of modules over A. An A–module structure on a vector space M can be
specified by a direct sum decomposition M D

Lj0

jD1
Vj ˚Wj , together with a right

L–module map ˛W M ˝L H !M . By abuse of notation, we will sometimes write
such an A–module M only as M D

Lj0

jD1
Vj ˚Wj representing the decomposition

of M under the action L and suppressing the action of H . Similarly, the left A–
module structure on T is given by the decomposition (5.2) and the multiplication
maps

�ij WHij ˝L�m
j !L�n

i ;

or equivalently the left L–module map �W H ˝L T ! T . If M D
Lj0

jD1
Vj ˚Wj is

an A–module then a submodule M 0 �M is given by a direct sum

M 0
D

j0M
jD1

V 0j ˚W 0j

such that V 0j �Vj and W 0j �Wj with the additional property that the image of V 0i ˝Hij

under the linear map Vi ˝Hij !Wj is contained in W 0j .

The representations of most interest to us are the ones of the form Hom.T;E/, where
E is a coherent sheaf on X . On the one hand, this naturally comes equipped with a
right-module structure over A� Hom.T;T /, given by (pre-)composition of maps. On
the other hand, we have the obvious decomposition

Hom.T;E/D
M

j

H 0.E˝Ln
j /˚H 0.E˝Lm

j /;

together with the natural multiplication maps H 0.E˝Ln
i /˝Hij !H 0.E˝Lm

j /.

5.2 Stability of quiver representations

Next, in order to construct moduli spaces parametrising representations of our given
quiver, we introduce a notion of stability.
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Definition 5.2 (Dimension vector) Let M D
L

j Vj ˚Wj be an A–module. We
call the vector

d WD .dim V1; dim W1; : : : ; dim Vj0
; dim Wj0

/DW .d11; d12; : : : ; dj01; dj02/

the dimension vector of M .

We wish to define the notion of stability of A–modules of a given dimension d , where
dj1 and dj2 are strictly positive for all j . To do so, fix � D .�1; : : : ; �j0

/ with
�j 2R�0 not all equal to zero. Define a vector �� D .�11; �12; : : : ; �j01; �j02/ by

(5.3) �j1 WD
�jP
�idi1

and �j2 WD
��jP
�idi2

for j D 1; : : : ; j0;

and for any A–module M 0 D
L

V 0j ˚W 0j we set

(5.4) �� .M
0/D

X
j

�j1 dim V 0j C
X

j

�j2 dim W 0j ;

which makes �� an additive function from the set Z2j0 of possible dimension vectors
to R. Note that if M is an A–module of dimension vector d , then we have �� .M /DP

j .�j1dj1C �j2dj2/D 0.

Definition 5.3 (Semistability for A–modules) Let M be an A–module with dimen-
sion vector d . We say that M is (semi)stable (with respect to � ) if for all proper
submodules M 0 �M we have �� .M 0/ .�/ 0.

This definition of stability for A–modules is that of King [32], generalised here to
allow the possibility that �j are not necessarily integral. Observe that if � is rational,
�� takes values in Q, and hence, by clearing denominators, we can arrange for it to
take values in Z. This brings us back to the original setup of [32] and will allow us to
apply the results proven there.

Every � –semistable A–module has a Jordan–Hölder filtration with respect to �� ,
cf [32, pages 521–522], and we call two modules S –equivalent if the graded modules
associated to the respective filtrations are isomorphic.

Remark 5.4 For an interpretation of the above discussion in terms of stability condi-
tions on the abelian category of representations of a given quiver, see [15, Section 3.4].
We observe that the assignment � 7! �� is not in general linear, which will be relevant
when we discuss the variation of moduli spaces in the sequel to this paper.
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5.3 Moduli spaces of quiver representations

The main result of [32] links the notion of stability discussed above to GIT stability. The
following discussion of King’s results is taken from [15, Section 3.5]. Given a dimension
vector d 2 Z2j0

>0
, we consider the reductive group Gd WD

Q
j .GLdj1

.k/�GLdj2
.k//

and the Gd –module

Rep.Q; d/ WD
M
i;j

Homk.k
di1 ˝Hij ; k

dj2/;

on which Gd acts by “base change” automorphisms. Now, given an integral vector
� 2 Z2j0 , we introduce a rational character

�� W Gd ! k�; g D .gj1;gj2/jD1;:::;j0
7!

Y
j

�
det.gj1/

��j1 � det.gj2/
��j2

�
:

This character defines a linearisation of the Gd –action in the trivial line bundle over the
affine space Rep.Q; d/. Note that the character �� vanishes on the subgroup k��Gd

of diagonally embedded invertible scalar matrices (which acts trivially on Rep.Q; d/
if and only if

P
j .�j1dj1C �j2dj2/D 0).

The character �� defines a set of GIT semistable points Rep.Q; d/��–ss and a corre-
sponding GIT quotient � W Rep.Q; d/��–ss! Rep.Q; d/��–ss==G . We call two points
p;p0 2Rep.Q; d/��–ss GIT equivalent if and only if the points �.p/ and �.p0/ agree.

Using the notation introduced above, the fundamental result that compares GIT stability
and semistability for representations of quivers can now be stated as follows.

Theorem 5.5 [32, Propositions 3.1 and 3.2] For any dimension vector d and any
� 2 Z2j0 such that

P
j .�j1dj1C �j2dj2/D 0, we have:

(1) A representation in Rep.Q; d/ is �� –GIT (semi)stable if and only if every
submodule M 0 of the corresponding A–module M satisfies �.M 0/ .�/ 0.

(2) If �� is computed from a given � as explained above, then a representation in
Rep.Q; d/ is �� –GIT (semi)stable if and only if the corresponding A–module
M is (semi)stable with respect to � in the sense of Definition 5.3.

(3) Two �� –semistable representations are GIT equivalent if and only if they are
S –equivalent.

Remark 5.6 Later we will deal with fractional characters of Gd . The discussion
naturally extends to this slightly more general setup.
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5.4 The embedding functor

We will now show that a category of sufficiently regular sheaves embeds into the
category of representations of the quiver Q. We refer the reader to [37, Chapter 4] for
the basics concerning adjoint functors used below.

Let X be a projective scheme of finite type over an algebraically closed field k of char-
acteristic zero, and n a non-negative natural number. Suppose that LD .L1; : : : ;Lj0

/,
where each Lj is a very ample line bundle on X . We also fix a � 2 B.X /Q .

Theorem 5.7 (Embedding regular sheaves into the category of representations of Q)
For m� n, the functor

Hom.T;�/W mod-OX !mod-A

is fully faithful on the full subcategory of .n;L/–regular sheaves of topological type � .
In other words, if E is an .n;L/–regular sheaf of topological type � , the natural
evaluation map "E W Hom.T;E/˝A T !E is an isomorphism.

Proof We first describe how to construct the tensor product M ˝A T for a given A–
module M . Similar to the case of the Kronecker quiver spelled out in [2, Section 3.2],
one shows that M ˝A T is constructed as the cokernel of the map

M ˝L H ˝L T
1˝��˛˝1
�������!M ˝L T:

Writing out the L–module structures of M and T explicitly as direct sum decomposi-
tions yields the exact sequence

(5.5)
M
i;j

Vi ˝Hij ˝L�m
j �!

M
j

0@ Vj ˝L�n
j

˚

Wj ˝L�m
j

1A �!M ˝A T �! 0:

Now, let E be an .n;L/–regular sheaf of topological type � . The .n;L/–regularity
implies that E has presentations

(5.6) 0! Fi! Vi ˝L�n
i !E! 0 for i D 1; : : : ; j0;

where Vi DH 0.E˝Ln
i /.

As the set of .n;L/–regular sheaves of topological type � is bounded, the set of
the corresponding Fi is bounded as well, and hence for all m� n, the Fi ˝Lm

j

for i; j D 1; : : : ; j0 are globally generated. Consequently, we obtain surjections
Uij ˝L�m

j � Fi , where Uij DH 0.Fi˝Lm
j / are the appropriate spaces of sections.
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On the other hand, twisting (5.6) with Lm
j yields the short exact sequence

0! Fi ˝Lm
j ! Vi ˝L�n

i ˝Lm
j !E˝Lm

j ! 0:

Again using boundedness of the Fi , increasing m if necessary, and recalling that
Hij DH 0.L�n

i ˝Lm
j /, we obtain short exact sequences

(5.7) 0! Uij ! Vi ˝Hij !Wj ! 0;

where Wj DH 0.E˝Lm
j /.

By putting (5.6) and (5.7)˝L�m
j together, for each pair .i; j / we obtain a commutative

diagram of exact sequences

(5.8)

0 // Fi
// Vi ˝L�n

i
// E // 0

0 // Uij ˝L�m
j

OOOO

// Vi ˝Hij ˝L�m
j

OO

// Wj ˝L�m
j

OO

// 0:

We conclude by a diagram chase that the square on the right hand side is a pushout;
ie we have an exact sequence

(5.9)
M

j

Vj ˝Hjj ˝L�m
j �!

M
j

0@ Vj ˝L�n
j

˚

Wj ˝L�m
j

1A �!E˚j0 �! 0:

We are now carrying out the construction of Hom.T;E/˝A T , as written out in (5.5).
First, we conclude from (5.9) that we have an exact sequence

(5.10)
M
i¤j

Vi ˝Hij ˝L�m
j �!E˚j0 �! Hom.T;E/˝A T �! 0I

cf [2, end of proof of Theorem 3.4]. For each .i; j /, apply (5.8) once more to conclude
that the image of Vi ˝Hij ˝L�m

j in E˚j0 is equal to the .i; j /th anti-diagonal

�ij WD f.0; : : : ; 0; e; 0; : : : ; 0;�e; 0; : : : ; 0/ j e 2Eg ŠE:

Consequently, the image of
L

i¤j Vi ˝Hij ˝L�m
j is equal to the (direct) sum

j0�1X
jD0

�j ;jC1 �E˚j0 :

We infer that the natural evaluation map from E˚j0 to E induces an isomorphism
Hom.T;E/˝A T ŠE , as claimed.
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5.5 Families of sheaves, families of representations, and the image of the
embedding functor

In this section we follow the exposition of [2, Section 4] closely.

Let S be a scheme. A flat family E over S of sheaves on X is a sheaf E on X �S

that is flat over S . On the other hand, a flat family M over S of right A–modules is a
sheaf M of right modules over the sheaf of algebras A WDOS ˝A on S that is locally
free as a sheaf of OS –modules.

Let � W X �S ! S and pX W X �S ! X be the canonical projections. The adjoint
pair formed by Hom.T;�/ and �˝A T extends to an adjoint pair of functors between
the category mod-A˝OS of sheaves of right A–modules on S that are coherent as
OS –modules and the category mod-OX�S of sheaves on X �S :

(5.11)

mod-A˝OS

�˝AT

��
mod-OX�S

HomX .T;�/

OO

Here, for a sheaf E on X �S and a sheaf M of right A–modules on S we are using
the abbreviations

HomX .T; E/ WD ��.HomX�S .p
�
X T; E//Š ��.E˝OX�S

T _/;

M˝A T WD ��M˝A p�X T:

Proposition 5.8 (Family version of the embedding functor is fully faithful) Let n

be a natural number. Then, for m� n as in Theorem 5.7 the following holds: if S is
any scheme, HomX .T;�/ is a fully faithful functor from the full subcategory of mod-
OX�S consisting of S –flat families of .n;L/–regular sheaves of topological type � to
the full subcategory of mod-A consisting of S –flat families of right A–modules.

Proof The proof is almost the same as the one of [2, Proposition 4.1]; we just have
to make some small adjustments due to the fact that we are dealing with several line
bundles at the same time.

In order to see that flatness is preserved by the functor HomX .T;�/, it suffices to know
that for every sheaf Es in an S –flat family E we have

(5.12) H 1.Es˝Ln
j /DH 1.Es˝Lm

j /D 0 for all j D 1; : : : ; j0:

Indeed, once we have this, it follows that R1��.HomX�S .p
�
X

T;E// vanishes, which in
turn implies by [22, Theorem 12.11(b)] that HomX .T;E/ is locally free. The required
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vanishing (5.12) follows from the assumption that each Es is .n;L/–regular (and hence
.m;L/–regular for every m� n by [2, Lemma 3.2 (1)]) and [2, Lemma 3.2 (2)]. We
then conclude the proof as in [2, proof of Proposition 4.1] by noting that we may now
apply Theorem 5.7 fibrewise, using general results about cohomology and flat base
extensions [22, Section III.12].

Next, we are going to identify the image of the embedding functor; in fact, it forms a
locally closed subfunctor of mod-A. This is the content of the following proposition.

Proposition 5.9 (Identifying the image of the embedding functor) For m� n as
in Theorem 5.7 the following holds. If B is any Noetherian scheme and M a B–flat
family of right A–modules of dimension vector

d D
�
P1.n/;P1.m/; : : : ;Pj0

.n/;Pj0
.m/

�
;

then there exists a (unique) locally closed subscheme �W BŒreg�
� ,! B with the following

properties.

(a) ��M˝A T is a B
Œreg�
� –flat family of .n;L/–regular sheaves on X of topological

type � , and the unit map

���MW �
�M!HomX .T; �

�M˝A T /

is an isomorphism.

(b) If � W S!B is such that ��MŠHomX .T;E/ for an S –flat family E of .n;L/–
regular sheaves on X of topological type � , then � factors through �W BŒreg�

� ,!B

and EŠ ��M˝A T .

Proof The proof is almost literally the same as the one of [2, Proposition 4.2] and
so will not be repeated here. We remark, however, that the cited proof actually gives
a subscheme BŒreg� that parametrises a flat family of .n;L/–regular sheaves with a
given set of Hilbert polynomials with respect to L1; : : : ;Lj0

. There may be several
topological types that lead to the same set of polynomials, but since the topological
type is constant in flat families over connected bases, see Remark 1.5, we are free to
select just those components of BŒreg� that correspond to sheaves of topological type � ,
giving the desired subscheme B

Œreg�
� .

6 Boundedness

In this section X will denote a smooth n–dimensional projective variety over an
algebraically closed field k which we can allow to be of arbitrary characteristic.
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Again fix a vector LD .L1; : : : ;Lj0
/ of ample line bundles and a topological type

� 2 B.X /Q .

Definition 6.1 (Bounded sets of stability parameters) We say that a set †� .R�0/
j0n

f0g of stability parameters is bounded (with respect to the data �;L) if the set of all
sheaves of topological type � that are semistable with respect to some � 2† is bounded.
We say that an individual stability parameter � is bounded if the singleton f�g is
bounded.

We will give several conditions under which this boundedness holds. The main situations
where our results apply are gathered in Corollaries 6.11 and 6.12 at the end of the
section. We start with a general fact concerning bounded sets of sheaves.

Proposition 6.2 Let S be a set of isomorphism classes of pure d –dimensional coher-
ent sheaves on X all of topological type � . Then the following are equivalent:

(1) The set S is bounded.

(2) For all j , the quantity y�Lj
max.E/ is bounded uniformly over all E 2 S .

(3) For some j , the quantity y�Lj
max.E/ is bounded uniformly over all E 2 S .

Proof Clearly (2) implies (3), and the statement that (3) implies (1) is classical (see
[25, Theorem 3.3.7] in characteristic 0 and [33, Theorem 4.2] in arbitrary characteristic).
It remains to show that (1) implies (2). So, assume that (1) holds and fix some j . As
S is bounded, there exists a scheme S of finite type and a sheaf E on X �S such
that each element of S is contained in the family E (up to isomorphism). We have to
show that the quantity �Lj

max.Es/ is bounded uniformly over all closed points s 2 S .
We proceed by induction on nD dim S , the case nD 0 being trivial.

We first claim that without loss of generality we may assume that E is flat over S and
that S is integral. To see this, first take a flattening stratification [25, Lemma 2.1.6] to
write S D

S
Si as a finite union of locally closed subschemes Si over which E is flat.

So, by replacing S with one of the Si we may assume that E is flat. Then, pulling
back to Sred (which has the same closed points) one may assume that S is reduced,
and finally pulling back to an irreducible component we may assume that S is integral.

We now use the relative Harder–Narashimhan filtration to deduce there is a dense
open Uj � S such that y�Lj

max.Es/ is independent of s 2 Uj . In detail, by a variant
of [25, Theorem 2.3.2], there exists an integral scheme T and a birational morphism
gW T ! S and a filtration

0DHN0.E/�HN1.E/� � � � �HNl.E/D ET
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such that (1) the factors HNi.E/=HNi�1.E/ are flat over T for i D 1; : : : ; l , and
(2) there is a dense open subset U 0 � T over which g is an isomorphism, such that
HN�.E/t Dg�HN�.Eg.t// for all closed points t 2U 0 . Here, HN denotes the Harder–
Narashimhan filtration taken with respect to the slope function y�Lj . By definition, the
maximal destabilising subsheaf of Es is HN1.Es/. So, letting Uj WD g.U 0/ we see
that if s D g.t/ 2 U , then �Lj

max.Es/ D �
Lj .HN1.Es// D �

Lj .HN1.E/t /, which is
independent of t by flatness (and so independent over all s 2 Uj ), as claimed.

Now applying the induction hypothesis to the complement of Uj , which has strictly
lower dimension than S , we conclude that �Lj

max.Es/ is also bounded over s 2 S n Uj ,
and thus bounded over all of S as required.

Remark 6.3 (Relative Harder–Narasimhan filtration) In the above proof we have used
the relative Harder–Narasimhan filtration taken with respect to the slope function y�Lj .
The cited theorem [25, Theorem 2.3.2] is stated for Gieseker stability, but the same
proof works for slope stability (one merely has to replace their definition of A4 with
the set of those polynomials P 00 2 A such that y�.P 00/ � y�.P /, and use that all the
basic properties proved for Gieseker stability also hold for slope stability, cf [25,
Theorem 1.6.6]).

We need to introduce some notation. For simplicity and as all our boundedness
statements will be clearly true when X is a curve, we shall assume from now on that
X is n–dimensional with n� 2. Letting Amp.X /R denote the ample cone of X in
N 1.X /R WDN 1.X /˝Z R, we define the (strongly) positive cone as

Pos.X /R WD f 2N1.X /R j  DDn�1 for some D 2 Amp.X /Rg:

The cone Pos.X /R plays an important role in our boundedness considerations. Note
that it is not convex in general. In order to study its convex hull Conv.Pos.X /R/,
we are led to introduce some further “positive cones”. Their basic properties will be
derived from the following version of the Hodge index theorem for real ample classes.

Theorem 6.4 (Hodge index theorem) Let X be a projective smooth variety of di-
mension n � 2 and denote by � its Picard number. Then for any L 2 Amp.X /R the
quadratic intersection form q.˛/ WD qL.˛/ WD ˛

2Ln�2 is non-degenerate on N 1.X /R
of signature .1; �� 1/.

Proof Suppose first that L is a rational class in Amp.X /Q . Then by taking hyperplane
sections we reduce ourselves to the classical statement of the Hodge index theorem for
surfaces; cf [22, V. Theorem 1.9]. The fact that qL is non-degenerate then follows as
in [8, Section 3.8].
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Now let L be an arbitrary class in Amp.X /R . It is enough to check that qL is
non-degenerate, since the signature will then be independent of L 2 Amp.X /R , and
therefore equal to .1; �� 1/ as for rational classes. We proceed by induction on n.
When X is a surface, the assertion is clear. So, suppose that n>2 and that the quadratic
form qL is degenerate. Then its associated symmetric matrix admits an eigenvector D2

N 1.X /R associated with the eigenvalue 0. Hence, Ln�2D D 0 in N1.X /R . Choose
finitely many very ample smooth hypersurfaces Hi , i D 1; : : : ; k , in X such that L is
a (real) convex combination of their associated classes Li 2 Amp.X /. Then, for any
i 2 f1; : : : ; kg, the equality Ln�2D D 0 implies .LjHi

/n�2DjHi
D 0 and further by

the induction hypothesis that .LjHi
/n�3.DjHi

/2� 0. Here, equality occurs if and only
if DjHi

D 0 in N 1.Hi/R . But this would imply that DLn�1
i DDjHi

.Li jHi
/n�2 D 0

and that D2Ln�2
i D .DjHi

/2.Li jHi
/n�3D 0 and as the theorem holds for the rational

ample classes Li we get that D D 0 in N 1.X /R which contradicts the choice of D .
Thus, Ln�3D2Li D .LjHi

/n�3.DjHi
/2 < 0 for each i 2 f1; : : : ; kg, and since L is a

convex combination of the Li we infer that Ln�2D2<0, which is again a contradiction
to the choice of D . This ends the proof.

Corollary 6.5 (Special case of hard Lefschetz theorem) Let X be a projective smooth
variety of dimension n� 2 and let L 2 Amp.X /R . Then the linear map

N 1.X /R!N1.X /R; D 7!Ln�2
�D;

is an isomorphism.

For any ample class L 2 Amp.X /R we set

KC
L
.X / WD fˇ 2N 1.X /R j ˇ

2Ln�2 > 0; ˇLn�1 > 0g:

This is an open cone in N 1.X /R containing Amp.X /R . It is the “positive component”
of the quadric cone KL.X / WD fˇ 2 N 1.X /R j ˇ

2Ln�2 > 0g. By the Hodge index
theorem one may find linear coordinates in N 1.X /R with respect to which KC

L
.X /

becomes fx 2 R� j
P��1

iD1
x2

i < x2
� ; x� > 0g. From this it follows that KC

L
.X / is

self-dual in the sense that

KC
L
.X /D fˇ 2N 1.X /R j ˇ˛Ln�2 > 0; for all ˛ 2KC

L
.X / n f0gg:

Note that by this self-duality property one can also write

KC
L
.X /D fˇ 2N 1.X /R j ˇ

2Ln�2 > 0; 9 ˛ 2 Amp.X /R W ˇ˛n�1 > 0g

D fˇ 2N 1.X /R j ˇ
2Ln�2 > 0; ˇ˛n�1 > 0 for all ˛ 2 Amp.X /Rg:

It is another direct consequence of the Hodge index theorem that for any ˇ 2KC
L
.X /

the square root of the quadratic form ˛ 7! �˛2Ln�2 gives a norm on the hyperplane
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ˇ? WD f 2N 1.X /R j ˇLn�2 D 0g. Furthermore, we set

CC.X / WD
[

L2Amp.X /R

Ln�2
�KC

L
.X /�N1.X /R

and note that

(6.1) Pos.X /R � CC.X /:

We will denote by �.F / the discriminant of a torsion-free coherent sheaf F on X :

�.F /D
1

rank.F /

�
c2.F /�

rank.F /� 1

2 rank.F /
c2

1.F /

�
:

Furthermore, for two torsion-free coherent sheaves G and G0 on X we will use the
notation

�G0;G WD
c1.G

0/

rank.G0/
�

c1.G/

rank.G/
2N 1.X /Q:

One key ingredient to our boundedness results is the following version of Bogomolov’s
inequality.

Theorem 6.6 (Bogomolov inequality) Let X be an n–dimensional smooth projective
variety over an algebraically closed field, n� 2, and L 2Amp.X /Q . Then there exists
a non-negative constant ˇ D ˇ.L/ depending only on X and on L such that for any
torsion-free sheaf F of rank r on X with

�.F /Ln�2
C r2.r � 1/2ˇ < 0;

there exists some non-trivial saturated subsheaf F 0 of F with �F 0;F 2 KC
L
.X /. In

particular, F is not semistable with respect to any polarisation in Ln�2KC
L
.X /.

Proof This is proved for n D 2 in [25, Theorem 7.3.3] in characteristic 0 and in
[33, Theorem 3.12] in arbitrary characteristic and for arbitrary n. We remark that in
characteristic 0 the quantity ˇ.L/ can be taken to be zero.

Lemma 6.7 Let  be any class in N1.X / and ˛ 2 Amp.X /Q . If a torsion-free
sheaf E is slope semistable with respect to  but not with respect to ˛ , then E is
properly semistable with respect to a class t WD .1� t/ C t˛n�1, for some t 2 Œ0; 1/.

Proof We look at the set T WD ft 2 Œ0; 1� j E is not stable with respect to tg. If
T D Œ0; 1� then E is properly  –semistable, and the claim is proven. So, sup-
pose that T ¤ Œ0; 1� and that E is  –stable. For any saturated subsheaf S of E

with 0 < rank.S/ < rank.E/ we define an affine-linear function fS W Œ0; 1�! R by
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fS .t/ WD �t
.S/��t

.E/D t � �S;E . As E is  –stable, fS .0/ < 0 for all such S .
If fS vanishes somewhere on Œ0; 1�, then fS .1/� 0, and hence �˛.S/��˛.E/. Con-
sequently, the set of such S is bounded by Grothendieck’s lemma [25, Lemma 1.7.9].
On the other hand, it is non-empty, as E is ˛–unstable. Hence, there exist only finitely
many functions of type fS that vanish at some point of Œ0; 1�, say fS1

; : : : ; fSm
. We

set f to be their maximum, f .t/ WDmaxffS1
.t/; : : : ; fSm

.t/g.

It is immediately seen that f is continuous, strictly increasing, that f .0/< 0, f .1/> 0

and that T D ff � 0g. In particular, T D Œt0; 1� is a closed interval. Moreover, E is
properly semistable with respect to t0

. Indeed, it is semistable since fS .t0/�f .t0/D0

for any saturated subsheaf S of E with 0< rank.S/ < rank.E/, and it is not stable
since there exists an Si with 0� i �m such that fSi

.t0/D f .t0/D 0.

Theorem 6.8 (Boundedness I) Let X be a smooth n–dimensional projective variety
and let � � CC.X / be a compact subset. Then the set of torsion-free sheaves E

with fixed topological type that are slope semistable with respect to some class in � is
bounded.

Proof Without loss of generality we may assume that there exists an L 2 Amp.X /Q
such that � � Ln�2KC

L
.X /. Indeed, as � is compact, it is covered by finitely

many of the open cones Ln�2KC
L
.X /, and hence decomposes into a finite number

of compact sets, each of which is contained in a cone of the form Ln�2KC
L
.X /. By

enlarging � if necessary, we may further assume that � is star-shaped with respect to
Ln�1 2Ln�2KC

L
.X /.

Let E be a torsion-free sheaf and  2 � . There exists a class ˛ 2 KC
L

such that
 D ˛Ln�2 . We denote by t WD .1� t/ C tLn�1D ..1� t/˛C tL/Ln�2 the classes
on the segment Œ;Ln�1�. We write �max.E/ for the maximal slope of a subsheaf of
E with respect to L.

Claim If E is t –semistable for some t 2 Œ0; 1�, then �max.E/ is bounded by a
function depending only on rank.E/, c1.E/, �.E/Ln�2 and � .

We shall prove this claim by induction on the rank of E . The assertion is clearly true
when the rank is one. So suppose that rank.E/ > 1 and that the claim holds for all
lower ranks. If E is slope semistable with respect to L, things are clear. Otherwise,
by Lemma 6.7 there exists some t0 2 Œ0; 1� and a proper saturated subsheaf E0 of E

having the same t0
–slope as E . Thus, �E0;E � t0

D 0. We write E0
0
WD E=E0 .

Then both E0 and E0
0

are t0
–semistable, hence �.E0/L

n�2 and �.E0
0
/Ln�2 are
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no smaller than �r2.r � 1/2ˇ by Bogomolov’s inequality, Theorem 6.6 above. This,
the fact that �E0;E 2 ..1� t0/˛C t0L/? , and the identity

�
rank.E0/rank.E0

0
/

rank.E/
�2

E0;E
D

�.E/

rank.E/
�

�.E0/

rank.E0/
�

�.E0
0
/

rank.E0
0
/

imply that �E0;E belongs to a bounded ball inside ..1�t0/˛Ct0L/? whose radius only
depends on �.E/Ln�2 . Since the norm induced by the square root of the quadratic
form ı 7! �ı2Ln�2 on ..1 � t/˛ C tL/? varies continuously in t , and since �
is compact, we deduce that �E0;E belongs to a bounded and hence finite subset of
N 1.X /R depending only on �.E/Ln�2 , and of course on � . Thus, if c1.E/ is fixed,
c1.E0/ and hence c1.E

0
0
/ may only acquire a finite number of values. Moreover,

the same identity, Bogomolov’s Inequality for E0 and E0
0

, and the negativity of
�2

E0;E
Ln�2 imply

�r2.r � 1/2ˇ �
�.E0/L

n�2

rank.E0/
�
�.E/Ln�2

rank.E/
C r2.r � 1/2ˇ;

�r2.r � 1/2ˇ �
�.E0

0
/Ln�2

rank.E0
0
/
�
�.E/Ln�2

rank.E/
C r2.r � 1/2ˇ:

By the induction assumption it now follows that �max.E0/ and �max.E
0
0
/ are bounded

by a function depending only on rank.E/, c1.E/, �.E/Ln�2 , and � . Since

�max.E/�max.�max.E0/; �max.E
0
0//;

the claim is proved. The statement of the theorem is a direct consequence of the Claim
by [33, Theorem 4.2], see also [25, Theorem 3.3.7].

Remark 6.9 A precursor of the argument used in the proof of Theorem 6.8 can be
found in [19, proof of Lemma 6.4].

Our main boundedness results will be consequences of the preceding boundedness
result in combination with the following convexity result.

Theorem 6.10 (Convexity of CC.X /) Let X be a smooth projective variety of
dimension at most three or of Picard number at most two. Then the cone CC.X / is
convex. In particular, Conv.Pos.X //� CC.X /.

Proof We first organise our linear algebra data. We set n D dim.X / and � D

dim N 1.X /R . For any basis L1; : : : ;L� of N1.X /R and any L 2 Amp.X /R the
matrix AD .LiLj Ln�2/1�i;j�� is symmetric non-degenerate of signature .1; ��1/ by
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the Hodge index theorem, Theorem 6.4 above. We denote by q.˛/D qL.˛/D ˛
2Ln�2

the quadratic form induced by L on N 1.X /R and by zqD zqLW N
1.X /R�N 1.X /R!

R its associated bilinear form. Let ˇ D
P�

iD1
xiLi be any class in N 1.X /R and

x D .x1; : : : ;x�/ 2R� its coordinate vector. Then we have q.ˇ/D x>Ax . Now let
 D ˇLn�2 and set y D .y1; : : : ;y�/, where yj WD Lj . Then Ax D y .

The condition that  belong to Ln�2KC
L
.X / translates into q.ˇ/ > 0 and ˛ > 0 for

some ˛ 2 Amp.X /R . For the specific classes  discussed later on, it will be clear
that the second inequality always holds. The first one may be rewritten in coordinates
as x>Ax > 0 or equivalently as y>A�1y > 0. Thus the quadratic form q D qL on
N 1.X /R is transported to N1.X /R by hard Lefschetz, Corollary 6.5, and its matrix
with respect to the chosen basis is A�1 . We denote this quadratic form too by q .

The statement of the theorem is clear when � � 2. From now on, we will consider the
case � � 3 and nD 3.

Let 1 2L1KC
L1
.X /, 0 2L2KC

L2
.X /, where L1;L2 are real ample classes on X .

Let  D t D t1C 0 . Here, we may take 0 � t �1. We want to show that t

belongs to CC.X / for all t . Since this is clear when L1 and L2 are proportional or
when 1 and 0 are proportional, we shall suppose in the sequel that neither of them
are. When 1 and 0 are not proportional, we may suppose moreover that

(6.2) .1L1/.0L2/� .1L2/.0L1/¤ 0

by slightly perturbing L1 or L2 . This assumption says that the subspace spanned by
L1 and L2 is complementary to V WD fD 2 N 1.X /R j D1 D 0; D0 D 0g. We
remark that

(6.3) D2L1 < 0 and D2L2 < 0 for all D 2 V n f0g;

since by self-duality of the positive cones KC
L1

and KC
L2

, the vector D cannot belong
to either of them. Thus, also for any convex combination L of L1 and L2 , one has
D2L < 0 and D 62 KC

L
.X /. For later use, we also note that by self-duality again

1L> 0, 0L> 0 for any ample class L.

We now choose a basis D1; : : : ;D��2 of V , set Lj D D2Cj for 1 � j � � � 2

and apply the previous notation for the basis L1; : : : ;L� . In particular, for each
ample L, consider the matrix A D AL . Note that .�1/��1 det.A/ > 0. We have
A�1 D .det A/�1adj.A/, where adj.A/D .Ci;j /i;j is the cofactor matrix of A. Let
yD .y1; : : : ;y�/, where yi D yi.t/ is the coordinate vector of  D t , as before. Note
that our choice of basis implies y1;y2 > 0, y3 D � � � D y� D 0. We want to show that
for any t there is a choice of L 2 ŒL1;L2� with corresponding matrix A such that

(6.4) y>A�1y > 0:
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The expression (6.4) is quadratic and homogeneous in y1 and y2 and its positivity
will not change if we divide it by y2

2
. Writing �D �.t/D y1=y2 , we get a quadratic

function of � whose positivity we want to examine:

fL.�/D .�; 1; 0; : : : ; 0/.�1/��1adj.A/.�; 1; 0; : : : ; 0/>

D .�1/��1.C1;1�
2
C 2C1;2�CC2;2/:

Note that the leading coefficient .�1/��1C1;1 of fL is negative, as it is .�1/��1 times
a principal .��1/� .��1/–minor of A, whose signature on the subspace spanned by
L2 and V is .1; ��2/ by (6.3). The same is true for .�1/��1C2;2 , again by (6.3). The
discriminant of f is 4.C 2

1;2
�C1;1C2;2/, which is �4 times a 2� 2–minor of adj.A/.

By [6, Chapter III, Exercise 11.9], this minor equals det.A/ times the .��2/�.��2/–
minor of A formed on complementary position. The corresponding matrix represents
the restriction of our quadratic form to V , which has signature .0; �� 2/. Thus, the
discriminant of fL is positive for any convex combination L of L1 and L2 . So for
any such L the function fL will take positive values on a non-empty open interval
IL �R. Therefore, the subset

f.�;L/ 2R� ŒL1;L2� j fL.�/ > 0g D
[

L2ŒL1;L2�

IL � fLg �R� ŒL1;L2�

is connected, and hence so is its projection
S

L2ŒL1;L2�
IL on R. As �.0/ 2 IL2

and
�.1/ 2 IL1

, it follows that any � between �.0/ and �.1/ belongs to the positivity
interval IL of some suitable convex combination L of L1 and L2 . Writing out

�.t/D
t.1L1/C 0L1

t.1L2/C 0L2

;

we see that

�0.t/D
.1L1/.0L2/� .1L2/.0L1/

.t.1L2/C 0L2/2
;

which does not vanish by our assumption (6.2). Hence, � is a monotone function
of t , and �.t/ must lie between �.0/ and �.1/ for all t 2 Œ0;1�. This proves the
theorem.

Corollary 6.11 (Boundedness II) Let X be a smooth projective variety of dimen-
sion n, � 2B.X /Q , and L1; : : : ;Lj0

ample line bundles on X . Furthermore, suppose
that †� .R�0/

j0 is a closed convex polyhedral cone with the origin removed. IfX
j

�j c1.Lj /
n�1
2 Pos.X /R for all .�1; : : : ; �j0

/ 2†;

then † is a bounded set of stability parameters with respect to � and LD .L1; : : : ;Lj0
/.
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Proof We define y† WD f
P

j �j Ln�1
j j .�1; : : : ; �j0

/ 2†g � PosR.X /. Since † is a
cone over a compact base, the same is true for y†. If � is such a base for y†, it suffices
to show that � is a bounded set of stability parameters. This however follows directly
from Lemma 3.3 and Theorem 6.8, since Pos.X /R � CC.X / by (6.1).

Corollary 6.12 (Boundedness III) Let X be a smooth projective variety, � 2B.X /Q ,
and L1; : : : ;Lj0

ample line bundles on X . In addition, suppose that

(1) the rank of the torsion-free sheaves under consideration is at most two, or

(2) the dimension of X is at most three, or

(3) the Picard rank of X is at most two.

Then the whole set .R�0/
j0 n f0g of stability parameters is bounded with respect to �

and LD .L1; : : : ;Lj0
/.

Proof By Lemma 3.3 it is sufficient to show that in any of the above situations the set of
torsion-free coherent sheaves of fixed topological type � and which are slope semistable
with respect to some class in the compact set Conv.fLn�1

1
; : : : ;Ln�1

j0
g/�N1.X /R is

bounded. When dim.X /�3 or when �.X /�2, this follows directly from Theorems 6.8
and 6.10.

So suppose now that E is a torsion-free sheaf of rank two and of fixed topolog-
ical type � , which is slope semistable with respect to some  D

P
j �j Ln�1

j 2

Conv.fLn�1
1

; : : : ;Ln�1
j0
g/. The classes Ln�1

j are in CC.X /, and one can see that
they also belong to some compact connected subset � of CC.X /, by considering
connecting paths between the Ln�1

j for instance.

Set ˛ DL1 . If E is slope semistable with respect to ˛ , then E lies in a bounded set
of sheaves by [25, Theorem 3.3.7]. If not, then by Lemma 6.7 there exists t 2 Œ0; 1�

such that E is properly semistable with respect to t WD .1� t/ C t˛n�1 . Hence,
there exists a proper saturated subsheaf E0 of E having the same t –slope as E ;
ie �E0;E � t D 0. Let E0

0
WD E=E0 . Then E0 and E0

0
are rank one torsion-free

sheaves having the same t –slope. Since t lies in Conv.fLn�1
1

; : : : ;Ln�1
j0
g/, the

hyperplane H WD fı 2N1.X /R j ı�E0;E D 0g separates ˛ from one of the other Ln�1
j .

Since � is connected and contains Ln�1
1

; : : : ;Ln�1
j0

, there exists some class  0 in
� \H . Figure 1 illustrates the situation. It follows that c1.E0/

0 D c1.E
0
0
/ 0 , and

thus E is slope semistable with respect to  0 2 � . Boundedness then follows from
Theorem 6.8.

Remark 6.13 As pointed out by Joyce, the above boundedness results have im-
plications for a certain “technical difficulty” concerning wall crossing formulae for
Donaldson–Thomas invariants discussed in [30, page 27] and [29, Section 5].
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˛

�

Ln�1
j



t

H

 0

Figure 1: A cross section through N1.X /R and PosR.X / .

7 The Le Potier–Simpson theorem

We now fix a projective scheme X over an algebraically closed field of characteristic 0,
a vector LD .L1; : : : ;Lj0

/ of very ample line bundles on X and a topological type
� 2 B.X /Q . We also fix a bounded stability parameter � D .L; �1; : : : ; �j0

/.

Our goal is to show that semistability of a sheaf can be detected by the spaces of sections
of its subsheaves, which we do with the following version of the Le Potier–Simpson
estimate. We write Œx�C Dmaxfx; 0g.

Theorem 7.1 (Le Potier–Simpson estimate) Let X be a projective scheme and L be
a very ample line bundle on X . Let E be a pure d –dimensional sheaf and set

C L
E WD .r

L
E /

2
C

1
2
.rL

E C d/� 1:

Then for any n> 0,

h0.E˝Ln/�
rL
E
� 1

d!

�
y�L

max.E/CC L
E C n

�d
C
C

1

d!

�
y�L.E/CC L

E C n
�d
C
:

Proof This is proved in [25, Corollary 3.3.8].

We emphasise that C L
E

depends only on the Hilbert polynomial PL
E

of E , and if
E0 � E then one has C L

E0
� C L

E
. We next prove a tailored version of a theorem

originally due to Le Potier [36] and Simpson [45].

By hypothesis, the set of semistable sheaves of topological type � is bounded. Thus, for
all p sufficiently large any semistable sheaf is .p;L/–regular. We fix such a p 2N .
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Theorem 7.2 (Le Potier–Simpson theorem) For all n� p the following are equiva-
lent for any pure d –dimensional sheaf E of topological type � .

(1) E is (semi)stable.

(2) E is .p;L/–regular and for all proper E0 �E we have

(7.1)

P
j �j h0.E0˝Ln

j /

r�
E0

.�/p�E.n/:

(3) E is .p;L/–regular and for all proper saturated E0 �E with y�� .E0/� y�� .E/
the inequality (7.1) holds.

Moreover, if E is semistable of topological type � , and E0 �E is a proper subsheaf,
then equality holds in (7.1) if and only if E0 is destabilising.

Proof Our proof follows [25, Theorem 4.4.1], only with a more careful bookkeeping
of the constants involved. The set of all .p;L/–regular sheaves of topological type �
is bounded. Thus by Proposition 6.2 we know there is a positive constant C1 such that

(7.2) max
j
y�

Lj
max.E/� C1

for all such sheaves. Define xC Dmaxj fC
Lj
E
g, where the quantity on the right is as in

Theorem 7.1, and observe that xC depends only on � . We then pick a positive constant
C2 large enough so that for any .p;L/–regular sheaf E of topological type � we have

(7.3) C2 � �y�
� .E/C 1

and

(7.4)
�

1�

P
j �j

r�
E

�
.C1C

xC /C

P
j �j

r�
E

.�C2C
xC /� y�� .E/� 1:

This is clearly possible, as r�
E

and y�� .E/ depend only on � and � .

Now, let S be the set of all saturated subsheaves F �E , where E is .p;L/–regular
of topological type � , and

(7.5) y�Lj .F /� �C2 for some j 2 f1; : : : ; j0g:

We claim that S is bounded, which uses in an essential way the hypothesis that each
sheaf in S is saturated. For j0 D 1, this follows immediately from Grothendieck’s
lemma [25, Lemma 1.7.9], since the family of .p;L/–regular sheaves E of topological
type � is bounded. For higher j0 , the set S is thus a finite union of bounded sets of
sheaves, and so itself bounded.

We claim that for all n� p the following hold:
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(i) For any F 2 S , p�
F
.n/ � p�

E
.n/ if and only if p�

F
� p�

E
, where � stands for

<;� or D.

(ii) All sheaves F 2 S are .n;L/–regular.

(iii) n> C2�
xC .

(iv) For any sheaf E of topological type � ,�
1�

P
j �j

r�
E

�
1

d!
.C1C

xC C n/d C

P
j �j

r�
E

1

d!
.�C2C

xC C n/d � p�E.n/� 1:

To see this is true, observe that there are only a finite number of Hilbert polynomials
�.F ˝Lk

j / among the sheaves in S , so (i) holds for all n sufficiently large. That
(ii) holds follows from boundedness of S , and (iii) can obviously be achieved. The
condition (iv) is true for all n sufficiently large by inequality (7.4), since

p�E.m/D
1

d!
md
C

1

.d � 1/!
y�� .E/md�1

CO.md�2/;

where the O.md�2/ terms and r�
E

depend only on the type of E .

Proof that (1) implies (2) Let E be (semi)stable of topological type � , and let
P� WD P�

E
, which depends only on � and � . By our choice of p , the semistability

hypothesis implies that E is .p;L/–regular. Now, let E0 �E be a proper subsheaf.
We split into two cases:

(A) y�Lj .E0/ < �C2 for all j ,

(B) y�Lj .E0/� �C2 for some j .

Suppose E0 is of type (B) and let F be the saturation of E0 in E . Then, as y�Lj .F /�

y�Lj .E0/, we see that F 2 S . In particular, F is .n;L/–regular by (ii). Since E is
(semi)stable, we have p�

F
.�/p�

E
and so by (i),

(7.6)

P
j �j h0.E0˝Ln

j /

r�
E0

�

P
j �j h0.F ˝Ln

j /

r�
F

D p�F .n/� p�E.n/:

Thus, we have (7.1) for all subsheaves E0 of type (B).

We now deal with the case of equality for sheaves of type (B). Suppose first equality
holds in (7.1), where E0 is of type (B). Then the equality in (7.1) implies equality in
(7.6), and so as r�

E0
D r�

F
and h0.E0˝Ln

j / � h0.F ˝Ln
j / for all j , we conclude

that there must be some j for which H 0.F˝Ln
j /DH 0.E0˝Ln

j /. But F is .n;L/–
regular, and so in particular F ˝Ln

j is globally generated, and thus F �E0 . Hence,
E0 is saturated and so lies in S . Thus, E0 is .n;L/–regular by (ii) and the assumed
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equality in (7.1) is precisely that p�
E0
.n/D p�

E
.n/. Thus, (i) implies that p�

E0
D p�

E
,

from which we conclude that E0 is destabilising. Conversely, assume E0 � E is
destabilising. Then by Lemma 2.13 the direct sum G WDE0˚ .E=E0/ is semistable.
But G has topological type � , so by hypothesis G is .p;L/–regular, and thus E0 is
also .p;L/–regular. Hence, E0 is also .n;L/–regular, and so equality holds in (7.1)
as p�

E0
D p�

E
.

To deal with sheaves of type (A) we use the Le Potier–Simpson estimate. First consider
a fixed j . As E is pure of dimension d , the same is true of E0 . Moreover, as E0 is a
subsheaf of E ,

(7.7) y�
Lj
max.E

0/� y�
Lj
max.E/� C1

by (7.2), and

(7.8) C
Lj
E0
� C

Lj
E
� xC

by the definition of xC . Thus, from Theorem 7.1 applied to E0 and Lj we have that
for any n> 0,

h0.E0˝Ln
j /�

r
Lj
E0
� 1

d!

�
y�

Lj
max.E

0/CC
Lj
E0
C n

�d
C
C

1

d!

�
y�Lj .E0/CC

Lj
E0
C n

�d
C

�
r

Lj
E0
� 1

d!

�
C1C

xC C n
�d
C
C

1

d!

�
�C2C

xC C n
�d
C
;

where we have used inequalities (7.7) and (7.8), the assumption that E0 is of type (A),
and the simple fact that x � y implies Œx�C � Œy�C . Now, by condition (iii) above, the
term in the last square brackets is positive. So we in fact have

(7.9) h0.E0˝Ln
j /�

r
Lj
E0
� 1

d!
.C1C

xC C n/d C
1

d!
.�C2C

xC C n/d :

Recall that r�
E0
D
P

j �j r
Lj
E0

. So multiplying (7.9) by �j , then summing over all j

and dividing by r�
E0

yieldsP
j �j h0.E0˝Ln

j /

r�
E0

�

�
1�

P
j �j

r�
E0

�
1

d!
.C1C

xC Cn/d C

P
j �j

r�
E0

1

d!
.�C2C

xC Cn/d :

Notice that r�
E0
�
P

j �j , so the above is a convex combination of
1

d!
.C1C

xC C n/d and 1

d!
.�C2C

xC C n/d ;

and that as C1;C2 are positive, we clearly have .C1C
xC C n/d > .�C2C

xC C n/d .
So as r�

E0
� r�

E
we can replace all the multiplicities of E0 in the previous equation
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with those of E and only improve the inequality, ie

(7.10)

P
j �j h0.E0˝Ln

j /

r�
E0

�

�
1�

P
j �j

r�
E

�
1

d!
.C1C

xC C n/d

C

P
j �j

r�
E

1

d!
.�C2C

xC C n/d

� p�E.n/� 1;

where the last inequality uses condition (iv). Hence the desired inequality (7.1) holds
strictly and so (7.1) holds strictly. Finally, we observe that if E0 is of type (A) then
y�� .E0/��C2 � y�

� .E/�1 by (7.3), and so E0 is not destabilising. Thus, along with
the paragraph immediately after (7.6) we see that for any E0 �E , equality holds in
(7.1) if and only if E0 is destabilising, if and only if E0 is saturated and destabilising.

Proof that (3) implies (1) Note that (2) obviously implies (3). So, suppose (3) holds
and that E is a pure d –dimensional sheaf of topological type � and that (3) holds. To
show that E is (semi)stable it is sufficient by Lemma 2.14 to prove that p�

E0
.�/p�

E

for all saturated subsheaves E0 �E . So let E0 �E be saturated. If y�� .E0/ < y�� .E/,
then clearly E0 does not destabilise. So suppose that y�� .E0/� y�� .E/. Then (3) says
that (7.1) holds for this E0 .

Now part of the hypothesis in (3) is that E is .p;L/–regular. This together with
Lemma 2.11 implies that there exists a j 2 f1; : : : ; j0g such that

y�Lj .E0/� y�� .E/� �C2;

where the last inequality comes from (7.3). Looking at the defining inequality (7.5)
of S , we conclude that E0 2 S . Thus, E0 is .n;L/–regular by (ii).

As (7.1) holds for E0 , we get

p�E0.n/D

P
j �j h0.E0˝Ln

j ; /

r�
E0

� p�E.n/:

Hence, by (i) we deduce p�
E0
.�/p�

E
, and so E is semistable; ie (3) implies (1).

Corollary 7.3 For all n � p � 0 the following are equivalent for any pure d –
dimensional sheaf E of topological type � :

(1) E is semistable.

(2) E is .p;L/–regular and for all proper E0 � E we have the inequality of
polynomials

(7.11)
X

j

�j h0.E0˝Ln
j /P

�
E � P�

E.n/P
�
E0 :
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(3) E is .p;L/–regular and for all proper saturated E0 �E with y�� .E0/� y�� .E/
the inequality (7.11) holds.

Moreover if E is semistable and E0 �E is a proper subsheaf then equality holds in
(7.11) if and only if E0 is destabilising.

Proof For all p� 0 the set of semistable sheaves of topological type � are .p;L/–
regular. So let n� p� 0 be as in the proof of the previous theorem.

To show (1) implies (2) set r D
P

j �j r
Lj
E

and r 0 D
P

j �j r
Lj
E0

(which of course also
depend on � ) and let E be semistable. So by Theorem 7.2, for E0 �E we have the
following inequality of polynomials,

(7.12)
X

j

�j h0.E0˝Ln
j /r � P�

E.n/r
0:

If this inequality is strict, then we infer that (7.11) holds strictly, since r and r 0 are
the leading order terms in P�

E
and P�

E0
respectively. On the other hand, if equality

holds, then by the last statement in Theorem 7.2 we have that E0 is destabilising, so
p�

E0
D p�

E
. Then P�

E
=r DP�

E0
=r 0 , and so equality in (7.12) implies equality in (7.11).

Clearly (2) implies (3), so assume that (3) holds. Suppose E0 �E is a proper subsheaf
with y�� .E0/� y�� .E/, so by hypothesis (7.11) holds. This implies the corresponding
inequality in the leading order coefficients of the two polynomials, and this leading
order term is precisely (7.12). Thus, by the implication “(3) ) (1)” of Theorem 7.2
we deduce that E is semistable.

The final statement is proven similarly. If E is semistable, and E0 �E is such that
equality holds in (7.11), then equality holds in its leading order term (7.12), and thus
by the final statement in Theorem 7.2 the subsheaf E0 is destabilising. Conversely, by
the same theorem, if E0 is destabilising, then p�

E0
D p�

E
and equality holds in (7.12),

which implies equality in (7.11).

8 Comparison of semistability

Our goal is to compare stability of a sheaf E with stability of the module Hom.T;E/
introduced in Section 5.1.2.

We continue using the notation of the previous section; so � 2B.X /Q , each Lj is very
ample and � is a bounded stability parameter. Moreover, we re-invoke the notation of
Section 5. In particular, for integers m> n, we consider the sheaf

T WD
M

j

�
L�n

j ˚L�m
j

�
;

Geometry & Topology, Volume 20 (2016)



Variation of moduli spaces via quiver GIT 1585

whose dependence on m; n will be suppressed throughout the discussion, and for a
coherent sheaf E the representation Hom.T;E/ of the algebra

ADL˚

j0M
i;jD1

Hom.L�m
j ;L�n

i /

associated with our quiver Q, cf Section 5.1.2.

Recall that a stability parameter � D .L; �1; : : : ; �j0
/ is called positive if all the �j

are positive.

Theorem 8.1 (Comparison of semistability and JH filtrations) For all integers m�

n� p� 0 the following holds for any sheaf E on X of topological type � :

(1) E is semistable if and only if it is pure, .p;L/–regular, and Hom.T;E/ is
semistable.

(2) Suppose � is positive. If E is semistable, then

Hom.T; gr E/' gr Hom.T;E/;

where gr denotes the graded object coming from a Jordan–Hölder filtration of
E or Hom.T;E/, respectively. In particular, two semistable sheaves E and E0

are S –equivalent if and only if Hom.T;E/ and Hom.T;E0/ are S –equivalent.

Parts (1) and (2) are proven as Theorems 8.16 and 8.20 below.

Remark 8.2 In fact, for the “only if” statement in (1) one can in fact choose nD p .
In the case j0 D 1 considered by [2] it is proved moreover that one can take nD p

for the converse direction. However, we have not been able to prove that this is the
case for higher j0 . The issue arises in the converse direction of the Le Potier–Simpson
theorem in which we needed to assume a priori that E lies in a bounded family (for
example that it is .p;L/–regular) to deduce the “(3) ) (1)” direction.

The proof of the theorem is adapted from [2, Section 5]. We begin, as the authors of
[2] do, by making explicit our requirements on the integers p , n, and m. First, we
choose p sufficiently large so that:

(C1) Every sheaf E of topological type � that is semistable with respect to � is
.p;L/–regular.

This is possible by the boundedness assumption on � . Then, given such a p , we choose
n� p sufficiently large so that:
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(C2) The conclusion of Corollary 7.3 (coming from the Le Potier–Simpson theorem)
holds for any pure sheaf of topological type � .

Now choose m� n large enough so that three further conditions (C3), (C4), and (C5)
hold:

(C3) For all j D 1; : : : ; j0 the line bundle L�n
j is .m;L/–regular.

To discuss the final two conditions we make some definitions. Let E be any sheaf that
is .n;L/–regular and has topological type � . For each j let

�j W H
0.E˝Ln

j /˝L�n
j !E

be the natural (surjective) evaluation maps.

Definition 8.3 For an .n;L/–regular sheaf E and subspaces V 0j �H 0.E˝Ln
j / let

E0j and F 0j be the image and kernel of �j restricted to V 0j , so there is a short exact
sequence 0! F 0j ! V 0j ˝L�n

j !E0j ! 0. Then define a subsheaf of E by

Esum WDEsum.V
0

1; : : : ;V
0

j0
/ WDE01C � � �CE0j0

and let K DK.V1; : : : ;Vj0
/ be the kernel of the surjection

L
j E0j !Esum . We let

S1 be the set of all sheaves E0j ;F
0
j ;Esum and K that arise in this way.

Since the set of .n;L/–regular sheaves of topological type � is bounded, and since
for each such E the possible V 0j all live in a bounded family, S1 is a bounded family.
Now let S2 be the set of saturated subsheaves E0 �E where E is .p;L/–regular of
topological type � and y�� .E0/� y�� .E/. Then, as in the proof of Lemma 2.19 since
each sheaf in S2 is assumed to be saturated, Grothendieck’s lemma implies S2 is also
bounded.

(C4) All the sheaves in S1[S2 are .m;L/–regular.

(C5) Let Pj .k/D �.E˝Lk
j / for a sheaf of topological type � , so P�

E
D
P

j �j Pj .
Then for any integers cj 2 f0; : : : ;Pj .n/g and sheaves E0 2 S1[S2 the polynomial
relation P�

E

P
j �j cj � P�

E0
P�

E
.n/ is equivalent to the relation P�

E
.m/

P
j �j cj �

P�
E0
.m/P�

E
.n/, where � is any of � or < or D.

This last condition is possible since there are only a finite number of different topological
types arising from the different sheaves E0 in the bounded family S1 [ S2 . So, as
the cj are all bounded, the above gives a finite number of numerical conditions on
these polynomials. Each such condition can be satisfied, since an inequality between
polynomials p; q 2RŒl � is equivalent to the same inequality holding with l Dm for
some/all sufficiently large m 2N .
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Remark 8.4 For later reference we emphasise that what we have actually shown is
that if n is chosen so that condition (C2) holds (ie so the Le Potier–Simpson theorem,
Theorem 7.2, holds) then conditions (C3)–(C5) hold for all m sufficiently large.

8.1 Slope of modules

We next recast the stability of an A–module in terms of a “slope” function. Let
� D .L; �1; : : : ; �j0

/ be a stability parameter.

Definition 8.5 (Slope of an A–module) Let M D
L

j Vj ˚Wj be an A–module
with either

P
j �j dim Vj > 0 or

P
j �j dim Wj > 0. Then the slope of M is

�.M / WD �� .M / WD

P
j �j dim VjP
j �j dim Wj

;

which takes values in the ordered interval Œ0;1�.

We now fix the dimension vector of the modules we wish to consider. For this, let
p; n;m satisfy conditions (C1)–(C5) and let d D .d11; d12; : : : ; dj01; dj02/, where

(8.1) dj1 D h0.E˝Ln
j /D P

Lj
E
.n/ and dj2 D h0.E˝Lm

j /D P
Lj
E
.m/

for any .n;L/–regular sheaf E of topological type � . Recall that if M is an A–module
with dimension vector d and M 0 D

L
j V 0j ˚W 0j is a submodule of M , we have set

�.M 0/ WD �� .M
0/D

P
j �j1 dim V 0j C

P
j �j2 dim W 0j , where

(8.2) �j1 WD
�jP
�idi1

; �j2 WD
��jP
�idi2

for j D 1; : : : ; j0:

Also, M was defined to be semistable (with respect to � ) if �� .M 0/ � 0 for all
submodules M 0 , and if M is semistable we say that a proper submodule M 0 is
destabilising if �� .M 0/D 0.

Lemma 8.6 (Detecting semistability via slopes) Let M be an A–module of dimen-
sion vector d , and M 0 D

L
V 0j ˚W 0j be a submodule of M with

P
j �j dim W 0j > 0.

Then

�.M 0/ .�/ 0 if and only if �.M 0/ .�/ �.M /:
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Proof We have

�.M 0/D
X

j

�j1 dim V 0j C
X

j

�j2 dim W 0j D

P
j �j dim V 0jP

i �idi1

�

P
j �j dim W 0jP

i �idi2

D

P
j �j dim W 0jP

i �idi1

�
�.M 0/��.M /

�
;

from which the statement follows immediately.

Definition 8.7 (Degenerate submodules) Let M 0D
L

j V 0j ˚W 0j be a submodule of
an A–module M . We say that M 0 is degenerate if V 0j D f0g for all j , and W 0i D f0g

for all i such that �i ¤ 0.

The reason to introduce this terminology is from the following statement, which reduces
the check of semistability to a slope inequality among non-degenerate submodules.

Lemma 8.8 Let E be .n;L/–regular of topological type � and set M DHom.T;E/.
Let M 0 D

L
V 0j ˚W 0j be a submodule of M .

(1) If M 0 is non-degenerate, then
P

j �j dim W 0j > 0; ie the slope �.M 0/ is well-
defined for all non-degenerate submodules of M .

(2) M is semistable if and only if �.M 0/� �.M / for all non-degenerate submod-
ules M 0 of M .

(3) Suppose M is semistable. Then, a proper submodule M 0 is destabilising if and
only if either it is degenerate or it is non-degenerate with �.M 0/D �.M /.

Proof Write M D Hom.T;E/D
L

j H 0.E˝Ln
j /˚H 0.E˝Lm

j / along with the
natural multiplication morphisms �ij W H

0.E˝Ln
i /˝Hij !H 0.E˝Lm

j /, where
Hij DH 0.Lm

j ˝L�n
i /. Observe that since L�n

i ˝Lm
j is globally generated by (C3),

if s 2H 0.E˝Ln
i / is such that �ij .s˝ h/D 0 for all h 2Hij then s D 0.

To show the first statement, suppose
P

j �j dim W 0j D 0. Then clearly W 0i D f0g for
all i such that �i ¤ 0. Choose some r so that �r > 0, which implies W 0r D f0g. Then,
as M 0 is a submodule of M , �ir .V

0
i ˝Hir /�W 0r D f0g for all i . By the previous

paragraph this implies V 0i D f0g for all i . We conclude that M 0 is degenerate, as
claimed in (1).

For the second statement, note that �.M 0/D 0 if M 0 is degenerate. On the other hand,
if M 0 is non-degenerate, then by (1) and Lemma 8.6 we have �.M 0/� 0 if and only if
�.M 0/��.M /, proving (2). Statement (3) can be proven with similar arguments.
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Remark 8.9 A pure sheaf E is (semi)stable with respect to � if and only if for all
proper subsheaves F �E we have

P�
F
.n/

P�
F
.m/

.�/
P�

E
.n/

P�
E
.m/

for m� n� 0:

This follows quickly from the following observation: for two monic polynomials P and
Q of the same degree one has Q .�/P if and only if P .m/=Q.m/ .�/P .n/=Q.n/

for all m� n� 0. In order to see this, just write P DQCR and note that when
m tends to infinity R.m/=Q.m/ tends to 0 through positive (resp. negative) values
depending on the positivity of R.

Although we will not use this statement directly, it illustrates the relationship between
stability of sheaves and quiver representation. Since higher cohomology will vanish for
large n;m, it says that a sheaf E is (semi)stable if and only if for all proper subsheaves
F �E , P

j �j h0.F ˝Ln
j /P

j �j h0.F ˝Lm
j /

.�/

P
j �j h0.E˝Ln

j /P
j �j h0.E˝Lm

j /
for all m� n� 0;

which, by definition, holds if and only if �.Hom.T;F // .�/ �.Hom.T;E//. Thus, the
main task of the subsequent sections will be to ensure that one can take m; n uniformly
over all (relevant) sheaves, and to prove that to test for stability of Hom.T;E/ it is
sufficient to consider only submodules of the form Hom.T;F / for some subsheaf
F �E .

8.2 Tight submodules

Our next task is to simplify the stability condition on a module of the form Hom.T;E/,
where E is an .n;L/–regular sheaf. Roughly speaking, we show that in order to test
Hom.T;E/ for stability it is sufficient to restrict our attention to “tight submodules”
as in the following definition, and moreover that these special submodules essentially
arise as Hom.T;E0/ for some subsheaf E0 �E .

Definition 8.10 Let M 0D
L

j V 0j˚W 0j and M 00D
L

j V 00j ˚W 00j be two submodules
of a given A–module M . We say that M 0 is subordinate to M 00 if

(8.3) V 0j � V 00j and W 00j �W 0j for all j:

We say that M 0 is tight if whenever M 0 is subordinate to a submodule M 00 we have

(8.4) V 0j D V 00j and W 0j DW 00j for all j such that �j ¤ 0:
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Directly from the definition we have the following.

Lemma 8.11 Suppose that M 0 and M 00 are such that �.M 0/ and �.M 00/ are well
defined. If M 0 is subordinate to M 00 , then �.M 0/� �.M 00/, and if moreover M 0 is
tight, then �.M 0/D �.M 00/.

Lemma 8.12 Let zM D
L

j
zVj ˚

zWj be a submodule of an A–module M . Then zM
is subordinate to some tight submodule M 0 D

L
j V 0j ˚W 0j of M .

Proof Associate to M D
L

j Vj ˚Wj the collection of linear maps

�jk W Vj ˝Hjk !Wk ; j ; k D 1; : : : ; j0;

coming from its A–module structure. Define W 0j WD
P

l �lj . zVl ˝Hlj / and

V 0j WD fv 2 Vj j �jk.v˝ h/ 2W 0k for all k and all h 2Hjkg:

So by definition, M 0 WD
L

V 0j ˚W 0j is a submodule of M . Notice that as zM is a
submodule we have W 0j �

zWj . On the other hand, if v 2 zVj then for any k and any
h 2Hjk we have �jk.v˝h/ 2 �jk. zVj ˝Hjk/�W 0

k
, where the last inclusion comes

from the definition of W 0
k

. Thus, zVj � V 0j , and therefore zM is subordinate to M 0 .

A similar elementary argument shows that M 0 is tight. For suppose that M 0 is
subordinate to a submodule M 00 D

L
V 00j ˚W 00j . Then zVl � V 0

l
� V 00

l
, so

W 0j �
X

l

�lj .V
00

l ˝Hlj /�W 00j ;

and so W 0j DW 00j . On the other hand, if v 2 V 00j , then for any k and any h 2Hjk we
have �jk.v˝ h/ 2W 00j DW 0j , and so V 00j D V 0j as well.

Lemma 8.13 Let E be .n;L/–regular of topological type � and set M DHom.T;E/.
Then M is semistable if and only if �.M 0/ � �.M / for all tight non-degenerate
submodules M 0 of M .

Proof To prove this, suppose that �.M 0/ � �.M / for all non-degenerate tight
submodules M 0 , the other implication being clear. If zM is any non-degenerate
submodule, then it is subordinate to some tight M 0 by Lemma 8.12. If M 0 is degenerate,
then zVj � V 0j D f0g for all j , so �. zM /D 0 � �.M /, and we are done. Otherwise,
it follows from Lemma 8.11 that �. zM / � �.M 0/ � �.M /. Thus, the result is a
consequence of Lemma 8.8 (2).
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Proposition 8.14 Let E be an .n;L/–regular sheaf of type � . Suppose that M 0 DL
j V 0j ˚W 0j is a submodule of Hom.T;E/ and set

E0 WDEsum.V
0

1; : : : ;V
0

j0
/:

Then M 0 is subordinate to Hom.T;E0/. If moreover M 0 is tight and non-degenerate,
then �.M 0/D �.Hom.T;E0//.

Proof Let E0j be the sheaf generated by V 0j ˝L�n
j , so E0 DE0

1
C � � �CE0j0

. Note
that we certainly have

(8.5) V 0j �H 0.E0j ˝Ln
j /�H 0.E0˝Ln

j /:

Now applying (C4) to the short exact sequences 0! Fj ! V 0j ˝L�n
j !E0j ! 0 we

have that Fj is .m;L/–regular, and hence for any j ; i the multiplication map

V 0j ˝H 0.Lm
i ˝L�n

j /!H 0.E0j ˝Lm
i /

is surjective. Now consider the short exact sequence 0!K!
L

j E0j!E0!0. Again
from (C4) the sheaves K and E0 are .m;L/–regular. So, for any i the compositionM

j

V 0j ˝H 0.Lm
i ˝L�n

j /!
M

j

H 0.E0j ˝Lm
i /!H 0.E0˝Lm

i /

is surjective. But this composition is just the direct sum of the natural multiplication
maps V 0j ˝H 0.Lm

i ˝L�n
j /!H 0.E˝Lm

i /, whose image lies in W 0i , since M 0 is a
submodule of Hom.T;E/. Thus, we conclude

(8.6) H 0.E0˝Lm
i /�W 0i for all i:

Now (8.5) and (8.6) together imply that M 0 is subordinate to Hom.T;E0/, which
proves the first statement.

If M 0 is tight and non-degenerate, then the equality of slopes follows from Lemma 8.11.
Indeed, Hom.T;E0/ is non-degenerate, as by (C4) E0 is .m;L/–regular and so cer-
tainly H 0.E˝Lm

j /¤ 0 for all j .

8.3 Sheaves and modules: semistability

Our aim in this section is to prove Theorem 8.16 below, which compares semistability
of sheaves E to semistability of modules of the form Hom.T;E/.
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Lemma 8.15 Suppose that E is .n;L/–regular of topological type � . Then the
following are equivalent:

(1) Hom.T;E/ is semistable.

(2) For any subsheaf E0 �E we have

(8.7)
X

j

�j h0.E0˝Ln
j /P

�
E.m/�

X
j

�j h0.E0˝Lm
j /P

�
E.n/:

(3) The inequality (8.7) holds for any subsheaf of the form E0 DEsum.V
0

1
; : : : ;V 0j0

/

with V 0j �H 0.E˝Ln
j /, j D 1; : : : ; j0 .

Proof If Hom.T;E/ is semistable and E0 �E , then

0� �.Hom.T;E0//D

P
j �j h0.E0˝Ln

j /P
i �idi1

�

P
j �j h0.E0˝Lm

j /P
i �idi2

D

P
j �j h0.E0˝Ln

j /

P�
E
.n/

�

P
j �j h0.E0˝Lm

j /

P�
E
.m/

;

where the last equality uses the regularity assumption on E . Thus, (1) implies (2).
Clearly, (2) implies (3), so assume that (3) holds. If M 0D

L
j V 0j˚W 0j is any tight non-

degenerate submodule of Hom.T;E/, then by Proposition 8.14 we know that �.M 0/D

�.Hom.T;E0// for some subsheaf E0 � E of the form E0 D Esum.V
0

1
; : : : ;V 0j0

/.
Therefore, by (3) we get �.M 0/ � �.M /. Since this holds for any non-degenerate
tight submodule, using Lemma 8.13 we conclude that Hom.T;E/ is semistable.

Theorem 8.16 (Comparison of semistability) Suppose n;m;p satisfy conditions
(C1)–(C5). Then a sheaf E of topological type � is semistable if and only if it is pure
and .p;L/–regular, and Hom.T;E/ is semistable.

Proof Suppose first that E is semistable. Then by definition it is pure and .p;L/–
regular by (C1) and thus also .n;L/–regular. Let E0 DEsum.V

0
1
; : : : ;V 0j0

/ for some
V 0j �H 0.E˝Ln

j /. By (C5), Corollary 7.3 and (C4), we haveX
j

�j h0.E0˝Ln
j /P

�
E.m/� P�

E0.m/P
�
E.n/D

X
j

�j h0.E0˝Lm
j /P

�
E.n/;

and thus Hom.T;E/ is semistable by Lemma 8.15.

Conversely, suppose that E is pure and .p;L/–regular, and that Hom.T;E/ is
semistable. Let E0 � E be a saturated subsheaf with y�� .E0/ � y�� .E/. Then by
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Lemma 8.15 we know thatX
j

�j h0.E0˝Ln
j /P

�
E.m/�

X
j

�j h0.E0˝Lm
j /P

�
E.n/:

But since E0 is a saturated subsheaf with this assumed lower bound in its slope we
have E 2 S2 (as defined just before condition (C4)). Thus, we can use (C5) to deduce
that the previous inequality implies the inequality of polynomialsX

j

�j h0.E0˝Ln
j /P

�
E � P�

E.n/P
�
E0 :

Hence, applying the implication “(3) ) (1)” of Corollary 7.3 we conclude that E is
semistable, as required.

8.4 Sheaves and modules: S –equivalence

Having compared semistability of sheaves with semistability of modules, we now turn
to Jordan–Hölder filtrations. To obtain a similar comparison result, we need to assume
that � is a positive stability parameter (and thus there are no non-trivial degenerate
submodules).

Lemma 8.17 Suppose that E is semistable of topological type � .

(1) If E0 �E is destabilising subsheaf then E0 is .p;L/–regular and Hom.T;E0/
is a destabilising subsheaf of Hom.T;E/.

(2) If E0
1

and E0
2

are two destabilising subsheaves of E and E0
1
�E0

2
then

Hom.T;E02/=Hom.T;E01/' Hom.T;E02=E
0
1/:

Proof For the first statement, since E is semistable and E0 has the same reduced
multi-polynomial, we have that E0 is also semistable. Letting E00 WD E=E0 , one
checks easily that the same holds for E00 . Thus, E0˚E00 is a semistable sheaf of
topological type � , and so by (C1) is .p;L/–regular, and thus the same holds for E0 .
Consequently, E0 is .n;L/–regular and .m;L/–regular, and so

�.Hom.T;E0//D

P
j �j h0.E0˝Ln

j /P
j �j h0.E0˝Lm

j /
D

P�
E0
.n/

P�
E0
.m/
D

P�
E
.n/

P�
E
.m/
D �.Hom.T;E//;

so Hom.T;E0/ destabilises Hom.T;E/, as claimed.

For the second statement, we know that E0
1

and E0
2

are .n;L/–regular by part (1),
and so Ext1.T;E1/ D 0. Thus, applying Hom.T;�/ to the short exact sequence
0!E0

1
!E0

2
!E0

2
=E0

1
! 0 yields the short exact sequence 0! Hom.T;E0

1
/!

Hom.T;E0
2
/! Hom.T;E0

2
=E0

1
/! 0, which completes the proof.
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Lemma 8.18 Let � be a positive stability parameter and suppose that M 0 is a desta-
bilising submodule of a semistable module M . Then M 0 is tight.

Proof Suppose M 0 is subordinate but not equal to a submodule M 00 of M contradict-
ing tightness. Then there is a j with �j ¤ 0 such that either V 0j ¨ V 00j or W 00j ¨W 0j .
But in both cases this implies �.M /D �.M 0/ < �.M 00/ which is impossible as M

is semistable.

Lemma 8.19 Let � be a positive stability parameter and suppose E is semistable of
topological type � and M 0D

L
V 0j ˚W 0j is a destabilising submodule of Hom.T;E/.

Then E0 WDEsum.V
0

1
; : : : ;Vj 0/ is either a destabilising subsheaf of E or equals E .

Proof From Theorem 8.16 we know that Hom.T;E/ is semistable. By the regularity
of E we know �.Hom.T;E// D P�

E
.n/=P�

E
.m/. Now, by Lemma 8.18 we have

that M 0 is tight and so by Proposition 8.14 subordinate to Hom.T;E0/. Moreover,
�.M 0/D �.Hom.T;E0//. Taken together, these observations say that we haveP

j �j h0.E0˝Ln
j /P

j �j h0.E0˝Lm
j /
D

P�
E
.n/

P�
E
.m/

:

This equality together with (C5) applied to E0 and to cjDh0.E0˝Ln
j /�h0.E˝Ln

j /D

Pj .n/ give X
j

�j h0.E0˝Lj /P
�
E D P�

E.n/P
�
E0 :

Thus, by the final statement of Corollary 7.3 we conclude that E0 , if not equal to E ,
will destabilise E .

Theorem 8.20 (Comparison of Jordan–Hölder filtrations) Let � be a positive stability
parameter, and suppose n, m and p are chosen such that the embedding theorem,
Theorem 5.7, holds and such that conditions (C1)–(C5) are satisfied. Then for any
semistable sheaf E of topological type � ,

Hom.T; gr E/' gr Hom.T;E/:

Thus, if E is stable, then Hom.T;E/ is stable. Moreover, two such semistable
sheaves E and E0 are S –equivalent if and only if Hom.T;E/ and Hom.T;E0/
are S –equivalent.

Proof Set M D Hom.T;E/, which is semistable by Theorem 8.16. Let 0DE0 ¨
E1 ¨ � � �¨El DE be a Jordan–Hölder filtration of E . So, by definition each Ei is
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destabilising, and the filtration is maximal with this property. By Lemma 8.17 each
Ei is .p;L/–regular and the module Mi WDHom.T;Ei/ is destabilising in M . Thus,
we have a filtration 0DM0 ¨M1 ¨ � � �¨Ml DM of destabilising submodules.

We claim that this is in fact a Jordan–Hölder filtration of M , ie that it is maximal
among such filtrations. To this end suppose that

(8.8) Mp �M 0
�MpC1

for some destabilising submodule M 0 D
L

j V 0j ˚W 0j of M . By Lemma 8.19 the
sheaf E0 WDEsum.V

0
1
; : : : ;V 0j0

/ is a destabilising subsheaf of E or equals E .

We claim that

(8.9) Ep �E0 �EpC1:

To prove this, observe that M 0 is tight from Lemma 8.18 and subordinate to Hom.T;E0/
by Proposition 8.14. Hence, by the definition of being tight (8.4) we have V 0j D

H 0.E0˝Ln
j / and W 0j DH 0.E0˝Lm

j / for all j (here again we use that � is positive,
so this holds for all j ), and thus M 0 D Hom.T;E0/. Therefore, the above inclusion
(8.8) in particular implies

H 0.Ep˝Lm
j /�H 0.E0˝Lm

j /�H 0.EpC1˝Lm
j /:

But both the sheaves Ep and E0 are .m;L/–regular, and so both of Ep ˝Lm
j and

E0˝Lm
j are globally generated, which gives (8.9).

Hence, by maximality of the original Jordan–Hölder filtration given by the Ei , we
must have either E0 DEp or E0 DEpC1 . Thus either M 0 DMp or M 0 DMpC1 so
the Mp do in fact give a Jordan–Hölder filtration of M as claimed.

Using the above, we compute

gr Hom.T;E/D
M

p

Mp=MpC1 D

M
p

Hom.T;Ep/=Hom.T;EpC1/

D

M
p

Hom.T;Ep=EpC1/

D Hom.T; gr E/;

where the penultimate equality comes from the second statement in Lemma 8.17.

Finally, if E is stable, then gr.E/ D E , so gr Hom.T;E/ D Hom.T;E/, which
is thus stable. For the statement about S –equivalence, clearly if E and E0 are S –
equivalent then the same is true for Hom.T;E/ and Hom.T;E0/. On the other hand,
if Hom.T;E/ and Hom.T;E0/ are S –equivalent, then Hom.T; gr.E// is isomorphic
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to Hom.T; gr.E0//, which implies that gr.E/ is isomorphic to gr.E0/, since we are
assuming n and m are chosen so the map � 7! Hom.T; � / is fully faithful by
Theorem 5.7. This shows that E and E0 are S –equivalent. Note that Theorem 5.7
may be invoked since both gr.E/ and gr.E0/ are semistable of topological type � and
hence .p;L/–regular by condition (C1).

9 Construction of moduli spaces

In this section, we construct the moduli space for multi-Gieseker semistable sheaves.
As before, let X be a projective scheme of finite type over an algebraically closed
field k of characteristic zero, and � D .L; �1; : : : ; �j0

/ be a rational bounded stability
parameter. Removing any of the Lj for which �j D 0 does not affect the definition of
(semi)stability, cf Definition 2.5. Thus, we may without loss of generality assume that
� is positive.

The moduli functor we wish to consider is

M� W .Sch=k/ı! .Sets/;

assigning to a scheme S the set M� .S/ of isomorphism classes of S –flat families
of sheaves on X that are semistable with respect to � and have topological type � .
Moreover, if f W S 0! S is a morphism, then M� .f / is the map obtained by pulling
back sheaves via f � idX . Here, a moduli space of � –semistable sheaves is a scheme
that corepresents M� (for the basic terminology concerning moduli spaces and the
corepresentation of functors adopted, see [2, Sections 4.4 and 4.5]).

9.1 Constructing quasi-projective moduli spaces by GIT

First, we choose natural numbers p; n;m 2N such that the conclusion of Theorem 8.1,
ie comparison of semistability and Jordan–Hölder filtrations between sheaves and
modules, holds. Moreover, by increasing m if necessary, we may assume that the
assertions of Theorem 5.7 and hence those of Propositions 5.8 and 5.9 also hold. Note
that by assumption, every semistable sheaf E of topological type � is .p;L/–regular,
and therefore also .n;L/– and .m;L/–regular.

We now match up the discussion of the previous sections with the terminology in-
troduced in Section 5.3. To ease notation let Pj D P

Lj
E

, where E is (any) sheaf of
topological type � . We consider the dimension vector

d D .P1.n/;P1.m/; : : : ;Pj0
.n/;Pj0

.m//;
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as introduced above (8.1), and let

R WD Rep.Q; d/D
j0M

i;jD1

Homk

�
kPi .n/˝Hij ; k

Pj .m/
�

be the representation space of the quiver Q corresponding to the dimension vector d .
Here as before we have used the notation Hij DH 0.L�n

i ˝Lm
j /. The space R carries

a tautological family M of right A–modules, and therefore, Proposition 5.9 allows us
to find a locally closed subscheme

N�W R
Œn–reg�
� ,!R

parametrising those modules that are in the image of the Hom.T;�/–functor on the
category of n–regular sheaves. Hence, N��M˝AT is an R

Œn–reg�
� –flat family of n–regular

sheaves of topological type � . Consequently, there exists an open subscheme

�W Q ,!R
Œn–reg�
�

that parametrises sheaves that are not only .n;L/–regular, but even .p;L/–regular.
We let

(9.1) QŒ�–s�
�QŒ�–ss�

�Q

be the loci where the fibres of the tautological family F D ��M ˝A T are stable
and semistable, respectively. By Lemma 2.19, these loci are open subschemes. The
reductive group

G WD

j0Y
jD1

�
GLk.Pj .n//�GLk.Pj .m//

�
acts linearly on R by conjugation, and the subschemes R

Œn–reg�
� , Q, QŒ�–s� , and QŒ�–ss�

are stable under the G–action. As explained in Section 5.2, the vector � defines a
rational character �� of G and hence a G –linearisation �� WD ��� of the trivial line
bundle over R, and it follows from the work of King [32] that we have the following
connection between geometric invariant theory and the moduli theory of semistable
A–modules; cf [2, Theorem 4.8], see also the discussion and notation of Section 5.2.

Proposition 9.1 (Moduli of semistable modules via GIT) If R�–ss denotes the open
subscheme of points that are GIT semistable with respect to the linearisation ��� , the
good quotient

�AW R
�–ss
!M�–ss

A .d/
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exists, and the projective scheme M�–ss
A

.d/ is a moduli space for � –semistable A–
modules. The closed points of M�–ss

A
.d/ correspond to the S –equivalence classes of

semistable A–modules.

Moreover, if R�–s �R�–ss denotes the open subscheme of stable points, the geometric
quotient R�–s=G DWM�–s

A
.d/ exists, it embeds into M�–ss

A
.d/ as an open subscheme,

and is a moduli space for stable A–modules. The closed points of M�–s
A
.d/ correspond

to the isomorphism classes of stable A–modules.

It is our aim to show that QŒ�–ss� has a good quotient and that this good quotient
restricts to a geometric quotient on QŒ�–s� . We do this with the help of the following
well-known lemma, a proof of which can be found in [2, Section 6.1].

Lemma 9.2 (Restricting good quotients to saturated open subsets) Let � W Z!Z==G

be a good quotient for the action of a reductive algebraic group G on a scheme Z , and
let Y be a G –invariant open subset of Z . Suppose further that for each G –orbit G � y

in Y , the (uniquely determined) closed orbit that is contained in the orbit closure G � y

in Z is already contained in Y . Then � restricts to a good quotient Y ! Y==G , where
Y==G D �.Y / is an open subset of Z==G .

The following is the main step in the construction of the desired moduli space.

Proposition 9.3 (Sheaf-theoretic semistability and orbit closures) The good quotient
�AW R

�–ss!M�–ss
A

of Proposition 9.1 and the locally closed embedding �W QŒ�–ss� ,!

R�–ss uniquely determine a commutative diagram

(9.2)

Q
Œ�–ss�
�

� � � //

��

R�–ss

�A

��
M�–ss

L
.�/
� � ' //M�–ss

A
;

where M�–ss
L

.�/ is quasi-projective, � is a good quotient, and ' is the inclusion of a
locally closed subscheme.

Proof (cf [2, Proposition 6.3]) Let Y D QŒ�–ss� , and let Y be its closure in R.
Furthermore, set Z D Y \R�–ss , which is a closed G–stable subscheme of R�–ss .
We claim that the assumptions of Lemma 9.2 are fulfilled. Indeed, if p 2 QŒ�–ss�

corresponds to a module M D Hom.T;E/, the closed orbit in G � p is the orbit
corresponding to the graded module gr M , see [32, Proposition 3.2] or Theorem 5.5
above. However, part (2) of Theorem 8.1 states that gr M Š Hom.T; gr E/, and we
know that gr E is semistable. Hence, this closed orbit is also in QŒ�–ss� , as claimed.
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Now, Lemma 9.2 implies that in order to prove our assertions it suffices to show that the
closed subscheme Z �R�–ss has a good quotient that embeds into M�–ss

A
. However,

as our ground field has characteristic zero, the existence of a Reynolds operator implies
that the scheme-theoretic image �A.Z/ of the closed G –stable subscheme Z �R�–ss

is a closed subscheme of M�–ss
A

, and the restriction �AjZ W Z ! �A.Z/ is a good
quotient for the G –action on Z , cf [39, page 29 statement (3)].

Finally, we are in the position to complete our construction of a moduli space for
multi-Gieseker semistable sheaves.

Theorem 9.4 (Existence of moduli spaces for .L; �/–semistable sheaves) The mod-
uli space M� of .L; �/–semistable sheaves of topological type � is given by the
scheme M�–ss

L
.�/ from Proposition 9.3, ie it corepresents the moduli functor M� of

flat families of semistable sheaves. The closed points of M�–ss
L

.�/ correspond to the
S –equivalence classes of semistable sheaves. Furthermore, there is an open subscheme
M�–s

L
.�/ �M�–ss

L
.�/ that corepresents the moduli functor of flat families of stable

sheaves, and whose closed points correspond to the isomorphism classes of stable
sheaves.

Proof Since � is a good quotient, and hence in particular a categorical quotient, it
follows from standard arguments, general principles, and part (1) of Theorem 8.1 that
M�–ss

L
.�/ corepresents the moduli functor of families of semistable sheaves; see for

example [2, Sections 4.4 and 4.5] and [25, Chapter 4.3] for details.

The remainder of the proof is mutatis mutandis the same as the one of [2, Theorem 6.4].
The morphism ' of diagram (9.2) induces a bijection between the closed points of
M�–ss

L
.�/ and the closed points of �A.Q

Œ�–ss�/�M�–ss
A

. Consequently, Proposition 9.1
implies that the closed points of M�–ss

L
.�/ correspond to the S –equivalence classes

of semistable A–modules M that are of the form M D Hom.T;E/ for semistable
sheaves of E of topological type � . However, we also know from part (2) of
Theorem 8.1 that Hom.T;E/ and Hom.T;E0/ are S –equivalent A–modules if and
only if E and E0 are S –equivalent sheaves. This implies the statement about the
closed points of M�–ss

L
.�/. For the part of the statement concerning stable sheaves,

note that Theorem 8.1 implies that a semistable sheaf E is stable if and only if the
associated A–module Hom.T;E/ is stable. It follows that QŒ�–s�DQŒ�–ss�\R�–s . In
particular, all G –orbits in QŒ�–s� are closed in QŒ�–ss� , since they are closed in R�–ss .
We may hence apply Lemma 9.2 to conclude that QŒ�–s� has a good, geometric quotient
M�–s

L
.�/DQŒ�–s�=G D �.QŒ�–s�/, which is open in M�–ss

L
.�/, and corepresents the

moduli functor of families of stable sheaves. Finally, the closed points of M�–s
L
.�/

correspond to isomorphism classes of stable sheaves, as M�–s
L
.�/D �.QŒ�–s�/, and

S –equivalence classes of stable sheaves are exactly the isomorphism classes.
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9.2 Properness of the moduli spaces

It follows from Proposition 9.3 that the moduli space M� is quasi-projective. To show
that it is projective, we hence need to show it is proper. The proof of this statement
is the same as that of the corresponding statement in [2], which in turn depends on
Langton’s theorem [34].

Theorem 9.5 (Langton’s theorem) Fix a rational stability parameter � . Let C be
the spectrum of a discrete valuation ring with generic point C0 and suppose that F is
a flat family over C0 of sheaves on X that are semistable with respect to � . Then F

extends to a flat family of semistable sheaves over C .

Proof Suppose first that X is smooth. By the proof of [25, Theorem 2.2.4], F extends
to a flat family over C . Then the proof of Langton’s theorem [25, Theorem 2.B.1]
holds verbatim, once the following is noticed: since � is rational, there is an N such
that the coefficients of the multi-Hilbert polynomial of any coherent sheaf on X lies
in the lattice .1=r !N /Z�Q (one merely has to take N to be sufficiently divisible to
deal with the denominators that arise in the �j ). Thus, any descending sequence ǰ of
such coefficients that is strictly positive will eventually become stationary.

Now the case for a general X follows from the smooth case. Without loss of generality
we may assume that the L1; : : : ;Lj0

are very ample, and that their sections give an em-
bedding �W X!Pn1�� � ��Pnj0 DWP . Then a sheaf F is (semi)stable on X with respect
to .�;L/ if and only it is (semi)stable with respect to .�; .OPn1 .1/; : : : ;OP

nj0
.1//.

Thus the statement for X follows from that for P .

Using the previous result, the proof of the following is precisely the same as the
corresponding one in [2, Proposition 6.6], which we do not repeat here.

Theorem 9.6 (Projectivity of moduli spaces) Suppose that � is a rational stability
parameter. Then the moduli space M� is proper and thus projective.

Remark 9.7 In the statement of Theorem 9.6, we include the hypothesis that � is ra-
tional only to emphasise its importance in the proof of Langton’s theorem, Theorem 9.5
above. As we have seen in Corollary 4.4, this is not really necessary.

Part III Applications

10 Variation of multi-Gieseker moduli spaces

In this section we consider the variation of the moduli spaces M� , as � varies. Let
X be a projective scheme over an algebraically closed field of characteristic 0, let
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LD .L1; : : : ;Lj0
/ be a vector of very ample line bundles on X , and fix a topological

type � 2 B.X /Q .

Suppose that † is a finite set of bounded positive stability parameters, all taken
with respect to the same very ample line bundles L D .L1; : : : ;Lj0

/. We choose
m� n� p� 0 so the assertions of Theorems 8.1 and 5.7, and Propositions 5.8 and
5.9 hold for each � 2 †. Consider the union Y D

S
�2† QŒ�–ss� , where QŒ�–ss� is

the locally closed set parametrising modules of the representation space R coming
from sheaves that are semistable with respect to � 2†, as well as its scheme-theoretic
closure

Z WD
[
�2†

QŒ�–ss�

inside R. We recall from the construction that each QŒ�–ss� is an open subset of the
locally closed subscheme Q, see (9.1), and deduce that each QŒ�–ss� is a Zariski-open
subset of Z . We will see that the affine scheme Z is a kind of “master space” for our
variation problem. More precisely, we have the following result.

Theorem 10.1 (A master space for the “variation of polarisation” problem) Let Z

be as above, and let �AW R
�–ss!R�–ss==G be the quotient morphism. Then for any

� 2†, we have

(10.1) Z�–ss
WDR�–ss

\Z DQŒ�–ss�;

and therefore �A.Z
�–ss/ŠZ�–ss==G ŠM�–ss

L
.�/. Here, �A.Z

�–ss/ is endowed with
the natural subscheme structure induced from R�–ss==G .

In other words, Theorem 10.1 says that all the moduli spaces M�–ss
L

.�/, � 2†, occur
as GIT quotients of one and the same affine G –scheme Z , whose quotient is in turn
induced by the quotient of the smooth affine variety R by the action of G .

Corollary 10.2 (Mumford–Thaddeus principle for moduli of � –semistable sheaves)
Let � and � 0 be bounded positive stability parameters. Then the moduli spaces M�–ss

L

and M� 0–ss
L

are related by a finite sequence of Thaddeus flips.

Proof It is proved for example in [7, Theorem 1.1], [21, Theorem 3.3] or [4] that
there exists a rational polyhedral cone CG.R/ inside the vector space of rational
characters X .G/˝Z Q of G , consisting of those characters whose associated set of
semistable points in R is non-empty, together with a finite fan structure reflecting the
equality of the corresponding sets of semistable points. If � is any character of G ,
let L� be the correspondingly linearised trivial line bundle on R. As Z ,! R is a
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G–equivariant closed embedding into an affine G–variety, and since G is reductive,
for any non-vanishing G–invariant section s 2 H 0.Z;L�jZ /

G there exists a G–
invariant section xs 2 H 0.R;L�/

G such that xsjZ D s . Consequently, if L�jZ is
G–equivariantly effective, L� is G–equivariantly effective. We therefore obtain a
subcone CG.Z/ � CG.R/ together with a potentially coarser, and hence still finite,
chamber decomposition reflecting the equality of the corresponding sets of semistable
points of L�jZ . This chamber decomposition induces a chamber decomposition on
the intersection C?

G
.Z/ WD CG.Z/\�

?
d

.

If � and � 0 are given, the corresponding rational characters �� and �� 0 belong to
two of the chambers C and C 0 of C?

G
.Z/, and by Theorem 10.1, the corresponding

moduli spaces
M�–ss

L .�/ and M� 0–ss
L

.�/

are isomorphic to the GIT quotients

ZC –ss==G and ZC 0–ss==G;

respectively. As the fan structure on C?
G
.Z/ is finite, moving from �� to �� 0 in C?

G
.Z/

can be done in finitely many steps (with respect to the fan structure). As explained in
[47, Sections 1 and 3], each step induces a finite sequence of Thaddeus flips on the
corresponding GIT quotients. This shows the claim.

Remark 10.3 The above corollary is slightly stronger than stated, in that the same
master space may be used for any finite number of bounded stability parameters. Due
to the fact that the whole situation is equivariantly embedded into the (smooth) G–
module R, in specific examples a finer description of the transition from one moduli
space to another is possible using the results of Thaddeus [47, Sections 4 and 5].
Moreover, as explained in [47, Section 3.1] and [44, Chapter 1.6], respectively, we
may further reduce any explicit analysis to a question of variation of .C�/k –, or even
C�–GIT quotients.

Proof of Theorem 10.1 Fix � 2 †. To begin, we note that QŒ�–ss� is contained in
Z�–ss by Theorem 8.1 (1). Our first claim is that QŒ�–ss� is dense in Z�–ss . As a set
of semistable points with respect to a G–linearisation in a line bundle, the set Z�–ss

is Zariski open in Z . Moreover, as we have already noted above, QŒ�–ss� is Zariski
open in Z . If C is any component of Z�–ss , then C \QŒ�–ss� is either empty or
otherwise a Zariski open and dense subset of C . Therefore, it suffices to show that
every component of Z�–ss contains an element of QŒ�–ss� .

If C is any component of Z�–ss , then by the definition of Z there exists some stability
parameter � 0 2† such that QŒ� 0–ss�\C is non-empty. Let M be an element in this
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intersection. Then on the one hand, M is GIT semistable with respect to �� , since
M 2 Z�–ss , and on the other hand, M is of the form M D Hom.T;E/ for some
uniquely determined .p;L/–regular sheaf E by the definition of QŒ� 0–ss� . Owing
to the choice of the natural numbers m � n � p � 0, Theorem 8.1 (1) hence
implies that the sheaf E is semistable with respect to � . In other words, we have
M D Hom.T;E/ 2QŒ�–ss� , and QŒ�–ss�\C ¤∅.

Since the quotient map of Z�–ss ! Z�–ss==G is just the restriction of the quotient
map �AW R

�–ss!R�–ss==G , it follows from Theorem 8.1 (2) that QŒ�–ss� is saturated
in Z�–ss . The density property established above and the generalisation of Langton’s
theorem to our setup, Theorem 9.6, now together imply that on the level of reduced
spaces, we have

M�–ss
L Š �A.Q

Œ�–ss�/DZ�–ss==G:

Using saturatedness we conclude that QŒ�–ss� is equal to Z�–ss , as claimed.

11 Gieseker stability with respect to real ample classes

It is a natural and old question, raised for example by Tyurin, how to compactify the
moduli space of vector bundles on a compact Kähler manifold that are slope-stable with
respect to a chosen Kähler class ! 2H 1;1.X;R/ using Gieseker semistable sheaves.
In this section, we solve this problem in the case that ! is a class in the real span of the
ample cone of a smooth projective threefold, thus providing the first higher-dimensional
evidence in favour of a positive answer to this question.

Definition 11.1 (Hilbert polynomial with respect to a real ample class) Let X be a
smooth projective variety, and � 2B.X /Q . We let ! 2N 1.X /R be the class of a real
ample divisor on X . Given a coherent sheaf E on X , the Hilbert polynomial with
respect to ! is defined as

P!
E.m/ WD

Z
X

ch.E/em! Todd.X /;

and (semi)stability is defined in the usual way using P! .

Remark 11.2 In the projective case, if ! 2 c1.L/ for some ample line bundle L

then P!
E
.m/ D PL

E
.m/ is the usual Hilbert polynomial. Thus, the above definition

generalises the notion of Gieseker stability to all real ample classes.

For the main result of this section, we assume X to be a smooth projective threefold over
an algebraically closed field of characteristic zero. Our goal is to show that Gieseker
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stability with respect to ! is equivalent to multi-Gieseker stability with respect to some
.L; �/, where � is possibly irrational. We start with an elementary observation.

Lemma 11.3 For any �; � 2R>0 there exist � 2Q>0 and �; � 0 2R>0 such that

� C � 0�D � and � C � 0�2
D �:

If moreover � ¤ � , then � may be taken in Q>0 n f1g.

Proof The fact that for any �; � 2 R>0 there exist � 2Q>0 and �; � 0 2 R�0 such
that � C � 0�D � and � C � 0�2 D � may be reformulated as the following equality,

R>0 �R>0 D

[
�2Q>0

Conv.R>0.1; 1/[R>0.1; �//;

which is clearly true. The supplementary assertion on � and the fact that � and � 0

may even be taken in R>0 are easily checked.

Proposition 11.4 Let X be a smooth projective threefold and ! a class in the ample
cone Amp.X /R . Let � be the Picard number of X and set j0 D 4.�C 1/. Then there
exist rational ample classes Lj 2 Amp.X /Q , 0� j � j0 , such that the set

U!.L1; : : : ;Lj0
/ WD

�� j0X
jD1

�j Lj ;

j0X
jD1

�j L2
j

� ˇ̌̌
�j 2R>0; 0� j � j0

�
is an open neighbourhood of .!; !2/ in Amp.X /R �Pos.X /R .

Proof It is clear that we can find rational classes L1; : : : ;L�C1 2Amp.X /Q contain-
ing ! in their convex hull. We suppose moreover that L1; : : : ;L� span N 1.X /R . By
[19, Proposition 6.5] the map p2W Amp.X /R! Pos.X /R , p2.˛/D ˛

2 is a homeo-
morphism. One can thus find further rational classes L�C2; : : : ;L2.�C1/ 2Amp.X /Q
such that !2 may be expressed as a convex combination of L2

�C2
; : : : ;L2

2.�C1/
. In

other words, we may write

(11.1) ! D

2.�C1/X
jD1

�j Lj ; !2
D

2.�C1/X
jD1

�j L2
j ;

for suitable �j ; �j 2 R�0 . Moreover, by a small perturbation of the line bundles
involved, we may assume that �j ; �j 2 .0; 1/ and that �j ¤ �j for all j . Lemma 11.3
then provides us with positive rational numbers �j ¤ 1, j D 1; : : : ; 2.�C 1/, and
positive reals �j ; �

0
j , j D 1; : : : ; 2.�C 1/, satisfying

(11.2) �j C �
0
j�j D �j and �j C �

0
j�

2
j D �j :
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Thus, if for 2.�C 1/C 1� j � 4.�C 1/D j0 we set

Lj WD �j�2.�C1/Lj�2.�C1/; �j WD �
0
j�2.�C1/;

we get the expressions

! D

j0X
jD1

�j Lj ; !2
D

j0X
jD1

�j L2
j ;

from (11.1) and (11.2). Moreover, by choosing the directions of the Lj in N 1.X /R
close enough to that of ! we make sure that�� j0X

jD1

�j Lj ;

j0X
jD1

�j L2
j

� ˇ̌̌
�j 2R>0; 0� j � j0

�
is contained in Amp.X /R �Pos.X /R . It remains to check that this set is open. This
will be clear once we have shown that the R–linear map

�W R4.�C1/
!N 1.X /R �N1.X /R; � 7!

� j0X
jD1

�j Lj ;

j0X
jD1

�j L2
j

�
has maximal rank. But if .ej /j denotes the canonical basis of R4.�C1/ , we have
�.e1/ D .L1;L

2
1
/, �.e2.�C1/C1/ D .�1L1; �

2
1
L2

1
/, and these two vectors span the

same subspace of N 1.X /�N1.X / as .L1; 0/ and .0;L2
1
/, since �1 ¤ 1. Working

in the same way on the pairs .ej ; e2.�C1/Cj /, 2 � j � � , we prove the surjectivity
of � .

Remark 11.5 It is possible to lower the number j0 provided by the proposition to
1C 4.� � 1/, if we only ask for proportionality relations ! D ˛2

Pj0

jD1
�j Lj and

!2 D ˛1

Pj0

jD1
�j L2

j for some positive constants ˛i , which clearly does not affect
stability. Moreover, in the special case �D 2 it is easy to see that we may improve our
argument to get j0 D 3.

Theorem 11.6 (Projective moduli spaces for !–semistable sheaves) Let !2N 1.X /R
be a real ample class on a smooth projective threefold X and � 2 B.X /Q . Then there
exists a projective moduli space M! of torsion-free sheaves of topological type � that
are semistable with respect to ! . This moduli space contains an open set consisting of
points representing isomorphism classes of stable sheaves, while points on the boundary
correspond to S –equivalence classes of strictly semistable sheaves.
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Proof Let �j , 1 � j � j0 , be as in Proposition 11.4 and L WD .L1; : : : ;Lj0
/.

Simultaneously scale the rational classes Lj by a positive integer such that all of them
become integral. Then by construction, for any sheaf on X the Hilbert polynomial with
respect to ! is, up to a positive integer factor, the same as the multi-Hilbert polynomial
with respect to .L; �/, and hence semistability with respect to ! is equivalent to
semistability with respect to .L; �/.

Moreover, note that the whole first quadrant †D .R�0/
j0 n f0g is a bounded set of

stability parameters by Corollary 6.12. Therefore, we may take p so that all sheaves
E of a given topological type that are semistable with respect to some � 2 † are
.p;L/–regular. Consequently, it follows from Corollary 4.4 (applied with this value
of p ) that there exists � 0 2 .Q�0/

j0 nf0g such that any � –semistable torsion-free sheaf
of topological type � is � 0–semistable and vice versa, and similarly for S –equivalence
classes. Hence, the desired moduli space is provided by M�–ss

L
.�/.

12 Variation of Gieseker moduli spaces on threefolds

Connecting Proposition 11.4 with the general results concerning variation of multi-
Gieseker moduli spaces obtained in Section 10, we obtain one of the main results of
our paper.

Theorem 12.1 (Variation of moduli spaces on threefolds) Let X be a smooth projec-
tive threefold over an algebraically closed field of characteristic zero, let � 2 B.X /Q ,
and let L1;L2 be two classes in Amp.X /R . Then the moduli spaces ML1

and ML2

of sheaves of topological type � that are Gieseker semistable with respect to L1 and
L2 , respectively, are related by a finite number of Thaddeus flips.

Proof Let ! 2 Amp.X /R be any real ample class, let H1; : : : ;Hj0
be the set of

ample classes guaranteed by Proposition 11.4, and let

U!.H1; : : : ;Hj0
/� Amp.X /R �Pos.X /R

be the corresponding open subset. Let U! be the preimage of U!.H1; : : : ;Hj0
/

under the map from Amp.X /R to Amp.X /R � Pos.X /R given by ˛ 7! .˛; ˛2/.
Clearly, U! is an open neighbourhood of ! in Amp.X /R . Then, as the corresponding
multi-Gieseker stability conditions are all positive by construction, it follows from
Corollary 10.2 that the Gieseker moduli spaces associated with any two rational points
in U! are related by a finite number of Thaddeus flips. In fact, the argument in the
second paragraph of Theorem 11.6 can now be applied again to show that the same
statement holds for any two points in U! . Covering a connecting segment between L1
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and L2 in Amp.X /R with finitely many open subsets of the form U! , we conclude
that the moduli spaces ML1

and ML2
associated with any two rational classes L1

and L2 are related by a finite number of Thaddeus flips.
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